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Nomenclature

(Nomenclature entries should have the units identified)

𝜇 = standard gravitational parameter, km3/s2.

v and 𝑉 = velocity vector and its magnitude, km/s.

Δv and Δ𝑣 = differences between two instantaneous velocities and its magnitude, km/s.

Δ𝑉 = characteristic velocity, km/s.

𝑟𝑝𝑖 , 𝑟𝑝 𝑓
, 𝑟𝑝𝑡 , 𝑟𝑎𝑖 , 𝑟𝑎 𝑓

, 𝑟𝑎𝑡 = initial, final and transfer periapsis and apoapsis, km.

𝜎𝑘 = set of six variables, with 𝑘 = {𝑖, 𝑗 , 𝑡}.

𝑎 = semimajor axis, km.

𝑒 = eccentricity.

𝑖 = inclination, degrees.

Ω = right ascension node, degrees.

𝜔 = argument of periapis, degrees.

𝜈 = true anomaly, degrees.

𝜃 = angular distance, degrees.

O𝑖 ,O𝑡 and O 𝑓 = initial, final and transfer orbits.

Π𝑖 , Π 𝑓 and Π𝑡 = initial, final and transfer orbital planes.

𝒏 and ℓ = the line of nodes and the line of apsides.
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PF = Parametric function.

𝑐 𝑗 = coefficients 𝑗 = {0, 1, · · · , 7}.

Subscripts

𝑖, 𝑓 and 𝑡 = initial, final, and transfer.

I. Introduction

There is an ever-increasing number of orbiters (satellites, space probes, space debris, and others) around the celestial

bodies of the Solar System, in particular of the Earth. European Space Agency (ESA) has statistically estimated [1], that

more than 330 million objects (between 1 cm until 50 m) are in orbit around our planet [2]. About 35.000 are catalogued

by tracking from ground-based optical and radar sensors [3–5]. Deploying space missions in Low Earth Orbit (LEO),

Medium Earth Orbit (MEO) and Geostationary Equatorial Orbit (GEO) has become more complicated because since

the beginning of the space age, space debris has been increasing every day, particularly with the recent launching of

large constellations [6]. These three regions present new complex scenarios to send and hold new orbiters into orbit,

re-position spacecraft, or capture and remove orbiters. One of the feasible solutions is to apply an active space debris

removal method [7], e.g. satellite-based methods involving key technologies such as arms control, approach, rendezvous,

orbit changes and capture [8]. Another possibility is to change the trajectory of the space mission to avoid possible

collisions with space debris and launch traffic. In all these cases, trajectory changes are achieved by distribution forces

or orbital maneuvers. Many configurations of the orbital transfer problem have been analyzed and studied to determine

the most effective and optimal possible maneuver. The first of such studies started in the 1920s with the pioneering work

by Hohmann [9], who conjectured that the minimum fuel transfer between coplanar circular orbits is the bi-tangent

elliptic transfer performed through two tangential impulsive changes of velocity, which occur at the apse points of the

transfer orbit. Such transfer is referred to as the Hohmann transfer, and for a relatively long time, it was assumed to be

globally optimal in terms of total velocity change. However, in the late 1950s and coinciding with the Soviet Luna

2 spacecraft launch - the first space vehicle to perform orbital maneuvers while approaching the Moon - significant

advances in the investigation of impulsive trajectories were carried out by Shternfeld, Edelbaum and Hoelker [10–12].

In the early 1960s, Ting [13] proved the local optimality of the Hohmann transfer and stated that the optimal

orientation of the axes is coaxial and aligned for the initial and final elliptical orbits. Ting [13] also demonstrated that
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the minimum cost transfer corresponds to coplanar initial, final, and transfer orbits. The same author also proved that

orbital transfers performed through four or more impulses are never optimal [14]. Subsequently, the optimality of the

Hohmann transfer was proved using different tools.

Lawden [15, 16] and Barrar [17] first proved the global optimality of the Hohmann transfer with two impulse transfers,

then Marec [18], Battin [19], Palmore [20] and Prussing [21] presented elementary proofs about this. Additionally,

Moyer [22] demonstrated the global optimality of Hohmann and bi-elliptic transfers from a circular to an elliptic orbit

without restrictions on the number of impulses. A little over a decade ago, Pontani [23] proposed a simple, original

approach to determine the global optimal impulsive transfers between two coplanar trajectories, without any restriction

on the number of impulses and with some constraints on the radius of the closest approach or greatest recession.

In the last century, the main true goal has been to minimize propellant expenditure. A velocity impulse approximates

the effect of the propulsive thrust, by assuming that an instantaneous velocity change can occur (while the spacecraft

position remains unchanged). The impulsive approximation has applications in the case of high-thrust rockets and

spacecraft, and represents a very accurate approximation of the finite–thrust maneuvers that a vehicle performs once it is

in orbit, under the assumption that gravitational losses during propulsion can be neglected [24, 25].

Many cases have been studied and evaluated taking into account restrictions coupled with the formulation of

the problem. The fundamental reason for this is bounded by the fact that each case is unique, identified both by

its formulation and its constraints. The most fundamental transfer problems are those known as Hohmann transfer,

bi-elliptical transfer, and/or Lambert problem transfer [26–28]. Recently the classical problem of two-impulse optimal

co-tangential transfer between two coplanar elliptic orbits has been analyzed assuming changes only in the directions of

the velocity [29].

The general goal of this Note is to calculate, analytically and numerically, the minimum characteristic velocity, Δ𝑉 ,

when the initial and final orbits are non-coplanar and non-coaxial elliptical orbits, using a transfer orbit that is coaxial

with either the initial or the final orbit, with no restriction on its being coplanar with either. For it, the aim is to obtain

an optimal width region from the smallest possible number of orbital elements and to compute a parametric function

derived from the most efficient configuration in terms of the semimajor axis and the eccentricity.

