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1. Introduccion

La relatividad general clasica se describe por la accién de Einstein-Hilbert

MQ
Sen = Tp /d437\/ -g R, (1)

siendo M, = (87G)~'/? la masa de Planck reducida, G la constante de Newton, R el
escalar de curvatura y g el determinante de la métrica g,,,. Dicha accién es la mas simple
posible que proporciona las ecuaciones de campo de Einstein y que contiene derivadas
segundas de la métrica. Sin embargo, no hay a priori una razén fundamental por la
que no se puedan construir acciones mas complejas que contengan derivadas de orden
superior en la métrica. De hecho, en el proceso de cuantizacion de la teoria , emergen
divergencias a un looﬂ que son proporcionales a invariantes de curvatura de segundo

orden. Para absorber dichas divergencias, se deben incluir contratérminos de la forma [IJ
AL joop = 1 R + as R, R* + azRyas R*™* + a,0R (2)

donde a; son parametros escogidos para cancelar justamente las divergencias de un loop.
De manera similar, la renormalizacion de la relatividad general a orden de dos loops
requiere términos de orden cubico en curvatura como RUR o RO“BWRWWR” Uaﬁ 2], las
correcciones a tres loops requieren a su vez contratérminos de cuarto orden en curvatu-
ra, etc. Este procedimiento continua de forma indefinida, es decir, las divergencias que
aparecen en la expansion perturbativa no pueden ser absorbidas por un ntmero finito de

contratérminos, mostrando que la relatividad general no es una teoria renormalizable.

Histéricamente, las teorias no renormalizables eran catalogadas de no predictivas y so-
lian abandonarse, pero el enfoque moderno Wilsoniano ha permitido sacar un provecho
enorme de este tipo de teorfas en el contexto de teorfas efectivas [3]. Bajo este prisma, los
términos de la accién estdn organizados en potencias de E/M,, donde E es la escala de
energia tipica del problema. El simple analisis dimensional muestra que las curvaturas de
orden superior corresponden a potencias méas altas de £//M,, por lo que, a energias muy
por debajo de M, las potencias superiores de curvatura estdn completamente suprimidas
y pueden tratarse como pequenas perturbaciones. De esta forma, a una precisiéon desea-

da, la serie infinita de términos se puede truncar produciendo sélo un nimero finito de

Las correcciones de diagramas de loops a procesos tree-level (completamente especificados por el
Lagrangiano cldsico) se corresponden con 6rdenes superiores en teoria de perturbaciones.



parametros libres. Consecuentemente, los términos de orden superior capturan la fisica
subyacente de manera perturbativa y sélo contribuyen a los vértices de los diagramas de
Feynman, no a los propagadores. Como resultado se obtiene una teoria que, aunque no
es renormalizable, puede renormalizarse de forma efectiva en cada loop, orden a orden.
Naturalmente, esta teoria resultante es iinicamente valida para energias muy por debajo

de M, pues cuando ésta se alcanza la expansién en el parametro E/M, no es legitima.

En un enfoque distinto, que es el que vamos a seguir en este trabajo, podriamos permitir
que los coeficientes a; de los términos con derivadas superiores en tomasen valores
arbitrarios, no ajustados para cancelar las divergencias a un loop. En ese caso, los términos
de alta curvatura compiten con el término de Einstein-Hilbert en la escala de Planck, es
decir, no son meros contratérminos como en la relatividad general, sino que se tratan
en igualdad de condiciones que el término de Einstein-Hilbert, contribuyendo asi tanto
a los vértices como a los propagadores. Esta nueva teoria, usualmente llamada gravedad
cuadratica y que naturalmente difiere de la relatividad general cudntica, presenta un
cambio drastico en la estructura de las divergencias. La accién construida con invariantes
de curvatura de segundo orden resulta ser renormalizable a todos los érdenes de loops [4]
y no necesita la inclusiéon de términos con derivadas atn superiores. Esta teoria podria
interpretarse entonces como una teoria fundamental de gravedad cuantica, y de hecho
es una de las candidatas prominentes para ello. Por supuesto, el éxito de la gravedad
cuadratica no es puramente teérico, sino que fenomenoldgicamente es el modelo mas
favorecido por la colaboracion Planck [5] para explicar la era inflacionaria del universo

primordial [6].

El objetivo principal de este trabajo consiste en analizar el comportamiento cosmolégico
de la gravedad cuadratica desde una perspectiva fundamental, mostrando las diferencias
que emergen con respecto al marco vigente de la relatividad general, y fenomenolégica, con
el fin de predecir adecuadamente las observaciones actuales sobre la época inflacionaria del
universo. En cuanto a la estructura del mismo, en primer lugar, introduciremos la teoria
cuadratica con sus posibles ventajas e inconvenientes. Posteriormente, analizaremos las
soluciones cosmoldgicas que presenta dicha teoria y finalmente describiremos el escenario

inflacionario en el marco de las teorias mas alla de relatividad general.



2. Gravedad con altas derivadas

Las teorias de gravitacion con altas derivadas son teorias mas alla de la relatividad general
basadas en incorporar operadores de curvatura adicionales en la accién de Einstein-Hilbert
. En el intento de desarrollar una teoria de gravedad cuantica han surgido muchos
tipos distintos de modelos gravitatorios con altas derivadas. Estos modelos han mejorado
notablemente nuestro conocimiento sobre gravedad cuantica, pero siguen existiendo varios
problemas abiertos en ellos, siendo uno de los mas discutidos la presencia de grados de

libertad adicionales aparentemente patologicos, llamados particulas ghost.

Stelle [4, [7] propuso y desarollé una teoria de gravitacién a la que vamos a prestar una

atencion central en este trabajo, llamada gravedad cuadrétic definida por la accion
S = / d*z L = / d*z/=g (YR + aR® — BR,,R") | (3)

donde v = MTﬁ es el coeficiente usual de la accién de Einstein-Hilbert para recuperar
el limite Newtoniano, mientras que a y [ son constantes de acoplo adimensionales que
acompanan a los términos de alta curvatura. Bajo la premisa cuadratica general, la accion
podria, en principio, contener también términos con acoplos constante a RWarBRWO‘ﬁ

o LJR. Sin embargo, en una variedad M tetradimensional, el término de Gauss-Bonnet
G = R* — 4R, R" + RyyasR"*” (4)

resulta ser un invariante topolégico proporcional a la caracteristica de Euler x(M) =

1
3272

nos permite escribir el término Riemann-Riemann RwagR‘“’o‘B como una combinacién

[ d*z\/=g G, que describe la topologia de la variedad M. Esta propiedad topoldgica

del escalar de Ricci R?, el término Ricci-Ricei R, R* y el invariante de Gauss-Bonnet
(G, cuya contribucion es irrelevante siempre que no haya cambio de topologia ni términos
de frontera. Por otro lado, el término /—gOR = \/—¢V,V*R = 0, (v/—gV"R) es una
derivada total y, por el teorema de Gauss covariante [I1], se puede escribir como la
integral sobre la frontera de la variedad, que se anula siempre que V*R tienda a cero
lo suficientemente rapido en el infinito, por lo que también podemos ignorarlo. De esta

manera, anadir RMV&BR“”W en la accién produce tinicamente una traslaciéon constante

2En la literatura es usual encontrar esta teoria bajo los nombres de teoria con altas derivadas, gravedad

R?, gravedad de cuarto orden, gravedad de Stelle, etc. [8] [].
3Para esta discusién es estrictamente necesario que los acoplos sean constantes, pues si corren con la
energia su contribucién deja de ser nula como se demuestra en [10].



en los acoplos y anadir LJR no tiene consecuencias para ninguin observable insensible a
la topologia general del espaciotiempo (como las ecuaciones de campo o los calculos
perturbativos de interacciones de particulaf] [3]), asi que la teorfa descrita por dicha

accion cuadratica es la méas general posible para nuestro interés.

2.1. Inestabilidad de Ostrogradski y ghosts en altas derivadas

Anadir productos cuadraticos de tensores de curvatura a la accién gravitatoria conduce
a ecuaciones de campo en las que los términos con mayor nimero de derivadas son de
cuarto orden. Esto es aparentemente patologico, ya que Ostrogradski demostré que las
teorias clasicas con derivadas superiores tienen inestabilidades que se traducen en un
decaimiento del vacio [12]. Para ilustrar brevemente como surge este resultado, podemos
seguir el enfoque Hamiltoniano [13] para dos casos tipicos simples: teorias escalares con

dos y cuatro derivadas en el término cinético viviendo en el espaciotiempo de Minkowski.

La teoria del campo escalar mas sencilla con dos derivadas es la accién de Klein-Gordon
1 1
S = —§/d4x (0,00"¢ + m*¢?) = 3 /d4:p (¢0¢ — m*¢*) = (O—m*)p=0, (5)

cuya densidad hamiltoniana H se construye a partir del momento canénico conjugado

I = ¢ asociado al campo ¢ como la transformada de Legendre de la densidad lagrangiana,
Lo 1 i L o900
H=-II"+-0,00'¢p + —m“¢p* > 0, (6)
2 2 2
que esta acotada inferiormente de forma manifiesta, por lo que la teoria es estable.

Si modificamos la accién con un término que contenga cuatro derivadas del campo,

S = %/d%: [6(0 — w’0%)¢ —m?¢?] = (O—w’0*—m?)p=0, (7)

siendo w constante, la densidad hamiltoniana en este caso se escribe esqueméaticamente
H= H1¢ + O<H§> <8Z¢>27 ¢2) ) (8)

donde II; = q§ —w? ¢ y 1y = w%. Con la presencia de altas derivadas, H se compone de
una parte claramente positiva por depender solamente de términos cuadraticos y de una

parte lineal en II; y ¢ que nos impide afirmar como en el caso anterior que el Hamiltoniano

4Por ejemplo, las amplitudes de scattering de gravitones alrededor de alguna geometria fija.



sea definido positivo. Dado que el término lineal puede tomar cualquier valor negativo que

supere a la parte estrictamente positiva, se concluye que H no esté acotado inferiormente.

Es interesante analizar el caso no masivo, m = 0, de la teoria a nivel cuantico. El
propagador (inverso de la parte cuadratica/cinética del Lagrangiano o, equivalentemente,
la funcién de Green asociada a las ecuaciones de campo) en el espacio de momentos,

Dp(p), en este caso no masivo se descompone en fracciones simples como

1 1 w?

Dp(p) = - Y
r(p) p? (1 + w?p?) p? + 1+ w?p?

(9)

Identificando los polos del propagador como el espectro de particulas de la teoria, ob-
servamos que la presencia de la derivada superior [J? a nivel del Lagrangiano introduce
un polo adicional en el propagador (la primera contribucién 1/p? asociada a [ en el
Lagrangiano se corresponde naturalmente con la particula de masa cero), lo que impli-
ca un modo masivo de masa \/—_]02 = m = 1/w. Sin embargo, el signo diferente en el

propagador indica que esta particula masiva se corresponde con un ghost [14} [15].

Esta discusion sobre el campo escalar con altas derivadas es de gran utilidad, pues la
teoria gravitatoria que nos ocupa presenta esencialmente la misma patologia. La principal
consecuencia es que, a nivel clasico, estos sistemas suelen ser inestables y, a nivel cuantico,
se manifiestan particulas ghosts cuyo término cinético tiene un signo invertido, usualmente
asociado en la literatura con estados de norma negativa que llevan a una violacion de la
unitariedad. En particular, la teoria describe al graviton estandar sin masa y de spin
2 (relacionado con el término R en la accién, como sucede en relatividad general), pero
adicionalmente incorpora una particula de spin 0 con masa mg = ,/ 2(#—6) (relacionada

con el término R?) y una particula de spin 2 con masa my = /2 (relacionada con

el término R, R*). Estos modos masivos estan asociados en el Hmiie Newtoniano con
comportamientos de tipo potencial de Yukawa, de la forma %e_mo’” y %e‘m”, que suavizan
la singularidad Newtoniana en el origen de una fuente puntual. En este limite de campo
débil, la energia linealizada del graviton y del escalar masivo es positiva, mientras que la
de la particula de spin 2 masiva es negativa, por lo que es el ghost de la teoriaﬂ. A nivel
cuantico, se pueden tener autoestados de energia positiva para la particula ghost a costa

de tener normas negativas, atacando en principio la unitariedad de la teoria cudntica.

5Es interesante remarcar que una teoria del tipo R + R2 solo contiene las dos primeras particulas
y por tanto estd libre de ghosts, pero no es renormalizable. El término R, R"” es necesario para la
renormalizabilidad, con el precio a pagar de introducir un ghost en el espectro.



Merece la pena destacar que los ghosts son una caracteristica comin de muchos modelos
de gravedad maés alld de relatividad general [16], y hay que distinguirlos claramente de los
ghosts de Faddeev-Popov ampliamente utilizados en la cuantizacion de teorias gauge no
abelianas. Estos ultimos violan la relacion spin-estadistica, aparecen naturalmente en la
integral de camino para absorber grados de libertad gauge no fisicos y no describen una
particula fisica. En cambio, los ghosts que acechan en teorias de gravitaciéon modificada
si describen excitaciones fisicas. En un acercamiento heuristico y general, para lidiar con
ghosts fisicos hay dos caminos a escoger: o bien aceptar la existencia de estados de norma
negativa y abandonar la unitariedad de la teoria, o bien aceptar que los valores propios de
energia los ghosts son negativos. Dado que el primero hace que toda la descripcién cuantica
sea completamente inconsistente, normalmente se acepta lo segundo, de manera que los

ghosts suelen producen inestabilidades si se acoplan a otros campos convencionales.

