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RESUMEN.  
 

Este trabajo pretende ser una herramienta de apoyo en el ejercicio de mi actividad profesional. Es de 
todos conocido el hecho de que las estructuras deben diseñarse cumpliendo ciertos requisitos de bienestar 
los cuales quedan cubiertos manteniendo las deformaciones de éstas por debajo de ciertos valores 
normativos. Así, en el diseño de estructuras, raramente son las limitaciones tensionales las que marcan el 
dimensionamiento sino más bien son las flechas o deformaciones las que lo controlan. Con todo, en este 
trabajo se pretende estudiar el postpandeo de una tipología particular de estructuras, obteniendo las 
trayectorias de equilibrio de los grados de libertad de interés, de forma que se puedan visualizar los puntos 
límite de dichas trayectorias y obtener así la respuesta completa de las mismas. 

Desde un punto de vista práctico, este trabajo se pretende aplicar fundamentalmente para la obtención de 
las cargas criticas de pandeo de pórticos rígidos planos, a partir de las cuales se puedan obtener las 
longitudes de pandeo correctas de los pilares de la estructura además de en algunos casos particulares, 
poder seguir su respuesta de las mismas más allá del pandeo. Esto último, aunque en ocasiones puede no 
tener mucho sentido práctico puede servir para, en algún caso, discutir de forma razonada el comportamiento 
real de esta tipología estructural. 

Por otro lado, el hecho de abordar este problema me servirá de base técnica para, en un futuro, intentar 
atacar otros problemas no menos interesantes, como puede ser el tema de la respuesta de estructuras con 
no linealidad del material, de forma y manera que pueda obtener soluciones razonadas que pueda defender y 
que, por supuesto, como en este caso, garanticen la seguridad estructural. 

Las estructuras analizadas se resuelven mediante métodos matriciales bajo una formulación corrotacional, 
empleando elementos barra de Euler Bernoulli y el algoritmo empleado para la solución del problema de 
postpandeo es el método de longitud de arco de Riks. 
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1. MOTIVACIÓN.  

Como calculista de estructuras en activo y dada la responsabilidad que implican mis decisiones y 
consejos, me siento en la obligación de mantener una formación continuada, cuestión esta que, aun siendo 
siempre gratificante, no resulta en ocasiones fácil. 

Comparando desde un punto de vista únicamente técnico el análisis lineal y no lineal de estructuras, así 
como en el análisis lineal de estructuras, tanto si este se lleva a cabo con el empleo de programas propios 
como si se hace con programas comerciales, "no se requiere" de un control exhaustivo por parte del ingeniero 
puesto que las técnicas empleadas para la obtención de la solución son técnicas matriciales por todos bien 
conocidas y fácilmente chequeables con las que se obtiene un único resultado final, esto es sustancialmente 
diferente cuando lo que se persigue es la obtención de la solución de un problema no lineal. En este último 
caso, conceptos como matriz de rigidez tangente, tolerancia, control en carga o en desplazamientos, 
convergencia de la solución, residuo, etc... hacen que el técnico deba gobernar el análisis fijando valores de 
ciertos parámetros de los cuales, para hacer un uso cabal de los programas empleados, debe de conocer su 
correcto significado y el modo en el que los valores fijados para estos parámetros, afectan al resultado final 
obtenido. 

La necesidad del análisis no lineal de estructuras, exigido en ciertos casos incluso a nivel normativo, me 
obliga por tanto a conocer la teoría en la que se fundamentan las técnicas de solución de este tipo de 
problemas. Son muchos los programas comerciales existentes en el mercado que resuelven el problema no 
lineal y de los que habitualmente hacemos uso los ingenieros. Estos programas emplean algoritmos de 
solución los cuales resultan ser en algunos casos auténticas cajas negras no siendo posible incluso llegar a 
manipular. Por otra parte, estos programas comerciales lógicamente no resuelven todo tipo de problemas y 
se hace necesario conocer cuáles son las limitaciones de los mismos, no siendo esto último posible sin 
conocer previamente las técnicas que emplean y a través de las cuales, nos proporcionan la solución. 

Por otro lado, el conocimiento de la teoría en la que se fundamentan estos algoritmos nos puede servir de 
base para la ejecución de programas propios con los cuales obtener soluciones aceptables y completamente 
rigurosas, sin necesidad de adquirir programas comerciales los cuales siempre llevan asociados costes 
importantes. 

Con el presente trabajo se pretende encontrar la solución para el problema del postpandeo en estructuras 
planas de barras de la tipología expuesta en el punto 3 y que los programas comerciales de los que dispongo 
no me dan la solución. 

Aunque el código que aparece en el trabajo es bastante elemental, y sin el ánimo de inventar nada, las 
soluciones que se obtienen permiten ver claramente las cargas de pandeo, así como las trayectorias de 
equilibrio de los puntos de interés incluso después del pandeo de la estructura. 

El hecho de obtener este tipo de soluciones a través de un código propio, además de gratificante, resulta 
del mayor interés didáctico al tener la necesidad de conocer más o menos en profundidad la formulación del 
problema. 
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2. INTRODUCCIÓN.  

En el análisis lineal de estructuras, la formulación de las ecuaciones de equilibrio y compatibilidad se lleva 
a cabo en la geometría indeformada de la estructura admitiendo en todo momento que los desplazamientos 
son pequeños y que el material tiene un comportamiento lineal. Estas hipótesis dan lugar a un sistema de 
ecuaciones lineales en el que es válido el principio de superposición. Así, dadas una acciones exteriores  
(𝒇 =  ∑𝒇𝑖) , mayoradas por unos coeficientes (𝛾𝑖), las solicitaciones  𝒔 =  𝒔(∑𝒇𝑖)  y los movimientos 𝒖 =
 𝒖(∑𝒇𝑖) las podemos poner como 

𝒔 =  𝒔(∑𝛾𝑖 ∗ 𝒇𝑖) = ∑𝛾𝑖 ∗ 𝒔(𝒇𝑖)  

(Ec1.) 

𝒖 =  𝒖(∑𝛾𝑖 ∗ 𝒇𝑖) = ∑𝛾𝑖 ∗ 𝒖(𝒇𝑖)  

(Ec2.) 

Como es sabido, este tipo de análisis no captura aquellos desplazamientos que son consecuencia de la 
propia deformación de la estructura (efecto P-∆) y que en estructuras esbeltas con valores altos de axiles 
pueden resultar significativos, lo que conlleva a un cálculo de esfuerzos en contra de la seguridad. 

En el análisis de estructuras con no linealidad geométrica, se debe considerar la modificación de la 
geometría inicial de la estructura (debida a su deformación), al formular las ecuaciones de equilibrio y 
compatibilidad. Sin embargo, para las estructuras comunes de edificación, caben simplificaciones en ese 
proceso. Aunque se abandona la hipótesis de pequeños desplazamientos, se pueden suponer giros 
pequeños (𝜃 ≪ 1)  lo cual redunda en una simplificación muy notable del cálculo matemático. Se habla 
entonces de teoría de segundo orden. En este caso la expresión que se toma para la curvatura es la 
expresión aproximada dada por 

𝝌 = 1/𝑟 = 𝑦′′ = 𝑑𝜃
𝑑𝑥

= 𝑑2𝑦
𝑑𝑥2

   

(Ec3.) 

Cuando en el análisis de la estructura se toma para la curvatura su valor exacto (Ec4.), se habla de teoría 
de tercer orden.  

𝝌 = 1/𝑟 = 𝑦′′

(1+𝑦′2)3/2  

(Ec4.) 

El análisis en teoría de segundo orden, requerido incluso a nivel normativo, resulta suficiente en la mayoría 
de los casos prácticos. No obstante, dado que con este análisis no se tienen en cuenta los efectos por 
grandes deformaciones, acota la aplicación del método a aquellas estructuras en las que los movimientos y  
rotaciones no sean elevados. Como el análisis P-∆ es no lineal, no podemos aplicar el principio de 
superposición y obtener el resultado para una combinación de carga como la suma de resultados de los 
estados de carga elementales. Para estimar los esfuerzos y desplazamientos se ha de realizar un estudio 
sobre la estructura en posición deformada (teoría de segundo orden), lo que requiere de procedimientos 
iterativos de cálculo basados en la teoría de primer orden, o métodos matriciales que incorporan la influencia 
que tienen en los desplazamientos del sistema los esfuerzos axiles de las barras y los cambios de posición de 
los nudos. 

La aplicación de la teoría de segundo orden al análisis de pórticos con imperfecciones evita las 
incertidumbres que se presentan en el diseño basado en el análisis lineal de esfuerzos. Por ello se 
recomienda, con algunas excepciones, aplicar el análisis de segundo orden a los pórticos translacionales. 

    ****************************************************************************************************************************** 
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3. EXPOSICIÓN DEL TRABAJO.  

Se trata de programar en Mathematica las rutinas que nos van a servir para analizar estructuras con no 
linealidad geométrica, dentro de un tipo particular de tipología estructural como es la del pórtico plano. En el 
código presentado solo se formula la solución del problema no lineal debido a la geometría y para esta 
tipología de estructura, suponiendo en todo momento un comportamiento elástico lineal del material 
(pequeñas deformaciones) y sin entrar en los casos en los que la no linealidad del problema se debe a las 
condiciones de contorno (como es el caso de los problemas de contacto o de fuerzas seguidoras). El 
problema general en el que intervienen los tres tipos de no linealidades (por geometría, por material y por 
condiciones de contorno), presenta una gran dificultad y carga de programación, no siendo el objetivo de este 
trabajo. El trabajo se plantea como una puesta en práctica de lo visto en el Máster de Mecánica Aplicada, en 
particular, en la asignatura de Teoría de barras, placas y láminas. 

Solo para los casos en los que la no linealidad del problema se deba a condiciones geométricas, se 
pretende obtener las trayectorias o curvas de equilibrio de los nudos de interés de las estructuras que se 
analicen, y obtener los puntos límite de estas trayectorias (puntos de bifurcación del equilibrio, puntos críticos 
y puntos de retroceso), para lo cual se aplica el método de Riks de longitud del arco, el cual se comenta en 
los siguientes apartados. 

     ***************************************************************************************************************************** 

 

4. ALCANCE DEL CODIGO PROGRAMADO. 

Este trabajo trata únicamente de estructuras planas de barras del tipo pórtico de nudos rígidos. Los 
apoyos de las estructuras analizadas son los únicos nudos que admiten articulación. 

Para la resolución del sistema de ecuaciones que surge al plantear el equilibrio de la estructura se utiliza el 
cálculo matricial. 

Las diferentes barras de las estructuras se discretizan en un número adecuado de elementos barra 
formulados como elemento viga de Euler-Bernoulli, elemento que admite esfuerzos de tracción-compresión y 
flexión. Este elemento presenta dos nodos definidos por las coordenadas de sus extremos las cuales se 
deben de introducir en la etapa de preproceso. Además de las coordenadas de los nodos de los elementos se 
deberán introducir las secciones de éstos y sus inercias. 

Con el elemento programado, no es posible obtener la respuesta de la estructura fuera del plano de la 
misma lo que limita el uso de este código a estructuras planas con la tipología de pórtico rígido plano. 

Por el tipo de formulación empleada, la programación del método permite el estudio de estructuras planas 
y esbeltas en las que pueden tener lugar grandes desplazamientos, resolviendo por lo tanto el problema de la 
no linealidad geométrica. No obstante, para limitar la complejidad de la formulación, se ha admitido en todo 
momento que se está en pequeñas deformaciones, no siendo posible con este código resolver problemas 
en los que esta última hipótesis no sea válida. 

Por otro lado, dado que se admite en todo momento que el material trabaja en régimen elástico lineal, 
aquellos problemas en los que se presentan no linealidades debidas al material, no pueden ser abordados 
con este código. 

Se admite en todo momento que las condiciones de apoyo no se modifican a lo largo del proceso de 
carga, por lo que aquellos problemas en los que se presentan no linealidades debidas a las condiciones 
de contorno, no pueden ser abordados con este código. 

Dada la velocidad de los ordenadores actuales y la particular tipología estructural que se estudia en este 
trabajo, para simplificar el código, las barras solo admiten cargas externas (fuerzas o fuerzas y momentos) 
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aplicadas en los nudos de la malla. Para aquellas estructuras, en las existan barras que presenten cargas 
distribuidas en parte o toda su longitud, se podrán subdividir estas en un número suficiente de elementos, al 
objeto de poder capturar el efecto real de la carga distribuida sobre la barra y por tanto, sobre la estructura. 
Asimismo, dado que no tenemos limitación en el número de elementos, podríamos con este código y tras una 
división adecuada de las barras, analizar estructuras en las que se presentasen barras con inercia variable. 

     ***************************************************************************************************************************** 
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5. TEORIA BÁSICA. 

5.1. Descripción del movimiento. 

En el análisis de estructuras geométricamente no lineales, es fundamental la elección de un sistema de 
descripción matemática del movimiento y del estado de tensión y deformación de los puntos de la estructura 
en las distintas configuraciones deformadas por las que pasa en el proceso de carga. En teoría lineal o de 
deformaciones infinitesimales, no se establece distinción entre las distintas configuraciones de la estructura, 
ya que se supone que la geometría y características mecánicas de la estructura son invariables. Lo que 
caracteriza al análisis geométricamente no lineal es, precisamente, la distinción entre las distintas 
configuraciones a la hora de establecer las ecuaciones que describen el comportamiento mecánico de la 
estructura. 

Desde el punto de vista de la mecánica de sólidos, un cuerpo es un conjunto infinito de partículas, cada 
una de las cuales ocupa una posición en el espacio. Estas posiciones son variables en el tiempo y al conjunto 
de ellas en un instante dado se denomina configuración. Una configuración puede entenderse de manera 
intuitiva como una foto fija del solido a lo largo del proceso de carga. 

Considérese un cuerpo deformable en el espacio. En la configuración inicial, cada partícula del solido 
ocupa una posición en un sistema rectangular de coordenadas. Nos referimos a esta configuración como 
configuración original o inicial. Cuando el cuerpo se deforma, cada partícula ocupa una nueva posición que 
viene descrita por unas nuevas coordenadas. Llamaremos a esta configuración deformada o actual. 

De esta forma, por ejemplo, una partícula ºP de posición inicial (ºx1, ºx2, ºx3) se mueve a una posición 
deformada tP de coordenadas (tx1, 

tx2, 
tx3). El vector desplazamiento ºPtP de la partícula tendrá como 

componentes 

𝑢1 =  𝑥1 
𝑡 −  𝑥1 

0  

𝑢2 =  𝑥2 
𝑡 −  𝑥2 

0  

𝑢3 =  𝑥3 
𝑡 −  𝑥3 

0  

(Ec5.) 

Si se conoce el desplazamiento de cada partícula del sólido, puede construirse su configuración 
deformada. Esto sería posible si ( 𝑥1 

𝑡 , 𝑥2 
𝑡 , 𝑥3 

𝑡 ) fueran funciones conocidas de las coordenadas iniciales 
( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ). 

𝑥1 
𝑡 =  𝑥1 

𝑡 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) 

𝑥2 
𝑡 =  𝑥2 

𝑡 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) 

𝑥3 
𝑡 =  𝑥3 

𝑡 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) 

(Ec6.) 

En la mecánica de sólidos se supone que estas funciones son continuas y biunívocas, con lo que se están 
excluyendo de esta forma, interpenetraciones de unas partes del sólido en otras o discontinuidades 
producidas por fisuras. Esto implica también que las funciones ( 𝑥1 

𝑡 , 𝑥2 
𝑡 , 𝑥3 

𝑡 ) tienen inversas.  

