
Técnicas de extracción de información
de bases de datos relacionales

Daniel Calvo Francés
Trabajo de fin de grado de Matemáticas

Universidad de Zaragoza

Director del trabajo: Jorge Lloret Gazo
enero de 2024

Resumen

Relational databases are crucial for efficiently managing information by organizing data in a struc-
tured manner and enabling relationships between them. They ensure the integrity and consistency of
information. Additionally, information extraction (or data mining) techniques are essential for analyzing
large datasets and gaining meaningful insights. Both tools play a crucial role in the modern world, driving
informed decision-making and process optimization across various sectors, from business to scientific re-
search. In this paperwork we will approach different data mining techniques which include: techniques
for extracting classification rules, association rules and the clustering technique.

A classification rule is a logical expression that describes patterns in datasets, identifying rela-
tionships between variables and predicting the membership of an instance in a specific category or class.
These rules are used in machine learning algorithms to automate the classification of data based on pre-
defined criteria. By applying classification rules, the goal is to generalize patterns observed in training
data to make accurate predictions about new instances. An algorithm that looks for classification rules is
the 1-R Algorithm, which generates a one-dimensional decision tree over an attribute and filters the rules
with the lowest error.

On the other hand, association rules are logical patterns that identify relationships and correlations
between variables within datasets. They reveal co-occurrences to discover hidden patterns. While as-
sociation rules uncover associations and dependencies among variables, classification rules prioritize
predictive accuracy for assigning instances to specific categories. Both rule types play distinct roles in
data analysis, with association rules emphasizing pattern discovery and classification rules focusing on
predictive modeling. These related variables that we look for are usually found in what we call frequent
itemsets. These are sets of data which appear in our database with high frequency. Once we obtain the
frequent itemsets of a database, the task of obtaining association rules becomes much easier. An al-
gorithm that mines frequent itemsets is the Apriori Algorithm, which starts from individual items and
gradually expands to larger sets, using a support threshold to filter out infrequent itemsets. There are
multiple improved versions of Apriori Algorithm. One of such is the FP-growth algorithm. This algo-
rithm is a frequent pattern mining method that efficiently discovers frequent itemsets in large datasets. It
constructs a compact data structure called FP-tree to represent frequent patterns and exploits it to gene-
rate association rules. In contrast with Apriori Algorithm, FP-growth is particularly effective for mining
frequent patterns in databases with a high volume of transactions.

Lastly, clustering is a data analysis technique that involves grouping similar data points into clusters,
where items within the same cluster share common characteristics. This unsupervised learning method
helps uncover patterns and structures in datasets, aiding in the exploration of inherent relationships
among data points. The K-means algorithm is a popular clustering algorithm that partitions a dataset
into K clusters by iteratively assigning data points to the cluster whose centroid is closest, then updating
the centroids based on the newly formed clusters. It aims to minimize the within-cluster sum of euclidean
distances.

III

Índice general

Resumen III

1. Nociones generales 1
1.1. Contexto histórico . 1
1.2. Tablas iniciales . 2

1.2.1. El tiempo atmosférico . 2
1.2.2. Las lentes de contacto . 2
1.2.3. La cesta de la compra . 2
1.2.4. Empleados de una empresa . 4

1.3. Conceptos iniciales . 4
1.4. Técnicas de extracción . 5

2. Reglas de clasificación 7
2.1. Algoritmo 1-R . 9
2.2. Caso numérico . 11

3. Reglas de asociación 13
3.1. Algoritmo Apriori . 15
3.2. Árbol-PF y algoritmo de Crecimiento-PF . 17

3.2.1. Construcción del árbol-PF . 17
3.2.2. Algoritmo de Crecimiento-PF . 20

3.3. Obtención de reglas de asociación . 22

4. Clustering 23
4.1. Algoritmo k-medias . 24

Bibliografía 27

Apéndice. Implementación en PL/SQL. 29

V

Capítulo 1

Nociones generales

1.1. Contexto histórico

La extracción de información de bases de datos ha experimentado una evolución significativa a lo
largo de la historia, paralela al desarrollo de la tecnología de la información y la informática. Desde
sus primeros pasos hasta la actualidad, esta disciplina ha sido fundamental en la gestión y análisis de
datos, desempeñando un papel crucial en diversos campos, como la investigación científica, la toma de
decisiones empresariales y la administración gubernamental.

En la década de 1960, con el auge de la informática, se produjo la creación de los primeros sistemas
de gestión de bases de datos (SGBD). Estos sistemas establecieron las bases para la organización y
recuperación eficiente de datos almacenados. Charles Bachmann contribuyó enormemente en este campo
[1]. Sin embargo, la extracción de información estaba limitada principalmente a consultas básicas y
operaciones de búsqueda.

Con la aparición del lenguaje de consulta estructurado (SQL) a principios de la década de 1970 y la
conceptualización de bases de datos relacionales por parte de Edgar Codd [2], la extracción de informa-
ción se volvió más accesible y eficaz. SQL permitió realizar consultas más complejas, estableciendo un
estándar para la interacción con bases de datos relacionales, como Oracle y MySQL.

Durante los años 80 y 90, la necesidad de gestionar grandes volúmenes de datos condujo al desarrollo
de almacenes de datos (data warehousing) [3]. Estos almacenes centralizaban datos de diversas fuentes,
facilitando la extracción de información para análisis más profundos. Paralelamente, la minería de datos
surgió como una disciplina que utilizaba técnicas estadísticas y de aprendizaje automático para descubrir
patrones y tendencias en conjuntos de datos extensos.

La explosión de internet en la década de 1990 y el crecimiento exponencial de datos dieron paso
a nuevos retos en la extracción de información. Surgieron nuevas tecnologías para abordar la gestión y
análisis de grandes cantidades de datos, marcando el inicio de la era del Big Data [4]. La extracción de
información se volvió más compleja pero también más valiosa.

En la actualidad, la extracción de información se enfrenta a desafíos como la propia diversidad de
fuentes de datos, la necesidad de procesamiento en tiempo real o la protección de la privacidad. Tecno-
logías como la inteligencia artificial y el procesamiento del lenguaje están transformando la manera en
que se extrae información, permitiendo análisis más sofisticados y personalizados.

Las bases de datos relacionales han sido una herramienta fundamental en el mundo de la gestión de
la información durante décadas. Estas bases de datos estructuradas han permitido almacenar y organizar
grandes cantidades de datos de manera eficiente, facilitando la gestión y manipulación de la información.
Sin embargo, el verdadero valor de una base de datos radica en la información que contiene y en la
capacidad de extraer conocimiento valioso de ella. Para lograr este objetivo, es necesario utilizar técnicas
de extracción de información que nos permitan obtener datos significativos y relevantes de una base de
datos relacional. [5] [6]

En este trabajo, exploraremos diversas técnicas utilizadas para extraer información de bases de datos
relacionales. Estas técnicas nos permitirán transformar datos brutos en conocimiento útil para la toma de

1

2 Capítulo 1. Nociones generales

decisiones, la generación de informes y el descubrimiento de información valiosa.

1.2. Tablas iniciales

Vamos a presentar, en primer lugar, algunos ejemplos de bases de datos relacionales que nos servirán
para ilustrar todos los conceptos de este trabajo. En una base de datos relacional, la información se
organiza en forma de tablas.

1.2.1. El tiempo atmosférico

La Tabla 1.1 representa la recogida de datos sobre si es conveniente o no jugar a determinado juego
según las condiciones meteorológicas del día. Cada fila de la tabla representa un día registrado. En la
columna Pronóstico podemos encontrar las opciones Soleado, Lluvioso o Nublado. Para la columna
Temperatura el día se puede registrar como Caluroso, Templado o Frío. La Humedad puede ser Alta o
Normal. En la columna Viento se registra la existencia de viento mediante Verdadero o Falso. Finalmente,
en la columna Jugar registramos si la decisión tomada fue de Sí o No.

Predicción1
Pronóstico Temperatura Humedad Viento Jugar

Soleado Caluroso Alta Falso No
Soleado Caluroso Alta Verdadero No
Nublado Caluroso Alta Falso Sí
Lluvioso Templado Alta Falso Sí
Lluvioso Frío Normal Falso Sí
Lluvioso Frío Normal Verdadero No
Nublado Frío Normal Verdadero Sí
Soleado Templado Alta Falso No
Soleado Frío Normal Falso Sí
Lluvioso Templado Normal Falso Sí
Soleado Templado Normal Verdadero Sí
Nublado Templado Alta Verdadero Sí
Nublado Caluroso Normal Falso Sí
Lluvioso Templado Alta Verdadero No

Tabla 1.1: Tabla del tiempo atmosférico

Por otro lado, la Tabla 1.2 se trata de una versión alternativa de la Tabla 1.1. En ella se ha modificado
la columna Temperatura y Humedad de forma que, en lugar de registrar los datos de forma nominal,
se ha optado por hacerlo de forma numérica. En el caso de la temperatura, se ha registrado en grados
Fahrenheit, mientras que la humedad en porcentaje. Las dos versiones del mismo problema nos servirán
como ejemplos a lo largo del capítulo.

1.2.2. Las lentes de contacto

La Tabla 1.3 proporciona las condiciones bajo las que un optometrista podría optar por prescribir
lentes de contacto duras, lentes de contacto blandas o no llevar lentes de contacto.

1.2.3. La cesta de la compra

La Tabla 1.4 representa una muestra de compras hechas en un supermercado con los atributos ID,
Hora, Objetos Comprados.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 3

Predicción2
Pronóstico Temperatura Humedad Viento Jugar

Soleado 85 85 Falso No
Soleado 80 90 Verdadero No
Nublado 83 86 Falso Sí
Lluvioso 70 96 Falso Sí
Lluvioso 68 80 Falso Sí
Lluvioso 65 70 Verdadero No
Nublado 64 65 Verdadero Sí
Soleado 72 95 Falso No
Soleado 69 70 Falso Sí
Lluvioso 75 80 Falso Sí
Soleado 75 70 Verdadero Sí
Nublado 72 90 Verdadero Sí
Nublado 81 75 Falso Sí
Lluvioso 71 91 Verdadero No

Tabla 1.2: Tabla del tiempo atmosférico con atributos numéricos

Lente
Edad Prescripción de gafas Astigmatismo Ratio de lágrimas Lentes recomendadas
Joven Miope No Reducido Ninguna
Joven Miope No Normal Blandas
Joven Miope Sí Reducido Ninguna
Joven Miope Sí Normal Duras
Joven Hipermétrope No Reducido Ninguna
Joven Hipermétrope No Normal Blandas
Joven Hipermétrope Sí Reducido Ninguna
Joven Hipermétrope Sí Normal Duras

Pre-presbicia Miope No Reducido Ninguna
Pre-presbicia Miope No Normal Blandas
Pre-presbicia Miope Sí Reducido Ninguna
Pre-presbicia Miope Sí Normal Duras
Pre-presbicia Hipermétrope No Reducido Ninguna
Pre-presbicia Hipermétrope No Normal Blandas
Pre-presbicia Hipermétrope Sí Reducido Ninguna
Pre-presbicia Hipermétrope Sí Normal Duras

Presbicia Miope No Reducido Ninguna
Presbicia Miope No Normal Blandas
Presbicia Miope Sí Reducido Ninguna
Presbicia Miope Sí Normal Duras
Presbicia Hipermétrope No Reducido Ninguna
Presbicia Hipermétrope No Normal Blandas
Presbicia Hipermétrope Sí Reducido Ninguna
Presbicia Hipermétrope Sí Normal Duras

Tabla 1.3: Tabla de las lentes de contacto

4 Capítulo 1. Nociones generales

Transacción
ID Hora Objetos comprados

101 6:35 Leche, Pan, Galletas, Zumo
792 7:38 Leche, Zumo
1130 8:05 Leche, Huevos
1735 8:40 Pan, Galletas, Café

Tabla 1.4: Tabla de la cesta de la compra

1.2.4. Empleados de una empresa

La siguiente tabla almacena una muestra de empleados de una empresa con los atributos ID, Edad,
Años de servicio.