2.2. Posibles resoluciones a las patologias de las altas derivadas

A pesar de que histéricamente se ha considerado a la inestabilidad de Ostrogradski y a la
aparicion de ghosts como un arma arrojadiza infalible para descartar teorias mas alla de
relatividad general, numerosos estudiosﬁ han demostrado que la situacion es mucho mas

sutil de lo que ingenuamente parece.

Entre algunos de los recursos méas exitosos para solventar la situacion y exorcizar asi a

los ghosts se encuentran [16]:

— Aislarlos de algiin modo concreto para que se desacoplen completamente de otros
campos y asi no desestabilizarlos. Es de gran interés mencionar que, pese al dogma,
se han encontrado sistemas [17, [I§] con ghosts en interaccién con grados de libertad
de energia positiva que tienen una robusta estabilidad clasica, y la situaciéon mejora

atn més en el caso cuantico [19].

— Hacerlos muy pesados para que su masa exceda el limite de energias relevantes en
el contexto de teorias efectivas, de forma que no emerge ningin nuevo grado de

libertad (ghost o no ghost) a parte del gravitén estandar.
— Romper invariancia Lorentz para regular la de produccién de pares ghost-no ghost.

— Cambiar los grados de libertad fundamentales de la teoria (por ejemplo, trabajando

6Muchos de ellos especialmente recientes, pues estas teorfas se encuentran en un momento de auge.



con funciones de correlacién de invariantes de curvatura en lugar de la métrica).

— Argumentar que son consecuencia de tener un nimero finito de altas derivadas en la
teoria, son ficticios al resultar de un truncamiento realizado en una teoria completa

que contiene infinitos invariantes de curvatura y es libre de ghosts [20].

— En particular en gravedad cuadratica, eliminarlos del espectro redefiniendo las con-
diciones de frontera de la teoria en términos de un contorno de integracion que no

encierre los polos asociados a los ghosts.

— Argumentar que, pese a tener ghosts, la unitariedad en gravedad cuadratica puede
funcionar de forma ordinaria segtin los argumentos originales de la teoria de Veltman
[21]. La construccién cuidadosa del espacio de Hilbert [22] asociado a la teorfa
cuantica sigue la misma linea. Aparecen ghosts si el Hamiltoniano del modelo se
trata (incorrectamente) como hermitico en el sentido de Dirac y no como simétrico
PT [23], dando lugar no a estados de norma negativa sino de norma nula que,
pese a no ser estandar, no atacan la unitariedad de la teoria. Por contrapartida, es
conocido que teorias con altas derivadas que no presentan ghosts siguen teniendo

problemas con la unitariedad [24], por lo que es el punto més sutil.

Aunque hay cierta abundancia de propuestas para abordar la problematica, es necesario
remarcar que una manera consistente y sélida de abordar las inestabilidades clasicas de
los ghosts, asi como una forma univoca de entender cuestiones relativas a la unitariedad,
sigue siendo desconocida y es objeto de intensa investigacion actual en el campo. Por ello,
concluimos aqui la discusion de los aspectos fundamentales relacionados con este tipo de

teorias para dedicarnos en lo que sigue a analizar las consecuencias fisicas de las mismas.

3. Soluciones cosmolégicas en gravedad cuadratica

Nos interesa centrarnos en las implicaciones cosmologicas de la teoria de gravedad cua-

drética, cuya accién hemos visto que puede escribirse con total generalidad como

S = / d*z/=g [v(R — 2A) + aR® — BR,, R*"] + S, (10)

siendo A la constante cosmoldgica y 5, la acciéon correspondiente a la materia. Las

ecuaciones que definen la teoria, obtenidas aplicando el principio de minima accién, son

1
7 (Guu + Aglw) + CI)MV = §Tuu ’ (11)



donde T}, es el tensor energia-momento de las fuentes de materia, G, es el tensor de

Einstein y ®,, es el tensor asociado a los términos de curvatura superior, definidos por

2 05,

T = ————r , 12
H /_g 59;11/ ( )
1
G,u,y = R/.Ll/ - EQMVR ) (13)
1
P, =« (2RRW - 5gWR2 — 2V, V,R+ 2g,WDR> (14)

1 1
i /8 (—ig'uVRaﬁRaﬁ _ VIJV}LR —|— DR“V —|— §g/JIIDR - QRO('u,]/ﬂRaB> .

También se puede interpretar matematicamente el tensor ®,, como un tensor energia-
momento efectivo, que cuantifica la desviacién a la relatividad general por la alta curva-

tura. Cuando o = 8 = 0 tenemos ®,, = 0 pero el reciproco no es forzosamente cierto.

Ignorando la constante cosmologica, una primera observacion sobre las ecuaciones de
la teoria cuadratica es que cualquier solucién de vacio (es decir, T, = 0) de las
ecuaciones de Einstein, G, = R, — % gt = 0, también es una solucién de vacio de las
ecuaciones de gravedad cuadratica. Esto es asi porque tomando la traza de las ecuaciones
de Einstein obtenemos R = 0, e insertando esto de nuevo en sus ecuaciones obtenemos la

condicién Ricci plana R, = 0, que es una solucién manifiesta de ((11)) en el vacio.

Si anadimos la constante cosmolégica a las ecuaciones de campo de Einstein en el va-
clo, Ry, — % 9w 4+ Agu, = 0, el mismo razonamiento anterior nos conduce a R = DA
y, consecuentemente, R, = (%D — 1)Ag,, con D el nimero de dimensiones espacio-
temporales. Este tipo de variedades con curvatura escalar R constante, tensor de Ricci
R,,, proporcional a la métrica g,, y tensor de curvatura de Riemann dado por R,z =
%(gwgw — guwYap) se denominan maximalmente simétricas, son espacios a la vez
homogéneos e isétropos y poseen D(D+1)/2 vectores de Killing (el mayor niimero posible
en D dimensiones). Es interesante sustituir estas expresiones en , obtieniendo

(D—-2)(D+1)(D—4)

(D—1)

1 aD(D—4)+p

2 A2guu =0 ) (15)

y comprobando asi que los espacios maximalmente simétricos son también solucién de
(11)) inicamente en el caso D = 4, que es el que nos va a interesar en este trabajo.

Se conoce que existen mas soluciones analiticas en gravedad cuadratica, y son novedosas

en el sentido de que no son soluciones de las ecuaciones de Einstein ordinarias. Ademaés,



hay soluciones de vacio en gravedad cuadratica pura, ®,, = 0, que no son soluciones
de relatividad general, G,, = 0, y que, por tanto, no tienen contrapartida andloga en
el limite Einsteniano «, — 0. Un ejemplo de estas soluciones intrinsecas a la parte
cuadratica pura es la métrica FRW con un factor de escala a(t) ~ t'/? andlogo a la época
dominada por radiacién en relatividad general (en este caso hay materia, mientras que
en la teoria cuadratica pura es una solucion de vacio). En cuanto a soluciones de la teoria
completa, en muchos casos no preservan la isotropia y algunas de las mas importantes

son las métricas de Brinkmann, Peres, Siklos o Kasner [25] 20, 27].

3.1. Analisis de las ecuaciones de campo en una métrica FRW

Nos centramos en el caso isotropo y homogéneo con curvatura espacial practicamente nu-
la, que es la situaciéon mas cercana a nuestro universo en virtud del principio cosmologico

y las observaciones actuales. De esta manera, trabajaremos con una métrica de tipo FRW
ds® = —b(t)%dt* + a(t)*(da® + dy* + d2°) , g, = diag(—b*,a* a®, a?) . (16)

Es usual en relatividad general tomar la simpliﬁcaciénﬂ b(t) = 1, de manera que la
métrica sustituida como ansatz en las ecuaciones de Einstein para un fluido perfecto
proporciona las conocidas dos ecuaciones de Friedmann. Una ecuacion estda asociada a
la parte temporal y la otra a la parte espacial, y no son independientes sino que estan
ligadas por la conservaciénlﬂ local de la materia, V, 7" = 0, junto con la ecuacién de
estado del fluido, p = wp, que relaciona su presiéon p con la densidad de energia p mediante
el parametro de estado w (como es usual, w = 0 describe a la materia bariénica, w = 1/3

a la materia ultrarelativista/radiacion y w = —1 a la energia oscura).

Analizaremos a continuacion lo que sucede en el marco de la teoria de gravedad cuadratica
con la métrica . Existen dos formalismos equivalentes para atacar el problema, uno
consiste en escribir explicitamente las ecuaciones de campo generales particularizadas
a una métrica FRW (enfoque general) y el otro se basa en aplicar las ecuaciones de Euler-
Lagrange a la accién tras escribirla en términos de los campos dindmicos a(t) y b(t)

que componen la métrica (enfoque restringido).

"Esta reparametrizacion de la componente temporal esté justificada como una redefinicién del tiempo
coordenado.
8Estamos abusando de lenguaje porque en realidad no se trata de una ley de conservacion real, no se

puede escribir en una forma integral equivalente como si ocurriria con una derivada parcial.



Los invariantes de curvatura de la accién cuadratica asociados a la métrica ((16)) son

6 36 L12
R:ﬁ(X—i—Y), RZZF(X2+Y2+2XY) 5 R/WRH :F(XZ‘FYZ‘FXY) y
12 24 i ab a?
vaf __ 2 2 _ _ _
ijaﬁRu = b_4(X + Y ) s G = QXY s donde X = 5 - al—) s Y = ﬁ . (17)

Sustituyendo los mismos en la accion y teniendo en cuenta que \/—g = a3b, la accién

queda de la forma implicita
S:Sg—i-Sm:/d3x/dtﬁ(a,a,d,b,b)+5m. (18)

El Lagrangiano restringido contiene dependencias en derivadas segundas del factor
de escala a(t), pero tinicamente presenta dependencias hasta la derivada primera en el
pardmetro temporal b(t). Esta diferencia de altas derivadas hace que las ecuaciones de

Euler-Lagrange provenientes de variar la accién puramente gravitatoria, 0.5, se escriban

como
oL d <ac>
Ey = ob  dt \ i/’ (19)
oL d (0L d? (0L
E":%_E(%>+ﬁ(%)‘ (20)

Si no se considera ningtn tipo de materia, esto es, en el vacio, las ecuaciones son natu-
ralmente £, = 0y E, = 0. En presencia de materia, nos centramos en el caso de fluido
perfecto descrito por sus componentes del tensor energia-momento Toy = b%(t)p(t) y
T;; = a®(t)p(t)d;;, que por supuesto satisfacen la conservacion V#T,, = p+3%(p+p) = 0.
En este caso el lado derecho de las ecuaciones se ve modificado para dar cuenta de la
materia, porque la variacién de la accién conduce a 4S5, = —0.5,,. La variacién de la

accién de materia se lee de la definicién del tensor energia-momento ((12)) como sigue

§Sm = —1\/—_9 [To069™ + T;;69"] = _%a?’b [bzp ) (—l) +3a*p 6 (%)}
a

2
= —a’p 6b + 3a’bp ba — % = —a’p, 05m _ 3a’bp | (21)
a

luego las ecuaciones de movimiento en presencia de materia son

E, (a,a,d, a,b,b, b) = % — % (Z—i) =dp, (22)
T S oL d (0L d®> (0L )
E, (a,a,a, a, 'a,bb,b, b) =90 @ <%) —i—@ (%> = —3a"bp . (23)
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Este enfoque Lagrangiano restringido es totalmente equivalente al enfoque Lagrangiano
general de las ecuaciones de campo, la unica diferencia es que el primero restringe la
métrica antes de deducir las ecuaciones. Se ha comprobado explicitamente (Anexo B)
que las ecuaciones y (23]) son las mismas que las componentes y =v =0y u=v =1
de , respectivamente.

La componente y = v = 0 de las ecuaciones de campo (11)) (o, equivalentemente, FE)
depende de a(t) y b(t) junto con sus derivadas hasta segundo orden en b, b, v tercer
orden en a, d'. Por otro lado, la ecuacién yu = v = i de las ecuaciones de campo (|11
(0, equivalentemente, E,) depende de a(t) y b(t) junto con sus derivadas hasta tercer
orden en b, b, y cuarto orden en a, ‘a . Parece natural entonces derivar E} con respecto
al tiempo, obteniendo Ej, para asi cuadrar el orden del sistema de las dos ecuaciones
diferenciales y resolverlo simultaneamente. Sin embargo, esto no es posible porque en
realidad las ecuaciones E, y E, no son independientes, sino que una es consecuencia de

la otra. De hecho, un céalculo explicito con las ecuaciones del movimiento muestra que
a
B (24)

revelando que podemos escribir E, en términos de la derivada de Ej. Una ecuacion es una

By, =

ligadura de la otra, son redundantes, y en tultima instancia se puede ver que el sistema

de ecuaciones formado por E, = 3a2ap + a®p y E, = —3a2bp presenta la forma lineal

(o () (1) -
Cai+Db =) \C D b Q
con la particularidad de que det M = AD — BC' = 0, indicando que el sistema esta
indeterminado y hay infinitas soluciones. Para resolver esta situacién, que también ocurre
en relatividad genera]ﬂ, invocamos a la invariancia bajo difeomorfismos que nos da libertad
para fijar una reparametrizaciéon de la componente temporal, siendo el caso mas simple
b(t) = 1. La justificacion profunda reside en que la reparametrizacién temporal es un
subgrupo del grupo de difeomorfismos que es una simetria local (gauge, en realidad) de
teorias de gravitacion covariantes generales y, por lo tanto, todos los estados fisicos deben
ser invariantes bajo ella. De esta manera, la libertad gauge nos permite fijar b(t) = 1,
convirtiendo el sistema en uno compatible con solucién tnica. Bajo estas condiciones, las
ecuaciones y se escriben explicitamente como
12(3a — B)a® (2ad — 3a?)
a

+6a [ya> — 23— ) (@* —2@a)] —27Aa® =a’p ., (26)

9Sucede lo mismo en cualquier teoria covariante general que respete la invariancia bajo difeomorfismos.
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6(3c — B) (a* — 4ai2i)
CL2

6 {7 (a* — Ad®) + +2a (2(3a — ) d@" + i)

+2(3a — B) (3 + 4 d'a) } — 3% (27)
Por supuesto, pese haber fijado b(t) = 1 para tener solucién tnica, las dos ecuaciones
anteriores no son independientes sino que se puede escribir en términos de la derivada

de tal y como hemos Vistﬂ Dado que es mas sencilla porque contiene un nimero

menor de derivadas pero la misma informaciéon, podemos trabajar iinicamente con ella.