𝑥1 
0 =  𝑥1 

0 ( 𝑥1 
𝑡 , 𝑥2 

𝑡 , 𝑥3 
𝑡 ) 

𝑥2 
0 =  𝑥2 

0 ( 𝑥1 
𝑡 , 𝑥2 

𝑡 , 𝑥3 
𝑡 ) 

𝑥3 
0 =  𝑥3 

0 ( 𝑥1 
𝑡 , 𝑥2 

𝑡 , 𝑥3 
𝑡 ) 

(Ec7.) 
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El vector de desplazamiento puede asociarse a la partícula en la posición inicial:  

𝑢1 = 𝑢1 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) =  𝑥1 

𝑡 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) − 𝑥1 

0  

𝑢2 =  𝑢2 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) =  𝑥2 

𝑡 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) − 𝑥2 

0  

𝑢3 =  𝑢3 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) =  𝑥3 

𝑡 ( 𝑥1 
0 , 𝑥2 

0 , 𝑥3 
0 ) − 𝑥3 

0  

(Ec8.) 

o a la partícula en la posición deformada:  

𝑢1 =  𝑢1 ( 𝑥1 
𝑡 , 𝑥2 

𝑡 , 𝑥3 
𝑡 ) = 𝑥1 

𝑡 − 𝑥1 
0 ( 𝑥1 

𝑡 , 𝑥2 
𝑡 , 𝑥3 

𝑡 ) 

𝑢2 =  𝑢2 ( 𝑥1 
𝑡 , 𝑥2 

𝑡 , 𝑥3 
𝑡 ) = 𝑥2 

𝑡 − 𝑥2 
0 ( 𝑥1 

𝑡 , 𝑥2 
𝑡 , 𝑥3 

𝑡 ) 

𝑢3 =  𝑢3 ( 𝑥1 
𝑡 , 𝑥2 

𝑡 , 𝑥3 
𝑡 ) = 𝑥3 

𝑡 − 𝑥3 
0 ( 𝑥1 

𝑡 , 𝑥2 
𝑡 , 𝑥3 

𝑡 ) 

(Ec9.) 

A la primera forma de describir el movimiento se le conoce como descripción o formulación Lagrangiana o 
material y es la usual en Mecánica de Sólidos, mientras que la segunda se utiliza con más frecuencia en 
Mecánica de Fluidos y se conoce como formulación Euleriana o espacial. Se puede decir que la formulación 
Lagrangiana se ocupa de lo que le sucede a una partícula material mientras que la formulación Euleriana 
expresa lo que le sucede a una cierta posición del espacio. Los desarrollos que se siguen se basan en la 
formulación Lagrangiana. 

 

5.2. Variantes de la formulación Lagrangiana. 

Dentro de la descripción Lagrangiana del movimiento de un sólido caben varias posibilidades a la hora de 
definir la configuración que se toma como referencia. Es importante no confundir configuración de referencia 
con configuración inicial, ya que esta distinción es lo que permite precisamente caracterizar las distintas 
variantes de la formulación Lagrangiana. Estas variantes son las siguientes: 

5.2.1. Formulación Lagrangiana Total. 

La configuración de referencia se mantiene cte. durante el proceso completo de deformación. La 
configuración de referencia es la configuración de la estructura original o indeformada. Tanto las 
tensiones como las deformaciones han de ser medidas con respecto a esta configuración. 

5.2.2. Formulación Lagrangiana Actualizada. 

Si el proceso de análisis se lleva a cabo, como es frecuente, mediante incrementos sucesivos de 
carga, resulta interesante a veces utilizar como configuración de referencia la configuración 
alcanzada en el incremento anterior. Cada configuración pasa a ser, por tanto, referencia de la 
siguiente. 

5.2.3. Formulación Lagrangiana Corrotacional. 

En el caso de estructuras formadas por elementos esbeltos, como barras, placas o laminas, se 
pueden producir desplazamientos y rotaciones considerables aunque las deformaciones se 
mantengan moderadas. En estos casos, la componente de sólido rígido del movimiento es muy 
importante y en este caso resulta conveniente utilizar una configuración de referencia que elimine 
dicha componente. Por ejemplo, en el caso de barras se toma como referencia la barra indeformada 
pero trasladada y girada en el espacio mediante un movimiento de sólido rígido, tal que la posición 
de sus extremos coincida con la posición de los extremos de la barra deformada en el instante 
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considerado. A esa configuración de referencia se le conoce también como configuración corrotada 
y a ella se refieren solo las componentes del movimiento que producen deformación. 

Se elige esta última formulación para representar el movimiento de las estructuras analizadas con nuestro 
código. 

 

5.3. Métodos de solución. 

Resolver una estructura es encontrar la relación causas-efectos, ya sea ésta lineal o no lineal. Mientras 
que en el primer caso la relación es lineal y por tanto conocida, en el segundo no lo es y para su solución hay 
que emplear métodos iterativos como los que citamos a continuación. 

5.3.1. Método de Newton-Raphson. 

Mientras que en el análisis lineal de estructuras interesa una solución del sistema de ecuaciones 
de equilibrio, en el caso de problemas no lineales se debe de obtener un conjunto de soluciones que 
permiten tener información sobre el comportamiento de la estructura para distintos niveles de carga 
y para las distintas configuraciones que esta puede adoptar. Como las soluciones obtenidas han de 
cumplir con las condiciones de equilibrio en forma más o menos aproximada se suele hablar de 
obtener la trayectoria de equilibrio o curva de carga en un espacio formado por los n movimientos 
nodales y un parámetro multiplicador de las cargas 𝜆, al que se llama factor de carga o parámetro 
de control. 

Las ecuaciones de equilibrio entre las cargas actuantes y las fuerzas internas se expresan para 
cada grado de libertad como 

𝑅1 =  𝜆 𝑃1 − 𝑄1(𝑼) 

𝑅2 =  𝜆 𝑃2 − 𝑄2(𝑼) 

𝑅𝑛 =  𝜆 𝑃𝑛 − 𝑄𝑛(𝑼) 

(Ec10.) 

En cada una de las ecuaciones anteriores 𝑅 expresa el posible desequilibrio entre la acción 
exterior 𝜆 𝑃 y la fuerza interna correspondiente 𝑄 que depende del estado de desplazamientos 
representado por el vector 𝑼. 

Agrupando estas componentes en vectores, las anteriores ecuaciones pueden expresarse de 
forma compacta como 

𝑹 =  𝜆 𝑷 −𝑸(𝑼) 

(Ec11.) 

Siendo 𝑸(𝑼) el vector de fuerzas internas nodales correspondientes a un determinado estado de 
desplazamiento 𝑼, 𝑷 el vector de cargas externas concentradas en los nodos, 𝜆 el factor de carga 
que multiplica a 𝑷 y 𝑹 el vector de cargas desequilibradas o residuales que en la situación de 
equilibrio se anulan. 

El vector de fuerzas internas 𝑸(𝑼), que en el método de los elementos finitos se calcula mediante 
la integral extendida a todo el dominio de la estructura 

𝑸(𝑼) =  �𝑩𝑇 𝑺 𝑑𝑉0 

(Ec12.) 
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en la que aparece una matriz 𝑩 no lineal y las tensiones de Piola-Kirchoff 𝑺. 

En nuestro caso, al emplear una formulación matricial el vector de fuerzas internas lo calculamos 
haciendo uso de la matriz constitutiva la cual nos relaciona los esfuerzos internos en los extremos 
de cada barra i con los movimientos de dichos extremos a través de la expresión 

𝑸𝑖 =  𝑪𝑖  𝛿𝒑𝚤�  

(Ec13.) 

La forma explícita de la matriz 𝑪𝑖 y del vector de movimientos 𝛿𝒑𝚤�  se muestra en las ecuaciones 
Ec84 y Ec76 respectivamente. 

Dado que se trata de un problema no lineal, el sistema de ecuaciones anterior (Ec10.) no puede 
ser resuelto de forma directa y para llegar a la solución se llevan a cabo procesos incrementales de 
carga. 

Una forma de hacer esto es aplicando las cargas exteriores mediante etapas o saltos, fijando 
niveles de carga a través de un factor 𝜆:  

𝜆1 𝑷,   𝜆2 𝑷,    𝜆3 𝑷, … . .   𝜆𝑖  𝑷 

(Ec14.) 

Cada salto o incremento de carga se define como diferencia entre dos niveles:  

Δ𝜆𝑖  𝑷 =   𝜆𝑖  𝑷 − 𝜆𝑖−1 𝑷 

(Ec15.) 

A cada nivel de carga le corresponderá un estado de desplazamientos que se puede obtener 
mediante integración o suma de incrementos sucesivos:  

Δ𝑼𝑖 =   𝑼𝑖 − 𝑼𝑖−1 

(Ec16.) 

𝑼𝑖 =  𝑼𝑖−1 + Δ𝑼𝑖 

(Ec17.) 

donde Δ𝑼𝑖 es el incremento de desplazamiento en la búsqueda del equilibrio en el salto de carga i.  
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Figura 3: Incremento de carga con corrección Newton-Raphson 

El incremento de desplazamiento correspondiente a un incremento de carga se calcula mediante 
aproximaciones sucesivas en un proceso completo de predicción-corrección. En una primera 
aproximación 

Δ𝑼𝑖
0 =   (𝑲𝑖−1)−𝟏  (𝜆0𝑖  𝑷) 

(Ec18.) 

siendo 𝑲𝑖 la matriz de rigidez tangente correspondiente a la configuración inicial de la etapa de 
carga. Esta matriz se define mediante 

𝑲𝑡 =
𝜕𝑹(𝑼)
𝜕𝑼

 

(Ec19.) 

Dado que en los problemas que resolvemos con nuestro código admitimos que las cargas 
exteriores 𝜆𝑷 no dependen de 𝑼 se puede escribir  

𝑲𝑡 =
𝜕𝑸(𝑼)
𝜕𝑼

,        𝐾𝑖𝑗 =
𝜕𝑓𝑖
𝜕𝑢𝑗

  

(Ec20.) 

La ecuación Ec18 representa la solución del sistema de ecuaciones en el que las incógnitas a 
resolver son los incrementos de desplazamientos Δ𝑼. 

La aproximación calculada mediante Ec18 corresponde en la figura 3 al punto A. A esta primera 
aproximación se le denomina predicción. 

Si se siguiera avanzando en el proceso de carga mediante sucesivos incrementos calculados a 
partir de aproximaciones del tipo de Ec18 se produciría un alejamiento de las soluciones obtenidas 
de la verdadera curva de equilibrio a causa de los errores que se irían acumulando. Para evitar este 
error, usual en el método explícito de Euler, se procede a mejorar la predicción mediante una etapa 
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de corrección en la que se utilizan iteraciones basadas en el método de Newton-Raphson. Estas 
correcciones se representan por variaciones sobre el estado de desplazamientos alcanzado 
anteriormente:  

δ𝑼𝑘 =   Δ𝑼𝑖
𝑘 − Δ𝑼𝑖

𝑘−1 

(Ec21.) 

Δ𝑼𝑖
𝑘 =  Δ𝑼𝑖

𝑘−1 + δ𝑼𝑘 

(Ec22.) 

Las correcciones δ𝑼𝑘 se calculan a partir de las fuerzas residuales 𝑹 correspondientes a los 
desplazamientos 𝑼𝑖−1 + Δ𝑼𝑖

𝑘 obtenidos según Ec10. Si se mantiene constante la matriz de rigidez 
𝑲𝑡

0 calculada al principio del salto se tiene una iteración del tipo Newton-Raphson “modificado” 
véase la figura 4:  

δ𝑼𝑘 =   (𝑲𝑖)−𝟏  𝑹𝑖𝑘−1 

(Ec23.) 

y si se varía la rigidez en cada iteración como corresponde al método de Newton-Raphson:  

δ𝑼𝑘 =   (𝑲𝑖
𝑘)−𝟏  𝑹𝑖𝑘−1 

(Ec24.) 

Usándose el superíndice k para indicar pasos en el proceso de corrección y el subíndice i para los 
pasos en el proceso de incrementación. 

 

 

Figura 4: Incremento de carga con corrección Newton-Raphson modificado 
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El método de Newton-Raphson modificado presenta la ventaja frente al no modificado de no 
necesitar el cálculo de la matriz de rigidez de la estructura en cada iteración. Como desventaja la 
convergencia es más lenta y por tanto son necesarias más iteraciones. En muchos casos es 
conveniente proceder a estrategias mixtas y cambiar de un método a otro cuando se dan ciertas 
condiciones. Por ejemplo, en el caso de análisis en los que la no linealidad se debe a plasticidad o a 
fisuración pueden utilizarse criterios basados en el número de elementos (o puntos de integración 
en elementos) que pasan a estar plastificados o fisurados. Si el número de estos puntos superan un 
cierto límite, se procede a recalcular la matriz de rigidez. 

Otra forma de ver esto es la siguiente. Al final de cualquier salto de carga i el residuo es nulo y 
podemos escribir que al final de las k iteraciones del salto de carga 

𝑹𝑖𝑘 =  𝜆𝑖  𝑷 −𝑸𝑖
𝑘(𝑼𝑖

𝑘) = 0 

(Ec25.) 

Desarrollando el residuo en serie de potencias alrededor del punto de iteración anterior (k-1) se 
obtiene 

𝑹𝑖𝑘 ≈  𝑹𝑖𝑘−1 + � 
𝜕𝑹𝑖𝑘−1

𝜕𝑼
 � δ𝑼𝑘 = 0 

(Ec26.) 

En esta expresión δ𝑼𝑘 es el incremento de deformación producido en la iteración k. 

Así 

δ𝑼𝑘 = 𝑼𝑖
𝑘 − 𝑼𝑖

𝑘−1 

(Ec27.) 

siendo 𝑼𝑖
𝑘 la estimación de las deformaciones en el salto de carga i, al final de la iteración k. 

Si las fuerzas no dependen de la deformación, la derivada del residuo solo corresponde a la 
derivada de las fuerzas internas 𝑸𝑖

𝑘 

𝑹𝑖𝑘 ≈  𝑹𝑖𝑘−1 − � 
𝜕𝑸𝑖

𝑘−1

𝜕𝑼
 � δ𝑼𝑘 = 0 

(Ec28.) 

Definiendo la matriz de rigidez tangente 

𝑲𝑖
𝑘−1 =  

𝜕𝑸𝑖
𝑘−1

𝜕𝑼
 

(Ec29.) 

Por lo tanto la ecuación a resolver en la iteración k es 

𝑹𝑖𝑘 ≈  𝜆𝑖  𝑷 −𝑸𝑖
𝑘−1 − 𝑲𝑖

𝑘−1 δ𝑼𝑘 = 0 

(Ec30.) 

y de ahí 

𝑲𝑖
𝑘−1 δ𝑼𝑘 =  𝜆𝑖  𝑷 − 𝑸𝑖

𝑘−1 

(Ec31.) 



15 
 

En esta ecuación, la matriz tangente 𝑲𝑖
𝑘−1 y el vector de fuerzas internas 𝑸𝑖

𝑘−1 están evaluados en 
la última estimación conocida (k-1) de las deformaciones en el salto de carga i que son las de la 
iteración anterior 𝑼𝑖

𝑘−1. Nótese que ambas magnitudes se evalúan para los últimos valores 
actualizados de los desplazamientos calculados a medida que progresa la iteración (al final de la 
iteración anterior), no para los valores al inicio de la misma.  

