Técnicas de extraccion de informacion
de bases de datos relacionales

Daniel Calvo Francés
Trabajo de fin de grado de Matematicas
Universidad de Zaragoza

Director del trabajo: Jorge Lloret Gazo
enero de 2024

Resumen

Relational databases are crucial for efficiently managing information by organizing data in a struc-
tured manner and enabling relationships between them. They ensure the integrity and consistency of
information. Additionally, information extraction (or data mining) techniques are essential for analyzing
large datasets and gaining meaningful insights. Both tools play a crucial role in the modern world, driving
informed decision-making and process optimization across various sectors, from business to scientific re-
search. In this paperwork we will approach different data mining techniques which include: techniques
for extracting classification rules, association rules and the clustering technique.

A classification rule is a logical expression that describes patterns in datasets, identifying rela-
tionships between variables and predicting the membership of an instance in a specific category or class.
These rules are used in machine learning algorithms to automate the classification of data based on pre-
defined criteria. By applying classification rules, the goal is to generalize patterns observed in training
data to make accurate predictions about new instances. An algorithm that looks for classification rules is
the 1-R Algorithm, which generates a one-dimensional decision tree over an attribute and filters the rules
with the lowest error.

On the other hand, association rules are logical patterns that identify relationships and correlations
between variables within datasets. They reveal co-occurrences to discover hidden patterns. While as-
sociation rules uncover associations and dependencies among variables, classification rules prioritize
predictive accuracy for assigning instances to specific categories. Both rule types play distinct roles in
data analysis, with association rules emphasizing pattern discovery and classification rules focusing on
predictive modeling. These related variables that we look for are usually found in what we call frequent
itemsets. These are sets of data which appear in our database with high frequency. Once we obtain the
frequent itemsets of a database, the task of obtaining association rules becomes much easier. An al-
gorithm that mines frequent itemsets is the Apriori Algorithm, which starts from individual items and
gradually expands to larger sets, using a support threshold to filter out infrequent itemsets. There are
multiple improved versions of Apriori Algorithm. One of such is the FP-growth algorithm. This algo-
rithm is a frequent pattern mining method that efficiently discovers frequent itemsets in large datasets. It
constructs a compact data structure called FP-tree to represent frequent patterns and exploits it to gene-
rate association rules. In contrast with Apriori Algorithm, FP-growth is particularly effective for mining
frequent patterns in databases with a high volume of transactions.

Lastly, clustering is a data analysis technique that involves grouping similar data points into clusters,
where items within the same cluster share common characteristics. This unsupervised learning method
helps uncover patterns and structures in datasets, aiding in the exploration of inherent relationships
among data points. The K-means algorithm is a popular clustering algorithm that partitions a dataset
into K clusters by iteratively assigning data points to the cluster whose centroid is closest, then updating
the centroids based on the newly formed clusters. It aims to minimize the within-cluster sum of euclidean
distances.

II1

Indice general

Resumen

1. Nociones generales
1.1. Contexto hiStOrico e e e e e e
1.2. Tablasiniciales e e e e e
1.2.1. Eltiempo atmosférico e
1.2.2. Laslentesdecontacto e
1.2.3. Lacestadelacompra.
1.2.4. Empleadosdeunaempresao e
1.3. Conceptosiniciales e e e
1.4. Técnicasde eXtracCion v v v v i it e e e e e e e e e

2. Reglas de clasificacion
2.1, Algoritmo 1-R o e
22, CasonuUmMEriCO v vt i e e e e e e

3. Reglas de asociacion
3.1 Algoritmo ApPriorio e e e e
3.2. Arbol-PF y algoritmo de Crecimiento-PF
3.2.1. Construcciéondel &rbol-PF o o
3.2.2. Algoritmo de Crecimiento-PF oL 0.
3.3. Obtencién de reglas de asociaciono

4. Clustering
4.1. Algoritmok-medias

Bibliografia

Apéndice. Implementacién en PL/SQL.

111

11

13
15
17
17
20
22

23
24

27

29

Capitulo 1

Nociones generales

1.1. Contexto historico

La extraccion de informacion de bases de datos ha experimentado una evolucién significativa a lo
largo de la historia, paralela al desarrollo de la tecnologia de la informacién y la informética. Desde
sus primeros pasos hasta la actualidad, esta disciplina ha sido fundamental en la gestién y andlisis de
datos, desempefiando un papel crucial en diversos campos, como la investigacion cientifica, la toma de
decisiones empresariales y la administracién gubernamental.

En la década de 1960, con el auge de la informatica, se produjo la creacién de los primeros sistemas
de gestion de bases de datos (SGBD). Estos sistemas establecieron las bases para la organizacion y
recuperacion eficiente de datos almacenados. Charles Bachmann contribuy6 enormemente en este campo
[1]. Sin embargo, la extraccién de informacion estaba limitada principalmente a consultas bdsicas y
operaciones de buisqueda.

Con la aparicion del lenguaje de consulta estructurado (SQL) a principios de la década de 1970 y la
conceptualizacion de bases de datos relacionales por parte de Edgar Codd [2], la extraccién de informa-
cion se volvié mas accesible y eficaz. SQL permitio realizar consultas mas complejas, estableciendo un
estdndar para la interaccion con bases de datos relacionales, como Oracle y MySQL.

Durante los afios 80 y 90, la necesidad de gestionar grandes volimenes de datos condujo al desarrollo
de almacenes de datos (data warehousing) [3]. Estos almacenes centralizaban datos de diversas fuentes,
facilitando la extraccidn de informacidén para andlisis mds profundos. Paralelamente, la mineria de datos
surgié como una disciplina que utilizaba técnicas estadisticas y de aprendizaje automatico para descubrir
patrones y tendencias en conjuntos de datos extensos.

La explosién de internet en la década de 1990 y el crecimiento exponencial de datos dieron paso
a nuevos retos en la extraccion de informacidn. Surgieron nuevas tecnologias para abordar la gestion y
andlisis de grandes cantidades de datos, marcando el inicio de la era del Big Data [4]. La extraccion de
informacién se volvié mas compleja pero también mas valiosa.

En la actualidad, la extraccién de informacién se enfrenta a desafios como la propia diversidad de
fuentes de datos, la necesidad de procesamiento en tiempo real o la proteccion de la privacidad. Tecno-
logias como la inteligencia artificial y el procesamiento del lenguaje estdn transformando la manera en
que se extrae informacion, permitiendo andlisis més sofisticados y personalizados.

Las bases de datos relacionales han sido una herramienta fundamental en el mundo de la gestion de
la informacién durante décadas. Estas bases de datos estructuradas han permitido almacenar y organizar
grandes cantidades de datos de manera eficiente, facilitando la gestiéon y manipulacién de la informacion.
Sin embargo, el verdadero valor de una base de datos radica en la informacién que contiene y en la
capacidad de extraer conocimiento valioso de ella. Para lograr este objetivo, es necesario utilizar técnicas
de extraccién de informacion que nos permitan obtener datos significativos y relevantes de una base de
datos relacional. [5] [6]

En este trabajo, exploraremos diversas técnicas utilizadas para extraer informacion de bases de datos
relacionales. Estas técnicas nos permitirdn transformar datos brutos en conocimiento ttil para la toma de

2 Capitulo 1. Nociones generales

decisiones, la generacion de informes y el descubrimiento de informacién valiosa.

1.2. Tablas iniciales

Vamos a presentar, en primer lugar, algunos ejemplos de bases de datos relacionales que nos serviran
para ilustrar todos los conceptos de este trabajo. En una base de datos relacional, la informacién se
organiza en forma de tablas.

1.2.1. El tiempo atmosférico

La Tabla 1.1 representa la recogida de datos sobre si es conveniente o no jugar a determinado juego
segun las condiciones meteoroldgicas del dia. Cada fila de la tabla representa un dia registrado. En la
columna Prondstico podemos encontrar las opciones Soleado, Lluvioso o Nublado. Para la columna
Temperatura el dia se puede registrar como Caluroso, Templado o Frio. La Humedad puede ser Alta o
Normal. En la columna Viento se registra la existencia de viento mediante Verdadero o Falso. Finalmente,
en la columna Jugar registramos si la decision tomada fue de Si o No.

Prediccionl
Pronéstico Temperatura Humedad Viento Jugar
Soleado Caluroso Alta Falso No
Soleado Caluroso Alta Verdadero No
Nublado Caluroso Alta Falso Si
Lluvioso Templado Alta Falso St
Lluvioso Frio Normal Falso Si
Lluvioso Frio Normal Verdadero No
Nublado Frio Normal Verdadero Si
Soleado Templado Alta Falso No
Soleado Frio Normal Falso Si
Lluvioso Templado Normal Falso Si
Soleado Templado Normal Verdadero Si
Nublado Templado Alta Verdadero Si
Nublado Caluroso Normal Falso Si
Lluvioso Templado Alta Verdadero No

Tabla 1.1: Tabla del tiempo atmosférico

Por otro lado, la Tabla 1.2 se trata de una version alternativa de la Tabla 1.1. En ella se ha modificado
la columna Temperatura y Humedad de forma que, en lugar de registrar los datos de forma nominal,
se ha optado por hacerlo de forma numérica. En el caso de la temperatura, se ha registrado en grados
Fahrenheit, mientras que la humedad en porcentaje. Las dos versiones del mismo problema nos servirdn
como ejemplos a lo largo del capitulo.

1.2.2. Las lentes de contacto

La Tabla 1.3 proporciona las condiciones bajo las que un optometrista podria optar por prescribir
lentes de contacto duras, lentes de contacto blandas o no llevar lentes de contacto.

1.2.3. La cesta de la compra

La Tabla 1.4 representa una muestra de compras hechas en un supermercado con los atributos ID,
Hora, Objetos Comprados.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 3

Prediccion2

Prondstico Temperatura Humedad Viento Jugar
Soleado 85 85 Falso No
Soleado 80 90 Verdadero No
Nublado 83 86 Falso Si
Lluvioso 70 96 Falso Si
Lluvioso 68 80 Falso Si
Lluvioso 65 70 Verdadero No
Nublado 64 65 Verdadero Si
Soleado 72 95 Falso No
Soleado 69 70 Falso Si
Lluvioso 75 80 Falso Si
Soleado 75 70 Verdadero Si
Nublado 72 90 Verdadero Si
Nublado 81 75 Falso Si
Lluvioso 71 91 Verdadero No

Tabla 1.2: Tabla del tiempo atmosférico con atributos numéricos

Lente
Edad Prescripcion de gafas Astigmatismo Ratio de lagrimas Lentes recomendadas
Joven Miope No Reducido Ninguna
Joven Miope No Normal Blandas
Joven Miope Si Reducido Ninguna
Joven Miope Si Normal Duras
Joven Hipermétrope No Reducido Ninguna
Joven Hipermétrope No Normal Blandas
Joven Hipermétrope St Reducido Ninguna
Joven Hipermétrope Si Normal Duras
Pre-presbicia Miope No Reducido Ninguna
Pre-presbicia Miope No Normal Blandas
Pre-presbicia Miope St Reducido Ninguna
Pre-presbicia Miope Si Normal Duras
Pre-presbicia Hipermétrope No Reducido Ninguna
Pre-presbicia Hipermétrope No Normal Blandas
Pre-presbicia Hipermétrope St Reducido Ninguna
Pre-presbicia Hipermétrope Si Normal Duras
Presbicia Miope No Reducido Ninguna
Presbicia Miope No Normal Blandas
Presbicia Miope St Reducido Ninguna
Presbicia Miope St Normal Duras
Presbicia Hipermétrope No Reducido Ninguna
Presbicia Hipermétrope No Normal Blandas
Presbicia Hipermétrope St Reducido Ninguna
Presbicia Hipermétrope St Normal Duras

Tabla 1.3: Tabla de las lentes de contacto

4 Capitulo 1. Nociones generales

Transaccion
ID Hora Objetos comprados
101 6:35 Leche, Pan, Galletas, Zumo
792 7:38 Leche, Zumo
1130 8:05 Leche, Huevos
1735 8:40 Pan, Galletas, Café

Tabla 1.4: Tabla de la cesta de la compra

1.2.4. Empleados de una empresa

La siguiente tabla almacena una muestra de empleados de una empresa con los atributos ID, Edad,
Aiios de servicio.