3.2. Reinterpretaciéon cosmolégica de la gravedad cuadratica

Salta a la vista en y que hay una relacion especial entre las constantes de acoplo
de la teoria, 3a = (3, que simplifica notablemente las ecuaciones. De hecho, en este caso

dichas ecuaciones son exactamente las ecuaciones de Friedmann de la relatividad general

32 A
arya YA =a’p = 674—3, (28)
(i 1 A
6 [y (@ — Aa®) +2a7d] = —3a%p B L (pa3p o, 29
[v (&* — Ad®) + 2avii] a’p " 127(P+ p) + 3 (29)

Este resultado no es una coincidencia fortuita, sino que es consecuencia de que la relacion
3a = [ esconde un hecho profundo detrds en este tipo de métricas. Para entender este

régimen tenemos que analizar la acciéon de la teoria , que en el caso 3a = [ se escribe

S = / d*zv/—g [YR+ o (R* = 3R, R"™)] . (30)
El punto crucial consiste en usar la siguiente identidad entre invariantes de curvatura
1 1 1
R,R" = -R*+-W? - -G 31
" 3t g 97 (31)

con (G el invariante topoldgico de Gauss-Bonnet y W2 = W,asWH P el invariante
de curvatura asociado al tensor de Weyl, W43, que se corresponde con las componentes

de traza nula del tensor de Riemann. De esta manera, la acciéon de la teoria se escribe
4 Qorg O
S= [ dxv/—g <7R - §W + §G) . (32)

Ya hemos comentado anteriormente que G no contribuye a la dinamica de la teoria y

podemos ignorarlo. El segundo punto clave es que en métricas tipo FRVVE el tensor

10Es interesante remarcar que, si hubiésemos impuesto b(t) = 1 en el Lagrangiano, el resultado tras

variar con respecto a a(t), que es el inico campo presente, seria (27)) y no la més sencilla (26]).
1En general, ocurre para cualquier métrica conformalmente plana.
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de Weyl se anula idénticamente [28], por lo que W2 = 0 y entonces la accién se reduce
justamente a la de Einstein-Hilbert. Asi pues, el limite 3o = 3 de la teoria cuadratica

se corresponde con relatividad general (el término A no influye en esta discusién).

El hecho de que el tensor de Weyl se anule en métricas FRW es una herramienta extrema-
damente til, pues nos ayuda a entender mejor la estructura de la teoria y sus soluciones.
Gran parte de la complicacion de la teoria cuadratica en su expresion original (3)) proviene

del término Ricci-Ricci, asi que podemos usar (31)) para escribirla en general como

S—/d‘*x\/—_g[»yRJr(a—g)R?—gWMg

G} : (33)
Particularizando esta teoria a situaciones cosmoldgicas homogéneas e isétropas descritas
por una métrica FRW, con W2 = 0, e ignorando el término topolégico de Gauss-Bonnet,
concluimos que la cosmologia de la teoria original es equivalente a la de la teoria

S = /d493\/—_g {7R+ (a — g) RQ} . (34)

Es decir, la teoria cuadratica es indistinguible cosmolégicamente hablando a la teoria
, que es una teoria de tip f(R)=~vR+ (a — g) R? muy concreta, llamada teoria

de Starobinsky, que comentaremos en detalle mas adelante.

3.3. Soluciones de Sitter, estabilidad y futuro del universo

Por supuesto, las ecuaciones de campo derivadas de son idénticas a las ecuaciones
y . Como ya hemos justificado, podemos trabajar solo con que escrita en

términos del parametro de Hubble H = a/a y en el vacio (es decir, p = 0) queda
3YH? — YA+ 63— B) (—H* + 6HH? + 2HH ) =0 . (35)

Esta forma de escribir la ecuacion de movimiento nos permite identificar que el espacio-
tiempo de de Sitter con H = Hy = /A /3 siendo Hy constante es solucién de la teoria,
como ya habiamos demostrado (es un caso particular de espacio maximalmente simétri-
co). Es interesante analizar la estabilidad de esta solucién en la teorfa cuadratica [29], asi

que escribimos (35)) como un sistema de dos ecuaciones diferenciales de primer orden:

H=F,

121 as teorias f(R) estan descritas por la accién de Einstein-Hilbert reemplazando la dependencia lineal
del escalar de Ricci R por una funcién suave del mismo, f(R).
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2

_F v 2
F—QH—BFH+12(BQ_6)H(A—3H), (36)

cuya linealizaciéon proporciona

H=F,

- 8]-") (c‘?f) A BHz+N)
F_<8H HeH B+ OF ) y_y b= 12H§(3a—6)H SHoE, (37)

de manera que el polinomio caracteristico asociado a la matriz del sistema es

—A 1 3HZ + A
v(3H3Z+A) =0 = A2 + 3Hy\ + IY( 0 )

L0 T . (38)
—m —3H0 - A 12H3(3OZ - 5)

El polinomio asociado es de Hurwitz estable, esto es, tiene coeficientes positivos cuyas
raices reales tienen parte real negativa (indicando que el sistema es estable) si y solo si
3a > . Concluimos entonces que la solucién de de Sitter es estable siempre y cuando el

coeficiente que acompafia al término R? en la teorfa (34) es positivoEl

El caso inestable, dado por la condiciéon 3a < 3, presenta implicaciones cosmoldgicas mas
interesantes atn. Los comportamientos de tipo de Sitter comentados anteriormente son
analogos a los de relatividad general, esto es, presentan expansiones menos (Figura 2')) o
mas rapidas segin los parametros de la teoria y de las condiciones iniciales, pero
todos ellos predicen que el destino del universo es siempre una expansion. Sin embargo,
si se verifica 3a < (3, independientemente de las condiciones iniciales, se presenta un
nuevo escenario donde el universo termina eventualmente colapsando haciéndose el factor
de escala a(t) nulo, lo que se conoce como Big Crunch . Este resultado es
interesante porque es una solucién de altas derivadas que no puede ocurrir en relatividad
general con dichas condiciones, y es consecuencia tnicamente de la relacién entre las
constantes de acoplo de las altas curvaturas. Ademas, el régimen 3a < (3 se corresponde
con que la masa mg de la particula escalar adicional sea imaginaria. En presencia de
materia ninguno de los comportamientos mencionados cambia sustancialmente para el

futuro del universo.

13En métricas anisétropas o dimensiones més altas este resultado deja de ser cierto [29].
1En todas las siguientes graficas se representa el factor de escala, a, en funcién del tiempo, t, en
relatividad general (en rojo, GR) y en gravedad cuadratica (en azul, HD).
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10

a(r)

—— HD

—— HD
4 — GR
L — GR
2}
l : ‘ ot L : s ot
1 2 3 4 5 1 2 3 4 5
Figura 1: A = 5, a = 1, § = 2.9999, Figura 2: A =5 a=5, =1, v =20,
v=20,a(l)=1,a(1) =1, d(1) =0.2. a(l)=1,a(1) =0.5, a(1) = 0.3.
a(t) a(t)
10 101
8
6; —— HD
47 — GR
\ : : ot ' ‘ ' Lot
1 2 3 a 5 1 2 3 a 5
Figura 3: A =5 a=5, =1, v =20, Figura 4: A =5, a =5, = 30, v = 20,
a(l) =1, a(1) = 1.9, a(1) = 0.5. a(1) =1, a(1) = 0.8, d(1) = 0.6.

3.4. Pasado del universo y singularidad inicial

Uno de los mayores intereses de las teorias méas alla de relatividad general consiste en
propiciar una mejor comprension de las singularidades cosmolégicas que presenta la teoria
Einsteniana. Cuando analizamos el pasado de la teoria cuadratica obtenemos un amplio

espectro de soluciones que mostramos a continuacion.

Como se puede ver en las resoluciones numéricas con materia y energia oscura, la [Figura 5
representa un universo dominado por materia ordinaria, la representa un universo
dominado por radiacion y la representa un universo dominado por energia oscura.
En todos los casos mostrados se tiene la presencia de un Big Bang donde nace el universo, y
los comportamientos son similares a los de relatividad general con constante cosmolégica.
Sin embargo, en la[Figura 8| que representa el caso 3a < f3, se tiene que el universo puede

partir tanto de un Big Bang como de un de un tamano infinito para acabar colapsando
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a(t) a(t)

Figura5: w =0, py =170, A =1, a = 4,
B =3~ =10, a(l) = 1, a(1) = 0.8,

Figura 6: w =1/3, pp = 180, A =1, a =
6,8=3 =10, a(l) =1, a(1) = 0.8,

i(1) = 0.6. i(1) = 0.6.
a(t) a(t)
10j 1°f
8| 8
6 6
[ —— HD
4 — GR 4
2 2
1 1 1 1 L t 1 1 1 1 1 t
0 1 2 3 4 5 0 1 2 3 4 5

Figura 7: w = —1, pp =540, A =1, a =
8, 8 =4,v=10,a(l) =1, a(l) = 0.8,
a(1) = 0.6.

Figura 8: w =1/3, pp = 100, A =1, a =
5,8 =16, =10, a(1) = 1, a(1) = 0.8,
a(1) = 0.6.

en un Big Crunch independientemente del contenido de materia considerado.

Cabe destacar que las soluciones isétropas con singularidad inicial como las mostradas

en la [Figura 5| [Figura 6| y [Figura 7| (que ademds se comportan todas ellas como un

universo de Friedmann dominado por radiacién, a(t) ~ t'/? cuando ¢ — 0) son estables a
la presencia de pequenas heterogeneidades escalares, vectoriales y tensoriales por el efecto
de los términos cuadraticos que dominan al acercarse a la singularidad inicial [30]. Esto
es distinto de la relatividad general, donde se presenta una inestabilidad a medida que
t — 0, y ocurre lo mismo si se consideran potencias o funciones generales del término

Ricci-Ricci, indicando que el comportamiento de la gravedad cuadratica es especial.

Por tltimo, la teoria cuadratica tiene un espacio de soluciones tan rico que también
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es posible encontrar soluciones con una expansion a tiempos lejanos y que ademas no
presentan Big Bang en tiempos pretéritos, es decir, son libres de singularidades. Esta
conducta se corresponde con un universo que se contrae hasta un tamano minimo finito
y tras ello vuelve a expandirse. Un ejemplo de este tipo de soluciones, que tunicamente

ocurren en el régimen 3a < [ bajo la presencia de materiaEL se muestra en la [Figura 9

a(t)
10

Figura 9: Solucion libre de singularidades en la teoria cuadratica dada por los pardmetros:
w=0,py=15A=15 a=3,5=16,7v=10,a(l) =1, a(1) = 0.8, a(1) = 0.7.

Varios estudios han tratado de llevar este comportamiento al régimen periddico, empal-
mando contracciones y expansiones del universo de forma continua (Big Bounce/ Ekpyrotic
Universe [31]). No obstante, no estd como puede emerger dicho comportamiento en esta

teoria pues las aproximaciones semicldsicas usadas dejan de ser validas en el Bounce [32].

4. Teoria inflacionaria en gravedad cuadratica

4.1. Descripcion basica del paradigma inflacionario

El modelo estandar cosmoldgico (ACDM) se basa en el hecho observacional de que el

universo es extremadamente homogéneo, isétropo y plano a gran escala.

La cosmologia estdndar predice que el universo primitivo estaba formado por muchas
regiones del espacio causalmente desconectadas. Estos parches de espacio aparentemente
inconexos resulta que tienen aproximadamente las mismas densidades y temperaturas
(por ejemplo, la temperatura del fondo césmico de microondas/CMB es de 2.725K +

0.0002K, sumamente uniforme), lo cual es conocido como el problema del horizonte.

15 A diferencia de lo que ocurria a tiempos futuros, vemos como en tiempos primordiales si emergen
distintos comportamientos cuando se incorpora materia.
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En segundo lugar, nuestro universo parece muy cercano a la planitud siendo su curvatura
espacial global aproximadamente cero, lo cual se conoce como el problema de la planitud.
Con los datos actuales de densidades, se puede inferir que al comienzo del universo éste
era todavia mucho mas cercano a la planitud ideal. No parece demasiado natural que por
puro azar nuestro universo haya escogido ese valor tan finamente ajustado, por lo que

serfa interesante un mecanismo dindmico que explicase por qué el universo es tan plano.

Anadido a estos dos problemas anteriores, también se presenta el problema de los mo-
nopolos magnéticos/de las reliquias exéticas (bordes de dominio, cuerdas césmicas, etc.,
motivadas por teorias de gran unificacién). Hipotéticamente, en el universo primigenio,
con una elevadisima temperatura/muy alta energia, se producirian un gran nimero de
monopolos magnéticos/reliquias exdticas estables y de masas enormes que actualmente

aun no hemos logrado detectar, por lo que deberia haber un motivo para no encontrarlas.