This Note is organized as follows: In Sec. II a description of the problem and the constraints required are given. In

Sec. II.A we derive a function for the Δ𝑉 of the two impulsive maneuvers, to make an analytical study of four basic
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configurations possibles. This function is determined and reduced to only two orbital elements of the generated transfer

orbit. In addition, we calculate analytical expressions for the partial derivatives in each variable and configuration. In

Sec. III we consider sets of orbital elements from real data to evaluate numerically the function of the Δ𝑉 , estimate the

best configuration and determine the optimal width region. Finally, in Sec. IV we present the most relevant contributions

obtained with this study.

II. Model Formulation and constraints

Without loss of generality, we assume that an orbiter (e.g. spacecraft, satellite, space debris, space probe) is modeled

as a point mass object on which the Newtonian gravitational force acts and relativistic effects are neglected. Moreover,

the 3D orbital transfer problem is considered so that, the initial and final orbits are non-coplanar and non-coaxial

elliptical orbits. Fig. 1 shows a sketch of the general formulation, the inner initial orbit in blue and the outer final one in

red, respectively. Therefore, the semimajor axes are 𝑎𝑖 < 𝑎 𝑓 . By Kepler’s law, all orbits have a common focus located

at the origin, O, of the inertial reference frame {O, 𝒙, 𝒚, 𝒛}.

One of the ways to represent an orbit is through the classical orbital elements, that is by six variables 𝜎𝑘 =

{𝑎𝑘 , 𝑒𝑘 , 𝑖𝑘 , Ω𝑘 , 𝜔𝑘 , 𝜈𝑘}, where 𝑎𝑘 represents the semimajor axis, 𝑒𝑘 the eccentricity, 𝑖𝑘 the inclination, Ω𝑘 the right

ascension of the ascending node, 𝜔𝑘 the argument of periapsis and 𝜈𝑘 the true anomaly. In this work, we consider three

orbits: the initial, the final and the transfer orbit so, 𝜎𝑘 with 𝑘 = 𝑖, 𝑓 , an 𝑡 𝑗 , respectively. We represent each set as a

symbolic function O(𝜎𝑘) = O𝑘 , which is implicitly related to the orbit. The subscript 𝑗 designates the 𝑗 𝑡ℎ-transfer

orbit involved in the entire transfer process. In the general case, the existence of a finite number of transfer orbits is

contingent upon the number of instantaneous maneuvers that can be applied, under specified restrictions, to facilitate the

transition from the initial to the final orbits.

Figure 1 shows the O𝑖 (blue color) and O 𝑓 (red color) that represent the initial and final elliptical orbits, respectively

referred to {O, 𝒙, 𝒚, 𝒛}. The model formulation is devised such that each orbit is situated within a 2-dimensional

hyperplane or orbital plane, denoted by Π𝑖 and Π 𝑓 respectively, as illustrated in Fig. 1. Geometrically, these orbital

planes are non-coplanar, so there is an intersection line between them defined by the vector 𝒏𝑖 𝑓 , which is the vertex of

the dihedral angle between both planes. This angle is confined to the interval 0◦ < 𝑖 𝑓 𝑖 ≤ 90◦ and can be determined

by the difference between the angles 𝑖 𝑓 and 𝑖𝑖 under the condition that 𝑖𝑖 is less than 𝑖 𝑓 . As a direct consequence of

the formulation, the line of apsides and nodes are defined by the vectors ℓ𝑖 , ℓ 𝑓 , 𝒏𝑖 and 𝒏 𝑓 , respectively. A way to
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Fig. 1 Geometry of the 3D-orbital transfer between non-coplanar and non-coaxial elliptical orbits.

maneuver a satellite or spacecraft is through a combined sequence of discrete coplanar (tangential) and non-coplanar

(non-tangential) instantaneous impulsive maneuvers that allow an orbiter to make a change between orbits. With the

application of coplanar impulses is possible to modify the orbit’s shape and size; i.e: semimajor axis, eccentricity, as

well as the argument of periapsis. Additionally, the orbit’s orientation can be changed by varying the inclination and

right ascension of the ascending node [27]. This is one of the features of the Astrodynamics, that allows for designing

and defining orbits by modifying their geometry and orientation [30]. There are many possibilities bounded only by

the complexity of the problem. Herein, two combined impulsive maneuvers are considered and studied in the model

formulation as constrains.

A. Characteristic velocity Δ𝑉

The function, Δ𝑉 , measures the total of the velocity change that an orbiter needs to change from one orbit to another.

This cost, which is the characteristic velocity, includes all applied maneuvers. In other words, the Δ𝑉 is the sum of

instantaneous 𝑁−impulses, which is defined by:

Δ𝑉 =

𝑁∑︁
𝑙=1

Δ𝑣𝑙 , (1)

where, Δ𝑣𝑙 is the magnitude of the differences between two instantaneous velocities. The subscript 𝑙 = 1, 2, . . . , 𝑁

represents the number of the applied impulsive maneuvers. Keeping in mind that the velocity in the departure and

arrival points is denoted by the vectors v𝑖 and v 𝑓 , respectively, their magnitudes are 𝑉𝑖 and 𝑉 𝑓 , then the Δ𝑣𝑙 = |𝑉 𝑓 −𝑉𝑖 |.

In this sense, we take into account two discrete impulsive maneuvers. Therefore, the Eq. (1) simply becomes:
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Δ𝑉 = Δ𝑣1 + Δ𝑣2, (2)

thus, the 𝑗 𝑡ℎ−transfer orbit associated with two applied impulsive maneuvers is O𝑡1 , which for simplicity we denote

as O𝑡 . This orbit is treated as a combination of coplanar and non-coplanar impulsive maneuvers that can be an orbit

coplanar or not, and coaxial or not, with either the initial or the final orbit. This situation translates into two possibilities.

