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RESUMEN.

Este trabajo pretende ser una herramienta de apoyo en el ejercicio de mi actividad profesional. Es de
todos conocido el hecho de que las estructuras deben disefiarse cumpliendo ciertos requisitos de bienestar
los cuales quedan cubiertos manteniendo las deformaciones de éstas por debajo de ciertos valores
normativos. Asi, en el disefio de estructuras, raramente son las limitaciones tensionales las que marcan el
dimensionamiento sino mas bien son las flechas o deformaciones las que lo controlan. Con todo, en este
trabajo se pretende estudiar el postpandeo de una tipologia particular de estructuras, obteniendo las
trayectorias de equilibrio de los grados de libertad de interés, de forma que se puedan visualizar los puntos
limite de dichas trayectorias y obtener asi la respuesta completa de las mismas.

Desde un punto de vista practico, este trabajo se pretende aplicar fundamentalmente para la obtencion de
las cargas criticas de pandeo de pérticos rigidos planos, a partir de las cuales se puedan obtener las
longitudes de pandeo correctas de los pilares de la estructura ademas de en algunos casos particulares,
poder seguir su respuesta de las mismas mas alla del pandeo. Esto Ultimo, aunque en ocasiones puede no
tener mucho sentido practico puede servir para, en algun caso, discutir de forma razonada el comportamiento
real de esta tipologia estructural.

Por otro lado, el hecho de abordar este problema me servira de base técnica para, en un futuro, intentar
atacar otros problemas no menos interesantes, como puede ser el tema de la respuesta de estructuras con
no linealidad del material, de forma y manera que pueda obtener soluciones razonadas que pueda defender y
que, por supuesto, como en este caso, garanticen la seguridad estructural.

Las estructuras analizadas se resuelven mediante métodos matriciales bajo una formulacion corrotacional,
empleando elementos barra de Euler Bernoulli y el algoritmo empleado para la solucién del problema de
postpandeo es el método de longitud de arco de Riks.
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1. MOTIVACION.

Como calculista de estructuras en activo y dada la responsabilidad que implican mis decisiones y
consejos, me siento en la obligacién de mantener una formacién continuada, cuestion esta que, aun siendo
siempre gratificante, no resulta en ocasiones facil.

Comparando desde un punto de vista Unicamente técnico el andlisis lineal y no lineal de estructuras, asi
como en el andlisis lineal de estructuras, tanto si este se lleva a cabo con el empleo de programas propios
como si se hace con programas comerciales, "no se requiere" de un control exhaustivo por parte del ingeniero
puesto que las técnicas empleadas para la obtencion de la solucién son técnicas matriciales por todos bien
conocidas y facilmente chequeables con las que se obtiene un Unico resultado final, esto es sustancialmente
diferente cuando lo que se persigue es la obtencién de la solucion de un problema no lineal. En este Ultimo
caso, conceptos como matriz de rigidez tangente, tolerancia, control en carga o en desplazamientos,
convergencia de la solucién, residuo, etc... hacen que el técnico deba gobernar el analisis fijando valores de
ciertos parametros de los cuales, para hacer un uso cabal de los programas empleados, debe de conocer su
correcto significado y el modo en el que los valores fijados para estos parametros, afectan al resultado final
obtenido.

La necesidad del andlisis no lineal de estructuras, exigido en ciertos casos incluso a nivel normativo, me
obliga por tanto a conocer la teoria en la que se fundamentan las técnicas de solucion de este tipo de
problemas. Son muchos los programas comerciales existentes en el mercado que resuelven el problema no
lineal y de los que habitualmente hacemos uso los ingenieros. Estos programas emplean algoritmos de
solucién los cuales resultan ser en algunos casos auténticas cajas negras no siendo posible incluso llegar a
manipular. Por otra parte, estos programas comerciales légicamente no resuelven todo tipo de problemas y
se hace necesario conocer cuales son las limitaciones de los mismos, no siendo esto Ultimo posible sin
conocer previamente las técnicas que emplean y a través de las cuales, nos proporcionan la solucion.

Por otro lado, el conocimiento de la teoria en la que se fundamentan estos algoritmos nos puede servir de
base para la ejecucién de programas propios con los cuales obtener soluciones aceptables y completamente
rigurosas, sin necesidad de adquirir programas comerciales los cuales siempre llevan asociados costes
importantes.

Con el presente trabajo se pretende encontrar la solucion para el problema del postpandeo en estructuras
planas de barras de la tipologia expuesta en el punto 3 y que los programas comerciales de los que dispongo
no me dan la solucion.

Aunque el codigo que aparece en el trabajo es bastante elemental, y sin el animo de inventar nada, las
soluciones que se obtienen permiten ver claramente las cargas de pandeo, asi como las trayectorias de
equilibrio de los puntos de interés incluso después del pandeo de la estructura.

El hecho de obtener este tipo de soluciones a través de un codigo propio, ademas de gratificante, resulta
del mayor interés didactico al tener la necesidad de conocer mas o menos en profundidad la formulacién del
problema.



2. INTRODUCCION.

En el andlisis lineal de estructuras, la formulacién de las ecuaciones de equilibrio y compatibilidad se lleva
a cabo en la geometria indeformada de la estructura admitiendo en todo momento que los desplazamientos
son pequefios y que el material tiene un comportamiento lineal. Estas hipétesis dan lugar a un sistema de
ecuaciones lineales en el que es valido el principio de superposicion. Asi, dadas una acciones exteriores
(f = X f) , mayoradas por unos coeficientes (y;), las solicitaciones s = s} f;) y los movimientos u =
u(}. f,) las podemos poner como

s=sQvif)=Xvi*s(f)

(Ec1)
u=uQy;*f)=Xvyi*u(f)

(Ec2.)

Como es sabido, este tipo de analisis no captura aquellos desplazamientos que son consecuencia de la
propia deformacion de la estructura (efecto P-A) y que en estructuras esbeltas con valores altos de axiles
pueden resultar significativos, lo que conlleva a un céalculo de esfuerzos en contra de la seguridad.

En el andlisis de estructuras con no linealidad geométrica, se debe considerar la modificacion de la
geometria inicial de la estructura (debida a su deformacién), al formular las ecuaciones de equilibrio y
compatibilidad. Sin embargo, para las estructuras comunes de edificacion, caben simplificaciones en ese
proceso. Aunque se abandona la hipétesis de pequefios desplazamientos, se pueden suponer giros
pequefios (6 « 1) lo cual redunda en una simplificacion muy notable del calculo matematico. Se habla
entonces de teoria de segundo orden. En este caso la expresién que se toma para la curvatura es la
expresién aproximada dada por
n_do _ d%

dx  dx?

x=1r=y
(Ec3.)

Cuando en el analisis de la estructura se toma para la curvatura su valor exacto (Ec4.), se habla de teoria
de tercer orden.
X — 1/7‘ yll

T anHn
(Ec4.)

El analisis en teoria de segundo orden, requerido incluso a nivel normativo, resulta suficiente en la mayoria
de los casos practicos. No obstante, dado que con este analisis no se tienen en cuenta los efectos por
grandes deformaciones, acota la aplicacién del método a aquellas estructuras en las que los movimientos y
rotaciones no sean elevados. Como el andlisis P-A es no lineal, no podemos aplicar el principio de
superposicion y obtener el resultado para una combinacion de carga como la suma de resultados de los
estados de carga elementales. Para estimar los esfuerzos y desplazamientos se ha de realizar un estudio
sobre la estructura en posicion deformada (teoria de segundo orden), lo que requiere de procedimientos
iterativos de calculo basados en la teoria de primer orden, o métodos matriciales que incorporan la influencia
gue tienen en los desplazamientos del sistema los esfuerzos axiles de las barras y los cambios de posicién de
los nudos.

La aplicacion de la teoria de segundo orden al andlisis de pérticos con imperfecciones evita las
incertidumbres que se presentan en el disefio basado en el andlisis lineal de esfuerzos. Por ello se
recomienda, con algunas excepciones, aplicar el analisis de segundo orden a los pérticos translacionales.
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3. EXPOSICION DEL TRABAJO.

Se trata de programar en Mathematica las rutinas que nos van a servir para analizar estructuras con no
linealidad geométrica, dentro de un tipo particular de tipologia estructural como es la del pértico plano. En el
cbdigo presentado solo se formula la solucion del problema no lineal debido a la geometria y para esta
tipologia de estructura, suponiendo en todo momento un comportamiento elastico lineal del material
(pequefias deformaciones) y sin entrar en los casos en los que la no linealidad del problema se debe a las
condiciones de contorno (como es el caso de los problemas de contacto o de fuerzas seguidoras). El
problema general en el que intervienen los tres tipos de no linealidades (por geometria, por material y por
condiciones de contorno), presenta una gran dificultad y carga de programacion, no siendo el objetivo de este
trabajo. El trabajo se plantea como una puesta en préctica de lo visto en el Master de Mecénica Aplicada, en
particular, en la asignatura de Teoria de barras, placas y laminas.

Solo para los casos en los que la no linealidad del problema se deba a condiciones geométricas, se
pretende obtener las trayectorias o curvas de equilibrio de los nudos de interés de las estructuras que se
analicen, y obtener los puntos limite de estas trayectorias (puntos de bifurcacion del equilibrio, puntos criticos
y puntos de retroceso), para lo cual se aplica el método de Riks de longitud del arco, el cual se comenta en
los siguientes apartados.

*% *kkkkkhkhhhkk *kkkkkk *% *kkkkkhhhhhhhhhrkkrkx *kkkkkkhhhhkk *kkkkk *kkkkkk *% *kkkkkkhhhhhhhhrhkikx *k%

4. ALCANCE DEL CODIGO PROGRAMADO.

Este trabajo trata Unicamente de estructuras planas de barras del tipo poértico de nudos rigidos. Los
apoyos de las estructuras analizadas son los Ginicos nudos que admiten articulacion.

Para la resolucién del sistema de ecuaciones que surge al plantear el equilibrio de la estructura se utiliza el
calculo matricial.

Las diferentes barras de las estructuras se discretizan en un niumero adecuado de elementos barra
formulados como elemento viga de Euler-Bernoulli, elemento que admite esfuerzos de traccion-compresion y
flexién. Este elemento presenta dos nodos definidos por las coordenadas de sus extremos las cuales se
deben de introducir en la etapa de preproceso. Ademas de las coordenadas de los nodos de los elementos se
deberan introducir las secciones de éstos y sus inercias.

Con el elemento programado, no es posible obtener la respuesta de la estructura fuera del plano de la
misma lo que limita el uso de este cédigo a estructuras planas con la tipologia de pértico rigido plano.

Por el tipo de formulacion empleada, la programacion del método permite el estudio de estructuras planas
y esbeltas en las que pueden tener lugar grandes desplazamientos, resolviendo por lo tanto el problema de la
no linealidad geométrica. No obstante, para limitar la complejidad de la formulacion, se ha admitido en todo
momento que se esta en pequefias deformaciones, no siendo posible con este codigo resolver problemas
en los que esta Ultima hipotesis no sea valida.

Por otro lado, dado que se admite en todo momento que el material trabaja en régimen elastico lineal,
aquellos problemas en los que se presentan no linealidades debidas al material, no pueden ser abordados
con este caédigo.

Se admite en todo momento que las condiciones de apoyo no se modifican a lo largo del proceso de
carga, por lo que aquellos problemas en los que se presentan no linealidades debidas a las condiciones
de contorno, no pueden ser abordados con este cédigo.

Dada la velocidad de los ordenadores actuales y la particular tipologia estructural que se estudia en este
trabajo, para simplificar el cédigo, las barras solo admiten cargas externas (fuerzas o fuerzas y momentos)



aplicadas en los nudos de la malla. Para aquellas estructuras, en las existan barras que presenten cargas
distribuidas en parte o toda su longitud, se podran subdividir estas en un namero suficiente de elementos, al
objeto de poder capturar el efecto real de la carga distribuida sobre la barra y por tanto, sobre la estructura.
Asimismo, dado que no tenemos limitacién en el nUmero de elementos, podriamos con este cédigo y tras una
division adecuada de las barras, analizar estructuras en las que se presentasen barras con inercia variable.
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5. TEORIA BASICA.

5.1. Descripcion del movimiento.

En el andlisis de estructuras geométricamente no lineales, es fundamental la eleccién de un sistema de
descripcion matematica del movimiento y del estado de tensiéon y deformacion de los puntos de la estructura
en las distintas configuraciones deformadas por las que pasa en el proceso de carga. En teoria lineal o de
deformaciones infinitesimales, no se establece distincion entre las distintas configuraciones de la estructura,
ya gque se supone que la geometria y caracteristicas mecanicas de la estructura son invariables. Lo que
caracteriza al analisis geométricamente no lineal es, precisamente, la distincion entre las distintas
configuraciones a la hora de establecer las ecuaciones que describen el comportamiento mecanico de la
estructura.