Una respuesta simultanea y satisfactoria tanto teérica como experimental, pues también
explica el origen de las estructuras a gran escala del cosmos mediante perturbaciones
en la densidad de energia, a todos estos problemas reside en el llamado mecanismo de
inflacién, un periodo en el universo temprano que conduce hacia la homogeneidad y la

isotropia observadas, pese a que éste hubiese comenzado en un estado inicial genérico.

La manera mas sencilla y usual de formalizar este mecanismo en la mayoria de modelos
inﬂacionarioﬂ es mediante la introduccién de un campo escalar homogéneo, ¢ = ¢(t),
denominado inflaton, que la genere. Un periodo inflacionario de este tipo se logra mediante
distintas condiciones, a saber: una expansion acelerada (aproximadamente de Sitter), un
pardmetro de Hubble que varia lentamente en el tiempo (se suele denominar slow-roll),
una presion negativa y una densidad de energia constante. Durante la inflacién, la mayor
parte de la densidad de energia en el universo estéd en forma del potencial de inflacion V' (¢),
lo cual esta intimamente ligado con la condicion de slow-roll. La inflacién termina cuando
el potencial se empina y el campo de inflacion adquiere energia cinética, transfiriendo la
energfa almacenada a las distintas particulas del modelo estandar (este proceso se llama

reheating, y empalma satisfactoriamente con el modelo del Big Bang caliente).

El Lagrangiano de materia asociado al campo escalar ¢ es L, = —%8‘@@@ —V(¢), cuya

16Cabe destacar que existen una gran variedad de modelos de inflacién: modelos con un campo escalar
bajo distintos potenciales (cuadrético, de tipo Higgs, periédico, etc.), modelos multicampo, modelos de
gravedad modificada (Starobinsky), modelos de dimensiones extra, etc.
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variacion proporciona la ecuacién de movimiento
¢+3Hd+V'(¢)=0. (39)
Dicha ecuacién para la materia nos permite hacer la identificacion p = %gbz + V(o) y
p= %gzﬁz + V(¢) de manera que se satisfaga la conocida ecuacién de continuidad
p+3H(p+p)=0, (40)

y nos sirve también escribir la ecuacion de estado como

_p_¢—2V(9)
P o+2V(e)

Inflacién se caracteriza por un periodo de casi-de Sitter, donde el parametro de Hubble

(41)

H decrece lentamente con el tiempo (aproximacion slow-roll), es decir, se cumple

H H
— k1 — k1 42
TR 7 A (42
lo cual inspira a definir los parametros de slow-roll € y i de la forma
H H H
0l<e=—— =—— - — 43
‘ H?’ H? 9HH' (43)

que deben ser pequenos durante inflacién (termina cuando se hacen de orden unidad).

En términos del campo escalar ¢ se pueden reescribir las condiciones slow-roll
P <V(p), d<3Hg, (44)
porque de esta forma w ~ —1 (casi-de Sitter), lo que implica que se aproxima como
3HG+V'(p)~0, 3Hop+V"(¢)p~0. (45)

En cuanto a los parametros fenomenologicos relevantes en las observaciones cosmolégicas
primordiales, para la solucién casi-de Sitter inflacionaria el ntimero de e-folds N se define
ty i 2
as H
N =log <—> :/ dtH(t) ~ 3/ dp——-—, (46)
Qi ti X V,(¢)

el inicio de inflacién y “f” el final de la misma. Por otro lado,

@s9
1

indicando el subindice
la amplitud del espectro de potencias escalar primordial A, el indice espectral escalar n,
y el ratio tensor-escalar r vienen dados por
H? H?
As = 1672ve  ST2M2e’
v P

ns=1—6e+2n, r = 16e . (47)

Los ultimos resultados del satélite Planck [5] confirman las siguientes estimaciones y
cotas a los pardmetros fenomenolégicos de la era inflacionaria: 49 < ' < 59 (95% CL),
Ay ~ 1072 ng = 0.9649 + 0.0042 (68 % CL), r < 0.10 (95% CL).
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4.2. Modelo de Starobinsky

Como ya hemos anticipado, el modelo de Starobinsky [6] se describe por la accién

o Qo 1
S:/d4x\/—_g7<R+;R2) ; ;:W7 (48)

con M una escala de masa. Este modelo goza de una gran reputacion cosmologica, prin-
cipalmente porque la curvatura adicional produce una expansion acelerada en el universo
primordial que permite describir el escenario inflacionario con el mejor ajuste de toda
la gama de modelos disponibles actualmente [5]. La gran diferencia del modelo de Sta-
robisnky respecto al resto es que tiene la caracteristica especifica de que no requiere la
introducciéon de un campo de inflatéon a mano, sino que el grado de libertad del inflaton
surge de forma efectiva por anadir un término de curvatura/gravitatorio de orden supe-
rior. En el limite de baja energia, donde R < M?, la teoria se reduce a la relatividad
general con constante cosmoldgica, mientras que cuando R se vuelve comparable con M?

el segundo término se hace relevante y desvia el comportamiento de relatividad general.

Aplicando una transformacién conforme/de Weyl a la métrica de la acciéon (48]) (que en
la jerga se dice que esta en el marco de Jordan), podemos obtener un modelo equivalente
de gravedad ordinariaE (lo que se llama marco de Einstein) acoplada a un campo escalar

¢. Una transformacion conforme es un reescalado de la métrica que depende del punto

Guv — g;u/ = Q(x)Qg;w = €2w(x)g;w ) (49)

donde w(z) = log Q(x). El tensor de Ricci R, y el escalar de Ricci R construidos mediante

la métrica g,., y R/w y R obtenidos de la métrica transformada Juv, se relacionan por
R=0?(R+ 60w — 65" 0wi,w) . (50)

Queremos utilizar esta transformacion para obtener una acciéon en el marco de Einstein
a partir del modelo de Starobinsky, y para ello resulta 1til reescribir la accién (48]) en la

forma equivalente [34]

S = /d4x\/—_g(7FR— U) , (51)

1"Esta caracteristica no es exclusiva del modelo de Starobinsky, sino de cualquier teorfa f(R), todas
ellas son equivalentes a relatividad general acoplada a un campo escalar (escalarén) [33].
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con F'=1+2aR/yy U = v[FR — (R+ aR?/y)] = aR?, de manera que usando la

relacién conforme entre determinantes v/—¢ = Q~*,/—3 la accién queda
S = /d4:v\/ —g [’yFQ_Q (R + 60w — 6§“”0uw8,,w> — Q_4U} ) (52)

La accion se encuentra en el marco de Einstein, esto es, es lineal en R, si se verifica
F = 02 = ¢, Por supuesto, el término Ow es una derivada total cuya integral se
anula por el teorema de Gauss. Ademas del término de Einstein, ha emergido un término
cinético para factor conforme w, por que podemos promocionarlo a un campo escalar ¢
normalizado canénicamente bajo la redefinicién ¢(x) = /12y w(x), sujeto a un potencial
V(¢) = F~2U. Con todo esto, la accién transformada conforme en el marco de Einstein

queda

S = / d*z\/—§ [m - %gwgmaygb — v<¢)} , (53)

que efectivamente es equivalente a la relatividad general con un campo escalar acoplado.

Para determinar el potencial escalar basta con reescribir todo en términos de ¢,

V() = %(1 e = 2 (1 - e@ﬁp)z , (54)
cuyo comportamiento se representa en la|Figura 10l De la forma del potencial reconocemos
dos fases de evolucién del campo escalar. Para valores transplanckianos del campo escalar,
¢ > M, el potencial tiende a la constante %MI?M 2 por lo que se puede dar una inflacién
slow-roll dada la planitud del potencial. Este periodo inflacionario termina cuando ¢ ~
M, y tras esta fase nos encontramos el régimen ¢ < M, donde el potencial se reduce a

1 . .
sM ¢?, de modo que oscila alrededor de ¢ = 0 dando lugar al proceso de reheating.

Las predicciones fenomenoldgicas del modelo de Starobinsky se pueden estudiar tanto en
el marco de Jordan como en el marco de Einstein. En el marco de Jordan basta con tomar
las ecuaciones de campo de la teoriaﬁ , que se reducen a
H—%+%M2H+3HH:O. (55)
Durante el periodo inflacionario, bajo la aproximacién slow-roll , podemos despreciar
los dos primeros términos de (55)) obteniendo entonces H = —MTZ, que conduce a la

solucién casi-de Sitter
M? M?
H(t) ~ H; — ?(t —t), a(t) ~ ajexp | Hi(t —t;) — ﬁ(t —t)? . (56)

18S0n idénticas a la ecuacién cambiando el acoplo o — g por a = 51z y tomando A = 0.
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Figura 10: Potencial escalar de Starobinsky en el marco de Einstein correspondiente
al modelo . La inflacién satisfactoria se produce para valores del campo ¢ > M,,.

La expansion acelerada continua mientras que el que el parametro de slow-roll €=

2

(‘).Mﬁ es menor que de orden uno, esto es, mientras H* > M?, y la inflacién termina cuando

€ ~ 1, es decir, cuando Hy = \/Mé. El niimero de e-foldings durante este periodo es

te M2
N = / dtH(t) ~ Hi(t; —t;) — E(tf — )%, (57)
t

i
como inflacién acaba cuando t; ~ t; + 8L se sigue que
M2

3H? 1
N~ —L~ . 58
M? 2€(t1) ( )

Por otro lado, en el marco de Einstein, podemos obtener los parametros de slow-roll

en términos del potencial escalar como

ME VO A, ) g a0 2)
=5 () ~30-%) e Ty

que efectivamente durante inflacién ¢ > M,, son mucho menores que 1. El parametro de
slow-roll que alcanza antes el orden unidad es €, siendo el valor del campo ¢ ~ 0.94M/,.
El niimero de e-folds en el marco de Einstein se calcula como

& 7 ¢
N(¢) = Mig , dcb‘V/,((Z)) ~ Z (eﬁ% + @Mi) : (60)

p
y se suele hacer una expansion a primer orden en 1/A para obtener ¢(N), resultando los

parametros de slow-roll en

3 1

EZW’ U2N> (61)
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de modo que el indice espectral y el ratio tensor escalar predichos son

nszl—/%/,, r:i—i. (62)
4.3. Modelo de gravedad cuadratica
Consideramos ahora el modelo de gravedad cuadratica de Stelle, descrito por
S = / d*z/=g (YR + aR® — SR, R") . (63)

Tal y como hemos discutido al derivar (34) en la seccién anterior, podemos reescribir el
término Ricci-Ricci en funcién de R?, el invariante topolégico de Gauss-Bonnet Gy el
invariante del tensor de Weyl W2, que en métricas de tipo FRW se anula. Concluimos
entonces que teoria de gravedad cuadratica de Stelle es equivalente en sus predicciones
cosmoldgicas a la teoria de Starobinsky . Todo el anéalisis anterior sobre el modelo

de Starobisnky es idéntico a lo que se obtiene de la teoria cuadratica de Stelle, con la

il
6M2"

la gravedad cuadrética tiene la misma capacidad que el modelo de Starobinsky (el modelo

salvedad de sustituir el acoplo o — g por Esto es muy positivo, pues demuestra que
inflacionario mas robusto actualmente) para explicar inflacién, con la ventaja adicional

de ser una teoria renormalizable.

Cabe destacar que, si se consideran fluctuaciones de la métrica FRW, entonces en las
perturbaciones si aparece la contribucién del tensor de Weyl. En [35] se han analizado
los efectos de dichas perturbaciones sobre los parametros fenomenologicos, y el resultado
es que tanto la amplitud del espectro de potencias escalar A, como el indice espectral
escalar ng son idénticos a los del modelo de Starobinsky, mientras que el ratio tensor

escalar r se ve aiin mas reducido por un factor proporcional a la masa del ghost.

4.4. Modelos mas generales de gravedad cuadratica

Podemos dar un paso mas alld en la construcciéon de modelos inflacionarios basados
en gravedad cuadrética. La generalizacién mdas natural, motivada por las teorfas f(R),

consiste en la siguiente accion

S = / d'z L = / &'z —g (’yR + f(R%,P,Q) — %awa“qa . V(qb)) . (64)

siendo ¢ el campo escalar homogéneo que da cuenta del contenido de materia y donde
f(R?, P,Q) es una funcién suave de R?, P = R, R" vy Q = R,asR"*°. Trabajando
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en una métrica FRW plana , los invariantes de curvatura vienen dados por (17) y
podemos escribir el Lagrangiano con multiplicadores de Lagrange \; asociados a
cada invariante con el fin de tener un Lagrangiano estandar de primer orden pero con

mas variables [30]

L=d {i—Z(X +Y)+ f(R%,P,Q) + 2—22& —~ V() -\ (R — b%(x - y))
—Xo (P — 2—3 (X*+v? +XY)> — X3 ( — g()@ - YQ)H
= % E—Z(X +Y)+ f(R,P,Q) + 2—22& — V() =\ (R — b%(x + Y))
—Ao <P - §R2> — A3 (Q - %R2> - 2—3XY(A2 + 2&)} : (65)

De esta forma, las variaciones del Lagrangiano con respecto a P, () Y R imponen

5—£ = a3b _—5f(R27P’ Q) - )\2} =0 = A= —5f(R2’P7Q> = fP<R2 P Q)

5P | P 5P - O

5L 5 f(R2, P, Of(R* P,

o _%—Ag} _0 — Agzwzmﬁ@y (66)
r 2

OF —an [ELLD) 4 2Ry 40| =0 = A = fu(B2.P.Q) + 2RO+ M),

mientras que las variaciones con respecto a y b tras imponer el gauge b(t) = 1 e introducir

el parametro de Hubble H = a/a son, respectivamente,
. 1 1
6vH? + f(R%,P,Q) = MR+ 6 (A H + M H?) =\, (P - 532) W (Q - §R2>

—12H3(\y + 2)3) = %& +V(g), (67)

. . . . 1
2v(3H? +2vH) + f(R* P,Q) — MR+ 4\ H 4+ 6)\ H? + 2\, + 4\ H — Xy (P - 332>
1 . . . . . 1.
— A3 (Q - §R2) — 8H(H + H*)(Ay +2X3) — 4H?*(\y +2X3) = —§¢2 + V().  (68)

De esta forma, y junto con las expresiones de los multiplicadores de Lagrange
y los invariantes de curvatura (fijando b(t) = 1) determinan completamente la
dindmica de la teoria . De hecho, inicamente nos interesa , puesto que la ecuaciéon

para la materia proveniente de variar £ con respecto al campo ¢ es la conocida

b+3Hd+V'(¢)=0. (69)
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Como ya hemos discutido en la seccion anterior, (67) y no son independientes sino
que derivan una de la otra de forma consistente. En esta ocasion, si derivamos (67) y
usamos entonces encontramos la ecuacion del movimiento del campo de materia ¢,

ligando asi ambas.

