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1. Introducción

La relatividad general clásica se describe por la acción de Einstein-Hilbert

SEH =
M2

p

2

∫
d4x

√
−g R , (1)

siendo Mp = (8πG)−1/2 la masa de Planck reducida, G la constante de Newton, R el
escalar de curvatura y g el determinante de la métrica gµν . Dicha acción es la más simple
posible que proporciona las ecuaciones de campo de Einstein y que contiene derivadas
segundas de la métrica. Sin embargo, no hay a priori una razón fundamental por la
que no se puedan construir acciones más complejas que contengan derivadas de orden
superior en la métrica. De hecho, en el proceso de cuantización de la teoría (1), emergen
divergencias a un loop1 que son proporcionales a invariantes de curvatura de segundo
orden. Para absorber dichas divergencias, se deben incluir contratérminos de la forma [1]

∆L1-loop = a1R
2 + a2RµνR

µν + a3RµναβR
µναβ + a4�R , (2)

donde ai son parámetros escogidos para cancelar justamente las divergencias de un loop.
De manera similar, la renormalización de la relatividad general a orden de dos loops
requiere términos de orden cúbico en curvatura como R�R o Rαβ

µνR
µν

ρσR
ρσ

αβ [2], las
correcciones a tres loops requieren a su vez contratérminos de cuarto orden en curvatu-
ra, etc. Este procedimiento continua de forma indefinida, es decir, las divergencias que
aparecen en la expansión perturbativa no pueden ser absorbidas por un número finito de
contratérminos, mostrando que la relatividad general no es una teoría renormalizable.

Históricamente, las teorías no renormalizables eran catalogadas de no predictivas y so-
lían abandonarse, pero el enfoque moderno Wilsoniano ha permitido sacar un provecho
enorme de este tipo de teorías en el contexto de teorías efectivas [3]. Bajo este prisma, los
términos de la acción están organizados en potencias de E/Mp, donde E es la escala de
energía típica del problema. El simple análisis dimensional muestra que las curvaturas de
orden superior corresponden a potencias más altas de E/Mp, por lo que, a energías muy
por debajo de Mp, las potencias superiores de curvatura están completamente suprimidas
y pueden tratarse como pequeñas perturbaciones. De esta forma, a una precisión desea-
da, la serie infinita de términos se puede truncar produciendo sólo un número finito de

1Las correcciones de diagramas de loops a procesos tree-level (completamente especificados por el
Lagrangiano clásico) se corresponden con órdenes superiores en teoría de perturbaciones.
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parámetros libres. Consecuentemente, los términos de orden superior capturan la física
subyacente de manera perturbativa y sólo contribuyen a los vértices de los diagramas de
Feynman, no a los propagadores. Como resultado se obtiene una teoría que, aunque no
es renormalizable, puede renormalizarse de forma efectiva en cada loop, orden a orden.
Naturalmente, esta teoría resultante es únicamente válida para energías muy por debajo
de Mp, pues cuando ésta se alcanza la expansión en el parámetro E/Mp no es legítima.

En un enfoque distinto, que es el que vamos a seguir en este trabajo, podríamos permitir
que los coeficientes ai de los términos con derivadas superiores en (2) tomasen valores
arbitrarios, no ajustados para cancelar las divergencias a un loop. En ese caso, los términos
de alta curvatura compiten con el término de Einstein-Hilbert en la escala de Planck, es
decir, no son meros contratérminos como en la relatividad general, sino que se tratan
en igualdad de condiciones que el término de Einstein-Hilbert, contribuyendo así tanto
a los vértices como a los propagadores. Esta nueva teoría, usualmente llamada gravedad
cuadrática y que naturalmente difiere de la relatividad general cuántica, presenta un
cambio drástico en la estructura de las divergencias. La acción construida con invariantes
de curvatura de segundo orden resulta ser renormalizable a todos los órdenes de loops [4]
y no necesita la inclusión de términos con derivadas aún superiores. Esta teoría podría
interpretarse entonces como una teoría fundamental de gravedad cuántica, y de hecho
es una de las candidatas prominentes para ello. Por supuesto, el éxito de la gravedad
cuadrática no es puramente teórico, sino que fenomenológicamente es el modelo más
favorecido por la colaboración Planck [5] para explicar la era inflacionaria del universo
primordial [6].

El objetivo principal de este trabajo consiste en analizar el comportamiento cosmológico
de la gravedad cuadrática desde una perspectiva fundamental, mostrando las diferencias
que emergen con respecto al marco vigente de la relatividad general, y fenomenológica, con
el fin de predecir adecuadamente las observaciones actuales sobre la época inflacionaria del
universo. En cuanto a la estructura del mismo, en primer lugar, introduciremos la teoría
cuadrática con sus posibles ventajas e inconvenientes. Posteriormente, analizaremos las
soluciones cosmológicas que presenta dicha teoría y finalmente describiremos el escenario
inflacionario en el marco de las teorías más allá de relatividad general.
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2. Gravedad con altas derivadas

Las teorías de gravitación con altas derivadas son teorías más allá de la relatividad general
basadas en incorporar operadores de curvatura adicionales en la acción de Einstein-Hilbert
(1). En el intento de desarrollar una teoría de gravedad cuántica han surgido muchos
tipos distintos de modelos gravitatorios con altas derivadas. Estos modelos han mejorado
notablemente nuestro conocimiento sobre gravedad cuántica, pero siguen existiendo varios
problemas abiertos en ellos, siendo uno de los más discutidos la presencia de grados de
libertad adicionales aparentemente patológicos, llamados partículas ghost.

Stelle [4, 7] propuso y desarolló una teoría de gravitación a la que vamos a prestar una
atención central en este trabajo, llamada gravedad cuadrática2, definida por la acción

S =

∫
d4x L =

∫
d4x

√
−g

(
γR + αR2 − βRµνR

µν
)
, (3)

donde γ =
M2

p

2
es el coeficiente usual de la acción de Einstein-Hilbert para recuperar

el límite Newtoniano, mientras que α y β son constantes de acoplo adimensionales que
acompañan a los términos de alta curvatura. Bajo la premisa cuadrática general, la acción
(3) podría, en principio, contener también términos con acoplos constantes3 a RµναβR

µναβ

o �R. Sin embargo, en una variedad M tetradimensional, el término de Gauss-Bonnet

G = R2 − 4RµνR
µν +RµναβR

µναβ (4)

resulta ser un invariante topológico proporcional a la característica de Euler χ(M) =
1

32π2

∫
d4x

√
−g G, que describe la topología de la variedad M. Esta propiedad topológica

nos permite escribir el término Riemann-Riemann RµναβR
µναβ como una combinación

del escalar de Ricci R2, el término Ricci-Ricci RµνR
µν y el invariante de Gauss-Bonnet

G, cuya contribución es irrelevante siempre que no haya cambio de topología ni términos
de frontera. Por otro lado, el término

√
−g�R =

√
−g∇µ∇µR = ∂µ (

√
−g∇µR) es una

derivada total y, por el teorema de Gauss covariante [11], se puede escribir como la
integral sobre la frontera de la variedad, que se anula siempre que ∇µR tienda a cero
lo suficientemente rápido en el infinito, por lo que también podemos ignorarlo. De esta
manera, añadir RµναβR

µναβ en la acción (3) produce únicamente una traslación constante
2En la literatura es usual encontrar esta teoría bajo los nombres de teoría con altas derivadas, gravedad

R2, gravedad de cuarto orden, gravedad de Stelle, etc. [8, 9].
3Para esta discusión es estrictamente necesario que los acoplos sean constantes, pues si corren con la

energía su contribución deja de ser nula como se demuestra en [10].
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en los acoplos y añadir �R no tiene consecuencias para ningún observable insensible a
la topología general del espaciotiempo (como las ecuaciones de campo o los cálculos
perturbativos de interacciones de partículas4 [3]), así que la teoría descrita por dicha
acción cuadrática es la más general posible para nuestro interés.

2.1. Inestabilidad de Ostrogradski y ghosts en altas derivadas

Añadir productos cuadráticos de tensores de curvatura a la acción gravitatoria conduce
a ecuaciones de campo en las que los términos con mayor número de derivadas son de
cuarto orden. Esto es aparentemente patológico, ya que Ostrogradski demostró que las
teorías clásicas con derivadas superiores tienen inestabilidades que se traducen en un
decaimiento del vacío [12]. Para ilustrar brevemente cómo surge este resultado, podemos
seguir el enfoque Hamiltoniano [13] para dos casos típicos simples: teorías escalares con
dos y cuatro derivadas en el término cinético viviendo en el espaciotiempo de Minkowski.

La teoría del campo escalar más sencilla con dos derivadas es la acción de Klein-Gordon

S = −1

2

∫
d4x

(
∂µφ∂

µφ+m2φ2
)
=

1

2

∫
d4x

(
φ�φ−m2φ2

)
=⇒ (�−m2)φ = 0 , (5)

cuya densidad hamiltoniana H se construye a partir del momento canónico conjugado
Π = φ̇ asociado al campo φ como la transformada de Legendre de la densidad lagrangiana,

H =
1

2
Π2 +

1

2
∂iφ∂

iφ+
1

2
m2φ2 ≥ 0 , (6)

que está acotada inferiormente de forma manifiesta, por lo que la teoría es estable.

Si modificamos la acción (5) con un término que contenga cuatro derivadas del campo,

S =
1

2

∫
d4x

[
φ(�− ω2�2)φ−m2φ2

]
=⇒ (�− ω2�2 −m2)φ = 0 , (7)

siendo ω constante, la densidad hamiltoniana en este caso se escribe esquemáticamente

H = Π1φ̇+O(Π2
2, (∂iφ)

2, φ2) , (8)

donde Π1 = φ̇− ω2
...
φ y Π2 = ω2φ̈. Con la presencia de altas derivadas, H se compone de

una parte claramente positiva por depender solamente de términos cuadráticos y de una
parte lineal en Π1 y φ que nos impide afirmar como en el caso anterior que el Hamiltoniano

4Por ejemplo, las amplitudes de scattering de gravitones alrededor de alguna geometría fija.
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sea definido positivo. Dado que el término lineal puede tomar cualquier valor negativo que
supere a la parte estrictamente positiva, se concluye que H no está acotado inferiormente.

Es interesante analizar el caso no masivo, m = 0, de la teoría (7) a nivel cuántico. El
propagador (inverso de la parte cuadrática/cinética del Lagrangiano o, equivalentemente,
la función de Green asociada a las ecuaciones de campo) en el espacio de momentos,
DF (p), en este caso no masivo se descompone en fracciones simples como

DF (p) = − 1

p2 (1 + ω2p2)
= − 1

p2
+

ω2

1 + ω2p2
. (9)

Identificando los polos del propagador como el espectro de partículas de la teoría, ob-
servamos que la presencia de la derivada superior �2 a nivel del Lagrangiano introduce
un polo adicional en el propagador (la primera contribución 1/p2 asociada a � en el
Lagrangiano se corresponde naturalmente con la partícula de masa cero), lo que impli-
ca un modo masivo de masa

√
−p2 = m = 1/ω. Sin embargo, el signo diferente en el

propagador indica que esta partícula masiva se corresponde con un ghost [14, 15].

Esta discusión sobre el campo escalar con altas derivadas es de gran utilidad, pues la
teoría gravitatoria que nos ocupa presenta esencialmente la misma patología. La principal
consecuencia es que, a nivel clásico, estos sistemas suelen ser inestables y, a nivel cuántico,
se manifiestan partículas ghosts cuyo término cinético tiene un signo invertido, usualmente
asociado en la literatura con estados de norma negativa que llevan a una violación de la
unitariedad. En particular, la teoría (3) describe al graviton estándar sin masa y de spin
2 (relacionado con el término R en la acción, como sucede en relatividad general), pero
adicionalmente incorpora una partícula de spin 0 con masa m0 =

»
γ

2(3α−β)
(relacionada

con el término R2) y una partícula de spin 2 con masa m2 =
»

γ
β

(relacionada con
el término RµνR

µν). Estos modos masivos están asociados en el límite Newtoniano con
comportamientos de tipo potencial de Yukawa, de la forma 1

r
e−m0r y 1

r
e−m2r, que suavizan

la singularidad Newtoniana en el origen de una fuente puntual. En este límite de campo
débil, la energía linealizada del gravitón y del escalar masivo es positiva, mientras que la
de la partícula de spin 2 masiva es negativa, por lo que es el ghost de la teoría5. A nivel
cuántico, se pueden tener autoestados de energía positiva para la partícula ghost a costa
de tener normas negativas, atacando en principio la unitariedad de la teoría cuántica.

5Es interesante remarcar que una teoría del tipo R + R2 solo contiene las dos primeras partículas
y por tanto está libre de ghosts, pero no es renormalizable. El término RµνR

µν es necesario para la
renormalizabilidad, con el precio a pagar de introducir un ghost en el espectro.
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Merece la pena destacar que los ghosts son una característica común de muchos modelos
de gravedad más allá de relatividad general [16], y hay que distinguirlos claramente de los
ghosts de Faddeev-Popov ampliamente utilizados en la cuantización de teorías gauge no
abelianas. Estos últimos violan la relación spin-estadística, aparecen naturalmente en la
integral de camino para absorber grados de libertad gauge no físicos y no describen una
partícula física. En cambio, los ghosts que acechan en teorías de gravitación modificada
sí describen excitaciones físicas. En un acercamiento heurístico y general, para lidiar con
ghosts físicos hay dos caminos a escoger: o bien aceptar la existencia de estados de norma
negativa y abandonar la unitariedad de la teoría, o bien aceptar que los valores propios de
energía los ghosts son negativos. Dado que el primero hace que toda la descripción cuántica
sea completamente inconsistente, normalmente se acepta lo segundo, de manera que los
ghosts suelen producen inestabilidades si se acoplan a otros campos convencionales.