Empleados
ID Edad Aiios de servicio
1 30 5
2 50 25
3 50 15
4 25 5
5 30 10
6 55 25

Tabla 1.5: Tabla de los empleados de la empresa

1.3. Conceptos iniciales

Antes de comenzar estudiando las diversas formas de extraer la informacién, debemos conocer algu-
nas nociones elementales de bases de datos.

Definicion. Una base de datos es una coleccién de datos relacionados. Generalmente, se visualiza en
formato de tablas. Tiene las siguientes propiedades implicitas:

= Representa algiin aspecto del mundo real
= Es una coleccioén coherente de datos con significado implicito

= Se disefia con un propdsito especifico. Tiene un grupo predeterminado de usuarios y aplicaciones
preconcebidas para esos usuarios

Las bases de datos se disefian de acuerdo con un modelo de bases de datos. El modelo proporciona
los materiales para crear la estructura de la base de datos. Algunos de los modelos de disefio de base de
datos son:

= Nivel conceptual: modelo Entidad/Relacién

= Nivel 16gico: modelo relacional

En este trabajo, usaremos el modelo relacional. Vamos a definir los elementos que lo componen.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 5

Definicion. Un esquema de relacion R, denotado por R(A1,A», ...,A,), estd compuesto por el nombre de
la relacién R y un listado de atributos A,A,, ...,A, . Llamamos atributo A; a la caracteristica o rasgo de
un tipo de entidad que describe la propia entidad. Los atributos aceptan posibles valores de atributo que
pertenecen a un conjunto de posibles valores denominado dominio D y se denota dom(A;).

Definicién. Una relacion r del esquema de relacién R(A,A»,...,A,), denotada r(R) es un conjunto de
n-tuplas r = {t1,t2,...,1,,}. Cada n-tupla t es una lista ordenada de n valores t =< vy,v,...,v, >, donde
vi, con 1 < i <n, es un valor de atributo de dom(A;) o un valor NULO. Un valor NULO representa una
omision en la entrada de datos, ya sea por ser desconocidos o porque no existen en la respectiva tupla.

Ejemplo. La Tabla 1.3 presenta el esquema de relacion:
LENTE(Edad, Prescripcion de gafas, Astigmatismo, Ratio de ldgrimas, Lentes recomendadas)

El nombre del esquema de relacion es LENTE y tiene cinco atributos: Edad, Prescripcion de gafas,
Astigmatismo, Ratio de ldgrimas, Lentes recomendadas. Cada fila de la Tabla 1.3 se corresponde con una
tupla y cada nombre de columna con un atributo. Notar que como sucede en la Tabla 1.2, los valores de
atributo pueden ser numéricos.

A lo largo de este trabajo usaremos el concepto de esquema de relacién y tabla de forma intercam-
biable.

Definicion. Una base de datos relacional es un conjunto de esquemas de relacion junto con un conjunto
de relaciones, una por cada uno de los esquemas de relacion.

Ejemplo. La base de datos bdLente estd formada por el esquema de relacion Lente. Una relacion de este
esquema es la formada por las veinticuatro tuplas de la Tabla 1.3

Definicion. Definimos técnica de extraccion como el proceso de encontrar informacién relevante a partir
de unos datos especificos almacenados en una base de datos, ya sea para su anélisis, informes o cual-
quier otro propésito. Esta técnica implica la obtencién de informacién de una base de datos de manera
organizada y estructurada.

1.4. Técnicas de extraccion

Segtn los objetivos que tengamos al analizar una base de datos, podemos utilizar distintas técnicas de
extraccion. Cada una de ellas nos brindard unos patrones u otros que nos serviran para sacar conclusiones.
A veces estas conclusiones nos serdn utiles y otras veces no: no siempre podremos obtener la informacién
que buscamos. Aunque a lo largo del trabajo veremos varias técnicas distintas apoyadas por ejemplos, en
la préactica los problemas tienden a complicarse por multiples factores externos e imprevistos. Muchas
veces no estard claro qué técnica es beneficioso aplicar. Sin embargo, conviene conocer que tipos de
técnicas de extraccién podemos utilizar. En concreto, en este trabajo vamos a hablar de las reglas de
clasificacion, de las reglas de asociacién y del Clustering:

= Reglas de clasificacion: En las técnicas de extraccion de reglas de clasificacion se toma uno de los
atributos de la tabla y se generan reglas respecto a los posibles valores de tal atributo. Por ejemplo,
en la Tabla 1.1 podriamos buscar patrones que nos permitan averiguar si podemos jugar al juego
requerido segtn si las condiciones de humedad son altas o normales.

» Reglas de asociacion: Similares a las anteriores, la diferencia radica en que no se limitan a un solo
atributo sino que se buscan reglas verosimiles para relacionar los distintos datos. Por ejemplo, en
la Tabla 1.4 podriamos averiguar en base a los datos que si alguien compra leche es probable que
compre zumo también.

6 Capitulo 1. Nociones generales

» Clustering: es una técnica que busca separar los datos en grupos disjuntos donde se retinan ca-
racteristicas similares. Por ejemplo, con los datos de la Tabla 1.5 podriamos buscar agrupar a los
empleados de la empresa segtin su veterania utilizando los atributos de Edad y Afios de servicio
para determinar posibles subidas de sueldo.

Conocidas las técnicas que vamos a tratar, vamos a centrarnos en cada una de ellas en los préximos
capitulos.

Capitulo 2

Reglas de clasificacion

Este capitulo esta basado en el capitulo 4 del libro DATA MINING Practical Machine Learning Tools
and Techniques de I. H. Witten 'y E. Frank. [7]

La primera técnica de extraccién que vamos a explicar obtiene como resultado reglas de clasificacion.
Para entender este concepto, vamos a explicar primero ciertos conceptos clave y qué es un drbol de
decision.

Definicion. Una regla en términos de bases de datos es un conjunto de sentencias l6gicas sobre los
atributos de una tabla que nos permite sacar conclusiones y tomar decisiones en torno a un atributo.

Definicion. Llamamos clase de una regla a la coleccién de tuplas que contienen valores de atributo que
obedecen la misma regla. La frecuencia de la clase es el nimero de tuplas del esquema de relacién que
pertenecen a dicha clase.

Definicion. Denominamos indice de error ala proporcion de errores cometidos por un conjunto de reglas
sobre una base de datos.

Ejemplo. Veamos una regla de clasificacion de la Tabla 1.1 sobre los atributos Humedad y Jugar:
Alta — No

Esta regla declara que si la humedad es Alfa, entonces la decisién serd no jugar. Podemos observar que,
en la Tabla 1.1, esto sucede en cuatro de las siete ocasiones. Por tanto, la clase de la regla Alta — No,
estd formada por las tuplas #1, t2, 3 y #14.

Puesto que Jugar solo puede ser Si o No, las dos clases que tenemos sobre Humedad Alta son Alta —
No (4/7 casos) y Alta — Si (3/7 casos). Por tanto, el indice de error de la regla Alta — No es de 3/7, ya
que hay tres casos de los siete donde no se cumple la regla.

Con todo esto, podemos deducir que si en nuestro prondstico tenemos valores de humedad altos, la
decisiéon mds probable serd la de no jugar al juego indicado.

Definicion. Un drbol de decision es un diagrama de clasificacion donde se representan reglas en forma
de nodos y ramas. En cada nodo del 4rbol se evalda un atributo particular. Normalmente se compara con
una constante, aunque en otras ocasiones se comparan dos atributos o varios mediante una funcién. Cada
nodo estd comunicado con otro mediante ramas que simbolizan los posibles resultados de la evaluacién
anterior. Cada nodo proporciona una clasificacién (o conjunto de clasificaciones) de todas las instancias
que llegan al nodo.

Cuando el nodo es un atributo nominal, el nimero de ramificaciones es igual al nimero de valores
de atributo distintos. Como hay una rama por cada posible valor, el mismo atributo no volver4 a aparecer
a lo largo del arbol.

Cuando el atributo es numérico, la evaluacién se hace normalmente por comparacién de mayor,
menor o igual con un valor concreto, de forma que el nodo se divide en dos ramas. A veces, por la
naturaleza del problema, conviene dividir en tres ramas considerando la opcién de igual por separado.

7

8 Capitulo 2. Reglas de clasificacion

Ejemplo. Utilizando la Tabla 1.3 sobre las lentes de contacto, queremos construir un drbol de decisién
que nos sirva para conocer que tipo de lentes seran recomendadas por el optometrista en base a los datos
conocidos.

La Figura 2.1 representa un drbol de decisién sobre la Tabla 1.3. Podemos observar que en primer
lugar se evaltia uno de los atributos de la tabla (en este caso Ratio de ldgrimas).

Si el valor es Reducido, se recomendard no llevar lentes de contacto. Si el valor es Normal, no
podemos asegurar ningin valor del atributo, asi que evaluamos el atributo Astigmatismo.

Continuamos y vemos que si el valor de Ratio de ldgrimas es Normal y el valor de Astigmatismo
es No, se recomendard llevar lentes de contacto Blandas. Por otro lado, si el valor de Ratio de ldgrimas
es Normal y el valor de Astigmatismo es Si, no podemos asegurar nada, asi que pasarfamos al siguiente
atributo.

Debemos observar que la construccion de cada regla se realiza desde el nodo inicial. Por ejemplo,
para que el valor No del atributo Astigmatismo se evalde en llevar lentes blandas, debemos haber obtenido
antes que Ratio de ldgrimas tenga valor Normal, ya que si el valor fuera Reducido, el resultado final es
no recomendar lentes de contacto.

[Ratio de légrimas]

Reducido Normal

Astigmatismo

[Prescripcién de gafas}

Miope Hipermétrope

Duras Ninguna

Figura 2.1: Arbol de decision para la tabla de lentes de contacto

Ahora podemos entender qué es una regla de clasificacion.