Como condiciones para el comienzo de la iteración se emplean las del último estado de equilibrio 
conocido.  

𝑼𝑖+1
0  =  𝑼𝑛             𝑸𝑖+1

0  =  𝑸𝑛 

(Ec32.) 

5.3.2. Puntos críticos. 

La figura 5 ilustra la curva de carga o trayectoria de equilibrio de una estructura en la que se 
señalan algunos puntos importantes. En ella se representa en ordenadas el valor del factor de 
carga, y en accisas el valor que toma un determinado grado de libertad de la estructura. Gráficas 
análogas pueden por tanto trazarse para cada grado de libertad, y  cada una de ellas representa la 
proyección en un plano de una curva alabeada. 

 

Figura 5: Trayectoria de equilibrio. L: punto límite, B: punto de bifurcación, R: punto de retroceso. 

 

La existencia de estos puntos, que son típicos de las estructuras con comportamiento no lineal, 
pone de manifiesto la necesidad de utilizar algunas técnicas especiales de análisis que son objeto 
de este punto. 

Los puntos que se señalan en la figura como puntos límite corresponden a puntos en los que el 
factor 𝜆 multiplicador de las cargas alcanza un máximo o mínimo relativo. Estos puntos tienen el 
mayor interés ya que caracterizan la carga máxima que puede soportar la estructura para una zona 
local de la curva de equilibrio. 

En estructuras con un único grado de libertad, existe una correspondencia entre los puntos límite 
con estados de rigidez nula. En estructuras con múltiples grados de libertad, los puntos límite van 
asociados a la pérdida del carácter definido positivo de la matriz de rigidez global. 
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Los métodos iterativos de solución que hemos visto en el punto anterior, fallan por tanto en la 
proximidad de los puntos límite. Numéricamente se observa que, al acercarse el valor de las cargas 
al valor máximo, la convergencia se reduce notablemente. Si se ha previsto un valor de carga 
superior al máximo, el proceso deja de ser convergente y no se puede obtener una solución, tal y 
como se representa en la figura 6. 

 

Figura 6: Con λ= cte. El método iterativo no converge. 

 

Otro tipo de puntos que aparecen en la figura 5 son los llamados puntos de retroceso. En estos 
puntos, uno o varios grados de libertad disminuyen de valor a medida que avanza el proceso de 
carga. 

En la figura 5, se representa también un punto de bifurcación del camino de equilibrio. En este tipo 
de puntos aparecen varias ramas posibles para la curva de equilibrio. El que la estructura siga un 
camino determinado depende de ciertos parámetros de imperfección inicial. Estos parámetros 
pueden ser bien fuerzas o bien imperfecciones geométricas o mecánicas. 

 

5.3.3. Métodos de longitud del arco. 

Con objeto de poder seguir el comportamiento de la estructura en todo su ámbito de respuesta, 
interesa desarrollar métodos que no fallen en la proximidad de puntos críticos. Ya se ha visto que el 
proceso iterativo de corrección puede no ser convergente si se mantiene constante el factor 
multiplicador de las cargas  λ. 

Una manera de evitar el inconveniente citado consiste en tratar el factor λ como una variable más 
del problema, de forma que el sistema de ecuaciones de equilibrio tenga siempre solución. Hará 
falta para ello imponer una condición adicional a las n ecuaciones de equilibrio, ya que existe una 
nueva incógnita λ a añadir a los n grados de libertad del problema. 

Si se considera un espacio (𝑼, λ) de dimensión n+1, esta nueva condición puede ser entendida 
como una superficie que constituye el lugar geométrico de los puntos (𝑈𝑖 , λ𝑖) obtenidos en el 
proceso iterativo de corrección. A su vez, la curva de carga es el lugar geométrico de los puntos que 
cumplen las ecuaciones de equilibrio. 
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La condición usual de los métodos incrementales de control de carga es hacer  λ = cte. Esta 
condición es la ecuación de un plano ortogonal al eje 𝑂 − λ que puede cortar o no a la curva de 
carga. Si el nivel de carga corresponde a cargas menores que las máximas que puede soportar la 
estructura, el plano corta a la curva de carga y las iteraciones convergen. Si las cargas son 
mayores, el plano no corta a la curva de carga y el proceso es divergente. 

A pesar de que existen otras ecuaciones de restricción, en nuestro código hemos empleado la que 
se conoce como vínculo esférico. 

Una manera de conseguir la intersección de la curva de carga con la superficie que representa la 
condición adicional y, por tanto, una manera de garantizar la convergencia del proceso iterativo de 
corrección consiste en imponer como condición adicional superficies cerradas alrededor del punto 
de equilibrio determinado anteriormente. La más sencilla de estas superficies es una (híper) esfera 
de radio Δ𝑙 (Figura 7) cuya ecuación viene dada por:  

�Δ𝑼i
k�TΔ𝑼i

k  +  �α Δλik�
2 =   Δ𝑙2 

(Ec33.) 

En esta ecuación α es un coeficiente numérico que se introduce al objeto de homogeneizar las 
dimensiones y magnitud numérica de los términos de la ecuación pero en la mayoría de las 
ocasiones se toma como 1. Esta condición fue propuesta por Riks (ref.14) y ha sido el origen de 
diversos métodos de solución de problemas no lineales. 

 

Figura 7: Δ𝑙 = cte. Vinculo esférico. 

 

Del mismo modo a lo hecho en las ecuaciones Ec25 a Ec32, en este caso el residuo será función 
no solo de 𝑼 sino también de 𝜆 y podremos volver a escribir la ecuación Ec25, que al final de las k 
iteraciones del salto de carga i 

𝑹𝑖
𝑘 =  𝜆𝑖𝑘  𝑷 − 𝑸𝑖

𝑘(𝑼𝑖
𝑘) = 0 

(Ec25.) 
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Desarrollando el residuo en serie de potencias alrededor del punto de iteración anterior (k-1) se 
obtiene 

𝑹𝑖𝑘 ≈  𝑹𝑖𝑘−1 + � 
𝜕𝑹𝑖𝑘−1

𝜕𝜆
 � δ𝜆𝑘 + � 

𝜕𝑹𝑖𝑘−1

𝜕𝑼
 �δ𝑼𝑘 = 0 

(Ec34.) 

En esta expresión δ𝑼𝑘 es el incremento de deformación producido en la iteración k del salto de 
carga i, y del mismo modo δ𝜆𝑘 es el incremento de deformación producido en la iteración k de ese 
mismo salto de carga. Las derivadas necesarias son: 

𝜕𝑹𝑖𝑘−1

𝜕𝜆
= 𝑷 

(Ec35.) 

y 

𝜕𝑹𝑖𝑘−1

𝜕𝑼
= −

𝜕𝑸𝑖
𝑘−1

𝜕𝑼
= −𝑲𝑖

𝑘−1 

(Ec36.) 

Luego la ecuación de iteración a resolver, que es la que resolvemos en nuestro código es:  

𝑹𝑖𝑘 ≈  𝑹𝑖𝑘−1 + � 
𝜕𝑹𝑖𝑘−1

𝜕𝜆
 � δ𝜆𝑘 + � 

𝜕𝑹𝑖𝑘−1

𝜕𝑼
 �δ𝑼𝑘 = 𝑹𝑖𝑘−1 + 𝑷 δ𝜆𝑘−𝑲𝑖

𝑘−1 δ𝑼𝑘 = 0 

 

𝑲𝑖
𝑘−1 δ𝑼𝑘 = 𝑹𝑖𝑘−1 + 𝑷 δ𝜆𝑘 

(Ec37.) 

Despejando el incremento de deformación se obtiene 

δ𝑼𝑘 = �𝑲𝑖
𝑘−1�−1 𝑹𝑖𝑘−1 + �𝑲𝑖

𝑘−1�−1𝑷 δ𝜆𝑘 

(Ec38.) 

Que podemos escribir como: 

δ𝑼𝑘 = �𝑲𝑖
𝑘−1�−1 𝑹𝑖𝑘−1 + �𝑲𝑖

𝑘−1�−1𝑷 δ𝜆𝑘 

(Ec39.) 

Por lo tanto la ecuación a resolver en la iteración k es 

δ𝑼𝑘 =  𝑼�𝑖𝑘 + 𝑼�𝑖𝑘  δ𝜆𝑘 = 0 

(Ec40.) 

El primer sumando del incremento del desplazamiento se puede calcular con facilidad y representa 
el desplazamiento producido por la parte del residuo no equilibrado en la iteración anterior  

𝑼�𝑖𝑘 =  �𝑲𝑖
𝑘−1�−1 𝑹𝑖𝑘−1 

(Ec41.) 

El segundo sumando no puede evaluarse hasta no conocer el valor de 𝜆 pero su coeficiente puede 
evaluarse con sencillez y representa la deformación producida por las fuerzas básicas 𝑷.  
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𝑼�𝑖𝑘 =  �𝑲𝑖
𝑘−1�−1𝑷 

(Ec42.) 

Obsérvese que si se emplea el método de Newton-Raphson modificado, no es necesario calcular 
este término a cada paso de la iteración, sino que puede mantenerse el del primero. 

Suponiendo por el momento conocido el valor de δ𝜆𝑘, y por tanto el valor del incremento de 
desplazamientos en esta iteración δ𝑼𝑘, se procede a actualizar los valores de las incognitas. Para 
los desplazamientos la actualización es: 

Δ𝑼𝑖
𝑘  =  Δ𝑼𝑖

𝑘−1 + δ𝑼𝑘 

(Ec43.) 

Donde Δ𝑼𝑖
𝑘−1 es el incremento de deformación acumulado a lo largo de las (k-1) iteraciones 

anteriores. De forma similar Δ𝑼𝑖
𝑘 es el incremento de deformación acumulado tras la iteración k. 

De manera análoga se actualiza el parámetro de carga 𝜆:  

λ𝑖𝑘  =  λ𝑖𝑘−1 + δλ𝑘 

(Ec44.) 

El cálculo de δλ𝑘 se efectua introduciendo una ecuación de restricción que imponga la condición 
de distancia máxima recorrida en este salto de carga, es decir que se limita el incremento de 
desplazamiento acumulado en todas las iteraciones efectuadas en este salto de carga. Si se 
denomina 𝛥𝑠 a la distancia máxima a recorrer, la condición es:  

(𝛥𝑠)2  = (Δ𝑼𝑖
𝑘)𝑇 Δ𝑼𝑖

𝑘 

(Ec45.) 

Sustituyendo los incrementos por sus valores y operando se obtiene  

(𝛥𝑠)2  = (Δ𝑼𝑖
𝑘−1 + δ𝑼𝑘)𝑇 (Δ𝑼𝑖

𝑘−1 + δ𝑼𝑘) 

(𝛥𝑠)2  = (Δ𝑼𝑖
𝑘−1 + 𝑼�𝑖𝑘 + 𝑼�𝑖𝑘 δ𝜆𝑘)𝑇 (Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘 + 𝑼�𝑖𝑘  δ𝜆𝑘) 

(𝛥𝑠)2  = (Δ𝑼𝑖
𝑘−1 + 𝑼�𝑖𝑘)𝑇 �Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘� + 2 (Δ𝑼𝑖
𝑘−1 + 𝑼�𝑖𝑘)𝑇  𝑼�𝑖𝑘 δ𝜆𝑘 +  (𝑼�𝑖𝑘)𝑇  𝑼�𝑖𝑘  (δ𝜆𝑘)2 

La ecuación anterior es una ecuación de segundo grado en λ : 

a1(δ𝜆𝑘)2 + a2 δ𝜆𝑘 +  a3 = 0 

donde 

a1 = (𝑼�𝑖𝑘)𝑇  𝑼�𝑖𝑘 

a2 = 2 (Δ𝑼𝑖
𝑘−1 + 𝑼�𝑖𝑘)𝑇  𝑼�𝑖𝑘  

a3 = (Δ𝑼𝑖
𝑘−1 + 𝑼�𝑖𝑘)𝑇 �Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘� − (𝛥𝑠)2 

Resolviendo esta ecuación se obtienen dos raíces δ𝜆1𝑘 y δ𝜆2𝑘. De entre ellas se elige aquella que 
producirá un incremento de desplazamiento acumulado más próximo al incremento de 
desplazamiento acumulado en la iteración anterior. Para ello, en primer lugar se determina cuál 
sería el incremento de desplazamiento producido por cada una de las soluciones 

Δ𝑼𝑖(1)
𝑘  = Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘 + 𝑼�𝑖𝑘  δ𝜆1𝑘 

Δ𝑼𝑖(2)
𝑘  = Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘 + 𝑼�𝑖𝑘  δ𝜆2𝑘 
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A continuación se calcula la proyección de dichos incrementos de desplazamiento sobre el 
incremento de desplazamiento de la iteración anterior, que será un escalar, que de alguna manera 
estima el ángulo entre ambos vectores: 

(𝛥𝑠)2cos𝜑1  = (Δ𝑼𝑖
𝑘−1)𝑇 Δ𝑼𝑖(1)

𝑘 = (Δ𝑼𝑖
𝑘−1)𝑇 (Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘 + 𝑼�𝑖𝑘  δ𝜆1𝑘) 

(𝛥𝑠)2cos𝜑2  = (Δ𝑼𝑖
𝑘−1)𝑇 Δ𝑼𝑖(2)

𝑘 = (Δ𝑼𝑖
𝑘−1)𝑇 (Δ𝑼𝑖

𝑘−1 + 𝑼�𝑖𝑘 + 𝑼�𝑖𝑘  δ𝜆2𝑘) 

(Ec46.) 

Eligiendo aquella solución que produzca menor ángulo, es decir el mayor valor del cos𝜑. 

 

5.4. Determinación del tamaño del salto de carga. 

La idea de tratar el factor multiplicador de las cargas como una incógnita adicional en el proceso de 
corrección de la solución, puede además ser utilizada para decidir la estrategia de avance en el proceso de 
seguimiento de la curva de carga. De esta forma, en lugar de utilizar saltos de carga Δλi𝑷 determinados de 
antemano, puede llevarse a cabo un control del proceso de incrementación mediante otro criterio, tal como 
fijar la longitud del vector tangente (Δλi0,Δ𝑼i

0) correspondiente a la primera aproximación dentro de cada salto 
mediante la ecuación (Ec25.) particularizada.  

(Δ𝑼i
0)TΔ𝑼i

0  +  (α Δλi0)2 =   Δ𝑙2  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

(Ec47.) 

Ya se comprende que en la práctica resulta difícil estimar un valor adecuado para el valor de la longitud 
del arco Δ𝑙, por lo que en la práctica se suele fijar un valor inicial de Δλi0 para el primer incremento. A partir de 
este valor se puede calcular Δ𝑙 despejando: 

Δ𝑙 = �(Δ𝑼i
0)TΔ𝑼i

0  +  (α Δλi0)2 

(Ec48.) 

Siendo Δ𝑼i
0 = Δλi0 𝑼𝑖

∗ y calculándose 𝑼𝑖
∗ resolviendo el sistema de ecuaciones: 

𝑲0 𝑼𝑖
∗ = 𝑷 

(Ec49.) 

Una vez se ha determinado en el primer salto de carga el valor de la longitud del arco Δ𝑙, en los saltos 
posteriores, se puede deducir de manera inversa el valor del salto de carga que da lugar a un vector tangente 
cuya longitud valga Δ𝑙 a partir de la siguiente expresión:  

Δλi0  = ±�
Δ𝑙2

(𝑼i
∗0)T𝑼i

∗0  +  α2
 

(Ec50.) 