2.2. Posibles resoluciones a las patologías de las altas derivadas

A pesar de que históricamente se ha considerado a la inestabilidad de Ostrogradski y a la
aparición de ghosts como un arma arrojadiza infalible para descartar teorías más allá de
relatividad general, numerosos estudios6 han demostrado que la situación es mucho más
sutil de lo que ingenuamente parece.

Entre algunos de los recursos más exitosos para solventar la situación y exorcizar así a
los ghosts se encuentran [16]:

− Aislarlos de algún modo concreto para que se desacoplen completamente de otros
campos y así no desestabilizarlos. Es de gran interés mencionar que, pese al dogma,
se han encontrado sistemas [17, 18] con ghosts en interacción con grados de libertad
de energía positiva que tienen una robusta estabilidad clásica, y la situación mejora
aún más en el caso cuántico [19].

− Hacerlos muy pesados para que su masa exceda el límite de energías relevantes en
el contexto de teorías efectivas, de forma que no emerge ningún nuevo grado de
libertad (ghost o no ghost) a parte del gravitón estándar.

− Romper invariancia Lorentz para regular la de producción de pares ghost-no ghost.

− Cambiar los grados de libertad fundamentales de la teoría (por ejemplo, trabajando
6Muchos de ellos especialmente recientes, pues estas teorías se encuentran en un momento de auge.
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con funciones de correlación de invariantes de curvatura en lugar de la métrica).

− Argumentar que son consecuencia de tener un número finito de altas derivadas en la
teoría, son ficticios al resultar de un truncamiento realizado en una teoría completa
que contiene infinitos invariantes de curvatura y es libre de ghosts [20].

− En particular en gravedad cuadrática, eliminarlos del espectro redefiniendo las con-
diciones de frontera de la teoría en términos de un contorno de integración que no
encierre los polos asociados a los ghosts.

− Argumentar que, pese a tener ghosts, la unitariedad en gravedad cuadrática puede
funcionar de forma ordinaria según los argumentos originales de la teoría de Veltman
[21]. La construcción cuidadosa del espacio de Hilbert [22] asociado a la teoría
cuántica sigue la misma línea. Aparecen ghosts si el Hamiltoniano del modelo se
trata (incorrectamente) como hermítico en el sentido de Dirac y no como simétrico
PT [23], dando lugar no a estados de norma negativa sino de norma nula que,
pese a no ser estándar, no atacan la unitariedad de la teoría. Por contrapartida, es
conocido que teorías con altas derivadas que no presentan ghosts siguen teniendo
problemas con la unitariedad [24], por lo que es el punto más sutil.

Aunque hay cierta abundancia de propuestas para abordar la problemática, es necesario
remarcar que una manera consistente y sólida de abordar las inestabilidades clásicas de
los ghosts, así como una forma unívoca de entender cuestiones relativas a la unitariedad,
sigue siendo desconocida y es objeto de intensa investigación actual en el campo. Por ello,
concluimos aquí la discusión de los aspectos fundamentales relacionados con este tipo de
teorías para dedicarnos en lo que sigue a analizar las consecuencias físicas de las mismas.

3. Soluciones cosmológicas en gravedad cuadrática

Nos interesa centrarnos en las implicaciones cosmológicas de la teoría de gravedad cua-
drática, cuya acción hemos visto que puede escribirse con total generalidad como

S =

∫
d4x

√
−g

[
γ(R− 2Λ) + αR2 − βRµνR

µν
]
+ Sm , (10)

siendo Λ la constante cosmológica y Sm la acción correspondiente a la materia. Las
ecuaciones que definen la teoría, obtenidas aplicando el principio de mínima acción, son

γ (Gµν + Λgµν) + Φµν =
1

2
Tµν , (11)
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donde Tµν es el tensor energía-momento de las fuentes de materia, Gµν es el tensor de
Einstein y Φµν es el tensor asociado a los términos de curvatura superior, definidos por

Tµν = − 2√
−g

δSm

δgµν
, (12)

Gµν = Rµν −
1

2
gµνR , (13)

Φµν = α

Å
2RRµν −

1

2
gµνR

2 − 2∇µ∇νR + 2gµν�R

ã
(14)

− β

Å
−1

2
gµνRαβR

αβ −∇ν∇µR +�Rµν +
1

2
gµν�R− 2RαµνβR

αβ

ã
.

También se puede interpretar matemáticamente el tensor Φµν como un tensor energía-
momento efectivo, que cuantifica la desviación a la relatividad general por la alta curva-
tura. Cuando α = β = 0 tenemos Φµν = 0 pero el recíproco no es forzosamente cierto.

Ignorando la constante cosmológica, una primera observación sobre las ecuaciones de
la teoría cuadrática (11) es que cualquier solución de vacío (es decir, Tµν = 0) de las
ecuaciones de Einstein, Gµν = Rµν − 1

2
gµνR = 0, también es una solución de vacío de las

ecuaciones de gravedad cuadrática. Esto es así porque tomando la traza de las ecuaciones
de Einstein obtenemos R = 0, e insertando esto de nuevo en sus ecuaciones obtenemos la
condición Ricci plana Rµν = 0, que es una solución manifiesta de (11) en el vacío.

Si añadimos la constante cosmológica a las ecuaciones de campo de Einstein en el va-
cío, Rµν − 1

2
gµνR + Λgµν = 0, el mismo razonamiento anterior nos conduce a R = DΛ

y, consecuentemente, Rµν = (1
2
D − 1)Λgµν con D el número de dimensiones espacio-

temporales. Este tipo de variedades con curvatura escalar R constante, tensor de Ricci
Rµν proporcional a la métrica gµν y tensor de curvatura de Riemann dado por Rαµνβ =

R
D(D−1)

(gανgµβ − gµνgαβ) se denominan maximalmente simétricas, son espacios a la vez
homogéneos e isótropos y poseen D(D+1)/2 vectores de Killing (el mayor número posible
en D dimensiones). Es interesante sustituir estas expresiones en (11), obtieniendo

1

2

ï
αD (D − 4) + β

(D − 2)(D + 1)(D − 4)

(D − 1)

ò
Λ2gµν = 0 , (15)

y comprobando así que los espacios maximalmente simétricos son también solución de
(11) únicamente en el caso D = 4, que es el que nos va a interesar en este trabajo.

Se conoce que existen más soluciones analíticas en gravedad cuadrática, y son novedosas
en el sentido de que no son soluciones de las ecuaciones de Einstein ordinarias. Además,
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hay soluciones de vacío en gravedad cuadrática pura, Φµν = 0, que no son soluciones
de relatividad general, Gµν = 0, y que, por tanto, no tienen contrapartida análoga en
el límite Einsteniano α, β → 0. Un ejemplo de estas soluciones intrínsecas a la parte
cuadrática pura es la métrica FRW con un factor de escala a(t) ∼ t1/2 análogo a la época
dominada por radiación en relatividad general (en este caso hay materia, mientras que
en la teoría cuadrática pura es una solución de vacío). En cuanto a soluciones de la teoría
completa, en muchos casos no preservan la isotropía y algunas de las más importantes
son las métricas de Brinkmann, Peres, Siklos o Kasner [25, 26, 27].

3.1. Análisis de las ecuaciones de campo en una métrica FRW

Nos centramos en el caso isótropo y homogéneo con curvatura espacial prácticamente nu-
la, que es la situación más cercana a nuestro universo en virtud del principio cosmológico
y las observaciones actuales. De esta manera, trabajaremos con una métrica de tipo FRW

ds2 = −b(t)2dt2 + a(t)2(dx2 + dy2 + dz2) , gµν = diag(−b2, a2, a2, a2) . (16)

Es usual en relatividad general tomar la simplificación7 b(t) = 1, de manera que la
métrica (16) sustituida como ansatz en las ecuaciones de Einstein para un fluido perfecto
proporciona las conocidas dos ecuaciones de Friedmann. Una ecuación está asociada a
la parte temporal y la otra a la parte espacial, y no son independientes sino que están
ligadas por la conservación8 local de la materia, ∇µT

µν = 0, junto con la ecuación de
estado del fluido, p = ωρ, que relaciona su presión p con la densidad de energía ρ mediante
el parámetro de estado ω (como es usual, ω = 0 describe a la materia bariónica, ω = 1/3

a la materia ultrarelativista/radiación y ω = −1 a la energía oscura).

Analizaremos a continuación lo que sucede en el marco de la teoría de gravedad cuadrática
con la métrica (16). Existen dos formalismos equivalentes para atacar el problema, uno
consiste en escribir explícitamente las ecuaciones de campo generales (11) particularizadas
a una métrica FRW (enfoque general) y el otro se basa en aplicar las ecuaciones de Euler-
Lagrange a la acción (10) tras escribirla en términos de los campos dinámicos a(t) y b(t)

que componen la métrica (enfoque restringido).
7Esta reparametrización de la componente temporal está justificada como una redefinición del tiempo

coordenado.
8Estamos abusando de lenguaje porque en realidad no se trata de una ley de conservación real, no se

puede escribir en una forma integral equivalente como sí ocurriría con una derivada parcial.
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Los invariantes de curvatura de la acción cuadrática asociados a la métrica (16) son

R =
6

b2
(X + Y ) , R2 =

36

b4
(
X2 + Y 2 + 2XY

)
, RµνR

µν =
12

b4
(
X2 + Y 2 +XY

)
,

RµναβR
µναβ =

12

b4
(X2 + Y 2) , G =

24

b4
XY , donde X =

ä

a
− ȧ

a

ḃ

b
, Y =

ȧ2

a2
. (17)

Sustituyendo los mismos en la acción (3) y teniendo en cuenta que
√
−g = a3b, la acción

queda de la forma implícita

S = Sg + Sm =

∫
d3x

∫
dt L(a, ȧ, ä, b, ḃ) + Sm . (18)

El Lagrangiano restringido (18) contiene dependencias en derivadas segundas del factor
de escala a(t), pero únicamente presenta dependencias hasta la derivada primera en el
parámetro temporal b(t). Esta diferencia de altas derivadas hace que las ecuaciones de
Euler-Lagrange provenientes de variar la acción puramente gravitatoria, δSg, se escriban
como

Eb =
∂L
∂b

− d

dt

Å
∂L
∂ḃ

ã
, (19)

Ea =
∂L
∂a

− d

dt

Å
∂L
∂ȧ

ã
+

d2

dt2

Å
∂L
∂ä

ã
. (20)

Si no se considera ningún tipo de materia, esto es, en el vacío, las ecuaciones son natu-
ralmente Eb = 0 y Ea = 0. En presencia de materia, nos centramos en el caso de fluido
perfecto descrito por sus componentes del tensor energía-momento T00 = b2(t)ρ(t) y
Tij = a2(t)p(t)δij, que por supuesto satisfacen la conservación ∇µTµν = ρ̇+3 ȧ

a
(ρ+p) = 0.

En este caso el lado derecho de las ecuaciones se ve modificado para dar cuenta de la
materia, porque la variación de la acción (18) conduce a δSg = −δSm. La variación de la
acción de materia se lee de la definición del tensor energía-momento (12) como sigue

δSm = −1

2

√
−g

[
T00δg

00 + Tijδg
ij
]
= −1

2
a3b

ï
b2ρ δ

Å
− 1

b2

ã
+ 3a2p δ

Å
1

a2

ãò
= −a3ρ δb+ 3a2bp δa =⇒ δSm

δb
= −a3ρ ,

δSm

δa
= 3a2bp , (21)

luego las ecuaciones de movimiento en presencia de materia son

Eb

Ä
a, ȧ, ä,

...
a , b, ḃ, b̈

ä
=

∂L
∂b

− d

dt

Å
∂L
∂ḃ

ã
= a3ρ , (22)

Ea

Ä
a, ȧ, ä,

...
a ,

....
a , b, ḃ, b̈,

...
b
ä
=

∂L
∂a

− d

dt

Å
∂L
∂ȧ

ã
+

d2

dt2

Å
∂L
∂ä

ã
= −3a2bp . (23)
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Este enfoque Lagrangiano restringido es totalmente equivalente al enfoque Lagrangiano
general de las ecuaciones de campo, la única diferencia es que el primero restringe la
métrica antes de deducir las ecuaciones. Se ha comprobado explícitamente (Anexo B)
que las ecuaciones (22) y (23) son las mismas que las componentes µ = ν = 0 y µ = ν = i

de (11), respectivamente.

