
Citation: Khiar, Y.; Mainar, E.; Peña,

J.M.; Royo-Amondarain, E.; Rubio, B.

Bidiagonal Factorizations of Filbert

and Lilbert Matrices. Axioms 2024, 13,

219. https://doi.org/10.3390/

axioms13040219

Academic Editor: Florin Felix Nichita

Received: 5 February 2024

Revised: 13 March 2024

Accepted: 22 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Bidiagonal Factorizations of Filbert and Lilbert Matrices
Yasmina Khiar 1 , Esmeralda Mainar 1 , Juan Manuel Peña 1 , Eduardo Royo-Amondarain 2,*
and Beatriz Rubio 1

1 Department of Applied Mathematics, University Research Institute of Mathematics and Its Applications
(IUMA), University of Zaragoza, 50009 Zaragoza, Spain; ykhiar@unizar.es (Y.K.); esmemain@unizar.es (E.M.);
jmpena@unizar.es (J.M.P.); brubio@unizar.es (B.R.)

2 Department of Mathematics, Centro de Astropartículas y Física de Altas Energías (CAPA), University of
Zaragoza, 50009 Zaragoza, Spain

* Correspondence: eduroyo@unizar.es
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Hankel matrices based on Fibonacci and Lucas numbers, respectively, and both are related to Hilbert
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with outstanding accuracy, in contrast with traditional approaches.
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1. Introduction

Many efforts have been devoted in the last decades to the study of Hankel and Toeplitz
matrices. Their applications extend through many areas, such as signal processing and
system identification. In particular, the singular value decomposition of a Hankel matrix
plays a crucial role in state-space realization and hidden Markov models (see [1–5]).

An interesting case is the so-called reciprocal Hankel matrix, defined by Richard-
son in [6]. Given an integer sequence {ak}k∈N, these matrices R = (Ri,j) are defined
as Ri,j = 1/ai+j−1. An appealing case appears when considering the famous Fibonacci
sequence, defined by:

F0 := 0, F1 := 1, Fi = Fi−1 + Fi−2, i ∈ N, i ≥ 2,

for which the corresponding reciprocal Hankel matrix is called a Filbert matrix because of
its similarities with the well-known Hilbert matrix, its entries being given by

F(n) = (1/Fi+j−1)1≤i,j≤n+1.

Fibonacci numbers, omnipresent in nature, come into play in diverse scientific areas, e.g.,
image encryption algorithms [7] or thermal engineering [8], and they have proved to also
be relevant in signal processing [9].

Filbert matrices are also deeply related with q-Hilbert matrices, for q = (1−
√

5)/(1+
√

5)
(cf. [10]), which in turn were recently studied by some authors [11]. These are defined by

H(α,q)
n :=

(
[α]q

[i + j + α − 2]q

)
1≤i,j≤n+1

,
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where [α]q is the q-integer defined as [α]q := 1 + q + · · ·+ qα−1.

A generalization of Filbert matrices F(α)
n = (1/Fi+j+α)1≤i,j≤n+1, for α ≥ −1 being an

integer parameter, was studied in [12].
We can also consider the Lucas sequence,

L0 := 2, L1 := 1, Li = Li−1 + Li−2, i ∈ N, i ≥ 2,

to obtain the Lilbert matrices Ln = (1/Li+j−1)1≤i,j≤n+1, defined in [13]. As with Filbert
matrices, Lilbert matrices can be generalized analogously. In the mentioned papers, an
explicit formula for the LU-decomposition, the Cholesky factorization and the inverse has
been obtained for Filbert, Lilbert matrices and some extensions [12,13].

The condition number of Vandermonde and Hilbert matrices grows dramatically with
their dimensions [14–16]. Unfortunately, specific information about the condition number
of the Filbert and Lilbert matrices is not widely documented. However, we can expect these
matrices to be ill-conditioned due to its similar structure to Hilbert matrices. In Section 5,
devoted to numerical experiments, it is shown that the two-norm condition number of
the Filbert and Lilbert matrices grows significantly as the size of the matrices increases.
For instance, the condition number of a 5 × 5 Filbert matrix is approximately 105. As a
consequence, conventional routines applying the best algorithms for solving algebraic
problems such as computing the inverse of a matrix, its singular values or the resolution of
a linear system, fail to provide any accuracy in the obtained results.