Empleados
ID Edad Años de servicio
1 30 5
2 50 25
3 50 15
4 25 5
5 30 10
6 55 25

Tabla 1.5: Tabla de los empleados de la empresa

1.3. Conceptos iniciales

Antes de comenzar estudiando las diversas formas de extraer la información, debemos conocer algu-
nas nociones elementales de bases de datos.

Definición. Una base de datos es una colección de datos relacionados. Generalmente, se visualiza en
formato de tablas. Tiene las siguientes propiedades implícitas:

Representa algún aspecto del mundo real

Es una colección coherente de datos con significado implícito

Se diseña con un propósito específico. Tiene un grupo predeterminado de usuarios y aplicaciones
preconcebidas para esos usuarios

Las bases de datos se diseñan de acuerdo con un modelo de bases de datos. El modelo proporciona
los materiales para crear la estructura de la base de datos. Algunos de los modelos de diseño de base de
datos son:

Nivel conceptual: modelo Entidad/Relación

Nivel lógico: modelo relacional

En este trabajo, usaremos el modelo relacional. Vamos a definir los elementos que lo componen.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 5

Definición. Un esquema de relación R, denotado por R(A1,A2, ...,An), está compuesto por el nombre de
la relación R y un listado de atributos A1,A2, ...,An . Llamamos atributo Ai a la característica o rasgo de
un tipo de entidad que describe la propia entidad. Los atributos aceptan posibles valores de atributo que
pertenecen a un conjunto de posibles valores denominado dominio D y se denota dom(Ai).

Definición. Una relación r del esquema de relación R(A1,A2, ...,An), denotada r(R) es un conjunto de
n-tuplas r = {t1, t2, ..., tm}. Cada n-tupla t es una lista ordenada de n valores t =< v1,v2, ...,vn >, donde
vi, con 1 ≤ i ≤ n, es un valor de atributo de dom(Ai) o un valor NULO. Un valor NULO representa una
omisión en la entrada de datos, ya sea por ser desconocidos o porque no existen en la respectiva tupla.

Ejemplo. La Tabla 1.3 presenta el esquema de relación:

LENTE(Edad, Prescripción de gafas, Astigmatismo, Ratio de lágrimas, Lentes recomendadas)

El nombre del esquema de relación es LENTE y tiene cinco atributos: Edad, Prescripción de gafas,
Astigmatismo, Ratio de lágrimas, Lentes recomendadas. Cada fila de la Tabla 1.3 se corresponde con una
tupla y cada nombre de columna con un atributo. Notar que como sucede en la Tabla 1.2, los valores de
atributo pueden ser numéricos.

A lo largo de este trabajo usaremos el concepto de esquema de relación y tabla de forma intercam-
biable.

Definición. Una base de datos relacional es un conjunto de esquemas de relación junto con un conjunto
de relaciones, una por cada uno de los esquemas de relación.

Ejemplo. La base de datos bdLente está formada por el esquema de relación Lente. Una relación de este
esquema es la formada por las veinticuatro tuplas de la Tabla 1.3

Definición. Definimos técnica de extracción como el proceso de encontrar información relevante a partir
de unos datos específicos almacenados en una base de datos, ya sea para su análisis, informes o cual-
quier otro propósito. Esta técnica implica la obtención de información de una base de datos de manera
organizada y estructurada.

1.4. Técnicas de extracción

Según los objetivos que tengamos al analizar una base de datos, podemos utilizar distintas técnicas de
extracción. Cada una de ellas nos brindará unos patrones u otros que nos servirán para sacar conclusiones.
A veces estas conclusiones nos serán utiles y otras veces no: no siempre podremos obtener la información
que buscamos. Aunque a lo largo del trabajo veremos varias técnicas distintas apoyadas por ejemplos, en
la práctica los problemas tienden a complicarse por múltiples factores externos e imprevistos. Muchas
veces no estará claro qué técnica es beneficioso aplicar. Sin embargo, conviene conocer que tipos de
técnicas de extracción podemos utilizar. En concreto, en este trabajo vamos a hablar de las reglas de
clasificación, de las reglas de asociación y del Clustering:

Reglas de clasificación: En las técnicas de extracción de reglas de clasificación se toma uno de los
atributos de la tabla y se generan reglas respecto a los posibles valores de tal atributo. Por ejemplo,
en la Tabla 1.1 podríamos buscar patrones que nos permitan averiguar si podemos jugar al juego
requerido según si las condiciones de humedad son altas o normales.

Reglas de asociación: Similares a las anteriores, la diferencia radica en que no se limitan a un solo
atributo sino que se buscan reglas verosímiles para relacionar los distintos datos. Por ejemplo, en
la Tabla 1.4 podríamos averiguar en base a los datos que si alguien compra leche es probable que
compre zumo también.

6 Capítulo 1. Nociones generales

Clustering: es una técnica que busca separar los datos en grupos disjuntos donde se reúnan ca-
racterísticas similares. Por ejemplo, con los datos de la Tabla 1.5 podríamos buscar agrupar a los
empleados de la empresa según su veteranía utilizando los atributos de Edad y Años de servicio
para determinar posibles subidas de sueldo.

Conocidas las técnicas que vamos a tratar, vamos a centrarnos en cada una de ellas en los próximos
capítulos.

Capítulo 2

Reglas de clasificación

Este capítulo está basado en el capítulo 4 del libro DATA MINING Practical Machine Learning Tools
and Techniques de I. H. Witten y E. Frank. [7]

La primera técnica de extracción que vamos a explicar obtiene como resultado reglas de clasificación.
Para entender este concepto, vamos a explicar primero ciertos conceptos clave y qué es un árbol de
decisión.

Definición. Una regla en términos de bases de datos es un conjunto de sentencias lógicas sobre los
atributos de una tabla que nos permite sacar conclusiones y tomar decisiones en torno a un atributo.

Definición. Llamamos clase de una regla a la colección de tuplas que contienen valores de atributo que
obedecen la misma regla. La frecuencia de la clase es el número de tuplas del esquema de relación que
pertenecen a dicha clase.

Definición. Denominamos índice de error a la proporción de errores cometidos por un conjunto de reglas
sobre una base de datos.

Ejemplo. Veamos una regla de clasificación de la Tabla 1.1 sobre los atributos Humedad y Jugar:

Alta → No

Esta regla declara que si la humedad es Alta, entonces la decisión será no jugar. Podemos observar que,
en la Tabla 1.1, esto sucede en cuatro de las siete ocasiones. Por tanto, la clase de la regla Alta → No,
está formada por las tuplas t1, t2, t8 y t14.

Puesto que Jugar solo puede ser Sí o No, las dos clases que tenemos sobre Humedad Alta son Alta →
No (4/7 casos) y Alta → Si (3/7 casos). Por tanto, el índice de error de la regla Alta → No es de 3/7, ya
que hay tres casos de los siete donde no se cumple la regla.

Con todo esto, podemos deducir que si en nuestro pronóstico tenemos valores de humedad altos, la
decisión más probable será la de no jugar al juego indicado.

Definición. Un árbol de decisión es un diagrama de clasificación donde se representan reglas en forma
de nodos y ramas. En cada nodo del árbol se evalúa un atributo particular. Normalmente se compara con
una constante, aunque en otras ocasiones se comparan dos atributos o varios mediante una función. Cada
nodo está comunicado con otro mediante ramas que simbolizan los posibles resultados de la evaluación
anterior. Cada nodo proporciona una clasificación (o conjunto de clasificaciones) de todas las instancias
que llegan al nodo.

Cuando el nodo es un atributo nominal, el número de ramificaciones es igual al número de valores
de atributo distintos. Como hay una rama por cada posible valor, el mismo atributo no volverá a aparecer
a lo largo del árbol.

Cuando el atributo es numérico, la evaluación se hace normalmente por comparación de mayor,
menor o igual con un valor concreto, de forma que el nodo se divide en dos ramas. A veces, por la
naturaleza del problema, conviene dividir en tres ramas considerando la opción de igual por separado.

7

8 Capítulo 2. Reglas de clasificación

Ejemplo. Utilizando la Tabla 1.3 sobre las lentes de contacto, queremos construir un árbol de decisión
que nos sirva para conocer que tipo de lentes serán recomendadas por el optometrista en base a los datos
conocidos.

La Figura 2.1 representa un árbol de decisión sobre la Tabla 1.3. Podemos observar que en primer
lugar se evalúa uno de los atributos de la tabla (en este caso Ratio de lágrimas).

Si el valor es Reducido, se recomendará no llevar lentes de contacto. Si el valor es Normal, no
podemos asegurar ningún valor del atributo, así que evaluamos el atributo Astigmatismo.

Continuamos y vemos que si el valor de Ratio de lágrimas es Normal y el valor de Astigmatismo
es No, se recomendará llevar lentes de contacto Blandas. Por otro lado, si el valor de Ratio de lágrimas
es Normal y el valor de Astigmatismo es Sí, no podemos asegurar nada, así que pasaríamos al siguiente
atributo.

Debemos observar que la construcción de cada regla se realiza desde el nodo inicial. Por ejemplo,
para que el valor No del atributo Astigmatismo se evalúe en llevar lentes blandas, debemos haber obtenido
antes que Ratio de lágrimas tenga valor Normal, ya que si el valor fuera Reducido, el resultado final es
no recomendar lentes de contacto.

Ratio de lágrimas

Ninguna Astigmatismo

Blandas Prescripción de gafas

Duras Ninguna

Reducido Normal

No Sí

Miope Hipermétrope

Figura 2.1: Árbol de decision para la tabla de lentes de contacto

Ahora podemos entender qué es una regla de clasificación.

Definición. Una regla de clasificación es un tipo de regla compuesta por un antecedente y una conclusión
lógica, construída a partir de los valores de los atributos de un esquema de relación. Generalmente, los
antecedentes suelen estar unidos mediante el conector lógico Y. Una regla de clasificación tiene la forma:

Si a Y b entonces x

Aunque puede resultar sencillo obtener una regla de clasificación de un esquema de relación simple,
no resulta un problema sencillo hacerlo de una base de datos grande. Más adelante estudiaremos el
algoritmo 1-R que nos servirá para obtener un conjunto fiable de reglas de clasificación de una tabla
cualquiera.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 9

Ejemplo. Es sencillo obtener un conjunto de reglas de clasificación de un árbol de clasificación. Utili-
zando el árbol de la Figura 2.1, podemos obtener algunas reglas como las siguientes:

Si Ratio de lágrimas = Reducido, entonces Lentes recomendadas = Ninguna

Si Ratio de lágrimas = Normal Y Astigmatismo = No,

entonces Lentes recomendadas = Blandas

2.1. Algoritmo 1-R

En muchas ocasiones, cuando tratamos de obtener información de una base de datos, resulta apropia-
do comenzar por lo más simple. El algoritmo 1-R (proveniente del inglés 1-rule) es un método sencillo
de obtención de reglas de clasificación de un conjunto de datos. Este algoritmo busca árboles de clasifi-
cación simples de los que se obtienen reglas de clasificación simples. Por ejemplo, para la Tabla 1.1, un
árbol simple sería:

Humedad

Jugar: No Jugar: Sí

alta normal

Figura 2.2: Árbol de decision simple generado mediante algoritmo 1-R

Nuestro objetivo es construir una serie de reglas de clasificación con el menor índice de error posible
a partir de una regla inicial apropiada. De esta forma, obtendremos un conjunto de reglas que nos per-
mitirán clasificar de una forma precisa la información de nuestra base de datos y así tomar decisiones
pertinentes en torno a ella.