La componente µ = ν = 0 de las ecuaciones de campo (11) (o, equivalentemente, Eb)
depende de a(t) y b(t) junto con sus derivadas hasta segundo orden en b, b̈, y tercer
orden en a, ...

a . Por otro lado, la ecuación µ = ν = i de las ecuaciones de campo (11)
(o, equivalentemente, Ea) depende de a(t) y b(t) junto con sus derivadas hasta tercer
orden en b,

...
b , y cuarto orden en a, ....

a . Parece natural entonces derivar Eb con respecto
al tiempo, obteniendo Ėb, para así cuadrar el orden del sistema de las dos ecuaciones
diferenciales y resolverlo simultáneamente. Sin embargo, esto no es posible porque en
realidad las ecuaciones Eb y Ea no son independientes, sino que una es consecuencia de
la otra. De hecho, un cálculo explícito con las ecuaciones del movimiento muestra que

Ėb =
ȧ

b
Ea , (24)

revelando que podemos escribir Ea en términos de la derivada de Eb. Una ecuación es una
ligadura de la otra, son redundantes, y en última instancia se puede ver que el sistema
de ecuaciones formado por Ėb = 3a2ȧρ+ a3ρ̇ y Ea = −3a2bp presenta la forma lineal

A
....
a +B

...
b = P

C
....
a +D

...
b = Q

} Ç
A B

C D

åÇ ....
a...
b

å
=

Ç
P

Q

å
(25)

con la particularidad de que detM = AD − BC = 0, indicando que el sistema está
indeterminado y hay infinitas soluciones. Para resolver esta situación, que también ocurre
en relatividad general9, invocamos a la invariancia bajo difeomorfismos que nos da libertad
para fijar una reparametrización de la componente temporal, siendo el caso más simple
b(t) = 1. La justificación profunda reside en que la reparametrización temporal es un
subgrupo del grupo de difeomorfismos que es una simetría local (gauge, en realidad) de
teorías de gravitación covariantes generales y, por lo tanto, todos los estados físicos deben
ser invariantes bajo ella. De esta manera, la libertad gauge nos permite fijar b(t) = 1,
convirtiendo el sistema en uno compatible con solución única. Bajo estas condiciones, las
ecuaciones (22) y (23) se escriben explícitamente como

12(3α− β)ȧ2 (2aä− 3ȧ2)

a
+ 6a

[
γȧ2 − 2(3α− β)

(
ä2 − 2

...
a ȧ

)]
− 2γΛa3 = a3ρ , (26)

9Sucede lo mismo en cualquier teoría covariante general que respete la invariancia bajo difeomorfismos.
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6

ï
γ
(
ȧ2 − Λa2

)
+

6(3α− β) (ȧ4 − 4aȧ2ä)

a2
+ 2a (2(3α− β)

....
a + γä)

+ 2(3α− β)
(
3ä2 + 4

...
a ȧ

) ]
= −3a2p . (27)

Por supuesto, pese haber fijado b(t) = 1 para tener solución única, las dos ecuaciones
anteriores no son independientes sino que (27) se puede escribir en términos de la derivada
de (26) tal y como hemos visto10. Dado que (26) es más sencilla porque contiene un número
menor de derivadas pero la misma información, podemos trabajar únicamente con ella.

3.2. Reinterpretación cosmológica de la gravedad cuadrática

Salta a la vista en (26) y (27) que hay una relación especial entre las constantes de acoplo
de la teoría, 3α = β, que simplifica notablemente las ecuaciones. De hecho, en este caso
dichas ecuaciones son exactamente las ecuaciones de Friedmann de la relatividad general

6aγȧ2 − 2γΛa3 = a3ρ =⇒ ȧ2

a2
=

ρ

6γ
+

Λ

3
, (28)

6
[
γ
(
ȧ2 − Λa2

)
+ 2aγä

]
= −3a2p

(28)
=⇒ ä

a
= − 1

12γ
(ρ+ 3p) +

Λ

3
. (29)

Este resultado no es una coincidencia fortuita, sino que es consecuencia de que la relación
3α = β esconde un hecho profundo detrás en este tipo de métricas. Para entender este
régimen tenemos que analizar la acción de la teoría (3), que en el caso 3α = β se escribe

S =

∫
d4x

√
−g

[
γR + α

(
R2 − 3RµνR

µν
)]

. (30)

El punto crucial consiste en usar la siguiente identidad entre invariantes de curvatura

RµνR
µν =

1

3
R2 +

1

2
W 2 − 1

2
G , (31)

con G el invariante topológico de Gauss-Bonnet (4) y W 2 = WµναβW
µναβ el invariante

de curvatura asociado al tensor de Weyl, Wµναβ, que se corresponde con las componentes
de traza nula del tensor de Riemann. De esta manera, la acción de la teoría se escribe

S =

∫
d4x

√
−g

(
γR− α

2
W 2 +

α

2
G
)

. (32)

Ya hemos comentado anteriormente que G no contribuye a la dinámica de la teoría y
podemos ignorarlo. El segundo punto clave es que en métricas tipo FRW11 (16) el tensor

10Es interesante remarcar que, si hubiésemos impuesto b(t) = 1 en el Lagrangiano, el resultado tras
variar con respecto a a(t), que es el único campo presente, sería (27) y no la más sencilla (26).

11En general, ocurre para cualquier métrica conformalmente plana.
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de Weyl se anula idénticamente [28], por lo que W 2 = 0 y entonces la acción (32) se reduce
justamente a la de Einstein-Hilbert. Así pues, el límite 3α = β de la teoría cuadrática (3)
se corresponde con relatividad general (el término Λ no influye en esta discusión).

El hecho de que el tensor de Weyl se anule en métricas FRW es una herramienta extrema-
damente útil, pues nos ayuda a entender mejor la estructura de la teoría y sus soluciones.
Gran parte de la complicación de la teoría cuadrática en su expresión original (3) proviene
del término Ricci-Ricci, así que podemos usar (31) para escribirla en general como

S =

∫
d4x

√
−g

ï
γR +

Å
α− β

3

ã
R2 − β

2
W 2 +

β

2
G

ò
. (33)

Particularizando esta teoría a situaciones cosmológicas homogéneas e isótropas descritas
por una métrica FRW, con W 2 = 0, e ignorando el término topológico de Gauss-Bonnet,
concluimos que la cosmología de la teoría original (3) es equivalente a la de la teoría

S =

∫
d4x

√
−g

ï
γR +

Å
α− β

3

ã
R2

ò
. (34)

Es decir, la teoría cuadrática (3) es indistinguible cosmológicamente hablando a la teoría
(34), que es una teoría de tipo12 f(R) = γR +

(
α− β

3

)
R2 muy concreta, llamada teoría

de Starobinsky, que comentaremos en detalle más adelante.

3.3. Soluciones de Sitter, estabilidad y futuro del universo

Por supuesto, las ecuaciones de campo derivadas de (34) son idénticas a las ecuaciones
(26) y (27). Como ya hemos justificado, podemos trabajar solo con (26) que escrita en
términos del parámetro de Hubble H = ȧ/a y en el vacío (es decir, ρ = 0) queda

3γH2 − γΛ + 6(3α− β)
Ä
−Ḣ2 + 6ḢH2 + 2HḦ

ä
= 0 . (35)

Esta forma de escribir la ecuación de movimiento nos permite identificar que el espacio-
tiempo de de Sitter con H = H0 =

√
Λ/3 siendo H0 constante es solución de la teoría,

como ya habíamos demostrado (es un caso particular de espacio maximalmente simétri-
co). Es interesante analizar la estabilidad de esta solución en la teoría cuadrática [29], así
que escribimos (35) como un sistema de dos ecuaciones diferenciales de primer orden:

Ḣ = F ,

12Las teorías f(R) están descritas por la acción de Einstein-Hilbert reemplazando la dependencia lineal
del escalar de Ricci R por una función suave del mismo, f(R).
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Ḟ ≡ F =
F 2

2H
− 3FH +

γ

12(3α− β)H

(
Λ− 3H2

)
, (36)

cuya linealización proporciona

Ḣ = F ,

Ḟ =

Å
∂F
∂H

ã
H=H0

H +

Å
∂F
∂F

ã
H=H0

F = − γ (3H2
0 + Λ)

12H2
0 (3α− β)

H − 3H0F , (37)

de manera que el polinomio característico asociado a la matriz del sistema es∣∣∣∣∣ −λ 1

− γ
(
3H2

0+Λ
)

12H2
0 (3α−β)

−3H0 − λ

∣∣∣∣∣ = 0 =⇒ λ2 + 3H0λ+
γ (3H2

0 + Λ)

12H2
0 (3α− β)

= 0 . (38)

El polinomio asociado es de Hurwitz estable, esto es, tiene coeficientes positivos cuyas
raíces reales tienen parte real negativa (indicando que el sistema es estable) sí y solo sí
3α > β. Concluimos entonces que la solución de de Sitter es estable siempre y cuando el
coeficiente que acompaña al término R2 en la teoría (34) es positivo13.

El caso inestable, dado por la condición 3α < β, presenta implicaciones cosmológicas más
interesantes aún. Los comportamientos de tipo de Sitter comentados anteriormente son
análogos a los de relatividad general, esto es, presentan expansiones menos (Figura 214) o
más (Figura 3) rápidas según los parámetros de la teoría y de las condiciones iniciales, pero
todos ellos predicen que el destino del universo es siempre una expansión. Sin embargo,
si se verifica 3α < β, independientemente de las condiciones iniciales, se presenta un
nuevo escenario donde el universo termina eventualmente colapsando haciéndose el factor
de escala a(t) nulo, lo que se conoce como Big Crunch (Figura 4). Este resultado es
interesante porque es una solución de altas derivadas que no puede ocurrir en relatividad
general con dichas condiciones, y es consecuencia únicamente de la relación entre las
constantes de acoplo de las altas curvaturas. Además, el régimen 3α < β se corresponde
con que la masa m0 de la partícula escalar adicional sea imaginaria. En presencia de
materia ninguno de los comportamientos mencionados cambia sustancialmente para el
futuro del universo.

13En métricas anisótropas o dimensiones más altas este resultado deja de ser cierto [29].
14En todas las siguientes gráficas se representa el factor de escala, a, en función del tiempo, t, en

relatividad general (en rojo, GR) y en gravedad cuadrática (en azul, HD).
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Figura 1: Λ = 5, α = 1, β = 2.9999,
γ = 20, a(1) = 1, ȧ(1) = 1, ä(1) = 0.2.

Figura 2: Λ = 5, α = 5, β = 1, γ = 20,
a(1) = 1, ȧ(1) = 0.5, ä(1) = 0.3.

Figura 3: Λ = 5, α = 5, β = 1, γ = 20,
a(1) = 1, ȧ(1) = 1.9, ä(1) = 0.5.

Figura 4: Λ = 5, α = 5, β = 30, γ = 20,
a(1) = 1, ȧ(1) = 0.8, ä(1) = 0.6.

3.4. Pasado del universo y singularidad inicial

Uno de los mayores intereses de las teorías más allá de relatividad general consiste en
propiciar una mejor comprensión de las singularidades cosmológicas que presenta la teoría
Einsteniana. Cuando analizamos el pasado de la teoría cuadrática obtenemos un amplio
espectro de soluciones que mostramos a continuación.

Como se puede ver en las resoluciones numéricas con materia y energía oscura, la Figura 5
representa un universo dominado por materia ordinaria, la Figura 6 representa un universo
dominado por radiación y la Figura 7 representa un universo dominado por energía oscura.
En todos los casos mostrados se tiene la presencia de un Big Bang donde nace el universo, y
los comportamientos son similares a los de relatividad general con constante cosmológica.
Sin embargo, en la Figura 8, que representa el caso 3α < β, se tiene que el universo puede
partir tanto de un Big Bang como de un de un tamaño infinito para acabar colapsando
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Figura 5: ω = 0, ρ0 = 170, Λ = 1, α = 4,
β = 3, γ = 10, a(1) = 1, ȧ(1) = 0.8,
ä(1) = 0.6.

Figura 6: ω = 1/3, ρ0 = 180, Λ = 1, α =

6, β = 3, γ = 10, a(1) = 1, ȧ(1) = 0.8,
ä(1) = 0.6.

Figura 7: ω = −1, ρ0 = 540, Λ = 1, α =

8, β = 4, γ = 10, a(1) = 1, ȧ(1) = 0.8,
ä(1) = 0.6.

Figura 8: ω = 1/3, ρ0 = 100, Λ = 1, α =

5, β = 16, γ = 10, a(1) = 1, ȧ(1) = 0.8,
ä(1) = 0.6.

en un Big Crunch independientemente del contenido de materia considerado.

Cabe destacar que las soluciones isótropas con singularidad inicial como las mostradas
en la Figura 5, Figura 6 y Figura 7 (que además se comportan todas ellas como un
universo de Friedmann dominado por radiación, a(t) ∼ t1/2 cuando t → 0) son estables a
la presencia de pequeñas heterogeneidades escalares, vectoriales y tensoriales por el efecto
de los términos cuadráticos que dominan al acercarse a la singularidad inicial [30]. Esto
es distinto de la relatividad general, donde se presenta una inestabilidad a medida que
t → 0, y ocurre lo mismo si se consideran potencias o funciones generales del término
Ricci-Ricci, indicando que el comportamiento de la gravedad cuadrática es especial.

Por último, la teoría cuadrática tiene un espacio de soluciones tan rico que también
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es posible encontrar soluciones con una expansión a tiempos lejanos y que además no
presentan Big Bang en tiempos pretéritos, es decir, son libres de singularidades. Esta
conducta se corresponde con un universo que se contrae hasta un tamaño mínimo finito
y tras ello vuelve a expandirse. Un ejemplo de este tipo de soluciones, que únicamente
ocurren en el régimen 3α < β bajo la presencia de materia15, se muestra en la Figura 9.

Figura 9: Solución libre de singularidades en la teoría cuadrática dada por los parámetros:
ω = 0, ρ0 = 15, Λ = 1.5, α = 3, β = 16, γ = 10, a(1) = 1, ȧ(1) = 0.8, ä(1) = 0.7.

Varios estudios han tratado de llevar este comportamiento al régimen periódico, empal-
mando contracciones y expansiones del universo de forma continua (Big Bounce/Ekpyrotic
Universe [31]). No obstante, no está cómo puede emerger dicho comportamiento en esta
teoría pues las aproximaciones semiclásicas usadas dejan de ser válidas en el Bounce [32].