At this point, it should be mentioned that any Hankel matrix can be transformed
into a Toeplitz matrix with no cost by means of a permutation—the one given by the
anti-identity matrix. In principle, when solving algebraic problems such as the resolution
of linear systems, this would allow us to apply several well-established numerical methods,
including the so-called fast direct Toeplitz solvers [17,18], with a computational cost of
O(n log2 n), and the iterative procedures based on the gradient conjugate algorithm with
a suitable preconditioner, which can improve the cost to O(n log n) [19]. However, these
direct algorithms guarantee only weak stability [20], i.e., that for well-conditioned problems,
the computed and the exact solution are close. The same can be said about preconditioned
conjugate gradient methods, since the speed of convergence and its stability heavily depend
on the condition number of the given matrix.

In this work, the generalized versions of Filbert and Lilbert matrices are addressed
by means of a Neville elimination process, giving explicit expressions for its multipliers
and pivots. Following [21], this allows us to determine a bidiagonal factorization of the
considered matrices. As a byproduct, formulae for the determinants of both classes of
matrices are derived. Moreover, numerical experiments for the above-mentioned algebraic
problems—which are heavily ill-conditioned—have been performed, showing results that
they exhibit machine-order accuracy, in stark contrast with traditional numerical methods.

The paper is organized as follows: to keep this paper as self-contained as possible,
Section 2 recalls basic concepts and results related to Neville elimination and bidiago-
nal factorizations of nonsingular matrices. Filbert and Lilbert matrices are considered in
Sections 3 and 4, respectively, where the pivots and multipliers of their Neville elimination
are obtained, and a remarkable analogy with those of quantum Hilbert matrices is illus-
trated. As seen later, the obtained bidiagonal factorizations have experimentally shown an
impressive level of performance, attaining machine-order errors while classical numerical
methods fail to deliver the correct solution by orders of magnitude. Finally, Section 5
presents a series of numerical experiments.

2. Notations and Auxiliary Results

As advanced in the Introduction, the main result of this paper, gathered in the fol-
lowing sections, consists in the computation of the bidiagonal factorization of Filbert and
Lilbert matrices, which is possible by following a Neville elimination process. This being
the case, let us begin by recalling some basic results concerning the Neville elimination
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(NE). First of all, it is an algorithm that, given a (n + 1)× (n + 1) real-valued matrix A,
obtains an upper-triangular matrix U after n iterations. More specifically, intermediate
steps, labeled by A(k+1) for k = 1, · · · , n, are obtained from the previous iteration A(k),
making zeros below the diagonal in the kth column. To do so, the initial step is by definition
A(1) := A, whereas the entries of A(k+1) for every k = 1, · · · , n are obtained through the
subsequent recursion formula

a(k+1)
i,j :=


a(k)i,j , if 1 ≤ i ≤ k,

a(k)i,j − a(k)i,k

a(k)i−1,k

a(k)i−1,j, if k + 1 ≤ i, j ≤ n + 1, and a(k)i−1,j ̸= 0,

a(k)i,j , if k + 1 ≤ i ≤ n + 1, and a(k)i−1,k = 0.

(1)

In the last iteration of this process, the matrix U := A(n+1) is obtained, which, as
mentioned before, is upper-triangular. In this process, the entries corresponding to the jth
column at the j − 1 step, i.e.,

pi,j := a(j)
i,j , 1 ≤ j ≤ i ≤ n + 1, (2)

are called the (i, j) pivots (or ith diagonal pivots in the i = j case) of the NE process. The
following quotient is also of relevance:

mi,j :=

a(j)
i,j /a(j)

i−1,j = pi,j/pi−1,j, if a(j)
i−1,j ̸= 0,

0, if a(j)
i−1,j = 0,

(3)

and is known as the (i, j) multiplier.
By applying a second Neville elimination to UT , a diagonal matrix is obtained; this

process is known as a complete Neville elimination. When in this process, there is no
need to perform any row exchanges, the matrix A is said to verify the WRC condition
(see, e.g., [21]). In Theorem 2.2 of [21], it is proved that a (n + 1)× (n + 1) real-valued
nonsingular matrix A verifies the WRC condition if and only if it can be expressed in a
unique way as the following product,

