000133441 001__ 133441
000133441 005__ 20240416133904.0
000133441 0247_ $$2doi$$a10.1016/j.cattod.2024.114667
000133441 0248_ $$2sideral$$a138118
000133441 037__ $$aART-2024-138118
000133441 041__ $$aeng
000133441 100__ $$0(orcid)0000-0003-0395-0143$$aMercader, Víctor Daniel$$uUniversidad de Zaragoza
000133441 245__ $$aBiogas upgrading by intensified methanation (SESaR): Reaction plus water adsorption - desorption cycles with Ni-Fe/Al2O3 catalyst and LTA 5A zeolite
000133441 260__ $$c2024
000133441 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133441 5203_ $$aThis work is conducted within the framework of the Power to Gas (PtG) technologies, focusing on the topic of “biogas upgrading”. The objective is to enhance the CH4 content of biogas streams by utilizing the CO2 present in these streams through the Sabatier reaction, thereby producing a renewable alternative to natural (fossil) gas. Referred to as “SESaR”(Sorption Enhanced Sabatier Reaction), this process employs a catalytic fixed-bed reactor, featuring selective water adsorption using LTA 5A zeolites, as an innovative approach to traditional methanation reactors. The catalyst used comprises Ni-Fe (7.5:2.5 wt/wt) as the active metallic phase supported on γ-Al2O3. Experimental work has been divided in two sets of trials. The first set focuses on the hydrogenation of CO2 as single reactant (H2 also supplied in the inlet with 4:1 = H2:CO2 molar ratio). The second set of experiments was carried out with a synthetic gas mixture representative of a sweetened biogas stream (molar ratio CH4:CO2 = 7:3). Maximum intensification behavior for CO2 conversion was found at 350 °C, also showing that CH4 presence in the inlet gas has negligible influence on the conversion of CO2. Selectivity to CO is minimized at temperatures exceeding 300 °C and remains constant after three consecutive cycles of methanation, water adsorption, and desorption. The Fe-Ni catalyst has demonstrated sustained performance throughout the experimental cycles, exhibiting no significant loss of activity.
000133441 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-136947OB-I00$$9info:eu-repo/grantAgreement/ES/DGA/T43-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104866RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2020-095679
000133441 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000133441 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133441 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, Paúl$$uUniversidad de Zaragoza
000133441 700__ $$0(orcid)0000-0001-6452-4258$$aAragüés-Aldea, Pablo$$uUniversidad de Zaragoza
000133441 700__ $$0(orcid)0000-0003-3181-195X$$aFrancés, Eva$$uUniversidad de Zaragoza
000133441 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, Javier$$uUniversidad de Zaragoza
000133441 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, José Angel$$uUniversidad de Zaragoza
000133441 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000133441 773__ $$g433 (2024), 114667 [10 pp.]$$pCatal. today$$tCatalysis Today$$x0920-5861
000133441 8564_ $$s3020543$$uhttps://zaguan.unizar.es/record/133441/files/texto_completo.pdf$$yVersión publicada
000133441 8564_ $$s2541377$$uhttps://zaguan.unizar.es/record/133441/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133441 909CO $$ooai:zaguan.unizar.es:133441$$particulos$$pdriver
000133441 951__ $$a2024-04-16-13:15:31
000133441 980__ $$aARTICLE