4. Teoría inflacionaria en gravedad cuadrática

4.1. Descripción básica del paradigma inflacionario

El modelo estándar cosmológico (ΛCDM) se basa en el hecho observacional de que el
universo es extremadamente homogéneo, isótropo y plano a gran escala.

La cosmología estándar predice que el universo primitivo estaba formado por muchas
regiones del espacio causalmente desconectadas. Estos parches de espacio aparentemente
inconexos resulta que tienen aproximadamente las mismas densidades y temperaturas
(por ejemplo, la temperatura del fondo cósmico de microondas/CMB es de 2.725K ±
0.0002K, sumamente uniforme), lo cual es conocido como el problema del horizonte.

15A diferencia de lo que ocurría a tiempos futuros, vemos como en tiempos primordiales sí emergen
distintos comportamientos cuando se incorpora materia.
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En segundo lugar, nuestro universo parece muy cercano a la planitud siendo su curvatura
espacial global aproximadamente cero, lo cual se conoce como el problema de la planitud.
Con los datos actuales de densidades, se puede inferir que al comienzo del universo éste
era todavía mucho más cercano a la planitud ideal. No parece demasiado natural que por
puro azar nuestro universo haya escogido ese valor tan finamente ajustado, por lo que
sería interesante un mecanismo dinámico que explicase por qué el universo es tan plano.

Añadido a estos dos problemas anteriores, también se presenta el problema de los mo-
nopolos magnéticos/de las reliquias exóticas (bordes de dominio, cuerdas cósmicas, etc.,
motivadas por teorías de gran unificación). Hipotéticamente, en el universo primigenio,
con una elevadísima temperatura/muy alta energía, se producirían un gran número de
monopolos magnéticos/reliquias exóticas estables y de masas enormes que actualmente
aún no hemos logrado detectar, por lo que debería haber un motivo para no encontrarlas.

Una respuesta simultánea y satisfactoria tanto teórica como experimental, pues también
explica el origen de las estructuras a gran escala del cosmos mediante perturbaciones
en la densidad de energía, a todos estos problemas reside en el llamado mecanismo de
inflación, un período en el universo temprano que conduce hacia la homogeneidad y la
isotropía observadas, pese a que éste hubiese comenzado en un estado inicial genérico.

La manera más sencilla y usual de formalizar este mecanismo en la mayoría de modelos
inflacionarios16 es mediante la introducción de un campo escalar homogéneo, φ = φ(t),
denominado inflatón, que la genere. Un período inflacionario de este tipo se logra mediante
distintas condiciones, a saber: una expansión acelerada (aproximadamente de Sitter), un
parámetro de Hubble que varía lentamente en el tiempo (se suele denominar slow-roll),
una presión negativa y una densidad de energía constante. Durante la inflación, la mayor
parte de la densidad de energía en el universo está en forma del potencial de inflación V (φ),
lo cual está íntimamente ligado con la condición de slow-roll. La inflación termina cuando
el potencial se empina y el campo de inflación adquiere energía cinética, transfiriendo la
energía almacenada a las distintas partículas del modelo estándar (este proceso se llama
reheating, y empalma satisfactoriamente con el modelo del Big Bang caliente).

El Lagrangiano de materia asociado al campo escalar φ es Lm = −1
2
∂µφ∂µφ−V (φ), cuya

16Cabe destacar que existen una gran variedad de modelos de inflación: modelos con un campo escalar
bajo distintos potenciales (cuadrático, de tipo Higgs, periódico, etc.), modelos multicampo, modelos de
gravedad modificada (Starobinsky), modelos de dimensiones extra, etc.
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variación proporciona la ecuación de movimiento

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (39)

Dicha ecuación para la materia nos permite hacer la identificación ρ = 1
2
φ̇2 + V (φ) y

p = 1
2
φ̇2 + V (φ) de manera que se satisfaga la conocida ecuación de continuidad

ρ̇+ 3H(ρ+ p) = 0 , (40)

y nos sirve también escribir la ecuación de estado como

ω =
p

ρ
=

φ̇− 2V (φ)

φ̇+ 2V (φ)
. (41)

Inflación se caracteriza por un período de casi-de Sitter, donde el parámetro de Hubble
H decrece lentamente con el tiempo (aproximación slow-roll), es decir, se cumple

Ḣ

H2
� 1 ,

Ḧ

HḢ
� 1 , (42)

lo cual inspira a definir los parámetros de slow-roll ε y η de la forma

0 < ε = − Ḣ

H2
, η = − Ḣ

H2
− Ḧ

2HḢ
, (43)

que deben ser pequeños durante inflación (termina cuando se hacen de orden unidad).
En términos del campo escalar φ se pueden reescribir las condiciones slow-roll

φ̇2 � V (φ) , φ̈ � 3Hφ̇ , (44)

porque de esta forma ω ' −1 (casi-de Sitter), lo que implica que (39) se aproxima como

3Hφ̇+ V ′(φ) ' 0 , 3Hφ̈+ V ′′(φ)φ̇ ' 0 . (45)

En cuanto a los parámetros fenomenológicos relevantes en las observaciones cosmológicas
primordiales, para la solución casi-de Sitter inflacionaria el número de e-folds N se define

N ≡ log

Å
af

ai

ã
=

∫ tf

ti

dtH(t) ' 3

∫ φi

φf

dφ
H2

V ′(φ)
, (46)

indicando el subíndice “i” el inicio de inflación y “f” el final de la misma. Por otro lado,
la amplitud del espectro de potencias escalar primordial As, el índice espectral escalar ns

y el ratio tensor-escalar r vienen dados por

As =
H2

16π2γε
=

H2

8π2M2
p ε

, ns = 1− 6ε+ 2η , r = 16ε . (47)

Los últimos resultados del satélite Planck [5] confirman las siguientes estimaciones y
cotas a los parámetros fenomenológicos de la era inflacionaria: 49 < N < 59 (95 % CL),
As ' 10−9, ns = 0.9649± 0.0042 (68 % CL), r < 0.10 (95 % CL).
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4.2. Modelo de Starobinsky

Como ya hemos anticipado, el modelo de Starobinsky [6] se describe por la acción

S =

∫
d4x

√
−g γ

Å
R +

α

γ
R2

ã
,

α

γ
=

1

6M2
, (48)

con M una escala de masa. Este modelo goza de una gran reputación cosmológica, prin-
cipalmente porque la curvatura adicional produce una expansión acelerada en el universo
primordial que permite describir el escenario inflacionario con el mejor ajuste de toda
la gama de modelos disponibles actualmente [5]. La gran diferencia del modelo de Sta-
robisnky respecto al resto es que tiene la característica específica de que no requiere la
introducción de un campo de inflatón a mano, sino que el grado de libertad del inflatón
surge de forma efectiva por añadir un término de curvatura/gravitatorio de orden supe-
rior. En el límite de baja energía, donde R � M2, la teoría (48) se reduce a la relatividad
general con constante cosmológica, mientras que cuando R se vuelve comparable con M2

el segundo término se hace relevante y desvía el comportamiento de relatividad general.

Aplicando una transformación conforme/de Weyl a la métrica de la acción (48) (que en
la jerga se dice que está en el marco de Jordan), podemos obtener un modelo equivalente
de gravedad ordinaria17 (lo que se llama marco de Einstein) acoplada a un campo escalar
φ. Una transformación conforme es un reescalado de la métrica que depende del punto

gµν → g̃µν = Ω(x)2gµν ≡ e2ω(x)gµν , (49)

donde ω(x) = log Ω(x). El tensor de Ricci Rµν y el escalar de Ricci R construidos mediante
la métrica gµν , y R̃µν y R̃ obtenidos de la métrica transformada g̃µν , se relacionan por

R = Ω2
Ä
R̃ + 6�̃ω − 6g̃µν∂µω∂νω

ä
. (50)

Queremos utilizar esta transformación para obtener una acción en el marco de Einstein
a partir del modelo de Starobinsky, y para ello resulta útil reescribir la acción (48) en la
forma equivalente [34]

S =

∫
d4x

√
−g (γFR− U) , (51)

17Esta característica no es exclusiva del modelo de Starobinsky, sino de cualquier teoría f(R), todas
ellas son equivalentes a relatividad general acoplada a un campo escalar (escalarón) [33].
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con F = 1 + 2αR/γ y U = γ[FR − (R + αR2/γ)] = αR2, de manera que usando la
relación conforme entre determinantes

√
−g = Ω−4

√
−g̃ la acción queda

S =

∫
d4x

√
−g̃
î
γFΩ−2

Ä
R̃ + 6�̃ω − 6g̃µν∂µω∂νω

ä
− Ω−4U

ó
. (52)

La acción (52) se encuentra en el marco de Einstein, esto es, es lineal en R̃, si se verifica
F = Ω2 = e2ω. Por supuesto, el término �̃ω es una derivada total cuya integral se
anula por el teorema de Gauss. Además del término de Einstein, ha emergido un término
cinético para factor conforme ω, por que podemos promocionarlo a un campo escalar φ

normalizado canónicamente bajo la redefinición φ(x) =
√
12γ ω(x), sujeto a un potencial

V (φ) = F−2U . Con todo esto, la acción transformada conforme en el marco de Einstein
queda

S =

∫
d4x

√
−g̃

ï
γR̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

ò
, (53)

que efectivamente es equivalente a la relatividad general con un campo escalar acoplado.
Para determinar el potencial escalar basta con reescribir todo en términos de φ,

V (φ) =
γ2

4α
(1− e−2ω)2 =

3

4
M2

pM
2

Å
1− e

−
»

2
3

φ
Mp

ã2

, (54)

cuyo comportamiento se representa en la Figura 10. De la forma del potencial reconocemos
dos fases de evolución del campo escalar. Para valores transplanckianos del campo escalar,
φ � Mp, el potencial tiende a la constante 3

4
M2

pM
2 por lo que se puede dar una inflación

slow-roll dada la planitud del potencial. Este período inflacionario termina cuando φ '
Mp, y tras esta fase nos encontramos el régimen φ � Mp, donde el potencial se reduce a
1
2
Mφ2, de modo que oscila alrededor de φ = 0 dando lugar al proceso de reheating.

Las predicciones fenomenológicas del modelo de Starobinsky se pueden estudiar tanto en
el marco de Jordan como en el marco de Einstein. En el marco de Jordan basta con tomar
las ecuaciones de campo de la teoría18 (48), que se reducen a

Ḧ − Ḣ2

2H
+

1

2
M2H + 3ḢH = 0 . (55)

Durante el período inflacionario, bajo la aproximación slow-roll (42), podemos despreciar
los dos primeros términos de (55) obteniendo entonces Ḣ = −M2

6
, que conduce a la

solución casi-de Sitter

H(t) ' Hi −
M2

6
(t− ti) , a(t) ' ai exp

ï
Hi(t− ti)−

M2

12
(t− ti)

2

ò
. (56)

18Son idénticas a la ecuación (35) cambiando el acoplo α− β
3 por α = γ

6M2 y tomando Λ = 0.
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Figura 10: Potencial escalar de Starobinsky (54) en el marco de Einstein correspondiente
al modelo (48). La inflación satisfactoria se produce para valores del campo φ � Mp.

La expansión acelerada continua mientras que el que el parámetro de slow-roll (43) ε =
M2

6H2 es menor que de orden uno, esto es, mientras H2 & M2, y la inflación termina cuando
ε ' 1, es decir, cuando Hf =

M√
6
. El número de e-foldings durante este período es

N =

∫ tf

ti

dtH(t) ' Hi(tf − ti)−
M2

12
(tf − ti)

2 , (57)

y como inflación acaba cuando tf ' ti +
6Hi
M2 se sigue que

N ' 3H2
i

M2
' 1

2ε(ti)
. (58)

Por otro lado, en el marco de Einstein, podemos obtener los parámetros de slow-roll (43)
en términos del potencial escalar como

ε =
M2

p

2

Å
V ′(φ)

V (φ)

ã2
=

4

3

Å
1− e

»
2
3

φ
Mp

ã−2

, η = M2
p

V ′′(φ)

V (φ)
= −4

3

Å
e
»

2
3

φ
Mp − 2

ãÅ
1− e

»
2
3

φ
Mp

ã2 , (59)

que efectivamente durante inflación φ � Mp son mucho menores que 1. El parámetro de
slow-roll que alcanza antes el orden unidad es ε, siendo el valor del campo φ ' 0.94Mp.
El número de e-folds en el marco de Einstein se calcula como

N (φ) =
1

M2
p

∫ φi

φ

dφ
V (φ)

V ′(φ)
' 3

4

Ç
e
»

2
3

φ
Mp +

…
2

3

φ

Mp

å
, (60)

y se suele hacer una expansión a primer orden en 1/N para obtener φ(N ), resultando los
parámetros de slow-roll en

ε ' 3

4N 2
, η ' 1

N
, (61)
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de modo que el índice espectral y el ratio tensor escalar (47) predichos son

ns ' 1− 2

N
, r ' 12

N 2
. (62)

4.3. Modelo de gravedad cuadrática

Consideramos ahora el modelo de gravedad cuadrática de Stelle, descrito por

S =

∫
d4x

√
−g

(
γR + αR2 − βRµνR

µν
)
. (63)

Tal y como hemos discutido al derivar (34) en la sección anterior, podemos reescribir el
término Ricci-Ricci en función de R2, el invariante topológico de Gauss-Bonnet G y el
invariante del tensor de Weyl W 2, que en métricas de tipo FRW se anula. Concluimos
entonces que teoría de gravedad cuadrática de Stelle es equivalente en sus predicciones
cosmológicas a la teoría de Starobinsky (48). Todo el análisis anterior sobre el modelo
de Starobisnky es idéntico a lo que se obtiene de la teoría cuadrática de Stelle, con la
salvedad de sustituir el acoplo α− β

3
por γ

6M2 . Esto es muy positivo, pues demuestra que
la gravedad cuadrática tiene la misma capacidad que el modelo de Starobinsky (el modelo
inflacionario más robusto actualmente) para explicar inflación, con la ventaja adicional
de ser una teoría renormalizable.