A = FnFn−1 · · · F1DG1G2 · · · Gn, (4)

where Fi, Gi ∈ R(n+1)×(n+1) are the lower- and upper-, respectively, triangular bidiagonal
matrices given by

Fi =



1
. . .

1
mi+1,1 1

. . . . . .
mn+1,n+1−i 1


, GT

i =



1
. . .

1
m̃i+1,1 1

. . . . . .
m̃n+1,n+1−i 1


, (5)

while the entries of the diagonal matrix D are the diagonal pivots pi,i obtained in the NE
of A. In fact, the NE processes of A and AT also give the nondiagonal entries of Fi and Gi,
since the values mi,j, m̃i,j appearing in (5) are precisely the multipliers of these algorithms
as defined in (3).

Another interesting result is provided by Theorem 2.2 of [22]. Taking advantage of
the diagonal pivots and multipliers obtained in the NE of A, it is possible to formulate the
inverse A−1 as

A−1 = Ĝ1Ĝ2 · · · ĜnD−1 F̂n F̂n−1 · · · F̂1, (6)
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where the matrices F̂i and Ĝi are very much like their counterparts Fi and Gi, but with a
different arrangement of the multipliers, being defined as

F̂i =



1
. . .

1
−mi+1,i 1

. . . . . .
−mn+1,i 1


, ĜT

i =



1
. . .

1
−m̃i+1,i 1

. . . . . .
−m̃n+1,i 1


.

It is worth noting that more general classes of matrices can be factorized as in (4), see [23].
Hereafter, the convention adopted by Koev in [24] to store the coefficients of the

bidiagonal decomposition (4) of A in a (n + 1)× (n + 1) matrix BD(A) is followed. The
entries of this matrix form are given by

BD(A)i,j :=


mi,j, if i > j,
pi,i, if i = j,
m̃j,i, if i < j.

(7)

Remark 1. Provided that the bidiagonal factorization of a nonsingular matrix A∈ R(n+1)×(n+1)

exists, then, using the factorization (4), it follows that

AT = GT
n GT

n−1 · · · GT
1 DFT

1 FT
2 · · · FT

n .

Furthermore, in the case of A being symmetric, we have that Gi = FT
i for i = 1, . . . , n and, as

a consequence,
A = FnFn−1 · · · F1DFT

1 FT
2 · · · FT

n . (8)

It is worth noting that thanks to the structure of the factors in the bidiagonal decom-
position (4) of a nonsingular matrix A, in order to compute its determinant, it suffices to
perform the product of the diagonal pivots obtained in the NE of A, since the determinant of
each of the factors Fi and Gi is trivially one. This result will be used later in the manuscript
to obtain the determinants of generalized Filbert and Lilbert matrices and is summarized
in the following lemma.

Lemma 1. Consider a nonsingular matrix A ∈ R(n+1)×(n+1). If the bidiagonal decomposition of
A exists, then

det A =
n+1

∏
i=1

pi,i, (9)

where pi,i are the diagonal pivots of the Neville elimination of A given by (2).

3. Bidiagonal Factorization of Filbert Matrices

Let us recall that the sequence of Fibonacci numbers: (Fn)n∈N is given by

F0 := 0, F1 := 1,

with the recursion formula
Fn+1 = Fn + Fn−1, n ≥ 1. (10)

Filbert matrices are defined in terms of the Fibonacci sequence as

Fi,j =
1

Fi+j−1
, 1 ≤ i, j ≤ n + 1, (11)
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and they have the property—shared with Hilbert matrices—of having an inverse with
integer entries [6]. In fact, an explicit formula for the entries of the inverse matrices
is proved using computer algebra. This formula shows a remarkable analogy with the
corresponding formula for the elements of the inverse of Hilbert matrices in the sense that
it can be obtained by replacing some binomial coefficients (n

k) by the analogous Fibonomial
coefficients introduced in [25] as follows(

n
k

)
F

:=
k

∏
i=1

Fn−i+1

Fi
, 0 ≤ k ≤ n, (12)

with the usual convention that empty products are defined as one. Let us observe that
by defining

[0]F! := 1, [n]F! :=
n

∏
k=1

Fk,

we can also write (
n
k

)
F
=

[n]F!
[k]F![n − k]F!

