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Summary

In the field of network optimization, the Minimum Cost Flow Problem (MCFP) stands out as an
important problem with many applications. This is about determining the most cost-effective way to
transport goods through a network, considering the cost implications of each flow and aiming to minimi-
ze overall transportation expenses while taking capacity constraints into account.

In this scenario, networks are used to represent and model real-life systems. Nodes represent lo-
cations, and arcs, connections between them. These connections denote feasible paths for transporting
goods, with the flow of goods representing the quantity being transported. The associated cost of each
arch reflects the expenses incurred.

The goal of the MCFP is to find the optimal flow configuration that minimizes the total transporta-
tion cost. This involves determining the flow quantity along each arc to satisfy demand while considering
cost constraints. The significance of MCFP extends beyond logistics, reaching into diverse fields such
as power supply networks and financial management. In the field of power supply, it aids in optimizing
the flow of electricity, ensuring efficient energy distribution. In finances, its application offers insights
into optimizing cash flow and maximizing financial efficiency across various scenarios. In logistics, the
MCEFP is used to design efficient supply chain routes, ensuring timely deliveries at a minimal cost. Its
impact is even more pronounced in transportation networks, where it aids in traffic management, op-
timizing the movement of vehicles to reduce congestion. Additionally, the MCFP is also employed in
communication networks, guiding data transmission routes for optimal resource utilization.

To solve the MCFP, we delve into the development of the ’primal-dual’ algorithm. This algorithm
employs a dual ascent approach, adjusting primal and dual variables iteratively to converge towards an
optimal solution. Our study shows that the dual problem consistently possesses a feasible solution for
any set of associated values of a certain subset of the dual variables, a critical insight for the algorithmic
development.

Let us summarize the content of this work, which has been structured in 3 chapters.

It begins in Chapter 1 by introducing the minimum cost flow problem along with relevant concepts.
Then, the associated dual problem is defined, and a result is highlighted, asserting that the dual problem
always possesses a feasible solution for any set of w; values. Additionally, the Complementary Slackness
Theorem, explored in the Operations Research course [3], is recalled. Finally, a graphical representation
of the Complementary Slackness Conditions is provided.

Moving to the second Chapter, concepts and outcomes related to dual ascent algorithms are exami-
ned to ultimately define and present the *primal-dual’ algorithm for the Minimum Cost Flow Problem.
After the theoretical overview, a detailed step-by-step example is presented. Furthermore, a Python code
is developed from scratch using this algorithm, which is later utilized in the subsequent chapter and pro-
vided in Appendix A.

In Chapter 3, a comprehensive study of the algorithm is carried out, involving three configurations
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v Summary

where each modification targets a specific element. The first configuration adjusts the number of arcs,
the second modifies number of nodes with supply/demand, and the third alters minimum and maximum
capacities. With the help of R and RCommander, we evaluate the average resolution time of the algo-
rithm using statistical tools like ANOVA and Tukey’s test, and also we represent the results graphically.
For that, some simple R-scripts, provided in Appendix B, have been elaborated.

In summary, the purpose of this document has been to present and study in depth the Minimum Cost
Flow Problem along with its *primal-dual’ algorithm for resolution. The work also includes an imple-
mentation in Python of the algorithm and a computational study to gain a more detailed understanding
of the algorithm’s behavior.

For the development of this work, I have used the knowledge acquired during my Mathematics degree
in courses such as Graphs and Combinatorics, Computer Science I, Mathematical Statistics, and, above
all, in Operations Research in the 3rd year.
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Capitulo 1

Introduccion

1.1. El problema de flujo a costo minimo

Una red de flujo ! es un grafo dirigido G = (N,A) con N = {1,...,n} un conjunto de nodos conec-
tados mediante un conjunto de arcos A = {(i, j)[i € N,j € N} C N x N, representando por (i, j) al arco
que conecta el nodo i con el nodo j. En una red, un cierto item es enviado de nodo a nodo a través de
los arcos. Nos podemos encontrar con dos tipos de nodos: aquellos que tienen oferta y asociamos con
flujo positivo, conocidos como fuente, y otros que tienen demanda y asociamos con flujo negativo, los
sumideros.

El problema de flujo a costo minimo (PFCM) sobre una red de flujo viene definido por:

Minimizar Z CijXij

sujeto a Z Xij— Z Xji =b;, VieEN, (1.1)
{ilG.j)eA} {lG.eAl
lij < xij <wjj, V(i,j) €A

donde c;j, lij, uij, y bij, V(i, j) € A, son escalares dados y su significado es el siguiente:

= x;;: el flujo, la cantidad enviada desde el nodo i al nodo j

n ¢jj: el coeficiente de costo (o simplemente costo) de (i, j), costo de envio de una unidad de flujo
desde el nodo i al nodo j

= [;j: el limite inferior de flujo de (i, j)
= u;;: el limite superior de flujo de (i, j)

n [ljj, u;j]: el rango de flujo factible de (i, j), el cual nos dice la capacidad del arco (i, j)

IPara el estudio y desarrollo del algoritmo he utilizado basicamente las referencias [1] y [2]. He utilizado [1] principalmente
para el establecimiento de la notacién y elementos del PFCM, asi como para el desarrollo de los elementos de dualidad ne-
cesarios en el Capitulo 2. En [1] se presentan para un PFCM particular denominado circulacién con costo minimo y yo lo he
adaptado a mi problema, el problema de flujo a costo minimo, utilizando ademads los conocimientos adquiridos sobre Teoria
de la dualidad en PL en la asignatura de Investigacién Operativa del grado [3]. El desarrollo del algoritmo primal-dual se ha
obtenido del capitulo 3 de la segunda referencia y en el cual he incluido algiin desarrollo que en este se dejaban para el lector o
se realizaban de forma diferente (cdlculo del gradiente de la funcién objetivo del problema dual, teorema de convergencia del
algoritmo). En cuanto a las otras referencias, [4] ha sido utilizada para la implementacién de los cédigos del algoritmo, [5] para
los scripts de R con los que se han realizado el estudio computacional, y de [6] se ha sacado la guia para la aplicacién de las
técnicas del ANOVA.



2 Capitulo 1. Introduccién

» b;: el suministro del nodo i
b; > 0 nodo con oferta (fuente)
b; < 0 nodo con demanda (sumidero)
b; = 0 nodo de transbordo

El objetivo del PFCM es minimizar la funcion objetivo Z cijX;j sujeto a las restricciones de (1.1),
i,j)€A

es decir, tratar de satisfacer la demanda de los nodos deman((lajl)ltes con la oferta disponible en los ofertan-
tes de forma que el flujo enviado por cada arco respete sus cotas y el envio tenga el costo total minimo.
Las primeras se denominan restricciones de conservacion de flujo, mientras que las segundas son las
restricciones de capacidad. Un vector de flujo que satisface ambas restricciones se denomina factible, y
si satisface solo las restricciones de capacidad, se denomina factible en capacidad. Si existe al menos un
vector de flujo factible, el problema (PFCM) se dira factible; de lo contrario se dird no factible. Notar
que una condicién necesaria para la factibilidad es que

Zh:Q (1.2)

ieN

Hemos presentado el Problema de Flujo a Costo Minimo (PFCM) general, pero podemos aplicarlo a
casos particulares, como son los conocidos: Problema de transporte, Problema de asignacion'y Problema
de transbordo, entre otros.

Vamos a mostrar graficamente un sencillo ejemplo de red de flujo, Figura 1.1, en el que tenemos un
nodo @ con 4 unidades de oferta, un nodo @ con 4 unidades de demanda:

(l,u,costo)

Figura 1.1: Ejemplo de red de flujo.

En cada arco dirigido tenemos (/,u,costo), donde [ corresponde con el limite inferior de flujo, u con
el limite superior de flujo, y costo con el costo de envio de una unidad de flujo por el arco (i, j). Por
ejemplo, en el arco (2,3) que va del nodo @ al nodo @ podemos mandar de 0 hasta 2 unidades, con
costo por unidad de 1.

1.2. El problema dual del PFCM

El problema (1.1) es un problema de programacién lineal y por tanto se puede definir su problema
dual asociado. 2

Si asociamos una variable dual w; a cada ecuacién de conservacion de flujo de cada nodo en el
Problema (1.1), una variable dual h;; a cada restriccion x;; < u;; (puesta en la forma —x;; > —u;;), y una
variable dual v;; con cada restriccion x;; > [;;, el problema dual asociado al problema de flujo a costo
minimo es:

2El caso general de dualidad para Problemas de Programacién Lineal (PPL) se estudi6 en la asignatura Investigacion Ope-
rativa de 3¢ curso.
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Maximizar ZW" bi + Z lijvij— Z uij hij

ieN (i,j)€A (i,j)€A

sujeto a wi —wj+vij — hij = cij, V(i,j) €A (1.3)
hij,vij >0, V(i,j) €A
w; no restringido, VieN

La estructura de este problema nos permite obtener los siguientes resultados que son de gran impor-
tancia.

Lema 1.2.1. El problema dual siempre posee una solucién factible dado cualquier conjunto de valores
de w;. De hecho, las elecciones de v;; y h;; que se proporcionan en la demostracién producen valores
optimos de v;; y h;; para un conjunto fijo de valores de w;.

Demostracion. Supongamos que se selecciona un conjunto arbitrario de valores para w;, asumiendo que
estos valores son enteros. Ademds, consideremos que los valores /;; y u;; son fijos. Luego, la restriccion
dual para el arco (i, j) se expresa como:

Vij—hij=cij—wi+w;,  hij=0, vi;=>0
Estas restricciones se satisfacen seleccionando v;; y h;; de la siguiente manera:

vij =max {0, ¢;j —wi+w;}, (14
hij:méx{o,—(cij_wi+wj)} |

Si ¢;j —w; +w; es positivo, asignamos a v;; esa cantidad. Si ¢;; —w; +w; es negativo, le cambio el
signo, —(c;j —w;+w;), y asignamos a h;; esa cantidad.

Ahora, vamos a demostrar que estas elecciones son ptimas para los distintos casos:

Sea (i,j) € A con ¢;; —w; +wj > 0, entonces v;; = c;; —w; + w; + h;;. Sustituyendo esto en su
sumando de la funcién objetivo obtenemos que la aportacion de [ij] en la funcién objetivo dual es:

lij (cij —wi+wj+hij) — wij hij
= lij (cij—witwj) + lij hij — uij hij
= Lij (cij—wi+w;j)+ hij (lij — uij)

Dado que ¢;j —w;i+w; >0y [;; <u;; (l;j —u;j <0),y el objetivo es maximizar la funcion objetivo

con h;; > 0y v;; > 0, es Optimo que h;; = 0, lo mds pequefio posible y, por lo tanto, v;; = ¢;j —w; +wj,
lo mas grande posible.

