PROYECTO FIN DE CARRERA

PARALELIZACION DEL ALGORITMO DE BUSQUEDA DE
UN RECONOCEDOR AUTOMATICO DE VOZ

Autor
Juan Vallés Martin

Director

Antonio Miguel Artiaga

ESCUELA DE INGENIERIA Y ARQUITECTURA
2014

Juan Vallés Martin: Paralelizacion del algoritmo de biisqueda de un recono-
cedor automdtico de voz, 2014

RESUMEN

Paralelizacion del algoritmo de busqueda de un reconocedor
automatico de voz

Durante afios, la velocidad de los procesadores ha aumentado de-
bido al aumento de transistores en los circuitos integrados. Estas me-
joras en la eficiencia no requerian cambios en el software: el mismo
programa era mas rapido en un ordenador con una frecuencia de
reloj mds alta. Sin embargo, la posibilidad de seguir mejorando la ca-
pacidad de los sistemas actuales puede ser acelerada a un ritmo mu-
cho mayor si se consigue paralelizar el problema y tratarlo mediante
arquitecturas de hardware paralelo disponibles, como procesadores
multintcleo, clisters o GPUs (Graphics Processing Units).

El proyecto plantea el estudio de la viabilidad de un reconocedor
de voz con funciones en paralelo mediante el desarrollo de un pro-
totipo. Los objetivos principales son la paralelizacién de la busqueda
de la secuencia de estados (sonidos) més probable y el calculo de las
verosimilitudes de los datos de entrada (observaciones), explorando
las posibilidades que este paralelismo ofrece y viendo el rendimien-
to que con él puede llegarse a obtener. El desarrollo se lleva a cabo
en el lenguaje de programacion C, mientras que las funciones para-
lelizadas se implementan en GPUs utilizando CUDA, un modelo de
programacién adaptado a esta arquitectura, y su extensién para C.

En cada instante del proceso de reconocimiento hay un nimero
determinado de tokens activos con una probabilidad y una secuencia
de estados asociadas y que representan las hipétesis mdas probables
hasta el momento. Cuando hay nuevos datos de entrada, estos to-
kens se propagan hacia los siguientes estados, cambiando su peso
dependiendo de las probabilidades de transicién entre estados y de
las probabilidades de observacién (como los datos se ajustan al so-
nido correspondiente a cada estado). Los tokens que acaban en el
mismo estado que otro con mayor peso y los que no superan cierta
probabilidad son desechados. El proceso acaba mostrando la secuen-
cia asociada al token de mayor peso en el instante final. Hay partes
de este proceso que son expresables como productos matriciales o
vectoriales y que por tanto son facilmente paralelizables.

Cada estado lleva asociada una mezcla de Gaussianas de las mis-
mas dimensiones que las de los datos de entrada. La parte més costo-
sa del célculo de las probabilidades de observacién es una distancia
entre vectores de muchas dimensiones. Desarrollandola como un po-
linomio de segundo grado y apilando los coeficientes de todos los
polinomios en una matriz podemos convertir este calculo en un pro-
ducto matricial, susceptible también de ser paralelizado.

1ii

INDICE GENERAL

1

INTRODUCCION 1

1.1 Antecedentes y motivacion 1

1.2 Descripcién y objetivos del proyecto 2
1.3 Organizacién de la memoria 3

EL PROCESO DE RECONOCIMIENTO 5

2.1 Fundamento tedrico 5

2.2 Modelos Ocultos de Markov 6
2.3 Algoritmo de Viterbi 9
2.4 Busqueda con tokens 11

IMPLEMENTACION 15
3.1 Introduccién 15
3.2 Consideraciones previas a la implementacion 16
3.3 Propagacion 19
3.3.1 Célculo de tokens en el siguiente frame 19

3.3.2 Purga 20
3.3.3 Btsqueda del méximo por reduccién 21
3.3.4 Actualizaciéon de indices y ntimero de tokens ac-
tivos 23
3.4 Célculo de las probabilidades de observacién 23
3.4.1 Inicializacién de gMask y fetch 24

3.4.2 Multiplicacién con mdscara 24
3.4.3 Suma y normalizacién 25
3.4.4 Actualizacién de las probabilidades acumula-
das 26
3.5 Recuperacion de resultados 26

3.5.1 Actualizacién del buffer © 26
3.5.2 Algoritmo de bactracking 28

RESULTADOS 31
4.1 Estudio de tiempos 31
4.1.1 Comparacién del rendimiento con otros recono-
cedores 32
4.1.2 Distribucién de tiempos 33
4.1.3 Rendimiento del célculo de probabilidades de
observaciéon 35

CONCLUSIONES 37
5.1 Resumen del proyecto y andlisis de objetivos 37
5.2 Desarrollo en el futuro 38

A CONCEPTOS BASICOS DE CUDA 41

vi

INDICE GENERAL

A.1 Historia de la programacién en paralelo 41
A.2 Introduccién a CUDA C 43
A.3 Ejemplo: suma de vectores 44

CALCULO DE LAS PROBABILIDADES DE OBSERVACION 47
B.1 Introduccién 47
B.2 Expresion del célculo como producto matricial 47

ALGORITMO DE RECONOCIMIENTO 49
c.1 Consideraciones previas 49
c.2 Algoritmo 50
c.2.1 Inicializacién 50
c.2.2 Bucle de reconocimiento 51
c.2.3 Backtracking 52

D ESTRUCTURAS DE DATOS 55

BIBLIOGRAFfA 59

INTRODUCCION

1.1 ANTECEDENTES Y MOTIVACION

La interaccién entre personas y mdquinas es mds frecuente y di-
versa a medida que avanza la tecnologia. Hoy podemos pedirle a un
dispositivo que nos indique la ruta hacia nuestro destino o que re-
conozca una cancién por nosotros. Dado que el habla es, en muchas
situaciones, la forma de interaccién mds natural para el ser humano,
es légico que haya un interés especial en el desarrollo de sistemas
capaces de reconocer y entender la voz humana.

El Reconocimiento Automatico del Habla (RAH) es el proceso de
clasificacién de secuencias de patrones extraidas de una senal de au-
dio que contiene voz humana, de forma que el mensaje contenido en
ella es reconocido. Entre sus aplicaciones pueden encontrarse siste-
mas de dictado de palabras o documentos, traduccién entre lenguajes,
sistemas de control por voz o subtitulado automatico de documentos
audiovisuales.

Aunque la investigacion en este campo comenzé hace décadas, y
pese a los avances conseguidos en los tltimos afios, todavia son nece-
sarias mejoras en la robustez y la velocidad de los sistemas de recono-
cimiento para poder hablar de un reconocedor de altas prestaciones,
especialmente si se consideran aplicaciones de tiempo real. El pro-
yecto plantea la programacion de funciones en paralelo como medio
para acelerar el software de reconocimiento del habla.

Hasta hace algunos afios la velocidad de los procesadores aumen-
taba principalmente debido al aumento del nimero de transistores en
los circuitos integrados (aproximadamente el doble cada dos afios), si-
guiendo la ley de Moore. De esta forma, el mismo programa era mas
rdpido en un ordenador de prestaciones mads altas sin requerir cam-
bios en el software. Sin embargo, aunque el niimero de transistores
continiia aumentando, la velocidad de reloj ha dejado de seguir esa
tendencia, y recientemente han aparecido nuevas arquitecturas y mo-
delos de programaciéon que permiten aumentar la velocidad de los
sistemas de una forma alternativa y, en ocasiones, a un ritmo mucho
mayor.

La programacién en paralelo, y en particular la programacién de
GPUs (Graphic Processing Units), es un modelo que ha ganado po-
pularidad en los tltimos afios. Dado que la mayoria de operaciones
realizadas sobre un pixel en una imagen no dependen del resultado
de dicha operaciéon en otros pixeles, las tarjetas graficas se compo-

INTRODUCCION

nen de varios procesadores (mds simples que una CPU) capaces de
realizar la misma tarea en paralelo, de forma que varios pixeles son
tratados a la vez. Esta idea se ha aprovechado en aplicaciones tradicio-
nalmente ejecutadas por CPUs consiguiendo mejoras en los tiempos
de ejecucion. En particular, aquellas funciones expresables como su-
mas o productos matriciales dan buenos resultados al programarse en
paralelo. Actualmente el framework que predomina en la programa-
ciéon de GPUs es CUDA, perteneciente a nVidia®,, el cual proporciona
una serie de herramientas de desarrollo para acceder a los sets de
instrucciones de sus tarjetas graficas.

1.2 DESCRIPCION Y OBJETIVOS DEL PROYECTO

Como se mencionaba en el apartado anterior, el objetivo funda-
mental del proyecto es el estudio de la viabilidad de un reconocedor
de voz con los distintos pasos del proceso de reconocimiento imple-
mentados como funciones en paralelo programadas en CUDA, ob-
servando las mejoras en los tiempos de ejecucién que con éstas se
pueden conseguir. Para ello, es necesario crear un prototipo progra-
mado en lenguaje C, capaz de reconocer secuencias de palabras a
partir de ejemplos y modelos estadisticos del laboratorio de Tecnolo-
gias del Habla? del Grupo de Tecnologias de las Comunicaciones de
la Universidad de Zaragoza.

El primer objetivo del proyecto es, por tanto, expresar el algoritmo
de reconocimiento (tradicionalmente implementado como una serie
de bucles anidados) como una sucesién de operaciones matriciales y
vectoriales, para asi facilitar el desarrollo posterior de funciones en
paralelo. Las estructuras de datos resultantes son matrices y vectores
de gran tamafio pero con solamente unos pocos elementos distintos
de cero, por lo que es necesario trabajar con estructuras de tipo spar-
se, las cuales guardan tnicamente los indices y los valores de los
elementos activos en un vector o en una matriz. Existen librerias que
permiten trabajar con este tipo de estructuras en CUDA vy realizar
operaciones matriciales simples como sumas o multiplicaciones. Las
funciones disponibles en esta libreria son a priori mds rapidas que
cualquier versién "hecha a mano"de las mismas, aunque son funcio-
nes muy generales y optimizadas para la resolucion de sistemas de
ecuaciones. Por otra parte, no permiten trabajar en escala logaritmica,
lo cual es un problema, ya que en el reconocimiento de voz los calcu-
los en escala lineal pueden salirse facilmente de rango. El siguiente
objetivo es, por tanto, la comparacién de una solucién basada en li-
brerias con otra basada en funciones y estructuras hechas a medida
para el problema.

1 http://www.nvidia.com/object/cuda_home_new.html
2 http://vivolab.es/

http://www.nvidia.com/object/cuda_home_new.html
http://vivolab.es/

1.3 ORGANIZACION DE LA MEMORIA

Para facilitar el proceso de depurado también es conveniente te-
ner una versiéon en Matlab del prototipo (sin funciones en paralelo,
aunque con su equivalente matricial), ya que es mas sencillo de pro-
gramar aunque mucho menos eficiente. Asimismo, hace falta un pro-
grama, que también se implementa en Matlab, que lea los datos (los
modelos actsticos y de lenguaje y las distintas secuencias de patro-
nes) en el formato que utiliza HTK [6], un software de manejo de
modelos de Markov utilizado habitualmente en RAH, y las transfor-
me al formato adecuado para la versiéon en C del reconocedor.

Entre las funciones programadas en paralelo se distinguen dos
partes: el algoritmo de Viterbi y el calculo de las probabilidades de
observacion. En el proceso de reconocimiento (explicado con detalle
en el capitulo 2), la produccién del habla se modela mediante Mo-
delos Ocultos de Markov (HMM), y la btisqueda de la secuencia de
palabras que mejor explica los datos observados se realiza median-
te el algoritmo de Viterbi, aunque debido al tamafio de la red de
estados (o0 sonidos posibles) que se maneja en un caso normal de re-
conocimiento es necesario incluir en él ciertas modificaciones. Hay
pasos en este algoritmo claramente paralelizables, como la propaga-
cién de un estado hacia sus posibles estados destino. Otros, como la
busqueda de la hip6tesis méas probable entre las que consideramos en
un momento dado, tienen una componente secuencial que dificulta
su paralelizaciéon. Sin embargo, ya que la transferencia de datos en-
tre CPU y GPU es costosa en tiempo, todos los pasos del algoritmo
se intentardn programar con funciones en paralelo para mantener el
tiempo dedicado a transferir datos en el minimo necesario.

La paralelizacién del célculo de las probabilidades de observacion
es uno de los tltimos objetivos que se incluyeron en el proyecto. Este
calculo se realiza en cada iteracién de la fase de busqueda del algorit-
mo de Viterbi, pero inicialmente se consider6 calcularlo en CPU. Sin
embargo, la carga computacional de esta operacién hace que las mejo-
ras en su eficiencia tengan un impacto importante en el rendimiento
total del programa. La tarea de esta funcién consiste en el calculo de
la probabilidad de que unos datos de entrada correspondan a cada
uno de los estados que consideramos posibles en un determinado
momento. La parte mds costosa de este cdlculo es la distancia entre
dos vectores de muchas dimensiones, la cual puede desarrollarse co-
mo un polinomio de segundo grado. Escribiendo los coeficientes de
forma matricial, el calculo puede realizarse como un producto, que
como ya se ha mencionado es facilmente paralelizable.