En la expresión anterior se toma el signo positivo o negativo de acuerdo con el signo del determinante de 
la matriz de rigidez 𝑲𝑖 utilizada al principio de cada salto para obtener 𝑼𝑖

∗. De esta forma es posible seguir las 
ramas descendentes de las trayectorias de equilibrio, en las que es preciso utilizar factores de carga 
negativos. 

Aunque nosotros en nuestro código calculamos el determinante de la matriz de rigidez tangente de la 
estructura con la orden Det [K] incorporada en Mathematica, el signo del determinante de la matriz de rigidez 
se puede calcular sin necesidad de calcular el propio determinante. Si se utilizan algoritmos de resolución del 
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sistema de ecuaciones basados en la factorización de la matriz de rigidez en el producto de una matriz 
triangular inferior, con términos unidad en la diagonal principal, por otra triangular superior (factorización de 
Crout o también llamada factorización de Cholesky modificada), el signo del determinante se puede calcular 
de manera muy eficiente. La matriz de rigidez se descompone según:  

𝑲 = 𝑳𝑼 

(Ec51.) 

Siendo 𝑳 la matriz triangular inferior y 𝑼 la triangular superior. El signo del determinante coincide con el 
signo del producto de los términos de la diagonal de la matriz triangular superior:  

𝑠𝑖𝑔𝑛𝑜�𝑑𝑒𝑡(𝑲)� = 𝑠𝑖𝑔𝑛𝑜�𝑑𝑒𝑡(𝑳) ∗ 𝑑𝑒𝑡(𝑼)� = 𝑠𝑖𝑔𝑛𝑜 �
∏ 𝑈𝑖𝑖𝑛
1

|∏ 𝑈𝑖𝑖𝑛
1 |� = �

𝑈𝑖𝑖
|𝑈𝑖𝑖|

𝑛

1

 

(Ec52.) 

 

5.5. Ajuste automático de la longitud del salto de carga. 

En el apartado anterior se ha supuesto que la longitud del vector tangente Δ𝑙 se mantenía constante en el 
proceso de carga. Se comprende fácilmente que manteniendo constante Δ𝑙, el proceso de corrección iterativo 
requerirá normalmente mayor número de iteraciones para conseguir una cierta aproximación en zonas de la 
trayectoria de equilibrio con gran curvatura que en otras zonas de curvatura menor. Nótese que la curvatura 
de la curva de equilibrio está relacionada con la variación de la rigidez de la estructura, de manera que a 
mayores variaciones de rigidez corresponderán mayor número de iteraciones. Si se quiere que el número de 
estas sea más o menos constante se puede variar Δ𝑙. Se trata de modificar esta longitud en función del 
número de iteraciones 𝜃𝑖−1 que han hecho falta para conseguir una cierta aproximación en el salto de carga 
anterior y el número de iteraciones que se desea mantener constante 𝜃𝑑𝑒𝑠. Una fórmula debida a Ramm (ref. 
15) es:  

Δ𝑙𝑖 = Δ𝑙𝑖−1 ( 
𝜃𝑑𝑒𝑠
𝜃𝑖−1

 )𝜸 

(Ec53.) 

con γ igual a 0,5. 

Este sencillo procedimiento produce automáticamente pequeños saltos de carga en zonas de 
comportamiento altamente no lineal y saltos de carga mayores en zonas de comportamiento “casi” lineal. 

 

5.6. Cálculo de puntos de inestabilidad. 

Los métodos que se acaban de exponer permiten el seguimiento completo del comportamiento no lineal 
de una estructura. El objetivo práctico de tal seguimiento es, muchas veces, estimar el valor de las cargas 
máximas que puede soportar la estructura. En una parte importante de los problemas de no linealidad 
geométrica esta estimación puede llevarse a cabo sin necesidad de trazar completamente la curva de 
equilibrio, evitándose así un proceso de elevado coste en términos de cálculo. 

Tanto los puntos límite como los puntos de bifurcación del equilibrio significan desde el punto de vista 
numérico puntos críticos de la curva de equilibrio en los que el sistema de ecuaciones de equilibrio esta 
indeterminado. En estos puntos, la matriz de rigidez tangente deja de ser definida positiva. La detección de 
las situaciones en las que la matriz de rigidez se hace singular constituye la base de los métodos de cálculo 
de puntos críticos. 
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5.7. Criterios de convergencia. 

Con objeto de decidir cuándo se termina el proceso iterativo se deben establecer ciertos criterios de 
convergencia los cuales pueden clasificarse dependiendo de las cantidades que intervienen en la 
comparación. Se tienen así los dos criterios más usados: 

5.7.1. Criterio de convergencia de desplazamientos 

Con este criterio, en cada salto de carga, el proceso iterativo finaliza cuando la variación de 
desplazamientos δuk que se obtiene es menor que un cierto valor preestablecido. Ya que δuk es 
una magnitud vectorial de tantas componentes como grados de libertad tiene la estructura, para 
poder establecer comparaciones se utilizan normas de tres tipos. 

• 1. Norma infinita 

‖δ𝑼‖∞ =  𝑚𝑎𝑥 |δ𝑢𝑖| 

 (Ec54.) 

• 2. Norma L1 

‖δ𝑼‖1 =  �|δ𝑢𝑖| 

 (Ec55.)  

• 3. Norma L2 

‖δ𝑼‖2 =  ��δ𝑢𝑖2�
1/2

 

 (Ec56.) 

La primera de estas normas, ‖δU‖∞ es simplemente el valor máximo de las componentes del 
vector variación de desplazamiento. ‖δ𝑼‖1 es la suma de los valores absolutos de dichas 
componentes. ‖δ𝑼‖2 es la raíz cuadrada de la suma de los cuadrados de las componentes y 
equivale al módulo del vector. A esta última se la llama también norma Euclídea y es por lo general 
la más usada. 

Estas normas se comparan con una fracción de la norma correspondiente de los desplazamientos 
totales o del incremento de los desplazamientos. Por ejemplo si se utiliza la norma L2 se tendría:  

‖δ𝑼‖2 < 𝜺𝒖‖𝑼‖2 

 (Ec57.) 

o si se compara con el incremento de desplazamiento:  

‖δ𝑼‖2 < 𝜺𝒖‖Δ𝑼‖2 

 (Ec58.) 

siendo εu un valor que frecuentemente se fija en 0.01 ó 0.001. 

5.7.2. Criterio de convergencia de fuerzas 

Se utiliza como cantidad a comparar una norma de las fuerzas residuales 𝑹. Como cantidad de 
referencia se puede utilizar la norma correspondiente de las fuerzas exteriores totales o la del 
incremento de carga. Utilizando por ejemplo la norma L2 del vector de incrementos de carga se 
tiene el siguiente criterio: 
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‖𝑹‖2 <  𝜺𝒈 ‖Δλ 𝑷‖2 

 (Ec59.) 

Un criterio también utilizado con frecuencia toma como cantidad de referencia el valor máximo de 
los residuos en el incremento:  

‖𝑹‖2 <  𝜺𝒈 𝑚𝑎𝑥 (‖𝑹‖2) 

 (Ec60.) 

5.7.3. Criterio de convergencia de la energía 

Otro criterio es el que considera en forma conjunta desplazamientos y fuerzas. Se basa en utilizar 
como cantidad a comparar al valor absoluto del producto escalar de la variación de desplazamientos 
por las fuerzas residuales. Como referencia se toma el valor absoluto del producto escalar de los 
desplazamientos totales por las cargas exteriores: 

‖𝛿𝑼𝑇  𝑹‖2 <  𝜺𝒆 |𝑼𝑇 𝑷| 

 (Ec61.) 

 

5.8. Matriz de rigidez tangente de la barra. 

Una vez visto lo anterior, para poder determinar la respuesta de la estructura se hace necesario ver como 
determinamos la matriz de rigidez tangente que según sabemos, en los problemas con algún tipo de no 
linealidad, y en particular de la geométrica depende del nivel de desplazamientos al que se ve sometida la 
estructura. 

5.8.1. Formulación de la matriz de rigidez tangente de la barra. 

Sea la barra 1-2 de la figura 1, que inicialmente forma un ángulo β0 con el eje x global. A esta 
barra, de longitud inicial L0, tras aplicarle cargas en sus extremos (fuerzas y momentos), se deforma 
pasado dichos extremos a ocupar la posición 1´- 2´. 

 

 

Fig 1. 

En principio las incógnitas del problema son precisamente los desplazamientos nodales 
(movimientos U, V y  𝜃 de sus nudos extremos), medidos estos en ejes globales. 
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Los movimientos de los nudos extremos de la barra los podemos agrupar en un vector columna 
que denominamos vector desplazamiento y que definimos del siguiente modo 

𝑼 = {U1, V1, θ1, U2, V2, θ2}T 

(Ec62.) 

Por otro lado, definimos los ángulos ϑ1 y ϑ2 como 

ϑ1 = α + 𝜗̅1 

ϑ2 = α + 𝜗̅2 

(Ec63.) 

donde α es el giro de la barra como sólido rígido. 

Para ese movimiento, el alargamiento de la barra valdrá 

u� = L − L0 

(Ec64.) 

y la deformación ingenieril la podremos expresar como 

ε =
L − L0

L0
=

u�
L0

 

(Ec65.) 

Así, el axil en la barra será por tanto 

N =  σ ∗ A0 = ε ∗ E ∗ A0 =
u� ∗ E ∗ A0

L0
 

(Ec66.) 

La variación virtual del alargamiento u� de la barra, se puede expresar en función de los 
movimientos de los nudos extremos de la barra como 

 

Fig 2. 

δu� = δU2 cosβ + δV2 senβ − δU1 cos β − δV1 sen β 

(Ec67.) 
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o bien  

δu� = {− cos β , −senβ , 0,     cos β , sen β, 0}  δ𝑼 

(Ec68.) 

δu� = 𝒓𝑇 δ𝑼 

(Ec69.) 

donde β es el ángulo que forma la barra con el eje x global. 

De la misma manera, en incremento virtual del ángulo (δα) lo podemos expresar como 

δα = δβ =
δv�2
L0

=
1
L0
∗ {senβ, −cosβ, 0, −senβ, cosβ, 0}  δ𝑼 

(Ec70.) 

δα =
1
L0
∗ 𝒛𝑇δ𝑼 

(Ec71.) 

Por otro lado 

δϑ1 = δα + δ𝜗̅1 

δϑ2 = δα + δ𝜗̅2 

(Ec72.) 

con lo que 

�δ𝜗̅1
δ𝜗̅2

� = �δϑ1δϑ2
� − �δαδα� 

(Ec73.) 

�δ𝜗̅1
δ𝜗̅2

� = �0 0 1
0 0 0

0 0 0
0 0 1� δ𝑼 −

1
L0
∗ �𝒛

𝑇

𝒛𝑇
�  δ𝑼 = 𝑨 δ𝑼 

(Ec74.) 

donde 

𝑨 = �0 0 1
0 0 0

0 0 0
0 0 1� −

1
L0
∗ �𝒛

𝑇

𝒛𝑇
� 

(Ec75.) 

Llamando vector de movimientos virtuales al vector δp� 

δ𝒑� = �
δu�
δ𝜗̅1
δ𝜗̅2

� = �𝒓
𝑇

𝑨
� δ𝑼 = 𝑩 δ𝑼 

(Ec76.) 

definimos la matriz B como 

𝑩 = �𝒓
𝑇

𝑨
� 

(Ec77.) 
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que de forma explicita 

𝑩 = �𝒓
𝑇

𝑨
� =

⎣
⎢
⎢
⎢
⎢
⎡
−cosβ               − senβ              0         cosβ               senβ                  0
−senβ

L0
                  

cosβ
L0

               1          
senβ

L0
            

−cosβ
L0

               0

−senβ
L0

                 
cosβ

L0
               0          

senβ
L0

           
−cosβ

L0
               1

⎦
⎥
⎥
⎥
⎥
⎤

 

(Ec78.) 

y que como vemos es una matriz función del ángulo que forma la barra con el eje horizontal (β) y 
de la longitud inicial de la barra (L0). 

El trabajo virtual interno lo podemos poner como 

δ𝑊𝑖 = N ∗ δu� + M1 ∗ δ𝜗̅1 + M2 ∗ δ𝜗̅2 

(Ec79.) 

Definiendo  𝐐�  como  

𝑸� = �
N

M1
M2

�            𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑒 𝑒𝑠𝑓𝑢𝑒𝑟𝑧𝑜𝑠 

(Ec80.) 

podemos escribir 

δ𝑊𝑖 = δ𝒑�𝑇 𝑸� = δ𝑼𝑇  𝑩𝑇 𝑸� = δ𝑼𝑇  𝑸 

(Ec81.) 

donde  𝐐 es el vector de esfuerzos internos en globales. 

 

𝑸 = 𝑩𝑇  𝑸�  

(Ec82.) 

Admitiendo que las fuerzas externas aplicadas (vector de cargas) no dependen de los 
desplazamientos, definimos la matriz de rigidez tangente como la variación de los esfuerzos internos 
respecto de los desplazamientos, es decir 

𝑲𝑡 =
𝜕𝑸(𝑼)
𝜕𝑼

= 𝑩𝑇  
𝜕𝑸�(𝑼)
𝜕𝑼

+  
𝜕𝑩𝑇(𝑼)
𝜕𝑼

 𝑸� = 𝑲𝐷 + 𝑲𝜎 

(Ec83.) 

donde  𝑲D es la matriz de rigidez material y 𝑲σ  la matriz de rigidez geométrica. 

La relación entre los esfuerzos en la barra y los movimientos de esta, viene dado por la expresión 
siguiente 

 𝑸� = �
N

M1
M2

� =
𝐸
𝐿0
∗ �
𝐴0 0 0
0 4 ∗ 𝐼 2 ∗ 𝐼
0 2 ∗ 𝐼 4 ∗ 𝐼

�  �
u�
𝜗̅1
𝜗̅2
� = 𝑪 𝒑� 

(Ec84.) 
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donde 𝐂 es la matriz constitutiva de la barra, que es constante y únicamente depende de la 
geometría de esta y del material del que se trate. 

Para llegar a calcular la matriz de rigidez tangente 𝑲t, tenemos que resolver las diferentes 
derivadas 

Por un lado: 

𝜕𝑸�(𝑼)
𝜕𝑼

= 𝑪 
𝜕 𝒑�
𝜕𝑼

= 𝑪 𝑩 

(Ec85.) 

con lo que se tiene que 

𝑲𝐷 = 𝑩𝑇 𝑪 𝑩 

(Ec86.) 

Por otro lado, si escribimos 𝑩𝑇 como 

𝑩𝑇 = [𝑩𝑇
1 𝑩𝑇

2 𝑩𝑇
3] 

(Ec87.) 

 

𝑲𝜎 =
𝜕𝑩𝑇(𝑼)
𝜕𝑼

 𝑸� =
𝜕[𝑩𝑇

1 𝑩𝑇
2 𝑩𝑇

3]
𝜕𝑼

 𝑸� =
𝜕𝑩𝑇

1

𝜕𝑼
 N +

𝜕𝑩𝑇
2

𝜕𝑼
 M1 +

𝜕𝑩𝑇
3

𝜕𝑼
 M2 

(Ec88.) 