, 0 ≤ k ≤ n. (13)

The following identities for Fibonomial coefficients hold(
n
k

)
F
= 1, 0 ≤ k ≤ n ≤ 2, (14)

and taking into account the following recursion formula(
n
k

)
F
= Fk−1

(
n − 1

k

)
F
+ Fn−k+1

(
n − 1
k − 1

)
F
, 1 ≤ k < n, (15)

(see [25]), it can be clearly seen that the Fibonomial coefficients are integers. It can also be
checked that Fibonomial coefficients satisfy the following useful identities:

(a)
Fα

Fn

(
α − 1
n − 1

)
F
=

(
α

n

)
F
, (16)

(b)
Fα−n

Fn

(
α − 1
n − 1

)
F
=

(
α − 1

n

)
F
, (17)

(c)
Fα

Fα−n+1

(
α − 1
n − 1

)
F
=

(
α

n − 1

)
F
. (18)

Now, we consider the following generalization of the Filbert matrix F(n) described in
(11). Given α ∈ N, let F(α)

n := (F(α)
i,j )1≤i,j≤n+1 with

F(α)
i,j =

1
Fi+j+α−2

, 1 ≤ i, j ≤ n + 1. (19)

Clearly, for α = 1, F(n,1) coincides with the Filbert matrix (11).
There are many nice equalities relating the Fibonacci numbers with each other. In this

paper we use the following identity:

Fn+p Fn+q − Fn Fn+p+q = (−1)nFpFq, p, q, n ∈ N, (20)

which is known as Vajda’s identity. On the other hand, it is well known that Fibonacci
numbers Fn, n ∈ N, satisfy the following property:

lim
n→∞

Fn+1

Fn
= φ,
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where φ := (1 +
√

5)/2 is the “golden ratio”. Moreover, using the Binet form of Fibonacci
numbers, we can write

Fn =
φn − (1 − φ)n

√
5

= φn−1 1 − qn

1 − q
= φn−1[n]q, for q =

1 −
√

5
1 +

√
5

.

The previous equalities illustrate a clear relation between q-Hilbert and Filbert matrices
that is going to be reflected in the obtained expression for the pivots and multipliers of the
Neville elimination and, consequently, their bidiagonal factorization (4) (cf. [11]).

Theorem 1. Given α ∈ N, let F(α)
n ∈ R(n+1)×(n+1) be the Filbert matrix given by (19). The

multipliers mi,j of the Neville elimination of F(α)
n are given by

mi,j = m̃i,j := (−1)j−1 F2
i+α−2

Fi+j+α−2Fi+j+α−3
, 1 ≤ j < i ≤ n + 1. (21)

Moreover, the diagonal pivots pi,i of the Neville elimination of F(α)
n are given by

pi,i = (−1)(i−1)(i+α−2) 1

F2i+α−2(
2i+α−3

i−1 )
2
F

, 1 ≤ i ≤ n + 1, (22)

and can be computed as follows:

p1,1 = 1/Fα, pi+1,i+1 = (−1)α−2 F2
i F2

i+α−1

F2i+α F2
2i+α−1 F2i+α−2

pi,i, 1 ≤ i ≤ n. (23)

Proof. Let F(k) := ( f (k)i,j )1≤i,j≤n+1, k = 1, . . . , n + 1, be the matrices obtained after k − 1

steps of the Neville elimination procedure for F(α)
n . Now, by induction on k = 2, . . . , n + 1,

we see that

f (k)i,j = (−1)(k−1)(i+α−2) ( j−1
k−1)F

Fk(
i+k+α−3

k−1 )F(
i+j+α−2

k )F

, k ≤ j, i ≤ n + 1. (24)