Para analizar cémo la funcién general f(R?, P, Q) modifica inflacién, debemos particula-
rizar la ecuacion al caso de solucién casi de Sitter, esto es, H = Hyg >~ cte bajo la
aproximacién slow-roll ¢* < V (), lo cual conduce a

V(6) = 63His + F(Ris, Pas, Qus) — 2 f— Pusfp — Qusfo.  (T0)

siendo Rys = 12H3g, Pys = 36 Hig v Qus = 24Hj5. Ademds, tomando la derivada de (67))
con respecto al tiempo en la aproximacién slow-roll obtenemos las ecuacién para H (y

para H si la derivamos nuevamente) que nos permite hallar los pardmetros € y 7 ,

H [12vH + 12fpH — 144 fpp H® — 5184 fppH" — 6912FpoH" — 2304 foqH"
—1728 frpH® — 1152 frqH°] =~ V'($)¢ , (71)

donde H = Hyg y ¢ ~ —%.

Todas estas herramientas nos permiten entonces fijar un modelo concreto y hacer predic-
ciones inflacionarias sobre el mismo. Con el fin de trabajar con un modelo analitico y que
ademas sea natural, escogemos un potencial cuadratico y una funcién de curvatura dada
por
1

V(p) = §M2¢2 . f(R*,P,Q) = aR™ + BP"+5Q", (72)
con «, 3y 7 constantes con dimensiones de M*~*" siendo n un real. Como inflacién tiene
lugar en el régimen de alta curvatura, podemos despreciar el término de Einstein-Hilbert

frente a los invariantes superiores y obtener de la solucion de tipo de Sitter como

11 9—1-2ng-n ﬁ
Hys=CM3»gm | C= 73
a5 o (n—1) (=12ra — 378 — 210) (73)

la cual para n > 1 obliga que 12"« + 3" + 2™9 < 0. Usando encontramos que H =

—]g—:, generalizando correctamente lo encontrado en el modelo de Starobinsky (n = 1),y

M*(14-2n)
18n2HdS

slow-roll y el nimero de e-folds (46) se escriben

1 M (n+1) M?> =
T onc? on " 3nC?  gw N =3n M2

con la derivada de dicha ecuacién tenemos H = , por lo que los parametros de

(74)
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Aparentemente, obtenemos de forma satisfactoria en que un numero grande de e-
folds (es decir, ¢; > M,,) produce que los pardmetros de slow-roll sean pequenos durante
la inflacion, pues se verifica

o
“Tont1) 2N (75)

de forma consistente y similar a lo obtenido en el modelo de Starobinsky . No obstante,
un andlisis fenomenol6gico con los datos del satélite Planck [5] en mano para el nimero de
e-folds, la amplitud del espectro de potencias, el indice espectral y el ratio tensor-escalar

arroja, respectivamente, los siguientes resultados (Anexo C):

49 < 3nC? {_1 <59, (76)
425\)443 ]\j? =107, ")
1+ (2?:;;21) A{:;l — 0.9649 + 0.0042 , (78)
%Mg#% <0.10. (79)

Independientemente del exponente n escogido en el modelo , las condiciones (76| y
son incompatibles puesto que haciendo el inverso de la dltima obtenemos N > 80,
muy superior a la restriccion de Planck. La condicion , al ser una estimacion de orden
de magnitud, si es compatible y arroja un valor similar al de Starobinsky para la masa del
campo escalar, M ~ 107°M,,. Nuevamente, el ratio tensor-escalar predicho es totalmente
incompatible con las observaciones porque el segundo término del lado izquierdo de

es positivo.

Este breve analisis demuestra que los modelos de tipo potencial cuadréatico y ley de
potencias en gravedad cuadratica se ven muy desfavorecidos con respecto a la gravedad
cuadratica de Stelle. De hecho, con otros potenciales escalares naturales como el potencial
cuartico o de tipo Higgs se obtienen resultados similares (peores en el caso cudrtico que
en el caso Higgsiano), totalmente incompatibles con los datos actuales. En [37] se lleva
a cabo un analisis muy similar para modelos tipo Gauss-Bonnet, distintos al modelo
potencial que hemos analizado, y la tendencia es la misma: la inflaciéon es aparentemente
viable pero los pardmetros fenomenoldgicos predichos no son compatibles con los datos

del satélite Planck, cosa que si ocurre con la gravedad cuadratica de Stelle.
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5. Conclusiones

La gravedad cuadratica es una teoria renormalizable, que proporciona una complecion
ultravioleta de la relatividad general y que, en nuestra opinion, es una candidata valida
como teoria de gravedad cuantica. No obstante, no es una teoria totalmente consistente.
Diversos conceptos usualmente asumidos de forma ortodoxa en teoria cuantica de campos,
como la unitariedad o la causalidad (lo cual no es sorprendente, pues en un espaciotiempo
cudntico, fluctuante, no esté claro como mantener dicho concepto), deben ser formula-
dos de forma extremedamente cuidadosa, ain objeto de investigacion actual, para que
sea una teoria totalmente consistente. El problema de los grados de libertad ghost esta
intimamente relacionado con estos principios basicos de una teoria de campos cuanticos
relativista, y hemos visto como, pese a las ingeniosas ideas presentes en la literatura,

sigue siendo necesario explorar en profundidad la teoria para cimentar sus fundamentos.

También hemos analizado las soluciones cosmologicas de la teoria cuadratica. Hemos
demostrado que los espacios maximalmente simétricos en 4 dimensiones y las soluciones
de vacio de la relatividad general son también solucion de la teoria con altas derivadas,
aunque esta ultima presenta soluciones adicionales sin contrapartida Einsteniana. Hemos
sido capaces de reducir la gravedad cuadratica de Stelle a una teoria de tipo Starobinsky
en lo que a cuestiones cosmologicas se refiere, puesto que el tensor de Weyl es nulo en
métricas FRW. A partir de ese resultado, hemos obtenido soluciones tipo de Sitter y
hemos estudiado su estabilidad, comprobando que si 3a > [ (rama estable) se tiene
una expansion continua del universo, pero si 3o < [ (rama inestable, la masa de la
particula adicional se hace imaginaria) el universo tiende a colapsar. En cuanto a la
singularidad inicial, hemos encontrado soluciones que tienen Big Bang seguido de una
expansiéon continua (3a > ) o de un Big Crunch (3a < (), otras que no tienen Big Bang
y acaban colapsando a un Big Crunch (3a < ) y otras que no tienen ni Big Bang ni Big
Crunch (3a < ).

Por ultimo, hemos estudiado el paradigma inflacionario en la teoria de Starobinsky hacien-
do emerger un campo escalar oculto en un término de curvatura superior mediante una
transformacion conforme. Hemos visto que las predicciones del modelo de Starobisnky son
idénticas a la teoria de Stelle, teniendo esta la ventaja de ser renormalizable. Por tdltimo,
hemos generalizado la teoria cuadratica con un modelo potencial genérico y hemos visto

que sus predicciones inflacionarias son peores que las de la gravedad cuadratica ordinaria.
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Anexo A. Notaciéon y convenios

A lo largo del trabajo empleamos un sistema de unidades que verifique h = ¢ = 1, de
manera que £ = M = L=' = T-! donde E, M, L y T son, respectivamente, dimensiones

de energia, masa, longitud y tiempo.

Usamos también el convenio de sumacion de Einstein, asumiendo siempre una suma sobre
un indice cuando el mismo aparezca repetido arriba (contravariante) y abajo (covariante).
Por tltimo, las letras griegas (indicando indices espaciotemporales) p, v, «, ... tomaran
valores de 0 a 3 y las letras latinas (indicando indices puramente espaciales) i, 7, k, . ..

tomaran valores de 1 a 3.

Denotamos la derivada parcial con respecto a la coordenada x* como

0

T o

Oy

El operador Laplaciano [ se define como 1 = V#V,, siendo V,, la derivada covariante.

Abusamos de lenguaje llamando Lagrangiano o Hamiltoniano a lo que en realidad es una

densidad Lagrangiana o Hamiltoniana, que denotamos por £ y H, respectivamente.

UV o ultravioleta hacen referencia a alta energia, mientras que IR o infrarrojo hacen

referencia a baja energia.

La métrica g,,, cuyo determinante denotamos por g = det g,,, tiene signatura mostly

plus (—,+,+,+). Esta métrica tiene asociada una conexion afin dada por

1 (0%
F;);u = 59)\ (augua + az/g,ua - aaﬂ/w) .

A partir de la conexién se puede construir el tensor de curvatura de Riemann como

— A A
Rr ouv aﬂrgu - al/Fg,u + FZ)\FO'I/ - Flfj)\rau )

que contrayendo su primer y tercer indice da lugar al tensor de Ricci R, cuya traza

proporciona la curvatura escalar del espaciotiempo R:

R, =R’ R=g¢"R,, .

wpv



Anexo B. Equivalencia entre el formalismo
Lagrangiano restringido y general

1= ClearAll["Global™ »"]
Needs ["VariationalMethods™ "]

= Lagrangiano sin materia pero con constante cosmolégica

= N =4;
coord = {t, x, y, z};
metric = {{-b[t] "2, 0, 0, O}, {0, a[t] "2, @, O}, {0, 0, a[t]"2, @}, {0, 0, 0, a[t] "2}};

inversemetric = Simplify[Inverse[metric]];

affine := affine =
Simplify[Table| (1/2) * Sum[inversemetric[[i, s]] » (D[metric[[s, j11, coord[[k]]] +

D[metric[[s, k1], coord[[j]]] -D[metric[[]j, k11, coord[[s]]]),

{s, 1, n}], {i, 1, n}, {3, 1, n}, {k, 1, n}]];
riemann := riemann = Simplify[Table[D[affine[[i, j, 1]1], coord[[k]]] -

D[affine[[i, j, k1], coord[[1]]] +
Sum[affine[[s, j, 1]] = affine[[i, k, s]] - affine[[s, j, k1] » affine[[i, 1, s]],

{s, 1, n}1, {i, 1, n}, {Jj, 1, n}, {k, 1, n}, {1, 1, n}]];
ricci := ricci = Simplify[Table[Sum[riemann[[i, j, i, 1]], {i, 1, n}],

{j, 1, n}, {1, 1, n}]1]

R = Simplify[Sum[inversemetric[[i, j]] * ricci[[i, jI]1, {i, 1, n}, {j, 1, n}]1];

Riem2 = Sum[ricci[[i, k]] inversemetric[[i, 1]] inversemetric[[k, m]] ricci[[1l, m]],
{i, 1, 43}, {k, 1, 4}, {1, 1, 4}, {m, 1, 4}] // Simplify;

R2 = R"2;

L = FullSimplify[b[t] xa[t] "3+ (¥ * (R-2%A) +a*R2- 3 »Riem2) ]

1 ) , o . )
oufe} —————— (a (6a[t]a’[t] b'[t] -6b[t] (a'[t]2+a[t]a”[t]))’+
a[t] b[t]®
yvalt]®?b[t]? (-2nra[t]?b[t]’-6a[t]a'[t] b’ [t] +6b[t] (a'[t]*+alt]a”[t])) -
/3(9a[t]2(a’[t] b’[t}—b[t]a”[t])2+

3 (alt]a’[t] b’ [t] -b[t] (2a'[t]>+a[t] a”[t]))z))
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In[e]:=

In[e]:=

In[e]:=

In[e]:=

Infe]:=

Outf« ]=

In[«]:=

In[e]:=

In[«]:=

In[«]:=

LagrangianoA =
1

a[t] b[t]®
(-2aa[t]’b[t]®-6a[t] a’'[t] b'[t] +6b[t] (a'[t]®+a[t] a”[t])) -8 (9a[t]2
(a[t] b [t] -b[t]a”[t])*+3 (a[t]a [t] b'[t] -b[t] (2a'[t]%+a[t] a”[tl))z))E

(a (6a[t] a’[t] b [t] -6b[t] (a'[t]®+a[t] a”[t]))2+7a[t]2b[t]3

EulerEquations [LagrangianoA, b[t], t];