Cabe destacar que, si se consideran fluctuaciones de la métrica FRW, entonces en las
perturbaciones sí aparece la contribución del tensor de Weyl. En [35] se han analizado
los efectos de dichas perturbaciones sobre los parámetros fenomenológicos, y el resultado
es que tanto la amplitud del espectro de potencias escalar As como el índice espectral
escalar ns son idénticos a los del modelo de Starobinsky, mientras que el ratio tensor
escalar r se ve aún más reducido por un factor proporcional a la masa del ghost.

4.4. Modelos más generales de gravedad cuadrática

Podemos dar un paso más allá en la construcción de modelos inflacionarios basados
en gravedad cuadrática. La generalización más natural, motivada por las teorías f(R),
consiste en la siguiente acción

S =

∫
d4x L =

∫
d4x

√
−g

(
γR + f(R2, P,Q)− 1

2
∂µφ∂µφ− V (φ)

)
, (64)

siendo φ el campo escalar homogéneo que da cuenta del contenido de materia y donde
f(R2, P,Q) es una función suave de R2, P = RµνR

µν y Q = RµναβR
µναβ. Trabajando
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en una métrica FRW plana (16), los invariantes de curvatura vienen dados por (17) y
podemos escribir el Lagrangiano (64) con multiplicadores de Lagrange λi asociados a
cada invariante con el fin de tener un Lagrangiano estándar de primer orden pero con
más variables [36]

L = a3b

ï
6γ

b2
(X + Y ) + f(R2, P,Q) +

1

2b2
φ̇2 − V (φ)− λ1

Å
R− 6

b2
(X + Y )

ã
−λ2

Å
P − 12

b4
(
X2 + Y 2 +XY

)ã
− λ3

Å
Q− 12

b4
(X2 + Y 2)

ãò
= a3b

ï
6γ

b2
(X + Y ) + f(R2, P,Q) +

1

2b2
φ̇2 − V (φ)− λ1

Å
R− 6

b2
(X + Y )

ã
−λ2

Å
P − 1

3
R2

ã
− λ3

Å
Q− 1

3
R2

ã
− 12

b4
XY (λ2 + 2λ3)

ò
. (65)

De esta forma, las variaciones del Lagrangiano con respecto a P , Q Y R imponen

δL
δP

= a3b

ï
δf(R2, P,Q)

δP
− λ2

ò
= 0 =⇒ λ2 =

δf(R2, P,Q)

δP
≡ fP (R

2, P,Q) ,

δL
δQ

= a3b

ï
δf(R2, P,Q)

δQ
− λ3

ò
= 0 =⇒ λ3 =

δf(R2, P,Q)

δQ
≡ fQ(R

2, P,Q) , (66)

δL
δR

= a3b

ï
δf(R2, P,Q)

δR
− λ1 +

2

3
R(λ2 + λ3)

ò
= 0 =⇒ λ1 = fR(R

2, P,Q) +
2

3
R(λ2 + λ3),

mientras que las variaciones con respecto a y b tras imponer el gauge b(t) = 1 e introducir
el parámetro de Hubble H = ȧ/a son, respectivamente,

6γH2 + f(R2, P,Q)− λ1R + 6
Ä
λ̇1H + λ1H

2
ä
− λ2

Å
P − 1

3
R2

ã
− λ3

Å
Q− 1

3
R2

ã
− 12H3(λ̇2 + 2λ̇3) =

1

2
φ̇2 + V (φ) , (67)

2γ(3H2 + 2γḢ) + f(R2, P,Q)− λ1R + 4λ̇1H + 6λ1H
2 + 2λ̈1 + 4λ1Ḣ − λ2

Å
P − 1

3
R2

ã
− λ3

Å
Q− 1

3
R2

ã
− 8H(Ḣ +H2)(λ̇2 + 2λ̇3)− 4H2(λ̈2 + 2λ̈3) = −1

2
φ̇2 + V (φ) . (68)

De esta forma, (67) y (68) junto con las expresiones de los multiplicadores de Lagrange
(66) y los invariantes de curvatura (17) (fijando b(t) = 1) determinan completamente la
dinámica de la teoría (64). De hecho, únicamente nos interesa (67), puesto que la ecuación
para la materia proveniente de variar L con respecto al campo φ es la conocida

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (69)
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Como ya hemos discutido en la sección anterior, (67) y (68) no son independientes sino
que derivan una de la otra de forma consistente. En esta ocasión, si derivamos (67) y
usamos (68) entonces encontramos la ecuación del movimiento del campo de materia φ,
ligando así ambas.

Para analizar cómo la función general f(R2, P,Q) modifica inflación, debemos particula-
rizar la ecuación (67) al caso de solución casi de Sitter, esto es, H = HdS ' cte bajo la
aproximación slow-roll φ̇2 � V (φ), lo cual conduce a

V (φ) = 6γH2
dS + f(R2

dS, PdS, QdS)−
RdS

2
fR − PdSfP −QdSfQ , (70)

siendo RdS = 12H2
dS, PdS = 36H4

dS y QdS = 24H4
dS. Además, tomando la derivada de (67)

con respecto al tiempo en la aproximación slow-roll obtenemos las ecuación para Ḣ (y
para Ḧ si la derivamos nuevamente) que nos permite hallar los parámetros ε y η (43),

Ḣ
[
12γH + 12fRH − 144fRRH

3 − 5184fPPH
7 − 6912FPQH

7 − 2304fQQH
7

−1728fRPH
5 − 1152fRQH

5
]
' V ′(φ)φ̇ , (71)

donde H = HdS y φ̇ ' −V ′(φ)
3H

.

Todas estas herramientas nos permiten entonces fijar un modelo concreto y hacer predic-
ciones inflacionarias sobre el mismo. Con el fin de trabajar con un modelo analítico y que
además sea natural, escogemos un potencial cuadrático y una función de curvatura dada
por

V (φ) =
1

2
M2φ2 , f(R2, P,Q) = αR2n + βP n + δQn , (72)

con α, β y γ constantes con dimensiones de M4−4n siendo n un real. Como inflación tiene
lugar en el régimen de alta curvatura, podemos despreciar el término de Einstein-Hilbert
frente a los invariantes superiores y obtener de (70) la solución de tipo de Sitter como

HdS = CM
1
2nφ

1
2n , C =

ï
2−1−2n3−n

(n− 1) (−12nα− 3nβ − 2nδ)

ò 1
4n

(73)

la cual para n > 1 obliga que 12nα + 3nβ + 2nδ < 0. Usando (71) encontramos que Ḣ =

−M2

6n
, generalizando correctamente lo encontrado en el modelo de Starobinsky (n = 1), y

con la derivada de dicha ecuación tenemos Ḧ = M4(1+2n)
18n2HdS

, por lo que los parámetros de
slow-roll (42) y el número de e-folds (46) se escriben

ε =
1

6nC2

M2− 1
n

φ
1
n

, η =
(n+ 1)

3nC2

M2− 1
n

φ
1
n

, N = 3nC2 φ
1
n

M2− 1
n

. (74)
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Aparentemente, obtenemos de forma satisfactoria en (74) que un número grande de e-
folds (es decir, φi � Mp) produce que los parámetros de slow-roll sean pequeños durante
la inflación, pues se verifica

ε ' η

2(n+ 1)
' 1

2N
, (75)

de forma consistente y similar a lo obtenido en el modelo de Starobinsky (58). No obstante,
un análisis fenomenológico con los datos del satélite Planck [5] en mano para el número de
e-folds, la amplitud del espectro de potencias, el índice espectral y el ratio tensor-escalar
arroja, respectivamente, los siguientes resultados (Anexo C):

49 < 3nC2 φ
1
n

M2− 1
n

< 59 , (76)

3nC4

4π2M2
p

φ
2
n

M2− 2
n

' 10−9 , (77)

1 +
(2n− 1)

3nC2

M2− 1
n

φ
1
n

= 0.9649± 0.0042 , (78)

8

3nC2

M2− 1
n

φ
1
n

< 0.10 . (79)

Independientemente del exponente n escogido en el modelo (72), las condiciones (76) y
(79) son incompatibles puesto que haciendo el inverso de la última obtenemos N > 80,
muy superior a la restricción de Planck. La condición (77), al ser una estimación de orden
de magnitud, sí es compatible y arroja un valor similar al de Starobinsky para la masa del
campo escalar, M ' 10−6Mp. Nuevamente, el ratio tensor-escalar predicho es totalmente
incompatible con las observaciones porque el segundo término del lado izquierdo de (78)
es positivo.

Este breve análisis demuestra que los modelos de tipo potencial cuadrático y ley de
potencias en gravedad cuadrática se ven muy desfavorecidos con respecto a la gravedad
cuadrática de Stelle. De hecho, con otros potenciales escalares naturales como el potencial
cuártico o de tipo Higgs se obtienen resultados similares (peores en el caso cuártico que
en el caso Higgsiano), totalmente incompatibles con los datos actuales. En [37] se lleva
a cabo un análisis muy similar para modelos tipo Gauss-Bonnet, distintos al modelo
potencial que hemos analizado, y la tendencia es la misma: la inflación es aparentemente
viable pero los parámetros fenomenológicos predichos no son compatibles con los datos
del satélite Planck, cosa que sí ocurre con la gravedad cuadrática de Stelle.
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5. Conclusiones

La gravedad cuadrática es una teoría renormalizable, que proporciona una compleción
ultravioleta de la relatividad general y que, en nuestra opinión, es una candidata válida
como teoría de gravedad cuántica. No obstante, no es una teoría totalmente consistente.
Diversos conceptos usualmente asumidos de forma ortodoxa en teoría cuántica de campos,
como la unitariedad o la causalidad (lo cual no es sorprendente, pues en un espaciotiempo
cuántico, fluctuante, no está claro cómo mantener dicho concepto), deben ser formula-
dos de forma extremedamente cuidadosa, aún objeto de investigación actual, para que
sea una teoría totalmente consistente. El problema de los grados de libertad ghost está
íntimamente relacionado con estos principios básicos de una teoría de campos cuánticos
relativista, y hemos visto como, pese a las ingeniosas ideas presentes en la literatura,
sigue siendo necesario explorar en profundidad la teoría para cimentar sus fundamentos.

También hemos analizado las soluciones cosmológicas de la teoría cuadrática. Hemos
demostrado que los espacios maximalmente simétricos en 4 dimensiones y las soluciones
de vacío de la relatividad general son también solución de la teoría con altas derivadas,
aunque esta última presenta soluciones adicionales sin contrapartida Einsteniana. Hemos
sido capaces de reducir la gravedad cuadrática de Stelle a una teoría de tipo Starobinsky
en lo que a cuestiones cosmológicas se refiere, puesto que el tensor de Weyl es nulo en
métricas FRW. A partir de ese resultado, hemos obtenido soluciones tipo de Sitter y
hemos estudiado su estabilidad, comprobando que si 3α > β (rama estable) se tiene
una expansión continua del universo, pero si 3α < β (rama inestable, la masa de la
partícula adicional se hace imaginaria) el universo tiende a colapsar. En cuanto a la
singularidad inicial, hemos encontrado soluciones que tienen Big Bang seguido de una
expansión continua (3α > β) o de un Big Crunch (3α < β), otras que no tienen Big Bang
y acaban colapsando a un Big Crunch (3α < β) y otras que no tienen ni Big Bang ni Big
Crunch (3α < β).

Por último, hemos estudiado el paradigma inflacionario en la teoría de Starobinsky hacien-
do emerger un campo escalar oculto en un término de curvatura superior mediante una
transformación conforme. Hemos visto que las predicciones del modelo de Starobisnky son
idénticas a la teoría de Stelle, teniendo esta la ventaja de ser renormalizable. Por último,
hemos generalizado la teoría cuadrática con un modelo potencial genérico y hemos visto
que sus predicciones inflacionarias son peores que las de la gravedad cuadrática ordinaria.
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Anexo A. Notación y convenios

A lo largo del trabajo empleamos un sistema de unidades que verifique ~ = c = 1, de
manera que E = M = L−1 = T−1 donde E, M , L y T son, respectivamente, dimensiones
de energía, masa, longitud y tiempo.

Usamos también el convenio de sumación de Einstein, asumiendo siempre una suma sobre
un índice cuando el mismo aparezca repetido arriba (contravariante) y abajo (covariante).
Por último, las letras griegas (indicando índices espaciotemporales) µ, ν, α, . . . tomarán
valores de 0 a 3 y las letras latinas (indicando índices puramente espaciales) i, j, k, . . .

tomarán valores de 1 a 3.

Denotamos la derivada parcial con respecto a la coordenada xµ como

∂µ =
∂

∂xµ
.

El operador Laplaciano � se define como � = ∇µ∇µ, siendo ∇µ la derivada covariante.

Abusamos de lenguaje llamando Lagrangiano o Hamiltoniano a lo que en realidad es una
densidad Lagrangiana o Hamiltoniana, que denotamos por L y H, respectivamente.