Desde el punto de vista de la mecéanica de sélidos, un cuerpo es un conjunto infinito de particulas, cada
una de las cuales ocupa una posicion en el espacio. Estas posiciones son variables en el tiempo y al conjunto
de ellas en un instante dado se denomina configuracién. Una configuracién puede entenderse de manera
intuitiva como una foto fija del solido a lo largo del proceso de carga.

Considérese un cuerpo deformable en el espacio. En la configuracién inicial, cada particula del solido
ocupa una posicién en un sistema rectangular de coordenadas. Nos referimos a esta configuracion como
configuracién original o inicial. Cuando el cuerpo se deforma, cada particula ocupa una nueva posicién que
viene descrita por unas nuevas coordenadas. Llamaremos a esta configuracién deformada o actual.

De esta forma, por ejemplo, una particula °P de posicion inicial (°x;, °X,, °X3) S&€ mueve a una posicién
deformada 'P de coordenadas (txl, txz, tx3). El vector desplazamiento op'p de la particula tendra como

componentes

U= X1 — X
uz = txZ - OXZ
Uz = tX3 - OX3

(Ec5.)

Si se conoce el desplazamiento de cada particula del sélido, puede construirse su configuracion
deformada. Esto seria posible si (‘x,%x,,tx3;) fueran funciones conocidas de las coordenadas iniciales

(Oxl' Oxzf 0x3).

= tx1(0x1' 0x2: 0x3)

=
iy
|

txz (0x1' Oxz' 0x3)

=
)
I

x3 = ‘x3(%xq, °xz, Ox3)
(Ec6.)

En la mecanica de solidos se supone que estas funciones son continuas y biunivocas, con lo que se estan
excluyendo de esta forma, interpenetraciones de unas partes del sdélido en otras o discontinuidades
producidas por fisuras. Esto implica también que las funciones (‘x,, ‘x,, tx;) tienen inversas.

Oxl = 0x1(tx1' txz, tx3)

Oxz = Oxz(txb txzf tx3)

0953 = 0x3(tx1: “x2, tx3)

(Ec7.)



El vector de desplazamiento puede asociarse a la particula en la posicion inicial:

uy = uy (Ox, %%, %%3) = 1 Oy, Oxp, O3) — Oy
U = Uy (Oxl' Oxzf 0x3) = txz(oxl' Oxzf 0x3) - Oxz

Uz = Ug (0x1: Oxz' 0x3) = txs(oxp Oxz' 0x3) - 0353

(Ec8.)
0 a la particula en la posicion deformada:
uy = g (g, "2, f3) = fxg = O By, B, Fxs)
Uy = Uy (g, B2z, "x3) = by — Oy (P, By, Bx3)
uz = uz (g, "2z, 'x3) = "x3 — x5 ("xq, "2, 'x3)
(Ec9.)

A la primera forma de describir el movimiento se le conoce como descripcion o formulacién Lagrangiana o
material y es la usual en Mecanica de Solidos, mientras que la segunda se utiliza con mas frecuencia en
Mecanica de Fluidos y se conoce como formulacién Euleriana o espacial. Se puede decir que la formulacion
Lagrangiana se ocupa de lo que le sucede a una particula material mientras que la formulacién Euleriana
expresa lo que le sucede a una cierta posicion del espacio. Los desarrollos que se siguen se basan en la
formulacién Lagrangiana.

5.2. Variantes de la formulaciéon Lagrangiana.

Dentro de la descripcién Lagrangiana del movimiento de un sélido caben varias posibilidades a la hora de
definir la configuracion que se toma como referencia. Es importante no confundir configuracién de referencia
con configuracion inicial, ya que esta distincion es lo que permite precisamente caracterizar las distintas
variantes de la formulacién Lagrangiana. Estas variantes son las siguientes:

5.2.1.

5.2.2.

5.2.3.

Formulacién Lagrangiana Total.

La configuracién de referencia se mantiene cte. durante el proceso completo de deformacion. La
configuracién de referencia es la configuracién de la estructura original o indeformada. Tanto las
tensiones como las deformaciones han de ser medidas con respecto a esta configuracion.

Formulacién Lagrangiana Actualizada.

Si el proceso de andlisis se lleva a cabo, como es frecuente, mediante incrementos sucesivos de
carga, resulta interesante a veces utilizar como configuracion de referencia la configuracion
alcanzada en el incremento anterior. Cada configuracion pasa a ser, por tanto, referencia de la
siguiente.

Formulacién Lagrangiana Corrotacional.

En el caso de estructuras formadas por elementos esbeltos, como barras, placas o laminas, se
pueden producir desplazamientos y rotaciones considerables aunque las deformaciones se
mantengan moderadas. En estos casos, la componente de sdlido rigido del movimiento es muy
importante y en este caso resulta conveniente utilizar una configuracion de referencia que elimine
dicha componente. Por ejemplo, en el caso de barras se toma como referencia la barra indeformada
pero trasladada y girada en el espacio mediante un movimiento de sélido rigido, tal que la posicion
de sus extremos coincida con la posicion de los extremos de la barra deformada en el instante



considerado. A esa configuracion de referencia se le conoce también como configuracién corrotada
y a ella se refieren solo las componentes del movimiento que producen deformacion.

Se elige esta Ultima formulacion para representar el movimiento de las estructuras analizadas con nuestro
caédigo.

5.3. Métodos de solucion.

Resolver una estructura es encontrar la relacién causas-efectos, ya sea ésta lineal o no lineal. Mientras
que en el primer caso la relacion es lineal y por tanto conocida, en el segundo no lo es y para su solucién hay
que emplear métodos iterativos como los que citamos a continuacion.

5.3.1. Método de Newton-Raphson.

Mientras que en el analisis lineal de estructuras interesa una solucién del sistema de ecuaciones
de equilibrio, en el caso de problemas no lineales se debe de obtener un conjunto de soluciones que
permiten tener informacion sobre el comportamiento de la estructura para distintos niveles de carga
y para las distintas configuraciones que esta puede adoptar. Como las soluciones obtenidas han de
cumplir con las condiciones de equilibrio en forma mas o menos aproximada se suele hablar de
obtener la trayectoria de equilibrio o curva de carga en un espacio formado por los n movimientos
nodales y un parametro multiplicador de las cargas A, al que se llama factor de carga o parametro
de control.

Las ecuaciones de equilibrio entre las cargas actuantes y las fuerzas internas se expresan para
cada grado de libertad como

Ry = AP —Q,(U)
Ry = AP, —Q;(U)
Rn = AP, —Qn(U)

(Ec10.)

En cada una de las ecuaciones anteriores R expresa el posible desequilibrio entre la accidn
exterior AP y la fuerza interna correspondiente Q que depende del estado de desplazamientos
representado por el vector U.

Agrupando estas componentes en vectores, las anteriores ecuaciones pueden expresarse de
forma compacta como

R=1P-Q()
(Ec11.)

Siendo Q(U) el vector de fuerzas internas nodales correspondientes a un determinado estado de
desplazamiento U, P el vector de cargas externas concentradas en los nodos, 4 el factor de carga
gue multiplica a P y R el vector de cargas desequilibradas o residuales que en la situacion de
equilibrio se anulan.

El vector de fuerzas internas Q(U), que en el método de los elementos finitos se calcula mediante
la integral extendida a todo el dominio de la estructura

Q(U)zthTSdVO

(Ec12)
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en la que aparece una matriz B no lineal y las tensiones de Piola-Kirchoff .

En nuestro caso, al emplear una formulacion matricial el vector de fuerzas internas lo calculamos
haciendo uso de la matriz constitutiva la cual nos relaciona los esfuerzos internos en los extremos
de cada barra i con los movimientos de dichos extremos a través de la expresion

Q; = C;6p,
(Ec13)

La forma explicita de la matriz C; y del vector de movimientos 6p, se muestra en las ecuaciones
Ec84 y Ec76 respectivamente.

Dado que se trata de un problema no lineal, el sistema de ecuaciones anterior (Ec10.) no puede
ser resuelto de forma directa y para llegar a la solucién se llevan a cabo procesos incrementales de
carga.

Una forma de hacer esto es aplicando las cargas exteriores mediante etapas o saltos, fijando
niveles de carga a través de un factor A:

MP, AP, 23P,.... ;P
(Ecl4.)
Cada salto o incremento de carga se define como diferencia entre dos niveles:
AM;P= };P—A_,P
(Ec15.)

A cada nivel de carga le correspondera un estado de desplazamientos que se puede obtener
mediante integracion o suma de incrementos sucesivos:

AU; = U;-U;,

(Ec16.)
U, = Up_, + AU,

(Ec17))

donde AU; es el incremento de desplazamiento en la busqueda del equilibrio en el salto de carga i.

11
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Figura 3: Incremento de carga con correccion Newton-Raphson

El incremento de desplazamiento correspondiente a un incremento de carga se calcula mediante
aproximaciones sucesivas en un proceso completo de prediccidn-correccion. En una primera
aproximacion

AU = (Ki-)™' (2% P)
(Ec18.)

siendo K; la matriz de rigidez tangente correspondiente a la configuracion inicial de la etapa de
carga. Esta matriz se define mediante
_OR(U)
£ U

(Ec19.)

Dado que en los problemas que resolvemos con nuestro codigo admitimos que las cargas
exteriores AP no dependen de U se puede escribir

2Q(V) of;
Ke=—3u— &f_aw

(Ec20.)

La ecuacion Ec18 representa la solucién del sistema de ecuaciones en el que las incégnitas a
resolver son los incrementos de desplazamientos AU.

La aproximacion calculada mediante Ec18 corresponde en la figura 3 al punto A. A esta primera
aproximacion se le denomina prediccion.

Si se siguiera avanzando en el proceso de carga mediante sucesivos incrementos calculados a
partir de aproximaciones del tipo de Ec18 se produciria un alejamiento de las soluciones obtenidas
de la verdadera curva de equilibrio a causa de los errores que se irian acumulando. Para evitar este
error, usual en el método explicito de Euler, se procede a mejorar la prediccién mediante una etapa
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de correccién en la que se utilizan iteraciones basadas en el método de Newton-Raphson. Estas
correcciones se representan por variaciones sobre el estado de desplazamientos alcanzado
anteriormente:

Uk = AUK — AU

(Ec21))
AU* = AU + 8U*

(Ec22.)

Las correcciones §U* se calculan a partir de las fuerzas residuales R correspondientes a los
desplazamientos U,_, + AU;* obtenidos segin Ec10. Si se mantiene constante la matriz de rigidez
K,° calculada al principio del salto se tiene una iteracion del tipo Newton-Raphson “modificado”
véase la figura 4:

sU* = (K)™' R
(Ec23.)
y si se varia la rigidez en cada iteracion como corresponde al método de Newton-Raphson:
sU* = (Kik)_l Rik_l
(Ec24.)

Uséandose el superindice k para indicar pasos en el proceso de correccién y el subindice i para los
pasos en el proceso de incrementacion.

)\jp j
AXip
Nap —— L
Au?
Au!
Au?

Au; u
—

Figura 4: Incremento de carga con correccion Newton-Raphson modificado
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El método de Newton-Raphson modificado presenta la ventaja frente al no modificado de no
necesitar el calculo de la matriz de rigidez de la estructura en cada iteracion. Como desventaja la
convergencia es mas lenta y por tanto son necesarias mas iteraciones. En muchos casos es
conveniente proceder a estrategias mixtas y cambiar de un método a otro cuando se dan ciertas
condiciones. Por ejemplo, en el caso de andlisis en los que la no linealidad se debe a plasticidad o a
fisuracién pueden utilizarse criterios basados en el nimero de elementos (o puntos de integraciéon
en elementos) que pasan a estar plastificados o fisurados. Si el nUmero de estos puntos superan un
cierto limite, se procede a recalcular la matriz de rigidez.

Otra forma de ver esto es la siguiente. Al final de cualquier salto de carga i el residuo es nulo y
podemos escribir que al final de las k iteraciones del salto de carga

Rf = 2, P-Qf(UH)=0
(Ec25.)

Desarrollando el residuo en serie de potencias alrededor del punto de iteracién anterior (k-1) se
obtiene

szR?4+<2¥;>suk=o
(Ec26.)
En esta expresion 8U* es el incremento de deformacion producido en la iteracion k.
Asi
SU* = Uf —Uft
(Ec27.)

siendo U¥ la estimacion de las deformaciones en el salto de carga i, al final de la iteracion k.

