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R E S U M E N

Paralelización del algoritmo de búsqueda de un reconocedor
automático de voz

Durante años, la velocidad de los procesadores ha aumentado de-
bido al aumento de transistores en los circuitos integrados. Estas me-
joras en la eficiencia no requerían cambios en el software: el mismo
programa era más rápido en un ordenador con una frecuencia de
reloj más alta. Sin embargo, la posibilidad de seguir mejorando la ca-
pacidad de los sistemas actuales puede ser acelerada a un ritmo mu-
cho mayor si se consigue paralelizar el problema y tratarlo mediante
arquitecturas de hardware paralelo disponibles, como procesadores
multinúcleo, clústers o GPUs (Graphics Processing Units).

El proyecto plantea el estudio de la viabilidad de un reconocedor
de voz con funciones en paralelo mediante el desarrollo de un pro-
totipo. Los objetivos principales son la paralelización de la búsqueda
de la secuencia de estados (sonidos) más probable y el cálculo de las
verosimilitudes de los datos de entrada (observaciones), explorando
las posibilidades que este paralelismo ofrece y viendo el rendimien-
to que con él puede llegarse a obtener. El desarrollo se lleva a cabo
en el lenguaje de programación C, mientras que las funciones para-
lelizadas se implementan en GPUs utilizando CUDA, un modelo de
programación adaptado a esta arquitectura, y su extensión para C.

En cada instante del proceso de reconocimiento hay un número
determinado de tokens activos con una probabilidad y una secuencia
de estados asociadas y que representan las hipótesis más probables
hasta el momento. Cuando hay nuevos datos de entrada, estos to-
kens se propagan hacia los siguientes estados, cambiando su peso
dependiendo de las probabilidades de transición entre estados y de
las probabilidades de observación (cómo los datos se ajustan al so-
nido correspondiente a cada estado). Los tokens que acaban en el
mismo estado que otro con mayor peso y los que no superan cierta
probabilidad son desechados. El proceso acaba mostrando la secuen-
cia asociada al token de mayor peso en el instante final. Hay partes
de este proceso que son expresables como productos matriciales o
vectoriales y que por tanto son fácilmente paralelizables.

Cada estado lleva asociada una mezcla de Gaussianas de las mis-
mas dimensiones que las de los datos de entrada. La parte más costo-
sa del cálculo de las probabilidades de observación es una distancia
entre vectores de muchas dimensiones. Desarrollándola como un po-
linomio de segundo grado y apilando los coeficientes de todos los
polinomios en una matriz podemos convertir este cálculo en un pro-
ducto matricial, susceptible también de ser paralelizado.
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1
I N T R O D U C C I Ó N

1.1 antecedentes y motivación

La interacción entre personas y máquinas es más frecuente y di-
versa a medida que avanza la tecnología. Hoy podemos pedirle a un
dispositivo que nos indique la ruta hacia nuestro destino o que re-
conozca una canción por nosotros. Dado que el habla es, en muchas
situaciones, la forma de interacción más natural para el ser humano,
es lógico que haya un interés especial en el desarrollo de sistemas
capaces de reconocer y entender la voz humana.

El Reconocimiento Automático del Habla (RAH) es el proceso de
clasificación de secuencias de patrones extraídas de una señal de au-
dio que contiene voz humana, de forma que el mensaje contenido en
ella es reconocido. Entre sus aplicaciones pueden encontrarse siste-
mas de dictado de palabras o documentos, traducción entre lenguajes,
sistemas de control por voz o subtitulado automático de documentos
audiovisuales.

Aunque la investigación en este campo comenzó hace décadas, y
pese a los avances conseguidos en los últimos años, todavía son nece-
sarias mejoras en la robustez y la velocidad de los sistemas de recono-
cimiento para poder hablar de un reconocedor de altas prestaciones,
especialmente si se consideran aplicaciones de tiempo real. El pro-
yecto plantea la programación de funciones en paralelo como medio
para acelerar el software de reconocimiento del habla.

Hasta hace algunos años la velocidad de los procesadores aumen-
taba principalmente debido al aumento del número de transistores en
los circuitos integrados (aproximadamente el doble cada dos años), si-
guiendo la ley de Moore. De esta forma, el mismo programa era más
rápido en un ordenador de prestaciones más altas sin requerir cam-
bios en el software. Sin embargo, aunque el número de transistores
continúa aumentando, la velocidad de reloj ha dejado de seguir esa
tendencia, y recientemente han aparecido nuevas arquitecturas y mo-
delos de programación que permiten aumentar la velocidad de los
sistemas de una forma alternativa y, en ocasiones, a un ritmo mucho
mayor.

La programación en paralelo, y en particular la programación de
GPUs (Graphic Processing Units), es un modelo que ha ganado po-
pularidad en los últimos años. Dado que la mayoría de operaciones
realizadas sobre un píxel en una imagen no dependen del resultado
de dicha operación en otros píxeles, las tarjetas gráficas se compo-
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2 introducción

nen de varios procesadores (más simples que una CPU) capaces de
realizar la misma tarea en paralelo, de forma que varios píxeles son
tratados a la vez. Esta idea se ha aprovechado en aplicaciones tradicio-
nalmente ejecutadas por CPUs consiguiendo mejoras en los tiempos
de ejecución. En particular, aquellas funciones expresables como su-
mas o productos matriciales dan buenos resultados al programarse en
paralelo. Actualmente el framework que predomina en la programa-
ción de GPUs es CUDA, perteneciente a nVidia1„ el cual proporciona
una serie de herramientas de desarrollo para acceder a los sets de
instrucciones de sus tarjetas gráficas.

1.2 descripción y objetivos del proyecto

Como se mencionaba en el apartado anterior, el objetivo funda-
mental del proyecto es el estudio de la viabilidad de un reconocedor
de voz con los distintos pasos del proceso de reconocimiento imple-
mentados como funciones en paralelo programadas en CUDA, ob-
servando las mejoras en los tiempos de ejecución que con éstas se
pueden conseguir. Para ello, es necesario crear un prototipo progra-
mado en lenguaje C, capaz de reconocer secuencias de palabras a
partir de ejemplos y modelos estadísticos del laboratorio de Tecnolo-
gías del Habla2 del Grupo de Tecnologías de las Comunicaciones de
la Universidad de Zaragoza.

El primer objetivo del proyecto es, por tanto, expresar el algoritmo
de reconocimiento (tradicionalmente implementado como una serie
de bucles anidados) como una sucesión de operaciones matriciales y
vectoriales, para así facilitar el desarrollo posterior de funciones en
paralelo. Las estructuras de datos resultantes son matrices y vectores
de gran tamaño pero con solamente unos pocos elementos distintos
de cero, por lo que es necesario trabajar con estructuras de tipo spar-
se, las cuales guardan únicamente los índices y los valores de los
elementos activos en un vector o en una matriz. Existen librerías que
permiten trabajar con este tipo de estructuras en CUDA y realizar
operaciones matriciales simples como sumas o multiplicaciones. Las
funciones disponibles en esta librería son a priori más rápidas que
cualquier versión "hecha a mano"de las mismas, aunque son funcio-
nes muy generales y optimizadas para la resolución de sistemas de
ecuaciones. Por otra parte, no permiten trabajar en escala logarítmica,
lo cual es un problema, ya que en el reconocimiento de voz los cálcu-
los en escala lineal pueden salirse fácilmente de rango. El siguiente
objetivo es, por tanto, la comparación de una solución basada en li-
brerías con otra basada en funciones y estructuras hechas a medida
para el problema.

1 http://www.nvidia.com/object/cuda_home_new.html

2 http://vivolab.es/

http://www.nvidia.com/object/cuda_home_new.html
http://vivolab.es/
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Para facilitar el proceso de depurado también es conveniente te-
ner una versión en Matlab del prototipo (sin funciones en paralelo,
aunque con su equivalente matricial), ya que es más sencillo de pro-
gramar aunque mucho menos eficiente. Asimismo, hace falta un pro-
grama, que también se implementa en Matlab, que lea los datos (los
modelos acústicos y de lenguaje y las distintas secuencias de patro-
nes) en el formato que utiliza HTK [6], un software de manejo de
modelos de Markov utilizado habitualmente en RAH, y las transfor-
me al formato adecuado para la versión en C del reconocedor.

Entre las funciones programadas en paralelo se distinguen dos
partes: el algoritmo de Viterbi y el cálculo de las probabilidades de
observación. En el proceso de reconocimiento (explicado con detalle
en el capítulo 2), la producción del habla se modela mediante Mo-
delos Ocultos de Markov (HMM), y la búsqueda de la secuencia de
palabras que mejor explica los datos observados se realiza median-
te el algoritmo de Viterbi, aunque debido al tamaño de la red de
estados (o sonidos posibles) que se maneja en un caso normal de re-
conocimiento es necesario incluir en él ciertas modificaciones. Hay
pasos en este algoritmo claramente paralelizables, como la propaga-
ción de un estado hacia sus posibles estados destino. Otros, como la
búsqueda de la hipótesis más probable entre las que consideramos en
un momento dado, tienen una componente secuencial que dificulta
su paralelización. Sin embargo, ya que la transferencia de datos en-
tre CPU y GPU es costosa en tiempo, todos los pasos del algoritmo
se intentarán programar con funciones en paralelo para mantener el
tiempo dedicado a transferir datos en el mínimo necesario.

La paralelización del cálculo de las probabilidades de observación
es uno de los últimos objetivos que se incluyeron en el proyecto. Este
cálculo se realiza en cada iteración de la fase de búsqueda del algorit-
mo de Viterbi, pero inicialmente se consideró calcularlo en CPU. Sin
embargo, la carga computacional de esta operación hace que las mejo-
ras en su eficiencia tengan un impacto importante en el rendimiento
total del programa. La tarea de esta función consiste en el cálculo de
la probabilidad de que unos datos de entrada correspondan a cada
uno de los estados que consideramos posibles en un determinado
momento. La parte más costosa de este cálculo es la distancia entre
dos vectores de muchas dimensiones, la cual puede desarrollarse co-
mo un polinomio de segundo grado. Escribiendo los coeficientes de
forma matricial, el cálculo puede realizarse como un producto, que
como ya se ha mencionado es fácilmente paralelizable.

1.3 organización de la memoria

Aparte del presente capítulo, que sirve como introducción y resu-
men del proyecto, la memoria se organiza en las siguientes secciones:
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En el Capítulo 2 se desarrollan los fundamentos teóricos de los
sistemas de RAH como los HMMs, o la búsqueda de Viterbi.

El Capítulo 3 explica los detalles de la implementación del pro-
totipo de reconocedor basado en funciones en paralelo.