Firstly, the O𝑡 is coplanar and coaxial with either O𝑖 or O 𝑓 and secondly, the O𝑡 is non-coplanar and coaxial with

either O𝑖 or O 𝑓 . In this context, we consider two orbits to be coaxial if the vector resulting from the cross product

between the vectors defining the lines of apsides points in the same direction. If this vector is null, the orbits are coaxial

and, specifically, coplanar, with their directions determined by the nodes. In the next subsections, we study each case

separately taking into account the constraints that arise.

B. Configuration where the O𝑡 is coplanar and coaxial with O𝑖

This configuration is illustrated in Fig. 2, representing the geometry with respect to {O, 𝒙, 𝒚, 𝒛}. Additionally, it

shows the representation of vector components associated with impulsive maneuvers, namely Δv1 and Δv2, applied at

the points of departure and arrival, respectively. The first impulsive maneuver is coplanar with the orbital plane, Π𝑖 , i.e.

Δv1 ∈ Π𝑖 preserves the direction and increases only the magnitude of the velocity, 𝑉𝑖 , in the point of the departure of

the orbiter, that is located in the initial orbit. By construction, this orbit should arrive at a point in the final orbit. The

second impulsive maneuver is non-coplanar with the Π 𝑓 , i.e. Δv2 ∉ Π 𝑓 , which is needed to change the direction, and

thus the orbiter is transferred to the final orbit. As the Δv2 is non-tangential it induces a dihedral angle, denoted as 𝜃𝑡 𝑓 ,

situated between the planes Π𝑖 and Π 𝑓 . This angle together with 𝑖𝑖 , 𝑖 𝑓 , Ω𝑖 and Ω 𝑓 , forms a spherical triangle as shown

in the Fig. 3.

As the initial and transfer orbits are coplanar and coaxial, the lines of nodes and apsides are equivalents i.e. 𝒏𝑖 = 𝒏𝑡

and ℓ𝑖 = ℓ𝑡 , respectively. Consequently, the true anomalies are same (𝜈𝑖 = 𝜈𝑡 ). Then, the angular distance, 𝜃𝑡 𝑓 , has

a solution in function of the orbital elements of the initial and final orbits. With this configuration, there are several

cases in which the first impulsive maneuver can be applied: 1) the periapsis of the initial orbit, 𝑟𝑝𝑖 , and apoapsis of the

transfer orbit, 𝑟𝑎𝑡 , are equal, 𝑟𝑝𝑖 = 𝑟𝑎𝑡 ; 2) the periapsis of both orbits are equal, 𝑟𝑝𝑖 = 𝑟𝑝𝑡 ; and 3) the apoapsis of both

orbits are equal, 𝑟𝑎𝑖 = 𝑟𝑎𝑡 . The first and third cases are not taken into account. In this first case, the model formulation

assumes that the initial orbit is smaller than the final orbit, giving rise to the condition 𝑟𝑝𝑖 = 𝑟𝑎𝑡 > 𝑟𝑝𝑡 and therefore

O𝑖 > O𝑡 , which is a contradiction. Besides, this case is not possible because the transfer orbit would not have a point in
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Fig. 2 Geometry of the transfer: O𝑡 (green)
is coplanar and coaxial with O𝑖 (blue).

Fig. 3 Geometry relation of 𝜃𝑡 𝑓 as a function
of 𝑖𝑖 , 𝑖 𝑓 , Ω𝑖 and Ω 𝑓 .

common with the final orbit. Concerning the third case the maneuver is more expensive in the apoapsis than in the

periapsis [19]. Therefore, only the second case is considered and the Δ𝑣1 is applied in the periapsis of initial and transfer

orbits, as shown in Fig. 2. The Δ𝑣2 is applied to change from the transfer orbit to the final orbit, and this maneuver is

more expensive that the first one since it requires changing planes.

Taking into account the law of conservation of energy, angular momentum and Kepler’s equation, [19, 27, 30] Eq.

(2) that represents the Δ𝑉 is defined as:

Δ𝑉 =
(
𝑉O𝑡

−𝑉O𝑖

)
+
√︃
𝑉2
O𝑡

+𝑉2
O 𝑓

− 2𝑉O𝑡
𝑉O 𝑓

cos 𝜃𝑡 𝑓 , (3)

where, 𝑉O𝑖
, 𝑉O𝑡

and 𝑉O 𝑓
are the velocity magnitudes of the initial, transfer, and final orbits, respectively. The angle 𝜃𝑡 𝑓

is measured between the planes Π𝑡 and Π 𝑓 , or it is equivalent to angle between Π𝑖 and Π 𝑓 . Then, these velocities are

expressed in term of the orbital elements of the initial and transfer orbits. Substituting in Eq. (3), taking into account the

above constrains, making some reductions, and rearranging terms, we obtain a Δ𝑉 function as follows:

Δ𝑉 =
√
𝜇

[
√
𝛼𝑡 −

√
𝛼𝑖 +

√︃
𝛿 𝑓 + 𝛿𝑖𝑡 − 2

√︁
𝛿 𝑓 𝛿𝑖𝑡 cos 𝜃𝑡 𝑓

]
, (4)

where, 𝜇 is the standard gravitational parameter, determined by the gravitational constant and the mass of the central

body. The quantities 𝛼𝑡 , 𝛼𝑖 , 𝛿 𝑓 and 𝛿𝑖𝑡 are defined by;

𝛼𝑡 =
1 + 𝑒𝑡

𝑎𝑡 (1 − 𝑒𝑡 )
, 𝛼𝑖 =

1 + 𝑒𝑖

𝑎𝑖 (1 − 𝑒𝑖)
, 𝛿 𝑓 =

(𝑒 𝑓 + cos 𝜈 𝑓 )2 + sin2 𝜈 𝑓

𝑎 𝑓 (1 − 𝑒2
𝑓
)

and 𝛿𝑖𝑡 =
(𝑒𝑡 + cos 𝜈𝑖)2 + sin2 𝜈𝑖

𝑎𝑡 (1 − 𝑒2
𝑡 )

.

