000133446 001__ 133446
000133446 005__ 20250923084430.0
000133446 0247_ $$2doi$$a10.3390/fire7030073
000133446 0248_ $$2sideral$$a138129
000133446 037__ $$aART-2024-138129
000133446 041__ $$aeng
000133446 100__ $$aChakraborty, Nilanjan
000133446 245__ $$aTimescales Associated with the Evolution of Reactive Scalar Gradient in Premixed Turbulent Combustion: A Direct Numerical Simulation Analysis
000133446 260__ $$c2024
000133446 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133446 5203_ $$aThe fractional change in the reaction progress variable gradient depends on the flow normal straining within the flame and also upon the corresponding normal gradients of the reaction rate and its molecular diffusion transport. The statistical behaviours of the normal strain rate and the contributions arising from the normal gradients of the reaction rate and molecular diffusion rate within the flame were analysed by means of a Direct Numerical Simulation (DNS) database of statistically planar turbulent premixed flames ranging from the wrinkled/corrugated flamelets regime to the thin reaction zones regime. The interaction of flame-normal straining with the flame-normal gradient of molecular diffusion rate was found to govern the reactive scalar gradient transport in the preheat zone, where comparable timescales for turbulent straining and molecular diffusion are obtained for small values of Karlovitz numbers. However, the molecular diffusion timescale turns out to be smaller than the turbulent straining timescale for high values of Karlovitz numbers. By contrast, the reaction and hot product zones of the flame remain mostly unaffected by turbulence, and the reactive scalar gradient transport in this zone is determined by the interaction between the flame-normal gradients of molecular diffusion and chemical reaction rates.
000133446 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000133446 590__ $$a2.7$$b2024
000133446 592__ $$a0.572$$b2024
000133446 591__ $$aFORESTRY$$b20 / 92 = 0.217$$c2024$$dQ1$$eT1
000133446 591__ $$aECOLOGY$$b70 / 200 = 0.35$$c2024$$dQ2$$eT2
000133446 593__ $$aForestry$$c2024$$dQ1
000133446 593__ $$aBuilding and Construction$$c2024$$dQ2
000133446 593__ $$aSafety, Risk, Reliability and Quality$$c2024$$dQ2
000133446 593__ $$aSafety Research$$c2024$$dQ2
000133446 593__ $$aEnvironmental Science (miscellaneous)$$c2024$$dQ2
000133446 593__ $$aEarth and Planetary Sciences (miscellaneous)$$c2024$$dQ2
000133446 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133446 700__ $$0(orcid)0000-0002-2267-8598$$aDopazo, Cesar$$uUniversidad de Zaragoza
000133446 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000133446 773__ $$g7, 3 (2024), 73 [19 pp.]$$pFire$$tFire (Basel)$$x2571-6255
000133446 8564_ $$s4368514$$uhttps://zaguan.unizar.es/record/133446/files/texto_completo.pdf$$yVersión publicada
000133446 8564_ $$s2679360$$uhttps://zaguan.unizar.es/record/133446/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133446 909CO $$ooai:zaguan.unizar.es:133446$$particulos$$pdriver
000133446 951__ $$a2025-09-22-14:42:37
000133446 980__ $$aARTICLE