Definicion. Una regla de clasificacion es un tipo de regla compuesta por un antecedente y una conclusién
16gica, construida a partir de los valores de los atributos de un esquema de relacion. Generalmente, los
antecedentes suelen estar unidos mediante el conector 16gico Y. Una regla de clasificacion tiene la forma:

Si a Y b entonces x

Aunque puede resultar sencillo obtener una regla de clasificacién de un esquema de relacién simple,
no resulta un problema sencillo hacerlo de una base de datos grande. Mds adelante estudiaremos el
algoritmo 1-R que nos servird para obtener un conjunto fiable de reglas de clasificacién de una tabla
cualquiera.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 9

Ejemplo. Es sencillo obtener un conjunto de reglas de clasificacién de un arbol de clasificacién. Utili-
zando el arbol de la Figura 2.1, podemos obtener algunas reglas como las siguientes:

Si Ratio de lagrimas = Reducido, entonces Lentes recomendadas = Ninguna

Si Ratio de lagrimas = Normal Y Astigmatismo = No,

entonces Lentes recomendadas = Blandas

2.1. Algoritmo 1-R

En muchas ocasiones, cuando tratamos de obtener informacién de una base de datos, resulta apropia-
do comenzar por lo més simple. El algoritmo 1-R (proveniente del inglés /-rule) es un método sencillo
de obtencidn de reglas de clasificaciéon de un conjunto de datos. Este algoritmo busca drboles de clasifi-
cacion simples de los que se obtienen reglas de clasificacion simples. Por ejemplo, para la Tabla 1.1, un
arbol simple seria:

Figura 2.2: Arbol de decision simple generado mediante algoritmo 1-R

Nuestro objetivo es construir una serie de reglas de clasificacién con el menor indice de error posible
a partir de una regla inicial apropiada. De esta forma, obtendremos un conjunto de reglas que nos per-
mitirdn clasificar de una forma precisa la informacién de nuestra base de datos y asi tomar decisiones
pertinentes en torno a ella.

Los pasos del algoritmo son los siguientes:

Entrada: Atributo de clasificacién fijado y resto de atributos.

1. Generar un arbol de un nivel de decisidn sobre uno de los atributos
respecto al atributo de clasificacién fijado.

2. Escoger la clase mas frecuente de cada posible valor de atributo y
asignar a la clase escogida el valor de atributo correspondiente.

3. Calcular el indice de error de esa regla.

4. Calcular el indice de error total de las reglas resultantes del atributo
que se escogid en el primer paso.

5. Repetir con cada atributo.

Salida: Conjunto de reglas de clasificacidn simples.

Figura 2.3: Pasos del algoritmo 1-R

10 Capitulo 2. Reglas de clasificacion

Si en algin caso obtenemos un empate en el nimero de errores, nos quedaremos con una de las dos
opciones aleatoriamente. Este criterio nos sirve para evitar problemas en la teoria, pero en la aplicacién
real podria ser conveniente utilizar otro criterio.

Ejemplo. Veamos la aplicacién del algoritmo a la Tabla 1.1 y sigamos los pasos descritos. Queremos
buscar reglas verosimiles para ver si serd conveniente jugar o no utilizando los datos registrados en
nuestro esquema de relacion.

1. Escogemos por ejemplo el atributo Humedad. Puesto que en nuestra tabla los posibles valores de
dicho atributo pueden ser Alta o Normal, tenemos que para cada uno, sus clases son:

Regla Frecuencia
Alta — Si 377
Alta — No 477

Normal — Si 6/7
Normal — No 1/7

Tabla 2.1: Evaluacion del atributo Humedad de la tabla del tiempo atmosférico

2. Nos quedamos entonces con la clase mds frecuente de cada valor de atributo, es decir, con:

Alta — No

Normal — Si

3. Es directo ver que los indices de error de ambas reglas son 3/7 y 1/7 respectivamente, ya que las
frecuencias de ambas clases son 4/7 y 6/7 respectivamente.

4. El indice de error total de la regla de clasificacion del atributo Humedad que recoge las reglas
Alta — No 'y Normal — Si es entonces 4/14. Una forma de verlo es plantear que de las catorce
tuplas registradas, cuatro de ellas no cumplen ninguna de las dos reglas. Si hubiéramos tenido
dos o mas clases de un mismo valor de atributo con la misma frecuencia habriamos hecho una
eleccién aleatoria, aunque en la aplicacion real del algoritmo podria convenir otro criterio segtin
los requerimientos del problema.

5. Aplicando el algoritmo a cada atributo, obtenemos la siguiente tabla.

Atributo Reglas Errores Errores totales

1 Prondstico Soleado — No 2/5 4/14
Nublado — Si 0/4
Lluvioso — Si 2/5

2 Temperatura Caluroso — No 2/4 5/14
Templado — Si 2/6
Frio — Si 1/4

3 Humedad Alta — No 3/7 4/14
Normal — Si 1/7

4 Viento Falso — Si 2/8 5/14

Verdadero — No 3/6

Tabla 2.2: Evaluacién de atributos de la tabla del tiempo atmosférico

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 11

En efecto podemos observar que en la regla del atributo Temperatura: Caluroso — No'y en laregla
del atributo Viento: Verdadero — No, se ha realizado una eleccién aleatoria, pues la frecuencia es
también de 2/4 y de 3/6 respectivamente en las clases alternativas correspondientes.

Habiendo entonces aplicado el algoritmo 1-R a nuestro ejemplo, podemos decidir si se juega o no al
deporte especifico en funcién de las condiciones climaticas. En nuestro caso, podriamos decidir utilizan-
do la regla del atributo Pronostico o Humedad, ya que son las dos reglas que menos errores tienen. Si
elegimos utilizando la humedad, la regla para decidir si se juega es asi: si la humedad es alta, entonces
no se juega.

También podemos aplicar 1-R para el caso de la existencia de nulos, en cuyo caso, simplemente
tomaremos NULO como otro posible valor del atributo correspondiente.

2.2. Caso numérico

Adicionalmente, 1-R funciona también para el caso numérico. Podemos convertir los atributos nu-
méricos en nominales aplicando un metodo de discretizacién. Veamoslo mediante un ejemplo.

Ejemplo. Utilicemos la Tabla 1.2. Vamos a ordenar los elementos del atributo Temperatura en una
secuencia creciente con su respectivo resultado del atributo Jugar:

64 65 68 69 70 71 72 72 75 75 80 81 83 &5
Si No Si Si Si No No Si Si Si No Si Si No

Para discretizar debemos particionar la secuencia. Una posible forma es colocar separaciones cada
vez que cambia la secuencia.

Si\No\Si Si Si|No No|[sSi si Si\No\Si Si | No

Cada separacion se corresponde con el valor medio entre el valor final e inicial de dos clases conti-
guas. Asi pues tenemos los valores 64.5, 66.5, 70.5, 72, 77.5, 80.5 y 84. Vemos que el valor 72 nos da
problemas ya que pertenece a dos clases distintas. Podemos solucionarlo moviendo la separacién corres-
pondiente a 72 una posicién hacia delante y la convertimos en 73.5, obteniendo una clase mixta donde
No es la clase mayoritaria.

Si|No|Si Si Si|No No Si|Si Si|No|Si Si]No

Podemos entonces construir un conjunto de reglas tomando comparaciones de mayor y menor res-
pecto a los valores de separacion para decidir si el resultado serd Si o No.

Un gran problema al que nos enfrentamos es la creacién de demasiadas categorias. En nuestro ejem-
plo vemos que solo cometiendo un error (producido por la resolucién del 72 anterior) hemos creado una
gran cantidad de intervalos. Una situacidn en la que un atributo se divida en un nimero excesivo de cate-
gorias, nos llevard a tener cero errores, pero esto no nos interesa. La explicacion radica en que la creacién
de demasiadas reglas de clasificacién no nos brindara ninguna informacion: el objetivo de las técnicas de
extraccion de informacién es encontrar reglas que engloben los distintos casos para buscar relaciones y
patrones comunes para obtener informacién no trivial a primera vista.

Podemos entonces ser mds laxos y hacer, por ejemplo, la siguiente particion:

Si No Si Si Si No No Si Si Si|No Si Si No

En primer lugar, tenemos una particién mixta con S7 como clase mayoritaria y, en segundo lugar, una
particion con empate de clases. Si hacemos una eleccidn arbitraria en la segunda particidon para quedarnos
con No (en caso contrario tendriamos en total una tinica particién), obtenemos el siguiente conjunto de
reglas con indice de error 5/14:

12 Capitulo 2. Reglas de clasificacion

77.5 — Si
77.5 — No

Temperatura: <
>

De esta forma obtendriamos que, con un indice de error 5/14, si tenemos que decidir jugar o no al
deporte especificado y la temperatura es menor o igual a 77.5°F, la decision serd que si se jugard. De
la misma forma, si la temperatura supera los 77.5°F, la decisién serd no jugar (con el mismo indice de
error).

Capitulo 3

Reglas de asociacion

Este capitulo estd basado en el capitulo 12 del libro ADVANCES IN KNOWLEDGE DISCOVERY
AND DATA MINING de R.Agrawal et al [8] y en el libro FUNDAMENTALS OF DATABASE SYSTEMS
de Elmasri, Ramez y S. B. Navathe [9].

Las reglas de asociacion no difieren mucho de las de clasificacion. La principial diferencia radica en
que pueden predecir cualquier atributo, no solo la clase. Esto propicia que podamos predecir combina-
ciones de atributos con libertad. A diferencia de las reglas de clasificacion, las reglas de asociacién no
buscan ser agrupadas en conjuntos de reglas sino que distintas reglas de asociacién predicen distintas
propiedades por si mismas. Por tanto, si nuestro objetivo al buscar reglas de clasificacién era predecir
el valor de cierto atributo fijado, con las reglas de asociacién nuestro objetivo serd predecir relaciones
consistentes entre los datos de nuestro esquema de relacién.

En los apartados anteriores, hemos considerado en el modelo relacional que cada atributo es unie-
valuado, es decir, que acepta en cada tupla un tnico valor de atributo perteneciente a su dominio. Sin
embargo, podemos tener atributos multievaluados, es decir, que acepten conjuntos de datos y cada posi-
ble conjunto de datos conformaria un valor de atributo diferente. El dominio de un atributo de este tipo
estd formado por una particién del conjunto total de datos que tengamos.

Para entender mejor lo anterior, nos vamos a apoyar en el ejemplo de la cesta de la compra. La Tabla
1.4 representa el esquema de relacion Transaccion donde se visualizan las compras hechas por clientes
de un supermercado. Cada tupla del esquema es una transaccién o compra independiente efectuada por
un cliente. El atributo Objetos comprados tiene como valores conjuntos de objetos del supermercado
(datos) que se han adquirido en cada transaccién. Asi, podriamos encontrar reglas de asociacién entre
los objetos del supermercado. Si observamos que leche y zumo aparecen juntos en diversas compras,
podriamos suponer que existe una regla de asociacién entre ambas: si alguien compra zumo, entonces
comprard leche (o viceversa).

Definicion. Una regla de asociacion es unaregla de la forma LI (lado izquierdo) = LD (lado derecho),
donde LI = {x1,x2,...,x,} € LD = {y1,y2,...,ym } son conjuntos de datos de un mismo atributo con LI N
LD = 0. Llamamos conjunto de elementos a la unién LI ULD.

Definicion. Definimos soporte de un conjunto de datos como la fraccién de frecuencia de aparicién del
conjunto en nuestra muestra o base de datos. La denotamos sup(X) siendo X un conjunto de datos de
nuestro esquema de relacion.

Definicion. Definimos soporte de una regla LI —> LD como la fraccién de frecuencia de aparicién de
su conjunto de elementos correspondiente en nuestra muestra o base de datos. Es decir, es el porcentaje
de tuplas de nuestro esquema de relacion que contienen todos los elementos de LI U LD.

El soporte de una regla nos permite conocer lo verosimil que es dicha regla en cuanto a la cantidad
de veces que los elementos de LI U LD aparecen juntos.

