000133433 001__ 133433
000133433 005__ 20260210085312.0
000133433 0247_ $$2doi$$a10.3390/app14031191
000133433 0248_ $$2sideral$$a138170
000133433 037__ $$aART-2024-138170
000133433 041__ $$aeng
000133433 100__ $$aGupta, Soumya
000133433 245__ $$aPhoto-Fermentative Bacteria Used for Hydrogen Production
000133433 260__ $$c2024
000133433 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133433 5203_ $$aPhoto-fermentation is an efficient hydrogen production pathway in which purple non-sulfur bacteria (PNSB) play an active role and produce hydrogen as a part of their metabolism under optimal conditions. These bacteria work under the influence of light to advance their metabolism and use various substrates, such as simple sugars and volatile fatty acids, to produce hydrogen. This article presents a comparative review of several bacterial strains that have been efficiently used to produce hydrogen by photo-fermentation under different optimized conditions, including the substrate, its concentration, type and capacity of the bioreactor, light sources and intensities, and process conditions to achieve the maximum biohydrogen production rate. The analysis showed that the Rhodopseudomonas palustris is the main bacterium used for hydrogen production, with a maximum hydrogen production rate of 3.2 mM/h using 27.8 mM of glucose in a 165 mL serum bottle and 3.23 mM/h using 50 mM of glycerol at pH 7, followed by Rhodobacter sphaeroides, which gave a hydrogen production rate as high as 8.7 mM/h, using 40 mM of lactic acid, pH 7, and 30 °C temperature in a single-walled glass bioreactor. However, it is not preferred over R. palustris due to its versatile metabolism and ability to use an alternative mode if the conditions are not carefully adjusted, which can be a problem in hydrogen production.
000133433 536__ $$9info:eu-repo/grantAgreement/ES/NextGenerationEU/PR-H2CVAL4-C1- 2022-0049
000133433 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000133433 590__ $$a2.5$$b2024
000133433 592__ $$a0.521$$b2024
000133433 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b50 / 179 = 0.279$$c2024$$dQ2$$eT1
000133433 591__ $$aPHYSICS, APPLIED$$b101 / 187 = 0.54$$c2024$$dQ3$$eT2
000133433 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b284 / 461 = 0.616$$c2024$$dQ3$$eT2
000133433 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b123 / 239 = 0.515$$c2024$$dQ3$$eT2
000133433 593__ $$aEngineering (miscellaneous)$$c2024$$dQ2
000133433 593__ $$aComputer Science Applications$$c2024$$dQ2
000133433 593__ $$aProcess Chemistry and Technology$$c2024$$dQ2
000133433 593__ $$aInstrumentation$$c2024$$dQ2
000133433 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ2
000133433 593__ $$aFluid Flow and Transfer Processes$$c2024$$dQ2
000133433 594__ $$a5.5$$b2024
000133433 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133433 700__ $$aFernandes, Annabel
000133433 700__ $$aLopes, Ana
000133433 700__ $$0(orcid)0000-0002-5306-9365$$aGrasa, Laura$$uUniversidad de Zaragoza
000133433 700__ $$0(orcid)0000-0002-6607-1309$$aSalafranca, Jesús$$uUniversidad de Zaragoza
000133433 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000133433 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000133433 773__ $$g14, 3 (2024), 1191 [18 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000133433 8564_ $$s2384277$$uhttps://zaguan.unizar.es/record/133433/files/texto_completo.pdf$$yVersión publicada
000133433 8564_ $$s2718014$$uhttps://zaguan.unizar.es/record/133433/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133433 909CO $$ooai:zaguan.unizar.es:133433$$particulos$$pdriver
000133433 951__ $$a2026-02-10-08:21:25
000133433 980__ $$aARTICLE