EcbLagrangianoa =
36 (-3a+p)a[t]* 24 (3a-B)a[t]?(-a’'[t] b [t]+b[t]a"[t])
+ +

a[t]brty* b[t]®

-2yAa[t]3+

—6a[t] (yb[t]*a'[t]®+10 (3a-B) a'[t]*b'[t]?-4 (3a- ) b[t] a'[t]
b[t]

(2b’[t] a”[t] +a'[t]1 b"[t]) -2 (3a-B) b[t]* (a”[t]1*>-2a'[t] a® [t]));
EulerEquations [LagrangianoA, a[t], t];

EcalLagrangianoa = — 1 & (-yaa[t]*b[t]” +
a[t]?b[t]®

6 (3a-B)b[t]*a’[t]1*-24 (3a-B) a[t] b[t]*a’[t]* (-a'[t] b [t] +b[t]a”[t]) +
a[t]?b[t] (yb[t]*a [t]*+30 (3a-B)a [t]1’b'[t]1*-4 (3a-B)b[t]a'[t]

(9b’[t]a”[t] +2a [t] b’ [t]) +2 (3a-B) b[t]* (3a”[t]*+4a'[t]a® [t])) +
2a[t]® (-yb[t]*a’[t] b'[t] +30 (-3a+B) a'[t] b’ [t]®+yb[t]®a”[t] +

10 (3a-B) b[t] b [t] (3b'[t]a”[t]+2a [t] b"[t]) -2 (3a-B)b[t]?
(4a”[t]b’[t] +6b [t]a® [t] +a’ [t] b® [t]) +2 (3a-B) b[t]1*a® [t]));

= prueba de que no son independientes sin afiadir materia, pero con constante cosmoldgica

FullSimplify [D[EcbLagrangianoa , t] == Ecalagrangianoaxa'[t] /b[t]]

True

= Lagrangiano sin materia y sin constante cosmoldgica

Lagrangiano =
6/ (a[t] xb[t]~5)  (y*a[t]"2xb[t]"4xa'[t]"2+2x (3*xa-B) xb[t]"2+a'[t] 4+
2% (3xa-B) xa[t]"2«b[t]"2«a' " [t]"2+2% (3xa-B) xa[t]"2xa’'[t]1 2%
b'[t]"2+ (yxa[t]*3xb[t]"4+2% (6xa-B) xa[t] xb[t]"2+a'[t]"2) xa'" [t] -
(7*3[‘t]"3*b[t]"3*a'[t] +2% (6xa-B) xa[t] xb[t] xa'[t]"3+
4% (3xa-pB) »a[t]"2xb[t] xa'[t] xa'"[t]) «b'[t]);

EulerEquations[Lagrangiano, b[t], t];

EcbLagrangiano = _r 6
a[t] b[t]®
(6 (-3a+B) b[t]?a’ [t]*+4 (3a-B)a[t] b[t] a'[t]? (-a'[t] b'[t] +b[t] a”[t]) +
a[t]? (yb[t]*a'[t]1*>+10 (3a-B) a' [t]*b'[t]*-4 (3a-B) b[t] a'[t]
(2b'[t]a”[t] +a’ [t] b’ [t]) -2 (3a-B) b[t]? (a”[t]1*-2a'[t]a® [t])));

EulerEquations [Lagrangiano, a[t], t];
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1
mn[-]= EcaLagrangiano = ——— 6
a[t]?b[t]®

(6 (3a-B)b[t1*a’[t]*-24 (3a-B)a[t] b[t]?a’ [t]? (-a'[t] b [t] +b[t]a”[t]) +
a[t]?b[t] (yb[t]*a [t]?+30 (3a-B)a'[t]1’b'[t]1*-4 (3a-B)b[t] a'[t]
(9b'[t]a”[t] +2a’ [t] b’ [t]) +2 (3a-B) b[t]? (3a”[t]*+4a' [t] a® [t])) +
2a[t]® (-yb[t]*a’[t] b’ [t] +30 (-3a+B) a’[t] b’ [t]®+yb[t]®a”[t] +
10 (3a-B) b[t] b [t] (3b'[t]a”[t] +2a [t] b"[t]) -2 (3a-B)b[t]?
(4a”[t] b’[t] +6b [t]a® [t] +a’ [t] b® [t]) +2 (3a-B) b[t]*a® [t]));

= prueba de que no son independientes sin afiadir materia y sin cte cosmoldgica

Inf+]-= Fullsimpli-Fy[D[Echagr‘angianoA » t] == EcalLagrangianoA x a'[t] /b[t]]

outf-]= True

= VAMOS AVER AHORA QUE LO DE ARRIBA ES EQUIVALENTE A LAS ECUACIONES DE CAMPO
= constante cosmoldgica pero sin materia

1= ECOOA =
_r
2a[t]*b[t]?
24 (3a-B) xa[t] xb[t]~2% (a'[t])"2xa'"[t] +12% (3a-B) xa[t] 2«
b[t]~2+ (a''[t])"2-24% (3a-B) xa[t]"2xb[t]"2+a"'[t] «a"'""[t] -
60+ (3a-pB) «a[t]~2« (a'[t])~2« (b'[t])"2+24% (3a-B) «a[t] 2«
bit] = (a'[t])"2+b'"[t] +24 ((3a-B) xa[t] xb[t] « (a'[t])" 3+
2% (3a-B) xa[t]~"2xb[t] xa'[t] xa'"'[t]) »xb'[t] +2+y*xAxa[t]"4xb[t]"6);
EciiA:—; (2%xy=*a[t]~2b[t] "5« (a'[t])"2+12 (3a-B) xb[t]"3a'[t] 4+
2a[t]?b[t]?
12 (3a-B) *a[t]"2+b[t]1 "3 (a'"[t]) 2+
16 (3a-B) »a[t]"2xb[t]1"3xa'[t] »a'""[t] +
8 (3a-B) »a[t]"3xb[t]"3+a'""'[t] -120 (3a-B) *a[t]~3xa'[t] » (b'[t])"3-
8 (3a-pB) xa[t]~3«b[t]*2xa"[t]1«b'""[t] +
60 ((3a-B) »a[t]~2b[t] » (a'[t])"2+2 (3a-B) xa[t]~3b[t] xa''[t])b'[t] 2+
4 (y*a[t]”~3b[t]~5-12 (3a-B) »a[t] xb[t]1~3« (a'[t]"2))a"'"[t] -
4 (y~a[t]~3b[t]"4a'[t] -12 (3a-B) xa[t] xb[t]"2*a'[t]"3+18 (3a-B) «
a[t]~2xb[t]~2a'[t]a’'"[t] +12 (3a-B) xa[t]"3xb[t]"2a" ' "[t]) b'[t] -
16 ((3a-B) »a[t]"2xb[t] "2« (a'[t])"2+2 (3a-B) »a[t]*3xb[t] 2xa ' [t] -
5(3a-B) «a[t]”3«b[t] xa'[t]«b'[t])b' ' [t] -2xy*xAxa[t]"4xb[t]"7);

(-6yxa[t]"2xb[t] 4« (a'[t])"2+36* (3a-B) xb[t]"2x (a'[t])"4-

Inf+]:= Fullsimplify[Echagr‘angianoA ==2=x*a[t] "3/b[t] A2 % EcaeA]

out/-]= True

mnf-}= FullSimplify[EcalLagrangianoA == -6 * b[t] EciiA]

out/-]= True

= Sin constante cosmoldgica y sin materia
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m-1= ECOO =
o -6y*a[t]"2+b[t]"4x (a'[t])"2+36x (3a-B) xb[t]"2x (a'[t])"4-
2a[t]*b[t]* (
24 (3a-B) xa[t] xb[t]"2« (a'[t])~2xa'"[t] +12% (3a-B) xa[t] 2«
b[t]~2x (a''[t])*2-24% (3a-B) xa[t]"2«b[t]"2+a'[t] xa ' "[t]-
60+ (3a-B) «a[t]~2« (a'[t]) 2« (b'[t])"2+24% (3a-B) «a[t] 2«
b[t] » (a'[t])"2xb'"[t] +24« ((3a-B) »a[t] »b[t]  (a'[t]) 3+
2% (3a-B) xa[t]*2«b[t] xa'[t]l*a''[t]) xb'[t]);
Ecii:-; (2#y+a[t]~2b[t]1"5% (a'[t])~2+12 (3a-B) «xb[t]*3a'[t] 4+
2a[t]?b[t]’
12 (3a-B) xa[t]"2+b[t]1 "3 (a'"'[t]) 2+
16 (3a-B) xa[t]~"2«b[t]1"3xa'[t] xa"'"'[t] +
8 (3a-pB) «a[t]~3«b[t]~3xa"""'[t] -120 (3a-B) xa[t]"3«a'[t] = (b'[t])"3-
8 (3a-p) «a[t]~3«b[t]*2xa"'[t]«b'""[t] +
60 ((3a-B) »a[t]~"2b[t] » (a'[t])"2+2 (3a-B) «a[t]~3b[t]«a''[t])b'[t]" 2+
4 (y~a[t]"3b[t]"5-12 (3a-B) *a[t] xb[t] "3« (a'[t]1"2))a"'[t] -
4 (yxa[t]~3b[t]"4a'[t] -12 (3a-B) xa[t] *b[t]"2+a'[t]*3+18 (3a-pB) *
a[t]~2+b[t]~2a'[t]a"''[t] +12 (3a—/3) *a[t]"3*b[t]"Za"'[t]) b'[t] -
16 ((3a-B) »a[t]"2xb[t] "2« (a'[t])"2+2 (3a-B) xa[t] 3 xb[t] 2xa"'"[t] -
5(3a-B)*a[t]”3xb[t] xa'[t] xb'[t]) b'"[t]);

n-1- FullSimplify [EcbLagrangiano == 2+ a[t]~3 /b[t] "2 » Ecee]

ou-]= True
mf-}= FullSimplify[EcalLagrangiano == -6 x b[t] Ecii]
ouf-]= True

= VAMOS AL CASO CON MATERIAY CON CONSTANTE COSMOLOGICA

ner= p[t] =dwxalt]~ (-3% (1+w));

Plt] =wxp[t];
EcbLagrangianoAp = EcbLagrangianoA -a[t]*3xp[t];
EcaLagrangianoAp = EcaLagrangianoA +3 xa[t]”*2xb[t] xp[t];

= prueba de que no son independientes con materia y constante cosmoldgica
Inf+]-= Fullsimpli-Fy[D[Echagr‘angianoAp , t] == EcaLagrangianoap xa ' [t] /b[t]]
outf-]= True

= Demostramos que es equivalente a las ecuaciones de campo
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1= ECOOAp = o (a[t]1 "4 xb[t]"6xp[t] -6y *a[t]"2xb[t] "4« (a'[t]) 2+
2a[t]*b[t]*
36+ (3a-B) «b[t]~2« (a'[t])"4-24 (3a-B) xa[t] xb[t]1"2x (a'[t])"2«a'"[t]+
12+ (3a-B) «a[t]*2«b[t]"2« (a'"[t])"2-24x (3a-B) xa[t] 2«
b[t]~2+a'[t]«a'"'[t] -60* (3a-B) xa[t]~2 (a'[t]) 2« (b'[t])"2+
24+ (3a-B) *a[t]"2xb[t] = (a'[t])"2xb"'"[t] +24«
((3a-B) *a[t] »xb[t] » (a'[t])"3+2% (3a-B) *a[t]"2«b[t] xa'[t]*a'"[t]) *
b'[t] +2+y*Axa[t]*4xb[t]"6);
Eciiap = o (a[t]1~4+b[t]"7+p[t] +2xy*a[t] 2b[t] 5« (a'[t]) 2+
2a[t]?b[t]?
12 (3a-B) xb[t]"3a'[t]"4+12 (3a-B) xa[t]"2xb[t]1"3 % (a''[t]) 2+
16 (3a-B) »a[t]"2xb[t]"3xa'[t] xa'""'[t]+
8 (3a-p)«a[t]~3«b[t]”3xa"'""'[t] -120 (3a-B) «a[t]"3+a'[t] « (b'[t])"3-
8 (3a-B) »a[t]"3xb[t]"2+a'[t] «b'""[t] +
60 ((3a-B) »a[t]"2b[t] » (a'[t])~2+2 (3a-B) «a[t]~3b[t]«a'"[t]) b [t]" 2+
4 (y*a[t]”~3b[t]"5-12 (3a-B) »a[t] xb[t]1"3« (a'[t]"2))a"'"[t] -
4 (yxa[t]~3b[t]"4a'[t] -12 (3a-B) xa[t] *b[t]"2+a'[t]*3+18 (3a-pB) *
a[t]~2«b[t]~2a'[t]a''[t] +12 (3a-B) xa[t]*3«b[t]~2a"''"[t]) b'[t] -
16 ((3a-B) »a[t]"2xb[t] "2 (a'[t])"2+2 (3a-B) »a[t]*3xb[t]*2xa ' "[t] -
5(3a-B) «a[t]”3«b[t] xa'[t]«b'[t])b' ' [t] -2xyxAxa[t]"4«b[t]"7);

n-1= FullSimplify [EcbLagrangianonp == 2 xa[t]~3 /b[t] "2 » Eceeap]

out/-]= True

mnf-}= FullSimplify[EcalagrangianoAp == -6 * b[t] » Eciiap]

out/-]= True
n-1= FullSimplify [D[Ec@@rp, t] ==

-3 % Eciinp »a'[t] +b[t]~2/a[t] "3 +Ec@@Ap » (-3xa'[t] /a[t] +2b'[t] /b[t])]
out/-]= True
= VAMOS AL CASO CON MATERIAY SIN CONSTANTE COSMOLOGICA

np= p[t] =dwxalt]~(-3% (1+w));

plt] =w=*p[t];
EcbLagrangianop = EcbLagrangiano - a[t]*3 xp[t];
EcaLagrangianop = EcalLagrangiano +3xa[t]*2xb[t] *p[t];

= prueba de que no son independientes con materia y sin constante cosmoldgica
Inf+]:= Fullsimpli-Fy[D[EchagrangianOp » t] == EcalLagrangianop * a ' [t] /b[t]]
outf-J= True

m Demostramos que es equivalente a las ecuaciones de campo
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n-1= ECOOp =
-+ (a[t] "4 +b[t]"6xp[t] -6y *a[t]"2xb[t] 4« (a'[t])"2+36x (3a-B) *
2a[t]*b[t]*

b[t]~2+ (a'[t])~4-24 (3a-B) »a[t] xb[t]1"2x (a'[t])"2+a'"'[t] +12x (3a-B) *

a[t]~2xb[t]1~2% (a''[t])"2-24% (3a-B) xa[t]"2«b[t]"2«a'[t] xa'""[t] -

60+ (3a-pB) «a[t]~2+ (a'[t]) 2« (b'[t])"2+24% (3a-B) «a[t]"2«b[t] «

(a'[t])"2%b""[t] +24% ((3a-B) »a[t] b[t] = (a'[t])" 3+
2% (3a-B) xa[t]*2«b[t] xa'[t]l*a''[t]) xb'[t]);

Eciip = o (a[t]"4«b[t] 7 «p[t] +2xy*a[t]"2b[t] 5« (a'[t]) 2+

2a[t]?b[t]?