Pasando a evaluar esas derivadas tenemos 

𝜕𝑩𝑇
1

𝜕𝑼
=
𝜕𝒓
𝜕𝑼

=
𝜕𝒓
𝜕β

∗
𝜕β
𝜕𝑼

 

(Ec89.) 

Si vemos como hemos definido 𝒓, resulta 

𝜕𝒓
𝜕β

= 𝒛𝑇 = {senβ, −cosβ, 0, −senβ, cosβ, 0} 

(Ec90.) 

Según hemos visto 

δα =
1
L
∗ 𝒛𝑇 δ𝑼 

(Ec91.) 

o bien 

δα =
𝜕α
𝜕𝑼

 δ𝑼 

(Ec92.) 

de donde, igualando la Ec91 con la Ec92, se deduce 

   
𝜕α
𝜕𝑼

=
𝜕β
𝜕𝑼

=
1
L
∗ 𝒛𝑇  

(Ec93.) 
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Así 

𝜕𝑩𝑇
1

𝜕𝑼
=

1
L
∗ 𝒛 𝒛𝑇 

(Ec94.) 

que como fácilmente puede comprobarse resulta ser una matriz de dimensión 6x6. 

La segunda y tercera derivadas necesarias para obtener la matriz de rigidez geométrica se 
obtienen de forma análoga. Así: 

𝜕𝑩𝑇
2

𝜕𝑼
=
𝜕𝑩𝑇

3

𝜕𝑼
=
𝜕𝑨
𝜕𝑼

=
𝜕
𝜕𝑼

∗ �−
1
𝐿

  𝒛� = −
1
𝐿
∗
𝜕𝒛
𝜕𝑼

− 𝒛 
𝜕 �1
𝐿 �

𝜕𝑼
 

⇒  
𝜕𝑩𝑇

2

𝜕𝑼
=
𝜕𝑩𝑇

3

𝜕𝑼
= −

1
𝐿
∗
𝜕𝒛
𝜕β

𝜕β
𝜕𝑼

−
1
𝐿2

 𝒛 
𝜕(𝐿 )
𝜕𝑼

 

(Ec95.) 

que con 

𝜕𝒛
𝜕β

= −𝒓   ,       
𝜕β
𝜕𝑼

=
1
L
∗ 𝒛𝑇       y         

𝜕𝐿
𝜕𝑼

=
𝜕u�
𝜕𝑼

= 𝒓T 

 

⇒  
𝜕𝑩𝑇

2

𝜕𝑼
=
𝜕𝑩𝑇

3

𝜕𝑼
=

1
𝐿2
∗ 𝒓  𝒛𝑇 +

1
𝐿2

 𝒛 𝒓T 

 

⇒  𝑲𝜎 =
N
𝐿
∗ 𝒛  𝒛𝑇 +

M1 + M2

𝐿2
∗ (𝒓  𝒛𝑇 +  𝒛  𝒓T) 

(Ec96.) 

y por lo tanto 

𝑲𝑡 = 𝑲𝐷 + 𝑲𝜎 =  𝑩𝑇 𝑪 𝑩 +  
N
𝐿
∗ 𝒛  𝒛𝑇 +

M1 + M2

𝐿2
∗ (𝒓  𝒛𝑇 +  𝒛  𝒓T) 

(Ec97.) 

y que igualmente resulta ser una matriz cuadrada de dimensión 6x6. 

Para cada barra obtenemos una matriz de esa forma la cual está definida en ejes globales. Para el 
ensamblaje de todas las matrices elementales, empleamos los métodos clásicos de cálculo matricial 
de estructuras de barras. La matriz global resultante tendrá una dimensión nxn donde n es igual a 
los grados de libertad del sistema (3 movimientos por nodo correspondientes a dos desplazamientos 
y un giro). 

𝑲𝑡
𝑔 

(Ec98.) 

La matriz global resulta ser singular por lo que tenemos que suprimirle las filas y columnas 
correspondientes a los grados de libertad impedidos. La matriz resultante es en principio una matriz 
regular o definida positiva de dimensión igual al grado de indeterminación cinemática del problema y 
es la que empleamos para resolver el sistema de ecuaciones de equilibrio resultante y que presenta 
la forma: 
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𝑼 =  𝑲𝑡,𝑟
𝑔 −1 𝑷 

(Ec99.) 

************************************************************************************************************* 
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6. PROBLEMAS RESUELTOS CON EL CODIGO. 

6.1. Barra inclinada (caso 1). 

El primer problema que resolvemos con nuestro código es el de una barra recta de acero (módulo de 
elasticidad 2.100.000 kg/cm2), de sección rectangular de dimensiones 36x55 mm, la cual forma un cierto 
ángulo inicial 𝛼0 con la horizontal 

tan𝛼0 =
dy
𝑑𝑥

 

donde dx y dy son respectivamente las cotas de la barra, medidas sobre los ejes x e y. En este primer 
caso dy son 5 cm mientras que dx se mantiene fija de valor 100 cm. 

Con la sección apuntada, se deduce que la barra tiene un área de 19,8 cm2 y una inercia de 49,9125 cm4. 
El extremo izquierdo de la barra se encuentra apoyado (sin posibilidad de movimiento ni en dirección x ni en 
dirección y) mientras que el extremo derecho solo tiene impedido el movimiento en dirección x, pudiendo 
dicho punto moverse en dirección vertical y rotar. 

 

Figura 10: Geometría del modelo. 

 

 

Figura 11: Discretización del modelo en Mathematica. 

 

Para la obtención de la trayectoria de equilibrio, en este caso se han llevado a cabo 60 incrementos con 
los siguientes parámetros (𝛾 = 0,5, 𝜆0 = 10, 𝜃𝑑𝑒𝑠 = 5, tol = 0.0001, máx. nº iter = 40). 

La barra se divide en 10 elementos de igual longitud y con esta geometría y condiciones de contorno, se 
aplica al extremo derecho una carga vertical –P, la cual se grafica frente a la posición vertical del punto de 
aplicación de la carga, obteniendo la siguiente curva de equilibrio. 
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Figura 12: Gráfica y - 𝜆. Posición del punto de aplicación de la carga - Carga aplicada. 

En la figura 12 puede apreciarse lo siguiente: 

• Los puntos (y, 𝜆) obtenidos con nuestro código, son los puntos de equilibrio por los que 
atraviesa la estructura y la línea que los une, es la “trayectoria de equilibrio de la estructura”. 
En realidad la trayectoria de equilibrio es una curva alabeada en un espacio n+1 dimensional, 
siendo n el nº de grados de libertad del sistema o grado de indeterminación cinemática de la 
estructura. 

• Inicialmente nos encontramos en el punto (5, 0). La estructura está descargada y la barra se 
encuentra en un estado libre de tensiones o esfuerzos. En esta situación, la barra se 
encuentra en un estado de equilibrio estable. 

• Conforme aumentamos el valor de la carga P, el punto de aplicación de esta va descendiendo 
y el problema, que inicialmente es prácticamente lineal, se hace cada vez más no lineal 
observándose claramente en la figura la no linealidad entre cargas aplicadas y descensos. 

• A medida que la carga va aumentando, la estructura va perdiendo rigidez como consecuencia 
del axil que acumula debido a su acortamiento y cuando la carga es aproximadamente de 
unos 1.000 kp (𝜆 = -1.000), la estructura pierde toda su rigidez desencadenándose el pandeo 
global de la misma. 

• A partir del punto de pandeo anterior (2,7, -1.000), para encontrar las sucesivas posiciones de 
equilibrio a medida que el desplazamiento aumenta, la carga debe disminuir. De hecho, 
cuando el descenso del punto de aplicación de la carga vale 5 cm (es decir, la barra adopta la 
posición horizontal), la carga vertical P necesaria para mantener su equilibrio es nula. El 
punto (0, 0) es también un punto de equilibrio. 

• El punto (0, 0) es un punto de equilibrio inestable puesto que si el sistema es dejado en ese 
estado, aunque dicha posición sea de equilibrio, cualquier perturbación de dicha posición 
haría que el sistema evolucionase de forma espontánea hacia otras posiciones de equilibrio 
alejadas de la inicial (0, 0) y en las que la carga P también fuese nula. Estas posiciones son 
lógicamente las (5, 0) o la (-5, 0). 

• Del punto de pandeo (2,7, -1.000) al (-2,7, 1.000) la rigidez de la estructura es negativa. A 
partir del punto (-2,7, 1.000), para poder seguir aumentando el descenso del punto de 
aplicación de la carga debemos de disminuir esta hasta que, para cuando la barra adopta la 
posición simétrica respecto de su posición original, la carga se hace nula (-5, 0). 
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• A partir del punto (-5, 0), para poder seguir aumentando el descenso del punto de aplicación 
de la carga debemos disminuir esta (empujar hacia abajo). En este punto, la estructura va 
rigidizándose a medida que va tomando carga como consecuencia de la tracción que le 
provoca el descenso del punto de aplicación de la carga. 

 

Tenemos que señalar que con la geometría particular de este primer caso, la trayectoria de equilibrio 
obtenida describe una curva suave. En este caso, el código programado no ha dado ningún problema a la 
hora de obtener los sucesivos puntos de equilibrio y no se han producido puntos de oscilación, raíces 
imaginarias ni cualquier otro tipo de inestabilidad. 

El hecho de que la curva sea suave es indicativo de que el pandeo se ha producido a nivel global de la 
estructura y no a nivel local de barra. Notemos que con esta geometría, el acortamiento máximo de la barra 
se presenta cuando esta toma la posición horizontal. Inicialmente, la longitud de la barra vale 

𝐿0 = �𝑑𝑥2 + 𝑑𝑦2 = �1002 + 52 = 100,1249 𝑐𝑚 

Mientras que la longitud de esta cuando el descenso es de 5 cm vale y admitiendo que permanece recta 
es 

𝐿𝑓 = 𝑑𝑥 = 100 𝑐𝑚 

Con esto, es acortamiento máximo de la barra vale 

u =  𝐿𝑓 − 𝐿0 = 100 − 100,1249 = −0,1249 𝑐𝑚 

por lo que el alargamiento de sus fibras es de 

ε =
u
𝐿0

=
−0,1249
100,1249

= −1,247 ∗ 10−3 

lo que da lugar a una carga de compresión de valor 

N = σ ∗ A = ε ∗ E ∗ A = −1,247 ∗ 10−3 ∗ 2.100.000 ∗ 20 =  −52.392,6 𝑘𝑝 

Por otro lado, como se trata de una barra apoyada-apoyada, la carga crítica de pandeo de la barra 
(estructura) es: 

N𝑐𝑟 = −
𝜋2 ∗ 𝐸 ∗ 𝐼

𝐿𝑘2
= −

3,1412 ∗ 2.100.000 ∗ 49,9125
100,1249

= −103.191,6 𝑘𝑝 

es decir, el axil producido como consecuencia del acortamiento de la barra al descender el punto de 
aplicación de la carga 5 cm (N = -52.393 kp), es menor que la carga critica de pandeo de Euler de la barra. 
Por lo tanto, en este caso, mucho antes de que se produzca el pandeo de Euler, la estructura ha perdido su 
rigidez global siendo en este caso ésta la que gobierna la física del problema. 

No ocurre lo mismo si la coordenada y del extremo derecho de la barra vale 10 cm en lugar de los 5 cm de 
este primer caso. 
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6.2. Barra inclinada (caso 2). 

En este segundo problema, contamos con el mismo tipo de perfil que en el caso anterior, con el mismo 
material y sección pero ahora, la geometría inicial es diferente. Ahora dy son 10 cm mientras que dx se 
mantiene constante e igual a 100 cm como en el caso anterior. Las condiciones de contorno son las mismas 
que antes por lo que la única diferencia es la longitud de la barra (estructura). 

Por tanto, en este segundo caso, la barra al igual que en el caso anterior, tiene un área de 19,8 cm2 y una 
inercia de 49,9125 cm4. El extremo izquierdo de la barra se encuentra apoyado (sin posibilidad de movimiento 
ni en dirección x ni en dirección y) mientras que el extremo derecho solo tiene impedido el movimiento en 
dirección x, pudiendo dicho punto moverse en dirección vertical. Ambos extremos pueden rotar. 

Para la obtención de la trayectoria de equilibrio, en este caso se han llevado a cabo 265 incrementos de 
carga con los siguientes parámetros (𝛾 = 0,5, 𝜆0 = 10, 𝜃𝑑𝑒𝑠 = 5, tol = 0.001, máx. nº iter = 40). 

 

Figura 13: Geometría del modelo. 

 

 

Figura 14: Discretización del modelo en Mathematica. 

 

La barra se divide también en 10 elementos de igual longitud y con esta geometría y condiciones de 
contorno, se aplica al extremo derecho una carga vertical variable –P, la cual se grafica frente a la posición 
vertical del punto de aplicación de la carga. 

En este caso se observa lo siguiente. La curva de equilibrio que se obtiene adopta la forma de la figura 15. 
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Figura 15: Gráfica y - 𝜆. Posición del punto de aplicación de la carga - Carga aplicada. 

En la figura 15 puede apreciarse lo siguiente: 

• Los puntos (y, 𝜆) obtenidos con el código, son puntos de equilibrio y la línea que los une, es la 
“trayectoria de equilibrio de la estructura”. En realidad la trayectoria de equilibrio es una curva 
alabeada en un espacio n+1 dimensional, siendo n el nº de grados de libertad del sistema. 

• Inicialmente nos encontramos en el punto (10, 0). La estructura está descargada y la barra se 
encuentra en un estado libre de esfuerzos. En esta situación, la barra se encuentra en un 
estado de equilibrio estable. 

• Conforme disminuimos el valor de la carga P, el punto de aplicación de esta va descendiendo 
y el problema, que inicialmente es prácticamente lineal, se hace cada vez más no lineal 
observándose claramente en la figura la no linealidad entre cargas aplicadas y descensos. 

• A medida que la carga va aumentando, la estructura va perdiendo rigidez como consecuencia 
del axil que acumula debido a su acortamiento y cuando la carga es aproximadamente de 
unos 7.280 kp (𝜆 = -7.280), aparece un punto de bifurcación del equilibrio, en el que la 
estructura bien puede pandear localmente a nivel de barra o bien si la barra no pierde la 
rectitud, puede seguir incrementándose la carga para describir un comportamiento similar al 
del caso 1 con un pandeo global. 

Notas: En este caso, para cazar la trayectoria a partir del punto de bifurcación, se ha hecho 
necesario introducir una pequeña perturbación capaz de modificar la rectitud de la barra y de esa 
manera excitar el modo de pandeo local de la barra. Dicha perturbación se ha introducido como una 
carga puntual de pequeña magnitud, aplicada en el nodo central de la partición y en dirección 
vertical. 

Si no introducimos la perturbación, al llegar al punto de bifurcación el código oscila no siendo 
capaz de determinar las nuevas posiciones de equilibrio y este hecho hace que necesitemos de 
cierto conocimiento previo del modo de pandeo que puede tener lugar. En este caso es sencillo al 
tratarse de una sola barra y la primera forma de pandeo de ésta en sencillamente la de la figura 16. 
En problemas más complejos (con más barras), la solución puede no ser tan obvia. 
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Figura 16: Primer modo de pandeo de la barra articulada-articulada. 