Los pasos del algoritmo son los siguientes:

Entrada: Atributo de clasificación fijado y resto de atributos.

1. Generar un árbol de un nivel de decisión sobre uno de los atributos
respecto al atributo de clasificación fijado.

2. Escoger la clase más frecuente de cada posible valor de atributo y
asignar a la clase escogida el valor de atributo correspondiente.

3. Calcular el índice de error de esa regla.

4. Calcular el índice de error total de las reglas resultantes del atributo
que se escogió en el primer paso.

5. Repetir con cada atributo.

Salida: Conjunto de reglas de clasificación simples.

Figura 2.3: Pasos del algoritmo 1-R

10 Capítulo 2. Reglas de clasificación

Si en algún caso obtenemos un empate en el número de errores, nos quedaremos con una de las dos
opciones aleatoriamente. Este criterio nos sirve para evitar problemas en la teoría, pero en la aplicación
real podría ser conveniente utilizar otro criterio.

Ejemplo. Veamos la aplicación del algoritmo a la Tabla 1.1 y sigamos los pasos descritos. Queremos
buscar reglas verosímiles para ver si será conveniente jugar o no utilizando los datos registrados en
nuestro esquema de relación.

1. Escogemos por ejemplo el atributo Humedad. Puesto que en nuestra tabla los posibles valores de
dicho atributo pueden ser Alta o Normal, tenemos que para cada uno, sus clases son:

Regla Frecuencia
Alta → Sí 3/7
Alta → No 4/7

Normal → Sí 6/7
Normal → No 1/7

Tabla 2.1: Evaluación del atributo Humedad de la tabla del tiempo atmosférico

2. Nos quedamos entonces con la clase más frecuente de cada valor de atributo, es decir, con:

Alta → No

Normal → Si

3. Es directo ver que los índices de error de ambas reglas son 3/7 y 1/7 respectivamente, ya que las
frecuencias de ambas clases son 4/7 y 6/7 respectivamente.

4. El índice de error total de la regla de clasificación del atributo Humedad que recoge las reglas
Alta → No y Normal → Si es entonces 4/14. Una forma de verlo es plantear que de las catorce
tuplas registradas, cuatro de ellas no cumplen ninguna de las dos reglas. Si hubiéramos tenido
dos o más clases de un mismo valor de atributo con la misma frecuencia habríamos hecho una
elección aleatoria, aunque en la aplicación real del algoritmo podría convenir otro criterio según
los requerimientos del problema.

5. Aplicando el algoritmo a cada atributo, obtenemos la siguiente tabla.

Atributo Reglas Errores Errores totales
1 Pronóstico Soleado → No 2/5 4/14

Nublado → Sí 0/4
Lluvioso → Sí 2/5

2 Temperatura Caluroso → No 2/4 5/14
Templado → Sí 2/6

Frío → Sí 1/4
3 Humedad Alta → No 3/7 4/14

Normal → Sí 1/7
4 Viento Falso → Sí 2/8 5/14

Verdadero → No 3/6

Tabla 2.2: Evaluación de atributos de la tabla del tiempo atmosférico

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 11

En efecto podemos observar que en la regla del atributo Temperatura: Caluroso→No y en la regla
del atributo Viento: Verdadero → No, se ha realizado una elección aleatoria, pues la frecuencia es
también de 2/4 y de 3/6 respectivamente en las clases alternativas correspondientes.

Habiendo entonces aplicado el algoritmo 1-R a nuestro ejemplo, podemos decidir si se juega o no al
deporte específico en función de las condiciones climáticas. En nuestro caso, podríamos decidir utilizan-
do la regla del atributo Pronóstico o Humedad, ya que son las dos reglas que menos errores tienen. Si
elegimos utilizando la humedad, la regla para decidir si se juega es así: si la humedad es alta, entonces
no se juega.

También podemos aplicar 1-R para el caso de la existencia de nulos, en cuyo caso, simplemente
tomaremos NULO como otro posible valor del atributo correspondiente.

2.2. Caso numérico

Adicionalmente, 1-R funciona también para el caso numérico. Podemos convertir los atributos nu-
méricos en nominales aplicando un metodo de discretización. Veamoslo mediante un ejemplo.

Ejemplo. Utilicemos la Tabla 1.2. Vamos a ordenar los elementos del atributo Temperatura en una
secuencia creciente con su respectivo resultado del atributo Jugar:

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Sí No Sí Sí Sí No No Sí Sí Sí No Sí Sí No

Para discretizar debemos particionar la secuencia. Una posible forma es colocar separaciones cada
vez que cambia la secuencia.

Sí No Sí Sí Sí No No Sí Sí Sí No Sí Sí No

Cada separación se corresponde con el valor medio entre el valor final e inicial de dos clases conti-
guas. Así pues tenemos los valores 64.5, 66.5, 70.5, 72, 77.5, 80.5 y 84. Vemos que el valor 72 nos da
problemas ya que pertenece a dos clases distintas. Podemos solucionarlo moviendo la separación corres-
pondiente a 72 una posición hacia delante y la convertimos en 73.5, obteniendo una clase mixta donde
No es la clase mayoritaria.

Sí No Sí Sí Sí No No Sí Sí Sí No Sí Sí No

Podemos entonces construir un conjunto de reglas tomando comparaciones de mayor y menor res-
pecto a los valores de separación para decidir si el resultado será Sí o No.

Un gran problema al que nos enfrentamos es la creación de demasiadas categorías. En nuestro ejem-
plo vemos que solo cometiendo un error (producido por la resolución del 72 anterior) hemos creado una
gran cantidad de intervalos. Una situación en la que un atributo se divida en un número excesivo de cate-
gorías, nos llevará a tener cero errores, pero esto no nos interesa. La explicación radica en que la creación
de demasiadas reglas de clasificación no nos brindará ninguna información: el objetivo de las técnicas de
extracción de información es encontrar reglas que engloben los distintos casos para buscar relaciones y
patrones comunes para obtener información no trivial a primera vista.

Podemos entonces ser más laxos y hacer, por ejemplo, la siguiente partición:

Sí No Sí Sí Sí No No Sí Sí Sí No Sí Sí No

En primer lugar, tenemos una partición mixta con Sí como clase mayoritaria y, en segundo lugar, una
partición con empate de clases. Si hacemos una elección arbitraria en la segunda partición para quedarnos
con No (en caso contrario tendríamos en total una única partición), obtenemos el siguiente conjunto de
reglas con índice de error 5/14:

12 Capítulo 2. Reglas de clasificación

Temperatura: ≤ 77.5 → Sí
> 77.5 → No

De esta forma obtendríamos que, con un índice de error 5/14, si tenemos que decidir jugar o no al
deporte especificado y la temperatura es menor o igual a 77.5ºF, la decisión será que sí se jugará. De
la misma forma, si la temperatura supera los 77.5ºF, la decisión será no jugar (con el mismo índice de
error).

Capítulo 3

Reglas de asociación

Este capítulo está basado en el capítulo 12 del libro ADVANCES IN KNOWLEDGE DISCOVERY
AND DATA MINING de R.Agrawal et al [8] y en el libro FUNDAMENTALS OF DATABASE SYSTEMS
de Elmasri, Ramez y S. B. Navathe [9].

Las reglas de asociación no difieren mucho de las de clasificación. La principial diferencia radica en
que pueden predecir cualquier atributo, no solo la clase. Esto propicia que podamos predecir combina-
ciones de atributos con libertad. A diferencia de las reglas de clasificación, las reglas de asociación no
buscan ser agrupadas en conjuntos de reglas sino que distintas reglas de asociación predicen distintas
propiedades por sí mismas. Por tanto, si nuestro objetivo al buscar reglas de clasificación era predecir
el valor de cierto atributo fijado, con las reglas de asociación nuestro objetivo será predecir relaciones
consistentes entre los datos de nuestro esquema de relación.

En los apartados anteriores, hemos considerado en el modelo relacional que cada atributo es unie-
valuado, es decir, que acepta en cada tupla un único valor de atributo perteneciente a su dominio. Sin
embargo, podemos tener atributos multievaluados, es decir, que acepten conjuntos de datos y cada posi-
ble conjunto de datos conformaría un valor de atributo diferente. El dominio de un atributo de este tipo
está formado por una partición del conjunto total de datos que tengamos.

Para entender mejor lo anterior, nos vamos a apoyar en el ejemplo de la cesta de la compra. La Tabla
1.4 representa el esquema de relación Transacción donde se visualizan las compras hechas por clientes
de un supermercado. Cada tupla del esquema es una transacción o compra independiente efectuada por
un cliente. El atributo Objetos comprados tiene como valores conjuntos de objetos del supermercado
(datos) que se han adquirido en cada transacción. Así, podríamos encontrar reglas de asociación entre
los objetos del supermercado. Si observamos que leche y zumo aparecen juntos en diversas compras,
podríamos suponer que existe una regla de asociación entre ambas: si alguien compra zumo, entonces
comprará leche (o viceversa).

Definición. Una regla de asociación es una regla de la forma LI (lado izquierdo) =⇒ LD (lado derecho),
donde LI = {x1,x2, ...,xn} e LD = {y1,y2, ...,ym} son conjuntos de datos de un mismo atributo con LI ∩
LD = /0. Llamamos conjunto de elementos a la unión LI ∪LD.

Definición. Definimos soporte de un conjunto de datos como la fracción de frecuencia de aparición del
conjunto en nuestra muestra o base de datos. La denotamos sup(X) siendo X un conjunto de datos de
nuestro esquema de relación.

Definición. Definimos soporte de una regla LI =⇒ LD como la fracción de frecuencia de aparición de
su conjunto de elementos correspondiente en nuestra muestra o base de datos. Es decir, es el porcentaje
de tuplas de nuestro esquema de relación que contienen todos los elementos de LI ∪LD.

El soporte de una regla nos permite conocer lo verosimil que es dicha regla en cuanto a la cantidad
de veces que los elementos de LI ∪LD aparecen juntos.

Ejemplo. Usemos la Tabla 1.4 y calculemos el soporte de la regla leche =⇒ zumo. Es decir, queremos
saber la frecuencia de aparición del respectivo conjunto de elementos {leche, zumo}. Como leche y zumo

13

14 Capítulo 3. Reglas de asociación

aparecen juntos en dos de las cuatro transacciones, esto sigfica que ocurre el 50% de las veces, es decir,
la regla leche =⇒ zumo tiene soporte 0,5. Veamos ahora la regla pan =⇒ huevos. Puesto que pan y
huevos no se han comprado juntos en ninguna de las transacciones, el soporte de la regla es 0.