Del mismo modo, sea (i, j) € A con c;; —w; +w; <0, entonces h;; = —(c;j — w; +w; — v;;). Sustitu-
yendo de nuevo,

lijvij = [=(cij = witwj—vij) uij]
= lijvij — wijvij —[=(cij—witw;) uij]
= (lij = wij) vij —[=(cij—wi+wj) uij]

Dado que ¢;; —w;+w; <0 (luego —(c;j —wi+wj) > 0)y lij <uj (ljj—u;jj <0),y el objetivo es
maximizar la funcién objetivo sujeta a v;; > 0y h;; > 0, es 6ptimo que v;; = 0, lo mds pequefio posible,
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lo que conduce a h;; = —(c;j — wi+w;).

Por ltimo, si ¢;; —w; +w; = 0, entonces v;; = h;;. En este caso, la aportacion a la funcion objetivo
se reduce a

lij h[j — l/t,'j h,‘j
= (Lij — uij) hij

y como [;; —u;; < 0y queremos maximizar, la eleccion apropiada es h;; = 0, y por tanto, v;; = 0.

En resumen, las elecciones v;; y h;; presentadas en la demostracion generan las mejores soluciones
factibles para cualquier eleccién previa de w;. O

1.3. Las condiciones de la holgura complementaria (CHC)

Vamos a recordar unos resultados estudiados en la asignatura de Investigacion Operativa para luego
particularizarlos:

Teorema 1.3.1 (Teorema de la holgura complementaria). Sean X y w, respectivamente, soluciones facti-
bles de los problemas primal y dual siguientes

Problema primal Problema dual

max cx min b'w

sujetoa Ax<b sujetoa  A'w > ¢
x>0 w>0

donde c es 1xn, A es mxn, b es mx1, x es nxl, y w es mx1.
Dichas soluciones son 6ptimas si y sélo si

W (b—AX)+(WA—-¢)x=0 (1.5)

Definiendo #;, i = 1,...,m, los valores de las variables de holgura del problema primal asociados a
la solucién X, y 7;, j = 1,...,n, los valores de las variables de holgura del problema dual asociados a la
solucién w, la condicién del teorema anterior puede reescribirse:

0=w(b—-AX)+(WA—c)x=W a+VX (1.6)

de donde obtenemos que W' i =0y vx=0.
Lo podemos expresar de manera equivalente, siendo esta la forma en la que lo utilizaremos:

vajzo, jzl,...,n, (17)

W,’ﬁi:o, izl,...,m

A continuacién vamos a desarrollar estas condiciones para el PFCM:

Notar que tenemos que el dual tiene todas las restricciones de igualdad, con lo cual no hay holguras y
por tanto nos olvidamos de la condicién w; i1; = 0 ya que se cumple trivialmente. Luego las condiciones
de la holgura complementaria para la optimizacién del problema de flujo a costo minimo se reducen a:

(xij —Lij) vij=0, V(i j)e€A

1.8
(wij—xi;) hij =0, Y(i,j)€A (1.8)
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Por tanto, vamos a trabajar con las condiciones de holgura complementaria restringidas a las w; y
a la definicién dada de v;; y h;; en (1.4) de manera que en lugar de utilizar las v;; y h;;, escribimos
(¢ij —wi+w;) cambiado de signo o no, dependiendo de lo que corresponda. De esta forma, las CHC
quedaran:

SiC,‘j—Wi—i-Wj>0:>V,'j>0:>xij:lij, V(i,j)EA
si Cij—Wi+w; <Oéh,‘j >0éx,~j:uij, V(i,j) €A (1.9)
si Cij—Wi+w; :O:>V,'j :h,’j :O:>lij §xij < Uijj, V(l,]) €A

La tercera ecuacion solo refleja el hecho de que en ese tercer caso, que cumple trivialmente (1.8), el
flujo respeta las restricciones de cota.
A partir de ahora, clasificaremos los arcos en tres tipos,

inactivo si cij—wi+w; >0,
balanceado si  ¢;j —w;+w; =0,
activo si cij—wi+w;<0.
Esta es la notacién que luego utilizaremos en el desarrollo del algoritmo.
Sabemos que si tenemos un conjunto de soluciones x;; y w; factibles que verifican las restricciones
de sus respectivos problemas, y se cumplen las condiciones de holgura complementaria, entonces ambas

soluciones son éptimas para sus problemas respectivos; esto lo enunciamos en el siguiente teorema cuya
demostracion son los desarrollos anteriores.

Teorema 1.3.2. Sea x un flujo factible de (1.1), y sea w = (w1, ...,w,) un conjunto de valores w; >0, j =
1,...,n. Entonces X y (w, v, h) con v y h construidos de acuerdo a (1.4) son, respectivamente, soluciones
6ptimas del problema de flujo a costo minimo y su dual si y s6lo si para todo (i, j) € A se cumple:

si ¢;j —w;+w; > 0 (arco inactivo) entonces x;; = ;;,
sic;j—w;+w; = 0 (arco balanceado) entonces [;; < x;; < u;;,

sic;j —w;+w; <0 (arco activo) entonces x;; = u;;
O

Una forma de entender y representar estos resultados graficamente serfa mediante la silla de Kilter?
(Figura 1.2).

Wi - W

Cj-w; +w;<0

Cj-W+w;=0 — F====--

Cj-w; +w;>0

ch—————

X

Figura 1.2: Ilustracion de las Condiciones de la Holgura Complementaria. Un arco cumple las CHC si el
punto (x;j,w; —w;) se encuentra sobre la linea gruesa de la funcion.

3Dicho nombre hace referencia a otro algoritmo para el PFCM para circulaciones (b; = 0,Vi = 1,...,n) denominado algo-
rithm “out—of—kilter”.






Capitulo 2

Algoritmo ’primal-dual’

2.1. Ascenso Dual

La mayoria de los métodos para hallar un 6ptimo en PFCM son por buisqueda direccional: partiendo

de un punto, se define una direccién de bisqueda y se determina un nuevo punto a lo largo de ésta que
mejora la funcién objetivo.
Por ese motivo, los principales algoritmos de ascenso dual se basan en construir una direccién d # 0 tal
que a partir del w actual moverse w+ o d, cp > 0 de forma que w+ 0 d tenga mayor valor de la funcién
objetivo del dual que w. Para ello, en nuestro algoritmo, se seleccionan en cada iteracién un subconjunto
conectado de nodos S C N y se cambian los precios de estos nodos (es decir, los valores de las variables
duales w;) en cantidades iguales, dejando los precios de todos los demds nodos sin cambios. En otras
palabras, cada iteracién implica un cambio en el vector de precios a lo largo de una direccién de la forma
ds = (d],...,dN), donde

1 siies
d"_{o sii¢ S 2.1)

y S es un subconjunto conectado de nodos. Estas direcciones dg se llamaran direcciones elementales
y generardn nuevas soluciones del dual de la forma w+ adg con o > 0.

Para comprobar si dg es una direccién de ascenso dual, necesitamos calcular la derivada direccional
correspondiente del costo dual a lo largo de dg y comprobar si es positiva. De la expresion de la funcién
objetivo dual g(w) = Zwi b; + Z lij vij — Z uij hij y teniendo en cuenta la definicién de las

ieN (i,j)eA (i,j)eA
variables A;; y v;;, calculamos su derivada direccional:

. + ordg) — g(w)
q' (w;ds) lim o

Para facilitar las cuentas, voy a recuadrar del mismo color los sumandos de g(w + o dg) y de g(w)
que luego restaré y dardn g(w+ ords) — g(w), utilizando en esta tltima también los mismos colores. Los
sumandos de g(w+ adgs) y g(w) que al hacer la diferencia dan igual a 0 no los he recuadrado, ya que
no juegan un papel en el resultado final de g(w + ccdg) — g(w).

Primero, calculamos el sumando g(w+ adg) siendo ds = (dy,d>, ...,dy) el vectorcond; = 1 sii € S
y d; = 0 en caso contrario. Para ello, vamos a separar los distintos casos posibles, dependiendo de sii € S

7
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y j €S,y dependiendo de si se trata de arcos activos, inactivos o balanceados:

q(w+ads) = [Z(Wi +a)bi+Y wi bi]
i¢S

icS

-
+H X

i€S, j¢S
f;j—W1+Wj>0

(cij—wi—o+w;j)lij|+

)y

Jjé¢S,ieS
cji—wj+w;>0

(cji—wj+wi+a)lj

X
i€S, j¢S
C,’jfwi+Wj<O

(cij

—w,-—Ot-i—wj)u,-j +

)y

Jjé¢S,ieS
cji—wj+w;<0

(Cj,'—Wj—f-W,'—l-OC)uj,-

+ )
ieS, jes
i¢S, j¢s
cij—wi+w;>0

+ )
JES, ieS
VEANEN

Cji7Wj+W,'>0

(cij =

(cji—

witw)lj+ )
icS, jes
i¢S, js
cij—wi+w;<0

JES,ieS
J¢S,igs
cji—wj+w;<0

(cij —wi+wj)uij

wi+wi) Lji+ (cji—wj+wi)uji

X
i€S, j¢S
Cij—Wi-‘er:O

(cij =

)y

Jjé¢S,ieS
Cji—Wj-‘rW,':O

Wi—Ol+Wj)uij+ (Cji—Wj+Wi+(X)lji

)
i€, jes
igs, j¢Ss
cij—wi+w;=0

(cij—

Wi—i-Wj)l,'j

Notar que los dos primeros sumatorios podemos reagruparlos de la siguiente forma para usarlos en

la resta:

icS

Y (wit+a)b; + Y wib; —[;Vwi bi+) o b,-]

i ieS

i#S

A continuacién vamos a calcular la funcién objetivo del dual g(w), distinguiendo también los distin-

tos casos posibles:

)y

q(w) =M+

€S, j¢S
cij—wi+w;>0

(Cij—Wi+Wj)lij + Z
J&S, i€S
cji=wj+w;>0

(cji—wj+wi)lji

+H X
icS, j¢S
cij—wi+w;<0

(cij —witwj)uij|+

)y

jéS,ieS
cji—wj+w;<0

(cji—wj+wi)uji

+ )
i€s§, jes
i¢S, j¢S
C,'j*Wi+Wj>O

+ X
JjES, ieS
J¢S, igs
cji—wji+w;>0

+ X
€S, j&S
cij—wi+w;=0

+ )
ieS, jes
i¢S, j¢s

cij—wi+w;=0

(C,‘j —Wl'-i-Wj) l,‘j'f‘

(cji = wj+wi) Lji+

(cij —witwj)uij+

i€S, jes
i¢S, j¢S
c,-jfw,-+wj<0

JjES,ieS
JES, igs
cji=wj+w;<0

>

jéS,ieS
C.,','—Wj-‘rW,':O

(cij —wit+w;)uij

(cji=wj+wi)uji

(cji—wj+wi)lji

(cij = witw)) Lij
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Finalmente, calculamos la diferencia:

Y  awi|+ )Y ali+

jés.ies
cji—wj+w;<0 cji—wj+w;>0
- Y owl— Y awf— Y al
i€S, j%S ies, 1¢S ies, j%S
Cij7Wi+Wj<0 cijfw,-erj:O ij*Wi+Wj>0

a
ieN

Dividiendo esta expresion entre & y teniendo en cuenta que: sic;j —w;+w; <0 (0 ¢ji—w;+w; <0)
es activo; si¢;j—w;+w; >0 (0 cj;—w;+w; > 0)esinactivo; y sic;j—w;+w; =0(0 cji—w;+w; =0)
es balanceado, tenemos

g(w+ads) —g(w)

o = Z uj,-—i- Z lji+ Z

Jjé¢S,ieS Jjé¢S,ieS Jjé¢S,ieS
activo inactivo balanceado
= X o= Y wi|— Yk
€S, j¢S i€S, j¢S €S, j¢S
activo balanceado inactivo
+{To
iEN

= Z uj + Z lj,'

(j,i) : activo, j¢S, i€S (i) : inactivo o balanceado, j¢S,i€S
- )3 tij — )3 lij
(i,j) : activo o balanceado, i€S ,j¢S (i,j) : inactivo, i€S, j¢S
)
ieS

Finalmente, aplicando el l1imite cuando & — O obtenemos la expresion de la derivada direccional.