En el Capítulo 4 se presentan y analizan los resultados del traba-
jo desarrollado, se muestran los distintos tiempos de ejecución
del programa y se comparan con los de otros reconocedores.

El Capítulo 5, finalmente, presenta las conclusiones del proyec-
to, repasa los objetivos iniciales de éste y su desarrollo y ofrece
una serie de líneas de trabajo futuras.

En el Apéndice A puede encontrarse una breve introducción a
la programación en paralelo basada en GPUs, con un ejemplo
de función escrita en CUDA C.

En el Apéndice B se desarrolla el cálculo de las probabilidades
de observación como un producto matricial.

El Apéndice C explica detalladamente el algoritmo de reconoci-
miento basado en matrices implementado durante el proyecto.

En el Apéndice D aparecen detalladas las distintas estructuras
de datos creadas para el desarrollo del prototipo.



2
E L P R O C E S O D E R E C O N O C I M I E N T O

2.1 fundamento teórico

Un Reconocedor Automático del Habla (RAH) es un sistema que
intenta extraer la secuencia de palabras emitida por un locutor a par-
tir de una señal acústica. Como paso previo a la implementación de
un RAH, es necesario conocer los principios teóricos en los que se
basa y decidir el enfoque de diseño que se va a adoptar.

Los sistemas de RAH pueden clasificarse según distintos criterios
(adaptación al locutor, tamaño del vocabulario, objetivo del reconoci-
miento...) y existen varios enfoques a la hora de abordar el algoritmo
de reconocimiento. Los métodos probabilísticos basados en el Teore-
ma de Bayes son los que predominan hoy en día en el reconocimiento
del habla [3].

El proceso de reconocimiento comienza con la captación de una
señal de voz a través de un micrófono. Esta señal se procesa de for-
ma que periódicamente se obtiene un vector de características ot ∈
RD, t ∈ [1, T ], siendo D el número de dimensiones del vector y T el
número de observaciones. Mediante este proceso, conocido como ex-
tracción de características, se obtiene el conjunto de observaciones O
que conforman los datos de entrada al sistema.

O = {o1, . . . , ot, . . . , oT } (1)

Tras el proceso de reconocimiento, la salida del sistema es una se-
cuencia de N palabras.

W = {w1, . . . , wk, . . . , wK} (2)

El objetivo del sistema es conseguir la secuencia de palabras que
mejor se ajusta a los datos de entrada, lo cual se expresa desde un
punto de vista probabilístico como:

Ŵ = argmax
W

P(W|O) (3)

La probabilidad P(W|O) no puede calcularse directamente. Hacien-
do uso del Teorema de Bayes, (3) puede reformularse como:

Ŵ = argmax
W

P(O|W)P(W)

P(O)
(4)

P(W) es la probabilidad de que la secuencia de palabras ocurra, la
cual se obtiene a partir del modelo de lenguaje. P(O|W) es la probabi-
lidad de que la secuencia de observaciones O se corresponda con la

5



6 el proceso de reconocimiento

secuencia de palabras pronunciadas W, y viene dada por el modelo
acústico. El término en el denominador, P(O), no afecta a la maximi-
zación, por lo que puede eliminarse de (4), obteniéndose la fórmula
fundamental del reconocimiento automático del habla:

Ŵ = argmax
W

{P(O|W)P(W)} (5)

La Figura 1 representa los pasos del proceso de reconocimiento:

Figura 1: Esquema básico de un RAH

2.2 modelos ocultos de markov

La forma más habitual de modelar la producción del habla es me-
diante modelos ocultos de Markov o HMMs (Hidden Markov Mo-
dels) [5]. Para comprenderlos fácilmente, es mejor comenzar viendo
las cadenas de Markov.

Sean un conjunto de estados S = {s1, s2, . . . , sN} con ciertas pro-
babilidades de transición A = {aij} entre ellos, los cuales producen
unos determinados resultados observables X = {x1, . . . , xN}, y una se-
cuencia de variables aleatorias u observaciones O = {o1, . . . , oT } que
pueden tomar alguno de los valores en X. La secuencia forma una
cadena de Markov de orden 1 si cumple la Propiedad de Markov, es-
to es, si dado el estado actual, los estados pasados y los futuros son
independientes.

P(St+1 = s ′ |S1 = s1, . . . ,St = s) = P(St+1 = s ′ |St = s) (6)

Una cadena de Markov de orden m sería aquella en la que la pro-
babilidad de ocurrencia de un estado depende de los m estados pasa-
dos, pero a partir de ahora se tomarán en consideración únicamente
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modelos de orden 1. La Figura 2 representa una cadena de Markov
con N = 5, probabilidad 1 de comenzar en el estado s1 y distintas
probabilidades de transición.

Figura 2: Ejemplo de cadena de Markov

Para tal cadena de Markov, la probabilidad de observar la secuencia
O = {1; 1; 2; 3; 3} sería de:

P(O) = π1 a1,1 a1,2 a2,3 a3,3 = 6.825× 10−2 (7)

A diferencia de las cadenas de Markov, donde observando los es-
tados puede determinarse la verosimilitud de una secuencia, los esta-
dos de un HMM no son directamente observables sino que producen
unos resultados observables u otros con una cierta probabilidad. De
esta forma, la secuencia observada no se corresponde directamente
con una secuencia de estados, sino que lo hace con una cierta proba-
bilidad.

Un HMM se define como λ = {A,B,Π}, y tiene los siguientes pará-
metros:

S = {s1, . . . , sN}: el conjunto de estados del modelo, siendo N el
número de estados que lo forman.

B = {b1, . . . ,bN}: las probabilidades de distribución asociadas a El Apéndice B
detalla este cálculo y
muestra su
desarrollo como
producto matricial.

cada uno de los estados. En el caso que aquí se trata la distribu-
ción de cada estado se modela como una mezcla de Gaussianas
o GMM (Gaussian Mixture Model), cuya función de densidad de
probabilidad (pdf, Probability Density Function) se define como
la suma de un grupo de Gaussianas ponderadas por unos pe-
sos. La verosimilitud de un vector de características ot para un
estado sj es:

bj(ot) =

C∑
c=1

wj,cN(ot;µj,c,Σj,c) (8)

C es el número de Gaussianas en la mezcla, wj,c es el peso de
la Gaussiana c, y µj,c y Σj,c, su media y covarianza, respectiva-
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mente. En este proyecto, como ocurre habitualmente en RAH,
se utilizan matrices de covarianza diagonales.

A = {ai,j}: probabilidades de transición entre cada pareja de
estados, con 1 6 i 6 N y 1 6 j 6 N, de forma que, en un
instante t, ai,j = P(St = si|St−1 = sj).

Π = {πi}: las probabilidades iniciales, con πi = P(S1 = si).

El ejemplo de la Figura 2 se convierte en un HMM si cada estado
sn lleva asociada una distribución Gaussiana de media n y varianza
0.5 (ver Figuras 3 y 4).

Figura 3: Probabilidades de distribución de los distintos estados

Figura 4: Probabilidades de observación de los distintos estados

En este caso la probabilidad de que una secuencia de entrada O
haya sido producida por la secuencia de estados S se calcula de la
siguiente manera:

P(O |S)P(S) = π1 b1(o1)

5∏
i=2

aj(i−1),j(i) bj(i)(oi) (9)

El algoritmo de reconocimiento busca la secuencia que maximiza
esta probabilidad, lo cual es equivalente a resolver la ecuación (5). En
el siguiente apartado se explica cómo llegar a esta solución.

En los sistemas de RAH el modelo de lenguaje es una cadena de
Markov donde cada estado es una palabra, definiendo así las relacio-
nes entre éstas y la probabilidad de las posibles secuencias. El mo-
delo acústico es un HMM donde cada estado representa una unidad
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de sonido, en este caso el fonema con contexto. Cada fonema se mo-
dela como tres estados, incluyendo así información sobre el fonema
(o silencio) que lo precede y el que lo sigue dentro de una palabra.
Los parámetros estadísticos de las redes utilizadas en RAH se calcu-
lan generalmente mediante una estimación de máxima verosimilitud
(ML, Maximum Likelihood) usando el algoritmo iterativo EM (Expecta-
tion Maximization) [1] a partir de una base de datos con ejemplos de
cada tipo de sonido.

0 1
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�
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Figura 5: Ejemplo de red de palabras y de fonemas [2]

La Figura 5 muestra un ejemplo de una red de palabras y otro de
una de fonemas. La red final que el algoritmo de reconocimiento reco-
rre puede verse como una red por capas, producto de la composición
de las redes de sendos modelos. De esta forma, dos estados de la capa
inferior pueden compartir el mismo modelo estadístico, pero ser aún
así distintos por pertenecer a palabras diferentes en la red superior.
El algoritmo de reconocimiento recupera la secuencia de estados más
probable, pero lo que interesa al usuario es la secuencia de palabras,
por lo que una tabla asocia cada palabra a su último estado de la red
inferior. Así, únicamente se muestran las palabras asociadas a estados
dentro de la secuencia.

2.3 algoritmo de viterbi

A partir de los modelos acústico y de lenguaje se efectúa el proceso
de reconocimiento, donde se calcula la secuencia de palabras que
maximiza la ecuación (5).

Una solución de fuerza bruta podría ser, a partir de los datos de
entrada, calcular la verosimilitud de todas las posibles secuencias de
palabras, y obtener aquélla que la maximice. El problema de este
enfoque, excepto para ejemplos muy sencillos (pocas palabras en el
diccionario y secuencias de entrada cortas), es que la carga compu-
tacional de esta solución la hace inabordable.
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Aprovechando la memoria finita de los HMMs usados en el pro-
blema, el algoritmo de Viterbi [5] permite reducir su complejidad
resolviéndolo por partes. Éste recorre, a medida que van llegando
nuevos datos de entrada, el diagrama de transiciones o diagrama de
Trellis, calculando para cada estado la máxima verosimilitud y el es-
tado desde el que se llega con ésta. Si un estado tiene dos o más
transiciones de entrada, se puede mantener únicamente la secuencia
que le llega con mayor probabilidad, ya que no hay forma de que
las hipótesis descartadas superen en verosimilitud a la mantenida a
partir de ese momento. A este proceso de eliminación de hipótesis se
le llama purga.

La máxima verosimilitud se obtiene a partir de la siguiente ecua-
ción:

Pt(j) = máx
i

{Pt−1(i)aij bj(ot)} 2 6 t 6 T ; 1 6 j 6 N (10)

Esta ecuación indica que la probabilidad del mejor camino que ter-
mina en el instante t y estado j se obtiene a partir del camino que con
mayor probabilidad se propaga desde cada uno de los N estados en
el instante t− 1 hacia el estado j, multiplicándose ésta por la verosi-
militud del vector de características ot para el estado j en el instante
t. Esta última verosimilitud es la misma para todos los caminos que
confluyen en un mismo estado, por lo que la purga puede realizarse
antes de este cálculo. En el instante t = 1 no puede aplicarse la ecua-
ción (10), por lo que se multiplican las probabilidades iniciales πj por
las probabilidades de observación bj(o1). En general se parte de un
único estado inicial con probabilidad 1, lo cual simplifica el proceso
de búsqueda.