Definición. Llamamos confianza de una regla LI =⇒ LD al cálculo:

sup(LI ∪LD)

sup(LI)

Es decir, es la probabilidad de que los elementos de LD aparezcan en una tupla de nuestro esquema de
relación sabiendo que los elementos de LI aparecen. Esto nos permite medir lo fuerte o creíble que es
una regla de asociación en términos de probabilidad.

Ejemplo. Veamos la Tabla 1.4 sobre la cesta de la compra comentada anteriormente. Queremos buscar
alguna regla que nos permita saber si al comprar determinado artículo, se comprará otro adicional. En
este ejemplo particular, vamos a simplificar considerando LI y LD como conjuntos de un único artículo.

Consideremos la regla leche =⇒ zumo. El respectivo conjunto de elementos LI ∪LD será {leche,
zumo}. El soporte de {leche, zumo} es 0,5 como hemos visto en el ejemplo anterior, mientras que el
soporte de {leche} es 0,75. Por tanto, la confianza de leche =⇒ zumo es:

sup({leche,zumo})
sup({leche})

=
0,5

0,75
= 0,67

Otra forma de verlo: de las tres transacciones donde aparece leche, en dos de ellas aparece zumo.
Ahora, consideramos otra regla distinta: pan =⇒ zumo. En este caso, LI ∪LD será {pan, zumo}.

El soporte de {pan, zumo} es 0,25, ya que pan y zumo aparecen juntos sólamente en una de las cuatro
transacciones. Por otra parte, el soporte de {pan} es 0,5, pues aparece en la mitad de transacciones. Por
tanto, la confianza será:

sup({pan,zumo})
sup({pan})

=
0,25
0,5

= 0,5

Sólamente en una de las dos transacciones que contienen {pan} aparece zumo.
Si comparamos ambas reglas en términos de probabilidad, un cliente comprará zumo con una pro-

babilidad del 66,7% si compra leche y comprará zumo con una probabilidad del 50% si compra pan.
La primera regla tiene un soporte más alto que la segunda, por lo que existen evidencias de que la regla
leche =⇒ zumo es más válida que la segunda regla pan =⇒ zumo, pues esta última ocurre tan pocas
veces en el esquema de relación que no nos asegura que se vaya a cumplir o repetir.

No resulta adecuado calificar una regla como válida basándonos sólamente en lo anterior. Si ob-
tenemos valores de soporte bajos, la regla no estará apoyada en el suficiente número de datos como
para considerarla relevante. Esto será independiente de lo alta que resulte la confianza posteriormente.
Podemos verlo en el siguiente ejemplo.

Ejemplo. Consideramos de nuevo la Tabla 1.4 y evaluemos la regla huevos =⇒ leche. Observamos que
el soporte de la regla es bajo, pues tan solo ocurre en una de las cuatro transacciones, por lo que tiene
soporte 0,25. Por otro lado, el soporte de {huevos} es de la misma forma 0,25. Calculamos la confianza:

sup({huevos, leche})
sup({huevos})

=
0,25
0,25

= 1

Es decir, en el 100% de las transacciones donde se compra huevos se compra leche. Si sólamente tuvie-
ramos en cuenta la confianza podríamos pensar que la regla es perfecta: cualquiera que compre huevos
comprará siempre leche. Pero esto no es así. Aún teniendo la máxima confianza posible, el soporte bajo
nos indica que la regla se apoya en un número de casos tan mínimo que no resulta razonable aceptarla
como cierta.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 15

Teniendo en cuenta esto, necesitamos un indicador para el soporte que nos diga si la regla es válida
o lo suficientemente fuerte, o si por el contrario, debemos descartarla ante la insuficiencia de casos. Con
este fin, definimos:

Definición. Denominamos umbral de aceptación al valor de soporte mínimo para que una regla sea
considerada válida. Este valor será generalmente especificado por el usuario de acuerdo a la naturaleza
del problema.

Definición. Los conjuntos de elementos cuyo soporte iguala o excede el umbral de aceptación se dicen
frecuentes.

Ejemplo. Utilizando las reglas vistas en los ejemplos previos, supongamos que el usuario ha especificado
un umbral de aceptación de 0,5.

La regla leche =⇒ zumo con soporte 0,5 sería una regla válida y por tanto el conjunto {leche,
zumo} sería un conjunto frecuente de elementos.

La regla pan =⇒ zumo con soporte 0,25 no se consideraría una regla válida y sería descartada.

La regla huevos =⇒ leche con soporte 0,25 no se consideraría una regla válida y sería descartada.

El mayor problema que tendremos con bases de datos grandes será encontrar todos los conjuntos
frecuentes de elementos con el valor de su correspondiente soporte. Para resolver esto, nos apoyaremos en
algoritmos que nos faciliten su obtención. Una vez encontrados, veremos a continuación cómo tratarlos
para obtener reglas de asociación sencillas.

3.1. Algoritmo Apriori

Antes de presentar el algoritmo, vamos a ver dos propiedades importantes.

Definición. Sea X conjunto frecuente de elementos. Si ∀Y ⊂ X se cumple que Y es un conjunto frecuente
de elementos, se dice que cumple la propiedad de clausura descendente.

Ejemplo. Consideramos la Tabla 1.4 de la cesta de la compra. Supongamos que el usuario ha especi-
ficado un umbral de aceptación de 0,5. El conjunto de elementos {leche, zumo} es frecuente pues tiene
soporte 0,5. Igualmente, tanto el conjunto {leche} como el conjunto {zumo} tienen soporte 0,5, así que
también son frecuentes y por tanto {leche, zumo} cumple la propiedad de clausura descendente.

Definición. Sea Y conjunto no frecuente de elementos. Si ∀X tal que Y ⊂ X se cumple que X es un
conjunto no frecuente de elementos, se dice que se cumple la propiedad de antimonotonicidad.

Ejemplo. Consideramos de nuevo la Tabla 1.4 y tomamos un umbral de aceptación de 0,5. Podemos
observar que el conjunto {leche, huevos} tiene soporte 0,25 y por tanto no es un conjunto frecuente.
Construimos cada uno de los posibles conjuntos que contienen leche y huevos. Es sencillo observar que
ninguno de estos conjuntos tendrá soporte igual o superior a 0,5 y entonces serán no frecuentes, por lo
que se cumple la propiedad de antimonotonicidad.

Como comentamos previamente, uno de los mayores problemas será el encontrar los conjuntos fre-
cuentes de una base de datos grande, ya que, si la cardinalidad es muy elevada, el cálculo del soporte
de todos los conjuntos posibles es altamente costoso. Si usamos las dos propiedades anteriores en un
algoritmo, el espacio combinatorio de búsqueda se reduce notablemente. Una vez tenemos los conjun-
tos frecuentes de elementos, resulta sencillo elaborar reglas de asociación simples a partir de los datos
recogidos.

El algoritmo Apriori fue el primero en implementar las dos propiedades previas. Su funcionamiento
consiste en buscar los conjuntos frecuentes de elementos. Para ello evalúa cada conjunto de menor tama-
ño posible para localizar los frecuentes. A continuación, aumenta el tamaño de la menor forma posible

16 Capítulo 3. Reglas de asociación

de los conjuntos frecuentes calculados y vuelve a comprobar si son frecuentes o no. El algoritmo itera
estos pasos hasta no encontrar conjuntos frecuentes. De esta forma, el algoritmo calcula una colección
compuesta de todos los conjuntos frecuentes de la base de datos que satisfacen las dos propiedades an-
teriores y a partir de ese cálculo se elaboranr reglas de asociación respecto a los datos que aparecen en
tales conjuntos. Esto permite saber qué datos tienen tendencia a aparecer juntos en la base de datos.

La entrada del algoritmo Apriori es un atributo con n datos y m tuplas. Denotaremos L1,L2, ...,Lk a
los conjuntos frecuentes de elementos. El umbral de aceptación lo denotamos u.

Los pasos del algoritmo son los siguientes:

Entrada: Atributo con n datos y m tuplas. Umbral de aceptación u.

1. Calcular el soporte de cada dato i1, i2, ..., in como si se tratase de conjuntos
de un solo elemento.

2. Considerar el conjunto C1 de todos los datos i1, i2, ..., in como candidato a
ser el 1-conjunto frecuente de elementos.

3. Tomamos L1 como el subconjunto de C1 formado por los elementos i j tales
que sup(i j) ≥ u . Este conjunto L1 será el 1-conjunto frecuente de elementos.
Hacemos k = 1 e iteramos en los siguientes pasos.

4. Ahora consideramos Ck+1 el (k+1)-conjunto frecuente de elementos
candidato, formado por las combinaciones de k+1 miembros de Lk que tienen k-1
elementos en común. Adicionalmente, solo consideramos como miembros de Ck+1
aquellos tales que cada subconjunto suyo de tamaño k aparece en Lk.

5. Formamos de nuevo Lk+1 como el subconjunto de Ck+1 formado por los
miembros cuyo soporte supere o iguale el umbral u.

6. Si Lk+1 está vacío, terminamos. En caso contrario, hacemos k = k + 1 y
repetimos desde el paso 4.

Salida: Conjuntos frecuentes de elementos L1,L2, ...,Lk.

Figura 3.1: Pasos del algoritmo Apriori

Podemos observar que el algoritmo cumple la propiedad de antimonotonicidad pues si un conjunto
es no frecuente el algoritmo impide que se construyan conjuntos de mayor tamaño a partir de dicho con-
junto. Además, cumple la propiedad de clausura descendente ya que, por la construcción del algoritmo,
si un conjunto es evaluado como frecuente significa que sus subconjuntos tuvieron que ser evaluados
como frecuentes en primer lugar.

Veamos ahora un ejemplo que nos ilustre la aplicación del algoritmo.

Ejemplo. Utilizamos de nuevo la Tabla 1.4 de la cesta de la compra y consideremos el umbral de acep-
tación 0,5. Tenemos los datos: leche, pan, zumo, galletas, huevos y café.

1. Calculamos los soportes. Respectivamente son: 0,75, 0,5, 0,5, 0,5, 0,25 y 0,25.

2. El 1-conjunto candidato C1 será {{leche}, {pan}, {zumo}, {galletas},{huevos}, {café}}.

3. Teniendo en cuenta los elementos cuyo soporte es mayor o igual que 0,5, el 1-conjunto frecuente
de elementos L1 será {{leche}, {pan}, {zumo}, {galletas}}. Vamos a crear el 2-conjunto candidato

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 17

C2. Está formado por las combinaciones de 2 miembros de L1 tal que no tienen elementos en común
y cuyos subconjuntos aparecen todos en L1 (ambas son triviales pues los miembros de L1 son de
un solo elemento). Tenemos pues que C2 está formado por {leche, pan}, {leche, zumo}, {leche,
galletas}, {pan, zumo}, {pan, galletas} y {zumo, galletas}.

4. Calculamos los soportes de los conjuntos anteriores. Respectivamente: 0,25, 0,5, 0,25, 0,25, 0,5
y 0,25. Por tanto, el 2-conjunto frecuente de elementos es L2 está formado por {leche, zumo} y
{pan, galletas}.

5. Puesto que L2 no está vacío, iteramos y pasamos a buscar los 3-conjuntos frecuentes de elementos.

6. Observemos que no podemos construir C3. Si por ejemplo tomamos {leche, zumo, pan}, el sub-
conjunto {leche, pan} no está en L2 y por tanto no podría ser un 3-conjunto frecuente de elementos
por la propiedad de la clausura descendente.