12 (3a-B) xb[t]"3a'[t]"4+12 (3a-B) xa[t]"2xb[t]1 "3 (a''[t]) 2+

16 (3a-B) xa[t]~"2«b[t]1"3xa'[t] xa"'"'[t] +

8 (3a-pB) «a[t]~3«b[t]~3xa"""'[t] -120 (3a-B) xa[t]"3«a'[t] = (b'[t])"3-

8 (3a-p) «a[t]~3«b[t]*2xa"'[t]«b'""[t] +

60 ((3a-B) »a[t]~"2b[t] » (a'[t])"2+2 (3a-B) «a[t]~3b[t]«a''[t])b'[t]" 2+

4 (y~a[t]"3b[t]"5-12 (3a-B) *a[t] xb[t] "3« (a'[t]1"2))a"'[t] -

4 (yxa[t]~3b[t]"4a'[t] -12 (3a-B) xa[t] *b[t]"2+a'[t]*3+18 (3a-pB) *
a[t]~2+b[t]~2a'[t]a"''[t] +12 (3a—/3) *a[t]"3*b[t]"Za"'[t]) b'[t] -

16 ((3a-B) »a[t]"2xb[t] "2« (a'[t])"2+2 (3a-B) xa[t] 3 xb[t] 2xa"'"[t] -
5(3a-B)*a[t]”3xb[t] xa'[t] xb'[t]) b'"[t]);

1= FullSimplify[EcbLagrangianop == 2+ a[t] 3 /b[t] "2 » Ece@p]

out/-]= True
nf-}= FullSimplify[EcalLagrangianop == -6 *b[t] % Eciip]
ouf-]= True

1= FullSimplify [D[Ec@@p, t] ==

-3« Eciip »a'[t] »b[t]~2/a[t]"3+Ec@0p * (-3xa'[t] /a[t] +2b"'[t] /b[t])]

outf-]= True



Anexo C. Desarrollo explicito del modelo
inflacionario

nf-}= ClearAll["Global™ "]

Needs ["VariationalMethods™ "]

mop= R=12%xH[t]~"2+6 xH'[t];
P=12x (H'[t]"2+3*H[t]"4+3%H'[t] xH[t]"2);
Q=12+ (H'[t]"2+2+H[t] "4 +2+H'[t] xH[t]"2);
G=24xH[t]"2% (H[t]"2+H"[t]);
A2 = fO@LO (R, P, Q];
23 = f©2V R, P, Q];
AL = fFBOO R, P, Q] +2/3%R* (22+23);

= Ecb particularizada al caso HdS aprox cte (en slow-roll despreciamos ¢’ [t]2 << V[¢[t]] aqui)
n1= Expand[1 /2% ¢ [t]1* +V[$[t]] == 6y x H[t] "2+ F[R, P, Q] - A1 R+

6% (D[AL, t] »H[t] + A1« H[t]"2) - A2 » (P—1/3*R"2) -A3 % (Q—1/3*R"2) -

12 «H[t] "3 % (D[A2, t] +2%D[A3, t])] /. {H'[t] > @, H''[t] > @}

1 2
OWJ:V[¢[t]}+£'W[t} =
Fl12H[t]2, 36 H[t]%, 24H[t]*] + 6y H[t]2 - 24 H[t]* (@D [12H[t]2, 36 H[t]*, 24H[t]*] -
36 H[t]* £ @19 [12H[t])?, 36 H[t]%, 24H[t]*] -6 H[t]2 F 122 [12H[t]?, 36 H[t]*, 24 H[t]*]

m Ahora queremos hacer la derivada de Ecb con respecto al tiempo para sacar epsilon slow-roll
(despreciamos ¢’ [t] aqui)
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Inf+ J= Expand[D[1/2*¢'[t]2+V[¢[t]] ==6+y*xH[t]~2+Ff[R, P, Q] -
AL%R+6 (D[AL, t] »H[t] + AL+ H[t]~2) -2+ (P-1/3%R"2) -
A3 (Q-1/3%R"2) -12«H[t] 3+ (D[A2, t] +2%D[A3, t]), t]] /.

{f®O9 [12H[t]? + 6 H [t], 12 (3H[t]*+ 3H[t]?H [t] + H [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fR, F©@1O [12H[t]? + 6 H [t],
12 (3H[t]*+3H[t]>H [t] + H'[t]?), 12 (2H[t]* + 2H[t]?H [t] + H'[t]?)] = fP,
£(0,0,1) [12H[t]2+6H’[t], 12 (3H[t]4+3H[t]2H’[t] +H’[t]2),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fQ, F 1O [12H[t]? + 6 H [t],
12 (3H[t]*+3H[t]>H [t] + H'[t]?), 12 (2H[t]* + 2H[t]?H' [t] + H' [t]?)] > RP,
FOOD [12H[t]2 + 6H [t], 12 (3H[t]*+3H[t]*H [t] +H [t]?),
12 (2H[t]*+ 2H[t]?H [t] + H' [t]?)] = fRQ, F(&1V [12H[t]? + 6 H [t],
2 (3H[t]* +3H[t]?H [t] +H [t]?), 12 (2H[t]*+ 2H[t]*>H [t] + H'[t]?)] =» FPQ,
200 [12H[t]?+ 6H [t], 12 (3H[t]*+3H[t]*H [t] + H' [t]?),
12 (2H[t]*+ 2H[t]?H [t] + H' [t]?)] = fRR, £(®29 [12H[t]* + 6 H'[t],
12 (3H[t]*+3H[t]?H [t] + H [t]?), 12 (2H[t]*+ 2H[t]?H [t] + H'[t]?)] = fPP,
FOOD [12H[t]?+ 6H [t], 12 (3H[t]*+3H[t]*H [t] +H' [t]?),
12 (2H[t]*+2H[t]?H [t] + H' [t]?)] = fQQ} /.
{H''[t] >0, H'""[t] >0, H'[t]*2-50, H'[t]*3-50, H'[t]*4 >0,
H'[t]~5- 0}
oup-1= V' [ [t]] @' [t] +¢"[t] &7 [t] ==
12 fRH[t] H'[t] +12yH[t} H [t] - 144 fRRH[t]3 H [t] - 1728 fFRPH[t] > H'[t] -
1152 FRQH[t]° H' [t] - 5184 FPPH[t]7 H' [t] - 6912 fFPQH[t]7 H [t] - 2304 FQQH[t]’ H' [t]

= Para comprobar que esta bien tenemos el notebook de comprobacién, donde la ecuacion Eca
junto con la derivada de la ecuacion Ecb permite verificar que proporciona la ecuacion del
campo cuando las juntamos.

= Haciendo de nuevo la derivada de la ecuacidn anterior (derivada de Ecb) tenemos la ecuacion
para el segundo parametro de slow-roll
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Inf+ J= Expand[D[1/2*¢'[t]2+V[¢[t]] ==6+y*xH[t]~2+Ff[R, P, Q] -
AL%R+6 (D[AL, t] »H[t] + AL+ H[t]~2) -2+ (P-1/3%R"2) -
A3 (Q-1/3%R"2) -12%H[t] "3+ (D[A2, t] +2%D[A3, t]), {t, 2}]] /.

{f®O9 [12H[t]? + 6 H [t], 12 (3H[t]*+ 3H[t]?H [t] + H [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fR, F©@1O [12H[t]? + 6 H [t],
12 (3H[t]*+3H[t]>H [t] + H'[t]?), 12 (2H[t]* + 2H[t]?H [t] + H'[t]?)] = fP,
fFOOD[12H[t]? + 6H [t], 12 (3H[t]* + 3H[t]?H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fQ, F 1O [12H[t]? + 6 H [t],
12 (3H[t]*+3H[t]>H [t] + H'[t]?), 12 (2H[t]* + 2H[t]?H' [t] + H' [t]?)] > RP,
FOOD [12H[t]2 + 6H [t], 12 (3H[t]*+3H[t]*H [t] +H [t]?),
12 (2H[t]*+ 2H[t]?H [t] + H' [t]?)] = fRQ, F(&1V [12H[t]? + 6 H [t],
12 (3H[t]*+3H[t]H [t] + H'[t]?), 12 (2H[t]* + 2H[t]?H' [t] + H'[t]?)] = fPQ,
200 [12H[t]?+ 6H [t], 12 (3H[t]*+3H[t]*H [t] + H' [t]?),
12 (2H[t]*+ 2H[t]?H [t] + H' [t]?)] = fRR, £(®29 [12H[t]* + 6 H'[t],
12 (3H[t]*+3H[t]?H [t] + H [t]?), 12 (2H[t]*+ 2H[t]?H [t] + H'[t]?)] = fPP,
FOOD [12H[t]?+ 6H [t], 12 (3H[t]*+3H[t]*H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fQQ,
FOLU12H[t]2 + 6H [t], 12 (3H[t]*+3H[t]*H [t] +H' [t]?),
12 (2H[t]* + 2H[t]?H [t] + H' [t]?)] = FRPQ, F(®®3) [12H[t]? + 6 H'[t],
12 (3H[t]*+ 3H[t]?H [t] +H [t]?), 12 (2H[t]*+ 2H[t]?H [t] + H'[t]?)] = fQQQ,
FOOO [12H[t]?+ 6H [t], 12 (3H[t]*+3H[t]*H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]?H [t] + H' [t]?)] = fRRR, £®>® [12H[t]? + 6 H [t],
12 (3H[t]*+3H[t]?H [t] + H [t]?), 12 (2H[t]*+ 2H[t]?H [t] + H'[t]?)] = fPPP,
FOHOD[12H[t]? + 6 H [t], 12 (3H[t]* + 3H[t]?H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fRQQ,
FO2O [12H[t]2+ 6H [t], 12 (3H[t]*+3H[t]*H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]?H [t] +H [t]?)] = FRPP, £ @12 [12H[t]? + 6 H' [t],
12 (3H[t]*+ 3H[t]?H [t] + H [t]?), 12 (2H[t]*+ 2H[t]?H [t] + H'[t]?)] = fPQQ,
FO2D[12H[t]?+ 6H [t], 12 (3H[t]*+3H[t]*H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] =» fPPQ, £ 1O [12H[t]? + 6 H [t],
12 (3H[t]%+3H[t]?H [t] + H [t]?), 12 (2H[t]*+ 2H[t]?H [t] + H'[t]?)] > fRRP,
fFEOU[12H[t]? + 6 H [t], 12 (3H[t]* + 3H[t]?H [t] +H' [t]?),
12 (2H[t]*+ 2H[t]? H [t] + H' [t]?)] = fRRQ} /.
{H'''[t] >0, H"""'"[t] >0, H'[t]"250,H'[t]*"3 50, H'[t]*4>0,
H'[t]*550,H'[t]"650, H'[t]*"7 >0, H'[t] *xH''[t] > O,
H''[t]*2-50,H''[t]*3-50, H'[t]*2%H"'[t] > 0}
oup-l= ' [PV [@[E]] +V [O[t]] ¢ [t] +¢” [t]2+ ¢ [t] 0P [t] =
12 FRH[t] H”[t] + 12 yH[t] H'[t] - 144 fRRH[t]3 H"[t] - 1728 FRPH[t]° H"[t] -
1152 fFRQH[t]° H'[t] - 5184 fPPH[t]’ H'[t] - 6912 fPQH[t]” H'[t] - 2304 FQQH[t]” H" [t]

= VAMOS AL MODELO EN CUESTION
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f:a*R"(Z*n) +B*P*n+5%Q” n;

fR=2*n*axR*(2xn-1);

fRR = (2%n-1) *2«n*axR"(2+n-2);

fP=nxBxP"(n-1);

fPP = (n-1) xn«B*P~(n-2);

fQ=n+5+Q"(n-1);

fQQ= (n-1) xn«6%Q~(n-2);

VIp] =1/2%M 2% ¢"2;

FullSimplify[V[¢] == f- 6 FRH[t]? + 6 Y H[t]* - 36 fPH[t]* - 24 fQH[t]*] /.