1.3 ORGANIZACION DE LA MEMORIA

Aparte del presente capitulo, que sirve como introduccién y resu-
men del proyecto, la memoria se organiza en las siguientes secciones:

4

INTRODUCCION

En el Capitulo 2 se desarrollan los fundamentos teéricos de los
sistemas de RAH como los HMMs, o la bisqueda de Viterbi.

El Capitulo 3 explica los detalles de la implementacién del pro-
totipo de reconocedor basado en funciones en paralelo.

En el Capitulo 4 se presentan y analizan los resultados del traba-
jo desarrollado, se muestran los distintos tiempos de ejecucion
del programa y se comparan con los de otros reconocedores.

El Capitulo 5, finalmente, presenta las conclusiones del proyec-
to, repasa los objetivos iniciales de éste y su desarrollo y ofrece
una serie de lineas de trabajo futuras.

En el Apéndice A puede encontrarse una breve introduccién a
la programacién en paralelo basada en GPUs, con un ejemplo
de funcién escrita en CUDA C.

En el Apéndice B se desarrolla el calculo de las probabilidades
de observacién como un producto matricial.

El Apéndice C explica detalladamente el algoritmo de reconoci-
miento basado en matrices implementado durante el proyecto.

En el Apéndice D aparecen detalladas las distintas estructuras
de datos creadas para el desarrollo del prototipo.

EL PROCESO DE RECONOCIMIENTO

2.1 FUNDAMENTO TEORICO

Un Reconocedor Automatico del Habla (RAH) es un sistema que
intenta extraer la secuencia de palabras emitida por un locutor a par-
tir de una sefial actistica. Como paso previo a la implementacion de
un RAH, es necesario conocer los principios teéricos en los que se
basa y decidir el enfoque de disefio que se va a adoptar.

Los sistemas de RAH pueden clasificarse segtn distintos criterios
(adaptacion al locutor, tamafio del vocabulario, objetivo del reconoci-
miento...) y existen varios enfoques a la hora de abordar el algoritmo
de reconocimiento. Los métodos probabilisticos basados en el Teore-
ma de Bayes son los que predominan hoy en dia en el reconocimiento
del habla [3].

El proceso de reconocimiento comienza con la captacién de una
sefal de voz a través de un micréfono. Esta sefal se procesa de for-
ma que periddicamente se obtiene un vector de caracteristicas o; €
RP,t € [1,T], siendo D el ntiimero de dimensiones del vector y Tel
namero de observaciones. Mediante este proceso, conocido como ex-
traccion de caracteristicas, se obtiene el conjunto de observaciones O
que conforman los datos de entrada al sistema.

O ={o01,...,0¢,...,0T} (1)

Tras el proceso de reconocimiento, la salida del sistema es una se-
cuencia de N palabras.

W={wq,...,Wy,..., Wk} (2)

El objetivo del sistema es conseguir la secuencia de palabras que
mejor se ajusta a los datos de entrada, lo cual se expresa desde un
punto de vista probabilistico como:

W = argmax P(W|O) (3)
w

La probabilidad P(W|O) no puede calcularse directamente. Hacien-
do uso del Teorema de Bayes, (3) puede reformularse como:

P(O[W) P(W)

P(O) (4)

W = argmax

w
P(W) es la probabilidad de que la secuencia de palabras ocurra, la
cual se obtiene a partir del modelo de lenguaje. P(O|W) es la probabi-
lidad de que la secuencia de observaciones O se corresponda con la

EL PROCESO DE RECONOCIMIENTO

secuencia de palabras pronunciadas W, y viene dada por el modelo
acustico. El término en el denominador, P(O), no afecta a la maximi-
zacion, por lo que puede eliminarse de (4), obteniéndose la férmula
fundamental del reconocimiento automaético del habla:

W = argr“rrlax {P(O|W) P(W)} (5)

La Figura 1 representa los pasos del proceso de reconocimiento:

Extracciéon de
caracteristicas

Modelo actstico ALGORITMO DE
Modelo de lenguaje RECONOCIMIENTO

Figura 1: Esquema bésico de un RAH

2.2 MODELOS OCULTOS DE MARKOV

La forma més habitual de modelar la produccién del habla es me-
diante modelos ocultos de Markov o0 HMMs (Hidden Markov Mo-
dels) [5]. Para comprenderlos facilmente, es mejor comenzar viendo
las cadenas de Markow.

Sean un conjunto de estados S = {s1,s2,...,8n} con ciertas pro-
babilidades de transicién A = {ai;} entre ellos, los cuales producen
unos determinados resultados observables X = {xj,...,xn}, Y una se-
cuencia de variables aleatorias u observaciones O = {01,...,071} que
pueden tomar alguno de los valores en X. La secuencia forma una
cadena de Markov de orden 1 si cumple la Propiedad de Markov, es-
to es, si dado el estado actual, los estados pasados y los futuros son
independientes.

P(Siy1 =5"|S1 =51,...,St =) =P(S¢41 =5’ |S¢t = s) (6)

Una cadena de Markov de orden m seria aquella en la que la pro-
babilidad de ocurrencia de un estado depende de los m estados pasa-
dos, pero a partir de ahora se tomardn en consideracién tinicamente

2.2 MODELOS OCULTOS DE MARKOV

modelos de orden 1. La Figura 2 representa una cadena de Markov
con N = 5, probabilidad 1 de comenzar en el estado s; y distintas
probabilidades de transicién.

0.7 0.5 F% 0.5 h
1 0.3 0.5 0.35 0.5
—> 51 52 83 S4 S5

1 2 l
é 3

Figura 2: Ejemplo de cadena de Markov

Para tal cadena de Markov, la probabilidad de observar la secuencia
0O =1{1;1;2;3;3} seria de:

P(O)=m a1, a1 az3 a33 = 6.825x 1072)

A diferencia de las cadenas de Markov, donde observando los es-
tados puede determinarse la verosimilitud de una secuencia, los esta-
dos de un HMM no son directamente observables sino que producen
unos resultados observables u otros con una cierta probabilidad. De
esta forma, la secuencia observada no se corresponde directamente
con una secuencia de estados, sino que lo hace con una cierta proba-
bilidad.

Un HMM se define como A = {A, B, IT}, y tiene los siguientes para-
metros:

» S={s1,...,sn}: el conjunto de estados del modelo, siendo N el
numero de estados que lo forman.

= B ={bj,...,bn}: las probabilidades de distribucién asociadas a
cada uno de los estados. En el caso que aqui se trata la distribu-
cién de cada estado se modela como una mezcla de Gaussianas
0 GMM (Gaussian Mixture Model), cuya funcién de densidad de
probabilidad (pdf, Probability Density Function) se define como
la suma de un grupo de Gaussianas ponderadas por unos pe-
sos. La verosimilitud de un vector de caracteristicas o; para un
estado s; es:

C
bj (of) = Z Wj,c N(og; Wi, c, Zj,c) (8)
c=1

C es el nimero de Gaussianas en la mezcla, wj . es el peso de
la Gaussiana c, y uj,c y Zj,c, sumedia y covarianza, respectiva-

El Apéndice B
detalla este cdlculo y
muestra su
desarrollo como
producto matricial.

8

EL PROCESO DE RECONOCIMIENTO

mente. En este proyecto, como ocurre habitualmente en RAH,
se utilizan matrices de covarianza diagonales.

» A = {ay;}: probabilidades de transicién entre cada pareja de
estados, con 1 <1 < Ny 1 <j <N, deforma que, en un
instante t, aj; = P(S¢ = si[S¢—1 = s5).

» T ={m;}: las probabilidades iniciales, con 7t; = P(S7 = s;).
El ejemplo de la Figura 2 se convierte en un HMM si cada estado

sn lleva asociada una distribucién Gaussiana de media n y varianza
0.5 (ver Figuras 3y 4).

S1 S9 S3 S4 S5

1 2 3 4 9!

Figura 3: Probabilidades de distribucién de los distintos estados

(y (v (Y (v (¥

—» 51 S92 —> 83 S4 —> S5

1.5

Figura 4: Probabilidades de observacion de los distintos estados

En este caso la probabilidad de que una secuencia de entrada O
haya sido producida por la secuencia de estados S se calcula de la
siguiente manera:

5
P(O|S)P(S) = by(07) H a(i—1),j(1) bj1)(01) 9)
i=2

El algoritmo de reconocimiento busca la secuencia que maximiza
esta probabilidad, lo cual es equivalente a resolver la ecuacién (5). En
el siguiente apartado se explica coémo llegar a esta solucién.

En los sistemas de RAH el modelo de lenguaje es una cadena de
Markov donde cada estado es una palabra, definiendo asi las relacio-
nes entre éstas y la probabilidad de las posibles secuencias. El mo-
delo actistico es un HMM donde cada estado representa una unidad

2.3 ALGORITMO DE VITERBI

de sonido, en este caso el fonema con contexto. Cada fonema se mo-
dela como tres estados, incluyendo asi informacién sobre el fonema
(o silencio) que lo precede y el que lo sigue dentro de una palabra.
Los pardmetros estadisticos de las redes utilizadas en RAH se calcu-
lan generalmente mediante una estimacién de maxima verosimilitud
(ML, Maximum Likelihood) usando el algoritmo iterativo EM (Expecta-
tion Maximization) [1] a partir de una base de datos con ejemplos de
cada tipo de sonido.

Tokyo

Yokohama @
‘ Nagoya |'

t o k y 0
OO0 0R0

Figura 5: Ejemplo de red de palabras y de fonemas [2]

La Figura 5 muestra un ejemplo de una red de palabras y otro de
una de fonemas. La red final que el algoritmo de reconocimiento reco-
rre puede verse como una red por capas, producto de la composicion
de las redes de sendos modelos. De esta forma, dos estados de la capa
inferior pueden compartir el mismo modelo estadistico, pero ser aun
asi distintos por pertenecer a palabras diferentes en la red superior.
El algoritmo de reconocimiento recupera la secuencia de estados més
probable, pero lo que interesa al usuario es la secuencia de palabras,
por lo que una tabla asocia cada palabra a su tltimo estado de la red
inferior. Asi, inicamente se muestran las palabras asociadas a estados
dentro de la secuencia.

2.3 ALGORITMO DE VITERBI

A partir de los modelos actstico y de lenguaje se efecttia el proceso
de reconocimiento, donde se calcula la secuencia de palabras que
maximiza la ecuacion (5).

Una solucién de fuerza bruta podria ser, a partir de los datos de
entrada, calcular la verosimilitud de todas las posibles secuencias de
palabras, y obtener aquélla que la maximice. El problema de este
enfoque, excepto para ejemplos muy sencillos (pocas palabras en el
diccionario y secuencias de entrada cortas), es que la carga compu-
tacional de esta solucién la hace inabordable.

10

EL PROCESO DE RECONOCIMIENTO

Aprovechando la memoria finita de los HMMs usados en el pro-
blema, el algoritmo de Viterbi [5] permite reducir su complejidad
resolviéndolo por partes. Este recorre, a medida que van llegando
nuevos datos de entrada, el diagrama de transiciones o diagrama de
Trellis, calculando para cada estado la méxima verosimilitud y el es-
tado desde el que se llega con ésta. Si un estado tiene dos o mds
transiciones de entrada, se puede mantener tinicamente la secuencia
que le llega con mayor probabilidad, ya que no hay forma de que
las hipétesis descartadas superen en verosimilitud a la mantenida a
partir de ese momento. A este proceso de eliminacién de hipétesis se
le llama purga.

La méxima verosimilitud se obtiene a partir de la siguiente ecua-
cion:

Pi(j) = max{Pi_1(i) aij bj(oy)} 2<t<T;1<j<N (10)
1

Esta ecuacién indica que la probabilidad del mejor camino que ter-
mina en el instante t y estado j se obtiene a partir del camino que con
mayor probabilidad se propaga desde cada uno de los N estados en
el instante t — 1 hacia el estado j, multiplicindose ésta por la verosi-
militud del vector de caracteristicas o¢ para el estado j en el instante
t. Esta ultima verosimilitud es la misma para todos los caminos que
confluyen en un mismo estado, por lo que la purga puede realizarse
antes de este cdlculo. En el instante t = 1 no puede aplicarse la ecua-
cién (10), por lo que se multiplican las probabilidades iniciales 7t; por
las probabilidades de observacion bj(o,). En general se parte de un
tnico estado inicial con probabilidad 1, lo cual simplifica el proceso
de busqueda.

La Figura 6 muestra el algoritmo de Viterbi para el ejemplo de
HMM tratado en el apartado anterior. Las probabilidades acumula-
das se muestran normalizadas a la médxima en ese momento.