Por tanto, el algoritmo termina y hemos encontrado los conjuntos frecuentes :

{leche }
{pan }
{zumo }

{galletas }
{leche, zumo }

{pan , galletas }

Podríamos entonces generar reglas de asociación utilizando los conjuntos anteriores de forma que
tendrían un soporte superior al umbral de aceptación especificado. Al final del capítulo veremos cómo
podemos obtener reglas de asociación de conjuntos frecuentes como los anteriores.

3.2. Árbol-PF y algoritmo de Crecimiento-PF

El mayor problema que presenta el algoritmo Apriori y derivados es que pueden generar (y por tan-
to tener que evaluar) un número muy elevado de conjuntos candidatos. Esto puede provocar un coste
computacional muy alto en bases de datos grandes. El algoritmo Crecimiento-PF (Patrón Frecuente) es
una alternativa para evitar este problema. Para ello utilizaremos un árbol de clasificación especial que
denominaremos árbol-PF. Este tipo de árboles de clasificación sirven para almacenar la información
relevante y para descubrir de manera eficiente posibles conjuntos frecuentes. Vamos a explicar su fun-
cionamiento.

3.2.1. Construcción del árbol-PF

Para facilitar el desarrollo, vamos a considerar el soporte de los conjuntos como un conteo en vez de
como una fracción.

18 Capítulo 3. Reglas de asociación

Entrada: Base de datos

1. Calcular los soportes de todos los datos. Ordenar de forma no creciente
por soporte los datos y quedarse con los frecuentes (obteniendo 1-conjuntos).
Almacenarlos en una tabla T junto al contador de su soporte.

2. Para cada tupla ti de la base de datos que contenga algunos de los
1-conjuntos frecuentes anteriores, construir otra tabla Ti donde almacenar los
1-conjuntos que aparezcan tanto en la tupla ti como en T y guardarlos en el mismo
orden no creciente en el que aparecen en T . El primer dato de esta tabla Ti

será la cabecera, y el resto serán la cola.

3. Iniciar el árbol-PF con la raíz NULL.

4. Tomar la tabla Ti. Si del nodo actual N del árbol-PF nace una rama con
un nodo cuyo nombre sea la cabecera, entonces dicho nodo pasa a ser el nodo N
y se incrementa en 1 su contador asociado; en otro caso, crear un nuevo nodo N
desde la raíz con un contador iniciado en 1 y ligar N con la tabla T mediante
un enlace.

5. Si la cola es no vacía, la cabecera se elimina y el siguiente dato de
la cola se convierte en la cabecera. Repetir el paso 4.

6. Si la cola es vacía, pasar a la siguiente tabla y repetir desde el paso
4. Si no quedan tablas Ti, terminar.

Salida: Árbol-PF y tabla T con los enlaces.

Figura 3.2: Pasos de la construcción de un Árbol-PF

Vamos a ver un ejemplo que facilite la comprensión.

Ejemplo. Utilicemos de nuevo la Tabla 1.4. Consideramos un umbral de aceptación 2 (recordamos
que para esta sección usamos el soporte como un conteo en vez de una fracción). Sigamos los pasos
anteriores.

1. Calculamos los 1-conjuntos frecuentes con su soporte y los ordenamos de forma no creciente:
{{(leche, 3)}, {(pan, 2)}, {(galletas, 2)}, {(zumo, 2)}}. Los insertamos en la tabla T .

Objeto Soporte Enlace
Leche 3
Pan 2

Galletas 2
Zumo 2

Tabla 3.1: Tabla T

De momento, la columna enlace aparece vacía, ya que la iremos rellenando conforme hagamos el
árbol.

2. Observamos que las cuatro tuplas de la Tabla 1.4 tienen algún objeto de T , así que construimos
cuatro subtablas Ti con los objetos de T en el mismo orden.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 19

T1 T2 T3 T4

Leche Leche Leche Pan
Pan Zumo Galletas

Galletas
Zumo

Tabla 3.2: Tablas Ti

3. Iniciamos el árbol con el nodo NULL.

4. Tomamos T1. Como de la raíz NULL no nace ninguna rama que tenga por nodo la cabecera leche,
la creamos y le ponemos contador 1 y enlace a.

5. Eliminamos leche de T1 y como la cola no está vacía, pan es la nueva cabecera. Repitiendo el paso
anterior, no existe ninguna rama de leche que tenga por nodo pan, así que la creamos y le ponemos
contador 1 y enlace b. Hacemos lo mismo con el resto de objetos de T1.

6. Pasamos a la tabla T2. Volvemos al nodo NULL y vemos que existe una rama cuyo nodo coincide
con la cabecera leche, así que aumentamos en 1 el contador del nodo leche en el árbol. La nueva
cabecera pasa a ser zumo y como no existe ninguna rama del nodo leche cuyo nodo sea zumo,
creamos una nueva rama desde leche con el nombre zumo y le ponemos contador 1 y enlace e.

7. Pasamos a la tabla T3. Volvemos al nodo NULL y vemos que existe una rama cuyo nodo coincide
con la cabecera leche, así que aumentamos en 1 el contador del nodo leche en el árbol.

NULL

Leche: 1, a

Pan: 1, b

Galletas: 1, c

Zumo: 1, d

(a) T1

NULL

Leche: 2, a

Pan: 1, b

Galletas: 1, c

Zumo: 1, d

Zumo: 1, e

(b) T2

NULL

Leche: 3, a

Pan: 1, b

Galletas: 1, c

Zumo: 1, d

Zumo: 1, e

(c) T3

Figura 3.3: Construcción de árbol-PF con T1, T2 y T3

8. Pasamos a la tabla T4. Volvemos al nodo NULL y vemos que no existe ninguna rama cuyo nodo
coincida con la cabecera pan, así que creamos una nueva rama desde NULL con el nodo pan y le
ponemos contador 1 y enlance f . De la misma forma, eliminamos zumo de T4 y tomamos galletas
como la nueva cabecera. Como no existen ramas desde el nuevo nodo anterior, creamos una nueva
con el nodo galletas y le ponemos contador 1 y enlace g. Así, terminamos el árbol y, completando
la tabla T con los enlaces de los nodos, obtenemos la Figura 3.4.

Notar que el enlace nos sirve para ubicar los contadores de cada objeto en el árbol y comprobar que
no nos hemos dejado ninguno según los soportes calculados. Si la base de datos es pequeña podemos no
necesitar el enlace, pero en bases de datos más grandes nos ayudará a localizar todos los datos.

Observamos, además, que el árbol-PF nos proporciona una manera más compacta de ver las transac-
ciones relacionadas con los 1-conjuntos frecuentes.

20 Capítulo 3. Reglas de asociación

NULL

Leche: 3, a

Pan: 1, b

Galletas: 1, c

Zumo: 1, d

Zumo: 1, e

Pan: 1, f

Galletas: 1, g

(a) Árbol-PF de la Tabla 1.4

Objeto Soporte Enlace
Leche 3 a
Pan 2 b, f

Galletas 2 c, g
Zumo 2 d, e

(b) Tabla T con enlaces

Figura 3.4: Construcción final del Árbol-PF de la Tabla 1.4

3.2.2. Algoritmo de Crecimiento-PF

Ahora que entendemos la construcción de un árbol-PF, podemos introducir el algoritmo de Crecimiento-
PF. Este algoritmo nos permite escrutar un árbol-PF dado, obtener a partir del mismo formas de relacionar
los 1-conjuntos frecuentes y así poder elaborar conjuntos frecuentes de mayor tamaño.

Para poder explicar el algoritmo necesitamos dos definiciones.

Definición. Sea un nodo N de un árbol-PF al que llamaremos sufijo, llamaremos base condicional de N
al conjunto de los caminos del árbol que llegan hasta N (sin incluir a N). A cada camino de este conjunto
lo llamaremos prefijo.

Ejemplo. Tomando el árbol-PF de la Figura 3.4a, si elegimos el nodo zumo como sufijo, los prefijos que
llegan hasta el nodo elegido son (leche: 1, pan: 1, galletas: 1) y (leche: 1), por lo que la base condicional
de zumo sería {(leche, pan, galletas), (leche)}.

Definición. Sea un nodo N de un árbol-PF. Considerando los elementos de su base condicional como
conjuntos de datos de tuplas distintas de un esquema de relación, denominamos árbol-PF condicional
de N al árbol-PF construido a partir de la base condicional de N y con umbral de aceptación sup(N).

Ejemplo. Tomamos la base condicional de zumo del ejemplo anterior {(leche, pan, galletas), (leche)}.
Fijamos el umbral de aceptación sup((zumo)) = 2.

Para obtener el árbol-PF condicional de zumo debemos construir un árbol-PF considerando (leche,
pan, galletas) y (leche) como las únicas transacciones realizadas de una tabla nueva. Como leche es el
único objeto cuyo soporte supera el umbral 2, si seguimos los pasos de construcción de un árbol-PF
podemos ver que el árbol-PF construido a partir de la base {(leche, pan, galletas), (leche)} nos brinda un
único nodo (leche: 2). Es decir, el árbol-PF condicional de zumo respecto a la Tabla 1.4 es:

NULL

Leche: 2

Figura 3.5: Árbol-PF condicional de zumo respecto a la Tabla 1.4

El algoritmo comienza evaluando si el árbol-PF introducido tiene más de una rama. Si sólamente
tiene una rama, el algoritmo selecciona como conjuntos frecuentes todas las combinaciones de nodos
que superan el umbral de decisión estipulado. Si el árbol-PF tiene más de una rama, comienza eligiendo
el 1-conjunto frecuente menos frecuente y calcula su base condicional. A continuación calcula su árbol-
PF condicional y forma los conjuntos frecuentes concatenando el sufijo con los caminos producidos en
el árbol.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 21

Los pasos del algoritmo son entonces los siguientes:

Entrada: árbol-PF

1. Analizar si el árbol-PF introducido tiene una o más ramas.

2. Si contiene una única rama, generar los conjuntos frecuentes a partir
de todas las combinaciones de nodos que superan el umbral de aceptación
introducido.

3. Si contiene dos o más ramas, para cada nodo en orden no decreciente de
soporte fijar su valor de soporte y hacer:

a) Calcular su base condicional.

b) Calcular su árbol-PF condicional.

c) Si dicho árbol-PF es no vacío, generar los conjuntos frecuentes
concatenando sus caminos con el nodo inicial. Calcular su soporte.

Salida: Conjuntos frecuentes con su soporte.

Figura 3.6: Pasos del algoritmo de Crecimiento-PF

Veamos pues el funcionamiento del algoritmo con un ejemplo:

Ejemplo. Tomamos el árbol de la Figura 3.4a y determinamos umbral de aceptación 2.

1. El árbol-PF tiene más de una rama.

2. Como tiene más de una rama ignoramos el paso 2.

3. Comenzamos con el objeto zumo y fijamos su valor de soporte, que es 2.

a) Construimos su base condicional. Sabemos por los ejemplos anteriores que es {(leche, pan,
galletas), (leche)}.

b) Construimos su árbol-PF condicional. De igual manera, sabemos por el ejemplo anterior que
está compuesto de un único nodo (leche: 2).

c) Como el árbol-PF condicional es no vacío y tiene un único nodo, el único conjunto frecuente
generado es {leche, zumo} con soporte 2.

