Resumen: Compounds containing Mn–O bonds are of utmost importance in biological systems and catalytic processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeF5) to bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric structures and an all O-donor coordination sphere. The tetrahedrally distorted MnII anion, [Mn(OTeF5)4]2−, can be described as a high spin d5 complex (S = 5/2), as found experimentally (magnetic susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/NEVPT2). The high spin d4 electronic configuration (S = 2) of the MnIII anion, [Mn(OTeF5)5]2−, was also determined experimentally and theoretically, and a square pyramidal geometry was found to be the most stable one for this complex. Finally, the bonding situation in both complexes was investigated by means of the Interacting Quantum Atoms (IQA) methodology and compared to that of hypothetical mononuclear fluoromanganates. Within each pair of [MnXn]2− (n = 4, 5) species (X = OTeF5, F), the Mn–X interaction is found to be comparable, therefore proving that the similar electronic properties of the teflate and the fluoride are also responsible for the stabilization of these unique species. Idioma: Inglés DOI: 10.1039/d4sc00543k Año: 2024 Publicado en: CHEMICAL SCIENCE 15, 15 (2024), 5564-5572 ISSN: 2041-6520 Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-122763NB-I00 Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Área Química Física (Dpto. Química Física)