Mientras hay datos de entrada los caminos se van propagando, re-
pitiendo este calculo iterativamente. Cuando llega la tltima observa-
cién, se calcula el estado final con mayor probabilidad acumulada
y se recupera la secuencia de estados asociada a él buscando hacia
atrds su estado de procedencia y el de los sucesivos estados recupe-
rados. A esta btisqueda iterativa, ilustrada en la Figura 7, se la llama
backtracking.

Para reducir los problemas de desbordamiento puede expresarse
la ecuacién (10) como la suma de los logaritmos de cada término:

Li(j) = max{Le1 (1) + oy + Bjlog)} 2<t<TT<j<N (11)
1

2.4 BUSQUEDA CON TOKENS

01 (80 O3 O4 O5

1.2 1.5 1.9 2.3 2.8

D -2 (m) o
(o)
) () ()

v () () () Ew) (o)
) () (O (o) Ew

Figura 6: Ejemplo del algoritmo de Viterbi

V)
[V)

0.45 |

»n
w

2.4 BUSQUEDA CON TOKENS

Pese a que el algoritmo de Viterbi reduce la complejidad del pro-
blema de reconocer la secuencia de palabras mas probable, en la ma-
yoria de los casos el calculo de la maxima probabilidad acumulada
para todos los estados supone todavia una gran carga computacional.
Las matrices de transiciones en RAH se caracterizan por tener un na-
mero de estados muy elevado con pocas transiciones de salida, por
lo que calcular en cada frame temporal el camino hacia cada estado
es costoso y en muchos casos innecesario.

Una variacién del algoritmo mantiene en cada momento un deter-
minado ndmero de hipétesis activas o tokens (testigos) y realiza los
calculos tinicamente para los caminos considerados posibles en ese
momento. En cada paso de propagacién, cada token se clona tan-
tas veces como su numero de transiciones de salida, actualizando su
probabilidad acumulada con la probabilidad de transicién y la pro-
babilidad de observaciéon del estado de destino. Si mas de un token
coincide en el mismo estado, se elige aquél con mayor probabilidad
acumulada.

Si el nimero méaximo de tokens M es igual a N los resultados de
este algoritmo son iguales a los del de Viterbi. Sin embargo, suelen in-
troducirse dos aproximaciones para reducir el espacio en memoria y
la carga computacional requeridos por este algoritmo. Un pardmetro
llamado beam determina cudntas veces mds pequefia ha de ser la pro-
babilidad acumulada de un token frente al de la hip6tesis mas fuerte
para considerarse como despreciable. Asi, en cada iteracién se elimi-

11

12

El apéndice C
profundiza en el
algoritmo de
biisqueda con tokens.

EL PROCESO DE RECONOCIMIENTO

‘
o

0.2)

(0.03] (<001

)
DN

(o)
(o) (o) (oo

C (0.43)

C .

Coo (o) (o) (o) [oof (o0
Q

Ve
W

(o) (o) (o) (o] [<oom

W — {W17W17W27W27W3}

VA
ot

Figura 7: Basqueda hacia atrés

nan los tokens despreciables (paso de beam search). Por otra parte, se
suele mantener un ntimero maximo de tokens M < N. Si tras una
propagacién hace falta un ndmero mayor de tokens, se mantienen los
M con mayor probabilidad acumulada.

La Figura 8 ilustra el algoritmo con tokens, con un beamn de 0,1.

01 02 O3 O4 O5

1.2 1.5 1.9 2.3 2.8

V2]
&
53
B
—_/

»
[V]
o
W
WL

(03)

Solamente se calculan
los tokens activos

S4 Beam search

Figura 8: Ejemplo de btisqueda con tokens

IXI

V)
ot

O O O O O

Esta variacién permite, ademads, presentar resultados parciales a mi-
tad del algoritmo. Si en un determinado instante t todos los tokens
provienen del mismo estado quiere decir que todas las hipétesis com-
partirdn el mismo camino hasta t — 1, por lo que los resultados hasta

2.4 BUSQUEDA CON TOKENS

ese instante pueden mostrarse ya. Los caminos asociados a los tokens
se guardan en un buffer @, por lo que esta operaciéon permite liberar
espacio de él. La siguiente vez que se muestren resultados, se hara
desde el momento t + 1. En el caso de que el buffer se llene, se de-
vuelve el camino asociado a la hipdtesis mds fuerte en ese momento,
se limpia el buffer y se eliminan todos los tokens menos el de mayor
peso.

13

IMPLEMENTACION

3.1 INTRODUCCION

Un buen sistema de RAH no necesita tinicamente ser preciso, sino
que en la mayoria de los casos la eficiencia de un reconocedor se
mide como el nimero de errores en el reconocimiento en funcién del
tiempo de ejecucion, como puede verse en la Figura 9.

Comparacion de reconocedores

20

Configuracion 1

191 ——— Configuracién 2 |

|

|

|

|
18 |

|

‘\
17 \

WER

16 |

14}

13

12
0

Figura 9: Nimero de errores frente a tiempo de ejecucion[4]

De esta forma, el proyecto plantea la implementacioén de funciones
en paralelo empleando GPUs y CUDA C como medio para mejorar
los tiempos de ejecucion. Asimismo, las estructuras de datos emplea-
das en este tipo de sistemas se caracterizan por ser de gran tamafio,
pero con pocos elementos ttiles dentro de ellas (por ejemplo, la ma-
triz de transiciones A, representada en la Figura 10). Por lo tanto, el
ahorro de espacio en memoria mediante estructuras de tipo sparse y la

gestion de éstas es otra de las caracteristicas principales del prototipo
implementado.

La estructura de un reconocedor suele basarse en bucles anidados,
como por ejemplo en el paso de propagaciéon (ver Algoritmo 1). Trans-
formando el algoritmo a uno equivalente basado en operaciones ma-

triciales y vectoriales puede verse qué partes de éste son susceptibles
de ser paralelizadas.

15

El Apéndice A
incluye detalles y
ejemplos de
programacion en
CUDA.

En el Apéndice C
puede encontrarse el
algoritmo de
reconocimiento
basado en matrices.

16

IMPLEMENTACION

Estado de procedencia

Estado de destino

Figura 10: Ejemplo de matriz de transicién

1 fori=1:ndo; /+ Para cada token activo */
2

3 forj=1:mdo; /* Para cada estado de salida x/
4

5 Calcular probabilidad acumulada P;

6 L if (Pq > P;) then P; = Pg;

Algoritmo 1: Propagacién por bucles anidados

El ejemplo anterior puede expresarse como una suma matricial (se
trabaja en escala logaritmica) y una biisqueda de méximos por colum-
nas.

La primera operacion es claramente paralela, lo cual presenta gran
oportunidad para mejorar los tiempos de ejecucion, teniendo en cuen-
ta que el nimero de tokens activos puede llegar a ser muy alto. Sin
embargo, es mas dificil implementar un algoritmo paralelo que reali-
ce la buisqueda de maximos, especialmente si se estd trabajando con
matrices sparse, en las cuales se incrementa la dependencia entre ele-
mentos.

Este compromiso se verd practicamente en todos los pasos del pro-
ceso de paralelizacién, lo cual no permite determinar a priori el im-
pacto de la nueva implementacién en los tiempos de ejecucién. En
consecuencia, lo que el proyecto plantea es el estudio de esta solu-
cién mediante un prototipo con funciones en paralelo.

3.2 CONSIDERACIONES PREVIAS A LA IMPLEMENTACION

Antes de comenzar a desarrollar el algoritmo es necesario decidir
coémo trabajar con estructuras sparse. Existen librerias, como CUSP*
o cuSPARSE? que implementan diversas funciones para realizar ope-

1 http://cusplibrary.github.io
2 http://developer.nvidia.com/cuSPARSE

http://cusplibrary.github.io
http://developer.nvidia.com/cuSPARSE

3.2 CONSIDERACIONES PREVIAS A LA IMPLEMENTACION

raciones con matrices y vectores de este tipo. Pese a que éstas son
probablemente mas rapidas que una versién “hecha a mano” de las
mismas, se trata de funciones generales optimizadas para el uso en
resolucién de sistemas de ecuaciones, por lo que el conocimiento del
problema y la implementacién de funciones a medida para éste pue-
de resultar en una solucién mads eficiente que otra basada en el uso
de librerias.

Una de las primeras tareas del proyecto ha sido la comparacién
de la libreria cuSPARSE con estructuras y funciones propias para las
operaciones bésicas que el problema requiere. Tras realizar este estu-
dio, se ha optado por la segunda estrategia, en base a las siguientes
razones:

= No existe una libreria que permita trabajar con estructuras spar-
se en escala logaritmica, lo cual acarrea problemas de rango,
especialmente en el calculo de las probabilidades de observa-
cion.

= Una de las principales operaciones del algoritmo de reconoci-
miento, el paso de propagacién, consiste en multiplicar la pro-
babilidad de cada token (elementos de un vector) por una fila
de la matriz de transiciones. Esta operacién no existe en las li-
brerias, ni tampoco la conversiéon de vector a matriz necesaria
para expresar este paso como un producto matricial. Ademads,
la libreria advierte que el producto entre dos matrices sparse es
muy poco eficiente.

= El conocimiento del problema permite, al realizar ciertos pasos
del algoritmo, adelantar trabajo de las siguientes operaciones.

» La solucién basada en librerias, al estar pensada para otro tipo
de aplicaciones, implica un trabajo no despreciable en gestién
de tipos de datos y conversién de formatos para adecuarse al
problema de RAH.

Tras definir las estructuras sparse a usar, se han agrupado distin-
tas variables en estructuras y distintos pasos en funciones, de forma
que el programa principal queda legible y estructurado (la Figura 11
ilustra su funcionamiento basico). En él se distinguen las siguientes
partes, algunas de las cuales se detallardn en los apartados siguientes:

» Declaracion de variables y asignacion de valores: Al comienzo del
programa es necesario declarar las distintas variables que se
van a usar y reservar espacio en memoria para ellas, en fun-
cién de los pardmetros del problema. Algunos de estos pardme-
tros, como el tamano del buffer o el beam, estan definidos como
macros, mientras que otros dependen del problema de reconoci-
miento concreto que se vaya a tratar. Los archivos que contienen

17

Las estructuras
utilizadas en el
proyecto estdn
especificadas en el
Apéndice D.

18

IMPLEMENTACION

calcular p. obs. calcular p. obs.

actualizar phi

backtracking

Resultados

Figura 11: Funcionamiento del reconocedor

los datos de entrada al problema (la matriz de transiciones, las
mezclas de Gaussianas, las observaciones y el diccionario), to-
dos adecuados al problema mediante un programa escrito en
Matlab, contienen el resto de pardmetros necesarios, como el
nuimero de estados o el nimero maximo de transiciones desde
un estado. Las distintas estructuras se inicializan mediante dis-
tintas funciones en el host o en la GPU segtin sea necesario, y
se copian los operandos necesarios a la GPU.

Tratamiento de la primera observacién: Tras leer la primera obser-
vacion, y con el vector de tokens inicializado con las probabili-
dades iniciales TT, se ponderan éstas con las probabilidades de
observacion de cada estado.

Bucle de reconocimiento: Mientras hay nuevos datos de entrada
con observaciones se ejecuta este bucle, que comienza con la
propagacién de los tokens (paso que incluye, ademads, la purga,
el beam search y la normalizacién de éstos), cuyas probabilida-
des acumuladas se actualizan después con las probabilidades
de observacién. Finalmente, se actualiza la matriz ® a la vez
que se comprueba si estd llena o si todos los tokens provienen
del mismo estado, en cuyo caso se llama a la funcién de back-
tracking, la cual recupera la secuencia asociada al token maés
probable desde el dltimo frame recuperado hasta el actual y
muestra por pantalla las palabras que ésta representa.

Backtracking final: Cuando no hay mads datos de entrada, se llama
por ultima vez a la funcién de backtracking, la cual devuelve la
secuencia asociada al token final més probable almacenada en
el buffer desde la dltima llamada a la funcién.

3.3 PROPAGACION

3.3 PROPAGACION

Esta parte del algoritmo, situada al comienzo del bucle de itera-
cién, se encarga de calcular los tokens activos en el siguiente frame
temporal.

Se utilizan las estructuras tok, de tipo VSparse, para guardar los
tokens activos, B, de tipo FSparse, para guardar los resultados de la
generacion de nuevos tokens, y A, de tipo Trans, la cual almacena las
transiciones de salida de cada estado.