Pasamos al objeto galletas y fijamos su soporte 2.

a) Construimos su base condicional. Los prefijos que llegan hasta galletas son (leche: 1, pan:
1) y (pan: 1), por lo que la base condicional de galletas será {(leche, pan), (pan)}.

b) Construimos su árbol-PF condicional. Es sencillo observar que está compuesto de un único
nodo: (pan: 2).

c) Como el árbol-PF condicional es no vacío y tiene un único nodo, el único conjunto frecuente
generado es {pan, galletas} con soporte 2.

Si vamos ahora con los objetos pan y leche es sencillo ver que sus respectivos árboles-PF condi-
cionales quedan vacíos, así que no generan conjuntos frecuentes. Así, el algoritmo finaliza y nos
devuelve los siguientes conjuntos frecuentes con su soporte: {leche: 3}, {pan: 2}, {galletas: 2},
{zumo: 2}, {leche, zumo: 2} y {pan, galletas: 2}. Con estos conjuntos podremos elaborar fácil-
mente reglas de asociación verosímiles para nuestra base de datos.

22 Capítulo 3. Reglas de asociación

3.3. Obtención de reglas de asociación

Los algoritmos anteriores nos permiten averiguar los conjuntos frecuentes de una base de datos dada.
Necesitamos saber cómo tratar estos conjuntos para obtener de ellos reglas de asociación. Para ello,
vamos a ver primero el siguiente resultado.

Proposición. Sea X un conjunto frecuente de elementos y sea Y ⊂ X. Sea Z = X \Y . Entonces, si
sup(X)/sup(Z)> c con c una confianza mínima establecida, la regla Z =⇒ Y es una regla válida.

Demostración. Sea c una confianza mínima establecida. Sea X = {x1, ...,xn} un conjunto frecuente de
elementos. Sea Y = {x1, ...,xm} con m < n, cambiando el orden de los elementos si es necesario. Enton-
ces, Z = {xm+1, ...,xn} y por tanto es trivial que X = Z ∪Y .

Asumiendo que sup(X)/sup(Z)> c , esto es equivalente a que sup(Z∪Y)/sup(Z)> c. Por tanto, la
confianza de la regla Z =⇒ Y supera la confianza mínima establecida y entonces es una regla válida.

Utilizando la proposición anterior, veamos un sencillo algoritmo que nos genera reglas de asociación:

Entrada: Conjunto frecuente X y confianza mínima establecida c

1. Generar todos los subconjuntos no vacíos Yi de X

2. Para cada i, construímos Zi = X \Yi y calculamos ci = sup(X)/sup(Zi).

3. Para cada j tal que c j > c, creamos la regla de asociación Z j =⇒ Yj

Salida: Reglas de asociación.

Figura 3.7: Pasos del algoritmo de obtención de reglas de asociación de conjuntos frecuentes

Ejemplo. Partimos del conjunto frecuente {leche, zumo} obtenido con el algoritmo de Crecimiento-PF
en el ejemplo anterior. Consideramos c = 0,6.

1. Los subconjuntos no vacíos son Y1 = {leche} y Y2 = {zumo}.

2. Tomando por ejemplo Y1, tenemos que Z1 = {leche, zumo}\{leche}= {zumo}, luego

c1 =
sup({leche, zumo})

sup({zumo})
=

0,5
0,5

= 1

3. Como c1 > c, tenemos que la regla Z1 =⇒ Y1 es decir {zumo} =⇒ {leche} es una regla de
asociación válida.

Habiendo obtenido esta regla, podemos suponer que si un cliente compra zumo, entonces es muy posible
que compre leche.

Capítulo 4

Clustering

Este capítulo está basado en el libro DATA MINING Practical Machine Learning Tools and Techni-
ques de I. H. Witten y E. Frank [7] y en el libro FUNDAMENTALS OF DATABASE SYSTEMS de Elmasri,
Ramez y S. B. Navathe [9].

En las reglas de clasificación vistas anteriormente sucedía lo que conocemos como aprendizaje su-
pervisado, es decir, dada una base de datos, los resultados de nuestras reglas de clasificación se daban de
acuerdo a una clasificación estipulada previamente. Por ejemplo, en la Tabla 1.3 de las lentes de contacto
se podía recomendar una de tres opciones: no llevar lentes, llevar duras o llevar blandas. El Clustering
(traducido como agrupamiento) es una técnica de extracción de información basada en el aprendizaje
no supervisado (es decir, los datos de nuestra muestra no se reparten en una clasificación previa) cuyo
objetivo es clasificar los datos en grupos disjuntos, de tal forma que los datos recogidos en un mismo
grupo son similares y los datos pertenecientes a grupos distintos son poco semejantes.

La pregunta natural que nos surge es cómo podemos diferenciar los datos de la muestra para clasifi-
carlos en grupos. La respuesta a esto no es sencilla pues existen muchas formas distintas de Clustering.
Algunas de ellas son: según una jerarquía especificada por el usuario; según la probabilidad que tienen de
pertenecer a un grupo, utilizando teoría de grafos analizando cómo están conectados los datos entre sí y
clasificándolos por número de conexiones, o usando teoría espectral representando los datos en matrices
de similitud.

Nosotros vamos a centrarnos en el método de Clustering por distancia en datos numéricos. Para ello
debemos definir primero qué es una distancia.

Definición. Sea X un conjunto de elementos, llamamos distancia a la aplicación d : X ×X → R que
satisface:

d(a,b)≥ 0, ∀a,b ∈ X

d(a,b) = 0 ⇐⇒ a = b, ∀a,b ∈ X

d(a,b) = d(b,a), ∀a,b ∈ X

d(a,c)≤ d(a,b)+d(b,c), ∀a,b,c ∈ X

En particular, usaremos la distancia euclidiana:

Definición. Sea X un conjunto de elementos n-dimensional. Sean r j,rk ∈ X . La distancia euclidiana
entre dos puntos se calcula:

d(r j,rk) =
√

|r j1 − rk1|2 + |r j2 − rk2|2 + ...+ |r jn − rkn|2

Cuanto menor sea la distancia euclidiana entre dos datos, mayor será la similaridad entre los dos. A
continuación vamos a presentar un algoritmo de Clustering clásico que utiliza la distancia euclidiana.

23

24 Capítulo 4. Clustering

4.1. Algoritmo k-medias

Disponemos de una base de datos con n tuplas y queremos tener en consideración m atributos para
la aplicación del clustering. El algoritmo k-medias tiene como objetivo agrupar esas tuplas en k clusters
(o grupos). Para ello, consideraremos las tuplas como datos de dimensión m. Así, el algoritmo elige
aleatoriamente k datos que serán los centroides (medias). Cada dato se clasifica en un cluster calculando
la distancia euclidiana y, a continuación, se recalculan los centroides de cada grupo. Este proceso se itera,
de forma que cada iteración es más óptima que la anterior.

Para decidir si una solución es mejor que otra, definimos una medida de error:

Definición. Sea una base de datos con datos r1, ...,rn de dimensión m. Si queremos clasificar en k clusters
C1, ...,Ck, cada uno con media m1, ...,mk respectivamente, definimos el error E como el calculo:

E =
k

∑
i=1

∑
∀r j∈Ci

d(r j,mi)
2

Como hemos comentado, cada iteración es más óptima que la anterior (es decir, se va reduciendo el
error) de forma que el algoritmo siempre converge. Elegidos el número deseado de clusters k y sabiendo
el número n de datos junto a su dimensión m (recordar que m será el número de atributos considerados),
veamos los dos pasos del algoritmo.

Entrada: Número de clusters k deseado y atributos en consideración.
1. Elegir aleatoriamente k datos que serán los centroides m1, ...,mk de los

clusters C1, ...,Ck

2. Iteramos los siguientes pasos hasta la convergencia (es decir, hasta que
no haya cambios en la asignación de datos a clusters):

a) Calcular la distancia euclidiana de cada dato ri a cada centroide.

b) Asignar cada dato ri al cluster C j donde la distancia de ri a m j es
la mínima.

c) Recalcular el centroide de cada cluster con el siguiente cálculo,
donde n es el número de datos y m el número de dimensiones. Así, el centroide
del cluster Ci queda:

m̄i =

(
1
n ∑
∀r j∈Ci

r j1, ...,
1
n ∑
∀r j∈Ci

r jm

)

Salida: k Clusters

Figura 4.1: Pseudocódigo para el algoritmo k-Medias

Ejemplo. Tomamos la Tabla 1.5 de los empleados de una empresa. En la tabla aparecen el identificador,
la edad y los años de servicio de una serie de empleados. Nuestro objetivo es buscar una clasificación de
veteranía de los empleados, de forma que se tenga en cuenta tanto la edad del empleado como sus años
de servicio en la empresa.

Vamos a aplicar el algoritmo a los atributos Edad y Años de servicio y vamos a buscar repartir los
empleados en dos clusters (k = 2).

1. Asumamos que el algoritmo ha elegido aleatoriamente los empleados ID 3 (50, 15) e ID 6 (55, 25)
para ser los centroides m1 y m2 de los clusters C1 y C2 respectivamente.

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 25

2. Veamos la primera iteración:

a) La distancia de ID 1 a m1 es 22,4 y a m2 es 32. La distancia de ID 2 a m1 es 10 y a m2 es 5. La
distancia de ID 4 a m1 es 25,5 y a m2 es 36,6. La distancia de ID 5 a m1 es 20,6 y a m2 es 29,2.

b) Por tanto el cluster C1 es {ID 1, ID 3, ID 4, ID 5} y C2 es {ID 2, ID 6}
c) Recalculamos los centroides con la fórmula anterior y tenemos que m̄1 = (33,75;8,75) y m̄2 =

(52,5;25).

Si calculamos el error de esta primera operación, nos saldría:

E = d(ID1, m̄1)
2+d(ID3, m̄1)

2+d(ID4, m̄1)
2+d(ID5, m̄1)

2+d(ID2, m̄2)
2+d(ID6, m̄2)

2 = 449,93

3. Hacemos la segunda iteración:

a) La distancia de ID 1 a m̄1 es 5,3 y a m̄2 es 30,1. La distancia de ID 2 a m̄1 es 22,98 y a m̄2 es
2,5. La distancia de ID 3 a m̄1 es 17,41 y a m̄2 es 10,3. La distancia de ID 4 a m̄1 es 9,52 y a
m̄2 es 34. La distancia de ID 5 a m̄1 es 3,95 y a m̄2 es 27,04. La distancia de ID 6 a m̄1 es 26,75
y a m̄2 es 2,5.

b) Por tanto el cluster C1 ahora es {ID 1, ID 4, ID 5} y C2 es {ID 2, ID 3, ID 6}.
c) Recalculamos los centroides y son ¯̄m1 = (28,3;6,7) y ¯̄m2 = (51,7;21,7).

Si calculamos el error de esta segunda operación, obtenemos:

E = d(ID1, ¯̄m1)
2+d(ID4, ¯̄m1)

2+d(ID5, ¯̄m1)
2+d(ID2, ¯̄m2)

2+d(ID3, ¯̄m2)
2+d(ID6, ¯̄m2)

2 = 116,25

4. Si hacemos otra iteración, comprobaremos que todos los datos se mantienen en los clusters ante-
riores. Por tanto, terminamos el algoritmo.