 

Notemos que en este caso, la carga crítica de pandeo de la barra vale: 

N𝑐𝑟 = −
𝜋2 ∗ 𝐸 ∗ 𝐼

𝐿𝑘2
= −

3,1412 ∗ 2.100.000 ∗ 49,9125
100,4987

= −102.425,0 𝑘𝑝 

Para que se produzca ese axil en la barra, la deformación de la barra ha de ser la que sigue 

N = −102.425,0 𝑘𝑝 = σ ∗ A = ε ∗ E ∗ A 

⇒ ε =  
N

E ∗ A
=

−102.425,0
2.100.000 ∗ 20

= −2,4387 ∗ 10−3 

de donde se deduce que el acortamiento de la barra tiene que valer 

u = ε ∗ 𝐿0 = −2,4387 ∗ 10−3 ∗ 100,4987 = −0,2451 𝑐𝑚 

Para que se produzca ese acortamiento u en la barra, el punto de aplicación de la carga se tiene 
que mover verticalmente una cantidad (y-y0) y la longitud final de la barra valdrá  

𝐿 =  𝐿0 + 𝑢 = 100,4987 − 0,2451 = 100,2536 𝑐𝑚 

y de aquí, como 

𝑑𝑦 = �𝐿2 − 𝑑𝑥2 = �100,25362 + 1002 = 7,1263 𝑐𝑚 

el descenso 

Δ𝑦 = 𝑑𝑦 − 𝑑𝑦0 = 7,1263 − 10 = −2,8737 𝑐𝑚 

Es decir, la carga critica de pandeo local de la barra (Ncr = -102.425 kp), aparece cuando el 
descenso del punto de aplicación de la carga es de 2,8737 cm lo cual se corresponde con el 
desplazamiento vertical en el punto de bifurcación que aparece en la figura 15. 

Para esa posición de la barra, el ángulo 𝛽 que forma con la horizontal es de  

tan𝛽 =
dy
𝑑𝑥

=
7,1263

100
= 0,07126 

𝛽 = arctg(0,07126) = 4,0762 𝑜 

Por lo que la carga vertical aplicada vale 

𝑃 = N ∗ sen 𝛽 = −102.425,0 ∗ 𝑠𝑒𝑛 4,0762 = −7.280,0 𝑘𝑝 

La cual coincide con lo que se observa en la figura 15. Además, esta carga es menor que la carga 
de pandeo global de la estructura por lo que cuando dy = 7,1263 cm, lo que dará lugar a que la 
carga en la barra sea de 102.425 kp, si la barra pierde la rectitud ideal se producirá un pandeo local 
de esta que marcará la trayectoria de equilibrio indicada en la figura 15. Si la barra no pierde la 
rectitud, la trayectoria de equilibrio será similar a la de la figura 12 del caso 1. 
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• A partir del punto de bifurcación (7,1263, -7.280), para encontrar sucesivas posiciones de 
equilibrio el valor absoluto de la carga P debe de disminuir. De hecho, las sucesivas 
posiciones de equilibrio están contenidas en una recta que pasando por el (0, 0) llega hasta la 
posición simétrica (-7,1263, 7.280). Durante todo este tramo recto, la rigidez tangente de la 
estructura es negativa. La carga de pandeo de la barra permanece constante (esta no 
cambia) pero la carga vertical aplicada P aumenta hasta anularse en el (0, 0) y continua 
creciendo hasta llegar al punto de simetría (-7,1263, 7.280). 

• En el punto (-7,1263, 7.280) la rigidez de la estructura pasa a ser nuevamente positiva. Para 
poder seguir aumentando el descenso del punto de aplicación de la carga debemos de 
disminuir la carga vertical aplicada P hasta el momento en el que la barra adopte la posición 
simétrica respecto de su posición original, momento este en el que la carga se hace nula y  
que corresponde al punto (-10, 0). 

A partir del punto (-10, 0), para poder seguir aumentando el descenso del punto de aplicación de la carga 
debemos de aumentar esta. En este punto, la estructura a medida que va tomando carga va rigidizándose 
como consecuencia de la tracción que le provoca el descenso del punto de aplicación de la carga.  

 

6.3. Pórtico simple. 

En este tercer problema, se compara el resultado obtenido en nuestro código con el que obtienen P. 
Kotronis y F. Collin en su artículo Implementation of path following techniques into the finite element code 
Lagamine. En este ejemplo se trata un pórtico rígido plano formado por dos barras ortogonales de igual 
longitud, las cuales cuentan con las dimensiones y condiciones de contorno indicadas en la figura 17. 

Las barras son de un material cuyo módulo de elasticidad vale 70.000 kp/cm2 (correspondiente a un tipo 
de aluminio). Tienen un área de 6,0 cm2 y una inercia de 2,0 cm4. Cada barra tiene una longitud de 120 cm y 
se dividen en 5 elementos iguales cada uno de los cuales presenta una longitud de 24 cm. 

Para la obtención de la trayectoria de equilibrio, en este caso se han llevado a cabo 900 incrementos de 
carga con los siguientes parámetros (𝛾 = 0,5, 𝜆0 = 2, 𝜃𝑑𝑒𝑠 = 5, tol = 0.001, máx. nº iter = 20). 

        

          Figura 17: Geometría del modelo.  Figura 18: Discretización del modelo en Mathematica. 

 

En este caso se ha considerado el sentido positivo del eje y, hacia abajo. 
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Se aplica en el punto indicado en la figura una carga vertical variable P, la cual se grafica frente a la 
posición vertical del punto de aplicación de esta, obteniendo la siguiente curva de equilibrio. 

 

Figura 19: Gráfica  y - 𝜆  según Kotronis y Collin. Posición del punto de aplicación de la carga - Carga aplicada. 

 

 

Figura 20: Gráfica  y – 𝜆 según nuestro código. Posición del punto de aplicación de la carga - Carga aplicada. 

 

En la figura 20 se muestra la trayectoria de equilibrio obtenida con nuestro código: 

• Los puntos (y, 𝜆) obtenidos en el código, son puntos de equilibrio y la línea que los une, es la 
“trayectoria de equilibrio de la estructura”. 

• Inicialmente nos encontramos en el punto (120, 0). La estructura está descargada y las barras 
se encuentran en un estado libre de esfuerzos. 

• Conforme aumentamos el valor de la carga vertical P, el punto de aplicación de esta va 
descendiendo y el problema, que inicialmente tiene una rama lineal, se hace cada vez más no 
lineal observándose claramente en la figura la no linealidad entre cargas aplicadas y 
descensos. 

• La trayectoria presenta dos puntos límites y dos puntos de retroceso o puntos límite de 
desplazamiento. 
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• A medida que la carga va aumentando, la estructura va perdiendo rigidez y cuando la carga 
es aproximadamente de unos 1,89 KN (𝜆 =1,89), la estructura pierde toda su rigidez 
produciéndose el pandeo global de la misma. 

Notas: En este caso no hemos tenido que perturbar para obtener las sucesivas posiciones de 
equilibrio. 

El código no ha dado problemas de oscilaciones, raíces imaginarias... ni otros problemas 
numéricos. 

El pandeo global del sistema nos proporciona una trayectoria suave, sin presencia de puntos de 
bifurcación. 

Alcanzado el punto de pandeo global (71, 1,89), para obtener los sucesivos estados de equilibrio 
tenemos inicialmente que reducir la carga llegando al punto (58,5, 1,21). Este punto es un punto de 
retroceso dado que al atravesarlo se produce una disminución del desplazamiento acompañado de 
una disminución de carga.  

El otro punto de retroceso es el (68, -0,50). 

El otro punto límite es el (62, -1,00). A partir de este punto y en adelante, la rigidez tangente pasa a 
ser positiva y para producir aumentos en el descenso del punto de aplicación de la carga, 
necesitamos  aumentar progresivamente la carga. 

 

• Dado que la propia deformación de la estructura excita modos de pandeo globales, no 
aparecen puntos de bifurcación que pudieran conducir a modos de pandeo de carácter local. 

 

6.4. Arco rebajado con carga excéntrica. 

El cuarto problema que se estudia se trata de un arco rebajado con la geometría indicada en la figura 21. 
Los resultados obtenidos con nuestro código se comparan con los obtenidos para el mismo en el artículo de 
P. Kotronis y F. Collin Implementation of path following techniques into the finite element code Lagamine. 

 

Figura 21: geometría del modelo. 

 

El arco es de un material cuyo módulo de elasticidad vale 20.000 kp/cm2. Tiene un área transversal de 
100,0 cm2 y una inercia de 10.000,0 cm4. El arco cubre una luz de 10 m y se encuentra apoyado en ambos 
extremos. Presenta una altura de 0,5 m en su punto medio y se carga de forma excéntrica tal y como se 
indica en la figura 21. 

Para el trazado del arco, se dibuja en CAD un arco de círculo que pasa por los tres puntos (los extremos y 
el centro) y se trazan líneas verticales paralelas y equidistantes 500 mm, de modo que se puedan obtener las 
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cotas de los diferentes puntos del arco. Dado que la posición de la carga al centro del arco vale 200 mm, se 
tiene en cuenta para la determinación de las coordenadas de estos puntos. 

El arco, se divide en 20 elementos barra y su geometría en Mathematica es la que se muestra en la 
siguiente figura. 

 

Figura 22: Discretización del modelo en Mathematica. 

 

Para la obtención de la trayectoria de equilibrio, en este caso se han llevado a cabo 230 incrementos con 
los siguientes parámetros (𝛾 = 0,5, 𝜆0 = 10, 𝜃𝑑𝑒𝑠 = 5, tol = 0.001, máx. nº iter = 15). 

Se aplica en el punto indicado de la figura una carga vertical variable P, la cual se grafica frente al 
descenso vertical del punto de aplicación de esta, obteniendo la siguiente curva de equilibrio. 

 

 

Figura 23: Gráfica 𝛿𝑦 - 𝜆 según Kotronis y Collin. Descenso del punto de aplicación de la carga - Carga aplicada. 

 

Según nuestro código: 
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Figura 24: Gráfica 𝛿𝑦 - 𝜆 según nuestro código. Descenso del punto de aplicación de la carga - Carga aplicada. 

 

 

Figura 25: Gráfica 𝛿𝑦 - 𝜆 según nuestro código. Descenso del punto de aplicación de la carga - Carga aplicada. 

 

Según vemos en este ejemplo, se presentan cuatro puntos límites y dos puntos de retroceso o puntos 
límites de desplazamiento lo que da lugar a una trayectoria de equilibrio bastante enrevesada. 

Los resultados obtenidos con nuestro código, son muy parecidos a los aportados por P. Kotronis y por F. 
Collin lo que demuestra que nuestro código está correcto. 

En este último ejemplo, el código tampoco ha dado problemas a la hora de encontrar las sucesivas 
posiciones de equilibrio, lo que parece indicativo de que el problema planteado no presenta puntos de 
bifurcación del equilibrio que es lo que hace que nuestro código oscile. 

Si en lugar de aplicar la carga en el punto dado, la aplicamos en el punto central del arco, en este caso, si 
no aplicamos carga perturbadora, el código programado presenta problemas numéricos en las proximidades 
del punto de pandeo (donde la pendiente de la gráfica se hace horizontal). Aparecen raíces imaginarias, 
mensajes de matriz mal condicionada... 

La siguiente gráfica muestra el resultado obtenido para este caso. 
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Figura 26: Gráfica 𝛿𝑦 - 𝜆 según nuestro código para el caso de carga centrada. 

Descenso del punto de aplicación de la carga - Carga aplicada. 

 

Como puede verse en la figura 26, en el punto de pandeo parece como si la trayectoria de equilibrio 
retornase hacia atrás y buscase el camino de bifurcación más o menos lineal. Al final, por más que 
aumentemos el nº máximo de iteraciones, el código oscila y no es capaz de seguir más allá del último punto 
encontrado. 

Si además de la carga anterior introducimos un par de fuerzas perturbadoras, el resultado es el que se 
muestra en la figura 28 (la perturbación se introduce según se indica en la figura 27 como un par de fuerzas 
de igual módulo y sentido contrario, las cuales actúan en puntos simétricos respecto del punto central del arco 
y de forma que el resultado de estas equivale a un par aplicado en el nodo central el cual obliga al arco a 
adoptar una geometría deformada no simétrica). 

 

Figura 27: Introducción de las fuerzas perturbadoras. 
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Figura 28: Gráfica 𝛿𝑦 - 𝜆 según nuestro código para el caso de carga centrada + cargas perturbadoras. 

Descenso del punto de aplicación de la carga - Carga aplicada. 

 

Volviendo a la figura 26 y comparándola con la figura 28, en el primer caso (caso de no introducir 
perturbación), la trayectoria de equilibrio que encuentra nuestro código es "la misma" y en la misma dirección 
que la obtenida en el segundo caso (caso en el que si se introduce perturbación). Según vemos en la figura 
28, en el primer punto de bifurcación tenemos dos posibles trayectorias de equilibrio. En el caso de no 
perturbar, el código no encuentra la dirección correcta y se va por la dada en la figura 26. Notemos que en 
este punto de bifurcación las dos trayectorias posibles tienen tangentes o pendientes muy parecidas. 
Siguiendo el camino, aproximadamente en el punto (645, 50) volvemos a tener un punto de bifurcación o 
intersección de trayectorias aunque, en este caso, el código no da problemas. En este punto las tangentes a 
ambas trayectorias, aunque próximas, tienen mayor diferencia que en el primer caso. Al final de la trayectoria 
encontrada en el primer caso (sin perturbación), el código se encuentra en un problema similar teniendo que 
elegir el camino a seguir. En este caso el código se pierde (oscila) y no es capaz de continuar avanzando. En 
este último punto y según puede verse en la figura 28, las dos trayectorias tienen o presentan pendientes 
similares lo que hace que el código oscile. 
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Desde el punto de vista estructural, una cuestión fundamental es la determinación de las cargas críticas de 
pandeo de las estructuras analizadas. Como se observa en los ejemplos anteriores, estas cargas quedan 
determinadas al ver los puntos límites que aparecen en las trayectorias de equilibrio. A nosotros, nos interesa 
determinar el valor de la primera carga límite y con el código programado esto queda del todo resuelto. Así, 
en los siguientes ejemplos, vamos a determinar estas cargas límite para una serie de estructuras simples. 
Con dichas cargas límites (cargas críticas) podemos determinar la longitud de pandeo de las barras (pilares) 
cuestión esta de la mayor importancia y que no en todos los códigos comerciales se resuelve de forma 
adecuada. 

 

6.5. Pilar simple. 

El quinto problema que resolvemos es el de un pilar metálico de sección variable formado con dos perfiles 
de acero laminado de la serie HEB. 

En el plano de estudio, el pilar se encuentra empotrado en su base y libre en extremo superior. Cuenta con 
2 tramos de igual altura (5+5 m) lo que hace una altura total de 10 m. Para el tramo inferior se dispone una 
HEB 300 y para el superior una HEB-200. Estos pilares cuentan con unas inercias de 25.170 y 5.696 cm4 
respectivamente y unas secciones de 149 y 78,1 cm2 también respectivamente. 

Se trata de determinar la carga vertical compresora que agota al perfil por pandeo. 

           

                    Figura 29: Discretización del pilar en estudio en Mathematica                        Figura 30: Geometría del pilar 

, 

Según Timoshenko & Gere (ref. 13) este problema tiene la siguiente solución analítica. 