1 B = repmat (tok, 1, N) + A; /* Calculo de transiciones x/
2 [tok, i_prev] =max (B, [], 1)’; /* Purga */
3 max_tok = max (tok);

4 tok = tok - max_tok; /* Normalizacién x/
5 tok(tok < beam) = —o0; /* Beam Search =/
6 active = find (tok > —o0); /* Indices de tokens activos */

Algoritmo 2: Propagacién de tokens

3.3.1 Cdlculo de tokens en el siguiente frame

tok B
161 3 el epr collnd val
13 2 0 1
26 2 14 13
39 2 26 27
20 2 3940 o o
41 2 40 41 o o
4 0 13 26 41

Trabajo de un kernel

Figura 12: Célculo de los nuevos tokens: resultado

La primera operacion que realiza esta funcion es la generacion de
tokens en el siguiente frame temporal, (primera linea del Algoritmo 2)
donde cada hipétesis crea un nuevo token por cada una de las transi-
ciones de salida del estado donde se encuentra. Como se ha explicado,
este paso puede verse como la suma de la probabilidad acumulada
de cada token activo a todos los elemento de su fila correspondiente
en la matriz A, aunque en este caso en la matriz resultante, B, las filas

19

20

IMPLEMENTACION

con elementos distintos de cero estan apiladas al principio (ver Figu-
ra 12). El indice de la fila a la que corresponden estd guardado en el
vector de tokens.

El kernel (Figura 13) se ejecuta de forma que hay un hilo por cada
uno de los n tokens activos, el cual se encarga de leer todas las pro-
babilidades de salida de su estado y generar los nuevos tokens. La
matriz A, como se ha dicho, guarda los valores no nulos y sus colum-
nas en sendos vectores, y el indice del primer elemento de cada fila en
otro vector. Por lo tanto, restando los indices de dos filas consecutivas
puede saberse cudntas transiciones de salida tiene un estado.

tok A
i val iRow val colInd
3 39,39 e 39 99 99 @ 99 39
40 101 100 ® = 100 40

D
B

epr val collnd
3 2/ 00 39 40

Figura 13: Célculo de los nuevos tokens: kernel

3.3.2 Purga

El siguiente paso es volver a rellenar el vector de tokens eligiendo
el mds probable de cada estado de destino (linea 2 del Algoritmo 2).
Primero es necesario poner todos los elementos de tok—val a —oo,
de lo cual se encarga un kernel con tantos hilos como elementos en
éste.

La busqueda del token mds probable en cada estado tiene una
dependencia intrinseca entre elementos. Sin embargo, puede apro-
vecharse el hecho de que todos los tokens en cada fila de B se han
propagado desde el mismo estado, por lo que éstos no necesitan com-
pararse entre si. En este kernel hay un hilo por cada columna en B
que recorre los n estados de procedencia. Cuando encuentra un to-
ken activo, si su probabilidad es mayor que la que hay en ese estado
en tok—val (de ahi la puesta a —o0), guarda su valor y estado de pro-
cedencia. La Figura 14 muestra el trabajo conjunto de los hilos para
purgar los tokens de cierto estado de procedencia.

A medida que un hilo recorre los estados de procedencia va guar-
dando la mayor probabilidad que ha encontrado. Como el siguiente
paso va a ser buscar la méxima probabilidad encontrada para poste-
riormente realizar el beam search, de esta manera se reduce el espacio

3.3 PROPAGACION

tok

40 41

0 13 26 41

Figura 14: Algoritmo de purga: cuarto estado de procedencia

de busqueda. El primer hilo guarda también el maximo ntimero de
transiciones que ha encontrado (maxEprB) para saber entre cuantos
elementos habrd que realizar la busqueda. La Figura 15 muestra los
resultados de la operacion.

tok

Figura 15: Algoritmo de purga: resultado

3.3.3 Buisqueda del mdximo por reduccién

La reduccién es una técnica comtn en algoritmos paralelos que sir-
ve para optimizar operaciones que pueden expresarse como un arbol
de decisiones, tales como algoritmos de bisqueda o la suma de los
elementos en un vector (ver Figura 16). Se trata de un algoritmo itera-
tivo donde un hilo realiza la operacién entre dos elementos, de forma

21

22

IMPLEMENTACION

que en cada iteracion se reduce a la mitad el nimero de elementos.
En la dltima iteraciéon queda un elemento, producto de la operacién
entre todos los del vector.

max max max max

11 7 5 3

max - max
11 7
max
11

Figura 16: Basqueda del maximo por reducciéon

Este es el procedimiento que se sigue para hallar la probabilidad
maxima entre los tokens activos. Cada bloque de n hilos puede buscar
el maximo entre 2n elementos. Debido a que trabajar con la memoria
compartida de bloque es mucho menos costoso que acceder directa-
mente al vector, al principio del kernel cada hilo lee dos elementos de
vMaxB (0, si uno de ellos estd fuera de rango, escribe el elemento neu-
tro en la memoria compartida) para después hacer la reduccioén entre
estos elementos. De esta forma, si el tamafio del vector es mayor que
el doble del tamafio de bloque se obtienen resultados parciales, uno
por bloque, que son guardados en un vector auxiliar, vAuxMaxB, repi-
tiendo el proceso de reduccion (alternando estos dos vectores) hasta
que quede un tnico elemento (ver Figura 17).

Bloque 1 Bloque 2 Bloque 3

Bloque 1

Figura 17: Reduccion de varios bloques

BlockDim.x

Cuando se detecta que el nimero de bloques necesario es 1 la direc-
ciéon de destino que se le pasa a la funcién serd la del valor maximo,
maxVal. El valor guardado en esta direccion es usado por otro kernel
para normalizar todos los elementos en tok—val Este kernel, al igual
que la puesta a —oo es ejecutado por tantos hilos como elementos hay
en este vector.

3.4 CALCULO DE LAS PROBABILIDADES DE OBSERVACION 23

3.3.4 Actualizacién de indices y niimero de tokens activos

Antes de dar por concluida la propagacion de tokens al siguiente
frame temporal es necesario realizar el beam search y actualizar los
indices del vector tok. En el caso de que haya mads valores distintos
de —oo que el nimero méaximo de tokens se toman los de mayor peso.
No se ha encontrado una funcién paralela que realice esta operacion,
por lo que se ha programado como una funcién secuencial que se
ejecuta en la CPU.

Esta funcién recorre el vector tok—val, el cual se ha copiado pre-
viamente al host, y cuando encuentra un token activo que no esté por
debajo del beam guarda su estado en tok—1i e incrementa el valor en
tok—n. A la vez, va guardando la posicién y el valor minimo encon-
trado hasta el momento. Si se alcanza el nimero maximo de tokens,
serd ese valor el que haya que superar para entrar en el vector de to-
kens. Cuando un token cumple esta condicién, se vuelve a hacer una
busqueda del minimo entre los tokens guardados hasta el momento.

3.4 CALCULO DE LAS PROBABILIDADES DE OBSERVACION

Tras leer cada una de las observaciones se llama a la funcién
get_pObs, la cual calcula la probabilidad de observacién de los es-
tados activos. Cada una de éstas se puede calcular de la siguiente

forma: El desarrollo
completo del cdlculo
0% c se halla en el
. Apéndice B
vi=Gj- |o¢|, bjlor) = Z evic, (12) P
=1

La estructura G contiene las matrices y vectores necesarios para el
calculo. La observacion de cada frame se guarda en el vector x con el
formato [o% ; 0¢; 1], mientras que la estructura Gauss contiene todas las
posibles matrices Gj, una por cada GMM, apiladas de forma que se
puedan obtener todos los vectores v; con un tinico producto matriz-
vector. Estos vectores de resultados parciales también se guardan en
un vector, pExp. Las distintas posibilidades de observacién se encon-
trardn al final del calculo en el vector pObs, apiladas al inicio, tras lo
cual servirdn para actualizar las probabilidades acumuladas de los
tokens activos.

1 b =eval_st (Xy, active, G); /* Calculo de p. obs. =/
2 tok(active) = tok(active) + b; /* Actualizacidn de tok */

Algoritmo 3: Actualizacion con las probabilidades de observaciéon

24

IMPLEMENTACION

3.4.1 Inicializacion de gMask y fetch

Como no todos los estados estan activos en un determinado mo-
mento, multiplicar todas las filas de la matriz de pardmetros de las
Gaussianas por el vector de observaciones serfa una pérdida de tiem-
po considerable. La estructura G tiene, por tanto, una mascara gMask
que indica qué filas deben multiplicarse. Un kernel con un hilo por
token se encarga de activar los elementos de ésta correspondientes a
los estados activos en ese frame (ver Figura 18).

tok G
i q2s ini gMask fetch
3 39 39 61 61 976/ 975 0 3 976
62 992/ 976 1
977 1
991 1
992 0

Figura 18: Inicializacién de gMask y fetch: kernel

Cada estado estd modelado por una GMM, cuyo nimero de Gaus-
sianas no tiene por qué ser fijo. Ademads, varios estados pueden com-
partir una misma GMM. La tabla q2s establece una correspondencia
entre cada estado y su mezcla, mientras que el vector ini contiene
la fila inicial de cada GMM en la matriz de parametros, por lo que
la diferencia entre dos elementos consecutivos de este vector da el
numero de Gaussianas en la mezcla.

Cada hilo guarda también en el vector fetch la posicion de la pri-
mera Gaussiana que va a utilizar, ya que la probabilidad de observa-
cion estard guardada en esa posicion en el vector pExp. De esta forma
se calcula la probabilidad de observaciéon de cada GMM una tnica
vez, aunque ésta corresponda a varios estados activos.

3.4.2 Multiplicacién con mdscara

El paso siguiente es realizar la multiplicacién matriz-vector. El ker-
nel encargado de esta operacion tiene un hilo por cada fila de la ma-
triz G. Cada hilo de un bloque carga un elemento del vector en la
memoria compartida y, si la mascara estd activada en su posicion,
realiza la multiplicacién fila-vector de un ndmero de elementos igual
al tamafio de bloque. Si el vector es mds grande, los hilos volveran
a repetir esta operacion hasta completar los productos fila-vector. La
Figura 19 ilustra este proceso.

En esta funciéon puede haber bloques que carguen el vector x sin
que ninguno de los hilos tenga que hacer después el producto matriz-
vector. Debido al ntimero variable de Gaussianas por GMM vy al for-
mato de ésta, no puede conocerse a priori el nimero de filas a multi-

3.4 CALCULO DE LAS PROBABILIDADES DE OBSERVACION

G
Gauss X pExp
sl liiiiiiiiiiiiiiion:
= Bt :
i) Blocs . &
N cescccssescsens +
CHERE: .
S . .
— .
M
G
Gauss X pExp
®

Figura 19: Multiplicacién matriz-vector con mdscara: trabajo de un bloque

plicar en esta operacién. Esto hace necesario pasar por todas las filas
de G.

3.4.3 Suma y normalizacion

La operacién con la que se obtienen las probabilidades de observa-
cién es la suma de la exponencial de los resultados de cada Gaussiana
dentro de una GMM. Para evitar problemas de rango, se normalizan
todos los resultados antes de hacer la exponencial, obteniendo el méa-
ximo de entre todos los resultados usando el mismo algoritmo de
reduccién empleado en el paso de propagacion, con un hilo por cada
una de las tot Gaussianas. Posteriormente otro kernel se ocupa de su-
mar los resultados de cada GMM, con un hilo por cada una de ellas.
A medida que va haciéndolo, prepara la méscara para la siguiente
iteracion del bucle de reconocimiento, desactivando los elementos de
gMask correspondientes a esa GMM. Finalmente, hace el logaritmo de
la suma para dejarlo todo en esta escala.

unsigned int i = blockIdx.xxblockDim.x + threadIdx.x;
if (i >= n) return; // Un hilo por GMM

int jIni = ini[i]; // Gaussiana inicial de la GMM
if(!gMask[jIni]) return; // Sélo GMMs activas
int jFin = ini[i+1]; // Gaussiana inicial de la siguiente

25

26

IMPLEMENTACION
float res = 0.;
for(int j = jIni; j < jFin; j++) {
res += exp(pExp[j] - *max); // Suma
gMask[ii] = false; // Desactivacidn de flags
}
pExp[jIni] = log(res);

Listing 1: Kernel con suma de resultados

3.4.4 Actualizacion de las probabilidades acumuladas

En el dltimo kernel hay un hilo por cada token activo que recupera
los resultados en pExp y los escribe en su posicién correspondiente
en pObs, de forma que al final los tok—n primeros elementos de éste
contienen las probabilidades de observacién.

Al finalizar la funcién get_pObs el programa principal llama a otro
kernel que se ocupa de actualizar las probabilidades acumuladas de
los tokens activos, sumédndoles las probabilidades de observacién (ver
Figura 20).

tok B tok
n i val pObs val
9. 0 °
1
13 [)
14 []
26
27
39
40 []
41

Trabajo de un kernel

Figura 20: Actualizacién de los tokens con las probabilidades de observa-
cion

3.5 RECUPERACION DE RESULTADOS
3.5.1 Actualizacién del buffer @

Tras actualizar los tokens con las probabilidades de transicion, se
llama a la funcién update_phi, la cual registra los estados de proce-

dencia de los tokens activos en ese frame en una matriz de indices,
llamada P en el cédigo. En esta matriz cada fila corresponde a un fra-

3

5

3.5 RECUPERACION DE RESULTADOS

me temporal, la columna de un elemento representa el estado en el
que estd el token y el valor es su estado de procedencia. Se trata de un
buffer circular (la primera fila es la siguiente a la tltima) donde dos
punteros, tIniy tFin, indican la primera y la dltima fila efectivas.