Ejemplo. Usemos la Tabla 1.4 y calculemos el soporte de la regla leche —> zumo. Es decir, queremos
saber la frecuencia de aparicién del respectivo conjunto de elementos {/eche, zumo}. Como leche y zumo

13

14 Capitulo 3. Reglas de asociacion

aparecen juntos en dos de las cuatro transacciones, esto sigfica que ocurre el 50 % de las veces, es decir,
la regla leche — zumo tiene soporte 0,5. Veamos ahora la regla pan — huevos. Puesto que pan 'y
huevos no se han comprado juntos en ninguna de las transacciones, el soporte de la regla es 0.

Definicion. Llamamos confianza de una regla LI = LD al célculo:

sup(LIULD)
sup(LI)

Es decir, es la probabilidad de que los elementos de LD aparezcan en una tupla de nuestro esquema de
relacién sabiendo que los elementos de LI aparecen. Esto nos permite medir lo fuerte o creible que es
una regla de asociacién en términos de probabilidad.

Ejemplo. Veamos la Tabla 1.4 sobre la cesta de la compra comentada anteriormente. Queremos buscar
alguna regla que nos permita saber si al comprar determinado articulo, se comprara otro adicional. En
este ejemplo particular, vamos a simplificar considerando L/ y LD como conjuntos de un tnico articulo.

Consideremos la regla leche =—> zumo. El respectivo conjunto de elementos LI U LD sera {leche,
zumo}. El soporte de {leche, zumo} es 0,5 como hemos visto en el ejemplo anterior, mientras que el
soporte de {leche} es 0,75. Por tanto, la confianza de leche —> zumo es:

sup({leche,zumo}) 0,5

= =0,67
sup({leche}) 0,75 7

Otra forma de verlo: de las tres transacciones donde aparece leche, en dos de ellas aparece zumo.

Ahora, consideramos otra regla distinta: pan = zumo. En este caso, LI U LD serd {pan, zumo}.
El soporte de {pan, zumo} es 0,25, ya que pan y zumo aparecen juntos s6lamente en una de las cuatro
transacciones. Por otra parte, el soporte de {pan} es 0,5, pues aparece en la mitad de transacciones. Por
tanto, la confianza sera:

sup({pan,zumo}) 0,25
sup({pan}) 0,5

Soélamente en una de las dos transacciones que contienen {pan} aparece zumo.

Si comparamos ambas reglas en términos de probabilidad, un cliente comprard zumo con una pro-
babilidad del 66,7 % si compra leche y comprard zumo con una probabilidad del 50 % si compra pan.
La primera regla tiene un soporte mds alto que la segunda, por lo que existen evidencias de que la regla
leche — zumo es mas vélida que la segunda regla pan =—> zumo, pues esta tltima ocurre tan pocas
veces en el esquema de relacién que no nos asegura que se vaya a cumplir o repetir.

0,5

No resulta adecuado calificar una regla como valida basdndonos sélamente en lo anterior. Si ob-
tenemos valores de soporte bajos, la regla no estard apoyada en el suficiente nimero de datos como
para considerarla relevante. Esto serd independiente de lo alta que resulte la confianza posteriormente.
Podemos verlo en el siguiente ejemplo.

Ejemplo. Consideramos de nuevo la Tabla 1.4 y evaluemos la regla huevos = leche. Observamos que
el soporte de la regla es bajo, pues tan solo ocurre en una de las cuatro transacciones, por lo que tiene
soporte 0,25. Por otro lado, el soporte de {huevos} es de la misma forma 0,25. Calculamos la confianza:

sup({huevos,leche}) 0,25

= =1
sup({huevos}) 0,25

Es decir, en el 100 % de las transacciones donde se compra huevos se compra leche. Si slamente tuvie-
ramos en cuenta la confianza podriamos pensar que la regla es perfecta: cualquiera que compre huevos
comprard siempre leche. Pero esto no es asi. Atn teniendo la mdxima confianza posible, el soporte bajo
nos indica que la regla se apoya en un niimero de casos tan minimo que no resulta razonable aceptarla
como cierta.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 15

Teniendo en cuenta esto, necesitamos un indicador para el soporte que nos diga si la regla es vélida
o lo suficientemente fuerte, o si por el contrario, debemos descartarla ante la insuficiencia de casos. Con
este fin, definimos:

Definicion. Denominamos umbral de aceptacion al valor de soporte minimo para que una regla sea
considerada valida. Este valor serd generalmente especificado por el usuario de acuerdo a la naturaleza
del problema.

Definicion. Los conjuntos de elementos cuyo soporte iguala o excede el umbral de aceptacion se dicen
frecuentes.

Ejemplo. Utilizando las reglas vistas en los ejemplos previos, supongamos que el usuario ha especificado
un umbral de aceptacion de 0,5.

» La regla leche = zumo con soporte 0,5 seria una regla valida y por tanto el conjunto {leche,
zumo} seria un conjunto frecuente de elementos.

» Laregla pan = zumo con soporte 0,25 no se consideraria una regla valida y seria descartada.
» Laregla huevos = leche con soporte 0,25 no se consideraria una regla vélida y seria descartada.

El mayor problema que tendremos con bases de datos grandes serd encontrar todos los conjuntos
frecuentes de elementos con el valor de su correspondiente soporte. Para resolver esto, nos apoyaremos en
algoritmos que nos faciliten su obtencién. Una vez encontrados, veremos a continuacién cémo tratarlos
para obtener reglas de asociacién sencillas.

3.1. Algoritmo Apriori

Antes de presentar el algoritmo, vamos a ver dos propiedades importantes.

Definicion. Sea X conjunto frecuente de elementos. Si VY C X se cumple que Y es un conjunto frecuente
de elementos, se dice que cumple la propiedad de clausura descendente.

Ejemplo. Consideramos la Tabla 1.4 de la cesta de la compra. Supongamos que el usuario ha especi-
ficado un umbral de aceptacion de 0,5. El conjunto de elementos {leche, zumo} es frecuente pues tiene
soporte 0,5. Igualmente, tanto el conjunto {leche} como el conjunto {zumo} tienen soporte 0,5, asi que
también son frecuentes y por tanto {leche, zumo} cumple la propiedad de clausura descendente.

Definicion. Sea Y conjunto no frecuente de elementos. Si VX tal que ¥ C X se cumple que X es un
conjunto no frecuente de elementos, se dice que se cumple la propiedad de antimonotonicidad.

Ejemplo. Consideramos de nuevo la Tabla 1.4 y tomamos un umbral de aceptacién de 0,5. Podemos
observar que el conjunto {leche, huevos} tiene soporte 0,25 y por tanto no es un conjunto frecuente.
Construimos cada uno de los posibles conjuntos que contienen leche y huevos. Es sencillo observar que
ninguno de estos conjuntos tendra soporte igual o superior a 0,5 y entonces serdn no frecuentes, por lo
que se cumple la propiedad de antimonotonicidad.

Como comentamos previamente, uno de los mayores problemas serd el encontrar los conjuntos fre-
cuentes de una base de datos grande, ya que, si la cardinalidad es muy elevada, el cdlculo del soporte
de todos los conjuntos posibles es altamente costoso. Si usamos las dos propiedades anteriores en un
algoritmo, el espacio combinatorio de busqueda se reduce notablemente. Una vez tenemos los conjun-
tos frecuentes de elementos, resulta sencillo elaborar reglas de asociacién simples a partir de los datos
recogidos.

El algoritmo Apriori fue el primero en implementar las dos propiedades previas. Su funcionamiento
consiste en buscar los conjuntos frecuentes de elementos. Para ello evalia cada conjunto de menor tama-
flo posible para localizar los frecuentes. A continuacién, aumenta el tamafio de la menor forma posible

16 Capitulo 3. Reglas de asociacion

de los conjuntos frecuentes calculados y vuelve a comprobar si son frecuentes o no. El algoritmo itera
estos pasos hasta no encontrar conjuntos frecuentes. De esta forma, el algoritmo calcula una coleccién
compuesta de todos los conjuntos frecuentes de la base de datos que satisfacen las dos propiedades an-
teriores y a partir de ese célculo se elaboranr reglas de asociacién respecto a los datos que aparecen en
tales conjuntos. Esto permite saber qué datos tienen tendencia a aparecer juntos en la base de datos.

La entrada del algoritmo Apriori es un atributo con n datos y m tuplas. Denotaremos Ly, L, ...,L; a
los conjuntos frecuentes de elementos. El umbral de aceptacion lo denotamos u.

Los pasos del algoritmo son los siguientes:

Entrada: Atributo con n datos y m tuplas. Umbral de aceptacidén u.

1. Calcular el soporte de cada dato iy,is,...,i; como si se tratase de conjuntos
de un solo elemento.

2. Considerar el conjunto C; de todos los datos ij,ip,...,i, como candidato a
ser el l-conjunto frecuente de elementos.

3. Tomamos L; como el subconjunto de C; formado por los elementos i; tales
que sup(ij) > u . Este conjunto L; serd el 1-conjunto frecuente de elementos.
Hacemos k=1 e iteramos en los siguientes pasos.

4. Ahora consideramos Ciy; el (k+1)-conjunto frecuente de elementos
candidato, formado por las combinaciones de k+1 miembros de L; que tienen k-1
elementos en comin. Adicionalmente, solo consideramos como miembros de Ciyj
aquellos tales que cada subconjunto suyo de tamafio k aparece en L.

5. Formamos de nuevo L;;; como el subconjunto de Cp;; formado por los
miembros cuyo soporte supere o iguale el umbral u.

6. Si Lyy; esta vacio, terminamos. En caso contrario, hacemos k = &k + 1y
repetimos desde el paso 4.

Salida: Conjuntos frecuentes de elementos Lj,Ly,...,Lk.

Figura 3.1: Pasos del algoritmo Apriori

Podemos observar que el algoritmo cumple la propiedad de antimonotonicidad pues si un conjunto
es no frecuente el algoritmo impide que se construyan conjuntos de mayor tamaiio a partir de dicho con-
junto. Ademads, cumple la propiedad de clausura descendente ya que, por la construccion del algoritmo,
si un conjunto es evaluado como frecuente significa que sus subconjuntos tuvieron que ser evaluados
como frecuentes en primer lugar.

Veamos ahora un ejemplo que nos ilustre la aplicacion del algoritmo.

Ejemplo. Utilizamos de nuevo la Tabla 1.4 de la cesta de la compra y consideremos el umbral de acep-
tacion 0,5. Tenemos los datos: leche, pan, zumo, galletas, huevos y café.

1. Calculamos los soportes. Respectivamente son: 0,75, 0,5, 0,5, 0,5, 0,25 y 0,25.
2. El 1-conjunto candidato C; sera {{leche}, {pan}, {zumo}, {galletas},{ huevos}, {café}}.

3. Teniendo en cuenta los elementos cuyo soporte es mayor o igual que 0,5, el 1-conjunto frecuente
de elementos L; serd {{leche}, {pan}, {zumo}, {galletas}}. Vamos a crear el 2-conjunto candidato

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 17

C,. Esta formado por las combinaciones de 2 miembros de L; tal que no tienen elementos en comin
y cuyos subconjuntos aparecen todos en L (ambas son triviales pues los miembros de L; son de
un solo elemento). Tenemos pues que C, estd formado por {leche, pan}, {leche, zumo}, {leche,
galletas}, {pan, zumo}, {pan, galletas} y {zumo, galletas}.