La Figura 6 muestra el algoritmo de Viterbi para el ejemplo de
HMM tratado en el apartado anterior. Las probabilidades acumula-
das se muestran normalizadas a la máxima en ese momento.

Mientras hay datos de entrada los caminos se van propagando, re-
pitiendo este cálculo iterativamente. Cuando llega la última observa-
ción, se calcula el estado final con mayor probabilidad acumulada
y se recupera la secuencia de estados asociada a él buscando hacia
atrás su estado de procedencia y el de los sucesivos estados recupe-
rados. A esta búsqueda iterativa, ilustrada en la Figura 7, se la llama
backtracking.

Para reducir los problemas de desbordamiento puede expresarse
la ecuación (10) como la suma de los logaritmos de cada término:

Lt(j) = máx
i

{Lt−1(i) +αij +βj(ot)} 2 6 t 6 T ; 1 6 j 6 N (11)
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Figura 6: Ejemplo del algoritmo de Viterbi

2.4 búsqueda con tokens

Pese a que el algoritmo de Viterbi reduce la complejidad del pro-
blema de reconocer la secuencia de palabras más probable, en la ma-
yoría de los casos el cálculo de la máxima probabilidad acumulada
para todos los estados supone todavía una gran carga computacional.
Las matrices de transiciones en RAH se caracterizan por tener un nú-
mero de estados muy elevado con pocas transiciones de salida, por
lo que calcular en cada frame temporal el camino hacia cada estado
es costoso y en muchos casos innecesario.

Una variación del algoritmo mantiene en cada momento un deter-
minado número de hipótesis activas o tokens (testigos) y realiza los
cálculos únicamente para los caminos considerados posibles en ese
momento. En cada paso de propagación, cada token se clona tan-
tas veces como su número de transiciones de salida, actualizando su
probabilidad acumulada con la probabilidad de transición y la pro-
babilidad de observación del estado de destino. Si más de un token
coincide en el mismo estado, se elige aquél con mayor probabilidad
acumulada.

Si el número máximo de tokens M es igual a N los resultados de
este algoritmo son iguales a los del de Viterbi. Sin embargo, suelen in-
troducirse dos aproximaciones para reducir el espacio en memoria y
la carga computacional requeridos por este algoritmo. Un parámetro
llamado beam determina cuántas veces más pequeña ha de ser la pro-
babilidad acumulada de un token frente al de la hipótesis más fuerte
para considerarse como despreciable. Así, en cada iteración se elimi-
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Figura 7: Búsqueda hacia atrás

nan los tokens despreciables (paso de beam search). Por otra parte, se
suele mantener un número máximo de tokens M < N. Si tras una
propagación hace falta un número mayor de tokens, se mantienen los
M con mayor probabilidad acumulada.El apéndice C

profundiza en el
algoritmo de

búsqueda con tokens.

La Figura 8 ilustra el algoritmo con tokens, con un beam de 0,1.

Figura 8: Ejemplo de búsqueda con tokens

Esta variación permite, además, presentar resultados parciales a mi-
tad del algoritmo. Si en un determinado instante t todos los tokens
provienen del mismo estado quiere decir que todas las hipótesis com-
partirán el mismo camino hasta t− 1, por lo que los resultados hasta
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ese instante pueden mostrarse ya. Los caminos asociados a los tokens
se guardan en un buffer Φ, por lo que esta operación permite liberar
espacio de él. La siguiente vez que se muestren resultados, se hará
desde el momento t+ 1. En el caso de que el buffer se llene, se de-
vuelve el camino asociado a la hipótesis más fuerte en ese momento,
se limpia el buffer y se eliminan todos los tokens menos el de mayor
peso.





3
I M P L E M E N TA C I Ó N

3.1 introducción

Un buen sistema de RAH no necesita únicamente ser preciso, sino
que en la mayoría de los casos la eficiencia de un reconocedor se
mide como el número de errores en el reconocimiento en función del
tiempo de ejecución, como puede verse en la Figura 9.
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Comparación de reconocedores

Con!guración 1
Con!guración 2

Figura 9: Número de errores frente a tiempo de ejecución[4]

De esta forma, el proyecto plantea la implementación de funciones
en paralelo empleando GPUs y CUDA C como medio para mejorar El Apéndice A

incluye detalles y
ejemplos de
programación en
CUDA.

los tiempos de ejecución. Asimismo, las estructuras de datos emplea-
das en este tipo de sistemas se caracterizan por ser de gran tamaño,
pero con pocos elementos útiles dentro de ellas (por ejemplo, la ma-
triz de transiciones A, representada en la Figura 10). Por lo tanto, el
ahorro de espacio en memoria mediante estructuras de tipo sparse y la
gestión de éstas es otra de las características principales del prototipo
implementado.

La estructura de un reconocedor suele basarse en bucles anidados,
como por ejemplo en el paso de propagación (ver Algoritmo 1). Trans-
formando el algoritmo a uno equivalente basado en operaciones ma- En el Apéndice C

puede encontrarse el
algoritmo de
reconocimiento
basado en matrices.

triciales y vectoriales puede verse qué partes de éste son susceptibles
de ser paralelizadas.

15
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Figura 10: Ejemplo de matriz de transición

1 for i = 1 : n do ; /* Para cada token activo */

2

3 for j = 1 : m do ; /* Para cada estado de salida */

4

5 Calcular probabilidad acumulada Pa;
6 if (Pa > Pj) then Pj = Pa;

Algoritmo 1: Propagación por bucles anidados

El ejemplo anterior puede expresarse como una suma matricial (se
trabaja en escala logarítmica) y una búsqueda de máximos por colum-
nas.

La primera operación es claramente paralela, lo cual presenta gran
oportunidad para mejorar los tiempos de ejecución, teniendo en cuen-
ta que el número de tokens activos puede llegar a ser muy alto. Sin
embargo, es más difícil implementar un algoritmo paralelo que reali-
ce la búsqueda de máximos, especialmente si se está trabajando con
matrices sparse, en las cuales se incrementa la dependencia entre ele-
mentos.

Este compromiso se verá prácticamente en todos los pasos del pro-
ceso de paralelización, lo cual no permite determinar a priori el im-
pacto de la nueva implementación en los tiempos de ejecución. En
consecuencia, lo que el proyecto plantea es el estudio de esta solu-
ción mediante un prototipo con funciones en paralelo.

3.2 consideraciones previas a la implementación

Antes de comenzar a desarrollar el algoritmo es necesario decidir
cómo trabajar con estructuras sparse. Existen librerías, como CUSP1

o cuSPARSE2 que implementan diversas funciones para realizar ope-

1 http://cusplibrary.github.io

2 http://developer.nvidia.com/cuSPARSE

http://cusplibrary.github.io
http://developer.nvidia.com/cuSPARSE
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raciones con matrices y vectores de este tipo. Pese a que éstas son
probablemente más rápidas que una versión “hecha a mano” de las
mismas, se trata de funciones generales optimizadas para el uso en
resolución de sistemas de ecuaciones, por lo que el conocimiento del
problema y la implementación de funciones a medida para éste pue-
de resultar en una solución más eficiente que otra basada en el uso
de librerías.

Una de las primeras tareas del proyecto ha sido la comparación
de la librería cuSPARSE con estructuras y funciones propias para las
operaciones básicas que el problema requiere. Tras realizar este estu-
dio, se ha optado por la segunda estrategia, en base a las siguientes
razones:

No existe una librería que permita trabajar con estructuras spar-
se en escala logarítmica, lo cual acarrea problemas de rango,
especialmente en el cálculo de las probabilidades de observa-
ción.

Una de las principales operaciones del algoritmo de reconoci-
miento, el paso de propagación, consiste en multiplicar la pro-
babilidad de cada token (elementos de un vector) por una fila
de la matriz de transiciones. Esta operación no existe en las li-
brerías, ni tampoco la conversión de vector a matriz necesaria
para expresar este paso como un producto matricial. Además,
la librería advierte que el producto entre dos matrices sparse es
muy poco eficiente.

El conocimiento del problema permite, al realizar ciertos pasos
del algoritmo, adelantar trabajo de las siguientes operaciones.

La solución basada en librerías, al estar pensada para otro tipo
de aplicaciones, implica un trabajo no despreciable en gestión
de tipos de datos y conversión de formatos para adecuarse al
problema de RAH.

Tras definir las estructuras sparse a usar, se han agrupado distin-
tas variables en estructuras y distintos pasos en funciones, de forma Las estructuras

utilizadas en el
proyecto están
especificadas en el
Apéndice D.

que el programa principal queda legible y estructurado (la Figura 11

ilustra su funcionamiento básico). En él se distinguen las siguientes
partes, algunas de las cuales se detallarán en los apartados siguientes:

Declaración de variables y asignación de valores: Al comienzo del
programa es necesario declarar las distintas variables que se
van a usar y reservar espacio en memoria para ellas, en fun-
ción de los parámetros del problema. Algunos de estos paráme-
tros, como el tamaño del buffer o el beam, están definidos como
macros, mientras que otros dependen del problema de reconoci-
miento concreto que se vaya a tratar. Los archivos que contienen
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Resultados

Matlab

Cuda C

calcular p. obs. calcular p. obs.propagar

actualizar phi

backtracking

Figura 11: Funcionamiento del reconocedor

los datos de entrada al problema (la matriz de transiciones, las
mezclas de Gaussianas, las observaciones y el diccionario), to-
dos adecuados al problema mediante un programa escrito en
Matlab, contienen el resto de parámetros necesarios, como el
número de estados o el número máximo de transiciones desde
un estado. Las distintas estructuras se inicializan mediante dis-
tintas funciones en el host o en la GPU según sea necesario, y
se copian los operandos necesarios a la GPU.

Tratamiento de la primera observación: Tras leer la primera obser-
vación, y con el vector de tokens inicializado con las probabili-
dades iniciales Π, se ponderan éstas con las probabilidades de
observación de cada estado.

Bucle de reconocimiento: Mientras hay nuevos datos de entrada
con observaciones se ejecuta este bucle, que comienza con la
propagación de los tokens (paso que incluye, además, la purga,
el beam search y la normalización de éstos), cuyas probabilida-
des acumuladas se actualizan después con las probabilidades
de observación. Finalmente, se actualiza la matriz Φ a la vez
que se comprueba si está llena o si todos los tokens provienen
del mismo estado, en cuyo caso se llama a la función de back-
tracking, la cual recupera la secuencia asociada al token más
probable desde el último frame recuperado hasta el actual y
muestra por pantalla las palabras que ésta representa.