Si las fuerzas no dependen de la deformacion, la derivada del residuo solo corresponde a la
derivada de las fuerzas internas Q¥

k—
R* ~ R’.‘_l—<—aQi 1>8Uk =0

¢ ¢ ou
(Ec28.)
Definiendo la matriz de rigidez tangente
Kﬁ‘_l — aQ_iH
au
(Ec29.)
Por lo tanto la ecuacion a resolver en la iteracion k es
RE~ 1, P— Q' —Ki'5U% = 0
(Ec30.)
y de ahi
Kt sUk = 3, P—QF?
(Ec31))
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En esta ecuacion, la matriz tangente K¥~* y el vector de fuerzas internas Q¥~* estan evaluados en
la Gltima estimacion conocida (k-1) de las deformaciones en el salto de carga i que son las de la
iteracion anterior U¥~'. Notese que ambas magnitudes se evallGan para los UGltimos valores
actualizados de los desplazamientos calculados a medida que progresa la iteracion (al final de la
iteracion anterior), no para los valores al inicio de la misma.

Como condiciones para el comienzo de la iteracion se emplean las del Gltimo estado de equilibrio
conocido.

U?+1 = U, ‘i)+1 = Q,
(Ec32.)
5.3.2. Puntos criticos.

La figura 5 ilustra la curva de carga o trayectoria de equilibrio de una estructura en la que se
seflalan algunos puntos importantes. En ella se representa en ordenadas el valor del factor de
carga, y en accisas el valor que toma un determinado grado de libertad de la estructura. Gréficas
analogas pueden por tanto trazarse para cada grado de libertad, y cada una de ellas representa la
proyeccién en un plano de una curva alabeada.

P

Figura 5: Trayectoria de equilibrio. L: punto limite, B: punto de bifurcacién, R: punto de retroceso.

La existencia de estos puntos, que son tipicos de las estructuras con comportamiento no lineal,
pone de manifiesto la necesidad de utilizar algunas técnicas especiales de analisis que son objeto
de este punto.

Los puntos que se sefialan en la figura como puntos limite corresponden a puntos en los que el
factor 4 multiplicador de las cargas alcanza un maximo o minimo relativo. Estos puntos tienen el
mayor interés ya que caracterizan la carga méaxima que puede soportar la estructura para una zona
local de la curva de equilibrio.

En estructuras con un Unico grado de libertad, existe una correspondencia entre los puntos limite
con estados de rigidez nula. En estructuras con multiples grados de libertad, los puntos limite van
asociados a la pérdida del caracter definido positivo de la matriz de rigidez global.

15



5.3.3.

Los métodos iterativos de solucion que hemos visto en el punto anterior, fallan por tanto en la
proximidad de los puntos limite. Numéricamente se observa que, al acercarse el valor de las cargas
al valor maximo, la convergencia se reduce notablemente. Si se ha previsto un valor de carga
superior al maximo, el proceso deja de ser convergente y no se puede obtener una solucion, tal y
como se representa en la figura 6.

AP A A= cte.

Figura 6: Con A= cte. El método iterativo no converge.

Otro tipo de puntos que aparecen en la figura 5 son los llamados puntos de retroceso. En estos
puntos, uno o varios grados de libertad disminuyen de valor a medida que avanza el proceso de
carga.

En la figura 5, se representa también un punto de bifurcacién del camino de equilibrio. En este tipo
de puntos aparecen varias ramas posibles para la curva de equilibrio. El que la estructura siga un
camino determinado depende de ciertos parametros de imperfeccion inicial. Estos parametros
pueden ser bien fuerzas o bien imperfecciones geométricas o0 mecanicas.

Métodos de longitud del arco.

Con objeto de poder seguir el comportamiento de la estructura en todo su ambito de respuesta,
interesa desarrollar métodos que no fallen en la proximidad de puntos criticos. Ya se ha visto que el
proceso iterativo de correccion puede no ser convergente si se mantiene constante el factor
multiplicador de las cargas A.

Una manera de evitar el inconveniente citado consiste en tratar el factor A como una variable mas
del problema, de forma que el sistema de ecuaciones de equilibrio tenga siempre solucion. Hara
falta para ello imponer una condicién adicional a las n ecuaciones de equilibrio, ya que existe una
nueva incégnita A a afiadir a los n grados de libertad del problema.

Si se considera un espacio (U, 1) de dimensién n+1, esta nueva condicion puede ser entendida
como una superficie que constituye el lugar geométrico de los puntos (U;, A;) obtenidos en el
proceso iterativo de correccién. A su vez, la curva de carga es el lugar geométrico de los puntos que
cumplen las ecuaciones de equilibrio.
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La condicion usual de los métodos incrementales de control de carga es hacer A = cte. Esta
condicién es la ecuacion de un plano ortogonal al eje 0 — A que puede cortar o no a la curva de
carga. Si el nivel de carga corresponde a cargas menores que las maximas que puede soportar la
estructura, el plano corta a la curva de carga y las iteraciones convergen. Si las cargas son
mayores, el plano no corta a la curva de carga y el proceso es divergente.

A pesar de que existen otras ecuaciones de restriccion, en nuestro cédigo hemos empleado la que
se conoce como vinculo esférico.

Una manera de conseguir la interseccion de la curva de carga con la superficie que representa la
condicién adicional y, por tanto, una manera de garantizar la convergencia del proceso iterativo de
correccién consiste en imponer como condicién adicional superficies cerradas alrededor del punto
de equilibrio determinado anteriormente. La méas sencilla de estas superficies es una (hiper) esfera
de radio Al (Figura 7) cuya ecuacion viene dada por:

(AUX)"AUX + (aaAk)* = Al
(Ec33.)

En esta ecuacion a es un coeficiente numérico que se introduce al objeto de homogeneizar las
dimensiones y magnitud numérica de los términos de la ecuacion pero en la mayoria de las
ocasiones se toma como 1. Esta condicion fue propuesta por Riks (ref.14) y ha sido el origen de
diversos métodos de solucion de problemas no lineales.

P

-

Figura 7: Al = cte. Vinculo esférico.

Del mismo modo a lo hecho en las ecuaciones Ec25 a Ec32, en este caso el residuo sera funcion
no solo de U sino también de A y podremos volver a escribir la ecuacion Ec25, que al final de las k
iteraciones del salto de carga i

RY = A P - QU =0

(Ec25.)
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Desarrollando el residuo en serie de potencias alrededor del punto de iteracion anterior (k-1) se
obtiene

oR ! oRK !
Rf~ R{™' + (#)81" + (ﬁ)suk =0

(Ec34.)

En esta expresion SU* es el incremento de deformacion producido en la iteracion k del salto de
carga i, y del mismo modo 8% es el incremento de deformacion producido en la iteracion k de ese
mismo salto de carga. Las derivadas necesarias son:

ARF? _p
oA

(Ec35.)

y

ORI 9Qi" _ s
au ou :

(Ec36.)

Luego la ecuacién de iteracion a resolver, que es la que resolvemos en nuestro codigo es:

Rf ~ R + (alg—i_l>mk + (ag—i;jsuk =R+ P SN -K{TT U =0
K< 18U = RET1 + P SA*

(Ec37.)

Despejando el incremento de deformacion se obtiene

UK = (K1) RE1 + (KE1) TP 8

(Ec38.)

Que podemos escribir como:

UK = (K1) REU 4 (KE1) TP 8

(Ec39.)

Por lo tanto la ecuacion a resolver en la iteracion k es

SUK = U¥ + Ok 82k =0

(Ec40.)

El primer sumando del incremento del desplazamiento se puede calcular con facilidad y representa
el desplazamiento producido por la parte del residuo no equilibrado en la iteracion anterior

— _ -1 _
U{-‘ = (K{c 1) Rﬁ‘ 1
(Ec4l))

El segundo sumando no puede evaluarse hasta no conocer el valor de 4 pero su coeficiente puede
evaluarse con sencillez y representa la deformacion producida por las fuerzas basicas P.
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Uk = (K1) 7P
(Ec42.)

Obsérvese que si se emplea el método de Newton-Raphson modificado, no es necesario calcular
este término a cada paso de la iteracion, sino que puede mantenerse el del primero.

Suponiendo por el momento conocido el valor de §1%, y por tanto el valor del incremento de
desplazamientos en esta iteracion SU*, se procede a actualizar los valores de las incognitas. Para
los desplazamientos la actualizacion es:

AU¥ = AUF + 85U
(Ec43.)

Donde AU es el incremento de deformacion acumulado a lo largo de las (k-1) iteraciones
anteriores. De forma similar AU¥ es el incremento de deformacion acumulado tras la iteracion k.

De manera analoga se actualiza el parametro de carga A:
A= Ak 4 sak
(Ec44.)

El célculo de 8A* se efectua introduciendo una ecuacion de restriccion que imponga la condicion
de distancia maxima recorrida en este salto de carga, es decir que se limita el incremento de
desplazamiento acumulado en todas las iteraciones efectuadas en este salto de carga. Si se
denomina 4s a la distancia maxima a recorrer, la condicion es:

(4s)? = (AUH)T AUF
(Ec45.)
Sustituyendo los incrementos por sus valores y operando se obtiene
(4s)? = (AUF™ + 8UM)T (AUF + 8UF)
(4s)? = (AUK + U¥ + TF 829" (AU + T + T 82%)
(45)% = (AUK + THT (AUF + TY) + 2 (AUF + THT TF 2 + (OHT TF (82%)?

La ecuacién anterior es una ecuacion de segundo grado en A :

a;(6A%)% +a, 84+ a; =0
donde

a; = (ﬁ{{)T ﬁf
a, =2 (AUF 1 + TN UF
az = (AU¥' + UHT (AU¥ + TUF) — (4s)?

Resolviendo esta ecuacion se obtienen dos raices §1% y §1%. De entre ellas se elige aquella que
producira un incremento de desplazamiento acumulado méas proximo al incremento de
desplazamiento acumulado en la iteracién anterior. Para ello, en primer lugar se determina cual
seria el incremento de desplazamiento producido por cada una de las soluciones

AUf,y = AUF™ + UF + UF 825
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A continuacién se calcula la proyeccién de dichos incrementos de desplazamiento sobre el
incremento de desplazamiento de la iteracién anterior, que sera un escalar, que de alguna manera
estima el &ngulo entre ambos vectores:

(4s)*cosp, = (AUF T AUY ;) = (AUF )T (AU + TF + Uf 62%)
(As)cosp, = (AUF T AU,y = (AUF )T (AUF™ + UF + UF 825)
(Ec46.)

Eligiendo aquella solucién que produzca menor angulo, es decir el mayor valor del cosg.

5.4. Determinacién del tamafio del salto de carga.

La idea de tratar el factor multiplicador de las cargas como una incégnita adicional en el proceso de
correccién de la solucion, puede ademas ser utilizada para decidir la estrategia de avance en el proceso de
seguimiento de la curva de carga. De esta forma, en lugar de utilizar saltos de carga AAP determinados de
antemano, puede llevarse a cabo un control del proceso de incrementacion mediante otro criterio, tal como
fijar la longitud del vector tangente (AA?, AUY) correspondiente a la primera aproximacion dentro de cada salto
mediante la ecuacién (Ec25.) particularizada.

AUDTAU? + (aAX?)? = Al? = constante
(Ec47.)

Ya se comprende que en la practica resulta dificil estimar un valor adecuado para el valor de la longitud
del arco Al, por lo que en la practica se suele fijar un valor inicial de AA? para el primer incremento. A partir de
este valor se puede calcular Al despejando:

Al = J (AUDYTAUO + (o AN0)?

(Ec48.)
Siendo AU? = A\ U; y calculandose U; resolviendo el sistema de ecuaciones:
K, U =P
(Ec49.)

Una vez se ha determinado en el primer salto de carga el valor de la longitud del arco Al, en los saltos
posteriores, se puede deducir de manera inversa el valor del salto de carga que da lugar a un vector tangente
cuya longitud valga Al a partir de la siguiente expresion:

Al?

MY == | ——
i WU + @

(Ec50.)

En la expresion anterior se toma el signo positivo 0 negativo de acuerdo con el signo del determinante de
la matriz de rigidez K; utilizada al principio de cada salto para obtener U;. De esta forma es posible seguir las
ramas descendentes de las trayectorias de equilibrio, en las que es preciso utilizar factores de carga
negativos.

Aunque nosotros en nuestro cédigo calculamos el determinante de la matriz de rigidez tangente de la
estructura con la orden Det [K] incorporada en Mathematica, el signo del determinante de la matriz de rigidez
se puede calcular sin necesidad de calcular el propio determinante. Si se utilizan algoritmos de resolucion del
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sistema de ecuaciones basados en la factorizacion de la matriz de rigidez en el producto de una matriz
triangular inferior, con términos unidad en la diagonal principal, por otra triangular superior (factorizacién de
Crout o también llamada factorizacion de Cholesky modificada), el signo del determinante se puede calcular
de manera muy eficiente. La matriz de rigidez se descompone segun:

K=LU
(Ec51.)