These variables have a solution as long as the eccentricity, 𝑒𝑡 , is less than unity, i.e. the transfer orbit is neither parabolic
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nor hyperbolic. Furthermore, the semimajor axes of the orbits are not null.

The angle 𝜃𝑡 𝑓 corresponds to the dihedral angle between Π𝑖 and Π 𝑓 and it one of the three angles constituting the

spherical triangle depicted in Fig. 3. According to the law of cosines, 𝜃𝑡 𝑓 is determined by 𝜃𝑡 𝑓 = cos−1 [cos 𝑖𝑖 cos 𝑖 𝑓 −

sin 𝑖𝑖 sin 𝑖 𝑓 cosΩ 𝑓 𝑖], with Ω 𝑓 𝑖 = Ω 𝑓 −Ω𝑖 .

Equation (4) is reduced to two unknown orbital elements: the semimajor axis, 𝑎𝑡 , and eccentricity, 𝑒𝑡 , of the transfer

orbit. This represents an advantage since the set the unknown variables is reduced to two, as the other variables are

known from the initial conditions of the model formulation. It is possible to calculate values for 𝑎𝑡 and 𝑒𝑡 such that the

Δ𝑉 is minimal. Thus, we obtain the following analytical expressions once the terms have been simplified, that is, the

partial derivatives with respect to each variable are:

𝜕Δ𝑉𝑎𝑡 =

√
𝜇

2 𝑎𝑡 𝜉1

[
𝜉2 − (𝜉1

√
𝛼𝑡 + 𝛿𝑖𝑡 )

]
, and (5)

𝜕Δ𝑉𝑒𝑡 =

√
𝜇

(1 − 𝑒2
𝑡 )

[
−
√
𝛼𝑡 𝛿 𝑓 𝜉1

𝜉2
+
(
𝛿 𝑓 cos 𝜃𝑡 𝑓 − 𝜉2

) (
2𝑒𝑡 + (1 + 𝑒2

𝑡 ) cos 𝜈𝑖
)]
, (6)

where the new quantities 𝜉1 and 𝜉2 are defined by 𝜉1 =
√︁
𝛿 𝑓 + 𝛿𝑖𝑡 − 2 𝜉2 and 𝜉2 = (𝛿 𝑓 𝛿𝑖𝑡 )1/2 cos 𝜃𝑡 𝑓 . It is possible to

examine and determine values for these quantities, which depend on the values of the ten orbital elements, such as: 𝑎𝑖 ,

𝑒𝑖 , 𝑖𝑖 , Ω𝑖 , 𝜈𝑖 , 𝑎 𝑓 , 𝑒 𝑓 , 𝑖 𝑓 , 𝜈 𝑓 and Ω 𝑓 . Addition constraints are established by the fact that 𝜉1 > 0 and 𝜉2 > 0.

C. Configuration where the O𝑡 is coplanar and coaxial with O 𝑓

With this configuration, to transfer an orbiter from the initial to final orbit the applied impulsive maneuvers are

such that; Δv1 is non-tangential impulsive maneuver applied in the point of departure, Δv1 ∉ Π𝑖 , and Δv2 is tangential

impulsive maneuver applied in the point of arrival, Δv2 ∈ Π 𝑓 . Assuming that the O𝑡 (green color) is coplanar and coaxial

with O 𝑓 (red color), therefore the lines of nodes and apsides are equivalents i.e. 𝒏𝑡 = 𝒏 𝑓 and ℓ 𝑓 = ℓ𝑡 , respectively.

Consequently, the true anomalies are same (𝜈 𝑓 = 𝜈𝑡 ). In Fig. 4, the geometry of the transfer is shown, from initial to

final orbit. Δv1 is non-tangential, so it generates a dihedral angle, 𝜃𝑖𝑡 , between the initial and transfer orbital planes.

This angle is determined by 𝑖𝑖 , 𝑖 𝑓 , Ω𝑖 and Ω 𝑓 as the previous angle 𝜃𝑡 𝑓 . Analogously to the previous configuration,

the maneuvers are calculated in terms of the orbital elements involved in this problem. The impulsive maneuvers are

applied at a common point of both orbits. The first impulsive maneuver changes the direction of the orbital velocity and

therefore the hyperplane, while the second impulse only changes the magnitude of the orbital velocity (increasing it) but

preserving its direction. Nevertheless, there are several cases where the second impulse maneuver can be applied: (1) if
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Fig. 4 Geometry of the transfer: O𝑡 (green)
is coplanar and coaxial with O 𝑓 (red).

Fig. 5 Geometry of the transfer: O𝑡 (green)
is non-coplanar and coaxial with O𝑖 (blue)
and non-coaxial with O 𝑓 (red).

the periapsis of the final orbit, 𝑟𝑝 𝑓
, and apoapsis of the transfer orbit, 𝑟𝑎𝑡 , are equal (𝑟𝑝 𝑓

= 𝑟𝑎𝑡 ), (2) if the periapsis

of both orbits are equal (𝑟𝑝 𝑓
= 𝑟𝑝𝑡 ) and (3) if the apoapsis of both orbits are equal (𝑟𝑎 𝑓

= 𝑟𝑎𝑡 ). This configuration is

considered only when the 𝑟𝑝 𝑓
= 𝑟𝑝𝑡 since at this point the maneuvers are less expensive [19]. Note that the first case

does not hold because the relation 𝑟𝑎 𝑓
< 𝑟𝑝𝑡 does not occur. Thus, is:

Δ𝑉 =

√︃
𝑉2
O𝑡

+𝑉2
O𝑖

− 2𝑉O𝑡
𝑉O𝑖

cos 𝜃𝑖𝑡 +
(
𝑉O 𝑓

−𝑉O𝑡

)
, (7)

which is a function similar to the Eq. (3). Thus, this is:

Δ𝑉 =
√
𝜇

[√︃
𝛿𝑡 𝑓 + 𝛿𝑖 − 2

√︁
𝛿𝑡 𝑓 𝛿𝑖 cos 𝜃𝑖𝑡 +

√
𝛼 𝑓 −

√
𝛼𝑡

]
, (8)

where, the quantities 𝛿𝑡 𝑓 , 𝛿𝑖 and 𝛼 𝑓 are defined by;

𝛿𝑡 𝑓 =
(𝑒𝑡 + cos 𝜈 𝑓 )2 + sin2 𝜈 𝑓

𝑎𝑡 (1 − 𝑒2
𝑡 )

, 𝛿𝑖 =
(𝑒𝑖 + cos 𝜈𝑖)2 + sin2 𝜈𝑖

𝑎𝑖 (1 − 𝑒2
𝑖
)

, and 𝛼 𝑓 =
1 + 𝑒 𝑓

𝑎 𝑓 (1 − 𝑒 𝑓 )
.

The angle 𝜃𝑖𝑡 represents the dihedral angle between the velocity vectors v𝑖 and v𝑡 . Given that O𝑡 is coplanar and

coaxial with O 𝑓 , this angle constitutes one of the angles in a spherical triangle involving 𝑖𝑖 , 𝑖 𝑓 , and Ω 𝑓 𝑖 = Ω 𝑓 − Ω𝑖 ,

therefore, 𝜃𝑖𝑡 = cos−1 [cos 𝑖𝑖 cos 𝑖 𝑓 − sin 𝑖𝑖 sin 𝑖 𝑓 cosΩ 𝑓 𝑖]. Since the final and transfer orbits are coaxial, then 𝜈𝑡 = 𝜈 𝑓 .

Equivalently to the previous configuration, it is possible to obtain expressions for the partial derivatives, which are

determined exclusively in terms of the 𝑎𝑡 and 𝑒𝑡 , such that:

𝜕Δ𝑉𝑎𝑡 =

√
𝜇

2 𝑎𝑡 𝜁1

[
𝜁2 + (𝜁1

√
𝛼𝑡 − 𝛿𝑡 𝑓 )

]
, and (9)
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𝜕Δ𝑉𝑒𝑡 =

√
𝜇

(1 − 𝑒2
𝑡 )

[ √
𝛼𝑡 𝛿𝑖 𝜁1

𝜁2 cos 𝜃𝑖𝑡
+
(
𝛿𝑖 cos 𝜃𝑖𝑡 − 𝜁2

) (
2 𝑒𝑡 + (1 + 𝑒2

𝑡 ) cos 𝜈 𝑓

)]
, (10)

where, the quantities 𝜁1 and 𝜁2, are defined as; 𝜁1 = (𝛿𝑖 + 𝛿𝑡 𝑓 − 2 𝜁2)1/2 and 𝜁2 = (𝛿𝑖 𝛿𝑡 𝑓 )1/2 cos 𝜃𝑖𝑡 . In these

expressions, there are terms from the initial and final orbits. In order to obtain minimum values for the Δ𝑉 , the terms 𝛼𝑡 ,

(𝛿𝑖 + 𝛿𝑡 𝑓 − 2 𝜉2) and 𝛿𝑖 𝛿𝑡 𝑓 need to be strictly positive to obtain real solutions. The different solutions depend on how

the initial and final orbits are defined. The relations between the Eq. (5) and Eq. (9), also Eq. (6) and Eq. (10), differ

fundamentally due to the presence of the terms 𝛿𝑖 and 𝛿 𝑓 . These equations are not equal because 𝑎𝑖 is smaller than 𝑎 𝑓 .

D. Configurations in which O𝑡 is non-coplanar and coaxial with either O𝑖 or O 𝑓

In these two possible formulations, the third and fourth configurations, the problem takes on another level of

complexity, requiring the application of two non-coplanar impulsive maneuvers. First, we study the third configuration

where the transfer orbit, O𝑡 is non-coplanar and coaxial with O𝑖 , therefore, the cross product between the lines of apsides

ℓ𝑖 and ℓ𝑡 are in the same plane, and mark the same direction of the 𝒏𝑖 or 𝒏𝑡 . To make a change in the trajectory, it must

be taken into account in the general formulation that the Δv1 ∉ ΠO𝑖
and Δv2 ∉ ΠO 𝑓

.

Figure 5 shows the three orbits with respect to the {O, 𝒙, 𝒚, 𝒛}: the initial orbit (blue color), the transfer orbit

(green color) and the final orbit (red color). As impulse maneuvers are non-coplanar, they give rise to two dihedral

angles, 𝜃𝑖𝑡 and 𝜃𝑡 𝑓 , respectively. Therefore, we calculate the Δ𝑉 , which is expressed as Eq. (3) and Eq. (7) by:

Δ𝑉 =

√︃
𝑉2
O𝑡

+𝑉2
O𝑖

− 2𝑉O𝑡
𝑉O𝑖

cos 𝜃𝑖𝑡 +
√︃
𝑉2
O 𝑓

+𝑉2
O𝑡

− 2𝑉O 𝑓
𝑉O𝑡

cos 𝜃𝑡 𝑓 . (11)

This function is determined by the values of the orbital elements of initial and final orbits. Performing some term

reductions, we obtain an expression based on 𝑎𝑡 and 𝑒𝑡 , as in the previous configurations. Thus,