Backtracking final: Cuando no hay más datos de entrada, se llama
por última vez a la función de backtracking, la cual devuelve la
secuencia asociada al token final más probable almacenada en
el buffer desde la última llamada a la función.
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3.3 propagación

Esta parte del algoritmo, situada al comienzo del bucle de itera-
ción, se encarga de calcular los tokens activos en el siguiente frame
temporal.

Se utilizan las estructuras tok, de tipo VSparse, para guardar los
tokens activos, B, de tipo FSparse, para guardar los resultados de la
generación de nuevos tokens, y A, de tipo Trans, la cual almacena las
transiciones de salida de cada estado.

1 B = repmat (tok, 1, N) + A; /* Cálculo de transiciones */

2 [tok, i_prev] = max (B, [], 1)’; /* Purga */

3 max_tok = max (tok);
4 tok = tok - max_tok; /* Normalización */

5 tok(tok < beam) = −∞; /* Beam Search */

6 active = find (tok > −∞); /* Índices de tokens activos */

Algoritmo 2: Propagación de tokens

3.3.1 Cálculo de tokens en el siguiente frame

Figura 12: Cálculo de los nuevos tokens: resultado

La primera operación que realiza esta función es la generación de
tokens en el siguiente frame temporal, (primera línea del Algoritmo 2)
donde cada hipótesis crea un nuevo token por cada una de las transi-
ciones de salida del estado donde se encuentra. Como se ha explicado,
este paso puede verse como la suma de la probabilidad acumulada
de cada token activo a todos los elemento de su fila correspondiente
en la matriz A, aunque en este caso en la matriz resultante, B, las filas
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con elementos distintos de cero están apiladas al principio (ver Figu-
ra 12). El índice de la fila a la que corresponden está guardado en el
vector de tokens.

El kernel (Figura 13) se ejecuta de forma que hay un hilo por cada
uno de los n tokens activos, el cual se encarga de leer todas las pro-
babilidades de salida de su estado y generar los nuevos tokens. La
matriz A, como se ha dicho, guarda los valores no nulos y sus colum-
nas en sendos vectores, y el índice del primer elemento de cada fila en
otro vector. Por lo tanto, restando los índices de dos filas consecutivas
puede saberse cuántas transiciones de salida tiene un estado.

39
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Figura 13: Cálculo de los nuevos tokens: kernel

3.3.2 Purga

El siguiente paso es volver a rellenar el vector de tokens eligiendo
el más probable de cada estado de destino (línea 2 del Algoritmo 2).
Primero es necesario poner todos los elementos de tok→val a −∞,
de lo cual se encarga un kernel con tantos hilos como elementos en
éste.

La búsqueda del token más probable en cada estado tiene una
dependencia intrínseca entre elementos. Sin embargo, puede apro-
vecharse el hecho de que todos los tokens en cada fila de B se han
propagado desde el mismo estado, por lo que éstos no necesitan com-
pararse entre sí. En este kernel hay un hilo por cada columna en B

que recorre los n estados de procedencia. Cuando encuentra un to-
ken activo, si su probabilidad es mayor que la que hay en ese estado
en tok→val (de ahí la puesta a −∞), guarda su valor y estado de pro-
cedencia. La Figura 14 muestra el trabajo conjunto de los hilos para
purgar los tokens de cierto estado de procedencia.

A medida que un hilo recorre los estados de procedencia va guar-
dando la mayor probabilidad que ha encontrado. Como el siguiente
paso va a ser buscar la máxima probabilidad encontrada para poste-
riormente realizar el beam search, de esta manera se reduce el espacio
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Figura 14: Algoritmo de purga: cuarto estado de procedencia

de búsqueda. El primer hilo guarda también el máximo número de
transiciones que ha encontrado (maxEprB) para saber entre cuántos
elementos habrá que realizar la búsqueda. La Figura 15 muestra los
resultados de la operación.

Figura 15: Algoritmo de purga: resultado

3.3.3 Búsqueda del máximo por reducción

La reducción es una técnica común en algoritmos paralelos que sir-
ve para optimizar operaciones que pueden expresarse como un árbol
de decisiones, tales como algoritmos de búsqueda o la suma de los
elementos en un vector (ver Figura 16). Se trata de un algoritmo itera-
tivo donde un hilo realiza la operación entre dos elementos, de forma
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que en cada iteración se reduce a la mitad el número de elementos.
En la última iteración queda un elemento, producto de la operación
entre todos los del vector.

6 7 5 2 1 3211

7 5 311

711

11

maxmax

maxmax

max max

max

Figura 16: Búsqueda del máximo por reducción

Éste es el procedimiento que se sigue para hallar la probabilidad
máxima entre los tokens activos. Cada bloque de n hilos puede buscar
el máximo entre 2n elementos. Debido a que trabajar con la memoria
compartida de bloque es mucho menos costoso que acceder directa-
mente al vector, al principio del kernel cada hilo lee dos elementos de
vMaxB (o, si uno de ellos está fuera de rango, escribe el elemento neu-
tro en la memoria compartida) para después hacer la reducción entre
estos elementos. De esta forma, si el tamaño del vector es mayor que
el doble del tamaño de bloque se obtienen resultados parciales, uno
por bloque, que son guardados en un vector auxiliar, vAuxMaxB, repi-
tiendo el proceso de reducción (alternando estos dos vectores) hasta
que quede un único elemento (ver Figura 17).

Bloque 1 Bloque 2 Bloque 3

BlockDim.x

Bloque 1
Elementos Neutros

Figura 17: Reducción de varios bloques

Cuando se detecta que el número de bloques necesario es 1 la direc-
ción de destino que se le pasa a la función será la del valor máximo,
maxVal. El valor guardado en esta dirección es usado por otro kernel
para normalizar todos los elementos en tok→val Este kernel, al igual
que la puesta a −∞ es ejecutado por tantos hilos como elementos hay
en este vector.
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3.3.4 Actualización de índices y número de tokens activos

Antes de dar por concluida la propagación de tokens al siguiente
frame temporal es necesario realizar el beam search y actualizar los
índices del vector tok. En el caso de que haya más valores distintos
de −∞ que el número máximo de tokens se toman los de mayor peso.
No se ha encontrado una función paralela que realice esta operación,
por lo que se ha programado como una función secuencial que se
ejecuta en la CPU.

Esta función recorre el vector tok→val, el cual se ha copiado pre-
viamente al host, y cuando encuentra un token activo que no esté por
debajo del beam guarda su estado en tok→i e incrementa el valor en
tok→n. A la vez, va guardando la posición y el valor mínimo encon-
trado hasta el momento. Si se alcanza el número máximo de tokens,
será ese valor el que haya que superar para entrar en el vector de to-
kens. Cuando un token cumple esta condición, se vuelve a hacer una
búsqueda del mínimo entre los tokens guardados hasta el momento.

3.4 cálculo de las probabilidades de observación

Tras leer cada una de las observaciones se llama a la función
get_pObs, la cual calcula la probabilidad de observación de los es-
tados activos. Cada una de éstas se puede calcular de la siguiente
forma: El desarrollo

completo del cálculo
se halla en el
Apéndice Bvj = Gj ·

o2
t

ot

1

 , bj(ot) =

C∑
c=1

evj,c , (12)

La estructura G contiene las matrices y vectores necesarios para el
cálculo. La observación de cada frame se guarda en el vector x con el
formato [o2

t ; ot; 1], mientras que la estructura Gauss contiene todas las
posibles matrices Gj, una por cada GMM, apiladas de forma que se
puedan obtener todos los vectores vj con un único producto matriz-
vector. Estos vectores de resultados parciales también se guardan en
un vector, pExp. Las distintas posibilidades de observación se encon-
trarán al final del cálculo en el vector pObs, apiladas al inicio, tras lo
cual servirán para actualizar las probabilidades acumuladas de los
tokens activos.

1 b = eval_st (Xt, active, G); /* Cálculo de p. obs. */

2 tok(active) = tok(active) + b; /* Actualización de tok */

Algoritmo 3: Actualización con las probabilidades de observación
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3.4.1 Inicialización de gMask y fetch

Como no todos los estados están activos en un determinado mo-
mento, multiplicar todas las filas de la matriz de parámetros de las
Gaussianas por el vector de observaciones sería una pérdida de tiem-
po considerable. La estructura G tiene, por tanto, una máscara gMask

que indica qué filas deben multiplicarse. Un kernel con un hilo por
token se encarga de activar los elementos de ésta correspondientes a
los estados activos en ese frame (ver Figura 18).
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Figura 18: Inicialización de gMask y fetch: kernel

Cada estado está modelado por una GMM, cuyo número de Gaus-
sianas no tiene por qué ser fijo. Además, varios estados pueden com-
partir una misma GMM. La tabla q2s establece una correspondencia
entre cada estado y su mezcla, mientras que el vector ini contiene
la fila inicial de cada GMM en la matriz de parámetros, por lo que
la diferencia entre dos elementos consecutivos de este vector da el
número de Gaussianas en la mezcla.

Cada hilo guarda también en el vector fetch la posición de la pri-
mera Gaussiana que va a utilizar, ya que la probabilidad de observa-
ción estará guardada en esa posición en el vector pExp. De esta forma
se calcula la probabilidad de observación de cada GMM una única
vez, aunque ésta corresponda a varios estados activos.

3.4.2 Multiplicación con máscara

El paso siguiente es realizar la multiplicación matriz-vector. El ker-
nel encargado de esta operación tiene un hilo por cada fila de la ma-
triz G. Cada hilo de un bloque carga un elemento del vector en la
memoria compartida y, si la máscara está activada en su posición,
realiza la multiplicación fila-vector de un número de elementos igual
al tamaño de bloque. Si el vector es más grande, los hilos volverán
a repetir esta operación hasta completar los productos fila-vector. La
Figura 19 ilustra este proceso.

En esta función puede haber bloques que carguen el vector x sin
que ninguno de los hilos tenga que hacer después el producto matriz-
vector. Debido al número variable de Gaussianas por GMM y al for-
mato de ésta, no puede conocerse a priori el número de filas a multi-
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Figura 19: Multiplicación matriz-vector con máscara: trabajo de un bloque

plicar en esta operación. Esto hace necesario pasar por todas las filas
de G.