(W+adg) —g(w)

q (w;dg) = lim 1

al0 o
= Z uj + Z Lji

(j,) : activo, j¢S, i€S (j,i) : inactivo o balanceado, j¢S,i€S 2.2)
- > wj = ) lj

(i,j) : activo o balanceado, i€S ,j¢S (i,j) : inactivo, i€S, j¢S
)

ieS

Esto es, la derivada direccional ¢'(w;dg) es la diferencia entre el flujo de entrada y salida a través
del conjunto de nodos S cuando los flujos de los arcos inactivos y activos se establecen en sus limites
inferior y superior, respectivamente, y el flujo de cada arco balanceado incidente en S se establece en su
limite inferior o superior dependiendo de si el arco entra a S o sale de S.

Para obtener un conjunto adecuado S, con derivada direccional positiva ¢’ (w;ds), es conveniente
mantener un vector de flujo x que satisfaga las CHC junto con w. Esto ayuda a organizar la bisqueda de
una direccion de ascenso y a detectar la optimizacién, como se explicard a continuacién.
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Para un vector de flujo x, definimos el exceso g; del nodo i como la diferencia entre el flujo total de
entrada a i menos el flujo total de salida de i, es decir,

gi= Y Xi— Y xjth (2.3)
UlGaear — {ilG.j)eal

y tenemos que el exceso total de un conjunto de nodos S es

Yeai= Y Xji — Y xij + Y bi 24
i€s {(j.i)€A|j¢S,ieS} {(i./)€Alies. j¢S} i€s
Obsérvese que si j € S e i € S entonces aparece xj; en el primer sumando de g; y x;; en el segundo su-
mando de g; y se cancelan, por lo que solo quedan en (2.4) arcos (i, j) y (j,i)coni€ Sy j¢S

Si x satisface las CHC junto con w, es decir, se cumple el Teorema (1.3.2) [x;; = u;; si es activo;
x;j = l;j si es inactivo; [;; < x;; < u;; si es balanceado], podemos reescribir (2.4) como

Zgl' = Z l/tjl' + Z lj,' + Z )le'

icS () @ activo, j¢S, i€S (J,i) : inactivo, j¢S,ieS (j,i) : balanceado, j¢S, i€S

- Y uij + ) lij + ) Xij 55
(i,j) : activo, i€S ,j¢&S (i,j) : inactivo, i€S ,j¢S (i,j) : balanceado, i€S ,j¢S (2.5

+ Y bi

icS

Despejando Zbi de (2.2) y sustituyendo con este en (2.5) obtenemos
=
Y & =4'(w:ds) + Yy (xji = Lji)
icS (i) : balanceado, j¢S, icS
+ Z (uij — xij) (2.6)
(i,j) : balanceado, i€S, j¢S

> ¢ (w:ds)

Vemos, por lo tanto, que sélo un conjunto de nodos § que tiene exceso total positivo puede ser candi-
dato para generar una direccién dg de ascenso dual, porque en caso contrario, por la desigualdad anterior,
si la suma de las g; es negativa, la derivada direccional ¢'(w;dg) seria menor o igual que algo negativo
y seria una direccion de descenso en lugar de ascenso. En particular, si no hay un arco balanceado (i, j)
coni€S, j&S,y xij <ujj (es decir, si Y.(; j): balanceado, is, j¢s (4ij —Xij) = 0), y no hay un arco balan-
ceado (j,i) con j ¢S, i€ S,y L <xji (es decir, si ¥ : palanceado, jets, ics (Xji — Lji) = 0)), entonces la
desigualdad (2.6) queda

Y gi = ¢'(w:ds) 2.7

icS
luego si S tiene un exceso total positivo, entonces dg es una direccion de ascenso.
El siguiente lema expresa esta idea y proporciona la base para los algoritmos posteriores.

Lema 2.1.1. Supongamos que x y w satisfacen las CHC y sea S un subconjunto de nodos. Sea dg =
(dy,da,...,dy) el vector cond; = 1 sii € Sy d; = 0 en caso contrario, y supongamos que

Zgi>0

ieS
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Entonces, dg es una direccion de ascenso dual, es decir,
! (e
q' (w;ds) >0,

o existen nodos i € S'y j ¢ S tales que (i, /) es un arco balanceado con x;; < u;; o (j,i) es un arco
balanceado con [;; < xj;.

Demostracion. Se sigue de la Ecuacién (2.6):

Si Zg,- >0y ¢ (w;dg) > 0, dg es una direccién de ascenso dual y se cumple el Lema.

icS
En caso contrario, si Zg,- >0 pero ¢ (w;dg) <0, por (2.6) vemos que se tiene que cumplir la
icS
siguiente desigualdad
(xji — L) + Y (uij —xi5) >0
(i) : balanceado, j¢S, icS (i,j) : balanceado, i€S, j¢S

Es decir, tienen que existir nodos i € S'y j ¢ S tales que (i, j) es un arco balanceado con x;; < u;; 0 (J,i)
es un arco balanceado con /;; < x;; lo que corresponde con la segunda parte del Lema. O

2.2. Descripcion general del algoritmo de ascenso dual

Los algoritmos comienzan con un par de vectores enteros flujo-precio (x, w), que satisfacen las CHC,
y funcionan realizando una serie de iteraciones. Al comienzo de cada iteracién, tendremos un subcon-
junto de nodos S tal que
Z gi>0;

icS
es decir, inicialmente S consta de uno o mas nodos con exceso positivo. Segtn el lema anterior, existen
dos posibilidades:

(a) S define una direccién de ascenso dual dg = (dy,ds, ...,dy), donde d; = 1 sii € Sy d; = 0 en caso
contrario.

(b) S se puede ampliar agregando un nodo j ¢ S con la propiedad descrita en el Lema 2.1.1, es decir,
para algin i € S, (i, ) es un arco balanceado con x;; < u;j, o (j,i) es un arco balanceado con
lj,' < Xjj.

En el caso (b), hay dos posibilidades para el nodo j agregado:

(1) g;j =0, en cuyo caso,

Y &>0;

ieSU{j}

y el proceso puede continuar con

S+ Su{j}

(2) gj <0, en cuyo caso, se puede ver que hay un camino que se origina en algtin nodo i del
conjunto inicial S y termina en el nodo j que no estd bloqueado, es decir, todos sus arcos
tienen espacio para un aumento de flujo en el direccién de i a j. Tal camino se llama camino
de aumento. Se puede aumentar el flujo de los arcos hacia adelante (direccién de i a j)
del camino y disminuir el flujo de los arcos hacia atrds (direccién de j a i) del camino,
podemos acercar ambos excesos g; y g; a cero sin afectar el exceso de todos los demds nodos
y manteniendo las CHC.
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Dado que el exceso absoluto total ),y |gi| no puede reducirse indefinidamente, se ve que a partir de
un par entero de vectores flujo-precio que satisfaga las CHC, después de como maximo un ndmero finito
de iteraciones en las que se producen aumentos de flujo sin encontrar una direccién de ascenso, sucederd
una de estas tres cosas:

(a) Se encontrard una direccion de ascenso dual; esta direccidn se puede utilizar para mejorar el costo
dual.

(b) g; =0 para todo i; en este caso el vector de flujo x es factible, y dado que satisface las CHC junto
con w, segun el Teorema 1.3.2, x es 6ptimo primal y w es 6ptimo dual.

(c) gi <0 paratodo i pero g; < 0 para al menos un i; de la ecuacién (2.4) tenemos Y ;cn bi = Y.icn &is
luego Y,y bi <0,y por consiguiente el problema es no factible.

Por lo tanto, para un problema factible, el procedimiento que acabamos de describir se puede utilizar
para encontrar una direccién de ascenso dual y mejorar el costo dual comenzando en cualquier vector de
precios no 6ptimo.

2.3. Algoritmo primal-dual para el PFCM

El algoritmo primal-dual comienza con cualquier par de enteros (x,w) que satisfaga las CHC. Una
posibilidad es elegir arbitrariamente el vector entero w y establecer x;; = I;; si (i, j) estd inactivo o ba-
lanceado, y x;; = u;; en caso contrario. Otra posibilidad podria ser elegir estos X y w basandonos, por
ejemplo, en los resultados de una optimizacién anterior. El algoritmo preserva las CHC del par (x,w) en
todo momento.

Al comienzo de la iteracion, tenemos un par de enteros (x,w) que satisface las CHC. La iteracion
indicaré: que el problema primal es no factible; o bien indicard que (x,w) es 6ptimo; o bien transformara
este par en otro par que satisfacerd las CHC.

En particular, si g; < 0 para todo i, entonces teniendo en cuenta ) ;cy b; = Y.;cy & (por la Ecuacién (2.4)
con S = N), hay dos posibilidades:

(1) gi <0 paraalgin i, en cuyo caso ) ;cy b; < 0y el problema es no factible.

(2) g; = 0 para todo i, en cuyo caso x es factible y por lo tanto también es 6ptimo, ya que satisface
CHC junto con w.

En cualquiera de los dos casos, el algoritmo termina.

Si por otro lado tenemos g; > 0 para al menos un nodo i, la iteracién comienza seleccionando un
subconjunto / no vacio de nodos i con g; > 0. La iteracién mantiene dos conjuntos de nodos Sy L, con
S C L. Inicialmente, S estad vacio y L consta del subconjunto /.

Vamos a usar la siguiente terminologia:

S : Conjunto de nodos escaneados (son los nodos cuyos arcos incidentes se han “examinado”
durante la iteracién).

L : Conjunto de nodos etiquetados (estos son los nodos que se han escaneado durante la
iteracion o son candidatos actuales para escanear).

En el transcurso de la iteracién, continuamos agregando nodos a L y § hasta que se encuentre un
camino de aumento o L = S, en cuyo caso se demostrard que dg es una direccién de ascenso. La iteracion
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también mantiene una etiqueta para cada nodo i € L — I, que es un arco incidente de i. Las etiquetas son
utiles para construir caminos de aumento (lo veremos en el Paso 3 del algoritmo).

Pasos de la iteracion:

Paso 0 (Inicializacion):

Seleccionamos un conjunto / de nodos i con g; > 0, tomamos L :=1y S := 0, y vamos al
Paso 1.