Siendo L la matriz triangular inferior y U la triangular superior. El signo del determinante coincide con el
signo del producto de los términos de la diagonal de la matriz triangular superior:

n
ny. U.
signo(det(K)) = signo(det(L) * det(U)) = signo (#) = [+
ITT% Ul . Uil

(Ec52.)

5.5. Ajuste automatico de la longitud del salto de carga.

En el apartado anterior se ha supuesto que la longitud del vector tangente Al se mantenia constante en el
proceso de carga. Se comprende facilmente que manteniendo constante Al, el proceso de correccion iterativo
requerird normalmente mayor nimero de iteraciones para conseguir una cierta aproximacion en zonas de la
trayectoria de equilibrio con gran curvatura que en otras zonas de curvatura menor. NGtese que la curvatura
de la curva de equilibrio esta relacionada con la variacion de la rigidez de la estructura, de manera que a
mayores variaciones de rigidez corresponderan mayor nimero de iteraciones. Si se quiere que el nimero de
estas sea mas 0 menos constante se puede variar Al. Se trata de modificar esta longitud en funcion del
namero de iteraciones 6;_; que han hecho falta para conseguir una cierta aproximacion en el salto de carga
anterior y el nimero de iteraciones que se desea mantener constante 6,,.,. Una férmula debida a Ramm (ref.
15) es:

Hdes
0i-1

Al = Al ( )Y

(Ec53.)
con yigual a 0,5.

Este sencillo procedimiento produce automaticamente pequefios saltos de carga en zonas de
comportamiento altamente no lineal y saltos de carga mayores en zonas de comportamiento “casi” lineal.

5.6. Célculo de puntos de inestabilidad.

Los métodos que se acaban de exponer permiten el seguimiento completo del comportamiento no lineal
de una estructura. El objetivo préactico de tal seguimiento es, muchas veces, estimar el valor de las cargas
maximas que puede soportar la estructura. En una parte importante de los problemas de no linealidad
geométrica esta estimacion puede llevarse a cabo sin necesidad de trazar completamente la curva de
equilibrio, evitandose asi un proceso de elevado coste en términos de calculo.

Tanto los puntos limite como los puntos de bifurcacion del equilibrio significan desde el punto de vista
numeérico puntos criticos de la curva de equilibrio en los que el sistema de ecuaciones de equilibrio esta
indeterminado. En estos puntos, la matriz de rigidez tangente deja de ser definida positiva. La deteccién de
las situaciones en las que la matriz de rigidez se hace singular constituye la base de los métodos de calculo
de puntos criticos.
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5.7. Criterios de convergencia.

Con objeto de decidir cuando se termina el proceso iterativo se deben establecer ciertos criterios de
convergencia los cuales pueden clasificarse dependiendo de las cantidades que intervienen en la
comparacion. Se tienen asi los dos criterios mas usados:

5.7.1. Criterio de convergencia de desplazamientos

Con este criterio, en cada salto de carga, el proceso iterativo finaliza cuando la variacion de
desplazamientos SuX que se obtiene es menor que un cierto valor preestablecido. Ya que su® es
una magnitud vectorial de tantas componentes como grados de libertad tiene la estructura, para
poder establecer comparaciones se utilizan normas de tres tipos.

e 1. Norma infinita

18Ul = max |5u;]

(Ec54.)
e 2.Normall
18Ul = ) l6ul
(Ec55.)
e 3.Normal2
vt = (> sur)
(Ec56.)

La primera de estas normas, ||6U||, es simplemente el valor maximo de las componentes del
vector variacion de desplazamiento. ||6U||; es la suma de los valores absolutos de dichas
componentes. ||6U||, es la raiz cuadrada de la suma de los cuadrados de las componentes y
equivale al médulo del vector. A esta Ultima se la llama también norma Euclidea y es por lo general
la més usada.

Estas normas se comparan con una fraccién de la norma correspondiente de los desplazamientos
totales o del incremento de los desplazamientos. Por ejemplo si se utiliza la norma L2 se tendria:

I8UIl; < &,IUII
(Ec57.)
0 si se compara con el incremento de desplazamiento:
18Ul < &,llAU||,
(Ec58.)

siendo g, un valor que frecuentemente se fija en 0.01 6 0.001.

5.7.2. Criterio de convergencia de fuerzas

Se utiliza como cantidad a comparar una norma de las fuerzas residuales R. Como cantidad de
referencia se puede utilizar la norma correspondiente de las fuerzas exteriores totales o la del
incremento de carga. Utilizando por ejemplo la norma L2 del vector de incrementos de carga se
tiene el siguiente criterio:
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IRIl, < &g lIAAP]|;

gl
(Ec59.)

Un criterio también utilizado con frecuencia toma como cantidad de referencia el valor maximo de
los residuos en el incremento:

IRIl; < &, max (lIRIl2)
(Ec60.)

5.7.3. Criterio de convergencia de la energia

Otro criterio es el que considera en forma conjunta desplazamientos y fuerzas. Se basa en utilizar
como cantidad a comparar al valor absoluto del producto escalar de la variacién de desplazamientos
por las fuerzas residuales. Como referencia se toma el valor absoluto del producto escalar de los
desplazamientos totales por las cargas exteriores:

I6UT RIl; < & |UT P

(Ec61.)

5.8. Matriz de rigidez tangente de la barra.

Una vez visto lo anterior, para poder determinar la respuesta de la estructura se hace necesario ver como
determinamos la matriz de rigidez tangente que segun sabemos, en los problemas con algun tipo de no
linealidad, y en particular de la geométrica depende del nivel de desplazamientos al que se ve sometida la
estructura.

5.8.1. Formulacion de la matriz de rigidez tangente de la barra.

Sea la barra 1-2 de la figura 1, que inicialmente forma un angulo B, con el eje x global. A esta
barra, de longitud inicial L, tras aplicarle cargas en sus extremos (fuerzas y momentos), se deforma
pasado dichos extremos a ocupar la posicion 1°- 2.

Fig 1.

En principio las incognitas del problema son precisamente los desplazamientos nodales
(movimientos U, Vy 6 de sus nudos extremos), medidos estos en ejes globales.
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Los movimientos de los nudos extremos de la barra los podemos agrupar en un vector columna

que denominamos vector desplazamiento y que definimos del siguiente modo

U={U,V;,6,,U3V,, ez}T

Por otro lado, definimos los angulos 9, y 9, como
'81 =o+ 51

192=O(+1§2

donde a es el giro de la barra como sélido rigido.
Para ese movimiento, el alargamiento de la barra valdra

l_l:L_LO

y la deformacioén ingenieril la podremos expresar como

_L_Lo_ﬁ
T, L

Asi, el axil en la barra sera por tanto
uxEx*xA,

N=o*Ay=¢ec*xExA, = 3
0

(Ec62.)

(Ec63.)

(Ec64.)

(Ec65.)

(Ec66.)

La variacion virtual del alargamiento u de la barra, se puede expresar en funcién de los

movimientos de los nudos extremos de la barra como

Fig 2.

6u = 86U, cos 3 + 8V, sen 3 — 86U, cos 3 — 6V, sen

(Ec67.)
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o bien

8t = {—cosf, —senf, 0, cosp, sen B, 0} 8U
(Ec68.)
su=rTsU
(Ec69.)
donde B es el &ngulo que forma la barra con el eje x global.
De la misma manera, en incremento virtual del &ngulo (6a) lo podemos expresar como
Sa =8B = 6& = i * {senp, —cosp, 0, —senp, cosp, 0} 8U
Lo Lo
(Ec70.)
Sa = Lio * zT §U
(Ec71.)
Por otro lado
89; = Sa + 89,
89, = S + 89,
(Ec72.)
con lo que
[81?1] _ 6191] _ [80(]
89, 69, Sa
(Ec73.)
e I C N A L
(Ec74.)
donde
R R
(Ec75.)
Llamando vector de movimientos virtuales al vector 6p
ou
6p = |89 | = ['Z]au:sau
59,
(Ec76.)
definimos la matriz B como
T
=[]
(Ec77.)
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que de forma explicita

—cosf3 — senf 0 cosf senf 0
; —senf cosf 1 senf —cosf 0

B= [r ] = L Lo Lo Lo
A | —senp cosf 0 senf —cosP 1 |

| 71, Lo Lo Lo

(Ec78.)

y que como vemos es una matriz funcion del angulo que forma la barra con el eje horizontal (B) y
de la longitud inicial de la barra (Lo).

El trabajo virtual interno lo podemos poner como

(Ec79.)
Definiendo Q como
B N
Q=M vector de esfuerzos
MZ
(Ec80.)
podemos escribir
W, =8p’ Q =8UT BT Q =8UT Q
(Ec81.)
donde Q es el vector de esfuerzos internos en globales.
Q =B"Q
(Ec82.)

Admitiendo que las fuerzas externas aplicadas (vector de cargas) no dependen de los
desplazamientos, definimos la matriz de rigidez tangente como la variacion de los esfuerzos internos
respecto de los desplazamientos, es decir

QW) . 0QWU) 0B'(U) .
T U =B’ ou T T au Q=Kp+K;

K,

(Ec83.)
donde Ky es la matriz de rigidez material y K, la matriz de rigidez geométrica.

La relacién entre los esfuerzos en la barra y los movimientos de esta, viene dado por la expresion

siguiente
_ [N 4 0 07U
Q=Mi[=—x|0 4=xI 2*1] [121l=61_9
M, O Lo 2«1 4x1119,

(Ec84.)
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donde C es la matriz constitutiva de la barra, que es constante y Unicamente depende de la
geometria de esta y del material del que se trate.

Para llegar a calcular la matriz de rigidez tangente K,, tenemos que resolver las diferentes
derivadas

Por un lado:
QU op
gg} ) =C % =CB
(Ec85.)
con lo que se tiene que
K,=B"CB
(Ec86.)
Por otro lado, si escribimos BT como
BT — [BT1 BT2 BT3]
(Ec87.)
SRS S IR
(Ec88.)
Pasando a evaluar esas derivadas tenemos
0B", or ar* op
ou oU 0B aU
(Ec89.)
Si vemos como hemos definido r, resulta
or
% = z" = {senp, —cospB, 0, —sen, cosB, 0}
(Ec90.)
Segun hemos visto
Sa = %* zT 8U
(Ec91.)
0 bien
oa = % oU
ou
(Ec92.)
de donde, igualando la Ec91 con la Ec92, se deduce
a0 1
w1’
(Ec93.)
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Asi
aB7, 1

- T
ou L 27

(Ec94.)
que como facilmente puede comprobarse resulta ser una matriz de dimension 6x6.

La segunda y tercera derivadas necesarias para obtener la matriz de rigidez geométrica se
obtienen de forma anéaloga. Asi:

0BT, 0BT, 9A 0 1 1 0z 0(%)
oU ~ au :56255*('22):_2*55_2 ou
BT, 0BT, 1 9zdB 1 (L)
ou _ ou L ogau 2% au

(Ec95.)
que con
9z B 1 . oL ou .
—_— = = _— = — % —_— = =
BT owTLtP Y wTawTT
oBT, 0BT, 1
— — T T
oy v pBTETEET
N M; +M
=>Ka=Z*ZZT+ 1L2 2>|<(rzT+er)
(Ec96.)
y por lo tanto
N M; +M
Kt=KD+KG=BTCB+Z*zzT+ le 2x(r T+ z 71D
(Ec97.)

y que igualmente resulta ser una matriz cuadrada de dimensién 6x6.

Para cada barra obtenemos una matriz de esa forma la cual esta definida en ejes globales. Para el
ensamblaje de todas las matrices elementales, empleamos los métodos clasicos de céalculo matricial
de estructuras de barras. La matriz global resultante tendra una dimension nxn donde n es igual a
los grados de libertad del sistema (3 movimientos por nodo correspondientes a dos desplazamientos

y un giro).
g
Kt
(Ec98.)
La matriz global resulta ser singular por lo que tenemos que suprimirle las filas y columnas
correspondientes a los grados de libertad impedidos. La matriz resultante es en principio una matriz
regular o definida positiva de dimension igual al grado de indeterminacion cinematica del problema y

es la que empleamos para resolver el sistema de ecuaciones de equilibrio resultante y que presenta
la forma:
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-1
U=KJ P

(Ec99.)
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6. PROBLEMAS RESUELTOS CON EL CODIGO.

6.1. Barra inclinada (caso 1).

El primer problema que resolvemos con nuestro codigo es el de una barra recta de acero (médulo de
elasticidad 2.100.000 kg/cmz), de seccion rectangular de dimensiones 36x55 mm, la cual forma un cierto
angulo inicial a con la horizontal

dy

tana, = T

donde dx y dy son respectivamente las cotas de la barra, medidas sobre los ejes x e y. En este primer
caso dy son 5 cm mientras que dx se mantiene fija de valor 100 cm.