3.4.3 Suma y normalización

La operación con la que se obtienen las probabilidades de observa-
ción es la suma de la exponencial de los resultados de cada Gaussiana
dentro de una GMM. Para evitar problemas de rango, se normalizan
todos los resultados antes de hacer la exponencial, obteniendo el má-
ximo de entre todos los resultados usando el mismo algoritmo de
reducción empleado en el paso de propagación, con un hilo por cada
una de las tot Gaussianas. Posteriormente otro kernel se ocupa de su-
mar los resultados de cada GMM, con un hilo por cada una de ellas.
A medida que va haciéndolo, prepara la máscara para la siguiente
iteración del bucle de reconocimiento, desactivando los elementos de
gMask correspondientes a esa GMM. Finalmente, hace el logaritmo de
la suma para dejarlo todo en esta escala.

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i >= n) return; // Un hilo por GMM

int jIni = ini[i]; // Gaussiana inicial de la GMM

if(!gMask[jIni]) return; // Sólo GMMs activas

int jFin = ini[i+1]; // Gaussiana inicial de la siguiente
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float res = 0.;

for(int j = jIni; j < jFin; j++) {

res += exp(pExp[j] - *max); // Suma

gMask[ii] = false; // Desactivación de flags

}

pExp[jIni] = log(res);

Listing 1: Kernel con suma de resultados

3.4.4 Actualización de las probabilidades acumuladas

En el último kernel hay un hilo por cada token activo que recupera
los resultados en pExp y los escribe en su posición correspondiente
en pObs, de forma que al final los tok→n primeros elementos de éste
contienen las probabilidades de observación.

Al finalizar la función get_pObs el programa principal llama a otro
kernel que se ocupa de actualizar las probabilidades acumuladas de
los tokens activos, sumándoles las probabilidades de observación (ver
Figura 20).

Figura 20: Actualización de los tokens con las probabilidades de observa-
ción

3.5 recuperación de resultados

3.5.1 Actualización del buffer Φ

Tras actualizar los tokens con las probabilidades de transición, se
llama a la función update_phi, la cual registra los estados de proce-
dencia de los tokens activos en ese frame en una matriz de índices,
llamada P en el código. En esta matriz cada fila corresponde a un fra-
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me temporal, la columna de un elemento representa el estado en el
que está el token y el valor es su estado de procedencia. Se trata de un
buffer circular (la primera fila es la siguiente a la última) donde dos
punteros, tIni y tFin, indican la primera y la última fila efectivas.

1 [tok, i_prev] = max (B, [], 1)’; /* Purga */

2 ...

3 active = find (tok > −∞);

4 ...

5 Φ(active, t) = i_prev(active); /* Actualización de Φ */

Algoritmo 4: Actualización de Φ

Un kernel con un hilo por token activo se encarga de rellenar la fila
número P→tFin, tras lo cual se incrementa este puntero circularmen-
te.

unsigned int j = blockIdx.x*blockDim.x + threadIdx.x;

if (j >= nTok) return; // Un hilo por token activo

int pos = colsPerRow * tFin + j;

int col = iTok[j]; // Estado del token -> columna de P

colIndP[pos] = col;

int valpos = iPrevTok[col]; // Estado previo -> valor en P

valP[pos] = valpos;

if (i == 0) eprP[row] = n; // Número de elementos en la fila

else {

int col0 = tok->i[0]; // Comparación con el primer elemento

if (valpos != tok->iPrev[col0]) *(P->eq) = false;

}

Listing 2: Kernel con actualización de P

A continuación, otro kernel comprueba si todos los tokens provie-
nen del mismo estado. Antes de su llamada, se inicializa una variable
booleana, eq, a false. Cada hilo del kernel compara el estado previo
de un token activo con el del primero. Si son distintos, desactiva el
flag, de forma que éste al final indica si todos los estados son iguales.

La función update_phi devuelve este flag al programa principal,
el cual activa una llamada a la función backtracking. También se
comprueba si al incrementar tFin éste ha alcanzado a tIni, en cuyo
caso el buffer está lleno y hay que mostrar igualmente los resultados
parciales para liberar espacio. En ambos casos, tras esta llamada se
actualizan los punteros de P.
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3.5.2 Algoritmo de bactracking

La función backtracking es llamada en los casos citados anterior-
mente y cuando no quedan más observaciones por leer. El algoritmo,
que va recuperando la secuencia de estados más probable desde el
más reciente hasta el más antiguo, varía ligeramente entre estos ca-
sos, por lo que una variable indica a la función en cuál de ellos se
encuentra.

La función comienza calculando el número de estados a recuperar,
tras lo cual hay que guardar en seq[nPhi] el estado final más proba-
ble.

int nPhi = P->tFin - P->tIni;

if (nPhi <= 0) nPhi += seq->maxT;

if (why == 0) nPhi --;

Listing 3: Número de estados a recuperar

Si todos los tokens provienen del mismo estado se decrementa nPhi

ya que hay que recuperar la secuencia únicamente hasta el frame
anterior. En éste se ha propagado un solo estado, cuyo índice está en
el vector tok→iPrev en cualquiera de las posiciones guardadas en
tok→i. Basta, por tanto, consultar el estado previo del primer token
activo (por simplicidad) para conocer el estado final más probable en
ese frame.

En los otros dos casos se recupera la secuencia hasta el frame actual
y hay que buscar el estado más probable en ese momento. La función
max_value_ind realiza esta búsqueda por reducción devolviendo el
estado final más probable, el cual se guarda en seq. Aunque el algo-
ritmo de reducción es el mismo (se devuelve un resultado por bloque
y se alterna entre dos vectores hasta tener un único resultado final),
el kernel al que llama esta función trabaja con vectores de índices, los
cuales sirven para consultar y comparar los valores de un un vector
de tipo VSparse.

A partir de este token se va extrayendo del buffer P su secuencia de
estados asociada. Un bucle iterativo se encarga de rellenar los elemen-
tos de seq desde nPhi− 1 hasta 0 mediante la llamada a la función
prev_state. El valor de P en la posición correspondiente al último
estado recuperado (la fila se corresponde con el frame y la columna
con el estado), será su estado de procedencia (ver Figura 21).

De esta forma, prev_state ejecuta un kernel en el cual cada hilo
se ocupa de una columna de P en esa fila o frame temporal. Si el
último estado recuperado se corresponde con esa columna significa
que forma parte del camino más probable, por lo que escribe el valor
en esa posición en la secuencia.

cudaMemcpy(seq->h_seq, seq->d_seq, n * sizeof(int),

cudaMemcpyDeviceToHost); // Copia de seq a la CPU
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Figura 21: Búsqueda del estado anterior en la secuencia

int st, stPrev;

stPrev = seq->stFin; // Último estado recuperado

for (int j = 0; j < n; j++) {

st = seq->h_seq[j];

if(st == stPrev) continue; // Comprobar si cambia de estado

if( strlen(dict[st]) > 0 ) // Si lleva palabra asociada

printf(" %s ", dict[st]);

stPrev = st;

}

fflush(0);

seq->stFin = st; // Guardar último estado recuperado

Listing 4: Número de estados a recuperar

Finalmente, se imprime la secuencia de palabras. En el caso de buf-
fer lleno no se tiene en cuenta el último estado, porque la siguiente
vez que se haga backtracking será el primero. La función print_seq

es una función secuencial que trabaja en CPU (los datos necesarios
como la secuencia se copian antes desde la GPU). Ésta recorre la se-
cuencia y, para cada estado, comprueba la tabla-diccionario dict y
muestra por pantalla su palabra asociada, en caso de que la haya y si
no es igual al estado anterior (un estado puede durar varios frames).
Una variable de la estructura seq guarda el último estado aparecido
entre distintas llamadas a la función print_seq, para evitar el error
de sacar dos veces la misma palabra cuando no corresponde.





4
R E S U LTA D O S

A medida que se ha desarrollado el prototipo de reconocedor, éste
se ha ido probando con distintos modelos estadísticos y datos de
entrada para comprobar su correcto funcionamiento. Al no ser posible

acceder a las tarjetas
gráficas durante la
ejecución, el proceso
de depurado de las
funciones en
paralelo se ha
realizado copiando
los resultados al host
e imprimiéndolos
por pantalla.

Para depurar las distintas funciones a nivel bajo se ha usado un
modelo creado para tal propósito, con datos de entrada artificia-
les de una dimensión y cinco estados posibles que siguen una
distribución Gaussiana. Un modelo tan simple dista mucho de
una aplicación real, pero sirve para seguir el proceso de reco-
nocimiento paso a paso y conocer los valores de las variables
en todo momento, comprobando el funcionamiento básico del
sistema.

Un modelo simple pero real se ha usado para depurar los cálcu-
los de las probabilidades de observación, lo cual requiere vecto-
res de entrada multidimensionales, y el algoritmo de backtrac-
king con diccionario, sacando palabras en vez de estados. Las
secuencias de palabras de este modelo son series de dígitos en
inglés, por lo que la gramática tiene un tamaño reducido y es
posible todavía mostrar resultados intermedios y variables por
pantalla, aunque es más difícil seguir su valor en todo momen-
to. Este ejemplo también ha servido para comprobar el funcio-
namiento del programa que adapta el formato de datos de otros
reconocedores, como el HTK, al usado por el prototipo.

Finalmente, una gramática que modela preguntas de geografía
se ha usado para comprobar el funcionamiento del prototipo
con estructuras de grandes dimensiones (lo cual es útil para
verificar la coordinación entre varios bloques de hilos para las
distintas funciones en paralelo) y para comparar los resultados
del prototipo con otros reconocedores.

4.1 estudio de tiempos

Para el estudio de tiempos se ha reconocido una frase con el tercer
modelo de los citados en el apartado anterior. La grabación dura 3,6
segundos, por lo que un tiempo de reconocimiento menor se consi-
dera como“reconocimiento en tiempo real”. Las simulaciones se han
ejecutado en el un nodo, “voz08”, del clúster del Grupo de Tecno-
logías de las Comunicaciones de la Universidad de Zaragoza. Se ha
utilizado una CPU Intel Xeon E5645 @2.40 GHz y una GPU nVidia
GeForce GTX 660 Ti .
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4.1.1 Comparación del rendimiento con otros reconocedores

Debido a que el prototipo ejecuta unas operaciones muy distintas
de otros reconocedores secuenciales, es difícil comparar los tiempos
de ejecución de manera justa. Asimismo, la falta de adaptación de los
datos del prototipo al formato usado por otros reconocedores hace
difícil una evaluación sistemática de la tasa de error frente al tiempo.
Por tanto, se ha decidido comparar el tiempo de ejecución del proto-
tipo con el de otros reconocedores en función del número medio de
tokens activos por frame, lo cual indica cómo de eficiente es la gestión
de tokens. En el tiempo de ejecución no se ha incluido la inicialización
de las distintas variables y la carga de los modelos estadísticos.