It can be easily checked that fi,1/ fi−1,1 = Fi+α−2/Fi+α−1; thus, using the Vajda identity (20)
with n := i + α − 2, p := 1 and q := j − 1, we can write

f (2)i,j =
1

Fi+j+α−2
− Fi+α−2

Fi+α−1

1
Fi+j+α−3

=
Fi+α−1Fi+j+α−3 − Fi+α−2Fi+j+α−2

Fi+α−1 Fi+j−1 Fi+j+α−3

= (−1)i+α−2 Fj−1

Fi+α−1 Fi+j+α−2 Fi+j+α−3
,

and (24) follows for k = 2. If (24) holds for some k ∈ {2, . . . , n}, we have

f (k)i,k

f (k)i−1,k

= (−1)k−1 (
i+k+α−4

k−1 )F(
i+k+α−3

k )F

(i+k+α−3
k−1 )F(

i+k+α−2
k )F

= (−1)k−1 F2
i+α−2

Fi+k+α−2 Fi+k+α−3
,

for i = k + 1, . . . , n + 1. Taking into account that by (1), f (k+1)
i,j = f (k)i,j − f (k)i,k f (k)i−1,j/ f (k)i−1,k

and the following identity, obtained from (18),

Fi+k+α−3
Fi+α−2

(
i + k + α − 4

k − 1

)
F
=

(
i + k + α − 3

k − 1

)
F
,
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we can write

f (k+1)
i,j = (−1)(k−1)(i+α−2) ( j−1

k−1)F

Fk(
i+k+α−3

k−1 )F

C̃(k)
i,j (25)

with
C̃(k)

i,j :=
1

(i+j+α−2
k )F

− Fi+α−2

Fi+k+α−2

1

(i+j+α−3
k )F

,

for k + 1 ≤ j, i ≤ n + 1. Taking into account (17) and (16), respectively, we have(
i + j + α − 2

k

)
F

=
Fk+1

Fi+j+α−k−2

(
i + j + α − 2

k + 1

)
F
,(

i + j + α − 3
k

)
F

=
Fk+1

Fi+j+α−2

(
i + j + α − 2

k + 1

)
F
,

and from (25), we derive

f (k+1)
i,j =

(−1)(k−1)(i+α−2)( j−1
k−1)F

Fk+1Fk(
i+k+α−3

k−1 )F(
i+j+α−2

k+1 )
F

(
Fi+j−k+α−2 −

Fi+α−2

Fi+k+α−2
Fi+j+α−2

)
. (26)

On the other hand, by considering the Vajda identity in (20) with p := j − k, n := i + α − 2
and q := k, it can be checked that

Fi+j−k+α−2 Fi+k+α−2 − Fi+α−2Fi+j+α−2 = (−1)i+α−2Fj−kFk,

and then, from (26), we can write

f (k+1)
i,j =

(−1)(k−1)(i+α−2)( j−1
k−1)F

FkFk+1(
i+k+α−3

k−1 )F(
i+j+α−2

k+1 )
F

Fi+j−k+α−2 Fi+k+α−2 − Fi+α−2Fi+j+α−2

Fi+k+α−2

= (−1)k(i+α−2) ( j−1
k−1)F

Fj−k

Fk+1(
i+k+α−3

k−1 )F(
i+j+α−2

k+1 )
F

Fi+k+α−2
,

for k + 1 ≤ j, i ≤ n + 1. Finally, taking into account (17) and (16), respectively, we can write(
j − 1
k − 1

)
F
=

Fk
Fj−k

(
j − 1

k

)
F
,
(

i + k + α − 3
k − 1

)
F
=

Fk
Fi+k+α−2

(
i + k + α − 2

k

)
F
,

and conclude that

f (k+1)
i,j = (−1)k(i+α−2) (j−1

k )F

Fk+1(
i+k+α−2

k )F(
i+j+α−2

k+1 )
F

, k + 1 ≤ j, i ≤ n + 1,

and (24) holds for k + 1.
Now, by (2) and (24), the pivots of the Neville elimination of H satisfy

pi,j = f (j)
i,j = (−1)(j−1)(i+α−2) 1

Fj(
i+j+α−3

j−1 )
F
(i+j+α−2

j )
F

, 1 ≤ j < i ≤ n + 1.