Δ𝑉 =
√
𝜇

[√︁
𝛿𝑖𝑡 + 𝛿𝑖 − 2𝜓1 +

√︁
𝛿 𝑓 + 𝛿𝑡 𝑓 − 2 𝜌1

]
, (12)

being the quantities,

𝜓1 =
√︁
𝛿𝑖 𝛿𝑖𝑡 cos 𝜃𝑖𝑡 , 𝜌1 =

√︁
𝛿 𝑓 𝛿𝑡 𝑓 cos 𝜃𝑡 𝑓 , 𝛿𝑖𝑡 =

(𝑒𝑡 + cos 𝜈𝑖)2 + sin2 𝜈𝑖

𝑎𝑡 (1 − 𝑒2
𝑡 )

,

𝛿𝑖 =
(𝑒𝑖 + cos 𝜈𝑖)2 + sin2 𝜈𝑖

𝑎𝑖 (1 − 𝑒2
𝑖
)

, 𝛿 𝑓 =
(𝑒 𝑓 + cos 𝜈 𝑓 )2 + sin2 𝜈 𝑓

𝑎 𝑓 (1 − 𝑒2
𝑓
)

, and 𝛿𝑡 𝑓 =
(𝑒𝑡 + cos 𝜈 𝑓 )2 + sin2 𝜈 𝑓

𝑎𝑡 (1 − 𝑒2
𝑡 )

.

On the other hand, the angles 𝜃𝑖𝑡 and 𝜃𝑡 𝑓 are a function of the eight orbital elements 𝑖𝑖 , 𝑖𝑡 , 𝑖 𝑓 , Ω𝑖 , Ω𝑡 , Ω 𝑓 , 𝜈𝑖 and 𝜈 𝑓 .

Both are related in a single trigonometric function and calculated through two spherical triangles, which are
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Fig. 6 Geometrical relation between 𝜃𝑖𝑡 and
𝜃𝑡 𝑓 with non-tangential impulsive maneuvers
Δv1 and Δv2.

Fig. 7 Geometry of the transfer where O𝑡

(green) is non-coplanar and coaxial with O 𝑓

(red).

associated with the angular distances of the initial and final orbits. Figure 6 shows a sketch in which the orbits are

projected to highlight the relation between angles. Therefore, through Bessel’s formulas, we have that;

𝜃𝑖𝑡 = cos−1

[
(𝛾 cos 𝜙 − cos𝜆)

√︁
1 − 𝛾2

sin𝜆 (1 − 𝛾2)

]
and 𝜃𝑡 𝑓 = cos−1

[
(cos 𝜙 − 𝛾 cos𝜆)

√︁
1 − 𝛾2

sin𝜆 (1 − 𝛾2)

]
,

with 𝛾 = cos 𝜙 cos𝜆 − sin 𝜙 sin𝜆 cos 𝑖 𝑓 𝑖 , 𝜙 = 𝜈𝑖 − sin−1
[

sinΩ 𝑓 𝑖 sin 𝑖 𝑓
sin 𝑖 𝑓 𝑖

]
and 𝜆 = 𝜈 𝑓 − sin−1

[
sinΩ 𝑓 𝑖 sin 𝑖𝑖

sin 𝑖 𝑓 𝑖

]
.

Thus, the partial derivatives of the Eq. (12) in terms of the 𝑎𝑡 and 𝑒𝑡 , are:

𝜕Δ𝑉𝑎𝑡 =

√
𝜇

2𝑎𝑡 𝜌2𝜓2

[
𝜓2 (𝜌1 − 𝛿𝑡 𝑓 ) + 𝜌2 (𝜓1 − 𝛿𝑖𝑡 )

]
, and (13)

𝜕Δ𝑉𝑒𝑡 =

√
𝜇 (𝜌1 𝜌2 𝜓1 𝜓2)−1

𝑎𝑡 (𝑒2
𝑡 − 1)2

[
[2𝑒𝑡 +(1+𝑒2

2) cos 𝜈 𝑓 ] [𝜌1−cos2 𝜃𝑡 𝑓 𝛿 𝑓 ]+ [2𝑒𝑡 +(1+𝑒2
2) cos 𝜈𝑖] [𝜓1−cos2 𝜃𝑖𝑡 𝛿𝑖]

]
(14)

being, 𝜌2 =
√︁
𝛿 𝑓 + 𝛿𝑡 𝑓 − 2 𝜌1 and 𝜓2 =

√︁
𝛿𝑖 + 𝛿𝑖𝑡 − 2𝜓1. Finally, we study the fourth configuration where O𝑡 is

non-coplanar and coaxial with O 𝑓 therefore, the direction of the cross product between the lines of apsides ℓ𝑡 and

ℓ 𝑓 mark the same that 𝒏 𝑓 or 𝒏𝑡 . Analogous to the previous configuration, the impulsive maneuvers Δv1 and Δv2 are

non-tangential applied to departure from the initial orbit to arrive at the final orbit, that is, Δv1 ∉ ΠO𝑖
and Δv2 ∉ ΠO 𝑓

, as

shown in Fig. 7. This fact is irrelevant since the maneuvers generate the same angles in both configurations. Therefore,

in these two cases, the Δ𝑉 is determined by Eq. (12).
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III. Numerical results

In this specific context, numerical assessments have been conducted across diverse scenarios, encompassing a

comprehensive spectrum of values for eccentricity and semimajor axis to optimize Δ𝑉 . As expounded upon in the

antecedent section, Eq. (2) may yield a solution or not for the semimajor axis, 𝑎𝑡 , and the eccentricity, 𝑒𝑡 , contingent

upon the initial conditions of both the initial and final orbits. Consequently, it becomes feasible to delineate a specific

region within the system of partial differential equations concerning these variables, 𝑎𝑡 and 𝑒𝑡 .

A. Optimal region

We consider several values in each studied configuration in previous sections and therefore, the function to estimate

is evaluated in a wide region where the Δ𝑉 should be optimal. In order to perform a numerical analysis of these

configurations, we taking into account the sets of orbital elements, 𝜎O1 , 𝜎O2 , 𝜎O3 , and 𝜎O4 for the initial orbits, and

𝜎O 𝑓
for the final orbit, as given in Table 1, which 𝑒𝑖 , 𝑖𝑖 , Ω𝑖 , 𝜔𝑖 and 𝜈𝑖 are same for the four configurations.