4. Calculamos los soportes de los conjuntos anteriores. Respectivamente: 0,25, 0,5, 0,25, 0,25, 0,5
y 0,25. Por tanto, el 2-conjunto frecuente de elementos es L, estd formado por {leche, zumo} y
{pan, galletas}.

5. Puesto que L, no estd vacio, iteramos y pasamos a buscar los 3-conjuntos frecuentes de elementos.

6. Observemos que no podemos construir C3. Si por ejemplo tomamos {leche, zumo, pan}, el sub-
conjunto {leche, pan} no esta en L, y por tanto no podria ser un 3-conjunto frecuente de elementos
por la propiedad de la clausura descendente.

Por tanto, el algoritmo termina y hemos encontrado los conjuntos frecuentes :

{leche?}
{pan}
{zumo }
{galletas?}
{leche, zumo}
{pan, galletas?}

Podriamos entonces generar reglas de asociacién utilizando los conjuntos anteriores de forma que
tendrian un soporte superior al umbral de aceptacién especificado. Al final del capitulo veremos cémo
podemos obtener reglas de asociacion de conjuntos frecuentes como los anteriores.

3.2. Arbol-PF y algoritmo de Crecimiento-PF

El mayor problema que presenta el algoritmo Apriori y derivados es que pueden generar (y por tan-
to tener que evaluar) un nimero muy elevado de conjuntos candidatos. Esto puede provocar un coste
computacional muy alto en bases de datos grandes. El algoritmo Crecimiento-PF (Patrén Frecuente) es
una alternativa para evitar este problema. Para ello utilizaremos un 4rbol de clasificacion especial que
denominaremos drbol-PF. Este tipo de arboles de clasificacién sirven para almacenar la informacién
relevante y para descubrir de manera eficiente posibles conjuntos frecuentes. Vamos a explicar su fun-
cionamiento.

3.2.1. Construccion del arbol-PF

Para facilitar el desarrollo, vamos a considerar el soporte de los conjuntos como un conteo en vez de
como una fraccion.

18 Capitulo 3. Reglas de asociacion

Entrada: Base de datos

1. Calcular los soportes de todos los datos. Ordenar de forma no creciente
por soporte los datos y quedarse con los frecuentes (obteniendo 1-conjuntos).
Almacenarlos en una tabla 7 junto al contador de su soporte.

2. Para cada tupla f; de la base de datos que contenga algunos de los
l1-conjuntos frecuentes anteriores, construir otra tabla 7; donde almacenar los
1-conjuntos que aparezcan tanto en la tupla #; como en 7 y guardarlos en el mismo
orden no creciente en el que aparecen en 7 . El primer dato de esta tabla T;
serd la cabecera, y el resto seran la cola.

3. Iniciar el arbol-PF con la raiz NULL.

4. Tomar la tabla 7;. Si del nodo actual N del arbol-PF nace una rama con
un nodo cuyo nombre sea la cabecera, entonces dicho nodo pasa a ser el nodo N
y se incrementa en 1 su contador asociado; en otro caso, crear un nuevo nodo N
desde la raiz con un contador iniciado en 1 y ligar N con la tabla 7 mediante
un enlace.

5. Si la cola es no vacia, la cabecera se elimina y el siguiente dato de
la cola se convierte en la cabecera. Repetir el paso 4.

6. Si la cola es vacia, pasar a la siguiente tabla y repetir desde el paso
4. Si no quedan tablas 7;, terminar.

Salida: Arbol-PF y tabla T con los enlaces.

Figura 3.2: Pasos de la construccién de un Arbol-PF

Vamos a ver un ejemplo que facilite la comprension.

Ejemplo. Utilicemos de nuevo la Tabla 1.4. Consideramos un umbral de aceptacién 2 (recordamos
que para esta seccién usamos el soporte como un conteo en vez de una fraccién). Sigamos los pasos
anteriores.

1. Calculamos los 1-conjuntos frecuentes con su soporte y los ordenamos de forma no creciente:
{{(leche, 3)}, {(pan, 2)}, {(galletas, 2)}, {(zumo, 2)}}. Los insertamos en la tabla T.

Objeto Soporte Enlace

Leche 3
Pan 2
Galletas 2
Zumo 2

Tabla 3.1: Tabla T’
De momento, la columna enlace aparece vacia, ya que la iremos rellenando conforme hagamos el
arbol.

2. Observamos que las cuatro tuplas de la Tabla 1.4 tienen algin objeto de T, asi que construimos
cuatro subtablas 7; con los objetos de T en el mismo orden.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 19

Ti T, T; Ty
Leche | Leche | Leche Pan
Pan Zumo Galletas
Galletas
Zumo

Tabla 3.2: Tablas T;

3. Iniciamos el arbol con el nodo NULL.

4. Tomamos T7. Como de la raiz NULL no nace ninguna rama que tenga por nodo la cabecera leche,
la creamos y le ponemos contador 1 y enlace a.

5. Eliminamos leche de T; y como la cola no estd vacia, pan es la nueva cabecera. Repitiendo el paso
anterior, no existe ninguna rama de leche que tenga por nodo pan, asi que la creamos y le ponemos
contador 1 y enlace b. Hacemos lo mismo con el resto de objetos de 7;.

6. Pasamos a la tabla 7. Volvemos al nodo NULL y vemos que existe una rama cuyo nodo coincide
con la cabecera leche, asi que aumentamos en 1 el contador del nodo /eche en el 4rbol. La nueva
cabecera pasa a ser zumo y como no existe ninguna rama del nodo leche cuyo nodo sea zumo,
creamos una nueva rama desde leche con el nombre zumo y le ponemos contador 1 y enlace e.

7. Pasamos a la tabla 73. Volvemos al nodo NULL y vemos que existe una rama cuyo nodo coincide
con la cabecera leche, asi que aumentamos en 1 el contador del nodo leche en el arbol.

Leche: 1, a

Galletas: 1, ¢ Galletas: 1, ¢ Galletas: 1, ¢

@71 b) T ©Ts

Figura 3.3: Construccién de 4rbol-PF con 71, T, y T3

8. Pasamos a la tabla 7;. Volvemos al nodo NULL y vemos que no existe ninguna rama cuyo nodo
coincida con la cabecera pan, asi que creamos una nueva rama desde NULL con el nodo pan y le
ponemos contador 1 y enlance f. De la misma forma, eliminamos zumo de T y tomamos galletas
como la nueva cabecera. Como no existen ramas desde el nuevo nodo anterior, creamos una nueva
con el nodo galletas y le ponemos contador 1 y enlace g. Asi, terminamos el drbol y, completando
la tabla 7' con los enlaces de los nodos, obtenemos la Figura 3.4.

Notar que el enlace nos sirve para ubicar los contadores de cada objeto en el arbol y comprobar que
no nos hemos dejado ninguno segin los soportes calculados. Si la base de datos es pequefia podemos no
necesitar el enlace, pero en bases de datos més grandes nos ayudard a localizar todos los datos.

Observamos, ademds, que el arbol-PF nos proporciona una manera mas compacta de ver las transac-
ciones relacionadas con los 1-conjuntos frecuentes.

20 Capitulo 3. Reglas de asociacion

Leche: 3, a

Galletas: 1, g

Objeto Soporte Enlace

Leche 3 a
Galletas: 1, ¢ Pan 2 b, f
Galletas 2 c, g
Zumo 2 d,e
(a) Arbol-PF de la Tabla 1.4 (b) Tabla T con enlaces

Figura 3.4: Construccién final del Arbol-PF de la Tabla 1.4

3.2.2. Algoritmo de Crecimiento-PF

Ahora que entendemos la construccidn de un arbol-PF, podemos introducir el algoritmo de Crecimiento-
PF. Este algoritmo nos permite escrutar un drbol-PF dado, obtener a partir del mismo formas de relacionar
los 1-conjuntos frecuentes y asi poder elaborar conjuntos frecuentes de mayor tamarfio.

Para poder explicar el algoritmo necesitamos dos definiciones.

Definicion. Sea un nodo N de un arbol-PF al que llamaremos sufijo, llamaremos base condicional de N
al conjunto de los caminos del drbol que llegan hasta N (sin incluir a N). A cada camino de este conjunto
lo llamaremos prefijo.

Ejemplo. Tomando el arbol-PF de la Figura 3.4a, si elegimos el nodo zumo como sufijo, los prefijos que
llegan hasta el nodo elegido son (leche: 1, pan: 1, galletas: 1) y (leche: 1), por lo que la base condicional
de zumo seria {(leche, pan, galletas), (leche)}.

Definicion. Sea un nodo N de un arbol-PF. Considerando los elementos de su base condicional como
conjuntos de datos de tuplas distintas de un esquema de relacion, denominamos drbol-PF condicional
de N al 4rbol-PF construido a partir de la base condicional de N y con umbral de aceptacién sup(N).

Ejemplo. Tomamos la base condicional de zumo del ejemplo anterior {(leche, pan, galletas), (leche)}.
Fijamos el umbral de aceptacion sup((zumo)) = 2.

Para obtener el arbol-PF condicional de zumo debemos construir un arbol-PF considerando (leche,
pan, galletas) y (leche) como las Unicas transacciones realizadas de una tabla nueva. Como leche es el
Unico objeto cuyo soporte supera el umbral 2, si seguimos los pasos de construcciéon de un arbol-PF
podemos ver que el arbol-PF construido a partir de la base {(leche, pan, galletas), (leche)} nos brinda un
unico nodo (leche: 2). Es decir, el arbol-PF condicional de zumo respecto a la Tabla 1.4 es:

NULL
Leche: 2

Figura 3.5: Arbol-PF condicional de zumo respecto a la Tabla 1.4

El algoritmo comienza evaluando si el arbol-PF introducido tiene més de una rama. Si s6lamente
tiene una rama, el algoritmo selecciona como conjuntos frecuentes todas las combinaciones de nodos
que superan el umbral de decision estipulado. Si el arbol-PF tiene mds de una rama, comienza eligiendo
el 1-conjunto frecuente menos frecuente y calcula su base condicional. A continuacién calcula su drbol-
PF condicional y forma los conjuntos frecuentes concatenando el sufijo con los caminos producidos en
el arbol.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 21

Los pasos del algoritmo son entonces los siguientes:

Entrada: arbol-PF

1. Analizar si el arbol-PF introducido tiene una o mas ramas.

2. Si contiene una inica rama, generar los conjuntos frecuentes a partir
de todas las combinaciones de nodos que superan el umbral de aceptacidn

introducido.

3. Si contiene dos o mas ramas, para cada nodo en orden no decreciente de
soporte fijar su valor de soporte y hacer:

a) Calcular su base condicional.
b) Calcular su arbol-PF condicional.

c) Si dicho arbol-PF es no vacio, generar los conjuntos frecuentes
concatenando sus caminos con el nodo inicial. Calcular su soporte.

Salida: Conjuntos frecuentes con su soporte.

Figura 3.6: Pasos del algoritmo de Crecimiento-PF

Veamos pues el funcionamiento del algoritmo con un ejemplo:
Ejemplo. Tomamos el arbol de la Figura 3.4a y determinamos umbral de aceptacion 2.