For the particular case i = j, we obtain

pi,i =
(−1)(i−1)(i+α−2)

Fi(
2i+α−3

i−1 )F(
2i+α−2

i )F

=
(−1)(i−1)(i+α−2)

F2i+α−2(
2i+α−3

i−1 )
2
F

, (27)
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and (22) follows. It can be easily checked that p1,1 = 1/Fα and

pi+1,i+1

pi,i
= (−1)2i+α−2 F2

i F2
i+α−1

F2i+α F2
2i+α−1 F2i+α−2

,

confirming Formula (23).
Let us observe that since the pivots of the Neville elimination of F(α)

n are nonzero, this
elimination can be performed without row exchanges.

Finally, using (3) and (24), the multipliers mi,j can be described as:

mi,j =
pi,j

pi−1,j
= (−1)j−1 F2

i+α−2
Fi+j+α−2Fi+j+α−3

, 1 ≤ j < i ≤ n + 1. (28)

Since F(α)
n is symmetric, using Remark 1, we deduce that m̃i,j = mi,j.

Taking into account Theorem 1, the decomposition (4) of F(α)
n and (6) of (F(α)

n )−1 can
be stored by means of BD(F(α)

n ) = (BD(F(α)
n )i,j)1≤i,j≤n+1 with

BD(F(α)
n )i,j :=


(−1)j−1 F2

i+α−2
Fi+j+α−2Fi+j+α−3

, if i > j,

(−1)(i−1)(i+α−2) 1
F2i+α−2(

2i+α−3
i−1 )

2
F

, if i = j,

(−1)i−1 F2
j+α−2

Fi+j+α−2Fi+j+α−3
, if i < j.

(29)

On the other hand, using Lemma 1 and Formula (22) for the diagonal pivots, the
determinant of Filbert matrices F(α)

n can be expressed as follows:

det F(α)
n = (−1)

1
6 n(n+1)(2n+3α−2) 1

Fα

n

∏
k=1

(
F2k+α

(
2k + α − 1

k

)2

F

)−1

,

which is an equivalent formula to that obtained in Theorem 5 of [12].

4. Bidiagonal Factorization of Lilbert Matrices

Let us recall that Lucas numbers are defined recursively is a similar way to Fibonacci
numbers, just changing the value of the initial element of the sequence,

L0 := 2, L1 := 1, Ln+1 = Ln + Ln−1, n ≥ 1. (30)

The analogous Lilbonomial coefficients are(
n
k

)
L

:=
k

∏
i=1

Ln−i+1

Li
=

[n]L!
[k]L![n − k]L!

, 0 ≤ k ≤ n, (31)

with the usual convention that empty products are defined as one and

[0]L! := 1, [n]L! :=
n

∏
k=1

Lk.

Let us observe that using the Binet form of Lucas numbers, we can write

Ln = φn + (1 − φn) = φn(1 + qn),

for q = (1 −
√

5)/(1 +
√

5) and φ = (1 +
√

5)/2. Moreover, as for Fibonacci numbers, in
the literature, one can find many interesting equalities relating the Lucas numbers with
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each other, as well as Lucas and Fibonacci numbers. In this section, we use the following
Vajda-type equality

Ln Ln+p+q − Ln+p Ln+q = 5(−1)nFpFq, p, q, n ∈ N, (32)

proved in Theorem 5 of [26] to derive the bidiagonal factorization of the Lucas matrix
L(α)

n := (Li,j)1≤i,j≤n+1 with

L(α)
i,j =

1
Li+j+α−2

, 1 ≤ i, j ≤ n + 1. (33)