[tok, i_prev] =max (B, [], 1)’; /* Purga =/

active = find (tok > —o0);

D(active, t) = i_prev(active);

Algoritmo 4: Actualizacion de @

Un kernel con un hilo por token activo se encarga de rellenar la fila
namero P—tFin, tras lo cual se incrementa este puntero circularmen-
te.

unsigned int j = blockIdx.xxblockDim.x + threadIdx.x;
if (j >= nTok) return; // Un hilo por token activo

int pos = colsPerRow * tFin + j;

int col iTok[j]; // Estado del token -> columna de P
colIndP[pos] = col;

int valpos = iPrevTok[col]l; // Estado previo -> valor en P

valP[pos] = valpos;
if (i == 0) eprP[row] = n; // Nimero de elementos en la fila
else {

int col@ = tok->i[0]; // Comparacién con el primer elemento
if (valpos != tok->iPrev[col0]) *(P->eq) = false;
}

Listing 2: Kernel con actualizacién de P

A continuacién, otro kernel comprueba si todos los tokens provie-
nen del mismo estado. Antes de su llamada, se inicializa una variable
booleana, eq, a false. Cada hilo del kernel compara el estado previo
de un token activo con el del primero. Si son distintos, desactiva el
flag, de forma que éste al final indica si todos los estados son iguales.

La funcién update_phi devuelve este flag al programa principal,
el cual activa una llamada a la funciéon backtracking. También se
comprueba si al incrementar tFin éste ha alcanzado a tIni, en cuyo
caso el buffer esta lleno y hay que mostrar igualmente los resultados
parciales para liberar espacio. En ambos casos, tras esta llamada se
actualizan los punteros de P.

/* Actualizacién de @ x/

27

28

IMPLEMENTACION

3.5.2 Algoritmo de bactracking

La funcién backtracking es llamada en los casos citados anterior-
mente y cuando no quedan més observaciones por leer. El algoritmo,
que va recuperando la secuencia de estados mds probable desde el
maés reciente hasta el mas antiguo, varia ligeramente entre estos ca-
sos, por lo que una variable indica a la funcién en cudl de ellos se
encuentra.

La funcién comienza calculando el nimero de estados a recuperar,
tras lo cual hay que guardar en seq[nPhi] el estado final mas proba-
ble.

int nPhi = P->tFin - P->tIni;
if (nPhi <= 0) nPhi += seq->maxT;
if (why == 0) nPhi --;

Listing 3: Numero de estados a recuperar

Si todos los tokens provienen del mismo estado se decrementa nPhi
ya que hay que recuperar la secuencia tinicamente hasta el frame
anterior. En éste se ha propagado un solo estado, cuyo indice estd en
el vector tok—iPrev en cualquiera de las posiciones guardadas en
tok—1i. Basta, por tanto, consultar el estado previo del primer token
activo (por simplicidad) para conocer el estado final mds probable en
ese frame.

En los otros dos casos se recupera la secuencia hasta el frame actual
y hay que buscar el estado mas probable en ese momento. La funcién
max_value_ind realiza esta busqueda por reduccién devolviendo el
estado final mds probable, el cual se guarda en seq. Aunque el algo-
ritmo de reduccién es el mismo (se devuelve un resultado por bloque
y se alterna entre dos vectores hasta tener un tnico resultado final),
el kernel al que llama esta funcién trabaja con vectores de indices, los
cuales sirven para consultar y comparar los valores de un un vector
de tipo VSparse.

A partir de este token se va extrayendo del buffer P su secuencia de
estados asociada. Un bucle iterativo se encarga de rellenar los elemen-
tos de seq desde nPhi — 1 hasta 0 mediante la llamada a la funcién
prev_state. El valor de P en la posicién correspondiente al dltimo
estado recuperado (la fila se corresponde con el frame y la columna
con el estado), serd su estado de procedencia (ver Figura 21).

De esta forma, prev_state ejecuta un kernel en el cual cada hilo
se ocupa de una columna de P en esa fila o frame temporal. Si el
ultimo estado recuperado se corresponde con esa columna significa
que forma parte del camino més probable, por lo que escribe el valor
en esa posicién en la secuencia.

cudaMemcpy(seq->h_seq, seq->d_seq, n * sizeof(int),
cudaMemcpyDeviceToHost); // Copia de seq a la CPU

3.5 RECUPERACION DE RESULTADOS

epr val colInd
6 39 39 40 39 40 41
6 41 41 41 39 39 40 0 13 26 39 40 41

9 41 0741 13 41 26 39 39 40 0 "1 13 14 26 27 39 40 41

seq o0(1
P
epr val colInd
6 | 39 39 40 39 40 41
6 | 4141 41 39 39 40 0 13 96 39 40 41

9 41 0 41 13 41 26 39 39 40 0 1 /13 14 26 27 39 40 41

seq 40(41o0 1

Figura 21: Basqueda del estado anterior en la secuencia

int st, stPrev;
stPrev = seq->stFin; // Ultimo estado recuperado

for (int j = 0; j < n; j++) {
st = seq->h_seqljl;

if(st == stPrev) continue; // Comprobar si cambia de estado
if(strlen(dict[st]) > 0) // Si lleva palabra asociada
printf(, dict[st]l);
stPrev = st;
}
fflush(0);

seq->stFin = st; // Guardar ultimo estado recuperado

Listing 4: Nimero de estados a recuperar

Finalmente, se imprime la secuencia de palabras. En el caso de buf-
fer lleno no se tiene en cuenta el tltimo estado, porque la siguiente
vez que se haga backtracking serd el primero. La funcién print_seq
es una funcién secuencial que trabaja en CPU (los datos necesarios
como la secuencia se copian antes desde la GPU). Esta recorre la se-
cuencia y, para cada estado, comprueba la tabla-diccionario dict y
muestra por pantalla su palabra asociada, en caso de que la haya y si
no es igual al estado anterior (un estado puede durar varios frames).
Una variable de la estructura seq guarda el altimo estado aparecido
entre distintas llamadas a la funcién print_seq, para evitar el error
de sacar dos veces la misma palabra cuando no corresponde.

29

RESULTADOS

A medida que se ha desarrollado el prototipo de reconocedor, éste
se ha ido probando con distintos modelos estadisticos y datos de

entrada para comprobar su correcto funcionamiento. Al no ser posible
acceder a las tarjetas
» Para depurar las distintas funciones a nivel bajo se ha usado un grdficas durante la

modelo creado para tal propésito, con datos de entrada artificia- ¢jectcion, el proceso
les de una dimensién y cinco estados posibles que siguen una de depurado de las

o . . .) funciones en
distribucién Gaussiana. Un modelo tan simple dista mucho de paralelo se ha

una aplicacién real, pero sirve para seguir el proceso de reco- realizado copiando
nocimiento paso a paso y conocer los valores de las variables los resultados al host
en todo momento, comprobando el funcionamiento basico del ¢ imprimiéndolos

sistema. por pantalla.

= Un modelo simple pero real se ha usado para depurar los célcu-
los de las probabilidades de observacion, lo cual requiere vecto-
res de entrada multidimensionales, y el algoritmo de backtrac-
king con diccionario, sacando palabras en vez de estados. Las
secuencias de palabras de este modelo son series de digitos en
inglés, por lo que la gramaética tiene un tamafo reducido y es
posible todavia mostrar resultados intermedios y variables por
pantalla, aunque es més dificil seguir su valor en todo momen-
to. Este ejemplo también ha servido para comprobar el funcio-
namiento del programa que adapta el formato de datos de otros
reconocedores, como el HTK, al usado por el prototipo.

= Finalmente, una gramdtica que modela preguntas de geografia
se ha usado para comprobar el funcionamiento del prototipo
con estructuras de grandes dimensiones (lo cual es util para
verificar la coordinacién entre varios bloques de hilos para las
distintas funciones en paralelo) y para comparar los resultados
del prototipo con otros reconocedores.

4.1 ESTUDIO DE TIEMPOS

Para el estudio de tiempos se ha reconocido una frase con el tercer
modelo de los citados en el apartado anterior. La grabacién dura 3,6
segundos, por lo que un tiempo de reconocimiento menor se consi-
dera como”reconocimiento en tiempo real”. Las simulaciones se han
ejecutado en el un nodo, “voz08”, del cluster del Grupo de Tecno-
logias de las Comunicaciones de la Universidad de Zaragoza. Se ha
utilizado una CPU Intel Xeon E5645 @2.40 GHz y una GPU nVidia
GeForce GTX 660 Ti .

31

32

RESULTADOS

4.1.1 Comparacion del rendimiento con otros reconocedores

Debido a que el prototipo ejecuta unas operaciones muy distintas
de otros reconocedores secuenciales, es dificil comparar los tiempos
de ejecucion de manera justa. Asimismo, la falta de adaptacién de los
datos del prototipo al formato usado por otros reconocedores hace
dificil una evaluacion sistemética de la tasa de error frente al tiempo.
Por tanto, se ha decidido comparar el tiempo de ejecuciéon del proto-
tipo con el de otros reconocedores en funcién del nimero medio de
tokens activos por frame, lo cual indica como de eficiente es la gestion
de tokens. En el tiempo de ejecucion no se ha incluido la inicializacién
de las distintas variables y la carga de los modelos estadisticos.

Los reconocedores utilizados para la comparacién han sido el HTK,
el cual es un software de RAH ampliamente utilizado, y el recono-
cedor del Laboratorio de Tecnologias del Habla de la Universidad
de Zaragoza, en dos configuraciones distintas que aqui llamaremos
KTree y WEST debido a los algoritmos que emplean.

Tiempo de ejecucion del algoritmo de reconocimiento

14

Prototipo

—— HTK

12} —— WEFST

——— KTree

— — Duracidn de la grabacién

10

Tiempo (s)

Sl Y: 1.477 |
N/
0 ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000

Tokens activos/frame

Figura 22: Comparacién de gestion de tokens

Las Figuras 22 y 23 muestran esta comparacion, en la que puede
observarse que, aunque para un ntimero reducido de tokens HTK es
mas rapido, el prototipo consigue gestionar menos tokens reconocien-
do la frase sin errores, y mas dentro del limite del reconocimiento en
tiempo real. El otro reconocedor es mas rdpido en sus dos configura-
ciones, aunque también tiene fallos en el reconocimiento para un nu-
mero de tokens reducido. Estos reconocedores tienen més pardmetros
que permiten optimizar su funcionamiento y usan distintas técnicas
para reducir los tiempos de ejecucién, alejandolos del algoritmo de
Viterbi canénico. Por otra parte, el formato del modelo estadistico del
prototipo es mas compacto, lo cual agiliza su carga. La inicializacién
de variables del prototipo dura en torno a 0.6 segundos, mientras que

4.1 ESTUDIO DE TIEMPOS 33

Tiempo de ejecucion respecto del resto de reconocedores

1000 T T T T

—— HTK
900

—— WEFST
—— KTree

Tiempo prototipo/Tiempo reconocedor (%)

0 !
0 1000 2000 3000 4000 5000 6000

Tokens activos/frame

Figura 23: Comparacién de gestion de tokens

al resto de reconocedores les cuesta entre 5 segundos (HTK) hasta su-
perar la decena (KTree).

4.1.2 Distribucién de tiempos

Distribucién total de tiempos del algoritmo

Backtracking
Probabilidades de observacion 1
Inicializacion
Propagacion

2.5

Tiempo (s)

0 L . .
500 1000 1500 2000 2500 3000 3500 4000 4500
Tokens activos/frame

Figura 24: Distribucién de tiempos

Las Figuras 24 y 25 muestran la distribucién de tiempos dentro del
programa principal. El proceso més costoso de todas las operaciones
es el de propagacién, cuyo tiempo se ha desglosado en las Figuras
26.y 27 La actualizacién de los indices del vector tok tras la propaga-
cién se habia disefiado inicialmente como un kernel de un solo hilo,
el cual es mds lento que la misma funcién en la CPU pero ahorra la
transferencia de datos entre host y device. Tras comprobar el impacto

34 RESULTADOS

Porcentaje del total

de esta funcién en el tiempo de ejecucién del programa, se ha imple-
mentado la misma funcién en la CPU, reduciendo considerablemente
el tiempo de ejecucioén, por lo que se ha mantenido en el c6digo final.