Table 1 Sets of orbital elements: Initial, 𝜎O𝑖
, and final, 𝜎O 𝑓

, orbits.

Sets 𝑎𝑖 [km] 𝑒𝑖 𝑖𝑖 [deg] Ω𝑖 , [deg] 𝜔𝑖 [deg] 𝜈𝑖 [deg]
𝜎O1 7000.0
𝜎O2 14000.0 0.5 1.5 45.89 142.19 10.24
𝜎O3 28000.0
𝜎O4 42000.0

𝑎 𝑓 [km] 𝑒 𝑓 𝑖 𝑓 [deg] Ω 𝑓 [deg] 𝜔 𝑓 [deg] 𝜈 𝑓 [deg]
𝜎O 𝑓

50000.0 0.6 4.5 15.0 190.10 20.0

Figure 8 shows four contour maps of the Δ𝑉 for the first configuration calculated from Eq. (4), Eq. (5) and Eq. (6).

Contour maps display different level curves of the eccentricity, 𝑒𝑡 , with respect to the semimajor axis 𝑎𝑡 , in km. Each

set of orbital elements represents a contour map, such as: 𝜎O1 and 𝜎O 𝑓
located at the upper left, 𝜎O2 and 𝜎O 𝑓

at the

upper right, 𝜎O3 and 𝜎O 𝑓
at the lower left, and 𝜎O4 and 𝜎O 𝑓

at the lower right, respectively. The behavior of the Δ𝑉 is

equivalent in each scenario and is limited by level curves. Specifically, in the white, yellow and red regions it is more

expensive, while in the blue regions it is cheaper, especially in the dark blue, where the optimum is found. The latter is

available in a range of feasibility both in eccentricity and semimajor axis (see Fig. 8).

Therefore, the optimal Δ𝑉 are less that 1.0 km/s, 1.2 km/s, 1.8 km/s and 1.5 km/s, respectively, as shown in Fig. 8.

This confers an advantage, as varying sets of orbital elements are viable for achieving the same optimal value in the

12



Fig. 8 Contour maps of the Δ𝑉 for the first configuration.

transfer orbit. Fig. 9 shows contour maps, taking into account the second configuration. On the other hand, Fig. 10

shows contour maps obtained for the third configuration. As indicated in Sec II. D, the behavior is similar to the

fourth configuration, and the calculation of Δ𝑉 is obtained by evaluating Eq. 12; therefore, we only consider the third

configuration. For each configuration the Δ𝑉 optimal values (dark-blue region) are obtained in different intervals of

possible values, for 𝑒𝑡 and 𝑎𝑡 . Nevertheless, the behavior is equal and systematic in all cases. In order to compute the

intervals of 𝑒𝑡 and 𝑎𝑡 with the optimal value, we determine a parametric function based on the level curves.

B. Parametric function for the Δ𝑉

The parametric function is computed within a region bounded by the level curves where Δ𝑉 is minimized.

Considering the first configuration and referring to the contour map in the upper-left of Fig. 8, we observe that 𝑒𝑡 and 𝑎𝑡

fall within the ranges of 𝑒𝑡 ∈ [0.0001, 0.84] and 𝑎𝑡 ∈ [6910.0, 50000.0], in km, respectively. Additionally, the optimal

Δ𝑉 is determined to be 1.0, km/s. In order to derive the parametric function, the Levenberg-Marquardt method [31, 32]

has been iteratively applied to determine the coefficients of the function that optimally represents the data for Δ𝑉 = 1

13



Fig. 9 Contour maps of the Δ𝑉 for the second configuration.

Fig. 10 Contour maps of the Δ𝑉 for the third configuration.
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km/s within the selected configuration.

Following the application of the method, the chosen function corresponds to the optimal fit, as evidenced by the

convergence of mean squared errors to zero. In the lower right panel of Fig. 11, standardized residuals are depicted in

relation to the fitted values. It is evident that these residuals approach zero as the iterative process progresses. Notably,

at iteration 60, the residuals closely approximate zero. Moreover, stability persists up to iteration 120, during which the

residuals consistently maintain values between ±5 × 10−4.
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Fig. 11 Parametric function for Δ𝑉 = 1.0 km/s, and residual.

Figure 11 shows the parametric function (blue line) with the optimal value of 1.0 km/s within the specified intervals

for each variable. Additionally, the red points represent the calculated values obtained from the Δ𝑉 function. This

function represents the eccentricity in terms of the semimajor axis of the transfer orbit. In each case, we calculate a

parametric function defined in a width range of feasible values of the two unknown variables and an optimal constant

value of the Δ𝑉. The analytic parametric function, PF , is defined as:

PF =


𝑐0 + 𝑐1 𝑎𝑡 + 𝑐2 log(𝑎𝑡 ) + 𝑐3 log(𝑐4 + 𝑎𝑡 ), 𝑎𝑡𝑖 ≤ 𝑎𝑡 ≤ 𝑎𝑡1 .

𝑐5 + 𝑐6 𝑎𝑡 + 𝑐7 log(𝑎𝑡 ), 𝑎𝑡1 < 𝑎𝑡 ≤ 𝑎𝑡 𝑓 .

(15)

where, 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6 and 𝑐7 are real coefficients. The 𝑎𝑡𝑖 , 𝑎𝑡1 and 𝑎𝑡 𝑓 are the lowest and highest values of

the intervals where the function is continuous and differentiable. The log function corresponds to the natural logarithm.
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The specified intervals are as follows: 𝑎𝑡𝑖 = 6915.0 km, 𝑎𝑡1 = 18500.0 km, and 𝑎𝑡 𝑓 = 49850.0 km. The associated

coefficients, along with their corresponding standard errors—defined as the square root of the reduced chi-square

statistic—and the confidence intervals, are presented in Table 2, respectively. In general, the parametric function PF

Table 2 Parameter Confidence Interval table.