Así, hemos obtenido los clusters C1 = {ID 1, ID 4, ID 5} y C2 = {ID 2, ID 3, ID 6}. El primer
cluster se corresponde con los empleados menos veteranos, habiendo tenido en cuenta su edad y sus
años trabajando en la empresa. El segundo cluster se correspondería con los trabajadores más veteranos.

Con la aplicación del algoritmo k-Medias hemos conseguido una clasificación precisa en dos grupos
con los parámetros anteriores reduciendo ampliamente el error.

Aunque el algoritmo minimiza con efectividad los mínimos locales de datos a centroides, no hay ga-
rantía de alcanzar un mínimo global. En consecuencia, el mayor problema que nos presenta el algoritmo
es la alta sensibilidad que tiene a la elección de los centroides iniciales: en muestras más grandes pueden
resultar clusters totalmente diferentes según la elección inicial de medias. Una solución rudimentaria y
frecuentemente usada es repetir el algoritmo varias veces variando los centroides iniciales y escoger el
resultado con el mejor mínimo global.

Bibliografía

[1] C.W.BACHMANN, THE PROGRAMMER AS NAVIGATOR. 16(11), 635-658, Communications of
the ACM, 1973

[2] E.F. CODD, Relational database: a practical foundation for productivity, 25(2), 109–117, Com-
munications of the ACM, 1982

[3] B. DEVLIN, Thirty Years of Data Warehousing, 23 (1), BUSINESS INTELLIGENCE, 2018

[4] J.C. MASHEY, Big Data and the Next Wave of InfraStress, 1998

[5] C.J.DATE, THE DATABASE RELATIONAL MODEL: A Retrospective Review and Analysis, 1.ª ed.,
Prentice Hall, 2000

[6] S. SARAWAGI, INFORMATION EXTRACTION. Foundations and Trends® in Databases, 1(3), 261-
377, 2008

[7] I. H. WITTEN Y E. FRANK, DATA MINING Practical Machine Learning Tools and Techniques,
2.ª ed., Elsevier, 2005

[8] R. AGRAWAL, H. MANNILA, R. SRIKANT, H. TOIVONEN, A. I. VERKAMO, ADVANCES IN
KNOWLEDGE DISCOVERY AND DATA MINING, Fast discovery of association rules, 12(1), 307-
328, AAAI/MIT Press Menlo Park, CA, 1996.

[9] ELMASRI, RAMEZ AND S. B. NAVATHE, FUNDAMENTALS OF DATABASE SYSTEMS, Addison-
Wesley, 2011

27

Apéndice. Implementación en PL/SQL.

A.1 Tipos utilizados

create or replace TYPE namesType AS VARRAY(50) OF VARCHAR2(100);
create or replace TYPE centroidArrayType IS TABLE OF NUMBER;

A.2 Algoritmo 1-R

create or replace PROCEDURE findRules1R(tabla IN varchar2, clase IN varchar2)
IS

nombresColumna namesType :=namesType();
TYPE cTipoCursor IS REF CURSOR;
c_cursor cTipoCursor;
v_column VARCHAR2(100);
v_clase VARCHAR2(100);
sqlString VARCHAR2(200);
v_esta2 BOOLEAN;
max_total NUMBER;
max_attribute CUENTA.ATTRIBUTEVALUE%TYPE;

BEGIN
nombresColumna:=findColumns(tabla);
FOR i IN 1..nombresColumna.count LOOP

IF(nombresColumna(i)<>clase) THEN
sqlString:= ’SELECT ’ || nombresColumna(i) || ’, ’ || clase || ’ FROM ’ || tabla;
OPEN c_cursor FOR sqlString;
LOOP

FETCH c_cursor INTO v_column, v_clase;
EXIT WHEN c_cursor

/* Devuelve true si hay alguna fila en la tabla cuenta que en las columnas attributevalue y clasevalue
toma los valores v_column y v_clase respectivamente. Devuelve false en otro caso*/

v_esta2:=BELONGSTO2COLUMNsOFTABLE(v_column, v_clase, ’cuenta’,
’attributeValue’, ’clasevalue’);

IF (v_esta2) THEN
UPDATE cuenta
SET total=total+1
WHERE attributevalue=v_column AND clasevalue=v_clase;

ELSE
INSERT INTO cuenta VALUES(v_column, v_clase, 1, nombresColumna(i));

END IF;
END LOOP;
CLOSE c_cursor;

END IF;

29

30 Capítulo . Apéndice. Implementación en PL/SQL.

END LOOP;
–showRules1R:

FOR r IN (
SELECT ATTRIBUTEVALUE, MAX_TOTAL
FROM(

SELECT ATTRIBUTEVALUE, ATTRIBUTE, MAX(TOTAL) AS MAX_TOTAL
FROM CUENTA
GROUP BY ATTRIBUTEVALUE, ATTRIBUTE

)
WHERE ATTRIBUTE IN (

SELECT ATTRIBUTE
FROM

(SELECT ATTRIBUTE, SUM(MAX_TOTAL2) AS SUMA
FROM

(SELECT ATTRIBUTEVALUE, ATTRIBUTE, MAX(TOTAL) AS MAX_TOTAL2
FROM CUENTA
GROUP BY ATTRIBUTEVALUE, ATTRIBUTE)

GROUP BY ATTRIBUTE)
WHERE SUMA = (SELECT MAX(SUMA)

FROM
(SELECT ATTRIBUTE, SUM(MAX_TOTAL2) AS SUMA
FROM

(SELECT ATTRIBUTEVALUE, ATTRIBUTE, MAX(TOTAL) AS MAX_TOTAL2
FROM CUENTA
GROUP BY ATTRIBUTEVALUE, ATTRIBUTE)

GROUP BY ATTRIBUTE
))))

LOOP
– Almacenar el valor máximo y el ATTRIBUTEVALUE correspondiente

max_total := r.MAX_TOTAL;
max_attribute := r.ATTRIBUTEVALUE;

– Mostrar las filas que cumplen con las condiciones
FOR row_data IN (SELECT *

FROM CUENTA
WHERE ATTRIBUTEVALUE = max_attribute AND TOTAL = max_total AND ROW-

NUM = 1)
LOOP

DBMS_OUTPUT.PUT_LINE(’Si (’|| row_data.ATTRIBUTE || ’ = ’ || row_data.ATTRIBUTEVALUE
|| ’) ENTONCES ’ || clase || ’ = ’ ||row_data.CLASEVALUE);

END LOOP;
END LOOP;
DELETE FROM CUENTA;
COMMIT;

END;

A.2.1 Subalgoritmos utilizados en Algoritmo 1-R

A.2.1.1 FindColumns

create or replace FUNCTION findColumns(tabla IN varchar2)
RETURN namesType IS

var_atributos namesType:=namesType();

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 31

BEGIN FOR col IN (SELECT column_name FROM user_tab_columns WHERE table_name =
tabla)

LOOP
var_atributos.EXTEND;
var_atributos(var_atributos.LAST):= col.column_name;

END LOOP;
RETURN var_atributos;

END findColumns;

A.2.1.2 BELONGSTO2COLUMNsOFTABLE

create or replace FUNCTION BELONGSTO2COLUMNsOFTABLE(v_column in varchar2, v_clase
in varchar2, tabla in varchar2, atributo in varchar2, clase in varchar2)

RETURN boolean
IS

v_count NUMBER;
BEGIN
– Utilizamos una consulta COUNT para contar las filas que cumplen con la condición

EXECUTE IMMEDIATE ’SELECT COUNT(*) FROM ’ || tabla ||
’ WHERE ’ || atributo || ’ = :1 AND ’ || clase || ’ = :2’
INTO v_count
USING v_column, v_clase;

– Si el conteo es mayor que cero, devuelve TRUE, de lo contrario, devuelve FALSE
RETURN v_count >0;

END BELONGSTO2COLUMNsOFTABLE;

A.2.2 Tablas auxiliares para Algoritmo 1-R

create TABLE CUENTA (ATTRIBUTEVALUE in VARCHAR2(200), CLASEVALUE in VARCHAR2(200),
TOTAL in NUMBER, ATTRIBUTE in VARCHAR2(100))

A.3 Algoritmo Apriori

create or replace PROCEDURE findSetsApriori(tabla in varchar2, atributo in varchar2, id_atributo
in varchar2, umbral in number)

IS
sqlString1 VARCHAR2(300);
sqlString2 VARCHAR2(300);
TYPE cTipoCursor IS REF CURSOR;
c_cursor1 cTipoCursor;
c_cursor2 cTipoCursor;
var_item varchar2(30);
var_sop number;
var_row namesType;
v_repetido namestype;
contador number:=0;
sopor_temp number:=0;
v_esta2 BOOLEAN;
v_esta2_2 BOOLEAN;
v_esta2_1 BOOLEAN;
salir BOOLEAN;
idposicion number;

32 Capítulo . Apéndice. Implementación en PL/SQL.

BEGIN
– BUSCAMOS LOS 1-CONJUNTOS FRECUENTES y los añadimos a la tabla ITEMS

sqlString1:= ’SELECT item, count(item) as frec
FROM(SELECT ’ ||id_atributo||’, COLUMN_VALUE AS item
FROM ’ ||tabla||’, TABLE(’||tabla||’.’||atributo||’))
GROUP BY item’;

OPEN c_cursor1 FOR sqlString1;
LOOP

FETCH c_cursor1 INTO var_item, var_sop;
EXIT WHEN c_cursor1
IF (var_sop >= umbral) THEN

INSERT INTO ITEMS VALUES (1, namestype(var_item), var_sop);
END IF;

END LOOP;
CLOSE c_cursor1;

–Iteramos k=2,... para buscar los k-conjuntos frecuentes
FOR k in 2..100 LOOP

–Buscamos extender los varrays de tamaño k-1 y añadirles items individuales que estén en la tabla
ITEMS

FOR fila in (SELECT CONJUNTO FROM ITEMS WHERE ITERACION=k-1) LOOP
var_row:=fila.CONJUNTO;
var_row.EXTEND;

– Añadimos cada item i al conjunto que queremos extender para comprobar si es frecuente o no
FOR i in (SELECT CONJUNTO FROM ITEMS WHERE ITERACION=1) LOOP

var_row(var_row.LAST):=i.CONJUNTO(1);
/* Para cada fila de la compra donde pertenezca el primer item del conjunto vamos a comprobar si la

extension pertenece tambien a la fila */
sqlString2:=’SELECT ’||id_atributo||’ FROM ’||tabla||’ WHERE ”’||var_row(1)||”’ in

(SELECT COLUMN_VALUE FROM TABLE(’||tabla||’.’||atributo||’))’;
OPEN c_cursor2 FOR sqlString2;
LOOP

FETCH c_cursor2 INTO idposicion;
EXIT WHEN c_cursor2%NOTFOUND;
FOR j in 2..var_row.count LOOP

FOR n in 1..j LOOP
– Evaluamos si el conjunto ya existe en la tabla ITEMS (sin importar el orden)

FOR repetido in (SELECT CONJUNTO FROM ITEMS) LOOP
v_repetido:=repetido.CONJUNTO;
v_esta2:=son_conjuntos_iguales(var_row, v_repetido);

– Si ya existe pasamos al siguiente conjunto
IF (v_esta2) THEN

salir:=TRUE;
EXIT;

END IF;
END LOOP;

IF (salir) THEN
EXIT;

END IF;
–Si llegamos aqui es que el conjunto no existe aun en ITEMS

v_esta2_1:=NOTBELONGS2LIST(var_row(n), tabla , idposicion, tabla ||’.’||
atributo , id_atributo);