1. El arbol-PF tiene mas de una rama.
2. Como tiene mds de una rama ignoramos el paso 2.
3. Comenzamos con el objeto zumo y fijamos su valor de soporte, que es 2.

a) Construimos su base condicional. Sabemos por los ejemplos anteriores que es {(leche, pan,
galletas), (leche)}.

b) Construimos su drbol-PF condicional. De igual manera, sabemos por el ejemplo anterior que
estd compuesto de un dnico nodo (leche: 2).

¢) Como el arbol-PF condicional es no vacio y tiene un tinico nodo, el inico conjunto frecuente
generado es {leche, zumo} con soporte 2.

Pasamos al objeto galletas y fijamos su soporte 2.

a) Construimos su base condicional. Los prefijos que llegan hasta galletas son (leche: 1, pan:
1) y (pan: 1), por lo que la base condicional de galletas serd {(leche, pan), (pan)}.

b) Construimos su arbol-PF condicional. Es sencillo observar que estd compuesto de un tinico
nodo: (pan: 2).

¢) Como el arbol-PF condicional es no vacio y tiene un tinico nodo, el inico conjunto frecuente
generado es {pan, galletas} con soporte 2.

Si vamos ahora con los objetos pan y leche es sencillo ver que sus respectivos drboles-PF condi-
cionales quedan vacios, asi que no generan conjuntos frecuentes. Asi, el algoritmo finaliza y nos
devuelve los siguientes conjuntos frecuentes con su soporte: {leche: 3}, {pan: 2}, {galletas: 2},
{zumo: 2}, {leche, zumo: 2} y {pan, galletas: 2}. Con estos conjuntos podremos elaborar ficil-
mente reglas de asociacion verosimiles para nuestra base de datos.

22 Capitulo 3. Reglas de asociacion

3.3. Obtencion de reglas de asociacion

Los algoritmos anteriores nos permiten averiguar los conjuntos frecuentes de una base de datos dada.
Necesitamos saber como tratar estos conjuntos para obtener de ellos reglas de asociacion. Para ello,
vamos a ver primero el siguiente resultado.

Proposicion. Sea X un conjunto frecuente de elementos y sea Y C X. Sea Z = X \ Y. Entonces, si
sup(X)/sup(Z) > c con ¢ una confianza minima establecida, la regla Z = Y es una regla vdlida.

Demostracion. Sea ¢ una confianza minima establecida. Sea X = {x1,...,x,} un conjunto frecuente de
elementos. Sea Y = {xi,...,x,,} con m < n, cambiando el orden de los elementos si es necesario. Enton-
ces, Z = {Xmt1,...,Xn } ¥ por tanto es trivial que X = ZUY.

Asumiendo que sup(X)/sup(Z) > c, esto es equivalente a que sup(ZUY)/sup(Z) > c. Por tanto, la
confianza de laregla Z = Y supera la confianza minima establecida y entonces es una regla vdlida. [

Utilizando la proposicién anterior, veamos un sencillo algoritmo que nos genera reglas de asociacién:

Entrada: Conjunto frecuente X y confianza minima establecida ¢
1. Generar todos los subconjuntos no vacios Y; de X
2. Para cada i, construimos Z;=X\Y; y calculamos c¢; =sup(X)/sup(Z;).

3. Para cada j tal que c¢; >c, creamos la regla de asociacidén Z; — Y¥;

Salida: Reglas de asociaciédn.

Figura 3.7: Pasos del algoritmo de obtencion de reglas de asociacién de conjuntos frecuentes

Ejemplo. Partimos del conjunto frecuente {leche, zumo} obtenido con el algoritmo de Crecimiento-PF
en el ejemplo anterior. Consideramos ¢ = 0,6.

1. Los subconjuntos no vacios son Y; = {leche} y Y» = {zumo}.

2. Tomando por ejemplo Y}, tenemos que Z; = {leche, zumo} \ {leche} = {zumo}, luego

sup({leche, zumo}) 0,5 1
cC1 = = =
! sup({zumo}) 0,5

3. Como ¢ > ¢, tenemos que la regla Z; = Y es decir {zumo} = {leche} es una regla de
asociacion valida.

Habiendo obtenido esta regla, podemos suponer que si un cliente compra zumo, entonces es muy posible
que compre leche.

Capitulo 4

Clustering

Este capitulo estd basado en el libro DATA MINING Practical Machine Learning Tools and Techni-
quesde I. H. Witteny E. Frank [7] y en el libro FUNDAMENTALS OF DATABASE SYSTEMS de Elmasri,
Ramezy S. B. Navathe [9].

En las reglas de clasificacion vistas anteriormente sucedia lo que conocemos como aprendizaje su-
pervisado, es decir, dada una base de datos, los resultados de nuestras reglas de clasificacién se daban de
acuerdo a una clasificacién estipulada previamente. Por ejemplo, en la Tabla 1.3 de las lentes de contacto
se podia recomendar una de tres opciones: no llevar lentes, llevar duras o llevar blandas. El Clustering
(traducido como agrupamiento) es una técnica de extraccion de informacion basada en el aprendizaje
no supervisado (es decir, los datos de nuestra muestra no se reparten en una clasificacién previa) cuyo
objetivo es clasificar los datos en grupos disjuntos, de tal forma que los datos recogidos en un mismo
grupo son similares y los datos pertenecientes a grupos distintos son poco semejantes.

La pregunta natural que nos surge es como podemos diferenciar los datos de la muestra para clasifi-
carlos en grupos. La respuesta a esto no es sencilla pues existen muchas formas distintas de Clustering.
Algunas de ellas son: segtin una jerarquia especificada por el usuario; segin la probabilidad que tienen de
pertenecer a un grupo, utilizando teoria de grafos analizando cémo estdn conectados los datos entre si y
clasificandolos por nimero de conexiones, o usando teoria espectral representando los datos en matrices
de similitud.

Nosotros vamos a centrarnos en el método de Clustering por distancia en datos numéricos. Para ello
debemos definir primero qué es una distancia.

Definicion. Sea X un conjunto de elementos, llamamos distancia a la aplicacién d: X x X — R que
satisface:

En particular, usaremos la distancia euclidiana:

Definicién. Sea X un conjunto de elementos n-dimensional. Sean r;,7; € X. La distancia euclidiana
entre dos puntos se calcula:

d(rj,rk) = \/’)’j] — rkl\z—i- ’I’jz — rk2|2+ e |rjn —I’kn’2

Cuanto menor sea la distancia euclidiana entre dos datos, mayor serd la similaridad entre los dos. A
continuacion vamos a presentar un algoritmo de Clustering cldsico que utiliza la distancia euclidiana.

23

24 Capitulo 4. Clustering

4.1. Algoritmo k-medias

Disponemos de una base de datos con n tuplas y queremos tener en consideracidén m atributos para
la aplicacioén del clustering. El algoritmo k-medias tiene como objetivo agrupar esas tuplas en k clusters
(o grupos). Para ello, consideraremos las tuplas como datos de dimensién m. Asi, el algoritmo elige
aleatoriamente k datos que serdn los centroides (medias). Cada dato se clasifica en un cluster calculando
la distancia euclidiana y, a continuacion, se recalculan los centroides de cada grupo. Este proceso se itera,
de forma que cada iteracién es mds 6ptima que la anterior.

Para decidir si una solucién es mejor que otra, definimos una medida de error:

Definicion. Sea una base de datos con datos ry, ..., r, de dimension m. Si queremos clasificar en k clusters
Ci,...,Cy, cada uno con media my, ..., my respectivamente, definimos el error E como el calculo:

E = Z Z d(r.,-,m,-)z

i=1 VVjGC,‘

Como hemos comentado, cada iteracién es mds Optima que la anterior (es decir, se va reduciendo el
error) de forma que el algoritmo siempre converge. Elegidos el nimero deseado de clusters k y sabiendo
el ndmero n de datos junto a su dimensién m (recordar que m serd el nimero de atributos considerados),
veamos los dos pasos del algoritmo.

Entrada: NGmero de clusters k deseado y atributos en consideracién.
1. Elegir aleatoriamente k datos que seran los centroides my,...,m; de los
clusters Cy,...,Cy

2. Iteramos los siguientes pasos hasta la convergencia (es decir, hasta que
no haya cambios en la asignacidén de datos a clusters):

a) Calcular la distancia euclidiana de cada dato r; a cada centroide.

b) Asignar cada dato r; al cluster C,- donde la distancia de r; a m; es
la minima.

c) Recalcular el centroide de cada cluster con el siguiente calculo,
donde n es el numero de datos y m el nimero de dimensiones. Asi, el centroide
del cluster C; queda:

Salida: k Clusters

Figura 4.1: Pseudocdédigo para el algoritmo k-Medias

Ejemplo. Tomamos la Tabla 1.5 de los empleados de una empresa. En la tabla aparecen el identificador,
la edad y los afios de servicio de una serie de empleados. Nuestro objetivo es buscar una clasificacién de
veterania de los empleados, de forma que se tenga en cuenta tanto la edad del empleado como sus afios
de servicio en la empresa.

Vamos a aplicar el algoritmo a los atributos Edad y Afios de servicio y vamos a buscar repartir los
empleados en dos clusters (k = 2).

1. Asumamos que el algoritmo ha elegido aleatoriamente los empleados ID 3 (50, 15) e ID 6 (55, 25)
para ser los centroides m; y my de los clusters C; y C> respectivamente.

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 25

2. Veamos la primera iteracion:
a) Ladistanciade ID 1 am; es 22,4y amy es 32. Ladistanciade ID2 amjes 10yamp esS. La
distancia de ID 4 a m; es 25,5 y amy es 36,6. La distancia de ID 5 a m; es 20,6 y a my es 29,2.
b) Por tanto el cluster Cy es {ID 1,1ID 3,ID4,ID 5} y Cy es {ID 2, ID 6}
¢) Recalculamos los centroides con la férmula anterior y tenemos que i) = (33,75;8,75) y i, =
(52,5;25).

Si calculamos el error de esta primera operacion, nos saldria:
E =d(ID1,ni, > +d(ID3, 11> +d(ID4, 1ty)* +d(ID5, 1y > +d (ID2, 11y)? 4+ d (ID6, 1ty)* = 449,93

3. Hacemos la segunda iteracion:

a) La distanciade ID 1 am es 5,3 y a mip es 30,1. La distancia de ID 2 a m; es 22,98 y a n1; es
2,5. La distancia de ID 3 amj es 17,41 y a mip es 10,3. La distanciade ID 4 ami; es 9,52 y a
nip es 34. La distancia de ID 5 amiy es 3,95 y anip es 27,04. La distancia de ID 6 a ni es 26,75
y anies?2,5.

b) Por tanto el cluster Cy ahoraes {ID 1,ID 4,ID 5}y Cy es {ID 2,1ID 3, ID 6}.

¢) Recalculamos los centroides y son m; = (28,3;6,7) y my = (51,7;21,7).

Si calculamos el error de esta segunda operacidn, obtenemos:
E =d(ID1,m))*+d(ID4,m\)*+d(ID5,ni,) +d(ID2, 1y) +d(ID3, 11, > +d(1D6, 11y)* = 116,25

4. Si hacemos otra iteracién, comprobaremos que todos los datos se mantienen en los clusters ante-
riores. Por tanto, terminamos el algoritmo.

Asi, hemos obtenido los clusters C; = {ID 1, ID 4, ID 5} y C, = {ID 2, ID 3, ID 6}. El primer
cluster se corresponde con los empleados menos veteranos, habiendo tenido en cuenta su edad y sus
afios trabajando en la empresa. El segundo cluster se corresponderia con los trabajadores mas veteranos.