𝑇𝑎𝑛 [𝑘1 ∗ 𝑙1] ∗ 𝑇𝑎𝑛 [𝑘2 ∗ 𝑙2] =
𝑘1
𝑘2

     (∗∗) 

con 

𝑙1 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒𝑙 𝑡𝑟𝑎𝑚𝑜 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 = 500 𝑐𝑚 

𝑙2 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒𝑙 𝑡𝑟𝑎𝑚𝑜 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 = 500 𝑐𝑚 

𝑘1 = �
𝑃

𝐸 ∗ 𝐼1
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𝑘2 = �
𝑃

𝐸 ∗ 𝐼1
 

Resolviendo con Excel la ecuación transcendente (**) obtenemos un valor para la carga de pandeo de 
este pilar de 75.62 toneladas. 

 

Figura 31: Solución de la ecuación transcendente 

 

Para comparar este resultado analítico con el resultado dado por SAP, modelamos el problema en SAP, y 
una vez introducida la geometría, material y condiciones de contorno, cargamos el pilar en cabeza con una 
fuerza vertical compresora de 1.000 kg. 

Resolviendo, obtenemos un factor de carga crítico de pandeo de 76,74. La figura 32 muestra este 
resultado. 

 

Figura 32: Carga critica de pandeo (en toneladas), proporcionada por SAP 
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Resolviendo con nuestro código, la carga de pandeo es de 75,59 toneladas, donde el valor crítico 
representa una aproximación puesto que no aparece un punto límite como tal, es decir, con pendiente 
horizontal en la curva. La siguiente figura muestra este resultado. 

 

Figura 33: Gráfica 𝛿𝑥 - 𝜆 según nuestro código. 

Desplazamiento horizontal del punto de aplicación de la carga - Carga aplicada. 

La diferencia con SAP es de tan solo un 1,5%.  

Al tratarse de un pilar de inercia variable, conociendo el valor de la carga crítica de pandeo, la longitud de 
pandeo de cada tramo del pilar se puede determinar aplicando las siguientes formulas. 

𝑙𝑘 = �
𝜋2 ∗ E ∗ I
𝑷𝑐𝑟𝑖𝑡

 

y de ahí 

β =
𝑙𝑘
𝑙

 

En este caso, la longitud de pandeo del tramo superior vale 

𝑙𝑘,   𝐻𝐸𝐵−200 = �
𝜋2 ∗ E ∗ I
𝑷𝑐𝑟𝑖𝑡

= �𝜋
2 ∗ 2100000 ∗ 5696

75590
= 1.249,7 cm 

lo que da un β𝐻𝐸𝐵−200 de 

β𝐻𝐸𝐵−200 =
1.249,7

500
= 2,50 

Para el tramo inferior 

𝑙𝑘,   𝐻𝐸𝐵−300 = �
𝜋2 ∗ E ∗ I
𝑷𝑐𝑟𝑖𝑡

= �𝜋
2 ∗ 2100000 ∗ 25170

75590
= 2.627,1 cm 

lo que da un β𝐻𝐸𝐵−300 de 

β𝐻𝐸𝐵−300 =
2.627,1

500
= 5,25 
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Los valores de las longitudes de pandeo de los dos tramos del pilar no tienen correspondencia con la 
longitud de pandeo global del pilar la cual queda desconocida. Estas longitudes de pandeo de los tramos del 
pilar son resultados auxiliares del cálculo de este que permiten evaluar las esbelteces 𝜆 con las que en la 
práctica, se efectúa la comprobación de la sección de cada tramo. 

𝜆𝐻𝐸𝐵−200 =
𝑙𝑘,   𝐻𝐸𝐵−200

𝑖𝑧𝑧,   𝐻𝐸𝐵−200
=

1.249,7
8,54

= 146,3 

𝜆𝐻𝐸𝐵−300 =
𝑙𝑘,   𝐻𝐸𝐵−300

𝑖𝑧𝑧,   𝐻𝐸𝐵−300
=

2.627,1
12,997

= 202,13 

 

donde 𝑖𝑧𝑧,   𝑝𝑒𝑟𝑓𝑖𝑙 es el radio de giro del perfil en el plano considerado, dato este obtenido de prontuario. 

 

Nota: Aunque la esbeltez y el factor de carga se denotan con la misma letra  𝜆, son cosas distintas. 
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6.6. Pórtico plano. 

El sexto problema que resolvemos es el de un pórtico plano de un vano y una altura obtenido del ejemplo 
que figura en el libro Estructuras de acero (vol. 1) de Argüelles, en el que se obtiene mediante cálculo 
matricial la carga crítica de pandeo de éste. En el libro, la rigidez de la estructura se afecta mediante la matriz 
de rigidez geométrica. 

Según el texto la geometría del pórtico es la siguiente. Tiene su apoyo izquierdo empotrado a la 
cimentación y el derecho se encuentra articulado. Los apoyos no se encuentran al mismo nivel estando el 
apoyo derecho 1 m por debajo del apoyo izquierdo. El poste derecho presenta una altura de 5 m y el dintel 
tiene una longitud de 5 m. Todos los perfiles del pórtico son perfiles metálicos en acero S275JR laminados en 
caliente HEB-200. Estos perfiles cuentan con una sección de 78,1 cm2 y una inercia en su eje fuerte de 5.696 
cm4. El acero tiene un módulo de elasticidad de 2.100.000 kp/cm2. 

El resultado obtenido por Argüelles para el λcrit es 

λcrit = 9,10  

 

 

Figura 34: Geometría del pórtico y cargas. Referencia Argüelles. 

 

Al objeto de establecer una comparativa de resultados, el pórtico lo simulamos también en el programa 
comercial SAP-2000. Respecto del programa SAP, dado que este utiliza únicamente Newton-Raphson con 
control de fuerzas o desplazamientos en la búsqueda del equilibrio, con él, solo podemos determinar la carga 
crítica de pandeo y no podemos ir más allá. No obstante, este dato es el más importante desde el punto de 
vista de la seguridad estructural y será un buen dato para establecer la comparación de resultados. 
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Figura 35: Geometría del modelo en SAP-2000. 

 

El pórtico lo cargamos según la figura 34, con un valor para 𝑷 de 

𝑷 = −20.000 kg 

Tras un análisis plano en SAP, obtenemos que la carga de pandeo del pórtico vale: 

λcrit = 8,89  

Es decir, tendríamos que multiplicar las cargas por 8,89 para que el pórtico colapsase por pandeo. La 
diferencia con el resultado obtenido por Argüelles puede deberse entre otras causas a que SAP emplea para 
su formulación elementos finitos. 

 

 

Figura 36: Carga crítica de pandeo con SAP-2000. 
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Con nuestro código, una vez introducidos el tipo de material, geometría, condiciones de contorno, 
propiedades de las secciones, cargas…, el resultado es el siguiente. 

 

Figura 37: Carga crítica con nuestro código. 

Desplazamiento vertical de la esquina superior izquierda (punto de control) - Carga aplicada. 

 

La figura 37 muestra el valor de 𝜆 frente al desplazamiento vertical del punto superior izquierdo del pórtico. 
Tal y como podemos ver en la figura, el valor obtenido de 𝜆 = 9,03 es algo superior al obtenido con SAP y 
algo inferior al obtenido para este caso por Argüelles. Esto puede deberse al hecho de que SAP divide 
internamente las diferentes barras a la vez que la formulación de los elementos es distinta al ser, como ya 
hemos comentado previamente, con elementos finitos. En la figura 37 podemos ver que la trayectoria de 
equilibrio de la estructura ha de hacerse horizontal con tangente en torno al valor de 𝜆𝑐𝑟𝑖𝑡 = 9,1 que es el valor 
dado por Argüelles. 

Lógicamente en el cálculo de estructuras, una de las limitaciones existentes es la deformación de estas. 
Las estructuras tienen que proveer cierta sensación de bienestar y esto se consigue limitando sus 
deformaciones a valores normativos. En este último caso vemos que para cuando la carga se aproxima a la 
carga de pandeo, la deformación vertical del punto de control (esquina superior izquierda) es de 35 cm lo 
cual, desde el punto de vista estructural es del todo inasumible, advirtiendo además que para esta 
deformación, la falla de la estructura puede llegar con anterioridad como consecuencia del estado tensional 
sobre las diferentes piezas (nuestro análisis es elástico lineal). Así, en este caso y con un nº máximo de 
incrementos de carga de 300, nuestro código no ha encontrado todavía el punto en el que la estructura pierde 
su rigidez y por lo tanto el valor aportado es un valor aproximado que podría mejorarse aumentando el nº 
máximo de incrementos pero que en este caso y por la deformación observada, carece de sentido. 

Con el valor de 𝜆 obtenido, podemos determinar las longitudes de pandeo de los pilares a través de la 
expresión 

𝑷𝑐𝑟𝑖𝑡 = 𝜆𝑐𝑟𝑖𝑡   𝑵 

que junto con 

𝑷𝑐𝑟𝑖𝑡 =
𝜋2 ∗ E ∗ I

𝑙𝑘
2  

podemos deducir el valor de la longitud de pandeo de los pilares 𝑙𝑘. En la ecuación anterior 𝑵 es el axil 
que obra en cada uno de los pilares. 
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𝑙𝑘 = �
𝜋2 ∗ E ∗ I
𝑷𝑐𝑟𝑖𝑡

= �
𝜋2 ∗ E ∗ I
𝜆𝑐𝑟𝑖𝑡   𝑵

        ⇒       𝑙𝑘 = β ∗ 𝑙 

y por tanto 

β =
𝑙𝑘
𝑙

 

En este caso, el β del pilar de la izquierda vale 

βizq  = 1,444 

y para el pilar de la derecha 

βdch  = 1,338 

 

NOTA: estos resultados están obtenidos en base a 𝜆𝑐𝑟𝑖𝑡 = 9,1 , 𝑵𝑖𝑧𝑞 = 24.875 𝑘𝑝  ,  𝑵𝑑𝑐ℎ = 20.126 𝑘𝑝 , 
𝑙𝑖𝑧𝑞 = 500 𝑐𝑚  y  𝑙𝑑𝑐ℎ = 600 𝑐𝑚. 

 

*********************************************************************************************************** 

  



51 
 

7. FUNCIONAMIENTO DEL PROGRAMA. 

El código funciona de la siguiente manera. 

En primer lugar se define el material del que están formadas las barras de la estructura. Para ello se 
emplea la variable me (módulo de elasticidad), la cual es una constante del problema. En este particular al 
tratarse de acero el módulo de elasticidad que empleamos es 

𝑚𝑒 = 2.141.404 kg/cm2 

En segundo lugar definimos la geometría de la estructura a analizar. Para ello introducimos las 
coordenadas de los puntos de la estructura (en el siguiente ejemplo las jácenas de la estructura se modelan 
con un único elemento barra, los pilares inferiores con tres y los superiores con dos). Así, la estructura tiene 
un total de 13 barras (b=13) y 13 nudos (n=13). 

      

             Figura 38: Geometría del pórtico a estudiar.                           Figura 39: Geometría pórtico en Mathematica. 

 

 

Figura 40: Coordenadas (en cm) de los puntos de la estructura. 

 

Los puntos de introducen mediante la definición de las siguientes variables 

𝑥0𝑖      e     𝑦0𝑖            con  𝑖 = 1, 2, 3 … .𝑛 
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Como ejemplo, en este caso tenemos 

𝑥01 = 0     ;      𝑦01 = 0 

𝑥03 = 0     ;      𝑦03 = 266 

 

 

Figura 41: Numeración de los puntos de la estructura. 

 

Para definir los extremos de las b barras, se definen las variables 𝒃𝒂𝒓𝒓𝒂𝑖 como un vector de dos 
componentes cuya primera componente es la numeración del punto inicial de la barra y la segunda 
componente es la numeración del punto final. 

 

Figura 42: Numeración de las barras de la estructura. 

 

𝒃𝒂𝒓𝒓𝒂𝑖 = {a, b}     con  𝑖 = 1, 2, 3 … . 𝑏 

En este ejemplo 

𝒃𝒂𝒓𝒓𝒂1 = {1, 2} 

𝒃𝒂𝒓𝒓𝒂7 = {8, 9} 



53 
 

Se definen las condiciones de contorno mediante la variable 𝑵𝒄. En este caso los puntos unidos a 
cimentación son el 1 y el 10. El punto 1 está empotrado y el 10 está articulado. 

Al tratarse de un estudio plano, cada punto (nodo) tiene tres posibles componentes de desplazamiento que 
son 𝛿𝑥, 𝛿𝑦 y el giro 𝜃. Para este ejemplo en el que tenemos 13 puntos, esto hace un total de 39 componentes 
de desplazamiento. 

El grado de indeterminación cinemática de la estructura son precisamente esas 39 componentes menos 
las componentes de desplazamiento impedidas. En este ejemplo, las componentes de desplazamiento 
impedidas son los movimientos 𝛿𝑥, 𝛿𝑦 y el giro 𝜃 del punto 1  y los movimientos 𝛿𝑥, 𝛿𝑦 del punto 10. 

La variable 𝑵𝒄 se define como un vector de dimensión igual al nº de grados de libertad coartados en la 
estructura y que nos permite conocer las restricciones de la misma. En este ejemplo en particular esta 
variable es un vector de 5 componentes y resulta ser 

𝑵𝒄 = {1, 2, 3, 28, 29} 

El vector 𝑵𝒄 así definido nos indica sin posibilidad de error las ligaduras de la estructura. 

Por otro lado, la variable 𝑫𝑵𝒄 se define como un vector de dimensión igual al grado de indeterminación 
cinemática de la estructura y nos indica los grados de libertad en la misma. En este ejemplo, este vector tiene 
16 componentes y resulta ser 

𝑫𝑵𝒄 = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37,38, 39} 

 

A continuación se definen las propiedades de sección e inercia de cada barra, asignando valores 
numéricos (****) a las variables siguientes 𝛺𝑖 y 𝑚𝑖 respectivamente. En nuestro ejemplo: 

𝛺𝑖 = 149 cm2           i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 

𝛺11 = 𝛺12 = 198 cm2 

𝑚i = 25670 cm4           i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 

𝑚11 = 𝑚12 = 57680 cm4 

 

Para la introducción de cargas se define un vector de cargas básicas 𝑷𝒂 de tantas componentes como 
grados de libertad tiene la estructura. Por cada punto no coaccionado tenemos tres posibles componentes de 
fuerza que son Fx, Fy y M. Así, el vector de cargas tiene la dimensión del vector 𝑫𝑵𝒄. 
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Figura 43: Estado de cargas básicas (Pa) sobre la estructura. 

 

Con las cargas apuntadas en la figura 43, 𝑷𝒂 toma la forma siguiente: 

𝑷𝒂 = {0, 0, 0, 0, 0, 0, 0.01,−1, 0, 0, 0, 0, 0.01,−1, 0, 0,−1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0 } 

 

Notemos que las cargas básicas están referidas a los ejes globales. El nº en rojo del vector 𝑷𝒂, es el 
momento externo aplicado en el punto 10, que es nulo. 

Con los datos introducidos, se resuelve linealmente la estructura obteniendo un vector de desplazamientos 
𝑼 que en nuestro caso toma el valor que se indica la tabla de resultados siguiente. Este vector de 
desplazamientos o movimientos de los puntos de la estructura, también está referido a los ejes globales. Para 
ello se ha tenido que montar la matriz de rigidez global de la estructura 𝑲 y resolver el sistema de ecuaciones 

𝑲 𝑼 = 𝑷𝒂 
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Tabla 1. 

 

Según vemos en el resultado, para este estado básico de carga, el movimiento horizontal del punto 6 
(punto de control) vale 0,0000555412 cm. 