{H'[t] » 0, ¥y 0}

(xEsta es Ecb particularizada a HdS)
MZ @2
2
12" (22” 3o (H{t]2)2"+3" B (H[t]*)"+2"6 (H[t}“)”)

Outf«]=

= -2%" 32"no (H[t]?)*"+ 12" nH[t)* (-3"5 (H[t1%) * " -2ns (H[t]“)’l*”) "

(xPara encontrar HdS la resolvemos, usando x=H”" (4xn) por comodidad)

MZZ

1= Solve| =-2""32"nax+12"n (-3"Bx-2"6x) +12" (22"« 3"ax+3"Bx+2"5x), x|

2

2-1-2n 3-n M2 (DZ
(-1+n) (22" 3"a+3"B+2"5)

Outf«]J= {{X% -

}}

(xVamos ahora a la Ecb derivada,
que nos permite encontrar H' para asi hallar epsilon,
despreciamos E-H en alta curvatura de inflacion y H"2>>H')

Inf+]= Fullsimpli-Fy[lz fRH[t] H [t] + 12y H[t] H' [t] - 144 fRRH[t]3H [t] - 5184 fPPH[t]” H' [t] -
2304 fQQH[t]” H'[t] = D[V[é], 6] * (-D[V[¢], ¢1/ (3*H[t]))] /. {¥ > @)}

ou- - 3" 4Y"nH[t] H [t] (72 3" (~1+2n) aH[t]? (2H[E]2+H [t]) 22"+
3”a<2H[t]2+H’[t])’1*2"+(—1+n)H[t}6(—46(2H[t]4+2H[t]2H’[t]+H’[t]2)’2+"—

M4®2

3H[t]

9B (3H[t]*+3H[t]2H [t] +H’[t]2)’2*”)) S
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- Solve[3" 4" nHdH (-2 3" (-1+2n) aH? (2 HZ)‘“" +

4 12
3"a (2H2) 12" 4 (-14n) HE (-45 (2H) " -9 (3H4)'2+“)) e dH] /.
3H
2—1—2n 3—nm2 2
{H-)( ? ]"(1/(4*n))}
(-1+n) (-22"3"a-3"B-2"5)
out[+ J= {{dHe
2—1—2n 3-n M2 ¢2 %/n 2n
(27220 3’1’“M4d>2)/ (-1+n)n 22" 3"« +
(-1+n) (-22" 3"a-3"B-2"5)
-1-2n -n M2 42 Sk
. 2 3"M2 ¢ |,
(-1+n) (-22" 3"a-3"3-2"5)
2" 5

2120 302 g2 ]i”]}}

(-1+n) (-22" 3"a-3"3-2"5)

1= dH = FullSimplify |

(2—2-2n 3_1_nM4¢2)/[(—1+n)n[22" 3"a( 2-1-2n  3-n 2 g2 ]+
(on) (2 Fep-2g

2—1—2n 3—n MZ ¢2 2—1—2n 3—n MZ ¢2
3"3 +2" 6 ]
(-1+n) (-22"«3"a-3"B-2"5) (-1+n) (-22"«3"a-3"B-2"5)
2
Out[«]= —M_
6n
2—1—2 n 3—n MZ ¢2
(-1+n) (-22n 3"a—3"B—2"6)

1= € = FullSimplify[- (dH) /H~2] /. {H - [

]"(1/(4*n))}

1
M2 2120 302 42 _;/n
(-1+n) (-22" 3" @-3"B-2"5)

Outf« ]=
6n

(xVamos a sacar ahora el segundo parametro de slow-roll eta con H")



6 | ModeloInflacionPowerLaw.nb

n 1= Expand[12 FRH[t] H' " [t] + 12y H[t] H' ' [t] -

144 fRRH[t]3H"'[t] - 5184 fFPPH[t]  H''[t] - 2304 fFQQH[t] H'"' [t
24D[V[¢], &1 » (-D[V[$], {6, 2}]1/ (3*H[t])) » (-D[VId], ¢1/ (3*H[t])) -

2% H[t] «D[V[$], 61 » (-D[V[$], ¢1/ (3*H[t])) x€] /. {y >0}

ou- - 288 noH[t]3 (12H[t]2 + 6 H [t]) 2 H'[t] -
576 n2 aH[t]? (12H[t]2+6H [t]) **"H'[t] +24naH[t] (12H[t]?+6H [t]) "2 "H'[t] +
3" 4" nSH[t]7 (2H[t])*+ 2H[t]2H [t] +H’[t}2)‘2*” H”[t] -

3" 42"n2 sH[t) (2H[t]4+2H[t]2H’ t1?) 2y
320 A" nBH[t]7 (3H[t]*+3H[t]2H t]2) 2"
3%M 41" BH[t)7 (3H[t]*+3H[t]? H’[t} +H [t]z) e H”[t]
M6 2 ( 2120 302 42 )i/“ .
(-1+n) (-22" 3" 0-3"3-2" ) 2M° ¢
9n ' 9H[t]?

n 1= Solve[288 naH® (12H2) 22" ddH - 576 n? a W (12H?) *"*"ddH + 24 naH (12H?) " ddH +

3" 42" n S H (2H*) 2" ddH - 3" 42" n2 S H7 (2H*) " ddH + 32*" . 41" n B H7 (3 H*) " ddH -

L /n
MG ¢2 ( 2-1-2n 3-n 2 42 ) 2

32+n  4l+n n2/3 H? (3 H4) -2+n ddH == (-1+n) ('22" 3"a-3"p-2" 5) + 2M d)z, ddH] /.
9n 9 H?
2—1—2 n.3-n MZ ¢2
H A1/ (4*n
{ *((-m) - 3%_3“3_2“5)] (1) @em)}
outf+]= {{ddHe— 27272n 372N mb 42
2-1-2n  3-n M2 d>2 ’j*/n 2-1-2n 3-n 2 d)Z %/”
[(1+n) (-22n 3”0(3”52”6)] [( 1+n) (-22n 3na3n52”5)] :

2—1—2n 3—n M2 ¢)2
(-1+n) (-22“ 3”a—3”B—2”6)

2n

/

27172n 37nM2 ®2 ;—/n 2n
(-1+n) (-22" 3Na-3"B-2"6)

;—/n]

22" 3¢ +

(-1+n)n?

3n /3 2—172n 3-n MZ d)Z i* " N
(-1+n) (-22" 3"a-3"B-2"6)
" 5 2—172n 3-n MZ ¢)2 "

Il

(-1+n) (-22" 3"-3"B-2"6)
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inf-1= ddH = Fullsimpli-Fy[— {[2-2-2" 372-" M6 2

2-1-2n  3-ny2 ¢2 ';/" 2-1-2n  3-n M2 ¢2 %/n
[ ) ] [ (-1+n) ] '

(-1+n) (-22n 3"a-3"B-2"6 (-22" 3"a-3"/3-2"5)

2—1—2n 3-n MZ ¢2 %/n
zn[ ] /
(-1+n) (-22n 3“a—3“B—2"6)
_1-2n -n M2 42 /) 2"
(-14n)n?|22". 3"qa [ 2 3T e ]2/ +
(-1+n) (-22" 3"a—3"/3—2“6)

2—1—2n 3—n MZ ¢2 % n
3"B +
[(—1+n) (-22n 3"a-3"/3-2"5)]

n 2-1-2n  3-n 2 42 %"
i 5[[(—1+n) (-22" 3"a—3"/3-2"5)] ] ]]]]

2—1—2n 37n MZ (DZ 1*ﬁ
_(—1+n) (12”a+3“/3+2“5>] /

M* (1+2n) (12" +3"B+2"6)

Outf« ]=

2—1—2n 3-n M2 d)Z 2*/” 2n
18n?% (12" a | |- +
(-1+n) (12"a+3"B+2"6)
-1-2 - 2 412 "
(3"B+2"5) ||- 2 T 3w '
(-1+n) (12"a+3"B+2"5)

1

2-1-2n  3-n 2 42 1-=
(-1+n) (12"a+3"B+2"5)

—_

imnr-7= numddH = FullSimplify [M4 (1 +2 n) (12" a+3"B+2" 5) [-

1
1-—
4n

2-1-2n 3-n M2 (bZ
(-1+n) (12"a+3"B+2"5)

out- 1= M (1+2n) (12"0(+3”/3+2”6) [

n-1- denddH = FullSimplify|

2-1—2n 3-n MZ ¢2
(-1+n) (-12"a-3"B-2"6)
32—n 4-" M2 n2 d)Z

1-n

2—1—2n 3-n MZ ¢2
(-1+n) (-12"a-3"B-2"6)

]

18n2[1z"a[ ]+(3"3+2"5)

Out[+]J=

1= ddH = FullSimplify [numddH / denddH]

M* (1+2n) (- 202037 M g2 )*1*/“
(-1+n) (12" a+3" B+2" &)

18 n?

Outf« ]=
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2—1—2n 3-n MZ ¢2
(-1+n) (-12"a-3"B-2"¢)

Inf-]= 1 = FullSimpli'Fy[e - ddH/ (2 *H % dH) ] /. {H - (

JA(1/(4*n))}

2-1-2n  3-n 2 (1)2 *;/”
. (-1+n) (12"a+3"B+2"5)

1
out[]= —M?
6n

2—1—2n 3—n M2 ¢2
(—1+n) (-12“a-3“/3-2“5)

(1+2n) (

(-1+n) (12“a+3“/3+2“5)

-2/n ( 2-1-2n 302 g2 i/n]

2-1-2 n._ 3-n M2 ¢2 ] —;/n

In[-J= numn = Fullsimplify[[[( . n) ( FPT— 6)

(1+2n) [ 2120 . 30 2 g2 )]-i-/" [( 2120 . 30 2 g2 )]'i-/"]]

(-1+n) (—12“a—3"/3—2"5 —1+n) (—12“a—3“/3—2"5
2—1—2n 3-n M2 d)Z ‘%/n
(-1+n) (12"a+3"B+2"6)

outf+]= 2 (1+n) [—

1= 1 = FullSimplify [M~2 / (6 » n) + numn]

MZ (1 . n) (_ 27172n 3’"MZ(Z)2 )7%/[1
(-1+n) (12" a+3" B+2" 6)

Out[~]J=
3n

2—1—2n 3—n MZ ¢2
(-1+n) (-12"a—3"/3—2" 5)

)= Nefolds = 3 » Integrate| [(

]A(l/(4*n))]A2/ (DIVI®], ¢1), ¢]

3 2-1-2n 3-ny2 ¢2 i—/n
n —
(-1+n) (12" a+3" B+2" &) )

Outf~ ]=
MZ

1y
n(— 2-1-2n 30 M2 g2 )E/”
(-1+n) (12" 0+3" B+27 5)

= Asi que debe cumplirse 7

entre49y 59

m La amplitud del espectro de potencias debe ser de aprox 10/(-9)

inf-}= AmplitudePowerSpectrum =
2—1—2 n 3-n MZ ¢2
(r1+n) (-12"a-3"B-2"¢)

FullSimplify [ [(

]"(1/(4*n))]"2/ (PixMplr2xe)]

1

6 n B 2—1—2n 3-n MZ $2 ) =

(-1+n) (12" 0+3" B+2"6)
Out[~]J=
M2 Mpl2 7t
6n (_ 2—1—2n 3—nMZ @2 %
m Asi que debe cumplirse Gl GRFE20 L = 10N (-9)
M2 Mpl? 7t

» Elindice espectral debe ser de 0.9649 +- 0.0042



In[e]:=

Outf» ]=

In[«]:=

Outf«]=

In[«]:=

Out[+]J=
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IndiceEspectral = FullSimplify[1-6*€ +2 % 1]

1

M2 (-1+2n) (7 2702037 M g2 )*;/”
(-1+n) (12" a+3" B+2"5)

1+

3n

= Tiene que ser menor que 1, asi que no puede ser porque n>1
m Elratio tensor escalar debe ser menor que 0.10

RatioTensorEscalar = FullSimplify[16 x €]

1
8 M2 B 2—1—2n 3-n MZ d>2 ) 7;/“
(-1+n) (12" 43" B+2"5)

3n

= Asi que las tres condiciones son

3 2-1-2n_3-n M2 ¢2 i—/ﬂ
n -
( (-1+n) (12" a+3" B+2" &) )

MZ

1

2—1—2n 3—n MZ éZ -

6n (- ) "
(-1+n) (12" a+3" B+2" 5)

= Nef queestaentred49y59

=10~ (-9
M2 Mp12 (-2)

8M2 (_ 2-1—2n 3'"M2¢2 )—%/n
(-1+n) (12" a+3" B+2" 5)

<0.10
3n

m La primera con la tercera son casi incompatibles, porque si hacemos el inverso de la tercera
condicién tenemos

3 2—1—2n 3-n MZ ¢Z ;/n
n -
( (-1+n) (12" a+3" B+2" &) )

- >1/0.10
8M

= Y usando la primera condicién nos queda que el niimero de efolds tiene que ser
Nef /8 >1/0.10, esdecir, Nef > 80

= NUumero de efolds tiene que ser mayor que 80 para cuadrar el ratio tensor escalar
m Ahora elevando al cuadrado la primera y usando la segunda

9n »10" (-9) *Mpl? x

= Nef~2
6 M2

N[Sqrt[9 »n +18~(-9) «Mpl® « 7/ (6+80)]]

7.67495 x 1075/ Mp12 n

m Nos conduce a una masa del campo

M =Sqrt[n] =8+ 10" (-6) * Mpl

| o
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