Tiempo (s)

Figura 26: Distribucién de tiempos de la funcién de propagacion

La funcién que merece mds la pena optimizar tras este cambio es
la purga de tokens, la cual es una btisqueda del mejor token que ha
llegado a cada estado y cuyo tiempo crece con el nimero de tokens
activos. Aunque es hasta cierto punto paralelizable, el kernel tiene
un bucle que termina con la sincronizacién de todos los hilos en ca-
da iteracién, lo cual ralentiza su funcionamiento. Podria estudiarse
si el realizar la purga en la CPU (lo cual podria aprovecharse para
realizar a la vez la busqueda de la méxima probabilidad acumulada)

2.5

0
500

Distribucién parcial de tiempos del algoritmo

1000 1500 2000

Backtracking

Probabilidades de observacién
Inicializaciéon

Propagacion

2500 3000 3500 4000 4500

Tokens activos/frame

Figura 25: Distribucién de tiempos

Distribucion total de tiempos de la funcién de propagacion

Normalizacién/Borrado
Busqueda del maximo
Propagacion
Actualizacién de indices
Purga

0
500

1000 1500 2000 2500

3000 3500 4000 4500

Tokens activos/frame

aceleraria el proceso.

4.1 ESTUDIO DE TIEMPOS

Distribucién parcial de tiempos de la funcién de propagacion
100

Normalizacién/Borrado

90 Busqueda del maximo
Propagacion
80 — Actualizacion de indices
Purga
70
g
=
= 60
<
L
= 50
8
=
15
240
S
[=W
30
20

10

0
500 1000 1500 2000 2500 3000 3500 4000 4500
Tokens activos/frame

Figura 27: Distribucién de tiempos de la funcién de propagacién

4.1.3 Rendimiento del cdlculo de probabilidades de observacion

El tiempo de ejecucion del calculo de las probabilidades de obser-
vacion en el prototipo si que puede compararse facilmente con el de
otros programas, ya que puede definirse el nimero de observacio-
nes a calcular. El algoritmo del prototipo realiza una multiplicacién
con madscara por lo que el porcentaje de GMMs activas influye en los
tiempos de ejecucién de forma proporcional, como puede verse en la
Figura 28. Esta muestra el tiempo requerido para calcular las proba-
bilidades de observacién de distinto nimero de GMMs respecto del
total en funcién del ntimero de frames temporales para los que se
calcula.

Célculo de las probabilidades de observacion
2.5

Prototipo 25%
Prototipo 50%
Prototipo 75%
Prototipo 100%

2}

Tiempo (s)
&

—~
T

0 200 400 600 800 1000
Numero de frames

Figura 28: Impacto del ntimero de frames

35

36

RESULTADOS

La figura 29 muestra la comparacioén entre los tiempos de ejecucion
del algoritmo del prototipo y los del reconocedor del Laboratorio de
Tecnologias del Habla. Puede verse que el prototipo es més rdpido en
este calculo cuando tiene que calcular las probabilidades de observa-
cién de muchos estados distintos.

Célculo de las probabilidades de observacion

0.7

Prototipo 25%
Prototipo 50%
Prototipo 75%
Prototipo 100%
—— LTH

0.6 |

0.5

0.4

Tiempo (s)

0.3

0.2

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

. . 5
Ntmero de operaciones x10

Figura 29: Comparacién del calculo de las probabilidades de observacion

El tiempo de ejecucién de este algoritmo esta penalizado por el he-
cho de no conocer los indices de las Gaussianas que se van a calcular.
En su lugar, esta informacién se halla en una mdscara. Por tanto, las
operaciones se realizan para todas las Gaussianas, y la méscara indi-
ca en cudles de ellas pueden evitarse ciertos calculos. Este enfoque de
disefio se eligi6, como en varios momentos del proceso de desarro-
llo, entre varias alternativas, sin que hubiera una solucién claramente
Optima.

Pese a que el impacto de este cdlculo en el tiempo total del proceso
de reconocimiento no es muy grande, serfa interesante optimizarlo,
ya que es una operaciéon que puede servir para otras aplicaciones.
Una alternativa que se planteé y que podria probarse consiste en,
una vez conocidos los indices de las GMM que se van a calcular,
construir una tabla con éstos, hallar el ntimero total de Gaussianas
que representan y construir una tabla con los indices de éstas, de
forma que para el calculo matriz-vector haria falta solamente un hilo
por cada fila que se fuera a calcular, y éste sabria de dénde tomar sus
operandos y dénde escribir su resultado.

CONCLUSIONES

5.1 RESUMEN DEL PROYECTO Y ANALISIS DE OBJETIVOS

El trabajo desempefiado durante el proyecto aparece desglosado
en un cronograma en la Figura 30. Las tareas desempefiadas pueden
clasificarse en tres tipos distintos:

= Recopilacién de informacion sobre las herramientas utilizadas
durante el proyecto, tales como CUDA vy las librerias cuSPARSE,
las distintas implementaciones existentes de estructuras sparse
o el algoritmo de Viterbi con tokens.

= Implementacion de algoritmos y funciones ya existentes y adap-
tacion al prototipo, como por ejemplo la implementacion matri-
cial del bucle de reconocimiento en Matlab y C o el cdlculo
matricial de las probabilidades de observacién.

» Disefio de funciones y estructuras caracteristicas de la solucién
planteada, tales como las funciones paralelas, el método de ges-
tion de datos o las distintas estructuras creadas.

= Medida de tiempos del prototipo y de otros reconocedores, ana-
lisis de resultados y cambios finales en el cédigo a partir de
éstos.

Se ha conseguido desarrollar un prototipo de reconocedor automé-
tico del habla con funciones en paralelo que funcione correctamente,
lo cual cumple el objetivo principal del proyecto, ya que permite ana-
lizar su rendimiento frente a otros de funcionamiento secuencial. Se
ha disefiado e implementado el funcionamiento del reconocedor con
el consiguiente andlisis de su funcionamiento y sus posibilidades de
paralelizacion, mientras que los modelos actsticos y de lenguaje ya
estaban generados y entrenados.

También se ha desarrollado una filosofia de gestion de tokens crea-
da especificamente para el problema, y se ha comparado con el uso
de las librerias sparse paralelas disponibles para CUDA, eligiéndose
el primer enfoque. Esta experiencia con este tipo de librerias no es
unicamente valida para el prototipo desarrollado sino que el andlisis
de sus puntos fuertes y débiles puede ser til para futuros proyectos.
Cabe remarcar que una vez realizado el esfuerzo inicial de cambiar la
filosofia del algoritmo y de tomar las distintas decisiones de disefio,
el trabajo de introducir mejoras en el cédigo para seguir aumentando
su rendimiento es considerablemente menor.

37

38

CONCLUSIONES

Ademas de funcionar, bajo ciertas condiciones el prototipo mejora
los tiempos de ejecucion de un reconocedor ampliamente usado como
el HTK. Estas mejoras, ademads, pueden ser mayores con GPUs de
mayor rendimiento, o explotando otros niveles de paralelismo, lo cual
no sucede de igual forma con el software secuencial.

5.2 DESARROLLO EN EL FUTURO

Aunque se pueden introducir posibles optimizaciones en las dis-
tintas partes del c6digo, lo mas productivo es intentar mejorar los
tiempos de ejecucion de aquéllas que mas tiempo toman, como la
propagacion y en concreto la funcién de purga. También es interesan-
te seguir mejorando el calculo de las probabilidades de observacién,
ya que éste es util para aplicaciones més alld del RAH. Para ambas
funciones, se han propuesto alternativas en el Capitulo 4. También
pueden estudiarse variaciones en el proceso de reconocimiento, como
la propagacién hacia atrés, o incluso enfoques completamente distin-
tos como el reconocimiento basado en redes neuronales, las cuales se
pueden implementar directamente en paralelo.

Con un cierto trabajo de adaptacion puede aplicarse esta filosofia
a otros tipos de paralelismo tales como el uso de CPUs con varios
procesadores o de clusteres, utilizando el cédigo o los algoritmos ya
creados para conseguir mejores tiempos de ejecucion en maquinas
mas potentes.

Finalmente, el objetivo principal a partir de este momento es el
uso del conocimiento ganado durante el proyecto y, si procede, de
las funciones desarrolladas, en futuros proyectos relacionados con el
RAH para conseguir un software de reconocimiento mds rapido y
robusto.

Mes

Documentacion
sobre la tarea

Familiarizacion
con NSight

Implementacion basada en
funciones y estructuras
propias:

Diseiio de las estructuras
FSparse y VSparse y de sus
funciones basicas

Implementacion del bucle
reconocedor en serie (datos
de entrada artificiales),

Agrupacién de variables en
estructuras de nivel alto y
definir sus funciones

Paso al segundo modelo,
lectura de datos de fichero

Modificacién de funciones
en el reconocedor (uso de
diccionario, obtencion de
resultados parciales)

Diseno de las estructuras y
funciones necesarias para el
célculo de las probabilidades
de observacién

Implementacion en serie del
célculo de las probabilidades
y conversion a paralelo

Pruebas con la dltima
gramatica

Medida de tiempos (y
modificaciones finales)

5.2 DESARROLLO EN EL FUTURO

Implementacion en Matlab
de reconocedor con
matrices sparse

Implementacion con
librerias sparse:

Busqueda de informacion

Programacion de las
funciones basicas necesarias
para el prototipo con la
libreria cuSPARSE

Creacion de script de
conversion de formatos

Elaboracion de la memoria

Figura 30: Cronograma del proyecto

39

CONCEPTOS BASICOS DE CUDA

En este apéndice se profundiza en los conceptos bésicos de la pro-
gramacion en paralelo y de CUDA', en los cuales estd basada la im-
plementacién del Reconocedor Automatico del Habla tratado en este
proyecto.

A.1 HISTORIA DE LA PROGRAMACION EN PARALELO

La ley de Moore es la observaciéon empirica del aumento de la
densidad de transistores en un microprocesador, la cual se ha dupli-
cado, desde la formulacién de la ley en 1965, cada 18 a 24 meses
(ver Figura 31). Este aumento en la densidad de transistores permitio,
durante muchos afios, aumentar la frecuencia de reloj de los procesa-
dores, lo cual se tradujo directamente en mejoras en el rendimiento
del software (el mismo programa es méas rdpido en un procesador con
una frecuencia de reloj mayor). Sin embargo, la frecuencia de trabajo
es directamente proporcional a la energia consumida por un chip (y
consecuentemente a la energia disipada). De esta forma, pese a que la
densidad de transistores sigue creciendo, las mejoras en la frecuencia
de reloj han dejado de seguir esta tendencia (Figura 32).

2.600.000.000 1 Y
1.000.000.000- /4;,/(
m .
£ 100.000.000
o . .
-
2 ‘
2 10.000.000- -
C6 L]
—
e
£ 1.000.000
o
g
s 100.000-
=
Z
10.000- e
2.3000 & "

1971 1980 1990 2000 2011
Fecha de lanzamiento

Figura 31: Numero de transistores en distintos microprocesadores

Tradicionalmente, el software se ha escrito para ser ejecutado en
serie, es decir, una instruccién se ejecutaba tras finalizar la anterior.

1 http://www.nvidia.com/object/cuda_home_new.html

41

http://www.nvidia.com/object/cuda_home_new.html

42

CONCEPTOS BASICOS DE CUDA

2N s
ROk o

1000 - ’ '

] "

o

o

4 100+

—10 1]

Q

)

[aW)

o

g 10 -

=

1980 1985 1990 1995 2000 2005 2010
Year

Figura 32: Evolucion de la frecuencia de reloj

En contraposicién, en la programacién en paralelo se busca dividir las
tareas a ejecutar en problemas independientes para poder resolverlos
en varios procesos que se ejecutan a la vez. Aunque el paralelismo no
es un concepto nuevo en la informdtica, los esfuerzos en avanzar en
este modelo de programacién se han aumentado en los tdltimos afios
con el objetivo de seguir consiguiendo mejoras en el rendimiento.

Hay varios niveles donde puede explotarse el paralelismo, desde
los bits (una ALU capaz de hacer sumas de 16 bits acabard antes
determinadas tareas que una que solamente procese 8 bits) o las ins-
trucciones (segmentacion de instrucciones en los microprocesadores)
hasta llegar a otras soluciones como los procesadores multintcleo,
los clusters o los grids. El enfoque empleado por este proyecto ha si-
do el empleo de GPUs (Graphic Processing Units) consistentes en una
serie de procesadores, lentos en comparacién con una CPU, capaces
de ejecutar el mismo cédigo a la vez (ver Figura 33). Estas tarjetas
surgieron con el propoésito de optimizar el procesamiento digital de
imagenes, en el cual la mayoria de las tareas tratan cada pixel de
forma independiente.

Debido a que las GPUs comenzaron a usarse para aplicaciones dis-
tintas de aquellas para las que se habian concebido, se crearon en-
tornos de desarrollo como CUDA, los cuales permiten acceder a la
memoria y al conjunto de instrucciones de las GPUs mediante exten-
siones de lenguajes de programacion estandar como C, C++ o Fortran.

A.2 INTRODUCCION A CUDA C

GPU

JEsseEas
BHEEEEEEE O Cor

sssssssss B Cache
EssEEssEEs [J Control

-

Figura 33: Arquitectura de una CPU y de una GPU

En este proyecto se utiliza la extension CUDA C/C++ para el desarro-
llo de las funciones en paralelo del reconocedor.