Para resolver el problema no lineal, se definen una serie de parámetros los cuales van a gobernar el 
análisis. Estos parámetros son los siguientes: 

• Exponente (𝛾) para la actualización de la longitud del arco (Ec53) 

𝛾 = 0,5 

• Nº de iteraciones deseadas (𝜃𝑑𝑒𝑠) en cada salto de carga, para la actualización de la 
longitud del arco (Ec53) 

𝜃𝑑𝑒𝑠 = 5  

• Valor inicial del parámetro de carga (𝜆), para el cálculo del vector de carga inicial 

𝜆 = 100  

• Valor de la variable (𝑡𝑜𝑙), la cual indica cuando se alcanza la convergencia 
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𝑡𝑜𝑙 = 0,001  

• Valor de la variable (𝑖𝑡𝑒𝑟𝑎1), la cual indica el nº máximo de iteraciones permitido dentro 
de un salto de carga 

𝑖𝑡𝑒𝑟𝑎1 = 40  

• Valor de la variable (𝜙𝑚𝑎𝑥), la cual indica el nº máximo de saltos de carga que van a 
realizarse en el análisis. 

𝜙𝑚𝑎𝑥 = 120  

• Se define la variable (𝐶𝑜𝑛𝑡𝑟𝑜𝑙). Con esta variable se indica el punto de la estructura 
sobre el que se quiere hacer el seguimiento de uno de sus grados de libertad. En este 
caso la trayectoria de equilibrio que queremos seguir es la del desplazamiento horizontal 
del punto 6 de la estructura. Así: 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 6  

• Se define la variable (Δ𝑼𝜙). Esta variable es un vector nulo de tantas componentes 
como grados de libertad tiene la estructura (34) y representa el desplazamiento 
acumulado al inicio del primer salto de carga. Este vector se va actualizando durante el 
proceso iterativo dentro de cada salto de carga. 

                                   Δ𝑼𝜙 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}  

• Se define la variable (cont2). Es simplemente un contador que nos marca el nº de 
iteraciones que llevamos dentro de un salto de carga. Inicialmente, al principio de cada 
salto de carga  

𝑐𝑜𝑛𝑡2 = 0  

 

Asignados los valores numéricos a los parámetros o variables anteriores, se procede a calcular en primer 
lugar la carga inicial que actúa sobre la estructura. Esto se hace definiendo el vector 𝑷𝑷𝒂𝒂 que se calcula 
como 

𝑷𝑷𝒂𝒂 = λ ∗ 𝑷𝒂 

El parámetro de carga  λ, va variando a medida que avanza el análisis. 

En segundo lugar, se calcula de forma lineal el vector de desplazamientos de la estructura para ese 
estado inicial de carga. Se calcula la primera predicción para el vector de desplazamientos dentro del primer 
salto de carga 

Δ𝑼10 = 𝜆 ∗ 𝑼 

A continuación, el programa evalúa la longitud inicial de arco haciendo uso de la ecuación Ec48 

Δ𝑙 = 𝜆 ∗ �(Δ𝑼10)T Δ𝑼10 

Se define la variable Trayectoria. Esta variable nos va a permitir acumular los puntos (𝛿𝑥, 𝜆) en el equilibrio 
al final de cada salto de carga y así poder luego trazar la gráfica del camino de equilibrio. Inicialmente y en 
este caso particular definimos esta variable como 

𝑇𝑟𝑎𝑦𝑒𝑐𝑡𝑜𝑟𝑖𝑎 = {{0, 0}} 
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que representa el punto inicial de la trayectoria que deseamos obtener. Inicialmente para 𝜆 = 0 (con la 
estructura descargada), el desplazamiento horizontal del punto 6 es nulo (𝛿𝑥 = 0). 

 

Conocido el vector de desplazamientos dado por la predicción Δ𝑼1
0, para iniciar el análisis no lineal se 

procede a recalcular la geometría de la estructura a través de la definición de las variables siguientes  

𝑥𝑖  = 𝑥0𝑖 +  𝛿𝑥𝑖           𝑖 = 1, 2, … , 𝑛 

e 

𝑦𝑖  = 𝑦0𝑖 +  𝛿𝑦𝑖           𝑖 = 1, 2, … , 𝑛 

Con esta nueva geometría, se evalúan las nuevas longitudes (𝐿𝑗) de las barras y los nuevos ángulos (𝛽𝑗) 
que cada una de las barras forma con el eje x global. 

𝐿𝑗  = �(𝑦𝑏 − 𝑦𝑎)
𝑗
2 +  (𝑥𝑏 − 𝑥𝑎)𝑗

2           𝑗 = 1, 2, … , 𝑏 

y 

𝛽𝑗  = 𝐴𝑟𝑐𝑡𝑎𝑔 
(𝑦𝑏 − 𝑦𝑎)

𝑗

(𝑥𝑏 − 𝑥𝑎)𝑗
           𝑗 = 1, 2, … , 𝑏 

 

Calculadas las nuevas longitudes y ángulos, pasamos a calcular con la Ec78 las matrices 𝑩𝑗 de cada una 
de las barras.  

De este modo, a partir de la ecuación Ec76, se puede evaluar para cada una de las barras el vector de 
movimientos 

δ𝒑�𝑗 = �
δu�
δ𝜗̅1
δ𝜗̅2

�

𝑗

= 𝑩𝑗  δ𝑼𝑗 

donde  

δ𝑼𝑗 = {𝛿𝑥𝑗𝑎  , 𝛿𝑦𝑗𝑎  ,𝜃𝑗𝑎 , 𝛿𝑥𝑗𝑏 , 𝛿𝑦𝑗𝑏  ,𝜃𝑗𝑏} 

con a y b la numeración de los nudos extremos de la barra. 

Con el vector de movimientos de cada barra y a través de la ecuación Ec84, calculamos para cada barra el 
vector de fuerzas internas 𝑸�𝑗. 

 𝑸�𝑗 = �
N

M1
M2

�
𝑗

= 𝑪 𝒑�𝑗 

Estas fuerzas internas están referidas a los ejes locales de la barra. Haciendo uso de la ecuación Ec82, 
obtenemos los vectores de fuerzas internas (𝑸) de cada una de las barras pero, referidas estas a las 
coordenadas globales. 

𝑸𝑗 = �
N∗

M1
∗

M2
∗
�
𝑗

= 𝑩𝑗𝑇 𝑸�𝑗 

Conocidos estos vectores, sumando adecuadamente las componentes de todas las barras que concurren 
en un nudo, podemos montar el vector de fuerzas internas de toda la estructura 𝑽𝑭𝒏𝒐𝒅, vector que tendrá la 
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misma dimensión que el vector de fuerzas externas y lo que nos permite definir el vector de fuerzas 
residuales (𝑽𝑹𝒆𝒔) como sigue. 

𝑽𝑹𝒆𝒔 = 𝑷𝑷𝒂𝒂 − 𝑽𝑭𝒏𝒐𝒅 

Una vez calculado el vector residuo, se determina la norma euclídea de este definiendo la variable residuo 
(𝑅𝑒𝑠).  

𝑅𝑒𝑠 = ‖𝑷𝑷𝒂𝒂 − 𝑽𝑭𝒏𝒐𝒅‖ 

Si la variable 𝑅𝑒𝑠 es menor que la variable 𝑡𝑜𝑙 entonces se sale del salto de carga (inicialmente el 1) y se 
procede a evaluar una nueva longitud de arco y un nuevo valor para el parámetro de carga 𝜆. 

Lo normal es que en la primera iteración de un salto de carga (etapa de predicción), el residuo sea mayor 
que la tolerancia y tengamos que iterar hasta encontrar “el equilibrio”. En tal caso, conocido el valor del 
residuo (𝑅𝑒𝑠) y si este es mayor que la tolerancia (𝑡𝑜𝑙) se procede a calcular mediante la ecuación Ec97 las 
matrices de rigidez tangente de cada una de las b barras. Calculadas estas, se ensamblan y se construye la 
matriz de rigidez tangente de toda la estructura (Ec98). 

Como no existe todavía equilibrio entre fuerzas internas y externas tenemos que encontrar un nuevo valor 
del vector de desplazamientos lo que modifica a su vez el vector de fuerzas internas dado que este depende 
del estado de desplazamientos de la estructura que es lo que hace que el problema sea no lineal. 

Para encontrar el nuevo desplazamiento de la estructura se calcula la inversa de la matriz de rigidez 
tangente (𝒊𝒏𝒗𝒌𝒕) y se calculan los siguientes vectores de acuerdo a lo apuntado en las ecuaciones Ec38 a 
Ec46. 

En primer lugar, de la ecuación Ec40 se determina el vector 𝑼1 como 

𝑼1 = 𝒊𝒏𝒗𝒌𝒕  𝑽𝑹𝒆𝒔 

y el vector 𝑼2 como 

𝑼2 = 𝒊𝒏𝒗𝒌𝒕  𝑷𝒂 

que como vemos representa el desplazamiento producido en la estructura por las fuerzas básicas 𝑷𝒂. 

Por otro lado se calculan los coeficientes a1, a2 y a3 del desarrollo de la ecuación Ec45 

𝑎1 =  𝑼2 .𝑼2 

𝑎2 = 2 ∗  (Δ𝑼𝜙 + 𝑼1) .𝑼2 

𝑎3 = (Δ𝑼𝜙 + 𝑼1) . (Δ𝑼𝜙 + 𝑼1) − Δ𝑠2 

donde Δ𝑼𝜙 representa el desplazamiento acumulado dentro del caso de carga 𝜙. 

Conocidos los valores de a1, a2 y a3, se resuelve la ecuación 

a1(δ𝜆)2 + a2 δ𝜆 +  a3 = 0 

y mediante las ecuaciones Ec46, se decide el valor que se toma del incremento de 𝜆. 

Con esto, se actualizan las variables del problema 

λ = 𝜆 + δ𝜆 

𝑷𝑷𝒂𝒂 = 𝜆 ∗ 𝑷𝒂 

y 

Δ𝑼 = 𝑼1 + δ𝜆 ∗  𝑼2 



59 
 

con lo que el desplazamiento acumulado en el salto de carga pasa a ser 

Δ𝑼𝜙 = Δ𝑼𝜙 + Δ𝑼 

y el desplazamiento total 

𝑼 = 𝑼 + Δ𝑼 

Con este desplazamiento, se procede como antes. Se actualiza nuevamente la geometría de la estructura, 
se calculan el nuevo ángulo que forman cada una de las barras con el eje x global, se evalúan para este 
estado de desplazamiento el vector de fuerzas internas, se obtiene el nuevo valor de la variable residuo 
(Res), y en el caso de que  

𝑅𝑒𝑠 < 𝑡𝑜𝑙       𝑜 𝑏𝑖𝑒𝑛      𝑐𝑜𝑛𝑡2 ≥ 𝑖𝑡𝑒𝑟𝑎1     

nos salimos del salto de carga actual y pasamos a actualizar el valor de las variables. Antes de hacer esto 
el código almacena en la variable trayectoria el par (𝑥𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝜆/1000). 

𝑇𝑟𝑎𝑦𝑒𝑐𝑡𝑜𝑟𝑖𝑎 = {{0, 0}, {𝑥𝐶𝑜𝑛𝑡𝑟𝑜𝑙 , 𝜆/1000}} 

En el primer caso (𝑅𝑒𝑠 < 𝑡𝑜𝑙), salimos del salto de cargas porque hemos llegado a la convergencia. En el 
segundo caso salimos porque han tenido lugar más iteraciones de las marcadas por la variable 𝑖𝑡𝑒𝑟𝑎1. Esto 
hay que controlarlo a la hora de ver la solución puesto que este hecho indica que no se ha alcanzado la 
convergencia y por lo tanto los puntos obtenidos para la gráfica de la trayectoria no son válidos. 

Si ha convergido adecuadamente (con 𝑐𝑜𝑛𝑡2 < 𝑖𝑡𝑒𝑟𝑎1), como ya se ha dicho, salimos del salto de carga 
actual y pasamos a evaluar el nuevo valor para las variables que en este caso es el nuevo valor de la longitud 
de arco y el nuevo valor del parámetro de carga. De acuerdo al artículo de Kotronis y Collin, el nuevo valor de 
la longitud del arco se evalúa mediante la ecuación Ec53 

Δ𝑠𝜙 = Δ𝑠𝜙−1 ( 
𝜃𝑑𝑒𝑠
𝜃𝑖−1

 )𝜸 

con 𝜙 igual al salto de carga. 

Calculado el nuevo valor de la longitud de arco, se calcula el vector de desplazamientos producido por las 
fuerzas externas básicas atendiendo a la rigidez actual de la estructura como 

𝜹1 = 𝒊𝒏𝒗𝒌𝒕  𝑷𝒂 

El valor del incremento del parámetro de carga se determina entonces como  

𝛥𝜆 = 𝑚 ∗  
𝛥𝑠

√𝜹1 .  𝜹1 
 

Donde 𝑚 se toma 1 si el determinante de la matriz de rigidez tangente es positivo y -1 en el caso de que 
este determinante sea negativo. 

Calculados estos valores se actualiza el valor de la variable λ 

λ = 𝜆 ∗  𝛥𝜆 

y se calcula el valor del incremento de desplazamientos de la siguiente manera  

Δ𝑼𝜙 = 𝛥𝜆 ∗  𝜹1 

El nuevo vector de cargas pasa a ser  

𝑷𝑷𝒂𝒂 = 𝜆 ∗  𝑷𝒂 

y el nuevo desplazamiento  
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𝑼 = 𝑼 + Δ𝑼𝜙 

Como en principio, el vector de fuerzas internas que resulta como consecuencia del nuevo vector de 
desplazamientos no coincide con el vector de fuerzas externas, esta situación no es de equilibrio y hay que 
volver a repetir el proceso iterativo apuntado anteriormente tantas veces como indique la variable 𝜙𝑚𝑎𝑥. 

 

Figura 44: Gráfica 𝛿𝑥6 −  𝜆. Desplazamiento horizontal del punto 6 (cm) – Factor de carga (en ton). 

 
 

 
Figura 45: “Deformada de la estructura”. 

 

En este caso, con los parámetros indicados para el ejemplo se obtiene un l de 648.550. 

Por el desplazamiento horizontal observado para el punto 6 (179,2 cm), la estructura no cumple ni a 
deformación ni a tensión mucho antes de que el estado de cargas indicado haga que esta pandee. Durante la 
ejecución del código, la matriz de rigidez tangente no ha dejado de ser en ningún momento definida positiva. 

En la figura 45, se pone deformada de la estructura entre comillas puesto que al representar algunas de 
las barras de la estructura mediante un único elemento barra, los únicos puntos de la deformada 
representados correctamente son los nudos extremos. Para representar adecuadamente las líneas elásticas 
de las barras o lo que es lo mismo, la deformada de la estructura, se hace necesario dividir las barras de esta 
como mínimo en cuatro o cinco elementos. Esto haría que los vectores a introducir (Pa, Nc, ...) fuesen muy 
grandes, lo que dificultaría la introducción de los datos y habría que andar con mucho más cuidado. 
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Este ejemplo lo hemos simulado en SAP obteniendo el siguiente resultado para la carga crítica y para la 
deformada del primer modo de pandeo. 

                

 

 

Esta diferencia, de un 7,2%, podría reducirse si dividiésemos las barras en nuestro código, llevando a 
cabo una discritización más tupida del modelo. 
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