Con la seccion apuntada, se deduce que la barra tiene un area de 19,8 cm? y una inercia de 49,9125 cm”.
El extremo izquierdo de la barra se encuentra apoyado (sin posibilidad de movimiento ni en direccién x ni en
direccion y) mientras que el extremo derecho solo tiene impedido el movimiento en direccion x, pudiendo
dicho punto moverse en direccién vertical y rotar.

N :
y P s
X
100 ¢m
Figura 10: Geometria del modelo.
5
4
3
2
1
20 40 60 80 100

Figura 11: Discretizacién del modelo en Mathematica.

Para la obtencién de la trayectoria de equilibrio, en este caso se han llevado a cabo 60 incrementos con
los siguientes parametros (y = 0,5, A, = 10, 84, = 5, tol = 0.0001, méax. n° iter = 40).

La barra se divide en 10 elementos de igual longitud y con esta geometria y condiciones de contorno, se
aplica al extremo derecho una carga vertical —P, la cual se grafica frente a la posicion vertical del punto de
aplicacion de la carga, obteniendo la siguiente curva de equilibrio.
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Figura 12: Gréfica 'y - A. Posicién del punto de aplicacion de la carga - Carga aplicada.

En la figura 12 puede apreciarse lo siguiente:

Los puntos (y, 4) obtenidos con nuestro cédigo, son los puntos de equilibrio por los que
atraviesa la estructura y la linea que los une, es la “trayectoria de equilibrio de la estructura”.
En realidad la trayectoria de equilibrio es una curva alabeada en un espacio n+1 dimensional,
siendo n el n° de grados de libertad del sistema o grado de indeterminacion cinematica de la
estructura.

Inicialmente nos encontramos en el punto (5, 0). La estructura esta descargada y la barra se
encuentra en un estado libre de tensiones o esfuerzos. En esta situacion, la barra se
encuentra en un estado de equilibrio estable.

Conforme aumentamos el valor de la carga P, el punto de aplicacion de esta va descendiendo
y el problema, que inicialmente es précticamente lineal, se hace cada vez mas no lineal
observandose claramente en la figura la no linealidad entre cargas aplicadas y descensos.

A medida que la carga va aumentando, la estructura va perdiendo rigidez como consecuencia
del axil que acumula debido a su acortamiento y cuando la carga es aproximadamente de
unos 1.000 kp (A = -1.000), la estructura pierde toda su rigidez desencadenandose el pandeo
global de la misma.

A partir del punto de pandeo anterior (2,7, -1.000), para encontrar las sucesivas posiciones de
equilibrio a medida que el desplazamiento aumenta, la carga debe disminuir. De hecho,
cuando el descenso del punto de aplicacién de la carga vale 5 cm (es decir, la barra adopta la
posicion horizontal), la carga vertical P necesaria para mantener su equilibrio es nula. El
punto (0, 0) es también un punto de equilibrio.

El punto (0, 0) es un punto de equilibrio inestable puesto que si el sistema es dejado en ese
estado, aunque dicha posicién sea de equilibrio, cualquier perturbacién de dicha posicion
haria que el sistema evolucionase de forma espontdnea hacia otras posiciones de equilibrio
alejadas de la inicial (0, 0) y en las que la carga P también fuese nula. Estas posiciones son
I6gicamente las (5, 0) o la (-5, 0).

Del punto de pandeo (2,7, -1.000) al (-2,7, 1.000) la rigidez de la estructura es negativa. A
partir del punto (-2,7, 1.000), para poder seguir aumentando el descenso del punto de
aplicacién de la carga debemos de disminuir esta hasta que, para cuando la barra adopta la
posicion simétrica respecto de su posicidn original, la carga se hace nula (-5, 0).
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e A partir del punto (-5, 0), para poder seguir aumentando el descenso del punto de aplicacion
de la carga debemos disminuir esta (empujar hacia abajo). En este punto, la estructura va
rigidizandose a medida que va tomando carga como consecuencia de la traccion que le
provoca el descenso del punto de aplicacion de la carga.

Tenemos que sefialar que con la geometria particular de este primer caso, la trayectoria de equilibrio
obtenida describe una curva suave. En este caso, el codigo programado no ha dado ningun problema a la
hora de obtener los sucesivos puntos de equilibrio y no se han producido puntos de oscilacion, raices
imaginarias ni cualquier otro tipo de inestabilidad.

El hecho de que la curva sea suave es indicativo de que el pandeo se ha producido a nivel global de la
estructura y no a nivel local de barra. Notemos que con esta geometria, el acortamiento maximo de la barra
se presenta cuando esta toma la posicién haorizontal. Inicialmente, la longitud de la barra vale

Lo = /dx? + dy? = /1002 + 52 = 100,1249 cm

Mientras que la longitud de esta cuando el descenso es de 5 cm vale y admitiendo que permanece recta
es

Ly = dx =100 cm
Con esto, es acortamiento maximo de la barra vale
u= Ly —Ly=100-100,1249 = —0,1249 cm

por lo que el alargamiento de sus fibras es de

u —0,1249

e T 124741073
L, 100,1249 *

e =

lo que da lugar a una carga de compresién de valor
N=oc*A=c*E*xA=—1,247 « 1073 x 2.100.000 * 20 = —52.392,6 kp

Por otro lado, como se trata de una barra apoyada-apoyada, la carga critica de pandeo de la barra
(estructura) es:
w2+ E x [ _ 3,141% % 2.100.000 * 49,9125

N = - = -103.191,6 k
r L.’ 100,1249 P

es decir, el axil producido como consecuencia del acortamiento de la barra al descender el punto de
aplicacion de la carga 5 cm (N = -52.393 kp), es menor que la carga critica de pandeo de Euler de la barra.
Por lo tanto, en este caso, mucho antes de que se produzca el pandeo de Euler, la estructura ha perdido su
rigidez global siendo en este caso ésta la que gobierna la fisica del problema.

No ocurre lo mismo si la coordenada y del extremo derecho de la barra vale 10 cm en lugar de los 5 cm de
este primer caso.
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6.2. Barra inclinada (caso 2).

En este segundo problema, contamos con el mismo tipo de perfil que en el caso anterior, con el mismo
material y seccion pero ahora, la geometria inicial es diferente. Ahora dy son 10 cm mientras que dx se
mantiene constante e igual a 100 cm como en el caso anterior. Las condiciones de contorno son las mismas
que antes por lo que la Unica diferencia es la longitud de la barra (estructura).

Por tanto, en este segundo caso, la barra al igual que en el caso anterior, tiene un area de 19,8 cm” y una
inercia de 49,9125 cm®. El extremo izquierdo de la barra se encuentra apoyado (sin posibilidad de movimiento
ni en direccion x ni en direccion y) mientras que el extremo derecho solo tiene impedido el movimiento en
direccion x, pudiendo dicho punto moverse en direccion vertical. Ambos extremos pueden rotar.

Para la obtencion de la trayectoria de equilibrio, en este caso se han llevado a cabo 265 incrementos de
carga con los siguientes parametros (y = 0,5, 1, = 10, 6,4.s = 5, tol = 0.001, max. n° iter = 40).

Ap
y ol
[
o
-
100 cm
Figura 13: Geometria del modelo.
10
8
6
4
2
20 40 60 80 10

Figura 14: Discretizacién del modelo en Mathematica.

La barra se divide también en 10 elementos de igual longitud y con esta geometria y condiciones de
contorno, se aplica al extremo derecho una carga vertical variable —P, la cual se grafica frente a la posicion
vertical del punto de aplicacion de la carga.

En este caso se observa lo siguiente. La curva de equilibrio que se obtiene adopta la forma de la figura 15.
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Figura 15: Gréfica 'y - A. Posicion del punto de aplicacion de la carga - Carga aplicada.

En la figura 15 puede apreciarse lo siguiente:

Los puntos (y, 1) obtenidos con el cddigo, son puntos de equilibrio y la linea que los une, es la
“trayectoria de equilibrio de la estructura”. En realidad la trayectoria de equilibrio es una curva
alabeada en un espacio n+1 dimensional, siendo n el n°® de grados de libertad del sistema.
Inicialmente nos encontramos en el punto (10, 0). La estructura esta descargada y la barra se
encuentra en un estado libre de esfuerzos. En esta situacion, la barra se encuentra en un
estado de equilibrio estable.

Conforme disminuimos el valor de la carga P, el punto de aplicacién de esta va descendiendo
y el problema, que inicialmente es practicamente lineal, se hace cada vez mas no lineal
observandose claramente en la figura la no linealidad entre cargas aplicadas y descensos.

A medida que la carga va aumentando, la estructura va perdiendo rigidez como consecuencia
del axil que acumula debido a su acortamiento y cuando la carga es aproximadamente de
unos 7.280 kp (4 = -7.280), aparece un punto de bifurcacion del equilibrio, en el que la
estructura bien puede pandear localmente a nivel de barra o bien si la barra no pierde la
rectitud, puede seguir incrementandose la carga para describir un comportamiento similar al

del caso 1 con un pandeo global.

Notas: En este caso, para cazar la trayectoria a partir del punto de bifurcacion, se ha hecho
necesario introducir una pequefa perturbacion capaz de modificar la rectitud de la barra y de esa
manera excitar el modo de pandeo local de la barra. Dicha perturbacién se ha introducido como una
carga puntual de pequefia magnitud, aplicada en el nodo central de la particion y en direccién
vertical.

Si no introducimos la perturbacion, al llegar al punto de bifurcacién el cédigo oscila no siendo
capaz de determinar las nuevas posiciones de equilibrio y este hecho hace que necesitemos de
cierto conocimiento previo del modo de pandeo que puede tener lugar. En este caso es sencillo al
tratarse de una sola barra y la primera forma de pandeo de ésta en sencillamente la de la figura 16.
En problemas mas complejos (con mas barras), la solucion puede no ser tan obvia.
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Figura 16: Primer modo de pandeo de la barra articulada-articulada.

Notemos que en este caso, la carga critica de pandeo de la barra vale:

- m?xEx1  3,141%%2.100.000 * 49,9125 102.425.0 k
cr = Lkz - 100,4987 - . o

Para que se produzca ese axil en la barra, la deformacién de la barra ha de ser la que sigue

N =-1024250kp =0xA=e*xExA

N —102.425,0

- = = —2,4387 % 103
E+xA  2.100.000 = 20 *

= £

de donde se deduce que el acortamiento de la barra tiene que valer
u=c¢ex*Ly=—2,4387 %1073 * 100,4987 = —0,2451 cm

Para que se produzca ese acortamiento u en la barra, el punto de aplicacion de la carga se tiene
gue mover verticalmente una cantidad (y-yo) y la longitud final de la barra valdra

L= Ly+u=100,4987 —0,2451 = 100,2536 cm

y de aqui, como

dy = /12 — dx? = /100,25362 + 1002 = 7,1263 cm

el descenso
Ay =dy —dy, =7,1263 —10 = —2,8737 cm

Es decir, la carga critica de pandeo local de la barra (N = -102.425 kp), aparece cuando el
descenso del punto de aplicacién de la carga es de 2,8737 cm lo cual se corresponde con el
desplazamiento vertical en el punto de bifurcacién que aparece en la figura 15.

Para esa posicion de la barra, el &ngulo  que forma con la horizontal es de
dy _7,1263

tanf = — = ———
anf == 100

B = arctg(0,07126) = 4,0762°

= 0,07126

Por lo que la carga vertical aplicada vale
P =N=xsenf = —102.425,0 * sen 4,0762 = —7.280,0 kp

La cual coincide con lo que se observa en la figura 15. Ademas, esta carga es menor que la carga
de pandeo global de la estructura por lo que cuando dy = 7,1263 cm, lo que dara lugar a que la
carga en la barra sea de 102.425 kp, si la barra pierde la rectitud ideal se producira un pandeo local
de esta que marcara la trayectoria de equilibrio indicada en la figura 15. Si la barra no pierde la
rectitud, la trayectoria de equilibrio sera similar a la de la figura 12 del caso 1.

35



e A partir del punto de bifurcacién (7,1263, -7.280), para encontrar sucesivas posiciones de
equilibrio el valor absoluto de la carga P debe de disminuir. De hecho, las sucesivas
posiciones de equilibrio estan contenidas en una recta que pasando por el (0, 0) llega hasta la
posicion simétrica (-7,1263, 7.280). Durante todo este tramo recto, la rigidez tangente de la
estructura es negativa. La carga de pandeo de la barra permanece constante (esta no
cambia) pero la carga vertical aplicada P aumenta hasta anularse en el (0, 0) y continua
creciendo hasta llegar al punto de simetria (-7,1263, 7.280).

e En el punto (-7,1263, 7.280) la rigidez de la estructura pasa a ser nuevamente positiva. Para
poder seguir aumentando el descenso del punto de aplicacion de la carga debemos de
disminuir la carga vertical aplicada P hasta el momento en el que la barra adopte la posicion
simétrica respecto de su posicién original, momento este en el que la carga se hace nula y
gue corresponde al punto (-10, 0).