UV o ultravioleta hacen referencia a alta energía, mientras que IR o infrarrojo hacen
referencia a baja energía.

La métrica gµν , cuyo determinante denotamos por g = det gµν , tiene signatura mostly
plus (−,+,+,+). Esta métrica tiene asociada una conexión afín dada por

Γλ
µν =

1

2
gλα (∂µgνα + ∂νgµα − ∂αgµν) .

A partir de la conexión se puede construir el tensor de curvatura de Riemann como

Rρ
σµν = ∂µΓ

ρ
σν − ∂νΓ

ρ
σµ + Γρ

µλΓ
λ
σν − Γρ

νλΓ
λ
σµ ,

que contrayendo su primer y tercer índice da lugar al tensor de Ricci Rµν , cuya traza
proporciona la curvatura escalar del espaciotiempo R:

Rµν = Rρ
µρν , R = gµνRµν .



Anexo B. Equivalencia entre el formalismo 
Lagrangiano restringido y general
In[ ]:=

borra todo

ClearAll["Global`*"]

necesita

Needs["VariationalMethods`"]

◼ Lagrangiano sin materia pero con constante cosmológica

In[ ]:= n = 4;

coord = {t, x, y, z};

metric = {{-b[t]^2, 0, 0, 0}, {0, a[t]^2, 0, 0}, {0, 0, a[t]^2, 0}, {0, 0, 0, a[t]^2}};

inversemetric =

simplifica

Simplify[
matriz inversa

Inverse[metric]];

affine := affine =

simplifica

Simplify
tabla

Table1  2 *

suma

Suminversemetric[[i, s]] * 

deriva

D[metric[[s, j]], coord[[k]]] +

deriva

D[metric[[s, k]], coord[[j]]] -

deriva

D[metric[[j, k]], coord[[s]]],

{s, 1, n}, {i, 1, n}, {j, 1, n}, {k, 1, n};

riemann := riemann =

simplifica

Simplify[
tabla

Table[
deriva

D[affine[[i, j, l]], coord[[k]]] -

deriva

D[affine[[i, j, k]], coord[[l]]] +

suma

Sum[affine[[s, j, l]] * affine[[i, k, s]] - affine[[s, j, k]] * affine[[i, l, s]],

{s, 1, n}], {i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]];

ricci := ricci =

simplifica

Simplify[
tabla

Table[
suma

Sum[riemann[[i, j, i, l]], {i, 1, n}],

{j, 1, n}, {l, 1, n}]]

R =

simplifica

Simplify[
suma

Sum[inversemetric[[i, j]] * ricci[[i, j]], {i, 1, n}, {j, 1, n}]];

Riem2 =

suma

Sum[ricci[[i, k]] inversemetric[[i, l]] inversemetric[[k, m]] ricci[[l, m]],

{i, 1, 4}, {k, 1, 4}, {l, 1, 4}, {m, 1, 4}] //

simplifica

Simplify;

R2 = R^2;

L =

simplifica completamente

FullSimplifyb[t] * a[t]^3 * γ * R - 2 * Λ + α * R2 - β * Riem2

Out[ ]=

1

a[t] b[t]5
α 6 a[t] a′[t] b′[t] - 6 b[t] a′[t]2 + a[t] a′′[t]

2
+

γ a[t]2 b[t]3 -2 Λ a[t]2 b[t]3 - 6 a[t] a′[t] b′[t] + 6 b[t] a′[t]2 + a[t] a′′[t] -

β 9 a[t]2 a′[t] b′[t] - b[t] a′′[t]2 +

3 a[t] a′[t] b′[t] - b[t] 2 a′[t]2 + a[t] a′′[t]
2




LagrangianoΛ =

1

a[t] b[t]5
α 6 a[t] a′[t] b′[t] - 6 b[t] a′[t]2 + a[t] a′′[t]

2
+ γ a[t]2 b[t]3

-2 Λ a[t]2 b[t]3 - 6 a[t] a′[t] b′[t] + 6 b[t] a′[t]2 + a[t] a′′[t] - β 9 a[t]2

a′[t] b′[t] - b[t] a′′[t]2 + 3 a[t] a′[t] b′[t] - b[t] 2 a′[t]2 + a[t] a′′[t]
2
;

In[ ]:= EulerEquations[LagrangianoΛ, b[t], t];

In[ ]:= EcbLagrangianoΛ =

-2 γ Λ a[t]3 +
36 -3 α + β a′[t]4

a[t] b[t]4
+
24 3 α - β a′[t]2 -a′[t] b′[t] + b[t] a′′[t]

b[t]5
+

1

b[t]6
6 a[t] γ b[t]4 a′[t]2 + 10 3 α - β a′[t]2 b′[t]2 - 4 3 α - β b[t] a′[t]

2 b′[t] a′′[t] + a′[t] b′′[t] - 2 3 α - β b[t]2 a′′[t]2 - 2 a′[t] a(3)[t];

In[ ]:= EulerEquations[LagrangianoΛ, a[t], t];

In[ ]:= EcaLagrangianoΛ =
1

a[t]2 b[t]6
6 -γ Λ a[t]4 b[t]7 +

6 3 α - β b[t]3 a′[t]4 - 24 3 α - β a[t] b[t]2 a′[t]2 -a′[t] b′[t] + b[t] a′′[t] +

a[t]2 b[t] γ b[t]4 a′[t]2 + 30 3 α - β a′[t]2 b′[t]2 - 4 3 α - β b[t] a′[t]

9 b′[t] a′′[t] + 2 a′[t] b′′[t] + 2 3 α - β b[t]2 3 a′′[t]2 + 4 a′[t] a(3)[t] +

2 a[t]3 -γ b[t]4 a′[t] b′[t] + 30 -3 α + β a′[t] b′[t]3 + γ b[t]5 a′′[t] +

10 3 α - β b[t] b′[t] 3 b′[t] a′′[t] + 2 a′[t] b′′[t] - 2 3 α - β b[t]2

4 a′′[t] b′′[t] + 6 b′[t] a(3)[t] + a′[t] b(3)[t] + 2 3 α - β b[t]3 a(4)[t];

◼ prueba de que no son independientes sin añadir materia, pero con constante cosmológica

In[ ]:=

simplifica compl⋯

FullSimplify
deriva

D[EcbLagrangianoΛ , t] == EcaLagrangianoΛ * a'[t]  b[t]

Out[ ]= True

◼ Lagrangiano sin materia y sin constante cosmológica

In[ ]:= Lagrangiano =

6  a[t] * b[t]^5 * γ * a[t]^2 * b[t]^4 * a'[t]^2 + 2 * 3 * α - β * b[t]^2 * a'[t]^4 +

2 * 3 * α - β * a[t]^2 * b[t]^2 * a''[t]^2 + 2 * 3 * α - β * a[t]^2 * a'[t]^2 *

b'[t]^2 + γ * a[t]^3 * b[t]^4 + 2 * (6 * α - β) * a[t] * b[t]^2 * a'[t]^2 * a''[t] -

γ * a[t]^3 * b[t]^3 * a'[t] + 2 * (6 * α - β) * a[t] * b[t] * a'[t]^3 +

4 * 3 * α - β * a[t]^2 * b[t] * a'[t] * a''[t] * b'[t];

In[ ]:= EulerEquations[Lagrangiano, b[t], t];

In[ ]:= EcbLagrangiano =
1

a[t] b[t]6
6

6 -3 α + β b[t]2 a′[t]4 + 4 3 α - β a[t] b[t] a′[t]2 -a′[t] b′[t] + b[t] a′′[t] +

a[t]2 γ b[t]4 a′[t]2 + 10 3 α - β a′[t]2 b′[t]2 - 4 3 α - β b[t] a′[t]

2 b′[t] a′′[t] + a′[t] b′′[t] - 2 3 α - β b[t]2 a′′[t]2 - 2 a′[t] a(3)[t];

In[ ]:= EulerEquations[Lagrangiano, a[t], t];

2     FormalismoLagrangiano.nb



In[ ]:= EcaLagrangiano =
1

a[t]2 b[t]6
6

6 3 α - β b[t]3 a′[t]4 - 24 3 α - β a[t] b[t]2 a′[t]2 -a′[t] b′[t] + b[t] a′′[t] +

a[t]2 b[t] γ b[t]4 a′[t]2 + 30 3 α - β a′[t]2 b′[t]2 - 4 3 α - β b[t] a′[t]

9 b′[t] a′′[t] + 2 a′[t] b′′[t] + 2 3 α - β b[t]2 3 a′′[t]2 + 4 a′[t] a(3)[t] +

2 a[t]3 -γ b[t]4 a′[t] b′[t] + 30 -3 α + β a′[t] b′[t]3 + γ b[t]5 a′′[t] +

10 3 α - β b[t] b′[t] 3 b′[t] a′′[t] + 2 a′[t] b′′[t] - 2 3 α - β b[t]2

4 a′′[t] b′′[t] + 6 b′[t] a(3)[t] + a′[t] b(3)[t] + 2 3 α - β b[t]3 a(4)[t];

◼ prueba de que no son independientes sin añadir materia y sin cte cosmológica

In[ ]:=

simplifica compl⋯

FullSimplify
deriva

D[EcbLagrangianoΛ , t] == EcaLagrangianoΛ * a'[t]  b[t]

Out[ ]= True

◼ VAMOS A VER AHORA QUE LO DE ARRIBA ES EQUIVALENTE A LAS ECUACIONES DE CAMPO

◼ constante cosmológica pero sin materia

In[ ]:= Ec00Λ =

-
1

2 a[t]4 b[t]4
-6 γ * a[t]^2 * b[t]^4 * a'[t]^2 + 36 * 3 α - β * b[t]^2 * a'[t]^4 -

24 3 α - β * a[t] * b[t]^2 * a'[t]^2 * a''[t] + 12 * 3 α - β * a[t]^2 *

b[t]^2 * a''[t]^2 - 24 * 3 α - β * a[t]^2 * b[t]^2 * a'[t] * a'''[t] -

60 * 3 α - β * a[t]^2 * a'[t]^2 * b'[t]^2 + 24 * 3 α - β * a[t]^2 *

b[t] * a'[t]^2 * b''[t] + 24 * 3 α - β * a[t] * b[t] * a'[t]^3 +

2 * 3 α - β * a[t]^2 * b[t] * a'[t] * a''[t] * b'[t] + 2 * γ * Λ * a[t]^4 * b[t]^6;

EciiΛ = -
1

2 a[t]2 b[t]7
2 * γ * a[t]^2 b[t]^5 * a'[t]^2 + 12 3 α - β * b[t]^3 a'[t]^4 +

12 3 α - β * a[t]^2 * b[t]^3 * a''[t]^2 +

16 3 α - β * a[t]^2 * b[t]^3 * a'[t] * a'''[t] +

8 3 α - β * a[t]^3 * b[t]^3 * a''''[t] - 120 3 α - β * a[t]^3 * a'[t] * b'[t]^3 -

8 3 α - β * a[t]^3 * b[t]^2 * a'[t] * b'''[t] +

60 3 α - β * a[t]^2 b[t] * a'[t]^2 + 2 3 α - β * a[t]^3 b[t] * a''[t] b'[t]^2 +

4 γ * a[t]^3 b[t]^5 - 12 3 α - β * a[t] * b[t]^3 * a'[t]^2 a''[t] -

4 γ * a[t]^3 b[t]^4 a'[t] - 12 3 α - β * a[t] * b[t]^2 * a'[t]^3 + 18 3 α - β *

a[t]^2 * b[t]^2 a'[t] a''[t] + 12 3 α - β * a[t]^3 * b[t]^2 a'''[t] b'[t] -

16 3 α - β * a[t]^2 * b[t]^2 * a'[t]^2 + 2 3 α - β * a[t]^3 * b[t]^2 * a''[t] -

5 3 α - β * a[t]^3 * b[t] * a'[t] * b'[t] b''[t] - 2 * γ * Λ * a[t]^4 * b[t]^7;

In[ ]:=

simplifica completamente

FullSimplifyEcbLagrangianoΛ == 2 * a[t]^3  b[t]^2 * Ec00Λ

Out[ ]= True

In[ ]:=

simplifica completamente

FullSimplify[EcaLagrangianoΛ == -6 * b[t] EciiΛ]

Out[ ]= True

◼ Sin constante cosmológica y sin materia
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In[ ]:= Ec00 =

-
1

2 a[t]4 b[t]4
-6 γ * a[t]^2 * b[t]^4 * a'[t]^2 + 36 * 3 α - β * b[t]^2 * a'[t]^4 -

24 3 α - β * a[t] * b[t]^2 * a'[t]^2 * a''[t] + 12 * 3 α - β * a[t]^2 *

b[t]^2 * a''[t]^2 - 24 * 3 α - β * a[t]^2 * b[t]^2 * a'[t] * a'''[t] -

60 * 3 α - β * a[t]^2 * a'[t]^2 * b'[t]^2 + 24 * 3 α - β * a[t]^2 *

b[t] * a'[t]^2 * b''[t] + 24 * 3 α - β * a[t] * b[t] * a'[t]^3 +

2 * 3 α - β * a[t]^2 * b[t] * a'[t] * a''[t] * b'[t];

Ecii = -
1

2 a[t]2 b[t]7
2 * γ * a[t]^2 b[t]^5 * a'[t]^2 + 12 3 α - β * b[t]^3 a'[t]^4 +

12 3 α - β * a[t]^2 * b[t]^3 * a''[t]^2 +

16 3 α - β * a[t]^2 * b[t]^3 * a'[t] * a'''[t] +

8 3 α - β * a[t]^3 * b[t]^3 * a''''[t] - 120 3 α - β * a[t]^3 * a'[t] * b'[t]^3 -