Los reconocedores utilizados para la comparación han sido el HTK,
el cual es un software de RAH ampliamente utilizado, y el recono-
cedor del Laboratorio de Tecnologías del Habla de la Universidad
de Zaragoza, en dos configuraciones distintas que aquí llamaremos
KTree y WFST debido a los algoritmos que emplean.
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Figura 22: Comparación de gestión de tokens

Las Figuras 22 y 23 muestran esta comparación, en la que puede
observarse que, aunque para un número reducido de tokens HTK es
más rápido, el prototipo consigue gestionar menos tokens reconocien-
do la frase sin errores, y más dentro del límite del reconocimiento en
tiempo real. El otro reconocedor es más rápido en sus dos configura-
ciones, aunque también tiene fallos en el reconocimiento para un nú-
mero de tokens reducido. Estos reconocedores tienen más parámetros
que permiten optimizar su funcionamiento y usan distintas técnicas
para reducir los tiempos de ejecución, alejándolos del algoritmo de
Viterbi canónico. Por otra parte, el formato del modelo estadístico del
prototipo es más compacto, lo cual agiliza su carga. La inicialización
de variables del prototipo dura en torno a 0.6 segundos, mientras que
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Figura 23: Comparación de gestión de tokens

al resto de reconocedores les cuesta entre 5 segundos (HTK) hasta su-
perar la decena (KTree).

4.1.2 Distribución de tiempos
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Figura 24: Distribución de tiempos

Las Figuras 24 y 25 muestran la distribución de tiempos dentro del
programa principal. El proceso más costoso de todas las operaciones
es el de propagación, cuyo tiempo se ha desglosado en las Figuras
26. y 27 La actualización de los índices del vector tok tras la propaga-
ción se había diseñado inicialmente como un kernel de un solo hilo,
el cual es más lento que la misma función en la CPU pero ahorra la
transferencia de datos entre host y device. Tras comprobar el impacto
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Figura 25: Distribución de tiempos

de esta función en el tiempo de ejecución del programa, se ha imple-
mentado la misma función en la CPU, reduciendo considerablemente
el tiempo de ejecución, por lo que se ha mantenido en el código final.
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Figura 26: Distribución de tiempos de la función de propagación

La función que merece más la pena optimizar tras este cambio es
la purga de tokens, la cual es una búsqueda del mejor token que ha
llegado a cada estado y cuyo tiempo crece con el número de tokens
activos. Aunque es hasta cierto punto paralelizable, el kernel tiene
un bucle que termina con la sincronización de todos los hilos en ca-
da iteración, lo cual ralentiza su funcionamiento. Podría estudiarse
si el realizar la purga en la CPU (lo cual podría aprovecharse para
realizar a la vez la búsqueda de la máxima probabilidad acumulada)
aceleraría el proceso.
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Figura 27: Distribución de tiempos de la función de propagación

4.1.3 Rendimiento del cálculo de probabilidades de observación

El tiempo de ejecución del cálculo de las probabilidades de obser-
vación en el prototipo sí que puede compararse fácilmente con el de
otros programas, ya que puede definirse el número de observacio-
nes a calcular. El algoritmo del prototipo realiza una multiplicación
con máscara por lo que el porcentaje de GMMs activas influye en los
tiempos de ejecución de forma proporcional, como puede verse en la
Figura 28. Ésta muestra el tiempo requerido para calcular las proba-
bilidades de observación de distinto número de GMMs respecto del
total en función del número de frames temporales para los que se
calcula.
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Figura 28: Impacto del número de frames
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La figura 29 muestra la comparación entre los tiempos de ejecución
del algoritmo del prototipo y los del reconocedor del Laboratorio de
Tecnologías del Habla. Puede verse que el prototipo es más rápido en
este cálculo cuando tiene que calcular las probabilidades de observa-
ción de muchos estados distintos.
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Figura 29: Comparación del cálculo de las probabilidades de observación

El tiempo de ejecución de este algoritmo está penalizado por el he-
cho de no conocer los índices de las Gaussianas que se van a calcular.
En su lugar, esta información se halla en una máscara. Por tanto, las
operaciones se realizan para todas las Gaussianas, y la máscara indi-
ca en cuáles de ellas pueden evitarse ciertos cálculos. Este enfoque de
diseño se eligió, como en varios momentos del proceso de desarro-
llo, entre varias alternativas, sin que hubiera una solución claramente
óptima.

Pese a que el impacto de este cálculo en el tiempo total del proceso
de reconocimiento no es muy grande, sería interesante optimizarlo,
ya que es una operación que puede servir para otras aplicaciones.
Una alternativa que se planteó y que podría probarse consiste en,
una vez conocidos los índices de las GMM que se van a calcular,
construir una tabla con éstos, hallar el número total de Gaussianas
que representan y construir una tabla con los índices de éstas, de
forma que para el cálculo matriz-vector haría falta solamente un hilo
por cada fila que se fuera a calcular, y éste sabría de dónde tomar sus
operandos y dónde escribir su resultado.
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C O N C L U S I O N E S

5.1 resumen del proyecto y análisis de objetivos

El trabajo desempeñado durante el proyecto aparece desglosado
en un cronograma en la Figura 30. Las tareas desempeñadas pueden
clasificarse en tres tipos distintos:

Recopilación de información sobre las herramientas utilizadas
durante el proyecto, tales como CUDA y las librerías cuSPARSE,
las distintas implementaciones existentes de estructuras sparse
o el algoritmo de Viterbi con tokens.

Implementación de algoritmos y funciones ya existentes y adap-
tación al prototipo, como por ejemplo la implementación matri-
cial del bucle de reconocimiento en Matlab y C o el cálculo
matricial de las probabilidades de observación.

Diseño de funciones y estructuras características de la solución
planteada, tales como las funciones paralelas, el método de ges-
tión de datos o las distintas estructuras creadas.

Medida de tiempos del prototipo y de otros reconocedores, aná-
lisis de resultados y cambios finales en el código a partir de
éstos.

Se ha conseguido desarrollar un prototipo de reconocedor automá-
tico del habla con funciones en paralelo que funcione correctamente,
lo cual cumple el objetivo principal del proyecto, ya que permite ana-
lizar su rendimiento frente a otros de funcionamiento secuencial. Se
ha diseñado e implementado el funcionamiento del reconocedor con
el consiguiente análisis de su funcionamiento y sus posibilidades de
paralelización, mientras que los modelos acústicos y de lenguaje ya
estaban generados y entrenados.

También se ha desarrollado una filosofía de gestión de tokens crea-
da específicamente para el problema, y se ha comparado con el uso
de las librerías sparse paralelas disponibles para CUDA, eligiéndose
el primer enfoque. Esta experiencia con este tipo de librerías no es
únicamente válida para el prototipo desarrollado sino que el análisis
de sus puntos fuertes y débiles puede ser útil para futuros proyectos.
Cabe remarcar que una vez realizado el esfuerzo inicial de cambiar la
filosofía del algoritmo y de tomar las distintas decisiones de diseño,
el trabajo de introducir mejoras en el código para seguir aumentando
su rendimiento es considerablemente menor.
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Además de funcionar, bajo ciertas condiciones el prototipo mejora
los tiempos de ejecución de un reconocedor ampliamente usado como
el HTK. Estas mejoras, además, pueden ser mayores con GPUs de
mayor rendimiento, o explotando otros niveles de paralelismo, lo cual
no sucede de igual forma con el software secuencial.

5.2 desarrollo en el futuro

Aunque se pueden introducir posibles optimizaciones en las dis-
tintas partes del código, lo más productivo es intentar mejorar los
tiempos de ejecución de aquéllas que más tiempo toman, como la
propagación y en concreto la función de purga. También es interesan-
te seguir mejorando el cálculo de las probabilidades de observación,
ya que éste es útil para aplicaciones más allá del RAH. Para ambas
funciones, se han propuesto alternativas en el Capítulo 4. También
pueden estudiarse variaciones en el proceso de reconocimiento, como
la propagación hacia atrás, o incluso enfoques completamente distin-
tos como el reconocimiento basado en redes neuronales, las cuales se
pueden implementar directamente en paralelo.

Con un cierto trabajo de adaptación puede aplicarse esta filosofía
a otros tipos de paralelismo tales como el uso de CPUs con varios
procesadores o de clústeres, utilizando el código o los algoritmos ya
creados para conseguir mejores tiempos de ejecución en máquinas
más potentes.

Finalmente, el objetivo principal a partir de este momento es el
uso del conocimiento ganado durante el proyecto y, si procede, de
las funciones desarrolladas, en futuros proyectos relacionados con el
RAH para conseguir un software de reconocimiento más rápido y
robusto.
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A
C O N C E P T O S B Á S I C O S D E C U D A

En este apéndice se profundiza en los conceptos básicos de la pro-
gramación en paralelo y de CUDA1, en los cuales está basada la im-
plementación del Reconocedor Automático del Habla tratado en este
proyecto.

a.1 historia de la programación en paralelo

La ley de Moore es la observación empírica del aumento de la
densidad de transistores en un microprocesador, la cual se ha dupli-
cado, desde la formulación de la ley en 1965, cada 18 a 24 meses
(ver Figura 31). Este aumento en la densidad de transistores permitió,
durante muchos años, aumentar la frecuencia de reloj de los procesa-
dores, lo cual se tradujo directamente en mejoras en el rendimiento
del software (el mismo programa es más rápido en un procesador con
una frecuencia de reloj mayor). Sin embargo, la frecuencia de trabajo
es directamente proporcional a la energía consumida por un chip (y
consecuentemente a la energía disipada). De esta forma, pese a que la
densidad de transistores sigue creciendo, las mejoras en la frecuencia
de reloj han dejado de seguir esta tendencia (Figura 32).

Figura 31: Número de transistores en distintos microprocesadores

Tradicionalmente, el software se ha escrito para ser ejecutado en
serie, es decir, una instrucción se ejecutaba tras finalizar la anterior.

1 http://www.nvidia.com/object/cuda_home_new.html
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Figura 32: Evolución de la frecuencia de reloj

En contraposición, en la programación en paralelo se busca dividir las
tareas a ejecutar en problemas independientes para poder resolverlos
en varios procesos que se ejecutan a la vez. Aunque el paralelismo no
es un concepto nuevo en la informática, los esfuerzos en avanzar en
este modelo de programación se han aumentado en los últimos años
con el objetivo de seguir consiguiendo mejoras en el rendimiento.