Si no hay un nodo i con g; > 0, terminamos, ya que:

* Si g; = 0Vi, entonces Z Xij — Z xji = b; se cumple = el par (x,w) es
{lG.j)eA} {lGneA}
Optimo.
* Sig; <0 Viy dg; <0, el problema es no factible.

Paso 1 (Eligir un nodo para escanear): Si S = L, vamos al Paso 4; de lo contrario, selec-
cionamos un nodo i € L — S, establecemos S := SU{i} y vamos al Paso 2.

Paso 2 (Etiquetar los nodos vecinos de i): Afiadimos a L todos los nodos j ¢ L tales que
(j,i) esté balanceado y /j; < xj; o (i, j) esté balanceado y x;; < u;; ; también para cada uno
de esos j, asignamos a j la etiqueta “(i~,x;; —[j;)” si (j,i) estd balanceado y [; < xji, y
de lo contrario asignamos a j la etiqueta “(i*,u;; — x;;)”. Si para todos los nodos j recién
agregados a L tenemos g; > 0, vamos al Paso 1. De lo contrario, seleccionamos uno de estos
nodos j con g; < 0y vamos al Paso 3.

Paso 3 (Aumento de flujo): Hemos encontrado un camino de aumento P que comienza en
un nodo i perteneciente al conjunto inicial / y termina en el nodo j identificado en el Paso
2. La ruta se construye rastreando las etiquetas hacia atrds comenzando desde j, y es tal que
tenemos

X < Upmp, V(m,n) € PT, Vn conetiqueta m™*, tpy — Xy
Xmn > lyn,  Y(myn) € P~, Vm con etiqueta n=, Upy — Xpn

donde P y P~ son los conjuntos de arcos hacia delante y hacia atrds de P, respectivamente.
Sea

6 = min {gi,—gj,{umn — X | (myn) € PTY  {otoun — Ly | (m,n) € P*}}

Aumentamos en 6 los flujos de todos los arcos en P, disminuimos en & los flujos de todos
los arcos en P~, restamos 0 a g; y sumamos 0 a g;, y vamos a la siguiente iteracion (Paso 0).

Paso 4 (Cambio de precio): Sea

a—mfn{{cij—wi—i—wj ’ (i,j) GA, Xij < Uij, iGS, j¢S},
(2.8)
{_(Cji_wj+wi) | (J,i) €A, Iji <xji, i €, j¢5}}

Establecemos:
{wi +a, siiesS
w; =

Wi, en otro caso
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Anadimos a L todos los nodos j para los cuales el minimo en (2.8) se obtiene mediante un
arco (i, j) o un arco (j,i); también para cada tal j, asignamos a j la etiqueta “(i*,u;; — x;;)”
si el minimo en Eq. (2.8) se obtiene mediante un arco (i, j), y en caso contrario damos a j
la etiqueta “(i~,xj; — j;)”. Si para todos los nodos j recién agregados a L tenemos g; > 0,
vamos al Paso 1. De lo contrario, seleccionamos uno de estos nodos j con g; < 0y va-
mos al Paso 3. [Nota: si no hay arcos (i, j) con x;; < u;j, i € S,y j ¢S, o arcos (j,i) con
lii<xji, i€S,y j¢S,el problema es no factible y el algoritmo termina; véase la Prop. 2.3.1
que sigue.]

Tengamos en cuenta lo siguiente con respecto a la iteracién tipica del algoritmo primal-dual:
(a) Todas las operaciones de la iteracion preservan la integralidad del par de vectores flujo-precio.

(b) La iteraciéon mantiene las CHC del par de vectores flujo-precio. Para ver esto, observamos que
los arcos con ambos extremos en S, que estdn balanceados justo antes de un cambio de precio,
contintian estando balanceados después de un cambio de precio. Esto significa que un camino de
aumento de flujo, incluso si ocurre después de varias ejecuciones del Paso 4, cambia solo los flujos
de arcos balanceados, por lo que no puede destruir las CHC. Ademads, un cambio de precio en el
Paso 4 mantiene las CHC porque no se modifica ningtin flujo de arco en este paso y el incremento
de precio o de la Ecuacién (2.8) es tal que ningtin arco cambia de estado de activo a inactivo o
viceversa.

(c) Entodo momento tenemos S C L. Ademads, cuando vamos al Paso 4, tenemos S = L y L no contiene
ninglin nodo con exceso negativo. Por lo tanto, segtn la 16gica del Paso 2, no existe un arco
balanceado (i, j) con x;; < u;j, i € S'y j ¢ S, ni un arco balanceado (j,i) con [;; < xj;, i €S,y
J ¢ S. Luego por el razonamiento utilizado para obtener la Ec. (2.7), llegamos a que dg es una
direccién de ascenso.

(d) Sdlo se producen un nimero finito de cambios de precios en cada iteracion, por lo que cada itera-
cion se ejecuta hasta su finalizacidn, ya sea terminando con un aumento de flujo en el Paso 3 o con
una indicacién de no factibilidad en el Paso 4. Para ver esto, observamos que entre dos cambios de
precio, el conjunto L se amplia en al menos un nodo, por lo que no puede haber més de N cambios
de precio por iteracidn.

(e) El algoritmo sélo ejecuta un ndmero finito de pasos de aumento de flujo, ya que cada uno de ellos
reduce el exceso absoluto total Y;c |g;| en una cantidad entera, mientras que los cambios de precio
no afectan al exceso absoluto total.

(f) El algoritmo termina. La razén es que cada iteracion se ejecutard hasta su finalizacion (por (d)) e
involucrard exactamente un aumento, mientras que solo habra un nimero finito de aumentos (por

(e)).

La siguiente proposicion establece la validez del método.

Proposicion 2.3.1. Considerar el problema del flujo de costo minimo y suponer que c;;j,/;,u;; y b; son
todos niimeros enteros.

(a) Si el problema es factible, entonces el método primal-dual termina con un vector de flujo 6ptimo
entero X y un vector de precio 6ptimo entero w.

(b) Si el problema no es factible, entonces el método primal-dual termina porque g; < 0 para todo iy
gi < 0 para al menos un i o porque no hay ningtin arco (i, j) con x;; < u;j, i €S,y j ¢ S, y ningtin
arco (j,i) conlj; <xj;,i €Sy j¢ Senel Paso4.
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Demostracion. Los items (a) a (f) anteriores garantizan (a) de esta proposicion.
Para demostrar (b), nos fijamos que al acabar pueden darse 3 casos:

* En el Paso 0, con g; =0 Vi, llegamos a: solucién éptima, funcion objetivo factible, w factible y se
verifican las CHC (apartado (a)).

* Enel Paso 0,con g; <0 Vi y dg; <0, el problema es no factible. Suma de ofertas distinta de
suma de demandas.

* En el célculo de & en (2.8), si no encontramos arcos para definir ¢, llegamos a que el problema es
no factible.

Vamos a ver este tltimo caso:

Empezamos la iteracién tomando un conjunto / de nodos i con g; > 0. Continuamos con el algoritmo
y llegados a un punto tenemos que S = L, con lo que irfamos al Paso 4. Notar que como [ C L = §,
entonces Zg,- >0yaque g; >0, VieS y,en particular, g; >0, Vi € I C S. Aplicando el Lema 2.1.1,

icS

tenemos que dg = (d;,ds,...,dy) cond; =1sii€ Syd; =0sii¢ S es una direccién de ascenso dual.

Ahora, en el Paso 4, suponer que no encontramos arcos para definir ¢; por lo tanto, los arcos (i, j)
balanceados con i € Sy j ¢ S cumplen que x;; = u;;, y los arcos (j,i) balanceados coni € Sy j ¢ S
cumplen que xj; = [;; (porque si no en el Paso 4 si que podria definirse ). Esto implica que Z g =

=

q (w;dg) (eq. 2.7). Por tanto, al movernos en la direccién dg, el nuevo wy = w+ ardg, o > 0, mantendra
los arcos (i,7)y (j,i),i €S, j ¢ S, en las mismas condiciones.

* Si(i,j)€A,i€S, j¢S y cij—wi+w; <0 entonces el nuevo costo marginal es
cij—wi+w;—o <0, Va > 0, por lo tanto todos esos arcos siguen estando activos o balanceados.

* Si(j,i)€A,i€S, j¢S y cji—wj;+w; >0 entonces el nuevo costo marginal es
cji—wj+w;+o >0, Va > 0, por lo tanto todos esos arcos siguen estando inactivos o balanceados.

Como se cumplen estas condiciones, se sigue manteniendo la expresion (2.7), de manera que Z gi =
ies
q (Wq:ds), y tenemos que ¢’ (Wq;dg) se mantiene constante e igual a Zg,- >0, Va > 0.
icS
Resumiendo: dg es una direccién de ascenso que mantiene constante ¢’ (wq;ds), Vo > 0, por lo que
si @ — +oo, el valor de la funcién objetivo del dual tendera a 4+ (ya que aumenta en O‘Z gi), con lo

i€S
cual, el problema dual es no acotado. Aplicando el Teorema fundamental de la dualidad, si el problema
dual es no acotado, el primal es no factible y con eso finalizamos la demostracién.
O

Con el objetivo de entender el funcionamiento del algoritmo descrito, vamos a proceder a estudiar en
detalle el siguiente ejemplo:

bs;=0
9:=0
w3;=0
2,9 (0'3,2)
\0’ 20 )(34\\0
bi=4 *e by = 4
gi=4 %23=0 | (0,2, 1) gs=-4
wy; =0 w;=0
*’eeo *A‘Q
o ‘)
&/ .
bye (lu Uj Cu)
9=0
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Comenzamos con el Paso 0: seleccionamos el nodo i = {1} ya que es el tnico con g; > 0, tomamos
L:= {1}y S:=0y vamos al Paso I. Como S # L, tomamos un nodo i € L —§ = {1}, establecemos
S:=SU{i} = {1} y continuamos con el Paso 2. No encontramos ningiin arco balanceado, luego no
afladimos ningtin arco a L y volvemos al Paso I. Ahora si, tenemos que S = L = {1}, y continuamos con

) wit+o, siieS
el Paso 4. Calculamos o: & = min{cjp = 1, 13 = 5} = 1, y establecemos w; = { ’
wi, en otro caso

es decir, w; = 1, wp =0, w3 =0, w4 = 0. Actualizamos los precios en el grafo:

w3;=0

Anadimos a L todos los nodos j para los cuales el minimo o = 1 se obtiene mediante un arco (i, j)

o un arco (j,i); en este caso, el nodo 2, y lo etiquetamos: @ — (17, 1). Asi, el conjunto pasa a ser
L ={1,2}. Como g, > 0, vamos al Paso 1.