Theorem 2. Given α ∈ N, let L(α)
n ∈ R(n+1)×(n+1) be the Lilbert matrix given by (33). The

multipliers mi,j of the Neville elimination of L(α)
n are given by

mi,j = m̃i,j := (−1)j−1 L2
i+α−2

Li+j+α−2Li+j+α−3
, 1 ≤ j < i ≤ n + 1. (34)

Moreover, the diagonal pivots pi,i of the Neville elimination of L(α)
n are

pi,i = (−1)(i−1)(i+α−1)5i−1 [i − 1]F!2

[i − 1]L!2
1

L2i+α−2(
2i+α−3

i−1 )
2
L

, 1 ≤ i ≤ n + 1, (35)

and can be computed as follows

p1,1 = 1/Lα, pi+1,i+1 = 5(−1)α−1 F2
i L2

i+α−1

L2i+α L2
2i+α−1 L2i+α−2

pi,i, 1 ≤ i ≤ n. (36)

Proof. The proof is analogous to that of Theorem 1 for the computation of the pivots and
multipliers of the Neville elimination of Filbert matrices and, for this reason, we only
provide a sketch. Let L(k) := (ℓ

(k)
i,j )1≤i,j≤n+1, k = 1, . . . , n + 1, be the matrices obtained after

k − 1 steps of the Neville elimination procedure for L(α)
n . Using an inductive reasoning,

similar to that of Theorem 1, the Vajda-type equality (32) and the definition (31) of Lilbono-
mial coefficients, the entries of the intermediate matrices of the Neville elimination can be
written as follows:

ℓ
(k)
i,j = (−1)(k−1)(i+α−2) (−5)(k−1) ([k − 1]F!)2

([k − 1]L!)2

[ j−1
k−1]F

Lk[
i+j+α−2

k ]L[
i+k+α−3

k−1 ]L

, (37)

for k ≤ j, i ≤ n + 1, and then the pivots of the Neville elimination are

pi,j = ℓ
(j)
i,j = (−1)(j−1)(i+α−2) (−5)(j−1) ([j − 1]F!)2

([j − 1]L!)2
1

Lj[
i+j+α−2

j ]
L
[i+j+α−3

j−1 ]
L

. (38)

Identities (35) and (36) are deduced by considering i = j in (38). Moreover, Formula (34)
for the multipliers mi,j = m̃i,j are derived by taking into account that mi,j = pi,j/pi−1,j
(see (3)).

Taking into account Theorem 2, the decomposition (4) of L(α)
n and (6) of (L(α)

n )−1, can
be stored by means of BD(L(α)

n ) = (BD(L(α)
n )i,j)1≤i,j≤n+1 with
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BD(L(α)
n )i,j :=


(−1)j−1 L2

i+α−2
Li+j+α−2Li+j+α−3

, if i > j,

(−1)(i−1)(i+α−1)5i−1 [i−1]F !2

[i−1]L !2
1

L2i+α−2(
2i+α−3

i−1 )
2
L

, if i = j,

(−1)i−1 L2
j+α−2

Li+j+α−2Li+j+α−3
, if i < j.

(39)

Using Lemma 1 and Formula (35) for the diagonal pivots, the determinant of Lilbert
matrices L(α)

n can be expressed as follows

det L(α)
n = (−1)

1
6 n(n+1)(2n+3α+1)5

1
2 n(n+1)

n

∏
k=1

[i]F!
[i]L!

(
L2k+α

(
2k + α − 1

k

)2

L

)−1

,

which is an equivalent formula to that obtained in Theorem 1.17 of [13].

5. Numerical Experiments

In this section, a collection of numerical experiments is presented, comparing the
algorithms that take advantage of the bidiagonal decompositions presented in this work
with the best standard routines. It should be noted that the cost of computing the matrix
form (7) of the bidiagonal decomposition (4) is O(n2) for both Filbert matrices F(α)

n (see (29))
and for Lilbert matrices L(α)

n (see (39)).
We considered several Filbert matrices F(α)

n , for α = 1 and α = 2, as well as Lilbert
matrices L(α)

n , for α = 1 and α = 3, with dimension n + 1 = 5, . . . , 15. To keep the notation
as contained as possible, in what follows, Filbert and Lilbert matrices are denoted as F and
L, respectively, and their bidiagonal decompositions by BD(F) and BD(L).