Con la aplicacién del algoritmo k-Medias hemos conseguido una clasificacion precisa en dos grupos
con los pardmetros anteriores reduciendo ampliamente el error.

Aunque el algoritmo minimiza con efectividad los minimos locales de datos a centroides, no hay ga-
rantia de alcanzar un minimo global. En consecuencia, el mayor problema que nos presenta el algoritmo
es la alta sensibilidad que tiene a la eleccién de los centroides iniciales: en muestras mds grandes pueden
resultar clusters totalmente diferentes segin la eleccién inicial de medias. Una solucién rudimentaria y
frecuentemente usada es repetir el algoritmo varias veces variando los centroides iniciales y escoger el
resultado con el mejor minimo global.

Bibliografia

[1] C.W.BACHMANN, THE PROGRAMMER AS NAVIGATOR. 16(11), 635-658, Communications of
the ACM, 1973

[2] E.F. CoDpD, Relational database: a practical foundation for productivity, 25(2), 109-117, Com-
munications of the ACM, 1982

[3] B. DEVLIN, Thirty Years of Data Warehousing, 23 (1), BUSINESS INTELLIGENCE, 2018
[4] J.C. MASHEY, Big Data and the Next Wave of InfraStress, 1998

[5] C.J.DATE, THE DATABASE RELATIONAL MODEL: A Retrospective Review and Analysis, 1.7 ed.,
Prentice Hall, 2000

[6] S. SARAWAGI, INFORMATION EXTRACTION. Foundations and Trends® in Databases, 1(3), 261-
377, 2008

[7] 1. H. WITTEN Y E. FRANK, DATA MINING Practical Machine Learning Tools and Techniques,
2.% ed., Elsevier, 2005

[8] R. AGRAWAL, H. MANNILA, R. SRIKANT, H. TOIVONEN, A. I. VERKAMO, ADVANCES IN
KNOWLEDGE DISCOVERY AND DATA MINING, Fast discovery of association rules, 12(1), 307-
328, AAAI/MIT Press Menlo Park, CA, 1996.

[9] ELMASRI, RAMEZ AND S. B. NAVATHE, FUNDAMENTALS OF DATABASE SYSTEMS, Addison-
Wesley, 2011

27

Apéndice. Implementacion en PL/SQL.

A.1 Tipos utilizados

create or replace TYPE namesType AS VARRAY (50) OF VARCHAR?2(100);
create or replace TYPE centroidArrayType IS TABLE OF NUMBER;

A.2 Algoritmo 1-R

create or replace PROCEDURE findRules1R(tabla IN varchar2, clase IN varchar?)
IS

nombresColumna namesType :=namesType();

TYPE cTipoCursor IS REF CURSOR;

c_cursor cTipoCursor;

v_column VARCHAR2(100);

v_clase VARCHAR2(100);

sqlString VARCHAR?2(200);

v_esta2 BOOLEAN;

max_total NUMBER;

max_attribute CUENTA.ATTRIBUTEVALUE %TYPE,;
BEGIN

nombresColumna:=findColumns(tabla);

FOR i IN 1..nombresColumna.count LOOP

IF(nombresColumna(i)<>clase) THEN

sqlString:= *SELECT ’ Il nombresColumna(i) Il *, ’ Il clase Il * FROM ’ |l tabla;
OPEN c_cursor FOR sqlString;
LOOP

FETCH c_cursor INTO v_column, v_clase;
EXIT WHEN c_cursor
/* Devuelve true si hay alguna fila en la tabla cuenta que en las columnas attributevalue y clasevalue
toma los valores v_column y v_clase respectivamente. Devuelve false en otro caso*/
v_esta2:=BELONGSTO2COLUMNsOFTABLE(v_column, v_clase, cuenta’,
“attribute Value’, ’clasevalue’);
IF (v_esta2) THEN
UPDATE cuenta
SET total=total+1
WHERE attributevalue=v_column AND clasevalue=v_clase;
ELSE
INSERT INTO cuenta VALUES(v_column, v_clase, 1, nombresColumna(i));
END IF;
END LOOP;
CLOSE c_cursor;
END IF;

29

30 Capitulo . Apéndice. Implementacién en PL/SQL.

END LOOP;
—showRules1R:
FOR 1 IN (
SELECT ATTRIBUTEVALUE, MAX_TOTAL
FROM(
SELECT ATTRIBUTEVALUE, ATTRIBUTE, MAX(TOTAL) AS MAX_TOTAL
FROM CUENTA
GROUP BY ATTRIBUTEVALUE, ATTRIBUTE
)
WHERE ATTRIBUTE IN (
SELECT ATTRIBUTE
FROM
(SELECT ATTRIBUTE, SUMMMAX_TOTAL2) AS SUMA
FROM
(SELECT ATTRIBUTEVALUE, ATTRIBUTE, MAX(TOTAL) AS MAX_TOTAL2
FROM CUENTA
GROUP BY ATTRIBUTEVALUE, ATTRIBUTE)
GROUP BY ATTRIBUTE)
WHERE SUMA = (SELECT MAX(SUMA)
FROM
(SELECT ATTRIBUTE, SUM(MAX_TOTAL2) AS SUMA
FROM
(SELECT ATTRIBUTEVALUE, ATTRIBUTE, MAX(TOTAL) AS MAX_TOTAL2
FROM CUENTA
GROUP BY ATTRIBUTEVALUE, ATTRIBUTE)
GROUP BY ATTRIBUTE
D))
LOOP
— Almacenar el valor médximo y el ATTRIBUTEVALUE correspondiente
max_total := rMAX_TOTAL;
max_attribute := rATTRIBUTEVALUE;
— Mostrar las filas que cumplen con las condiciones
FOR row_data IN (SELECT *
FROM CUENTA
WHERE ATTRIBUTEVALUE = max_attribute AND TOTAL = max_total AND ROW-
NUM=1)
LOOP
DBMS_OUTPUT.PUT_LINE(CSi (Il row_data. ATTRIBUTE Il =" Il row_data. ATTRIBUTEVALUE
[I”) ENTONCES ’ Il clase Il =’ llrow_data. CLASEVALUE);
END LOOP;
END LOOP;
DELETE FROM CUENTA;
COMMIT;
END;

A.2.1 Subalgoritmos utilizados en Algoritmo 1-R

A.2.1.1 FindColumns

create or replace FUNCTION findColumns(tabla IN varchar2)
RETURN namesType IS
var_atributos namesType:=namesType();

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 31

BEGIN FOR col IN (SELECT column_name FROM user_tab_columns WHERE table_name =
tabla)
LOOP
var_atributos. EXTEND;
var_atributos(var_atributos.LAST):= col.column_name;
END LOOP;
RETURN var_atributos;
END findColumns;

A.2.1.2 BELONGSTO2COLUMNsOFTABLE

create or replace FUNCTION BELONGSTO2COLUMNsOFTABLE(v_column in varchar2, v_clase
in varchar2, tabla in varchar2, atributo in varchar2, clase in varchar2)
RETURN boolean
IS
v_count NUMBER;
BEGIN
— Utilizamos una consulta COUNT para contar las filas que cumplen con la condicién
EXECUTE IMMEDIATE *SELECT COUNT(*) FROM ’ |l tabla I|
> WHERE ’ |l atributo Il > = :1 AND " liclase Il * = :2’
INTO v_count
USING v_column, v_clase;
— Si el conteo es mayor que cero, devuelve TRUE, de lo contrario, devuelve FALSE
RETURN v_count >0;
END BELONGSTO2COLUMNsOFTABLE;

A.2.2 Tablas auxiliares para Algoritmo 1-R

create TABLE CUENTA (ATTRIBUTEVALUE in VARCHAR?2(200), CLASEVALUE in VARCHAR?2(200),
TOTAL in NUMBER, ATTRIBUTE in VARCHAR2(100))

A.3 Algoritmo Apriori

create or replace PROCEDURE findSetsApriori(tabla in varchar2, atributo in varchar2, id_atributo
in varchar2, umbral in number)
IS
sqlStringl VARCHAR2(300);
sqlString2 VARCHAR2(300);
TYPE cTipoCursor IS REF CURSOR;
c_cursorl cTipoCursor;
c_cursor2 cTipoCursor;
var_item varchar2(30);
var_sop number;
var_row namesType;
v_repetido namestype;
contador number:=0;
sopor_temp number:=0;
v_esta2 BOOLEAN;
v_esta2_2 BOOLEAN;
v_esta2_1 BOOLEAN;
salir BOOLEAN;
idposicion number;

32 Capitulo . Apéndice. Implementacién en PL/SQL.

BEGIN
— BUSCAMOS LOS 1-CONJUNTOS FRECUENTES Yy los afiadimos a la tabla ITEMS
sqlString1:="SELECT item, count(item) as frec
FROM(SELECT "’ llid_atributoll’, COLUMN_VALUE AS item
FROM ’ litablall’, TABLE(lltablall’’llatributoll’))
GROUP BY item’;
OPEN c_cursorl FOR sqlString1;
LOOP
FETCH c_cursorl INTO var_item, var_sop;
EXIT WHEN c_cursorl
IF (var_sop >= umbral) THEN
INSERT INTO ITEMS VALUES (1, namestype(var_item), var_sop);
END IF;
END LOOP;
CLOSE c_cursorl;
—Iteramos k=2,... para buscar los k-conjuntos frecuentes
FOR k in 2..100 LOOP
—Buscamos extender los varrays de tamafio k-1 y afadirles items individuales que estén en la tabla
ITEMS
FOR fila in (SELECT CONJUNTO FROM ITEMS WHERE ITERACION=k-1) LOOP
var_row:=fila. CONJUNTO;
var_row.EXTEND;
— Afiadimos cada item i al conjunto que queremos extender para comprobar si es frecuente o no
FOR i in (SELECT CONJUNTO FROM ITEMS WHERE ITERACION=1) LOOP
var_row(var_row.LAST):=1.CONJUNTO(1);
/* Para cada fila de la compra donde pertenezca el primer item del conjunto vamos a comprobar si la
extension pertenece tambien a la fila */
sqlString2:="SELECT ’llid_atributoll” FROM ’lltablall” WHERE *’llvar_row(1)II”” in
(SELECT COLUMN_VALUE FROM TABLEC(litablall’’llatributoll’))’;
OPEN c_cursor2 FOR sqlString?2;
LOOP
FETCH c_cursor2 INTO idposicion;
EXIT WHEN c_cursor2 %NOTFOUND;
FOR j in 2..var_row.count LOOP
FOR nin 1.. LOOP
— Evaluamos si el conjunto ya existe en la tabla ITEMS (sin importar el orden)

FOR repetido in (SELECT CONJUNTO FROM ITEMS) LOOP
v_repetido:=repetido. CONJUNTO;
v_esta2:=son_conjuntos_iguales(var_row, v_repetido);

— Si ya existe pasamos al siguiente conjunto
IF (v_esta2) THEN
salir:=TRUE;
EXIT;
END IF;
END LOOP;

IF (salir) THEN
EXIT;

END IF;

=Si llegamos aqui es que el conjunto no existe aun en ITEMS

v_esta2_1:=NOTBELONGS2LIST(var_row(n), tabla, idposicion, tabla I’ ’ll

atributo , id_atributo);