A.2 INTRODUCCION A CUDA C

Las aplicaciones desarrolladas en CUDA C estan basadas en un
modelo de programacion host+device heterogéneo donde en un tinico
programa las partes en serie se ejecutan en el host o CPU mientras
que las partes en paralelo lo hacen en el device o GPU. A la GPU se
accede mediante funciones o kernels cuya llamada crea un conjunto
de hilos paralelos que ejecutan el cédigo de la funcién. El conjunto de
los hilos que se crean para ejecutar el kernel, llamado grid, se divide
a su vez en bloques de hilos, todos del mismo tamafio (ver Figura
34). Tanto un grid como sus bloques pueden distribuirse en hasta 3
dimensiones, lo cual simplifica el direccionamiento de memoria en
ciertas aplicaciones como el procesamiento digital de imagenes.

blockIdx.x threadIdx.x
0 1 0 1 2 3

> 0 >0

3 5

o r

3 T 1

o 1)

S j:

< P 2

Figura 34: Ejemplo de grid y bloque en un kernel

Los tamafios de grid y bloque se definen antes de llamar a la fun-
cion. Asi, una llamada a un kernel quedaria de la siguiente manera:

// Cédigo en host
// Llamada al kernel

dim3 blockDim(bx, by, 1);
dim3 gridDim(gx, gy, 1);

43

44

CONCEPTOS BASICOS DE CUDA

kernel<<< gridDim, blockDim>>>(args);
// Cédigo en el host

Listing 5: Ntmero de estados a recuperar

Cada hilo tiene unos indices mediante los cuales se puede conocer
a qué bloque pertenece y qué posicién dentro del mismo ocupa, lo
cual sirve para calcular posiciones de memoria o gestionar diversas
operaciones de control.

int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;

Listing 6: Ntmero de estados a recuperar

Dentro de un bloque, los hilos pueden cooperar mediante el uso
de memoria compartida o instrucciones de sincronizacién (ningtn
hilo dentro del bloque avanza hasta que todos hayan ejecutado dicha
instruccion).

A.3 EJEMPLO: SUMA DE VECTORES

Las operaciones matriciales tales como sumas o productos, donde
el cada elemento del resultado es independiente del resto, suelen pro-
ducir grandes mejoras en los tiempos de ejecucién al implementarse
como funciones en la GPU. El siguiente c6digo muestra un kernel
que toma sendos elementos de dos vectores, los suma y guarda el
resultado en la misma posicién de un tercer vector.

__global__ void add(int xa, int xb, int xc) {
int tid = blockIdx.x; // sumar los elementos en esta posicidn
3l if (tid < N)
c[tid] = a[tid] + b[tid];

Listing 7: Ndmero de estados a recuperar

Este kernel es ejecutado cuando es llamado por una aplicacién, la
cual le pasa los argumentos a, b y ¢ y define las dimensiones de
grid y de bloque. Los kernels pueden recibir argumentos por valor
y por referencia, pero los argumentos por referencia tienen que ser
direcciones de la memoria device. De esta forma, al principio del
siguiente c6digo se reserva memoria en la GPU para los vectores y se
les da valor copiandolos desde la CPU.

#define N 10
int main(void) {
int a[N], b[NI, c[Nl; // vectores en CPU
int xdev_a, xdev_b, *dev_c; // vectores en GPU

10

15

20

25

30

35

A3 EJEMPLO: SUMA DE VECTORES

// reservar memoria en GPU

cudaMalloc((voidxx)&dev_a, N * sizeof(int));
cudaMalloc((voidxx)&dev_b, N * sizeof(int));
cudaMalloc((voidxx)&dev_c, N * sizeof(int));

// rellenar los vectores "a" y "b" en la CPU
for (int i1=0; i<N; i++) {

ali] = -1i;

b[i] =1 % 1i;

// copiar los operandos a la GPU

cudaMemcpy(dev_a, a, N *x sizeof(int), cudaMemcpyHostToDevice
)

cudaMemcpy(dev_b, b, N *x sizeof(int), cudaMemcpyHostToDevice
)

// sumar los operandos en GPU
add<<<N,1>>>(dev_a, dev_b, dev_c);

// copiar el resultado de GPU a CPU
HANDLE_ERROR(cudaMemcpy(c, dev_c, N * sizeof(int),
cudaMemcpyDeviceToHost));
// mostrar los resultados
for (int i=0; i<N; i++) {
printf(" + °d = °sd\n", a[il, b[i]l, cl[i]);
}

// liberar la memoria reservada en GPU
cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

Listing 8: Namero de estados a recuperar

45

CALCULO DE LAS PROBABILIDADES DE
OBSERVACION

B.1 INTRODUCCION

El proceso de reconocimiento se va realizando a medida que llegan
nuevos datos de entrada al sistema. Estos son vectores multidimensio-
nales, resultado del proceso de caracteristicas de un frame temporal
de una sefial de audio. A la secuencia de observaciones en el proceso
de reconocimiento se la denomina con el nombre de O:

O ={o01,...,0¢,...,0T} (13)

El modelo actstico tiene un conjunto de posibles estados o unida-
des sonoras bésicas, S, cada uno con una distribucién estadistica.

S:{S],...,Sj,SN} (14)

Estos pardmetros estadisticos permiten determinar la verosimilitud
bj(o¢) = P(otlsj), es decir, que una observacion se corresponda con
un estado. En general en RAH se utilizan modelos de mezcla de Gaus-
sianas 0 GMMs, cuyas funciones de densidad de probabilidad son
sumas ponderadas de las de varias distribuciones normales. Asi, la
probabilidad de observacién del vector o para el estado s; quedaria:

C
b] (Ot) - Z Wj,c N(Ot,' uj,C/ Zj,C)/ (15)
=1

donde C es el nimero de Gaussianas en la mezcla, wj . es el peso
de la Gaussiana c y Mj,c, Zj,c son la media y la covarianza de la
Gaussiana, respectivamente, y N es la probabilidad de observacion
para una distribucién normal. Para un vector de observacién de D
dimensiones, ésta se calcula habitualmente de la siguiente manera:

N(X;M,Z)Z; -

(x—1) =71 (x—p)
27272 € o

Nl=

B.2 EXPRESION DEL CALCULO COMO PRODUCTO MATRICIAL

En este proyecto, como ocurre habitualmente en RAH, se utilizan
matrices de covarianza diagonales, lo cual permite expresar el expo-
nente de la ecuacion (16) como:

2

D D
1 Xi — Wi
7) “(;LI) = > aix{ +bixi+ci, (17)
i=1 ' i=1

47

48

CALCULO DE LAS PROBABILIDADES DE OBSERVACION

lo cual es un producto escalar entre dos vectores, uno dependiente
de la distribucién y otro del vector de observaciones.

x2

[a b c}' x| =8X (18)
1

Subiendo al exponente el peso de la Gaussiana en la mezcla y la
parte lineal de (16) es posible calcular de esta manera, en escala lo-
garitmica, cada uno de los elementos a sumar en (15). Apilando los
coeficientes de las distintas Gaussianas en una matriz, pueden obte-
nerse todos estos elementos en una multiplicacién matriz-vector

g1 2
Gx= %] |x|=v (19)
1
8¢

La suma de las exponenciales de cada uno de los elementos v, del
vector v es equivalente al resultado de (15).

> e =b(x) (20)

También es posible apilar las Gaussianas de méas de una GMM para,
posteriormente, elevar y sumar distintas partes del vector resultante
para obtener las probabilidades de observacion de distintos estados.

Esta transformacion, ademds de representar una reduccién en el
coste computacional del célculo de las probabilidades de observacion,
lo expresa como una operacién fundamentalmente matricial, lo cual
abre la puerta a una posible ganancia todavia mayor mediante el uso
de algoritmos paralelos.

ALGORITMO DE RECONOCIMIENTO

El presente apéndice detalla el algoritmo de reconocimiento em-
pleado en este proyecto, sin entrar en los detalles de su implemen-
tacién ni en los del calculo de las probabilidades de observacién, ya
detallados en el Apéndice B.

C.1 CONSIDERACIONES PREVIAS

Generalmente, el algoritmo de reconocimiento de un RAH esta
basado en bucles iterativos. Como paso previo al planteamiento de
la paralelizacién del algoritmo, éste se escribi6é en forma matricial en
c6digo Matlab, el cual es mds sencillo de implementar que C y tiene
multiples opciones para representar los resultados graficamente.

Todos los célculos del algoritmo estdn en escala logaritmica, ya que
se trabaja con probabilidades muy pequefias que podrian salirse de
rango en escala lineal. Aunque las matrices y los vectores con los que
se trabaja en la implementacién son de tipo sparse (donde tinicamente
se guardan los indices y los valores de los elementos no nulos), aqui
no se entrard en tales detalles de implementacién.

Los datos de entrada al algoritmo son los siguientes:

m X = {Xo,...,Xt,..., X1} vectores D-dimensionales con las ob-
servaciones en cada frame temporal.

» A = {a;;}: probabilidades de transicion, en escala logaritmica,
entre cada pareja de estados, con 1 <1 < Ny 1 <j<N,de
forma que, en un instante t, o ; = log(P(s¢ = sils¢—1 = sj)).

» T = {m;}: vector de N elementos con la probabilidad inicial de
cada estado, con m; = log(P(s1 = si))

= G: conjunto de pardmetros que define el modelo estadistico de
cada estado, como la correspondencia entre un estado y una
GMM o los pardmetros de ésta. La funcién encargada de cal-
cular las probabilidades de observacién recibira G junto con la
observacion en ese frame y los estados a calcular.

» O = {wi}: tabla que, para cada estado s;, indica la cadena de
caracteres que debe sacar en el proceso de backtracking o recupe-
racion del camino correspondiente con la hipétesis final. Debido
a la organizacion del vocabulario en forma de arbol para acele-
rar la basqueda, el estado final de cada palabra es el que lleva
asociada la cadena correspondiente a ésta.

49

50

ALGORITMO DE RECONOCIMIENTO

Por otra parte, se define el beam como un pardmetro del algoritmo.
Este indica el ratio entre dos verosimilitudes a partir del cual puede
considerarse una despreciable frente a la otra.

C.2 ALGORITMO
c.2.1 Inicializacion

El algoritmo comienza definiendo la matriz ® donde se guardaran
los caminos a medida que vayan recibiéndose observaciones, tras lo
cual inicializa el vector de tokens con las probabilidades iniciales TT.
Este es un vector de N elementos en los cuales se guarda la probabili-
dad acumulada, normalizada al maximo, del token en ese estado. En
el caso de que no haya un token activo en ese estado se guarda —oo.
La verosimilitud de los estados iniciales se pondera con las probabili-
dades de observacion del primer vector de entrada Xo.

1 ® =zeros (N, T);

2 tok =TT; /* Inicializacién de los tokens
3 active = find (tok > —o0);

(S LY

b = eval_st (Xp, active, G); /* Calculo de p. obs.
tok(active) = tok(active) + b;

6 B = repmat (tok, 1, N);

Algoritmo 5: Inicializacién

La funcién eval_st toma como argumentos las observaciones de
ese instante Xy, el modelo probabilistico G y los indices de los to-
kens activos, y devuelve las probabilidades de observacién para sus
estados. La tltima linea expande el vector de tokens en una matriz,
necesaria para el paso de propagaciéon. Cada fila contiene el mismo
elemento en todas sus columnas: la probabilidad acumulada del to-
ken en ese estado o, en su defecto, —oo (ver Figura 35).

tok
[J
tok B
([J e 6 6 0 ©
—» repmat —»
b

Figura 35: Lineas 11 y 12 en el Algoritmo 5

*/

*/

10

11

C.2 ALGORITMO

c.2.2 Bucle de reconocimiento

La siguiente parte del reconocedor se repite en bucle mientras hay
nuevas observaciones de entrada. En una aplicacién real, el bucle de
reconocimiento es una funcién llamada desde otro programa, pero
aqui se asume que el nimero de observaciones T es conocida de an-

temano.
fort=1:T—1do
B=B+A, /* Paso
[tok, i_max] = max (B, [], 1);

max_tok = max (tok);
tok(tok < max_tok - beam) = —oo;

tok = tok - max_tok; /*

active = find (tok > —o0);
@(active, t — 1) = i_max(active);

b = eval_st (X, active, G); /* Calc
tok(active) = tok(active) + b; /* Actual

B = repmat (tok, 1, N);

de propagacién

/* Purga

/* Beam Search

Normalizacioén

/* Actualizacién de @

ulo de p. obs.
izacién de tok

Algoritmo 6: Bucle de reconocimiento

Tras el paso de propagacion, la matriz B tiene, en cada elemento
(1,j) distinto de —oo, la probabilidad acumulada del token que se ha

propagado desde el estado s; hasta el s; (Figura 36).