Tenemos que {1} =S # L= {1,2}, luego seleccionamos i € L— S = {2}, establecemos S := SU{i} =
{1,2} y vamos al Paso 2. No encontramos ningtin arco balanceado, luego volvemos al Paso 1. Ahora si, se
cumple que S =L ={1,2} y podemos ir al Paso 4. Hallamos o« = min{ci;3 —w; =5—1,co3 =1,ca =4} =
1 y actualizamos los precios, de maneraque wy =2, wp =1, w3 =0, wy =0:

b;=0
g9:=0
w3=0
) &P
o AV '\:?qeo
A
bi=4 bs=-4
gi=4 @ X3=0 | (0,2,1) @ ga=-4
wy=2 *’?\ 0 wy=0
~ 13
(0,7 4 w2t T N
&/ o
b= 0 (li”uijycij)
) =

Afiadimos elnodo 3a L, L={1,2,3}, y lo etiquetamos @ — (2%, 2). Como g3 > 0, vamos al Paso
1. Vemos que S # L, luego seleccionamos i € L — S = {3}, definimos S := SU{i} = {1,2,3} y vamos al
Paso 2. De nuevo, no encontramos ningin arco balanceado y pasamos al Paso 1. Como S =L = {1,2,3},
podemos ir al Paso 4, en el que calculamos &« = min{c34 = 2, ¢4 —wp =4 — 1} = 2 y actualizamos los
precios, wi =4, wp =3, w3 =2, wy =0:
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b;=0
9:=0
wW3=2
.9 03,
Q. X
N 20 LR
A3
bi=4 bs=-4
gi1=4 @ Xp3=0 (0,241) @ ga=-4
wy =4 o wy=0
R Z
4 Hab
(> =B
") ©. "
(1, vy, ¢5)
by= 0 ij 2 Hij 2 S
9=0
w,=3

Afadimos a L el nodo 4, L = {1,2,3,4}, y lo etiquetamos: @ — (37, 3). Como g4 < 0, procede-
mos a ir al Paso 3. Notar que hemos encontrado un camino de aumento P que comienza en @ y termina
en @, siendo este: (1,2), (2,3), (3,4).

Hallamos § = min{g; =4, —ga =4, upp —xpp=lL,ups —xp3 =2, uz4 —x3s =3} = 1.
Aumentamos en § = 1 los flujos de todos los arcos en PT, es decir, x; = 1, xo3 = 1, x34 = 1. También,
restamos S agy: g1 :=4—1=23;ysumamos 0 a g4: g4:=—4+1=-3:

bs=0

9s=0
w3 =2

%)
s
(B o X,
A

bi=4 by = -4
91=3 X3=11(0,2,1) gs=-3
w; =4 w;=0

(Iij/ Uu':cu')

w;=3
A continuacién, pasamos a la siguiente iteracién (Paso 0).

Iniciamos de nuevo tomando L = {1} y S :=0, y como S # L, tomamos i € L — S = {1}, definimos
S:=8U{i} = {1}y vamos al Paso 2. Notar que ahora si hay un arco balanceado (cjp —w;+wy =1—4+
3 = 0); sin embargo, no cumple la cota x;; < u;;, luego no afiadimos ningiin nodo y volvemos al Paso 1.
Tenemos S = L = {1}, asi que continuamos con el Paso 4. Calculamos o = min{c;3 —w; +w3 =3} =3
y actualizamos los precios: w; =7, wp =3, w3 =2, wy =0.

Afiadimos el nodo 3 a L, L= {1,3}, y procedemos a su etiquetacion: @ — (17, 3). Como g3 >0,
vamos al Paso 1. Tenemos {1} =S # L = {1,3}, luego modificamos S tal que S :=SU{i} = {1,3} y
continuamos con el Paso 2. Nos encontramos con dos nodos j ¢ L tales que son balanceados y cumplen
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las cotas: el primero, el nodo @ cumple que ¢34 —w3+ws=2—24+0=0 y x34 < uzq;y el segundo,
el nodo @, cumple que cp3 —wr+w3 =1—-34+2 =0y lr3 < xp3. Llevamos a cabo sus respectivas eti-
quetaciones: @ — (3%, 1), @ — (37, 1). Como g4 < 0, nos dirigimos al Paso 3. Hemos encontrado

un camino de aumento P que comienza en @ y termina en @, cuyos arcos son: (1,3), (3,4). Hallamos
0 =min{g; =3, —g4 =3, u;3—x13 =3, usg —x33 = 2} = 2. Aumentamos en & = 2 los flujos de todos
los arcos en P, es decir, x;3 = 2, x34 = 3. También, restamos § a g;: g, :=3—2=1; y sumamos & a
ga: ga:=-3+4+2=-1:

bs=0
9:=0
w3 =2
2.9 (0'3’?)
Qo 27 %y s
*M”s/ 3
by =4 bs=-4
9 =1 x3=11(0,2,1) 9s=-1
wy=7 ws=0
*72Q7 $A’0
O ‘@)
) ©. "
(15, uy, c)
by=0 ij 2 Hij s S
9:=0
Wy =3

A continuacién, vamos a llevar a cabo la siguiente iteracién, comenzando de nuevo con el Paso 0:
L={1}y S:=0. Como S # L, afiadimos i = {1} a S y nos movemos al Paso 2. Nos encontramos
con que el nodo 3 cumple que ci3 —w;+w3 =5—-74+2=0 y x13 < uy3, luego lo afiadimos a L y lo
etiquetamos tal que @ — (17, 1). Como g3 > 0, vamos al Paso 1. Notar que {1} =S # L ={1,3},
luego afiadimos el nodo 3 a S y seguimos con el Paso 2. Estudiamos los nodos j ¢ L y vemos que el
nodo 2 cumple las condiciones necesarias: co3 —wy+w3 =1—3+2=0 y b3 < x3. Lo afiadimos a L,
L=1{1,3,2}, y lo etiquetamos @ — (37, 1). (Notar que se trata de un arco hacia atrds.) Como g, > 0,
vamos al Paso 1. Tenemos {1,3} =8 # L ={1,3,2}, entonces afiadimos i = {2} a Sy proseguimos con
el Paso 2. No encontramos ningtin arco balanceado asi que volvemos al Paso 1. Ahora si que se cumple
que S =L ={1,3,2}, y continuamos con el Paso 4. Hallamos & = min{cys —w, +ws =1} =1, y con
este actualizamos los precios, de forma que: w; =8, wp =4, w3 =3, wy =0.

b;=0
93=0
w3 =3
2.9 (0"3:2
0.2 X )
Q YA %>
‘l»\%’ 3
by=4 bs= -4
g1=1 X3=111(0,2,1) gs=-1
wy=8 w;=0
*79§7 *A”Q
()» =B
1) o
(I, uy,c)
by=0 ij 2 Hij 2 S
9:=0
wy =4

Afiadimos a L el nodo 4, L = {1,3,2,4}, y le asignamos: @ — (2%, 1). Vemos que g4 < 0, luego
seguimos con el Paso 3. Hemos conseguido un camino de aumento P que comienza en @ y termina en
@. En este caso, el camino es: (1,3), (3,2), (2,4).

Calculamos el valor de @ = min{gl = 1, —84 = 1, Uiz —X13 = 1, X23 —123 = 1, U4 — X4 = 1} =1.
Procedemos a aumentar en & = 1 los flujos de todos los arcos en P* y disminuir en § = 1 los flujos de
todos los arcos en P, es decir, x13 =3, x23 =0, x4 = 1. Por dltimo, restamos § =l ag;: g;:=1—1=0,
y sumamos 0 = 1 a g4: g4 := —1+1 =0, y vamos al Paso 0:
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by =4
94=0
ws=0

by =4
g1=0
wy=8

(1, uy, )

b,=0
9:=0
Wy =4
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Llegados a este punto, vemos que g; = 0, Vi, lo que significa que el par (x,w) es éptimo y finaliza-
mos las iteraciones del algoritmo. Por tanto, como podemos ver en el tltimo grafo, la solucién 6ptima de

nuestro ejemplo es:

x=(xp=1x3=3,x3=0,x4=1,x34=3), w=(w =8 wa=4,w3=3,wy=0)






Capitulo 3

Estudio computacional del algoritmo

En este capitulo vamos a realizar un estudio computacional del algoritmo estudiado. El algoritmo
primal-dual presentado en el Capitulo 2 ha sido implementado en Python (su cédigo se proporciona en
el Anexo B) y vamos a aplicarlo a una coleccién de 450 problemas' creados con una versién simplificada
del generador de redes PGRIDGEN.

Estos 450 problemas estdn agrupados en 3 configuraciones de redes distintas. En cada una de ellas,
fijaremos los valores de todas las variables de interés excepto de una, la cual variaremos con el objetivo
de estudiar el comportamiento del tiempo de resolucién del algoritmo. Para la Configuracién 1, incre-
mentaremos el nimero de arcos de 100 a 500; para la Configuracién 2, el nimero de nodos con oferta y
demanda de 10 a 50; y para la Configuracién 3, la capacidad de los arcos > desde (100-200) a (800-1000).
Los parametros considerados en detalle se muestran en la Tabla 3.1.

nodos arcos of/dem costo capacidad  of total
Confl | 200 1000 20 (100-500)  (500-1000) 20000
200 2000 20 (100-500)  (500-1000) 20000
200 3000 20 (100-500)  (500-1000) 20000
200 4000 20 (100-500)  (500-1000) 20000
200 5000 20 (100-500)  (500-1000) 20000
Conf2 | 400 2500 10 (100-500)  (500-1000) 20000
400 2500 20 (100-500)  (500-1000) 20000
400 2500 30 (100-500)  (500-1000) 20000
400 2500 40 (100-500)  (500-1000) 20000
400 2500 50 (100-500)  (500-1000) 20000
Conf3 | 200 2500 20 (100-500)  (100—200) 20000
200 2500 20 (100-500)  (200—400) 20000
200 2500 20 (100-500) (400 —600) 20000
200 2500 20 (100-500)  (600—800) 20000
200 2500 20 (100-500) (800 —1000) 20000

Tabla 3.1: Caracteristicas de las configuraciones de los problemas test.

Para cada caso de cada configuracion se han generado 30 problemas aleatorios y se han resuelto
almacenando su tiempo de ejecucion. Posteriormente, he desarrollado unos pequeiios scripts en R (cédigo
proporcionado en el Anexo C) para realizar distintos cédlculos que utilizaré en el estudio.

ILos problemas los proporciona el director del TFG para hacer el estudio.

2En este estudio computational hemos fijado el valor de la cota inferior de los arcos de manera que /; 7 = 0 para todos los
problemas. Ademds, cuando hablemos de cap_min y cap_max, nos referiremos al rango de valores que puede tomar u;;, la
cota superior, siendo esta el factor de estudio en la Configuracién 3, al que llamaremos capacidad.

21
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En la Tabla 3.2 presentamos las medias y desviaciones tipicas del tiempo de ejecucién obtenidas
para cada configuracion (Anexo C.1). Para determinar si existen diferencias significativas en los tiempos
para cada configuracion realizaré un test ANOVA de un factor en cada configuraciéon (Anexo C.4) y
posteriormente una comparacion multiple de las medias de los tiempos en cada valor del factor de interés
mediante el test de Tukey.