A partir del punto (-10, 0), para poder seguir aumentando el descenso del punto de aplicacién de la carga
debemos de aumentar esta. En este punto, la estructura a medida que va tomando carga va rigidizandose
como consecuencia de la tracciéon que le provoca el descenso del punto de aplicacion de la carga.

6.3. Partico simple.

En este tercer problema, se compara el resultado obtenido en nuestro cédigo con el que obtienen P.
Kotronis y F. Collin en su articulo Implementation of path following techniques into the finite element code
Lagamine. En este ejemplo se trata un pértico rigido plano formado por dos barras ortogonales de igual
longitud, las cuales cuentan con las dimensiones y condiciones de contorno indicadas en la figura 17.

Las barras son de un material cuyo médulo de elasticidad vale 70.000 kp/cm? (correspondiente a un tipo
de aluminio). Tienen un area de 6,0 cm?® y una inercia de 2,0 cm”. Cada barra tiene una longitud de 120 cm y
se dividen en 5 elementos iguales cada uno de los cuales presenta una longitud de 24 cm.

Para la obtencion de la trayectoria de equilibrio, en este caso se han llevado a cabo 900 incrementos de
carga con los siguientes parametros (y =0,5, 1, = 2, 64,5 = 5, tol = 0.001, max. n° iter = 20).

24 chF 96 cm

. d

12 Py Py Py Py Py
X 100,
g '[ Y 80
g [
— 60
<
40
201
+ &
20 40 60 80 100 120
Figura 17: Geometria del modelo. Figura 18: Discretizacién del modelo en Mathematica.

En este caso se ha considerado el sentido positivo del eje y, hacia abajo.
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Se aplica en el punto indicado en la figura una carga vertical variable P, la cual se grafica frente a la
posicién vertical del punto de aplicacion de esta, obteniendo la siguiente curva de equilibrio.
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Arc-length

0.5

Load [kM]

-0.5

-15

20 40 60 &0 100 120

Figura 19: Gréfica y - 1 segln Kotronis y Collin. Posicién del punto de aplicacion de la carga - Carga aplicada.

1.5+

0.5}

at

Figura 20: Gréfica y— A segln nuestro codigo. Posicion del punto de aplicacion de la carga - Carga aplicada.

En la figura 20 se muestra la trayectoria de equilibrio obtenida con nuestro codigo:

e Los puntos (y, 1) obtenidos en el cédigo, son puntos de equilibrio y la linea que los une, es la
“trayectoria de equilibrio de la estructura”.

¢ Inicialmente nos encontramos en el punto (120, 0). La estructura esta descargada y las barras
se encuentran en un estado libre de esfuerzos.

e Conforme aumentamos el valor de la carga vertical P, el punto de aplicacién de esta va
descendiendo y el problema, que inicialmente tiene una rama lineal, se hace cada vez mas no
lineal observandose claramente en la figura la no linealidad entre cargas aplicadas y
descensos.

e La trayectoria presenta dos puntos limites y dos puntos de retroceso o puntos limite de
desplazamiento.
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e A medida que la carga va aumentando, la estructura va perdiendo rigidez y cuando la carga
es aproximadamente de unos 1,89 KN (1=1,89), la estructura pierde toda su rigidez
produciéndose el pandeo global de la misma.

Notas: En este caso no hemos tenido que perturbar para obtener las sucesivas posiciones de
equilibrio.

El cédigo no ha dado problemas de oscilaciones, raices imaginarias... ni otros problemas
numeéricos.

El pandeo global del sistema nos proporciona una trayectoria suave, sin presencia de puntos de
bifurcacion.

Alcanzado el punto de pandeo global (71, 1,89), para obtener los sucesivos estados de equilibrio
tenemos inicialmente que reducir la carga llegando al punto (58,5, 1,21). Este punto es un punto de
retroceso dado que al atravesarlo se produce una disminucion del desplazamiento acompafiado de
una disminucion de carga.

El otro punto de retroceso es el (68, -0,50).

El otro punto limite es el (62, -1,00). A partir de este punto y en adelante, la rigidez tangente pasa a
ser positiva y para producir aumentos en el descenso del punto de aplicacion de la carga,
necesitamos aumentar progresivamente la carga.

e Dado que la propia deformacién de la estructura excita modos de pandeo globales, no
aparecen puntos de bifurcacién que pudieran conducir a modos de pandeo de caracter local.

6.4. Arco rebajado con carga excéntrica.

El cuarto problema que se estudia se trata de un arco rebajado con la geometria indicada en la figura 21.
Los resultados obtenidos con nuestro codigo se comparan con los obtenidos para el mismo en el articulo de
P. Kotronis y F. Collin Implementation of path following techniques into the finite element code Lagamine.

Offset 200
L . ]
X
F
Y
......... ) -
Rise 500
5000 5000

Figura 21: geometria del modelo.

El arco es de un material cuyo modulo de elasticidad vale 20.000 kp/cmz. Tiene un area transversal de
100,0 cm? y una inercia de 10.000,0 cm”. El arco cubre una luz de 10 m y se encuentra apoyado en ambos
extremos. Presenta una altura de 0,5 m en su punto medio y se carga de forma excéntrica tal y como se
indica en la figura 21.

Para el trazado del arco, se dibuja en CAD un arco de circulo que pasa por los tres puntos (los extremos y
el centro) y se trazan lineas verticales paralelas y equidistantes 500 mm, de modo que se puedan obtener las
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cotas de los diferentes puntos del arco. Dado que la posicién de la carga al centro del arco vale 200 mm, se
tiene en cuenta para la determinacion de las coordenadas de estos puntos.

El arco, se divide en 20 elementos barra y su geometria en Mathematica es la que se muestra en la
siguiente figura.
w.

&

20¢

10¢

200 400 600 800 1000

Figura 22: Discretizacion del modelo en Mathematica.

Para la obtencién de la trayectoria de equilibrio, en este caso se han llevado a cabo 230 incrementos con
los siguientes parametros (y = 0,5, 4, = 10, 6,5 =5, tol = 0.001, max. n° iter = 15).

Se aplica en el punto indicado de la figura una carga vertical variable P, la cual se grafica frente al
descenso vertical del punto de aplicacidn de esta, obteniendo la siguiente curva de equilibrio.
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Figura 23: Gréfica y - A segun Kotronis y Collin. Descenso del punto de aplicacién de la carga - Carga aplicada.

Segun nuestro cédigo:
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Figura 24: Gréfica 8y - A segun nuestro cddigo. Descenso del punto de aplicacién de la carga - Carga aplicada.
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Figura 25: Gréfica §y - A segun nuestro cddigo. Descenso del punto de aplicacién de la carga - Carga aplicada.

Segun vemos en este ejemplo, se presentan cuatro puntos limites y dos puntos de retroceso o puntos
limites de desplazamiento lo que da lugar a una trayectoria de equilibrio bastante enrevesada.

Los resultados obtenidos con nuestro codigo, son muy parecidos a los aportados por P. Kotronis y por F.
Collin lo que demuestra que nuestro codigo esta correcto.

En este Ultimo ejemplo, el cédigo tampoco ha dado problemas a la hora de encontrar las sucesivas
posiciones de equilibrio, lo que parece indicativo de que el problema planteado no presenta puntos de
bifurcacion del equilibrio que es lo que hace que nuestro cédigo oscile.

Si en lugar de aplicar la carga en el punto dado, la aplicamos en el punto central del arco, en este caso, si
no aplicamos carga perturbadora, el cddigo programado presenta problemas numéricos en las proximidades
del punto de pandeo (donde la pendiente de la grafica se hace horizontal). Aparecen raices imaginarias,
mensajes de matriz mal condicionada...

La siguiente grafica muestra el resultado obtenido para este caso.
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Figura 26: Gréfica §y - A segun nuestro cédigo para el caso de carga centrada.

Descenso del punto de aplicacién de la carga - Carga aplicada.

Como puede verse en la figura 26, en el punto de pandeo parece como si la trayectoria de equilibrio
retornase hacia atras y buscase el camino de bifurcacion mas o menos lineal. Al final, por mas que
aumentemos el n® maximo de iteraciones, el cédigo oscila y no es capaz de seguir mas alla del dltimo punto
encontrado.

Si ademas de la carga anterior introducimos un par de fuerzas perturbadoras, el resultado es el que se
muestra en la figura 28 (la perturbacién se introduce segun se indica en la figura 27 como un par de fuerzas
de igual madulo y sentido contrario, las cuales actian en puntos simétricos respecto del punto central del arco
y de forma que el resultado de estas equivale a un par aplicado en el nodo central el cual obliga al arco a
adoptar una geometria deformada no simétrica).

0.001 »p l

T0.00I?\p

Figura 27: Introduccion de las fuerzas perturbadoras.
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Figura 28: Gréfica dy - A segun nuestro cddigo para el caso de carga centrada + cargas perturbadoras.

Descenso del punto de aplicacion de la carga - Carga aplicada.

Volviendo a la figura 26 y comparandola con la figura 28, en el primer caso (caso de no introducir
perturbacion), la trayectoria de equilibrio que encuentra nuestro codigo es "la misma" y en la misma direccién
gue la obtenida en el segundo caso (caso en el que si se introduce perturbacion). Segin vemos en la figura
28, en el primer punto de bifurcacion tenemos dos posibles trayectorias de equilibrio. En el caso de no
perturbar, el cédigo no encuentra la direccion correcta y se va por la dada en la figura 26. Notemos que en
este punto de bifurcacién las dos trayectorias posibles tienen tangentes o pendientes muy parecidas.
Siguiendo el camino, aproximadamente en el punto (645, 50) volvemos a tener un punto de bifurcaciéon o
interseccion de trayectorias aunque, en este caso, el cédigo no da problemas. En este punto las tangentes a
ambas trayectorias, aunque préximas, tienen mayor diferencia que en el primer caso. Al final de la trayectoria
encontrada en el primer caso (sin perturbacion), el cédigo se encuentra en un problema similar teniendo que
elegir el camino a seguir. En este caso el codigo se pierde (oscila) y no es capaz de continuar avanzando. En
este Ultimo punto y segln puede verse en la figura 28, las dos trayectorias tienen o presentan pendientes
similares lo que hace que el cédigo oscile.
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Desde el punto de vista estructural, una cuestion fundamental es la determinacion de las cargas criticas de
pandeo de las estructuras analizadas. Como se observa en los ejemplos anteriores, estas cargas quedan
determinadas al ver los puntos limites que aparecen en las trayectorias de equilibrio. A nosotros, nos interesa
determinar el valor de la primera carga limite y con el cédigo programado esto queda del todo resuelto. Asi,
en los siguientes ejemplos, vamos a determinar estas cargas limite para una serie de estructuras simples.
Con dichas cargas limites (cargas criticas) podemos determinar la longitud de pandeo de las barras (pilares)
cuestion esta de la mayor importancia y que no en todos los cédigos comerciales se resuelve de forma
adecuada.

6.5. Pilar simple.

El quinto problema que resolvemos es el de un pilar metalico de seccion variable formado con dos perfiles
de acero laminado de la serie HEB.

En el plano de estudio, el pilar se encuentra empotrado en su base y libre en extremo superior. Cuenta con
2 tramos de igual altura (5+5 m) lo que hace una altura total de 10 m. Para el tramo inferior se dispone una
HEB 300 y para el superior una HEB-200. Estos pilares cuentan con unas inercias de 25.170 y 5.696 cm*
respectivamente y unas secciones de 149y 78,1 cm? también respectivamente.

Se trata de determinar la carga vertical compresora que agota al perfil por pandeo.

ot

1
bl
2 -
: y
. . ' . .
-1 -0.5 0.5 1 X
Figura 29: Discretizacion del pilar en estudio en Mathematica Figura 30: Geometria del pilar

Segun Timoshenko & Gere (ref. 13) este problema tiene la siguiente soluciéon analitica.

k
Tan [ky * ;] * Tan [ky = 1,] = k—l (*)
2

con
l, = longitud del tramo superior = 500 cm

l, = longitud del tramo inferior = 500 cm

k, =
YT ExL
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k2=

ExI

Resolviendo con Excel la ecuacion transcendente (**) obtenemos un valor para la carga de pandeo de
este pilar de 75.62 toneladas.