Hay varios niveles donde puede explotarse el paralelismo, desde
los bits (una ALU capaz de hacer sumas de 16 bits acabará antes
determinadas tareas que una que solamente procese 8 bits) o las ins-
trucciones (segmentación de instrucciones en los microprocesadores)
hasta llegar a otras soluciones como los procesadores multinúcleo,
los clústers o los grids. El enfoque empleado por este proyecto ha si-
do el empleo de GPUs (Graphic Processing Units) consistentes en una
serie de procesadores, lentos en comparación con una CPU, capaces
de ejecutar el mismo código a la vez (ver Figura 33). Estas tarjetas
surgieron con el propósito de optimizar el procesamiento digital de
imágenes, en el cual la mayoría de las tareas tratan cada píxel de
forma independiente.

Debido a que las GPUs comenzaron a usarse para aplicaciones dis-
tintas de aquellas para las que se habían concebido, se crearon en-
tornos de desarrollo como CUDA, los cuales permiten acceder a la
memoria y al conjunto de instrucciones de las GPUs mediante exten-
siones de lenguajes de programación estándar como C, C++ o Fortran.
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Figura 33: Arquitectura de una CPU y de una GPU

En este proyecto se utiliza la extensión CUDA C/C++ para el desarro-
llo de las funciones en paralelo del reconocedor.

a.2 introducción a cuda c

Las aplicaciones desarrolladas en CUDA C están basadas en un
modelo de programación host+device heterogéneo donde en un único
programa las partes en serie se ejecutan en el host o CPU mientras
que las partes en paralelo lo hacen en el device o GPU. A la GPU se
accede mediante funciones o kernels cuya llamada crea un conjunto
de hilos paralelos que ejecutan el código de la función. El conjunto de
los hilos que se crean para ejecutar el kernel, llamado grid, se divide
a su vez en bloques de hilos, todos del mismo tamaño (ver Figura
34). Tanto un grid como sus bloques pueden distribuirse en hasta 3

dimensiones, lo cual simplifica el direccionamiento de memoria en
ciertas aplicaciones como el procesamiento digital de imágenes.

Figura 34: Ejemplo de grid y bloque en un kernel

Los tamaños de grid y bloque se definen antes de llamar a la fun-
ción. Así, una llamada a un kernel quedaría de la siguiente manera:

// Código en host

...

// Llamada al kernel

dim3 blockDim(bx, by, 1);

dim3 gridDim(gx, gy, 1);
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kernel<<< gridDim, blockDim>>>(args);

// Código en el host

...

Listing 5: Número de estados a recuperar

Cada hilo tiene unos índices mediante los cuales se puede conocer
a qué bloque pertenece y qué posición dentro del mismo ocupa, lo
cual sirve para calcular posiciones de memoria o gestionar diversas
operaciones de control.

int ix = blockIdx.x * blockDim.x + threadIdx.x;

int iy = blockIdx.y * blockDim.y + threadIdx.y;

Listing 6: Número de estados a recuperar

Dentro de un bloque, los hilos pueden cooperar mediante el uso
de memoria compartida o instrucciones de sincronización (ningún
hilo dentro del bloque avanza hasta que todos hayan ejecutado dicha
instrucción).

a.3 ejemplo : suma de vectores

Las operaciones matriciales tales como sumas o productos, donde
el cada elemento del resultado es independiente del resto, suelen pro-
ducir grandes mejoras en los tiempos de ejecución al implementarse
como funciones en la GPU. El siguiente código muestra un kernel
que toma sendos elementos de dos vectores, los suma y guarda el
resultado en la misma posición de un tercer vector.

__global__ void add( int *a, int *b, int *c ) {

int tid = blockIdx.x; // sumar los elementos en esta posición

3 if (tid < N)

c[tid] = a[tid] + b[tid];

}

Listing 7: Número de estados a recuperar

Este kernel es ejecutado cuando es llamado por una aplicación, la
cual le pasa los argumentos a, b y c y define las dimensiones de
grid y de bloque. Los kernels pueden recibir argumentos por valor
y por referencia, pero los argumentos por referencia tienen que ser
direcciones de la memoria device. De esta forma, al principio del
siguiente código se reserva memoria en la GPU para los vectores y se
les da valor copiándolos desde la CPU.

#define N 10

int main( void ) {

int a[N], b[N], c[N]; // vectores en CPU

int *dev_a, *dev_b, *dev_c; // vectores en GPU

5



A.3 ejemplo : suma de vectores 45

// reservar memoria en GPU

cudaMalloc( (void**)&dev_a, N * sizeof(int) );

cudaMalloc( (void**)&dev_b, N * sizeof(int) );

cudaMalloc( (void**)&dev_c, N * sizeof(int) );

10

// rellenar los vectores "a" y "b" en la CPU

for (int i=0; i<N; i++) {

a[i] = -i;

b[i] = i * i;

15 }

// copiar los operandos a la GPU

cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice

);

cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice

);

20

// sumar los operandos en GPU

add<<<N,1>>>( dev_a, dev_b, dev_c );

// copiar el resultado de GPU a CPU

25 HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),

cudaMemcpyDeviceToHost ) );

// mostrar los resultados

for (int i=0; i<N; i++) {

printf( " %d + %d = %d\n", a[i], b[i], c[i] );

}

30

// liberar la memoria reservada en GPU

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

35 return 0;

}

Listing 8: Número de estados a recuperar





B
C Á L C U L O D E L A S P R O B A B I L I D A D E S D E
O B S E RVA C I Ó N

b.1 introducción

El proceso de reconocimiento se va realizando a medida que llegan
nuevos datos de entrada al sistema. Éstos son vectores multidimensio-
nales, resultado del proceso de características de un frame temporal
de una señal de audio. A la secuencia de observaciones en el proceso
de reconocimiento se la denomina con el nombre de O:

O = {o1, . . . , ot, . . . , oT } (13)

El modelo acústico tiene un conjunto de posibles estados o unida-
des sonoras básicas, S, cada uno con una distribución estadística.

S = {s1, . . . , sj, sN} (14)

Estos parámetros estadísticos permiten determinar la verosimilitud
bj(ot) = P(ot|sj), es decir, que una observación se corresponda con
un estado. En general en RAH se utilizan modelos de mezcla de Gaus-
sianas o GMMs, cuyas funciones de densidad de probabilidad son
sumas ponderadas de las de varias distribuciones normales. Así, la
probabilidad de observación del vector ot para el estado sj quedaría:

bj(ot) =

C∑
c=1

wj,cN(ot ;µj,c,Σj,c), (15)

donde C es el número de Gaussianas en la mezcla, wj,c es el peso
de la Gaussiana c y µj,c, Σj,c son la media y la covarianza de la
Gaussiana, respectivamente, y N es la probabilidad de observación
para una distribución normal. Para un vector de observación de D
dimensiones, ésta se calcula habitualmente de la siguiente manera:

N(x ;µ,Σ) =
1

(2π)D/2 |Σ|1/2
e−

1
2 (x−µ) ′Σ−1 (x−µ) (16)

b.2 expresión del cálculo como producto matricial

En este proyecto, como ocurre habitualmente en RAH, se utilizan
matrices de covarianza diagonales, lo cual permite expresar el expo-
nente de la ecuación (16) como:

1

2

D∑
i=1

(xi − µi)
2

σi
=

D∑
i=1

aix
2
i + bixi + ci, (17)
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lo cual es un producto escalar entre dos vectores, uno dependiente
de la distribución y otro del vector de observaciones.

[
a b c

]
·

x2

x

1

 = g · χ (18)

Subiendo al exponente el peso de la Gaussiana en la mezcla y la
parte lineal de (16) es posible calcular de esta manera, en escala lo-
garítmica, cada uno de los elementos a sumar en (15). Apilando los
coeficientes de las distintas Gaussianas en una matriz, pueden obte-
nerse todos estos elementos en una multiplicación matriz-vector

Gχ =


g1

g2

...

gC

 ·
x2

x

1

 = v (19)

La suma de las exponenciales de cada uno de los elementos vc del
vector v es equivalente al resultado de (15).

C∑
c=1

evc = b(x) (20)

También es posible apilar las Gaussianas de más de una GMM para,
posteriormente, elevar y sumar distintas partes del vector resultante
para obtener las probabilidades de observación de distintos estados.

Esta transformación, además de representar una reducción en el
coste computacional del cálculo de las probabilidades de observación,
lo expresa como una operación fundamentalmente matricial, lo cual
abre la puerta a una posible ganancia todavía mayor mediante el uso
de algoritmos paralelos.



C
A L G O R I T M O D E R E C O N O C I M I E N T O

El presente apéndice detalla el algoritmo de reconocimiento em-
pleado en este proyecto, sin entrar en los detalles de su implemen-
tación ni en los del cálculo de las probabilidades de observación, ya
detallados en el Apéndice B.

c.1 consideraciones previas

Generalmente, el algoritmo de reconocimiento de un RAH está
basado en bucles iterativos. Como paso previo al planteamiento de
la paralelización del algoritmo, éste se escribió en forma matricial en
código Matlab, el cual es más sencillo de implementar que C y tiene
múltiples opciones para representar los resultados gráficamente.

Todos los cálculos del algoritmo están en escala logarítmica, ya que
se trabaja con probabilidades muy pequeñas que podrían salirse de
rango en escala lineal. Aunque las matrices y los vectores con los que
se trabaja en la implementación son de tipo sparse (donde únicamente
se guardan los índices y los valores de los elementos no nulos), aquí
no se entrará en tales detalles de implementación.

Los datos de entrada al algoritmo son los siguientes:

X = {X0, . . . , Xt, . . . , XT }: vectores D-dimensionales con las ob-
servaciones en cada frame temporal.

A = {αi,j}: probabilidades de transición, en escala logarítmica,
entre cada pareja de estados, con 1 6 i 6 N y 1 6 j 6 N, de
forma que, en un instante t, αi,j = log(P(st = si|st−1 = sj)).

Π = {πi}: vector de N elementos con la probabilidad inicial de
cada estado, con πi = log(P(s1 = si))

G: conjunto de parámetros que define el modelo estadístico de
cada estado, como la correspondencia entre un estado y una
GMM o los parámetros de ésta. La función encargada de cal-
cular las probabilidades de observación recibirá G junto con la
observación en ese frame y los estados a calcular.

Ω = {ωi}: tabla que, para cada estado si, indica la cadena de
caracteres que debe sacar en el proceso de backtracking o recupe-
ración del camino correspondiente con la hipótesis final. Debido
a la organización del vocabulario en forma de árbol para acele-
rar la búsqueda, el estado final de cada palabra es el que lleva
asociada la cadena correspondiente a ésta.