Configuracion 1 Configuracién 2 Configuracion 3

Numero de arcos Media Desv. tipica Numero de ofertas Media Desv. tipica Capacidad arcos Media Desv. tipica
1000 5.6118211 0.5414283 10 19.029985 1.879225 100 - 200 9.6475211 0.6203105
2000 5.0743180 0.4201189 20 19.971793 1.733904 200 - 400 8.1587474 0.5838491
3000 4.9174770 0.4554643 30 22.157543 1.605307 400 - 600 6.9060912 0.4068665
4000 4.7513687 0.2361825 40 22.263399 1.892302 600 - 800 6.8726857 0.4366017
5000 4.8604421 0.3902182 50 24.982612 1.663857 800 - 1000 6.8750893 0.4283918

Tabla 3.2: Medias y desviaciones tipicas de los tiempos de ejecucion de cada una de las distintas confi-
guraciones.

Para entender y analizar mds facilmente estos resultados, podemos representarlos graficamente. En
las figuras 3.1 a 3.3 podemos observar los tiempos medios de ejecucién.

Tiempo medio de resolucién por nimero de arcos Tiempo medio de resolucién por niimero de nodos con oferta
6 25
20

;
g g "
2 E
5 5
= = 10

2

0 0

1000 2000 3000 4000 5000 10 20 30 40 50
Numero de arcos Numero de nodos con oferta

Figura 3.1: Tiempo medio de resolucién por Figura 3.2: Tiempo medio de resolucién por
ndmero de arcos para la Configuracién 1. nimero de ofertas para la Configuracion 2.

Tiempo medio de resolucion por capacidad

5.0

Tiempo medio

25

0.0

(100,200) (200,400) (400,600) (600,800) (800,1000)
Capacidad minima y maxima

Figura 3.3: Tiempo medio de resolucién por capacidad de los arcos para la Configuracién 3.
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Para realizar el ANOVA se ha realizado previamente un test de normalidad de Shapiro-Wilk (Anexo
C.2) de la variable tiempoEjecucion con las variables que van cambiando, es decir, numero_arcos pa-
ra la Configuracion 1; num_ofertas para la Conf. 2; y cap_min y cap_max para la Conf. 3. Examinando
los p-valores obtenidos (ver en la Figura 3.4), no se rechaza la normalidad de los datos (@ = 0,05) para la
mayoria de los conjuntos (se rechaza tnicamente con Conf. 2, cuando of = 20, que da un p-valor = 0,01
debido a un unico dato un poco elevado. Se eliminé dicho dato pero los resultados del ANOVA eran
iguales por lo que se mantiene el resto con los datos originales).

Configuracién 1 Configuracién 2 Configuracién 3

p-values adjusted by the Holm method:
unadjusted adjusted

p-values adjusted by the Holm method:
unadjusted adjusted

p-values adjusted by the Holm method:
unadjusted adjusted

1000 0.079936 ©0.31974 10 0.175233  0.700931 (100,200) ©0.692964 1.00000
2000 0.869184 ©0.86918 20 0.013828 0.069139 (200,400) ©0.071743 0.35871
3000 0.300212 ©.74534 30 0.217773  0.700931 (400,600) ©0.338557 1.00000
4000 0.248445 0.74534 40 0.811329 0.811329 (600,800) 0.428021 1.00000
5000 0.062910  ©.31455 50 0.176101  0.700931 (800,1000) 0.352664 1.00000

Figura 3.4: Test de normalidad de Shapiro-Wilk para cada una de las Configuraciones.

Seguidamente, procedemos a realizar un test de igualdad de varianzas: test de Levene (Anexo C.3),
con el factor correspondiente en cada caso y la variable tiempoEjecucion, rechazdndose la hipdtesis
de igualdad de varianzas en las configuraciones 1 y 3 (a = 0,05).

Configuracioén 1 Configuracion 2 Configuracion 3

Levene's Test for Homogeneity of Variance (center = "median")
Df F value Pr(>F)

group 4 0.3494 0.8441
145

Levene's Test for Homogeneity of Variance (center = "median")
Df F value Pr(>F)

group 4 2.6457 0.0359 *
145

Levene's Test for Homogeneity of Variance (center = "median")
Df F value  Pr(>F)

group 4 4.8987 0.0009833 ***
145

Signif. codes: @ '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: @ '***' 0.001 '**' 0.01 '*' 0.05 '."' 0.1 ' ' 1

Figura 3.5: Test de Levene para cada una de las Configuraciones.

Por tanto, aplicamos el test de ANOVA de Welch (Anexo C.4), ya que esta nos permite evitar asumir
la igualdad de varianzas y obtenemos en los 3 casos (ver en la Figura 3.6) un p-valor practicamente nulo,
por lo que asumimos que los tiempos de ejecucion medios no son iguales para los distintos valores del
factor de cada configuracion.

Configuracién 1
> summary(AnovaModel.1)
Df Sum Sq Mean Sq F value Pr(>F)
4 13.76 3.440 19.43 8.04e-13 ***
145 25.67 0.177

Configuracién 2
> summary(AnovaModel.2)
Df Sum Sq Mean Sq F value Pr(>F)
4 642.5 160.62 51.93 <2e-16 ***
145 448.5 3.09

numero_arcos
Residuals

num_ofertas
Residuals

Signif. codes: ©@ '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: @ '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> print(oneway.test(tiempoEjecucion ~ numero_arcos, data = datos_confl))
One-way analysis of means (not assuming equal variances)

data: tiempoEjecucion and numero_arcos
F = 16.772, num df = 4.000, denom df = 70.458, p-value = 0.000000001059

Configuracién 3
> summary(AnovaModel.3)

> print(oneway.test(tiempoEjecucion ~ num_ofertas, data = datos_conf2))
One-way analysis of means (not assuming equal variances)

data: tiempoEjecucion and num_ofertas
F = 51.472, num df = 4.000, denom df = 72.424, p-value < 2.2e-16

Df Sum Sq Mean Sq F value Pr(>F)

capacidad 4 179.9 44.99
Residuals 145 36.7 0.25

Signif. codes:

177.8 <2e-16 ***

Q "***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> print(oneway.test(tiempoEjecucion ~ capacidad, data = datos_conf3))

One-way analysis of means (not assuming equal variances)

data: tiempoEjecucion and capacidad
F = 140.38, num df = 4.000, denom df = 72.051, p-value < 2.2e-16

Figura 3.6: Test de ANOVA de Welch para cada una de las Configuraciones.
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Finalmente, realizamos el test de Tukey (Anexo C.5), y con él obtenemos los siguientes resultados
mostrados en la Figura 3.7.

Configuracion 1 Configuracién 2 Configuracion 3
Tukey multiple comparisons of means Tukey multiple comparisons of means Tukey multiple comparisons of means
95% family-wise confidence level 95% family-wise confidence level 95% family-wise confidence level
Fit: aov(formula = tiempoEjecucion ~ numero_arcos, data = datos_confl)  Fit: aov(formula = tiempoEjecucion ~ num_ofertas, data = datos_conf2) Fit: aov(formula = tiempoEjecucion ~ capacidad, data = datos_conf3)
$numero_arcos $num_ofertas $capacidad
diff wr upr p adj diff wr upr p adj diff wr upr p adj
2000-1000 -0.53750308 -0.8376017 -0.23740447 0.0000201 20-10 0.9418082 -0.312545 2.196161 0.2369746 (200,400)-(100,200) -1.488773704 -1.8475812 -1.1299662 0.0000000
3000-1000 -0.69434412 -0.9944427 -0.39424551 0.0000000 30-10 3.1275584 1.873205 4.381912 0.0000000 (400,600)-(100,200) -2.741429949 -3.1002374 -2.3826225 0.0000000
4000-1000 -0.86045236 -1.1605510 -0.56035375 0.0000000 40-10 3.2334140 1.979061 4.487767 0.0000000 (600,800)-(100,200) -2.774835428 -3.1336429 -2.4160280 0.0000000
5000-1000 -0.75137904 -1.0514776 -0.45128043 0.0000000 50-10 5.9526269 4.698274 7.206980 0.0000000 (800,1000)-(100,200) -2.772431874 -3.1312393 -2.4136244 0.0000000
3000-2000 -0.15684104 -0.4569396 0.14325757 0.6005473 30-20 2.1857502 ©.931397 3.440103 0.0000360 (400,600)-(200,400) -1.252656245 -1.6114637 -0.8938488 0.0000000
4000-2000 -0.32294927 -0.6230479 -0.02285067 0.0280980 40-20 2.2916058 1.037253 3.545959 0.0000130 (600,800)-(200,400) -1.286061724 -1.6448692 -0.9272543 0.0000000
5000-2000 -0.21387595 -0.5139746 ©.08622266 0.2865610 50-20 5.0108187 3.756465 6.265172 0.0000000 (800,1000)-(200,400) -1.283658171 -1.6424656 -0.9248507 0.0000000
4000-3000 -0.16610823 -0.4662068 0.13399037 0.5453997 40-30 0.1058556 -1.148498 1.360209 0.9993391 (600,800)-(400,600) -0.033405479 -0.3922130 0.3254020 0.9990264
5000-3000 -0.05703491 -0.3571335 0.24306370 0.9846877 50-30 2.8250685 1.570715 4.079422 0.0000000 (800,1000)-(400,600) -0.031001925 -0.3898094 0.3278055 0.9992746
5000-4000 ©0.10907332 -0.1910253 0.40917193 0.8531681 50-40 2.7192129 1.464860 3.973566 0.0000002 (800,1000)-(600,800) 0.002403553 -0.3564039 0.3612110 1.0000000

Figura 3.7: Test de Tukey para las distintas configuraciones.

En la Configuracion 1 se obtiene lo siguiente: el tiempo de ejecucion de las redes con 1000 arcos es
el mayor y significativamente diferente del resto; 2000, 3000 y 5000 arcos son equivalentes en tiempo y
menores significativamente que 1000; y el tiempo de ejecucién con 4000 arcos es menor que con 2000 y
equivalente a 3000 y 5000 arcos.

Por tanto, se observa que al ir aumentando el nimero de arcos el tiempo disminuye hasta llegar a
4000, momento en el que comienza a aumentar otra vez.

Por la estructura de la red, podemos interpretar este resultado pensando en que al tener mds arcos
es mas facil que existan trayectorias cortas que si tenemos menos arcos. Si hay menos arcos pueden
existir trayectorias cortas pero tendremos que redistribuir y aprovechar més los arcos porque la oferta
es constante, es decir, hay fijadas 20000 unidades de flujo para repartir de los 20 nodos iniciales a los
20 finales, luego al tener la red con pocos arcos hay que saturarlos y utilizarlos mucho, lo cual implica
que le cuesta mds tiempo que si tiene muchisimos arcos ya que tendrd mds para elegir y serd capaz de
encontrar trayectorias de menor costo computacional (de menos arcos).

Esto sucede hasta que llega un momento en el que el hecho de tener mds arcos ya no da beneficios,
sino que hace que el tiempo de ejecucién aumente debido a que hay demasiados arcos para etiquetar y
mirar, pero que no llegan a aportar mds caminos nuevos cortos.