B
oo 0 0 0

12 3 4

@ O

—> Mmax

>
> w N e o

Figura 36: Lineas 2 y 3 en el Algoritmo 6

tok
°

i_max

0
0
1

Posteriormente, se efecttia el paso de purga tomando el token con

maxima probabilidad acumulada que ha llegado a un estado. La mis-
ma operaciéon max, que recoge los maximos de cada columna de B
en el vector tok, guarda en otro vector la filas o estados de los que
provienen. Tras este paso se eliminan las hipétesis despreciables y

*/
*/

x/
*/

*/

*/
*/

51

=

N U1 A~ W N

N

10

11

12
13

14

52

ALGORITMO DE RECONOCIMIENTO

se normalizan las probabilidades acumuladas. En la columna t — 1
de la matriz @ se guardan los estados de procedencia de los tokens
todavia activos, en las filas correspondientes a sus estados actuales.
Después, se vuelven a ponderar las hipétesis por las probabilidades
de observacion y se prepara B para la siguiente iteracion.

c.2.3 Backtracking

Finalmente, cuando no quedan mas datos de entrada, se recupera
la secuencia asociada al token con mayor probabilidad, almacenada
en la matriz @. Tras recorrer ésta hacia atras, la secuencia de estados
queda guardada en un vector, st. El siguiente bucle comprueba la ta-
bla O para cada estado de salida, imprimiendo por pantalla aquéllos
que tienen una palabra asociada.

[~, i_best] = max (tok);
seq = zeros (1,T);

/* BlUsqueda de la secuencia de estados
st = i_best;

fort=T—1:—-1:1do
seq(t) = st;
st = O(st, t);
seq(0) = st;
/* Mostrar la secuencia de palabras asociada
Qo =—1;
fort=1:T—1do
q = seq(t);

/* Sacar sélo una palabra si el estado ocupa varios frames
if g, # q then

w = Q(q);
if length (w) > 0 then print (w);

L 90 =%
Algoritmo 7: Backtracking

El algoritmo mostrado, representado en la Figura 37, define una
matriz @ de tamafio N x T, pero para ahorrar espacio en memoria
generalmente se limitan el nimero méximo de tokens y el de frames,
quedando nMax x tMax. Esta aproximacién implica acudir al algo-
ritmo de backtracking cada vez que el buffer se llena, recuperando la
mejor hip6tesis en ese momento sin la garantia de que lo vaya a ser en
un futuro, y siguiendo el bucle de reconocimiento con el dltimo esta-
do de la secuencia como tinico token activo. También puede liberarse
espacio de @ sin eliminar hipétesis validas haciendo el backtracking
cuando todos los tokens se han propagado desde el mismo estado,
ya que todas las secuencias compartirdn hasta ese instante el mismo

/* i_best: estado final mds probable */

*/

*/

*/

C.2 ALGORITMO

tok

P
0 00O
1

1
2 2

2
3 3

se(q 10 0111233 44

Figura 37: Lineas 1-7 en el Algoritmo 7

camino. En cualquiera de los dos casos esta gestion se hace al final
del bucle de reconocimiento, antes de pasar a la siguiente iteracion.

53

ESTRUCTURAS DE DATOS

Este apéndice detalla las estructuras de datos creadas para la im-
plementacién en CUDA C del algoritmo de reconocimiento.

Debido a que al comprimir una matriz se aumenta la dependencia
entre sus elementos no nulos, lo cual dificulta la gestién en paralelo,
se han definido distintos tipos de estructuras sparse dependiendo de
su funcién en el algoritmo.

= FSparse, ISparse: Matrices sparse de tipo float e int, respec-
tivamente. El vector epr indica el nimero de elementos no nulos
en cada una de las r filas de la matriz. En cada fila de la matriz
val se encuentran los valores no nulos de la matriz, apilados al
principio de cada fila. En las mismas posiciones, los elementos
de colInd indican la columna de cada uno de los valores. El
valor eprMax determina el niimero méaximo de elementos por

fila.
[
® o
FSparse -
® o
r, eprMax: int
epr, collInd: * int >
val: * float EXE
ISparse epr collnd val
2 0o 1 {
r, eprMax: int
epr, collInd: * int 2 to2 e o
val: * int 2 2 3 o
2 3 4 o O
1 4 []

rx1 rXeprMax rXeprMax

Figura 38: Estructuras FSparse e ISparse

= VSparse: Contiene el vector val, con len elementos de tipo float,
nMax de ellos no nulos como méximo. No lleva ningtn tipo de

55

56

ESTRUCTURAS DE DATOS

compresion, por lo que no se trata de un vector sparse propia-
mente dicho, pero lleva asociado un vector de punteros i con las
posiciones de los elementos no nulos, cuyo ntiimero se guarda
en n, lo cual facilita la gestién de tokens. Opcionalmente puede
declararse un vector de enteros iPrev, con un entero asociado
a cada valor no nulo y en su misma posicién, que servird en el
algoritmo para guardar el estado de procedencia de cada token.

n i val iPrev
VSparse 3 0 6
, 1x1 ©°
len, nMax: int 6
n, i: * int »
val: * float °
iPrev: * int ° nMaxx 1 C 5
5
lenx1

lenx1 lenx1

Figura 39: Estructura VSparse

= Trans: Matriz sparse de float que contiene las probabilidades

de transicion en escala logaritmica. Esta es la estructura con la
que mas espacio se ahorra con una gestién de memoria eficiente,
al ser una matriz de rxr elementos, con r el nimero de estados,
generalmente muy elevado. El hecho de que su contenido no se
modifique durante todo el algoritmo permite guardarla en un
formato mas comprimido. Los vectores val y colInd contienen
los n valores no nulos de la matriz y sus respectivas colum-
nas. El vector de enteros iRow guarda la posicién inicial de los
valores de cada fila en esos vectores, y en su ultimo elemento
contiene el nimero de elementos no nulos.

Trans

r, n: int

iRow, colInd: * int iRow val collnd
val: x float 0 Y 0
2 0
4 ® 1
L 6 ° 1
o O 8 ° 2
° » 9 2
[J S
PRPS 1Xr
[S
® 4
rXr 1xn 1xn

Figura 4o0: Estructura Trans

ESTRUCTURAS DE DATOS

Se han implementado también funciones para poder definir estas
estructuras en el host o en la GPU a partir de los pardmetros de
disefio, para inicializarlas a partir de un fichero, para imprimir su
contenido y para copiarlo entre host y device y viceversa. A lo largo
del cédigo, se utiliza la convencién de incluir h_ y d_ al principio
de los nombres de las variables puntero para indicar si apuntan a
posiciones de memoria en el host o en la GPU, respectivamente.

Otras variables se han agrupado en las siguientes estructuras de
datos para simplificar el algoritmo principal, el cual llama a funciones
que hacen uso de éstas, haciendo el cédigo mas legible y estructura-
do.

s Token: Esta estructura representa el vector de tokens, con las
estructuras y variables que necesita para realizar el paso de pro-
pagacion. El vector tok, de maxTok estados activos como maéxi-
mo, guarda la informacién de los tokens activos en cada frame,
mientras que B es la matriz donde se guardan los resultados
intermedios de la propagacion. En maxVal se guarda la proba-
bilidad del token de mayor peso, obtenida mediante reduccién
con los vectores auxiliares vMaxB y vAuxMaxB. Finalmente, eq se
usa para detectar si todos los tokens en un frame provienen del
mismo estado, en cuyo caso pueden sacarse resultados parcia-
les.

Token

h_tok, d_tok: * VSparse

d_B: * FSparse

d vMax, d MaxAxB, d maxVal: * float
d_maxEprB: * int

d_eq: * bool

h_eq: bool

Figura 41: Estructura Token

= Seq: Secuencia de estados mds probable, la cual se guarda en
el vector seq, de maxT elementos como méaximo. Los vectores
de enteros iFin e iFinAux se emplean para buscar el estado
final mds probable por reducciéon, mientras que el entero stFin,
inicializado a —1, guarda entre distintas llamadas a la funcién
de backtracking el ultimo estado recuperado. Esto es debido a
que si un estado dura varios frames, en el caso de que lleve
asociada una palabra solamente hay que mostrarla una vez por
pantalla.

= Phi: Buffer circular para guardar los estados de procedencia de
los tokens en cada frame temporal, para hacer posteriormente el
backtracking. Estos estados se guardan en la estructura ISparse

57

58

ESTRUCTURAS DE DATOS

P, de dimensiones maxT xmaxTok. La fila de cada elemento en es-
ta matriz indica el frame temporal, la columna indica el estado
en el que se encuentra el token en ese momento y el valor, el
estado desde el que se ha propagado. Las variables tIniy tFin,
inicializadas a 0, son punteros a la posicién inicial y final del
buffer en un determinado momento. Con cada nuevo dato de
entrada, tFin se incrementa (si llega al tamafio maximo de P, se
pone a cero). Cuando se sacan resultados parciales, se actualiza
tIni hasta la posicién del ultimo frame reconocido. Si tFin al-
canza a tIni quiere decir que el buffer se ha llenado, en cuyo
caso se llama a la funcién de backtracking, que busca la secuen-
cia mds probable hasta ese momento, tras lo cual puede vaciarse
el buffer poniendo ambas variables a cero de nuevo.

Phi

nMax, maxT, tIni, tFin: int
h P, dP: * ISparse
d_vMax, d_MaxAxB, dmaxVal: * float

Figura 42: Estructura Phi

Gauss: Pardmetros estadisticos de los distintos estados, forma-
dos por n mezclas de Gaussianas apiladas en una matriz de
totxcols elementos (Gaussianas en total por pardmetros de ca-
da una). las tablas g2s e ini indican la correspondencia entre
cada estado y su mezcla de Gaussianas (algunos estados com-
parten GMM) y la Gaussiana inicial de cada mezcla, mientras
que fetch guarda durante los calculos la posicién de la probabi-
lidad de observacion de cada token dentro del vector pExp. En
x se almacenan las distintas observaciones y gMask es una mas-
cara que indica qué Gaussianas van a emplearse en ese frame.
Los resultados finales se guardan en pObs.

Gauss

n, tot, cols: int

h g2s, dg2s, h.ini, d_ini, d_fetch: * int
h_Gauss, d_Gauss, dx, d_pExp, dpObs: * float
d vMax, d_vMaxAux, dmax: * float

d_gMask: * bool

Figura 43: Estructura Gauss

BIBLIOGRAFIA

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, 39(1):1—21, 1977.

[2] P. Dixon and S. Furui. Introduction to the use of WFSTs in speech
and language processing. In APSIPA Conference, 2009.

[3] X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing:
A Guide to Theory, Algorithm, and System Development. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2001.

[4] Stephan Kanthak, Hermann Ney, Michael Riley, and Mehryar
Mohri. A comparison of two LVR search optimization techniques.
In INTERSPEECH, 2002.

[5] L.R. Rabiner. A Tutorial on HMM and selected Applications in Speech
Recognition, chapter 6.1, pages 267-295. Morgan Kaufmann, 1988.

[6] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Olla-
son, D. Povey, V. Valtchev, and P. Woodland. Htkbook (v3.3).
Technical report, Cambridge University Engineering Department,
2005.

59

	RESUMEN
	Índice general
	1 Introducción
	1.1 Antecedentes y motivación
	1.2 Descripción y objetivos del proyecto
	1.3 Organización de la memoria

	2 El Proceso de Reconocimiento
	2.1 Fundamento teórico
	2.2 Modelos Ocultos de Markov
	2.3 Algoritmo de Viterbi
	2.4 Búsqueda con tokens

	3 Implementación
	3.1 Introducción
	3.2 Consideraciones previas a la implementación
	3.3 Propagación
	3.3.1 Cálculo de tokens en el siguiente frame
	3.3.2 Purga
	3.3.3 Búsqueda del máximo por reducción
	3.3.4 Actualización de índices y número de tokens activos

	3.4 Cálculo de las probabilidades de observación
	3.4.1 Inicialización de gMask y fetch
	3.4.2 Multiplicación con máscara
	3.4.3 Suma y normalización
	3.4.4 Actualización de las probabilidades acumuladas

	3.5 Recuperación de resultados
	3.5.1 Actualización del buffer
	3.5.2 Algoritmo de bactracking

	4 Resultados
	4.1 Estudio de tiempos
	4.1.1 Comparación del rendimiento con otros reconocedores
	4.1.2 Distribución de tiempos
	4.1.3 Rendimiento del cálculo de probabilidades de observación

	5 Conclusiones
	5.1 Resumen del proyecto y análisis de objetivos
	5.2 Desarrollo en el futuro

	A Conceptos básicos de CUDA
	A.1 Historia de la programación en paralelo
	A.2 Introducción a CUDA C
	A.3 Ejemplo: suma de vectores

	B Cálculo de las probabilidades de observación
	B.1 Introducción
	B.2 Expresión del cálculo como producto matricial

	C Algoritmo de Reconocimiento
	C.1 Consideraciones previas
	C.2 Algoritmo
	C.2.1 Inicialización
	C.2.2 Bucle de reconocimiento
	C.2.3 Backtracking

	D Estructuras de datos
	Bibliografía