8 3 α - β * a[t]^3 * b[t]^2 * a'[t] * b'''[t] +

60 3 α - β * a[t]^2 b[t] * a'[t]^2 + 2 3 α - β * a[t]^3 b[t] * a''[t] b'[t]^2 +

4 γ * a[t]^3 b[t]^5 - 12 3 α - β * a[t] * b[t]^3 * a'[t]^2 a''[t] -

4 γ * a[t]^3 b[t]^4 a'[t] - 12 3 α - β * a[t] * b[t]^2 * a'[t]^3 + 18 3 α - β *

a[t]^2 * b[t]^2 a'[t] a''[t] + 12 3 α - β * a[t]^3 * b[t]^2 a'''[t] b'[t] -

16 3 α - β * a[t]^2 * b[t]^2 * a'[t]^2 + 2 3 α - β * a[t]^3 * b[t]^2 * a''[t] -

5 3 α - β * a[t]^3 * b[t] * a'[t] * b'[t] b''[t];

In[ ]:=

simplifica completamente

FullSimplifyEcbLagrangiano == 2 * a[t]^3  b[t]^2 * Ec00

Out[ ]= True

In[ ]:=

simplifica completamente

FullSimplify[EcaLagrangiano == -6 * b[t] Ecii]

Out[ ]= True

◼ VAMOS AL CASO CON MATERIA Y CON CONSTANTE COSMOLÓGICA

In[ ]:= ρ[t] = d * a[t]^-3 * 1 + w;

p[t] = w * ρ[t];

EcbLagrangianoΛρ = EcbLagrangianoΛ - a[t]^3 * ρ[t];

EcaLagrangianoΛρ = EcaLagrangianoΛ + 3 * a[t]^2 * b[t] * p[t];

◼ prueba de que no son independientes con materia y constante cosmológica

In[ ]:=

simplifica compl⋯

FullSimplify
deriva

D[EcbLagrangianoΛρ , t] == EcaLagrangianoΛρ * a'[t]  b[t]

Out[ ]= True

◼ Demostramos que es equivalente a las ecuaciones de campo
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In[ ]:= Ec00Λρ = -
1

2 a[t]4 b[t]4
a[t]^4 * b[t]^6 * ρ[t] - 6 γ * a[t]^2 * b[t]^4 * a'[t]^2 +

36 * 3 α - β * b[t]^2 * a'[t]^4 - 24 3 α - β * a[t] * b[t]^2 * a'[t]^2 * a''[t] +

12 * 3 α - β * a[t]^2 * b[t]^2 * a''[t]^2 - 24 * 3 α - β * a[t]^2 *

b[t]^2 * a'[t] * a'''[t] - 60 * 3 α - β * a[t]^2 * a'[t]^2 * b'[t]^2 +

24 * 3 α - β * a[t]^2 * b[t] * a'[t]^2 * b''[t] + 24 *

3 α - β * a[t] * b[t] * a'[t]^3 + 2 * 3 α - β * a[t]^2 * b[t] * a'[t] * a''[t] *

b'[t] + 2 * γ * Λ * a[t]^4 * b[t]^6;

EciiΛρ = -
1

2 a[t]2 b[t]7
a[t]^4 * b[t]^7 * p[t] + 2 * γ * a[t]^2 b[t]^5 * a'[t]^2 +

12 3 α - β * b[t]^3 a'[t]^4 + 12 3 α - β * a[t]^2 * b[t]^3 * a''[t]^2 +

16 3 α - β * a[t]^2 * b[t]^3 * a'[t] * a'''[t] +

8 3 α - β * a[t]^3 * b[t]^3 * a''''[t] - 120 3 α - β * a[t]^3 * a'[t] * b'[t]^3 -

8 3 α - β * a[t]^3 * b[t]^2 * a'[t] * b'''[t] +

60 3 α - β * a[t]^2 b[t] * a'[t]^2 + 2 3 α - β * a[t]^3 b[t] * a''[t] b'[t]^2 +

4 γ * a[t]^3 b[t]^5 - 12 3 α - β * a[t] * b[t]^3 * a'[t]^2 a''[t] -

4 γ * a[t]^3 b[t]^4 a'[t] - 12 3 α - β * a[t] * b[t]^2 * a'[t]^3 + 18 3 α - β *

a[t]^2 * b[t]^2 a'[t] a''[t] + 12 3 α - β * a[t]^3 * b[t]^2 a'''[t] b'[t] -

16 3 α - β * a[t]^2 * b[t]^2 * a'[t]^2 + 2 3 α - β * a[t]^3 * b[t]^2 * a''[t] -

5 3 α - β * a[t]^3 * b[t] * a'[t] * b'[t] b''[t] - 2 * γ * Λ * a[t]^4 * b[t]^7;

In[ ]:=

simplifica completamente

FullSimplifyEcbLagrangianoΛρ == 2 * a[t]^3  b[t]^2 * Ec00Λρ

Out[ ]= True

In[ ]:=

simplifica completamente

FullSimplify[EcaLagrangianoΛρ == -6 * b[t] * EciiΛρ]

Out[ ]= True

In[ ]:=

simplifica compl⋯

FullSimplify
deriva

D[Ec00Λρ, t] ==

-3 * EciiΛρ * a'[t] * b[t]^2  a[t]^3 + Ec00Λρ * -3 * a'[t]  a[t] + 2 b'[t]  b[t]

Out[ ]= True

◼ VAMOS AL CASO CON MATERIA Y SIN CONSTANTE COSMOLÓGICA

In[ ]:= ρ[t] = d * a[t]^-3 * 1 + w;

p[t] = w * ρ[t];

EcbLagrangianoρ = EcbLagrangiano - a[t]^3 * ρ[t];

EcaLagrangianoρ = EcaLagrangiano + 3 * a[t]^2 * b[t] * p[t];

◼ prueba de que no son independientes con materia y sin constante cosmológica

In[ ]:=

simplifica compl⋯

FullSimplify
deriva

D[EcbLagrangianoρ , t] == EcaLagrangianoρ * a'[t]  b[t]

Out[ ]= True

◼ Demostramos que es equivalente a las ecuaciones de campo
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In[ ]:= Ec00ρ =

-
1

2 a[t]4 b[t]4
a[t]^4 * b[t]^6 * ρ[t] - 6 γ * a[t]^2 * b[t]^4 * a'[t]^2 + 36 * 3 α - β *

b[t]^2 * a'[t]^4 - 24 3 α - β * a[t] * b[t]^2 * a'[t]^2 * a''[t] + 12 * 3 α - β *

a[t]^2 * b[t]^2 * a''[t]^2 - 24 * 3 α - β * a[t]^2 * b[t]^2 * a'[t] * a'''[t] -

60 * 3 α - β * a[t]^2 * a'[t]^2 * b'[t]^2 + 24 * 3 α - β * a[t]^2 * b[t] *

a'[t]^2 * b''[t] + 24 * 3 α - β * a[t] * b[t] * a'[t]^3 +

2 * 3 α - β * a[t]^2 * b[t] * a'[t] * a''[t] * b'[t];

Eciiρ = -
1

2 a[t]2 b[t]7
a[t]^4 * b[t]^7 * p[t] + 2 * γ * a[t]^2 b[t]^5 * a'[t]^2 +

12 3 α - β * b[t]^3 a'[t]^4 + 12 3 α - β * a[t]^2 * b[t]^3 * a''[t]^2 +

16 3 α - β * a[t]^2 * b[t]^3 * a'[t] * a'''[t] +

8 3 α - β * a[t]^3 * b[t]^3 * a''''[t] - 120 3 α - β * a[t]^3 * a'[t] * b'[t]^3 -

8 3 α - β * a[t]^3 * b[t]^2 * a'[t] * b'''[t] +

60 3 α - β * a[t]^2 b[t] * a'[t]^2 + 2 3 α - β * a[t]^3 b[t] * a''[t] b'[t]^2 +

4 γ * a[t]^3 b[t]^5 - 12 3 α - β * a[t] * b[t]^3 * a'[t]^2 a''[t] -

4 γ * a[t]^3 b[t]^4 a'[t] - 12 3 α - β * a[t] * b[t]^2 * a'[t]^3 + 18 3 α - β *

a[t]^2 * b[t]^2 a'[t] a''[t] + 12 3 α - β * a[t]^3 * b[t]^2 a'''[t] b'[t] -

16 3 α - β * a[t]^2 * b[t]^2 * a'[t]^2 + 2 3 α - β * a[t]^3 * b[t]^2 * a''[t] -

5 3 α - β * a[t]^3 * b[t] * a'[t] * b'[t] b''[t];

In[ ]:=

simplifica completamente

FullSimplifyEcbLagrangianoρ == 2 * a[t]^3  b[t]^2 * Ec00ρ

Out[ ]= True

In[ ]:=

simplifica completamente

FullSimplify[EcaLagrangianoρ == -6 * b[t] * Eciiρ]

Out[ ]= True

In[ ]:=

simplifica compl⋯

FullSimplify
deriva

D[Ec00ρ, t] ==

-3 * Eciiρ * a'[t] * b[t]^2  a[t]^3 + Ec00ρ * -3 * a'[t]  a[t] + 2 b'[t]  b[t]

Out[ ]= True
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Anexo C. Desarrollo explícito del modelo 
inflacionario
In[ ]:=

borra todo

ClearAll["Global`*"]

necesita

Needs["VariationalMethods`"]

In[ ]:= R = 12 * H[t]^2 + 6 * H'[t];

P = 12 * H'[t]^2 + 3 * H[t]^4 + 3 * H'[t] * H[t]^2;

Q = 12 * H'[t]^2 + 2 * H[t]^4 + 2 * H'[t] * H[t]^2;

G = 24 * H[t]^2 * H[t]^2 + H'[t];

λ2 = f(0,1,0)[R, P, Q];

λ3 = f(0,0,1)[R, P, Q];

λ1 = f(1,0,0)[R, P, Q] + 2  3 * R * λ2 + λ3;

◼ Ecb particularizada al caso HdS aprox cte (en slow-roll despreciamos ϕ′[t]2 << V[ϕ[t]]  aquí)

In[ ]:=

expande factores

Expand1  2 * ϕ
′
[t]2 + V[ϕ[t]] == 6 * γ * H[t]^2 + f[R, P, Q] - λ1 * R +

6 * 

deriva

D[λ1, t] * H[t] + λ1 * H[t]^2 - λ2 * P - 1  3 * R^2 - λ3 * Q - 1  3 * R^2 -

12 * H[t]^3 * 

deriva

D[λ2, t] + 2 *
deriva

D[λ3, t] /. {H'[t] → 0, H''[t] → 0}

Out[ ]= V[ϕ[t]] +
1

2
ϕ′[t]2 ⩵

f12 H[t]2, 36 H[t]4, 24 H[t]4 + 6 γ H[t]2 - 24 H[t]4 f(0,0,1)12 H[t]2, 36 H[t]4, 24 H[t]4 -

36 H[t]4 f(0,1,0)12 H[t]2, 36 H[t]4, 24 H[t]4 - 6 H[t]2 f(1,0,0)12 H[t]2, 36 H[t]4, 24 H[t]4

◼ Ahora queremos hacer la derivada de Ecb con respecto al tiempo para sacar epsilon slow-roll 
(despreciamos ϕ′′[t] aquí)



In[ ]:=

expand⋯

Expand
deriva

D1  2 * ϕ
′
[t]2 + V[ϕ[t]] == 6 * γ * H[t]^2 + f[R, P, Q] -

λ1 * R + 6 * 

deriva

D[λ1, t] * H[t] + λ1 * H[t]^2 - λ2 * P - 1  3 * R^2 -

λ3 * Q - 1  3 * R^2 - 12 * H[t]^3 * 

deriva

D[λ2, t] + 2 *
deriva

D[λ3, t], t /.

f(1,0,0)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fR, f(0,1,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fP,

f(0,0,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fQ, f(1,1,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRP,

f(1,0,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRQ, f(0,1,1)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPQ,

f(2,0,0)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRR, f(0,2,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPP,

f(0,0,2)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fQQ /.

{H''[t] → 0, H'''[t] → 0, H'[t]^2 → 0, H'[t]^3 → 0, H'[t]^4 → 0,

H'[t]^5 → 0}

Out[ ]= V′[ϕ[t]] ϕ′[t] + ϕ′[t] ϕ′′[t] ⩵

12 fR H[t] H′[t] + 12 γ H[t] H′[t] - 144 fRR H[t]3 H′[t] - 1728 fRP H[t]5 H′[t] -

1152 fRQ H[t]5 H′[t] - 5184 fPP H[t]7 H′[t] - 6912 fPQ H[t]7 H′[t] - 2304 fQQ H[t]7 H′[t]

◼ Para comprobar que está bien tenemos el notebook de comprobación, donde la ecuación Eca 
junto con la derivada de la ecuación Ecb permite verificar que proporciona la ecuación del 
campo cuando las juntamos.