Por otro lado, en el test de Tukey de la Configuracién 2, podemos ver que 10 y 20 nodos con oferta
se muestran equivalentes, y también 30 y 40. En el resto de comparaciones, podemos ver que hay dife-
rencias significativas en la media de los tiempos de ejecucion entre las siguientes parejas de ntimeros de
nodos con oferta/demanda: 10 - 30; 10 - 40; 10 - 50; 20 - 30; 20 - 40; 20 - 50; 30 - 50; 40 - 50. Ahora,
en la columna diff podemos ver que los valores son positivos, lo cual indica que el tiempo medio de
ejecucion va aumentando conforme aumenta el nimero de nodos con oferta/demanda (también podemos
verlo en la Figura 3.2. Si, por ejemplo, empezamos con 10 nodos con oferta y 10 con demanda, entonces
tenemos que manejar menos que si tuviésemos 20, porque tan solo al inicio el conjunto / ya tendria m4s
nodos. Luego conforme aumentamos el nimero de nodos con oferta, la oferta total estd mas repartida y
por tanto tendrd que hacer muchas més busquedas para ir redistribuyendo el exceso de los nodos de 1.

Por tltimo, en la Configuracién 3 podemos observar que el p-valor es menor que 0.05 en todas las
parejas excepto en las 3 dltimas, es decir, (100,200) presenta el mayor tiempo de resolucién; y (200,400)
mayor que (400, 600), (600,800) y (800, 1000), los cuales son equivalentes entre si. Valorando el test de
Tukey y la Figura 3.3, llegamos a la conclusién de que si las capacidades son muy pequefias, digamos
entre 100-200, el algoritmo tiene que buscar muchos caminos y hacer muchas iteraciones para transportar
el flujo; pero conforme aumentamos la capacidad, al emplear un arco puedo utilizarlo para enviar mucho
flujo, luego tendra que realizar menos iteraciones.

Llega un punto en el que se estabiliza, porque los arcos tienen tal capacidad que aunque fuese au-
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mentada ya no se podria enviar mas porque no dispondriamos de mds flujo.

Como conclusién de este estudio estadistico, podemos decir que en la Configuracion 1 el tiempo
de ejecucién disminuye conforme aumenta el nimero de arcos, hasta tener un determinado nimero de
arcos en el que volveria a crecer el tiempo medio, es decir, el incremento del niimero de arcos no afecta
en general negativamente como seria de esperar. En la Configuracién 2, cuantos mds nodos con oferta
haya, mayor serd su tiempo medio de ejecucién, lo cual concuerda con lo esperado. Finalmente, en
la Configuracién 3, el algoritmo es mds rdpido cuanto mayor sea la capacidad de los arcos, hasta que
llegados a un punto se estabiliza y el tiempo medio es el mismo aunque se incremente la capacidad, lo
cual nuevamente es lo esperado ya que si la capacidad de los arcos es pequefia hay muchas saturaciones
de arcos y esto obliga a tener que hacer muchos envios de flujos y las correspondientes actualizaciones
de w’s que nos permitan generar nuevos arcos balanceados para continuar el etiquetado.






Bibliografia

[1] M. S. BAZARAA, J. J. JARVIS Y H. D. SHERALI, Linear Programming and Network Flows, New
Jersey, 2010.

[2] D. P. BERTSEKAS, Linear Network Optimization: Algorithms and Codes, Massachusetts, 1991.

[3] Material de estudio de la asignatura Investigacion Operativa del grado en Matemdticas de la Uni-
versidad de Zaragoza, 2020.

[4] Python,https://docs.python.org/3/tutorial/index.html.

[5] Introduccion a R, https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.
1.pdf.

[6] AURORA GONZALEZ VIDAL, FEIR 30: Comparacion paramétrica de medias, https://gauss.
inf.um.es/feir/30/, Enero 2024.

27


https://docs.python.org/3/tutorial/index.html
https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.1.pdf
https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.1.pdf
https://gauss.inf.um.es/feir/30/
https://gauss.inf.um.es/feir/30/




Anexo A
Algoritmo ’primal-dual’

Vamos a presentar el cédigo de Python que corresponde con el algoritmo primal-dual visto en el
Capitulo 2.

import sys
import numpy as np
import time

import os

ruta_principal = "./Datos/"

fichero_principal = ruta_principal + "listado.txt"
CONF_1_ficheros = []

CONF_2_ficheros = []

CONF_3_ficheros = []

def leer_ficheros(fichero_principal):
with open(fichero_principal,"r") as f:

ficheros = f.readlines()

for fichero in ficheros:
if fichero.strip().startswith('CONF_1_'):
nombre_fichero = fichero.strip() .strip("\n")
CONF_1_ficheros.append (nombre_fichero)
nombre_fichero_CONF_1 = 'CONF_1_listado.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_CONF_1)
with open(ruta_completa, 'a') as resultado:

resultado.write(f"{nombre_fichero}\n")

elif fichero.strip().startswith('CONF_2_'):
nombre_fichero = fichero.strip().strip("\n")
CONF_2_ficheros.append(nombre_fichero)
nombre_fichero_CONF_2 = 'CONF_2_listado.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_CONF_2)
with open(ruta_completa, 'a') as resultado:

resultado.write (f"{nombre_fichero}\n")

elif fichero.strip().startswith('CONF_3_'):
nombre_fichero = fichero.strip().strip("\n")
CONF_3_ficheros.append(nombre_fichero)
nombre_fichero_CONF_3 = 'CONF_3_listado.txt'

ruta_completa = os.path.join(ruta_principal, nombre_fichero_CONF_3)
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with open(ruta_completa, 'a') as resultado:

resultado.write(f"{nombre_fichero}\n")
leer_ficheros(fichero_principal)

def leeFichero(nombre_fichero):
with open(nombre_fichero, "r") as f:

lineas = f.readlines()

# Definimos las variables que usaremos
numeroNodos = 0

numeroArcos = 0

num_ofertas = 0

nodo = 0

0f =0

nodoInicial = 0

Il
o

nodoFinal

minflow

maxflow
cost = 0
cost_min = 0O
cost_max = O
cap_min = 0O
cap_max = 0
seed = 0

arcs_count = 0

# Variables para almacenar los datos como vectores
1=1
u-= (]
c =[]
x =[]
w =[]

# Leemos el fichero linea por linea
for linea in lineas:
# Si encontramos una linea que empieza con 'c', leemos el num_ofertas, cost_min,
# cost_maz, cap_min, cap_mazx, seed
if linea.strip() .startswith('c'):
trozos = linea.strip().strip("\n").split()
if trozos[1] == 'no._supplies/demands':
num_ofertas = int(trozos[2])
elif trozos[1] == 'cost_min':
cost_min = int(trozos[2])
elif trozos[1] == 'cost_max':
cost_max = int(trozos[2])
elif trozos[1] == 'cap_min_arcs':
cap_min = int(trozos[2])
elif trozos[l] == 'cap_max_arcs':
cap_max = int(trozos[2])
elif trozos[1] == 'seed':

seed = int(trozos[2])
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def

# Si encontramos una linea que empieza con 'p', definimos las matrices
elif linea.strip().startswith('p'):
trozos = linea.strip().strip("\n").split()
numeroNodos = int(trozos[2])
numeroArcos = int(trozos[3])
= np.full((numeroNodos, numeroNodos), -1, dtype=int)
= np.zeros (numeroArcos, dtype=int)
np.zeros (numeroArcos, dtype=int)
= np.zeros (numeroArcos, dtype=int)

= np.zeros (numeroArcos, dtype=int)

= X o g H =
]

= np.zeros (numeroNodos, dtype=int)
0f = np.zeros(shape=numeroNodos, dtype=int)

[

# Si encontramos una linea que empieza con 'n', leemos el nodo y su oferta/demanda
elif linea.strip().startswith('n'):

trozos = linea.strip().strip("\n").split()

nodo = int(trozos[1]) - 1

0f [nodo] = int(trozos[2])

# Si encontramos una linea que empieza con 'a', leemos los nodos final e inicial,
# la cota inferior y superior, y el costo
elif linea.strip().startswith('a'):

trozos = linea.strip().strip("\n").split()

nodoInicial = int(trozos[1]) - 1

nodoFinal = int(trozos[2]) - 1

minflow = int(trozos[3])

maxflow = int(trozos[4])

cost = int(trozos[5])

# Asignamos un numero de arco a la posicion de la matriz A

A[nodoInicial] [nodoFinal] = arcs_count

# Guardamos las cotas y costos en los vectores correspondientes
1[arcs_count] = minflow

ularcs_count] = maxflow

clarcs_count] = cost

arcs_count += 1
continue

return (A, 1, u, c, 0f, numeroNodos, numeroArcos, X, w, arcs_count,

num_ofertas, cost_min, cost_max, cap_min, cap_max, seed)

calcular_exceso(i, A, x, 0f, numeroNodos):
# Calculamos el flujo de entrada a % (sum_ji) y el flujo de salida desde % (sum_%j)
sum_ij = []

sum_ji = []

for j in range(numeroNodos) :
if A[i1[3] '= -1:
a = A[i][j]

x_ij = x[al
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sum_ij.append(x_1ij)

if A[j1[i] !'= -1:
a = A[j][i]
x_ji = x[a]

sum_ji.append(x_ji)

total_sum_ij = sum(sum_ij)
total_sum_ji = sum(sum_ji)

exceso = total_sum_ji - total_sum_ij + Of[i]
return exceso

def pasol(L, S):
for i in L:
if i not in S:
S.append (i)

break # Detenemos el bucle al encontrar el primer nodo en L-S
return i

def paso2(L, S, i, ¢, w, arcs_count, 1, u, x, Of, numeroNodos, A,excesos,etiquetas_nodos):
# Comprobamos todos los nodos wvecinos de % que cumplan las condiciones:
for j in range(numeroNodos):
if A[i][j] !'= -1 and j not in L:
a = A[il[j] # Indice del arco (%,3)
if clal - wl[i]l + w[j]l == 0 and x[a] < ul[al:
L.append(j)
# Etiqueta para arcos (%,7)
etiqueta = (i, '+', min(ulal - x[al,etiquetas_nodos[i][2]),a)

etiquetas_nodos[j] = etiqueta

if A[j1[i] !'= -1 and j not in L:
a = A[jI[i] # Indice del arco (j,1%)
if clal - wl[j]l + wl[i]l == 0 and 1[a] < x[al:
L.append(j)
# Etiqueta para arcos (j, i)
etiqueta = (i, '-', min(x[a]l - 1[a],etiquetas_nodos[i][2]),a)

etiquetas_nodos[j] = etiqueta

if all(excesos[j]>=0 for j in L):

return O

else:
# Selecctonamos uno de esos nodos j con exceso < 0 y wvamos al pasod
# Usamos un bucle sobre los nodos en L para encontrar el primer nodo con exceso < 0
for j in L:
if excesos[j] < 0:
return j

break # Detenemos el bucle al encontrar el primer nmodo con exceso < 0

def paso3(nodo_j, etiquetas_nodos, L, A, x, u, 1, 0f, numeroNodos,excesos):
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def

def

delta = etiquetas_nodos[nodo_j] [2]
excesos[nodo_j] += delta

while etiquetas_nodos[nodo_j]l[0] != -1
if etiquetas_nodos[nodo_j][1] == '+':
x[etiquetas_nodos[nodo_j] [3]] += delta
if etiquetas_nodos[nodo_j]l[1] == '-':
x[etiquetas_nodos[nodo_j] [3]] -= delta
nodo_j = etiquetas_nodos[nodo_j] [0]

excesos[nodo_j] -= delta

calcular_alpha(S, numeroNodos, x, w, A, u, 1, c):
alphas_forward = [] # Almacenara los valores minimos de arcos (i, j)

alphas_backward = []1 # Almacenara los walores minimos de arcos (7, %)

for i in S:
for j in range(numeroNodos) :
if j not in S and A[i]l[j] '= -1 and x[A[i1[j]1] < w[A[il[j1]:
alphas_forward.append(c[A[i] [j]] - w[il + w[jl)

if j not in S and A[jI1[i]l !'= -1 and x[A[jI1[il] > 1[A[j]1[il]1:
alphas_backward.append(-(c[A[j][i]] - w[j]l + w([il))