0,15

0.1

0,05

Figura 31: Solucién de la ecuacion transcendente

Para comparar este resultado analitico con el resultado dado por SAP, modelamos el problema en SAP, y
una vez introducida la geometria, material y condiciones de contorno, cargamos el pilar en cabeza con una
fuerza vertical compresora de 1.000 kg.

Resolviendo, obtenemos un factor de carga critico de pandeo de 76,74. La figura 32 muestra este
resultado.

K Deformed Shape (Pandeo) - Mode 1 - Factor 76.74156

Figura 32: Carga critica de pandeo (en toneladas), proporcionada por SAP
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Resolviendo con nuestro codigo, la carga de pandeo es de 75,59 toneladas, donde el valor critico
representa una aproximacion puesto que no aparece un punto limite como tal, es decir, con pendiente
horizontal en la curva. La siguiente figura muestra este resultado.

70000

10000

0.05 0.1 0.15 0.2 0.25

Figura 33: Gréfica dx - A seguin nuestro cadigo.
Desplazamiento horizontal del punto de aplicacién de la carga - Carga aplicada.
La diferencia con SAP es de tan solo un 1,5%.

Al tratarse de un pilar de inercia variable, conociendo el valor de la carga critica de pandeo, la longitud de
pandeo de cada tramo del pilar se puede determinar aplicando las siguientes formulas.

] w2« E x|
o Pcrit

y de ahi

En este caso, la longitud de pandeo del tramo superior vale

; w2 x E* ] w2 % 2100000 * 5696 12497
200 = = = 1.249,7 cm
k, HEB—200 Py 75590

lo que da un Bygg—_200 de

12497 250
BrEes-200 = 500~

Para el tramo inferior

] 2 x E 1 2 % 2100000 * 25170 2627 1
_ = = = 4. ,1 Cm
k, HEB—300 Pcrit 75590

lo que da un Bygg_300 de

Bueg-300 = — = 5,25
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Los valores de las longitudes de pandeo de los dos tramos del pilar no tienen correspondencia con la
longitud de pandeo global del pilar la cual queda desconocida. Estas longitudes de pandeo de los tramos del
pilar son resultados auxiliares del célculo de este que permiten evaluar las esbelteces A con las que en la
practica, se efectlia la comprobacion de la seccién de cada tramo.

lk, HEB—200 _ 1.249,7
AHEB—200 = T = = 146,3
HEB=200 lzz, HEB—200 8,54

Uk, HEB-300 _ 2.627,1

Ao o = =
HEB=300 iZZ, HEB-300 12!997

= 202,13

donde i,, perru €S €l radio de giro del perfil en el plano considerado, dato este obtenido de prontuario.

Nota: Aunque la esbeltez y el factor de carga se denotan con la misma letra 4, son cosas distintas.

46



6.6. Portico plano.

El sexto problema que resolvemos es el de un pértico plano de un vano y una altura obtenido del ejemplo
que figura en el libro Estructuras de acero (vol. 1) de Arguelles, en el que se obtiene mediante célculo
matricial la carga critica de pandeo de éste. En el libro, la rigidez de la estructura se afecta mediante la matriz
de rigidez geométrica.

Segun el texto la geometria del poértico es la siguiente. Tiene su apoyo izquierdo empotrado a la
cimentacion y el derecho se encuentra articulado. Los apoyos no se encuentran al mismo nivel estando el
apoyo derecho 1 m por debajo del apoyo izquierdo. El poste derecho presenta una altura de 5 m y el dintel
tiene una longitud de 5 m. Todos los perfiles del pértico son perfiles metalicos en acero S275JR laminados en
caliente HEB-200. Estos perfiles cuentan con una seccién de 78,1 cm? y una inercia en su eje fuerte de 5.696
cm®. El acero tiene un médulo de elasticidad de 2.100.000 kp/cm?.

El resultado obtenido por Arguelles para el A €s

Acrit = 9,10
a) Esquema del portico
P et |O7P
5 1

X

Figura 34: Geometria del portico y cargas. Referencia Arguelles.

Al objeto de establecer una comparativa de resultados, el pértico lo simulamos también en el programa
comercial SAP-2000. Respecto del programa SAP, dado que este utiliza Unicamente Newton-Raphson con
control de fuerzas o desplazamientos en la blusqueda del equilibrio, con él, solo podemos determinar la carga
critica de pandeo y no podemos ir mas alla. No obstante, este dato es el mas importante desde el punto de
vista de la seguridad estructural y sera un buen dato para establecer la comparacion de resultados.
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Figura 35: Geometria del modelo en SAP-2000.

El pértico lo cargamos segun la figura 34, con un valor para P de
P = —20.000 kg
Tras un analisis plano en SAP, obtenemos que la carga de pandeo del pértico vale:
Acrit = 8,89

Es decir, tendriamos que multiplicar las cargas por 8,89 para que el pértico colapsase por pandeo. La
diferencia con el resultado obtenido por Arglelles puede deberse entre otras causas a que SAP emplea para
su formulacién elementos finitos.

T
_'jf: Deformed Shape (Pandec) - Model - Factor 889376

Figura 36: Carga critica de pandeo con SAP-2000.
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Con nuestro codigo, una vez introducidos el tipo de material, geometria, condiciones de contorno,
propiedades de las secciones, cargas..., el resultado es el siguiente.

8.5}

o

al
eUb o 0 0 b ooooaspe

Figura 37: Carga critica con nuestro codigo.

Desplazamiento vertical de la esquina superior izquierda (punto de control) - Carga aplicada.

La figura 37 muestra el valor de A frente al desplazamiento vertical del punto superior izquierdo del portico.
Tal y como podemos ver en la figura, el valor obtenido de A = 9,03 es algo superior al obtenido con SAP y
algo inferior al obtenido para este caso por Arguelles. Esto puede deberse al hecho de que SAP divide
internamente las diferentes barras a la vez que la formulacion de los elementos es distinta al ser, como ya
hemos comentado previamente, con elementos finitos. En la figura 37 podemos ver que la trayectoria de
equilibrio de la estructura ha de hacerse horizontal con tangente en torno al valor de 1.,.;; = 9,1 que es el valor
dado por Arglelles.

Légicamente en el célculo de estructuras, una de las limitaciones existentes es la deformacion de estas.
Las estructuras tienen que proveer cierta sensacion de bienestar y esto se consigue limitando sus
deformaciones a valores normativos. En este Ultimo caso vemos que para cuando la carga se aproxima a la
carga de pandeo, la deformacién vertical del punto de control (esquina superior izquierda) es de 35 cm lo
cual, desde el punto de vista estructural es del todo inasumible, advirtiendo ademas que para esta
deformacion, la falla de la estructura puede llegar con anterioridad como consecuencia del estado tensional
sobre las diferentes piezas (nuestro analisis es elastico lineal). Asi, en este caso y con un n°® maximo de
incrementos de carga de 300, nuestro codigo no ha encontrado todavia el punto en el que la estructura pierde
su rigidez y por lo tanto el valor aportado es un valor aproximado que podria mejorarse aumentando el n°
maximo de incrementos pero que en este caso y por la deformacion observada, carece de sentido.

Con el valor de 1 obtenido, podemos determinar las longitudes de pandeo de los pilares a través de la
expresion

Poit = Aerie N
que junto con
w2 *«Ex]
crit — 5 2
l

podemos deducir el valor de la longitud de pandeo de los pilares I,. En la ecuacion anterior N es el axil
que obra en cada uno de los pilares.
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; 2« E x| m2«Ex] ; Bl
= = = = *
k Pcrit )lcritN ,

y por tanto
l
-t
En este caso, el § del pilar de la izquierda vale
Bizq = 1,444
y para el pilar de la derecha
Bacn = 1,338

NOTA: estos resultados estan obtenidos en base a Ay =91, Niyq = 24.875kp , Ny = 20126 kp ,
lizg =500cm y lge, = 600 cm.

*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkhkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
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7. FUNCIONAMIENTO DEL PROGRAMA.
El cédigo funciona de la siguiente manera.

En primer lugar se define el material del que estan formadas las barras de la estructura. Para ello se
emplea la variable me (mddulo de elasticidad), la cual es una constante del problema. En este particular al
tratarse de acero el médulo de elasticidad que empleamos es

me = 2.141.404 kg/cm?

En segundo lugar definimos la geometria de la estructura a analizar. Para ello introducimos las
coordenadas de los puntos de la estructura (en el siguiente ejemplo las jacenas de la estructura se modelan
con un Unico elemento barra, los pilares inferiores con tres y los superiores con dos). Asi, la estructura tiene
un total de 13 barras (b=13) y 13 nudos (n=13).

HEB=300
i I
. 400
|
F i 600
- o < <
I ] HEB—400 | HEE—400 Sm
| 7 300
5 o [ ]
1 200
Tt - 1&)‘. [ ]
- - - 200 400 600 800
Figura 38: Geometria del pértico a estudiar. Figura 39: Geometria portico en Mathematica.
Pt 6 (0, 700) Pt 9 (500, 700)
Pt 5(0,550) » + Pt 8 (500, 550)
Pt 4 (0, 400) Pt 12 (900, 400)
Pt 7 (500, 400)
Pt 3(0, 166) ¢ $ Pt 12 (900, 266)
Pt2(0,133) * ¥ Pt 11 (900, 133)
Pt 1(0,0) Pt 10 (900, 0)
T T

Figura 40: Coordenadas (en cm) de los puntos de la estructura.

Los puntos de introducen mediante la definicion de las siguientes variables

x0; e y0; coni=123...n
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Como ejemplo, en este caso tenemos
xOl =0 N yOl =0

Pt6 Pt9

Pt5 ¢ s Pt 8

Pt4 Pt13
Pt7

Pt3 e » PI12

Pt2 ¢ s PI11

Pt1 Pt 10

e e

Figura 41: Numeracion de los puntos de la estructura.

Para definir los extremos de las b barras, se definen las variables barra; como un vector de dos
componentes cuya primera componente es la numeracidon del punto inicial de la barra y la segunda
componente es la numeracion del punto final.

barra 13

barra 5
barra 7

barra 6

barra 11 barra 12

barra2 barra3 barrad

barra8 barra9 Dbarral0

1 barra 1

Figura 42: Numeracion de las barras de la estructura.

barra; = {a,b} coni=1,23...b
En este ejemplo
barra, = {1,2}

barra, = {8,9}
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Se definen las condiciones de contorno mediante la variable Nc. En este caso los puntos unidos a
cimentacion son el 1y el 10. El punto 1 esta empotrado y el 10 esta articulado.

Al tratarse de un estudio plano, cada punto (nodo) tiene tres posibles componentes de desplazamiento que
son &x, 6y y el giro 6. Para este ejemplo en el que tenemos 13 puntos, esto hace un total de 39 componentes

de desplazamiento.

El grado de indeterminacién cinematica de la estructura son precisamente esas 39 componentes menos
las componentes de desplazamiento impedidas. En este ejemplo, las componentes de desplazamiento
impedidas son los movimientos 8x, §y y el giro 6 del punto 1 y los movimientos §x, §y del punto 10.

La variable Nc se define como un vector de dimension igual al n° de grados de libertad coartados en la
estructura y que nos permite conocer las restricciones de la misma. En este ejemplo en particular esta
variable es un vector de 5 componentes y resulta ser

Nc ={1,2,3,28,29}
El vector Nc¢ asi definido nos indica sin posibilidad de error las ligaduras de la estructura.

Por otro lado, la variable DNc¢ se define como un vector de dimension igual al grado de indeterminacion
cinematica de la estructura y nos indica los grados de libertad en la misma. En este ejemplo, este vector tiene
16 componentes y resulta ser

DNc = {4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20, 21,22, 23,24, 25,26,27,30,31, 32,33, 34, 35,36,37,38,39}

A continuacién se definen las propiedades de seccién e inercia de cada barra, asignando valores
numéricos (****) a las variables siguientes (2; y m; respectivamente. En nuestro ejemplo:

0; = 149 cm? i=1,234,56,7,8910,13
‘Qll = !212 = 198 sz
m; = 25670 cm* i=1,2,3,456,7,89,10,13

m11 = mlz = 57680 Cm4

Para la introduccién de cargas se define un vector de cargas basicas Pa de tantas componentes como
grados de libertad tiene la estructura. Por cada punto no coaccionado tenemos tres posibles componentes de
fuerza que son Fx, Fy y M. Asi, el vector de cargas tiene la dimensién del vector DNc.
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Figura 43: Estado de cargas basicas (Pa) sobre la estructura.

Con las cargas apuntadas en la figura 43, Pa toma la forma siguiente:

Pa ={0,0,0,0,0,0,0.01,-1,0,0,0,0,0.01,-1,0,0,—-1,0,0,0,0,0,—1,0,0,0,0,0,0,0,0,0,—1,0 }

Notemos que las cargas basicas estan referidas a los ejes globales. El n® en rojo del vector Pa, es el
momento externo aplicado en el punto 10, que es nulo.