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 33

v_esta2_2:=hay_valores_repetidos(var_row);
/* Si el conjunto tiene valores repetidos o el elemento n del conjunto no esta en la misma fila com-

probada que el elemento 1, se sale del bucle*/
IF (v_esta2_1) THEN

EXIT;
ELSIF (v_esta2_2) THEN

EXIT;
ELSE

contador:=contador+1;
END IF;

END LOOP;
/* Si todos los items del conjunto pertenecen a una misma fila de nuestra tabla, el soporte aumenta

en 1*/
IF (contador = var_row.count) THEN

sopor_temp:=sopor_temp+1;
END IF;
contador:=0;

END LOOP;
END LOOP;
CLOSE c_cursor2;

/* Cuando acaba la evaluacion, si el soporte es mayor o igual al umbral, se añade el conjunto a la
tabla ITEMS*/

IF (sopor_temp >= umbral) THEN
INSERT INTO ITEMS values (k, var_row, sopor_temp);

END IF;
sopor_temp:=0;

END LOOP;
END LOOP;

END LOOP;
–Mostramos los resultados

DBMS_OUTPUT.PUT_LINE(’LOS CONJUNTOS FRECUENTES CON SU SOPORTE SON:’);
FOR conj_frec in (SELECT CONJUNTO, SOPORTE FROM ITEMS) LOOP

DBMS_OUTPUT.PUT_LINE(’———————————————–’);
DBMS_OUTPUT.PUT_LINE(’Conjunto:’);
FOR m in 1..conj_frec.CONJUNTO.count LOOP

DBMS_OUTPUT.PUT_LINE(’ ’ || conj_frec.CONJUNTO(m));
END LOOP;
DBMS_OUTPUT.PUT_LINE(’Soporte:’ || conj_frec.SOPORTE);

END LOOP;
DELETE FROM ITEMS;
COMMIT;

END findSetsApriori;

A.3.1 Subalgoritmos utilizados en Algoritmo Apriori

A.3.1.1 son_conjuntos_iguales

create or replace FUNCTION son_conjuntos_iguales (p_varray1 IN namestype, p_varray2 IN na-
mestype) RETURN BOOLEAN

IS
v_match_count INTEGER := 0;

BEGIN

34 Capítulo . Apéndice. Implementación en PL/SQL.

– Verificar si la cantidad de elementos es la misma
IF p_varray1.COUNT <>p_varray2.COUNT THEN

RETURN FALSE;
END IF;

– Verificar si todos los elementos de p_varray1 están en p_varray2
FOR i IN 1..p_varray1.COUNT LOOP

FOR j IN 1..p_varray2.COUNT LOOP
IF p_varray1(i) = p_varray2(j) THEN

v_match_count := v_match_count + 1;
EXIT;

END IF;
END LOOP;

END LOOP;
– Si el número de coincidencias es igual a la cantidad total, son iguales

RETURN v_match_count = p_varray1.COUNT;
END son_conjuntos_iguales;

A.3.1.2 NOTBELONGS2LIST

create or replace FUNCTION NOTBELONGS2LIST (v_char in varchar2, v_tabla in varchar2, v_id
in number, v_namesType in varchar2, v_id_tabla in varchar2) RETURN BOOLEAN

IS
v_count NUMBER;

BEGIN
EXECUTE IMMEDIATE ’SELECT COUNT(*) FROM (SELECT ’ ||v_id_tabla || ’, COLUMN_VALUE

FROM ’ || v_tabla || ’, TABLE(’|| v_namesType ||’)) WHERE ’ || v_id_tabla || ’ = ’||v_id||’ AND ”’|| v_char
||”’ NOT IN (SELECT COLUMN_VALUE FROM ’ || v_tabla || ’, TABLE(’|| v_namesType ||’)WHERE
’ || v_id_tabla || ’=’||v_id||’)’

INTO v_count;
RETURN v_count>0;

END NOTBELONGS2LIST;

A.2.1.3 hay_valores_repetidos

create or replace FUNCTION hay_valores_repetidos(p_varray IN namesType) RETURN BOOLEAN
IS

l_count NUMBER;
BEGIN
– Contar los valores distintos en el varray

SELECT COUNT(DISTINCT column_value) INTO l_count
FROM TABLE(p_varray);

– Compara el conteo con la longitud del varray
RETURN l_count <>p_varray.COUNT;

END hay_valores_repetidos;

A.3.2 Tablas auxiliares para Algoritmo Apriori

create TABLE ITEMS (ITERACION in NUMBER, CONJUNTO in NAMESTYPE, SOPORTE in
NUMBER)

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 35

A.4 Algoritmo K-medias para dimensión 2

create or replace PROCEDURE k_means(tabla VARCHAR2, k NUMBER, column1 VARCHAR2,
column2 VARCHAR2)

IS
v_centroid centroidArrayType:=centroidArrayType(NULL, NULL);
v_centroid2 centroidArrayType:=centroidArrayType(NULL, NULL);
v_fila centroidArrayType:=centroidArrayType(NULL, NULL, NULL);
v_punto centroidArrayType:=centroidArrayType(NULL, NULL);
v_changed BOOLEAN := TRUE;
v_cluster NUMBER;
v_cluster_nuevo NUMBER;
v_id number;
v_sql VARCHAR2(4000);
v_sql2 VARCHAR2(4000);
v_data_cursor SYS_REFCURSOR;
v_data_cursor2 SYS_REFCURSOR;

BEGIN
– Preparamos la tabla CLUSTERS

v_sql := ’SELECT id FROM ’|| tabla;
OPEN v_data_cursor FOR v_sql;
LOOP

FETCH v_data_cursor INTO v_id;
EXIT WHEN v_data_cursor
INSERT INTO CLUSTERS VALUES (v_id, 0);

END LOOP;
CLOSE v_data_cursor;

– Construir la consulta dinámica
v_sql := ’SELECT ’||column1||’, ’||column2||’ FROM ’ || tabla;
OPEN v_data_cursor FOR v_sql;

– Inicializar centroides iniciales (tomamos por ejemplo los dos primeros)
FOR i IN 1..k LOOP

FETCH v_data_cursor INTO v_centroid(1),v_centroid(2);
INSERT into CENTROIDS VALUES (v_centroid(1),v_centroid(2),i);

END LOOP;
CLOSE v_data_cursor;

– Bucle principal del algoritmo
v_sql := ’SELECT id, ’||column1||’, ’||column2||’ FROM ’ || tabla;
OPEN v_data_cursor FOR v_sql;
WHILE v_changed LOOP

v_changed := FALSE;
– Asignar puntos a los clústeres

LOOP
FETCH v_data_cursor INTO v_fila(1),v_fila(2),v_fila(3);
EXIT WHEN v_data_cursor
SELECT CLUSTER_COLUMN INTO v_cluster FROM CLUSTERS WHERE id = v_fila(1);
v_punto:=centroidArrayType(v_fila(2), v_fila(3));
IF assign_cluster(v_punto) != v_cluster THEN

v_changed := TRUE;
v_cluster_nuevo:=assign_cluster(v_punto);
UPDATE CLUSTERS
SET cluster_column = v_cluster_nuevo

36 Capítulo . Apéndice. Implementación en PL/SQL.

WHERE clusters.id = v_fila(1);
END IF;

END LOOP;
– Actualizar centroides

FOR j IN 1..k LOOP
v_sql2:=’SELECT AVG(’||column1||’), AVG(’||column2||’) FROM ’||tabla||’WHERE id IN

(SELECT id FROM CLUSTERS WHERE cluster_column = ’||j||’)’;
OPEN v_data_cursor2 FOR v_sql2;
FETCH v_data_cursor2 INTO v_centroid2(1),v_centroid2(2);
UPDATE CENTROIDS
SET COLUMN1 = v_centroid2(1)
WHERE cluster_asignado=j;
UPDATE CENTROIDS
SET COLUMN2 = v_centroid2(2)
WHERE cluster_asignado=j;
CLOSE v_data_cursor2;

END LOOP;
END LOOP;
CLOSE v_data_cursor;
DBMS_OUTPUT.PUT_LINE(’ASIGNACIÓN DE CLUSTERS’);
FOR n in 1..k LOOP

DBMS_OUTPUT.PUT_LINE(’————————————–’);
DBMS_OUTPUT.PUT_LINE(’Los elementos del cluster ’||n||’ son:’);
FOR tupla in (SELECT * FROM CLUSTERS) LOOP

IF (tupla.cluster_column=n) THEN
DBMS_OUTPUT.PUT_LINE(’ ID ’||tupla.id);

END IF;
END LOOP;

END LOOP;
DELETE FROM CLUSTERS;
DELETE FROM CENTROIDS;
COMMIT;

END k_means;

A.4.1 Subalgoritmos utilizados en Algoritmo K-Medias

A.4.1.1 euclidean_distance

create or replace FUNCTION euclidean_distance(p_point1 centroidArrayType, p_point2 centroidA-
rrayType) RETURN NUMBER

IS
v_distance NUMBER := 0;

BEGIN
FOR i IN 1..p_point1.COUNT LOOP

v_distance := v_distance + POWER(p_point1(i) - p_point2(i), 2);
END LOOP;
RETURN SQRT(v_distance);

END euclidean_distance;

Técnicas de extracción de información de bases de datos relacionales - Daniel Calvo Francés 37

A.4.1.2 assign_cluster

create or replace FUNCTION assign_cluster(p_punto centroidArrayType) RETURN NUMBER
IS

p_centroid centroidArrayType:=centroidArrayType(null, null);
v_min NUMBER;
v_cluster NUMBER := 1;

BEGIN
EXECUTE IMMEDIATE ’SELECT COLUMN1, COLUMN2 FROM CENTROIDS WHERE

CLUSTER_ASIGNADO = 1’
INTO p_centroid(1),p_centroid(2);
v_min := euclidean_distance(p_punto, p_centroid);
FOR centroide in (SELECT COLUMN1, COLUMN2, CLUSTER_ASIGNADO FROM CEN-

TROIDS) LOOP
p_centroid:=centroidArrayType(centroide.COLUMN1, centroide.COLUMN2);
IF euclidean_distance(p_punto, p_centroid) <v_min THEN

v_min := euclidean_distance(p_punto, p_centroid);
v_cluster := centroide.CLUSTER_ASIGNADO;

END IF;
END LOOP;
RETURN v_cluster;

END assign_cluster;

A.4.2 Tablas auxiliares para Algoritmo K-medias

create TABLE CENTROIDS (COLUMN1 in NUMBER, COLUMN2 in NUMBER, CLUSTER_ASIGNADO
in NUMBER);

create TABLE CLUSTERS (ID in NUMBER, CLUSTER_COLUMN in NUMBER);

	Resumen
	Nociones generales
	Contexto histórico
	Tablas iniciales
	El tiempo atmosférico
	Las lentes de contacto
	La cesta de la compra
	Empleados de una empresa
	Conceptos iniciales
	Técnicas de extracción
	Reglas de clasificación
	Algoritmo 1-R
	Caso numérico
	Reglas de asociación
	Algoritmo Apriori
	Árbol-PF y algoritmo de Crecimiento-PF
	Construcción del árbol-PF
	Algoritmo de Crecimiento-PF
	Obtención de reglas de asociación
	Clustering
	Algoritmo k-medias
	Bibliografía
	Apéndice. Implementación en PL/SQL.