◼ Haciendo de nuevo la derivada de la ecuación anterior (derivada de Ecb) tenemos la ecuación 
para el segundo parámetro de slow-roll
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In[ ]:=

expand⋯

Expand
deriva

D1  2 * ϕ
′
[t]2 + V[ϕ[t]] == 6 * γ * H[t]^2 + f[R, P, Q] -

λ1 * R + 6 * 

deriva

D[λ1, t] * H[t] + λ1 * H[t]^2 - λ2 * P - 1  3 * R^2 -

λ3 * Q - 1  3 * R^2 - 12 * H[t]^3 * 

deriva

D[λ2, t] + 2 *
deriva

D[λ3, t], {t, 2} /.

f(1,0,0)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fR, f(0,1,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fP,

f(0,0,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fQ, f(1,1,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRP,

f(1,0,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRQ, f(0,1,1)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPQ,

f(2,0,0)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRR, f(0,2,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPP,

f(0,0,2)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fQQ,

f(1,1,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRPQ, f(0,0,3)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fQQQ,

f(3,0,0)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRRR, f(0,3,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPPP,

f(1,0,2)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRQQ,

f(1,2,0)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRPP, f(0,1,2)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPQQ,

f(0,2,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fPPQ, f(2,1,0)12 H[t]2 + 6 H′[t],

12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2, 12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRRP,

f(2,0,1)12 H[t]2 + 6 H′[t], 12 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2,

12 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2 ⧴ fRRQ /.

{H'''[t] → 0, H''''[t] → 0, H'[t]^2 → 0, H'[t]^3 → 0, H'[t]^4 → 0,

H'[t]^5 → 0, H'[t]^6 → 0, H'[t]^7 → 0, H'[t] * H''[t] → 0,

H''[t]^2 → 0, H''[t]^3 → 0, H'[t]^2 * H''[t] → 0}

Out[ ]= ϕ′[t]2 V′′[ϕ[t]] + V′[ϕ[t]] ϕ′′[t] + ϕ′′[t]2 + ϕ′[t] ϕ(3)[t] ⩵

12 fR H[t] H′′[t] + 12 γ H[t] H′′[t] - 144 fRR H[t]3 H′′[t] - 1728 fRP H[t]5 H′′[t] -

1152 fRQ H[t]5 H′′[t] - 5184 fPP H[t]7 H′′[t] - 6912 fPQ H[t]7 H′′[t] - 2304 fQQ H[t]7 H′′[t]

◼ VAMOS AL MODELO EN CUESTION
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f = α * R^2 * n + β * P^n + δ * Q^n;

fR = 2 * n * α * R^2 * n - 1;

fRR = 2 * n - 1 * 2 * n * α * R^2 * n - 2;

fP = n * β * P^n - 1;

fPP = n - 1 * n * β * P^n - 2;

fQ = n * δ * Q^n - 1;

fQQ = n - 1 * n * δ * Q^n - 2;

V[ϕ] = 1  2 * M^2 * ϕ^2;

simplifica completamente

FullSimplifyV[ϕ] == f - 6 fR H[t]2
+ 6 γ H[t]2 - 36 fP H[t]4 - 24 fQ H[t]4 /.

{H'[t] → 0, γ → 0}

(*Esta es Ecb particularizada a HdS

Out[ ]=

M2 ϕ2

2
⩵ -24 n × 32 n n α H[t]2

2 n
+ 12n n H[t]4 -3n β H[t]4

-1+n
- 2n δ H[t]4

-1+n
 +

12n 22 n × 3n α H[t]2
2 n

+ 3n β H[t]4
n
+ 2n δ H[t]4

n


(*Para encontrar HdS la resolvemos, usando x=H^(4*n) por comodidad

In[ ]:=

resuelve

Solve
M2 ϕ2

2
⩵ -24 n × 32 n n α x + 12n n -3n β x - 2n δ x + 12n 22 n × 3n α x + 3n β x + 2n δ x, x

Out[ ]= x → -
2-1-2 n × 3-n M2 ϕ2

-1 + n 22 n × 3n α + 3n β + 2n δ


(*Vamos ahora a la Ecb derivada,

que nos permite encontrar H' para así hallar epsilon,

despreciamos
número e

E-H en alta curvatura de inflación y H^2>>H'

In[ ]:=

simplifica completamente

FullSimplify12 fR H[t] H′[t] + 12 γ H[t] H′[t] - 144 fRR H[t]3 H′[t] - 5184 fPP H[t]7 H′[t] -

2304 fQQ H[t]7 H′[t] ⩵

deriva

D[V[ϕ], ϕ] * -

deriva

D[V[ϕ], ϕ]  3 * H[t] /. {γ → 0}

Out[ ]= 3n × 41+n n H[t] H′[t] -2 × 3n -1 + 2 n α H[t]2 2 H[t]2 + H′[t]
-2+2 n

+

3n α 2 H[t]2 + H′[t]
-1+2 n

+ -1 + n H[t]6 -4 δ 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2
-2+n

-

9 β 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2
-2+n

 ⩵ -
M4 ϕ2

3 H[t]
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In[ ]:=

resuelve

Solve3n × 41+n n H dH -2 × 3n -1 + 2 n α H2 2 H2
-2+2 n

+

3n α 2 H2
-1+2 n

+ -1 + n H6 -4 δ 2 H4
-2+n

- 9 β 3 H4
-2+n

 ⩵ -
M4 ϕ2

3 H
, dH /.

H →
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ
^1  (4 * n)

Out[ ]= dH →

2-2-2 n × 3-1-n M4 ϕ2  -1 + n n 22 n × 3n α
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n

2 n

+

3n β
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

n

n

+

2n δ
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

n

n



In[ ]:= dH =

simplifica completamente

FullSimplify

2-2-2 n × 3-1-n M4 ϕ2  -1 + n n 22 n × 3n α
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ
+

3n β
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ
+ 2n δ

2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ


Out[ ]= -
M2

6 n

In[ ]:= ϵ =

simplifica completamente

FullSimplify-dH  H^2 /. H →
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ
^1  (4 * n)

Out[ ]=

M2  2-1-2 n×3-n M2 ϕ2

(-1+n) -22 n×3n α-3n β-2n δ

-
1

2
n

6 n

(*Vamos a sacar ahora el segundo parámetro de slow-roll eta con H''
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In[ ]:=

expande factores

Expand12 fR H[t] H''[t] + 12 γ H[t] H''[t] -

144 fRR H[t]3 H''[t] - 5184 fPP H[t]7 H''[t] - 2304 fQQ H[t]7 H''[t] ⩵

2 *

deriva

D[V[ϕ], ϕ] * -

deriva

D[V[ϕ], {ϕ, 2}]  3 * H[t] * -

deriva

D[V[ϕ], ϕ]  3 * H[t] -

2 * H[t] *

deriva

D[V[ϕ], ϕ] * -

deriva

D[V[ϕ], ϕ]  3 * H[t] * ϵ /. {γ → 0}

Out[ ]= 288 n α H[t]3 12 H[t]2 + 6 H′[t]
-2+2 n

H′′[t] -

576 n2 α H[t]3 12 H[t]2 + 6 H′[t]
-2+2 n

H′′[t] + 24 n α H[t] 12 H[t]2 + 6 H′[t]
-1+2 n

H′′[t] +

3n × 42+n n δ H[t]7 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2
-2+n

H′′[t] -

3n × 42+n n2 δ H[t]7 2 H[t]4 + 2 H[t]2 H′[t] + H′[t]2
-2+n

H′′[t] +

32+n × 41+n n β H[t]7 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2
-2+n

H′′[t] -

32+n × 41+n n2 β H[t]7 3 H[t]4 + 3 H[t]2 H′[t] + H′[t]2
-2+n

H′′[t] ⩵

M6 ϕ2  2-1-2 n×3-n M2 ϕ2

(-1+n) -22 n×3n α-3n β-2n δ

-
1

2
n

9 n
+

2 M6 ϕ2

9 H[t]2

In[ ]:=

resuelve

Solve288 n α H3 12 H2
-2+2 n

ddH - 576 n2 α H3 12 H2
-2+2 n

ddH + 24 n α H 12 H2
-1+2 n

ddH +

3n × 42+n n δ H7 2 H4
-2+n

ddH - 3n × 42+n n2 δ H7 2 H4
-2+n

ddH + 32+n × 41+n n β H7 3 H4
-2+n

ddH -

32+n × 41+n n2 β H7 3 H4
-2+n

ddH ⩵

M6 ϕ2  2-1-2 n×3-n M2 ϕ2

(-1+n) -22 n×3n α-3n β-2n δ

-
1

2
n

9 n
+
2 M6 ϕ2

9 H2
, ddH /.

H →
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ
^1  (4 * n)

Out[ ]= ddH → - 2-2-2 n × 3-2-n M6 ϕ2

2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

-
3

4
n 2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n

+

2 n
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n



-1 + n n2 22 n × 3n α
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n

2 n

+

3n β
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

n

n

+

2n δ
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

n

n


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In[ ]:= ddH =

simplifica completamente

FullSimplify- 2-2-2 n × 3-2-n M6 ϕ2

2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

-
3

4
n 2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n

+

2 n
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n



-1 + n n2 22 n × 3n α
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

2
n

2 n

+

3n β
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

n

n

+

2n δ
2-1-2 n × 3-n M2 ϕ2

-1 + n -22 n × 3n α - 3n β - 2n δ

1

n

n



Out[ ]= M4 1 + 2 n 12n α + 3n β + 2n δ -
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

1-
1

4 n



18 n2 12n α -
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

1

2
n

2 n

+

3n β + 2n δ -
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

1

n

n

In[ ]:= numddH =

simplifica completamente

FullSimplifyM4 1 + 2 n 12n α + 3n β + 2n δ -
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

1-
1

4 n



Out[ ]= M4 1 + 2 n 12n α + 3n β + 2n δ -
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

1-
1

4 n

In[ ]:= denddH =

simplifica completamente

FullSimplify

18 n2 12n α
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ
+ 3n β + 2n δ

2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ


Out[ ]=

32-n × 4-n M2 n2 ϕ2

1 - n

In[ ]:= ddH =

simplifica completamente

FullSimplifynumddH  denddH

Out[ ]=

M4 1 + 2 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ

-
1

4
n

18 n2

ModeloInflacionPowerLaw.nb     7



In[ ]:= η =

simplifica completamente

FullSimplifyϵ - ddH  2 * H * dH /. H →
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ
^1  (4 * n)

Out[ ]=

1

6 n
M2 -

2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

-
1

2
n

+

1 + 2 n
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ

-
1

4
n

-
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

-
1

4
n

In[ ]:= numη =

simplifica completamente

FullSimplify
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ

-
1

2
n

+

1 + 2 n
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ

-
1

4
n 2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ

-
1

4
n



Out[ ]= 2 1 + n -
2-1-2 n × 3-n M2 ϕ2

-1 + n 12n α + 3n β + 2n δ

-
1

2
n

In[ ]:= η =

simplifica completamente

FullSimplifyM^2  (6 * n) * numη

Out[ ]=

M2 1 + n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ

-
1

2
n

3 n

In[ ]:= Nefolds = 3 *
integra

Integrate
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ
^1  (4 * n) ^2  (

deriva

D[V[ϕ], ϕ]), ϕ

Out[ ]=

3 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ


1

2
n

M2

◼ Así que debe cumplirse 
3 n -

2-1-2 n×3-n M2 ϕ2

(-1+n) (12n α+3n β+2n δ)


1

2
n

M2
entre 49 y 59

◼ La amplitud del espectro de potencias debe ser de aprox 10^(-9)

In[ ]:= AmplitudePowerSpectrum =

simplifica completamente

FullSimplify
2-1-2 n × 3-n M2 ϕ2

-1 + n -12n α - 3n β - 2n δ
^1  (4 * n) ^2  

número pi

Pi * Mpl^2 * ϵ

Out[ ]=

6 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ


1

n

M2 Mpl2 π

◼ Así que debe cumplirse
6 n -

2-1-2 n×3-n M2 ϕ2

(-1+n) (12n α+3n β+2n δ)


1

n

M2 Mpl2 π
= 10^(-9)

◼ El índice espectral debe ser de 0.9649 +- 0.0042
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In[ ]:= IndiceEspectral =

simplifica completamente

FullSimplify[1 - 6 * ϵ + 2 * η]

Out[ ]= 1 +

M2 -1 + 2 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ

-
1

2
n

3 n

◼ Tiene que ser menor que 1, así que no puede ser porque n>1

◼ El ratio tensor escalar debe ser menor que 0.10

In[ ]:= RatioTensorEscalar =

simplifica completamente

FullSimplify[16 * ϵ]

Out[ ]=

8 M2 - 2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ

-
1

2
n

3 n

◼ Así que las tres condiciones son

3 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ


1

2
n

M2
= Nef que está entre 49 y 59

6 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ


1

n

M2 Mpl2 π
= 10^-9

8 M2 - 2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ

-
1

2
n

3 n
< 0.10

◼ La primera con la tercera son casi incompatibles, porque si hacemos el inverso de la tercera 
condición tenemos

3 n -
2-1-2 n×3-n M2 ϕ2

(-1+n) 12n α+3n β+2n δ


1

2
n

8 M2
> 1  0.10

◼ Y usando la primera condición nos queda que el número de efolds tiene que ser

Nef  8 > 1  0.10, es decir, Nef > 80

◼ Número de efolds tiene que ser mayor que 80 para cuadrar el ratio tensor escalar

◼ Ahora elevando al cuadrado la primera y usando la segunda

9 n * 10^-9 * Mpl2 π

6 M2
= Nef^2

In[ ]:=

⋯

N
raíz cuadrada

Sqrt9 * n * 10^-9 * Mpl2 * π  6 * 80

Out[ ]= 7.67495 × 10-6 Mpl2 n

◼ Nos conduce a una masa del campo

M =

raíz cuadrada

Sqrt[n] * 8 * 10^(-6) * Mpl
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