Par Estimate SE CI
𝑐0 24.31 3.6 × 10−2 { 22.45, 26.12 }
𝑐1 9.36 × 10−6 1.49 × 10−6 { 6.4 × 10−6, 1.2 × 10−5 }
𝑐2 −67719.6 3.2 × 10−3 {−67719.6,−67719.5 }
𝑐3 67717.1 1.6 × 10−3 { 67716.8, 67719.5 }
𝑐4 −3.32 × 10−2 2.1 × 10−3 { −3.5 × 10−2, −2.7. × 10−2 }
𝑐5 −3.18 × 10 0 2.6 × 10 0 { −8.33, 1.98 }
𝑐6 −5.43 × 10−6 8.6 × 10−6 { −2.2 × 10−6, 1.1. × 10−5 }
𝑐7 3.96 × 10−2 2.7 × 10−2 { −1.5 × 10−2, 9.4. × 10−2 }

enables us to delineate the geometry of the transfer orbit by considering an optimal characteristic velocity based on the

orbital elements of the initial and final orbits. It is noteworthy that the Δ𝑉 function demonstrates sensitivity to the initial

conditions and requires a more detailed study.

C. Results

We select several sets of orbital elements for the initial and final orbits, acquired from the database

http://www.space-track.org/. These sets represent the orbital motion of cataloged orbiters. In a previous process,

these were changed from the Two Line Elements (TLE) format to classical orbital elements, with respect to the

Geocentric Reference Frame. The TLE orbit is a first-order approximation to the solution of the orbital motion and is

calculated under a non- orbital model.

Table 3 shows in the first column the satellite catalog number, NORAD ID and in the second one, the set of orbital

elements that correspond to the initial and final orbit, 𝜎O . And finally, the next six columns represent the semimajor

axis, 𝑎 (in km), eccentricity, 𝑒, inclination, 𝑖 (in deg), right ascension of the ascending node, Ω (in deg), argument of

perigee, 𝜔 (in deg), and true anomaly, 𝜈 (in deg), respectively.

After considering the sets of orbital elements in each case and performing a numerical evaluation of the parametric

function, we obtain the data shown in Table 4. Eight real coefficients, 𝑐𝑖 , of the parametric function that determine the

intervals for eccentricity 𝑒𝑡 , and the semimajor axis, 𝑎𝑡 in km, and the optimal value of the characteristic velocity, Δ𝑉 in
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Table 3 Cataloged orbiters with their set of orbital elements.

NORAD ID Set 𝑎 [km] 𝑒 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝜈 [deg]
1964 𝜎O𝑖

7202.38 0.01933 32.19 45.89 142.19 29.24
𝜎O 𝑓

10200.00 0.02000 52.19 65.00 170.10 60.00
2643 𝜎O𝑖

17449.77 0.61740 25.89 353.82 81.94 339.59
𝜎O 𝑓

30000.00 0.02000 70.00 30.00 120.00 70.00
2646 𝜎O𝑖

40050.14 0.00370 05.25 56.43 72.86 323.83
𝜎O 𝑓

47000.00 0.01200 50.00 70.50 80.00 350.45

km/s. The values in the second, third, and fourth columns, denoted as NORAD 1964, NORAD 2643, and NORAD

2646, respectively, correspond to each analyzed case. These columns primarily present the potential values for both

eccentricity and the semimajor axis of the transfer orbit, as well as the coefficient of the parametric function.

Table 4 Results after performing a numerical evaluation of the parametric function, for the three cataloged
orbiters.

Par NORAD 1964 NORAD 2643 NORAD 2646
𝑐0 −10.59 −5.21 −66.97
𝑐1 −6.36 × 10−6 −9.61 × 10−6 −1.28 × 10−5

𝑐2 −2.73 0.0 0.0
𝑐3 3.96 0.59 6.78
𝑐4 0.43 −0.38 −.98
𝑐5 −2.57 −4.10 −28.59
𝑐6 −8.07 × 10−7 −5.19 × 10−6 −4.18 × 10−6

𝑐7 0.29 0.47 2.86
𝑎𝑡𝑖 [km] 9065.0 7614.0 40670.0
𝑎𝑡1 [km] 16114.5 28036.5 47689.9
𝑎𝑡 𝑓 [km] 45150.0 45090.1 50190.3
𝑒𝑡𝑖 0.00055 0.0008323 0.0006013
𝑒𝑡 𝑓 0.5476 0.7151 0.2344
Δ𝑉 [km/s] 1.5 1.2 3.36

IV. Conclusions

Modifying the trajectory in space of any orbiter usually require the best possible precision to achieve the success

of any mission. We can design different orbits, however, the presence of many orbiters, such as space debris that can

endanger any space mission, makes it often necessary to change such designs. Therefore, it has become essential and

unavoidable to apply impulsive maneuvers, which in turn are restricted by a set of requirements. In this Note, we
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present a fundamental function in each of the three scenarios studied in the model formulation. All of these scenarios

share a feature: the transfer orbit is coaxial with either O𝑖 or O 𝑓 . A specific function is derived with respect to the

semimajor axis and eccentricity of the orbital transfer. Several sets of orbital elements which have been taken from

http://www.space-track.org/, are used to evaluate the Δ𝑉 and illustrate the different configurations, being the

second configuration the most efficient according to the general formulation and restrictions. On the other hand, we have

computed, for various instances of orbital transfers, an optimal range where the Δ𝑉 is minimized. This computation

involves a parametric function, facilitating the determination of intervals for both the eccentricity and semimajor axis of

the transfer orbit. Within these intervals, the Δ𝑉 is consistently minimized or falls within the computed optimal region.
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