Con los datos introducidos, se resuelve linealmente la estructura obteniendo un vector de desplazamientos
U que en nuestro caso toma el valor que se indica la tabla de resultados siguiente. Este vector de
desplazamientos o movimientos de los puntos de la estructura, también estéa referido a los ejes globales. Para
ello se ha tenido que montar la matriz de rigidez global de la estructura K y resolver el sistema de ecuaciones

KU = Pa
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Desplazamientos de los nudos en globales, resultado de la ecuacién matricial [u] = [Kt,res:ingida]_l- [Pa] -

Desplazamientos nodales en glcbales [ &,, Sy, 51

In[94i:= u0 = invkt0.Pa; MatrixForm[u0] // N

Out[34)/MatrixForm=
(-3.64659x10-%"
-1.18215x10-%
3.70965% 10-8
-5.14895x10-%
-2.3643x10-%
-3.22442x10-8
9.B85795x 10-F
-3.55534 x10-%
-2.09747 %107
0.000034549
-4.05844 x10-%
-1.35872x10-7
0.0000555412
-4.56154 x 10-%
-1.60428x10-7
9.74176x10-%F
-0.000118261
9.27378x10°%
0.0000225649
-0.000118658
-1.68482x10-7
0.000055156
-0.000119135
-2.43632x 10"
-1.93894x 10"
0.0000232831
-5.02037x 10"
-1.37394x 10"
0.0000315371
-1.80407x10-%
3.21074x 1078
9.41693x10-%F
-2.71289x10-%
L 2.17162x10°7 |

7
7

7
7

Tabla 1.

Segun vemos en el resultado, para este estado basico de carga, el movimiento horizontal del punto 6
(punto de control) vale 0,0000555412 cm.

Para resolver el problema no lineal, se definen una serie de parametros los cuales van a gobernar el
andlisis. Estos parametros son los siguientes:

¢ Exponente (y) para la actualizacion de la longitud del arco (Ec53)
y=05

e N° de iteraciones deseadas (6,4.5) en cada salto de carga, para la actualizacion de la
longitud del arco (Ec53)

Oges =5
e Valor inicial del pardmetro de carga (1), para el célculo del vector de carga inicial
A =100

e Valor de la variable (tol), la cual indica cuando se alcanza la convergencia
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tol = 0,001

e Valor de la variable (itera,), la cual indica el n°® maximo de iteraciones permitido dentro
de un salto de carga

itera; = 40

e Valor de la variable (¢,.4x), la cual indica el n® maximo de saltos de carga que van a
realizarse en el andlisis.

Pmax = 120

e Se define la variable (Control). Con esta variable se indica el punto de la estructura
sobre el que se quiere hacer el seguimiento de uno de sus grados de libertad. En este
caso la trayectoria de equilibrio que queremos seguir es la del desplazamiento horizontal
del punto 6 de la estructura. Asi:

Control =6

e Se define la variable (AU,). Esta variable es un vector nulo de tantas componentes

como grados de libertad tiene la estructura (34) y representa el desplazamiento
acumulado al inicio del primer salto de carga. Este vector se va actualizando durante el
proceso iterativo dentro de cada salto de carga.

AU, ={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

e Se define la variable (cont,). Es simplemente un contador que nos marca el n° de
iteraciones que llevamos dentro de un salto de carga. Inicialmente, al principio de cada
salto de carga

cont, =0

Asignados los valores numéricos a los parametros o variables anteriores, se procede a calcular en primer
lugar la carga inicial que actla sobre la estructura. Esto se hace definiendo el vector PPaa que se calcula
como

PPaa =\ * Pa
El parametro de carga A, va variando a medida que avanza el andlisis.

En segundo lugar, se calcula de forma lineal el vector de desplazamientos de la estructura para ese
estado inicial de carga. Se calcula la primera prediccion para el vector de desplazamientos dentro del primer
salto de carga

AU =A% U

A continuacion, el programa evalla la longitud inicial de arco haciendo uso de la ecuacion Ec48

Al =L+ /(Aug)T AU?

Se define la variable Trayectoria. Esta variable nos va a permitir acumular los puntos (5x, 1) en el equilibrio
al final de cada salto de carga y asi poder luego trazar la grafica del camino de equilibrio. Inicialmente y en
este caso particular definimos esta variable como

Trayectoria = {{0,0}}
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que representa el punto inicial de la trayectoria que deseamos obtener. Inicialmente para 1 =0 (con la
estructura descargada), el desplazamiento horizontal del punto 6 es nulo (6x = 0).

Conocido el vector de desplazamientos dado por la prediccion AU?, para iniciar el andlisis no lineal se
procede a recalcular la geometria de la estructura a través de la definicién de las variables siguientes

x; = x0; + 6x; i=12,..,n

Vi =y01+6yl l=1,2,,n

Con esta nueva geometria, se evaldan las nuevas longitudes (L;) de las barras y los nuevos angulos (5;)
que cada una de las barras forma con el eje x global.

L =J<yb—ya>j+ (p=%)]  J=L2.b

v, — ya)].
ﬁj = Arctag —— j=1,2,..,b

(xb - xa)j

Calculadas las nuevas longitudes y angulos, pasamos a calcular con la Ec78 las matrices B; de cada una
de las barras.

De este modo, a partir de la ecuacién Ec76, se puede evaluar para cada una de las barras el vector de
movimientos

51
donde
8U; = {6x7,8y%,6/,6x,6y} .67}
con ay b la numeracion de los nudos extremos de la barra.

Con el vector de movimientos de cada barra y a través de la ecuacion Ec84, calculamos para cada barra el
vector de fuerzas internas Q]-.

Estas fuerzas internas estan referidas a los ejes locales de la barra. Haciendo uso de la ecuacion Ec82,
obtenemos los vectores de fuerzas internas (Q) de cada una de las barras pero, referidas estas a las
coordenadas globales.

N*
M;
M;

Q= =Bj Q;

)

Conocidos estos vectores, sumando adecuadamente las componentes de todas las barras que concurren
en un nudo, podemos montar el vector de fuerzas internas de toda la estructura VFnod, vector que tendra la

57



misma dimension que el vector de fuerzas externas y lo que nos permite definir el vector de fuerzas
residuales (VRes) como sigue.

VRes = PPaa — VFnod

Una vez calculado el vector residuo, se determina la norma euclidea de este definiendo la variable residuo
(Res).

Res = ||PPaa — VFnod||

Si la variable Res es menor que la variable tol entonces se sale del salto de carga (inicialmente el 1) y se
procede a evaluar una nueva longitud de arco y un nuevo valor para el parametro de carga A.

Lo normal es que en la primera iteracidon de un salto de carga (etapa de prediccion), el residuo sea mayor
que la tolerancia y tengamos que iterar hasta encontrar “el equilibrio”. En tal caso, conocido el valor del
residuo (Res) y si este es mayor que la tolerancia (tol) se procede a calcular mediante la ecuacion Ec97 las
matrices de rigidez tangente de cada una de las b barras. Calculadas estas, se ensamblan y se construye la
matriz de rigidez tangente de toda la estructura (Ec98).

Como no existe todavia equilibrio entre fuerzas internas y externas tenemos que encontrar un nuevo valor
del vector de desplazamientos lo que modifica a su vez el vector de fuerzas internas dado que este depende
del estado de desplazamientos de la estructura que es lo que hace que el problema sea no lineal.

Para encontrar el nuevo desplazamiento de la estructura se calcula la inversa de la matriz de rigidez
tangente (invkt) y se calculan los siguientes vectores de acuerdo a lo apuntado en las ecuaciones Ec38 a
Ec46.

En primer lugar, de la ecuacion Ec40 se determina el vector U; como
U, = invkt VRes
y el vector U, como
U, = invkt Pa
gue como vemos representa el desplazamiento producido en la estructura por las fuerzas basicas Pa.
Por otro lado se calculan los coeficientes ay, a, y a; del desarrollo de la ecuacién Ec45
a, = U,.U,
a, =2x (AU4 + U,) .U,
a; = (AUy + U;) . (AU4 + Uy) — As?
donde AU representa el desplazamiento acumulado dentro del caso de carga ¢.
Conocidos los valores de aj, a, y as, se resuelve la ecuacién
a; (8% +a, 81+ a3 =0
y mediante las ecuaciones Ec46, se decide el valor que se toma del incremento de A.
Con esto, se actualizan las variables del problema
A=21+61

PPaa = 1« Pa

AU=U1+81* U2
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con lo que el desplazamiento acumulado en el salto de carga pasa a ser
AU, =AUy, + AU
y el desplazamiento total
U=U+AU

Con este desplazamiento, se procede como antes. Se actualiza nuevamente la geometria de la estructura,
se calculan el nuevo angulo que forman cada una de las barras con el eje x global, se evallan para este
estado de desplazamiento el vector de fuerzas internas, se obtiene el nuevo valor de la variable residuo
(Res), y en el caso de que

Res <tol obien cont, = itera,

nos salimos del salto de carga actual y pasamos a actualizar el valor de las variables. Antes de hacer esto
el cédigo almacena en la variable trayectoria el par (xconeror,» A/1000).

Trayectoria = {{0,0}, {Xcontror, 1/1000}}

En el primer caso (Res < tol), salimos del salto de cargas porque hemos llegado a la convergencia. En el
segundo caso salimos porque han tenido lugar mas iteraciones de las marcadas por la variable itera,. Esto
hay que controlarlo a la hora de ver la solucién puesto que este hecho indica que no se ha alcanzado la
convergencia y por lo tanto los puntos obtenidos para la gréafica de la trayectoria no son validos.

Si ha convergido adecuadamente (con cont, < itera,), como ya se ha dicho, salimos del salto de carga
actual y pasamos a evaluar el nuevo valor para las variables que en este caso es el nuevo valor de la longitud
de arco y el nuevo valor del parametro de carga. De acuerdo al articulo de Kotronis y Collin, el nuevo valor de
la longitud del arco se evalta mediante la ecuacién Ec53

Hdes
0i-1

AS¢ = AS¢_1 ( )Y

con ¢ igual al salto de carga.

Calculado el nuevo valor de la longitud de arco, se calcula el vector de desplazamientos producido por las
fuerzas externas basicas atendiendo a la rigidez actual de la estructura como

81 = invkt Pa

El valor del incremento del parametro de carga se determina entonces como
As
Vé1l. 61

Donde m se toma 1 si el determinante de la matriz de rigidez tangente es positivo y -1 en el caso de que
este determinante sea negativo.

ALl =m *

Calculados estos valores se actualiza el valor de la variable A
A=Ax A4
y se calcula el valor del incremento de desplazamientos de la siguiente manera
AUy = A2+ 61
El nuevo vector de cargas pasa a ser
PPaa =1 * Pa

y el nuevo desplazamiento
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U=U+AU,

Como en principio, el vector de fuerzas internas que resulta como consecuencia del nuevo vector de
desplazamientos no coincide con el vector de fuerzas externas, esta situacién no es de equilibrio y hay que
volver a repetir el proceso iterativo apuntado anteriormente tantas veces como indique la variable ¢,
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Figura 44: Gréfica x, — A. Desplazamiento horizontal del punto 6 (cm) — Factor de carga (en ton).

200 400 600 800 1000

Figura 45: “Deformada de la estructura”.

En este caso, con los parametros indicados para el ejemplo se obtiene un A de 648.550.

Por el desplazamiento horizontal observado para el punto 6 (179,2 cm), la estructura no cumple ni a
deformacion ni a tensién mucho antes de que el estado de cargas indicado haga que esta pandee. Durante la
ejecucidn del cédigo, la matriz de rigidez tangente no ha dejado de ser en ningin momento definida positiva.

En la figura 45, se pone deformada de la estructura entre comillas puesto que al representar algunas de
las barras de la estructura mediante un Unico elemento barra, los Unicos puntos de la deformada
representados correctamente son los nudos extremos. Para representar adecuadamente las lineas elasticas
de las barras o lo que es lo mismo, la deformada de la estructura, se hace necesario dividir las barras de esta
como minimo en cuatro o cinco elementos. Esto haria que los vectores a introducir (Pa, Nc, ...) fuesen muy
grandes, lo que dificultaria la introduccion de los datos y habria que andar con mucho mas cuidado.
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Este ejemplo lo hemos simulado en SAP obteniendo el siguiente resultado para la carga critica y para la
deformada del primer modo de pandeo.

I Deformed Shape (Pandeo) - Mode 1 - Factor 604.84454

Esta diferencia, de un 7,2%, podria reducirse si dividiésemos las barras en nuestro cédigo, llevando a
cabo una discritizacion mas tupida del modelo.
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