49
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Por otra parte, se define el beam como un parámetro del algoritmo.
Éste indica el ratio entre dos verosimilitudes a partir del cual puede
considerarse una despreciable frente a la otra.

c.2 algoritmo

c.2.1 Inicialización

El algoritmo comienza definiendo la matriz Φ donde se guardarán
los caminos a medida que vayan recibiéndose observaciones, tras lo
cual inicializa el vector de tokens con las probabilidades iniciales Π.
Éste es un vector de N elementos en los cuales se guarda la probabili-
dad acumulada, normalizada al máximo, del token en ese estado. En
el caso de que no haya un token activo en ese estado se guarda −∞.
La verosimilitud de los estados iniciales se pondera con las probabili-
dades de observación del primer vector de entrada X0.

1 Φ = zeros (N, T );

2 tok = Π; /* Inicialización de los tokens */

3 active = find (tok > −∞);

4 b = eval_st (X0, active, G); /* Cálculo de p. obs. */

5 tok(active) = tok(active) + b;

6 B = repmat (tok, 1, N);
Algoritmo 5: Inicialización

La función eval_st toma como argumentos las observaciones de
ese instante X0, el modelo probabilístico G y los índices de los to-
kens activos, y devuelve las probabilidades de observación para sus
estados. La última línea expande el vector de tokens en una matriz,
necesaria para el paso de propagación. Cada fila contiene el mismo
elemento en todas sus columnas: la probabilidad acumulada del to-
ken en ese estado o, en su defecto, −∞ (ver Figura 35).

Figura 35: Líneas 11 y 12 en el Algoritmo 5
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c.2.2 Bucle de reconocimiento

La siguiente parte del reconocedor se repite en bucle mientras hay
nuevas observaciones de entrada. En una aplicación real, el bucle de
reconocimiento es una función llamada desde otro programa, pero
aquí se asume que el número de observaciones T es conocida de an-
temano.

1 for t = 1 : T − 1 do
2 B = B + A; /* Paso de propagación */

3 [tok, i_max] = max (B, [], 1)’; /* Purga */

4 max_tok = max (tok);
5 tok(tok < max_tok - beam) = −∞; /* Beam Search */

6 tok = tok - max_tok; /* Normalización */

7 active = find (tok > −∞);
8 Φ(active, t− 1) = i_max(active); /* Actualización de Φ */

9 b = eval_st (Xt, active, G); /* Cálculo de p. obs. */

10 tok(active) = tok(active) + b; /* Actualización de tok */

11 B = repmat (tok, 1, N);

Algoritmo 6: Bucle de reconocimiento

Tras el paso de propagación, la matriz B tiene, en cada elemento
(i, j) distinto de −∞, la probabilidad acumulada del token que se ha
propagado desde el estado si hasta el sj (Figura 36).

Figura 36: Líneas 2 y 3 en el Algoritmo 6

Posteriormente, se efectúa el paso de purga tomando el token con
máxima probabilidad acumulada que ha llegado a un estado. La mis-
ma operación max, que recoge los máximos de cada columna de B
en el vector tok, guarda en otro vector la filas o estados de los que
provienen. Tras este paso se eliminan las hipótesis despreciables y
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se normalizan las probabilidades acumuladas. En la columna t − 1
de la matriz Φ se guardan los estados de procedencia de los tokens
todavía activos, en las filas correspondientes a sus estados actuales.
Después, se vuelven a ponderar las hipótesis por las probabilidades
de observación y se prepara B para la siguiente iteración.

c.2.3 Backtracking

Finalmente, cuando no quedan más datos de entrada, se recupera
la secuencia asociada al token con mayor probabilidad, almacenada
en la matriz Φ. Tras recorrer ésta hacia atrás, la secuencia de estados
queda guardada en un vector, st. El siguiente bucle comprueba la ta-
bla Ω para cada estado de salida, imprimiendo por pantalla aquéllos
que tienen una palabra asociada.

1 [∼, i_best] = max (tok); /* i_best: estado final más probable */

2 seq = zeros (1,T );

/* Búsqueda de la secuencia de estados */

3 st = i_best;
4 for t = T − 1 : −1 : 1 do
5 seq(t) = st;
6 st = Φ(st, t);

7 seq(0) = st;

/* Mostrar la secuencia de palabras asociada */

8 q0 = −1;
9 for t = 1 : T − 1 do

10 q = seq(t);
/* Sacar sólo una palabra si el estado ocupa varios frames */

11 if q0 6= q then
12 ω = Ω(q);
13 if length (ω) > 0 then print (ω);

14 q0 = q;

Algoritmo 7: Backtracking

El algoritmo mostrado, representado en la Figura 37, define una
matriz Φ de tamaño N× T , pero para ahorrar espacio en memoria
generalmente se limitan el número máximo de tokens y el de frames,
quedando nMax× tMax. Esta aproximación implica acudir al algo-
ritmo de backtracking cada vez que el buffer se llena, recuperando la
mejor hipótesis en ese momento sin la garantía de que lo vaya a ser en
un futuro, y siguiendo el bucle de reconocimiento con el último esta-
do de la secuencia como único token activo. También puede liberarse
espacio de Φ sin eliminar hipótesis válidas haciendo el backtracking
cuando todos los tokens se han propagado desde el mismo estado,
ya que todas las secuencias compartirán hasta ese instante el mismo
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Figura 37: Líneas 1-7 en el Algoritmo 7

camino. En cualquiera de los dos casos esta gestión se hace al final
del bucle de reconocimiento, antes de pasar a la siguiente iteración.





D
E S T R U C T U R A S D E D AT O S

Este apéndice detalla las estructuras de datos creadas para la im-
plementación en CUDA C del algoritmo de reconocimiento.

Debido a que al comprimir una matriz se aumenta la dependencia
entre sus elementos no nulos, lo cual dificulta la gestión en paralelo,
se han definido distintos tipos de estructuras sparse dependiendo de
su función en el algoritmo.

FSparse, ISparse: Matrices sparse de tipo float e int, respec-
tivamente. El vector epr indica el número de elementos no nulos
en cada una de las r filas de la matriz. En cada fila de la matriz
val se encuentran los valores no nulos de la matriz, apilados al
principio de cada fila. En las mismas posiciones, los elementos
de colInd indican la columna de cada uno de los valores. El
valor eprMax determina el número máximo de elementos por
fila.

Figura 38: Estructuras FSparse e ISparse

VSparse: Contiene el vector val, con len elementos de tipo float,
nMax de ellos no nulos como máximo. No lleva ningún tipo de
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compresión, por lo que no se trata de un vector sparse propia-
mente dicho, pero lleva asociado un vector de punteros i con las
posiciones de los elementos no nulos, cuyo número se guarda
en n, lo cual facilita la gestión de tokens. Opcionalmente puede
declararse un vector de enteros iPrev, con un entero asociado
a cada valor no nulo y en su misma posición, que servirá en el
algoritmo para guardar el estado de procedencia de cada token.

Figura 39: Estructura VSparse

Trans: Matriz sparse de float que contiene las probabilidades
de transición en escala logarítmica. Ésta es la estructura con la
que más espacio se ahorra con una gestión de memoria eficiente,
al ser una matriz de r×r elementos, con r el número de estados,
generalmente muy elevado. El hecho de que su contenido no se
modifique durante todo el algoritmo permite guardarla en un
formato más comprimido. Los vectores val y colInd contienen
los n valores no nulos de la matriz y sus respectivas colum-
nas. El vector de enteros iRow guarda la posición inicial de los
valores de cada fila en esos vectores, y en su último elemento
contiene el número de elementos no nulos.

Figura 40: Estructura Trans
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Se han implementado también funciones para poder definir estas
estructuras en el host o en la GPU a partir de los parámetros de
diseño, para inicializarlas a partir de un fichero, para imprimir su
contenido y para copiarlo entre host y device y viceversa. A lo largo
del código, se utiliza la convención de incluir h_ y d_ al principio
de los nombres de las variables puntero para indicar si apuntan a
posiciones de memoria en el host o en la GPU, respectivamente.

Otras variables se han agrupado en las siguientes estructuras de
datos para simplificar el algoritmo principal, el cual llama a funciones
que hacen uso de éstas, haciendo el código más legible y estructura-
do.

Token: Esta estructura representa el vector de tokens, con las
estructuras y variables que necesita para realizar el paso de pro-
pagación. El vector tok, de maxTok estados activos como máxi-
mo, guarda la información de los tokens activos en cada frame,
mientras que B es la matriz donde se guardan los resultados
intermedios de la propagación. En maxVal se guarda la proba-
bilidad del token de mayor peso, obtenida mediante reducción
con los vectores auxiliares vMaxB y vAuxMaxB. Finalmente, eq se
usa para detectar si todos los tokens en un frame provienen del
mismo estado, en cuyo caso pueden sacarse resultados parcia-
les.

Figura 41: Estructura Token

Seq: Secuencia de estados más probable, la cual se guarda en
el vector seq, de maxT elementos como máximo. Los vectores
de enteros iFin e iFinAux se emplean para buscar el estado
final más probable por reducción, mientras que el entero stFin,
inicializado a −1, guarda entre distintas llamadas a la función
de backtracking el último estado recuperado. Esto es debido a
que si un estado dura varios frames, en el caso de que lleve
asociada una palabra solamente hay que mostrarla una vez por
pantalla.

Phi: Buffer circular para guardar los estados de procedencia de
los tokens en cada frame temporal, para hacer posteriormente el
backtracking. Estos estados se guardan en la estructura ISparse
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P, de dimensiones maxT×maxTok. La fila de cada elemento en es-
ta matriz indica el frame temporal, la columna indica el estado
en el que se encuentra el token en ese momento y el valor, el
estado desde el que se ha propagado. Las variables tIni y tFin,
inicializadas a 0, son punteros a la posición inicial y final del
buffer en un determinado momento. Con cada nuevo dato de
entrada, tFin se incrementa (si llega al tamaño máximo de P, se
pone a cero). Cuando se sacan resultados parciales, se actualiza
tIni hasta la posición del último frame reconocido. Si tFin al-
canza a tIni quiere decir que el buffer se ha llenado, en cuyo
caso se llama a la función de backtracking, que busca la secuen-
cia más probable hasta ese momento, tras lo cual puede vaciarse
el buffer poniendo ambas variables a cero de nuevo.

Figura 42: Estructura Phi

Gauss: Parámetros estadísticos de los distintos estados, forma-
dos por n mezclas de Gaussianas apiladas en una matriz de
tot×cols elementos (Gaussianas en total por parámetros de ca-
da una). las tablas q2s e ini indican la correspondencia entre
cada estado y su mezcla de Gaussianas (algunos estados com-
parten GMM) y la Gaussiana inicial de cada mezcla, mientras
que fetch guarda durante los cálculos la posición de la probabi-
lidad de observación de cada token dentro del vector pExp. En
x se almacenan las distintas observaciones y gMask es una más-
cara que indica qué Gaussianas van a emplearse en ese frame.
Los resultados finales se guardan en pObs.

Figura 43: Estructura Gauss
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