The two-norm condition number of all considered matrices was computed in Mathe-
matica. As can be easily seen in Figure 1, the condition number grows dramatically with
the size of the matrix. As mentioned at the beginning of the paper, this bad conditioning
prevents standard routines from giving accurate solutions to any algebraic problem, even
for relatively small-sized problems.

Figure 1. The 2-norm conditioning of Filbert matrices F and Lilbert matrices L.

To analyze the behavior of the bidiagonal approach and confront it with standard
direct methods, several numerical experiments were performed, concerning both Filbert
and Lilbert matrices. The factorizations obtained in Sections 3 and 4 were used as an
input argument of the Matlab functions of the TNTool package, made available in [27]. In
particular, the following functions were used, each corresponding to an algebraic problem:

• TNInverseExpand(BD(A)) provides A−1, with an O(n2) computational cost (see [22]).
• TNSolve(BD(A), d) solves the system Ax = b, with an O(n2) cost.
• TNSingularValues(BD(A)) obtains the singular values of A, with an O(n3) cost.
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For each problem, the approximated solution obtained by the TNTool subroutine was
compared with the classical method provided by Matlab R2022b. Relative errors in both
cases were computed by comparing with the exact solution given by Mathematica 13.1,
which makes use of 100-digit arithmetic.

Computation of inverses. In this experiment, we compared the accuracy in determin-
ing the inverse of each considered matrix with two methods: the bidiagonal factorization as
an input to the TNInverseExpand routine and the standard Matlab command inv. It is clear
from Figure 2 that our procedure obtained great accuracy in every analyzed case, whereas
the results obtained with Matlab failed dramatically for moderate sizes of the matrices.

Figure 2. Relative error of the approximations to the inverse of Filbert and Lilbert matrices, F−1 and
L−1, respectively.

Resolution of linear systems. For each of the matrices considered, in this exper-
iment, the solution of the linear systems Fx = d and Lx = d was computed, where
d = ((−1)i+1di)1≤i≤n+1 and di, i = 1, . . . , n + 1, are random nonnegative integer values.
This was again performed in two ways: by using the proposed bidiagonal factorization as
an input of the TNSolve routine and by the standard \ Matlab command. As before, the
standard Matlab routine could not overcome the ill-conditioned nature of the analyzed
matrices, in contrast with the machine precision-order errors achieved by the bidiagonal
approach, as is depicted in Figure 3.

Computation of singular values. The relative errors in determining the smallest
singular value of both Filbert and Lilbert matrices are illustrated in this experiment. These
were computed with both the standard Matlab command svd and by providing as an input
argument to TNSingularValues the corresponding bidiagonal decomposition. It follows
from Figure 4 that our method determined accurately the lowest singular value for every
studied case, while the standard Matlab command svd results were very far from the exact
solution even for small sizes of the considered matrices.
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Figure 3. Relative error of the approximations to the solution of the linear systems Fc = d and Lc = d,
where d = ((−1)i+1di)1≤i≤n+1 and di, i = 1, . . . , n + 1, are random nonnegative integer values.

Figure 4. Relative error of the approximations to the lowest singular value of Filbert matrices F and
Lilbert matrices L.
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6. Conclusions

The paper analyzed the generalized versions of Filbert and Lilbert matrices F(α)
n

and L(α)
n , based on Fibonacci and Lucas numbers, respectively. Leaning on the Neville

elimination, their bidiagonal factorizations were obtained explicitly, which also led to
formulae for the corresponding determinants. Numerical experiments were provided,
exhibiting a great level of accuracy in the case of the routines that took as an input the
bidiagonal decomposition of the matrices, even for notably ill-conditioned cases, while
the results of standard procedures were wrong by orders of magnitude. Future prospects
include the study of the condition number of these matrices, which could offer some insight
about the excellent experimental results obtained.
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