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 33

v_esta2_2:=hay_valores_repetidos(var_row);
/* Si el conjunto tiene valores repetidos o el elemento n del conjunto no esta en la misma fila com-
probada que el elemento 1, se sale del bucle*/
IF (v_esta2_1) THEN
EXIT;
ELSIF (v_esta2_2) THEN
EXIT;
ELSE
contador:=contador+1;
END IF;
END LOOP;
/* Si todos los items del conjunto pertenecen a una misma fila de nuestra tabla, el soporte aumenta
en 1%/
IF (contador = var_row.count) THEN
sopor_temp:=sopor_temp+1;
END IF;
contador:=0;
END LOOP;
END LOOP;
CLOSE c_cursor2;
/* Cuando acaba la evaluacion, si el soporte es mayor o igual al umbral, se afiade el conjunto a la
tabla ITEMS*/
IF (sopor_temp >= umbral) THEN
INSERT INTO ITEMS values (k, var_row, sopor_temp);
END IF;
sopor_temp:=0;
END LOOP;
END LOOP;
END LOOP;
—Mostramos los resultados
DBMS_OUTPUT.PUT_LINE(CLOS CONJUNTOS FRECUENTES CON SU SOPORTE SON:’);
FOR conj_frec in (SELECT CONJUNTO, SOPORTE FROM ITEMS) LOOP
DBMS_OUTPUT.PUT_LINE(),
DBMS_OUTPUT.PUT_LINE(’ Conjunto:’);
FOR m in 1..conj_frec. CONJUNTO.count LOOP
DBMS_OUTPUT.PUT_LINE(’ Il conj_frec. CONJUNTO(m));
END LOOP;
DBMS_OUTPUT.PUT_LINE(’Soporte:’ Il conj_frec. SOPORTE);
END LOOP;
DELETE FROM ITEMS;
COMMIT;
END findSetsApriori;

A.3.1 Subalgoritmos utilizados en Algoritmo Apriori
A.3.1.1 son_conjuntos_iguales

create or replace FUNCTION son_conjuntos_iguales (p_varrayl IN namestype, p_varray2 IN na-
mestype) RETURN BOOLEAN
IS
v_match_count INTEGER := 0;
BEGIN

34 Capitulo . Apéndice. Implementacién en PL/SQL.

— Verificar si la cantidad de elementos es la misma
IF p_varrayl.COUNT <>p_varray2.COUNT THEN
RETURN FALSE,;
END IF;
— Verificar si todos los elementos de p_varray1 estdn en p_varray2
FOR 1IN 1..p_varrayl.COUNT LOOP
FOR j IN 1..p_varray2.COUNT LOOP
IF p_varray1(i) = p_varray2(j) THEN
v_match_count := v_match_count + 1;
EXIT;
END IF;
END LOOP;
END LOOP;
— Si el nimero de coincidencias es igual a la cantidad total, son iguales
RETURN v_match_count = p_varrayl.COUNT;
END son_conjuntos_iguales;

A3.1.2 NOTBELONGS2LIST

create or replace FUNCTION NOTBELONGS2LIST (v_char in varchar2, v_tabla in varchar2, v_id
in number, v_namesType in varchar2, v_id_tabla in varchar2) RETURN BOOLEAN
IS
v_count NUMBER;

BEGIN
EXECUTE IMMEDIATE *'SELECT COUNT(*) FROM (SELECT’ llv_id_tabla |l ’, COLUMN_VALUE
FROM "’ |l v_tablall’, TABLE(CIl v_namesType II’)) WHERE ’ Il v_id_tablall” ="llv_idIl” AND "Il v_char

[I”” NOT IN (SELECT COLUMN_VALUE FROM "’ |l v_tabla Il ’, TABLE(CIl v_namesType II')WHERE
>l v_id_tabla Il =llv_idIlI’)’
INTO v_count;
RETURN v_count>0;
END NOTBELONGS2LIST;

A.2.1.3 hay_valores_repetidos

create or replace FUNCTION hay_valores_repetidos(p_varray IN namesType) RETURN BOOLEAN
IS
1_count NUMBER;
BEGIN
— Contar los valores distintos en el varray
SELECT COUNT(DISTINCT column_value) INTO 1_count
FROM TABLE(p_varray);
— Compara el conteo con la longitud del varray
RETURN I_count <>p_varray. COUNT;
END hay_valores_repetidos;

A.3.2 Tablas auxiliares para Algoritmo Apriori

create TABLE ITEMS (ITERACION in NUMBER, CONJUNTO in NAMESTYPE, SOPORTE in
NUMBER)

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 35

A4 Algoritmo K-medias para dimension 2

create or replace PROCEDURE k_means(tabla VARCHAR?2, k NUMBER, columnl VARCHAR?2,
column2 VARCHAR?)
IS
v_centroid centroidArrayType:=centroid Array Type(NULL, NULL);
v_centroid2 centroidArrayType:=centroidArray Type(NULL, NULL);
v_fila centroidArrayType:=centroidArray Type(NULL, NULL, NULL);
v_punto centroidArrayType:=centroidArrayType(NULL, NULL);
v_changed BOOLEAN := TRUE;
v_cluster NUMBER;
v_cluster_nuevo NUMBER;
v_id number;
v_sql VARCHAR?2(4000);
v_sql2 VARCHAR2(4000);
v_data_cursor SYS_REFCURSOR;
v_data_cursor2 SYS_REFCURSOR;
BEGIN
— Preparamos la tabla CLUSTERS
v_sql := SELECT id FROM |l tabla;
OPEN v_data_cursor FOR v_sql;
LOOP
FETCH v_data_cursor INTO v_id;
EXIT WHEN v_data_cursor
INSERT INTO CLUSTERS VALUES (v_id, 0);
END LOOP;
CLOSE v_data_cursor;
— Construir la consulta dinamica
v_sql := SELECT ’licolumnlIl’, ’llcolumn2I|l” FROM "’ || tabla;
OPEN v_data_cursor FOR v_sql;
— Inicializar centroides iniciales (tomamos por ejemplo los dos primeros)
FORiIN 1.k LOOP
FETCH v_data_cursor INTO v_centroid(1),v_centroid(2);
INSERT into CENTROIDS VALUES (v_centroid(1),v_centroid(2),i);
END LOOP;
CLOSE v_data_cursor;
— Bucle principal del algoritmo
v_sql :="SELECT id, ’licolumn1ll’, ’llcolumn2l” FROM " || tabla;
OPEN v_data_cursor FOR v_sql;
WHILE v_changed LOOP
v_changed := FALSE;
— Asignar puntos a los cldsteres
LOOP
FETCH v_data_cursor INTO v_fila(1),v_fila(2),v_fila(3);
EXIT WHEN v_data_cursor
SELECT CLUSTER_COLUMN INTO v_cluster FROM CLUSTERS WHERE id = v_fila(1);
v_punto:=centroidArray Type(v_fila(2), v_fila(3));
IF assign_cluster(v_punto) != v_cluster THEN
v_changed := TRUE;
v_cluster_nuevo:=assign_cluster(v_punto);
UPDATE CLUSTERS
SET cluster_column = v_cluster_nuevo

36 Capitulo . Apéndice. Implementacién en PL/SQL.

WHERE clusters.id = v_fila(1);
END IF;
END LOOP;
— Actualizar centroides
FOR j IN 1.k LOOP

v_sql2:="SELECT AVG(licolumnlIl’), AVG(’licolumn2I’) FROM ’lItablall’WHERE id IN
(SELECT id FROM CLUSTERS WHERE cluster_column = "lljII’)’;

OPEN v_data_cursor2 FOR v_sql2;
FETCH v_data_cursor2 INTO v_centroid2(1),v_centroid2(2);
UPDATE CENTROIDS
SET COLUMNI1 = v_centroid2(1)
WHERE cluster_asignado=j;
UPDATE CENTROIDS
SET COLUMN?2 = v_centroid2(2)
WHERE cluster_asignado=j;
CLOSE v_data_cursor?2;
END LOOP;
END LOOP;
CLOSE v_data_cursor;
DBMS_OUTPUT.PUT_LINE(’ ASIGNACION DE CLUSTERS’);
FOR n in 1.k LOOP
DBMS_OUTPUT.PUT_LINE();
DBMS_OUTPUT.PUT_LINE(Los elementos del cluster ’lInll” son:’);
FOR tupla in (SELECT * FROM CLUSTERS) LOOP
IF (tupla.cluster_column=n) THEN
DBMS_OUTPUT.PUT_LINE(ID ’litupla.id);
END IF;
END LOOP;
END LOOP;
DELETE FROM CLUSTERS;
DELETE FROM CENTROIDS;
COMMIT;
END k_means;

A.4.1 Subalgoritmos utilizados en Algoritmo K-Medias
A4.1.1 euclidean_distance

create or replace FUNCTION euclidean_distance(p_pointl centroidArrayType, p_point2 centroidA-
rrayType) RETURN NUMBER
IS
v_distance NUMBER := 0;
BEGIN
FOR 1IN 1..p_point]l. COUNT LOOP
v_distance := v_distance + POWER(p_point1(i) - p_point2(i), 2);
END LOOP;
RETURN SQRT(v_distance);
END euclidean_distance;

Técnicas de extraccion de informacion de bases de datos relacionales - Daniel Calvo Francés 37

A4.1.2 assign_cluster

create or replace FUNCTION assign_cluster(p_punto centroidArrayType) RETURN NUMBER
IS
p_centroid centroid ArrayType:=centroid Array Type(null, null);
v_min NUMBER;
v_cluster NUMBER := 1;
BEGIN
EXECUTE IMMEDIATE "SELECT COLUMNI1, COLUMN2 FROM CENTROIDS WHERE
CLUSTER_ASIGNADO =1’
INTO p_centroid(1),p_centroid(2);
v_min := euclidean_distance(p_punto, p_centroid);
FOR centroide in (SELECT COLUMNI1, COLUMN?2, CLUSTER_ASIGNADO FROM CEN-
TROIDS) LOOP
p_centroid:=centroidArray Type(centroide. COLUMNI1, centroide. COLUMN?2);
IF euclidean_distance(p_punto, p_centroid) <v_min THEN
v_min := euclidean_distance(p_punto, p_centroid);
v_cluster := centroide. CLUSTER_ASIGNADO;
END IF;
END LOOP;
RETURN v_cluster;
END assign_cluster;

A.4.2 Tablas auxiliares para Algoritmo K-medias

create TABLE CENTROIDS (COLUMN1 in NUMBER, COLUMN?2 in NUMBER, CLUSTER_ASIGNADO

in NUMBER);
create TABLE CLUSTERS (ID in NUMBER, CLUSTER_COLUMN in NUMBER);

	Resumen
	Nociones generales
	Contexto histórico
	Tablas iniciales
	El tiempo atmosférico
	Las lentes de contacto
	La cesta de la compra
	Empleados de una empresa
	Conceptos iniciales
	Técnicas de extracción
	Reglas de clasificación
	Algoritmo 1-R
	Caso numérico
	Reglas de asociación
	Algoritmo Apriori
	Árbol-PF y algoritmo de Crecimiento-PF
	Construcción del árbol-PF
	Algoritmo de Crecimiento-PF
	Obtención de reglas de asociación
	Clustering
	Algoritmo k-medias
	Bibliografía
	Apéndice. Implementación en PL/SQL.