# Verificamos si las listas estan wvactias antes de encontrar el minimo
alpha_forward = min(alphas_forward) if alphas_forward else float('inf')
alpha_backward = min(alphas_backward) if alphas_backward else float('inf')
alpha = min(alpha_forward, alpha_backward)

return alpha

paso4(S, L, numeroNodos, x, w, A, u, 1, ¢, Of,excesos,etiquetas_nodos):

# Calculamos alpha usando la funcion 'calcular_alpha'

alpha = calcular_alpha(S, numeroNodos, x, w, A, u, 1, c)

# Verificamos st alpha es infinito (lo que significa que no hay arcos que cumplan las

# condiciones para calcular 'alpha'), lo que indica un problema no factible
if alpha == float('inf'):

print("El problema es no factible.")

sys.exit ()

else:
# Afiadimos a L todos los nodos j para los cuales el minimo se obtiene
# mediante un arco (%,7) o un arco (j,%)
for i in S:
for j in range(numeroNodos):
if j not in S and j not in L:
if (A[i][3] '= -1 and x[A[i][j]] < u[A[i][j1]
and c[A[i][j]1] - w[i] + w[j] == alpha):
a = A[il[j] # Indice del arco (%,3)
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L.append(j)
# Etiqueta para arcos (%,7)
etiqueta = (i, '+', min(ulal - x[al,etiquetas_nodos[i][2]),a)

etiquetas_nodos[j] = etiqueta

if (A[jI[i] !'= -1 and x[A[3j10i1]1 > 1[A[31[i]]
and -(c[A[jI1[il] - w[j]l + w[il) == alpha):
a = A[j1[i] # Indice del arco (j,%)
L.append(j)
# Etiqueta para arcos (j, %)
etiqueta = (i, '-', min(x[a]l - 1l[al,etiquetas_nodos[i][2]),a)

etiquetas_nodos[j] = etiqueta

# Actualizamos precios:
for i in range(numeroNodos) :
if i in S:

w[i]l = w[i] + alpha

if all(excesos[j]>=0 for j in L):

return 0

else:
# Seleccionamos uno de esos nodos j con exceso < 0 y wamos al pasod
# Usamos un bucle sobre los nodos en L para encontrar el primer nodo
# con exceso < 0
for j in L:
if excesos[j] < 0:
return j

break # Detenemos el bucle al encontrar el primer nodo con exceso < 0

def programa_principal (nombre_fichero):

(A, 1, u, c, 0Of, numeroNodos, numeroArcos, x, w, arcs_count, num_ofertas, cost_min,

cost_max, cap_min, cap_max, seed) = leeFichero(nombre_fichero)

etiquetas_nodos = []*numeroNodos

L
S
X

w

[
[
[0] #numeroArcos

[0] #numeroNodos

excesos= [0] * numeroNodos

etiquetas_nodos=[[]]*numeroNodos
L.clear()
S.clear()

for i in range(numeroNodos) :

it

excesos[i] = Of[i]
if excesos[i] > O:
L.append (i)

etiquetas_nodos[i] = (-1, 'x', excesos[il);
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while(L!'=0):
it += 1
if == L:
j = paso4(S, L, numeroNodos, x, w, A, u, 1, c, 0f,excesos,etiquetas_nodos)
if j == O:
continue
else:

paso3(j, etiquetas_nodos, L, A, x, u, 1, Of, numeroNodos,excesos)

etiquetas_nodos = [[]]*numeroNodos

S.clear()
L.clear()

for i in range(numeroNodos) :
if excesos[i] > 0:
L.append (i)

etiquetas_nodos[i] = (-1, '*x', excesos[i]);

else:
i = pasol(L, S)

j = paso2(L, S, i, ¢, w, arcs_count, 1, u, x, Of, numeroNodos, A,excesos,
etiquetas_nodos)
if j == O:
continue
else:
paso3(j, etiquetas_nodos, L, A, x, u, 1, Of, numeroNodos,excesos)
etiquetas_nodos = [[]]*numeroNodos
L.clear()
S.clear()
for i in range(numeroNodos) :
if excesos[i] > O:
L.append (i)
etiquetas_nodos[i] = (-1, 'x', excesos[il);
if len(L) ==
if all(exceso_i == 0 for exceso_i in excesos):

tiempo_fin = time.time()

tiempo_ejecucion = tiempo_fin - tiempo_inicio

if fichero in CONF_1_ficheros:
nombre_fichero_resultados = 'CONF_1_resultados.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_resultados)
with open(ruta_completa, 'a') as resultado:
resultado.write(f"{seed} {numeroNodos} {numeroArcos} {num_ofertas} "
f"{cost_min} {cost_max} {cap_min} {cap_max} "
f"{tiempo_ejecucion}\n")

break

if fichero in CONF_2_ficheros:

nombre_fichero_resultados = 'CONF_2_resultados.txt'
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ruta_completa = os.path.join(ruta_principal, nombre_fichero_resultados)
with open(ruta_completa, 'a') as resultado:
resultado.write(f"{seed} {numeroNodos} {numeroArcos} {num_ofertas} "
f"{cost_min} {cost_max} {cap_min} {cap_max} "
f"{tiempo_ejecucion}\n")

break

if fichero in CONF_3_ficheros:
nombre_fichero_resultados = 'CONF_3_resultados.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_resultados)
with open(ruta_completa, 'a') as resultado:
resultado.write(f"{seed} {numeroNodos} {numeroArcos} {num_ofertas} "
f"{cost_min} {cost_max} {cap_min} {cap_max} "
f"{tiempo_ejecucion}\n")

break

else:
print ('El problema es no factible')
sys.exit ()

for fichero in CONF_1_ficheros:
nombre_fichero = ruta_principal + fichero
tiempo_inicio = time.time()

programa_principal (nombre_fichero)

for fichero in CONF_2_ficheros:
nombre_fichero = ruta_principal + fichero
tiempo_inicio = time.time()

programa_principal (nombre_fichero)

for fichero in CONF_3_ficheros:
nombre_fichero = ruta_principal + fichero
tiempo_inicio = time.time()

programa_principal (nombre_fichero)



Anexo B

Script utilizado en R

B.1.

Calculo de la media y la desviacion tipica del tiempo de ejecucion

install.packages("ggplot2")

library(ggplot2)

library(Rcmdr)

# Leemos los datos de cada configuracion

datos_confl <- read.table("CONF_1_resultados.txt", header = FALSE)
datos_conf2 <- read.table("CONF_2_resultados.txt", header = FALSE)

datos_conf3 <- read.table("CONF_3_resultados.txt", header = FALSE)

# Damos mombres a las columnas

colnames(datos_confl) <- c("seed", "numero_nodos", "numero_arcos",
"num_ofertas", "cost_min", "cost_max", "cap_min",
"cap_max", "tiempoEjecucion")

colnames(datos_conf2) <- c("seed", "numero_nodos", "numero_arcos",
"num_ofertas", "cost_min", "cost_max", "cap_min",
"cap_max", "tiempoEjecucion")

colnames(datos_conf3) <- c("seed", "numero_nodos", "numero_arcos",
"num_ofertas", "cost_min", "cost_max", "cap_min",
"cap_max", "tiempoEjecucion")

#

Cambiamos los niveles de 'mumero_arcos'

datos_confl$numero_arcos <- factor(datos_confi$numero_arcos,

#

levels = c(1020, 2020, 3020, 4020, 5020),
labels = c('1000', '2000', '3000', '4000', '5000'))

Creamos la wvariable 'capacidad'’

datos_conf3$capacidad <- factor(datos_conf3$cap_min,

levels = c(100, 200, 400, 600, 800),
labels = c('(100,200)', '(200,400)', '(400,600)",
' (600,800) "', '(800,1000)"'))

##CONFIGURACION 1:

#
#
me

}

Calculamos el tiempo medio y la desviacion estandar para cada
numero de arcos en la Configuracion 1
dia_desviacion_confl <- function(datos) {
resumen <- aggregate(tiempoEjecucion ~ numero_arcos, data = datos,
FUN = function(x) c(mean = mean(x), desviacion = sd(x)))
return(resumen)
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# Aplicamos esta funcion a la Configuracion 1
resumen_confl <- media_desviacion_confl(datos_confl)
print (resumen_conf1)

# Creamos una tabla para la Configuracion 1

tabla_confl <- data.frame(
numero_arcos = resumen_confl$numero_arcos,
tiempo_medio = resumen_confl$tiempoEjecucion[, "mean"],
desviacion_tipica = resumen_confl$tiempoEjecucion[, "desviacion"]

)
print(tabla_confl)

# Generamos un grafico de puntos con lineas verticales para la Configuracion 1
grafico_confl <- ggplot(tabla_confl, aes(x = factor(numero_arcos), y = tiempo_medio)) +
geom_point(color = "blue", size = 3) +
geom_segment (aes(xend = as.numeric(factor (numero_arcos)), yend = 0),

color = "blue", size = 1) +
labs(title = "Tiempo medio de resolucidén por nimero de arcos",
x = "Numero de arcos",
y = "Tiempo medio") +

theme_minimal() +
scale_y_continuous(limits = c(0, 6)) +
theme (
plot.title = element_text(size = 18, face = "bold", margin = margin(b = 15)),

axis.title.x = element_text(size = 16, margin = margin(t = 15)),
axis.title.y = element_text(size = 16, margin = margin(r = 15)),
axis.text.x = element_text(size = 14, margin = margin(t = 10)),
axis.text.y = element_text(size = 14, margin = margin(r = 10))

print (grafico_conf1l)

# Guardamos el grafico como archivo PNG
ggsave("grafico_confl.png", plot = grafico_confl, width = 10, height = 8)

##CONFIGURACION 2:
# Calculamos el tiempo medio y la desviacion estandar para cada
# numero de ofertas en la Configuracion 2
media_desviacion_conf2 <- function(datos) {
resumen <- aggregate(tiempoEjecucion ~ num_ofertas, data = datos,
FUN = function(x) c(mean = mean(x), desviacion = sd(x)))
return(resumen)

}

# Aplicamos esta funcion a la Configuracion 2
resumen_conf2 <- media_desviacion_conf2(datos_conf?2)
print (resumen_conf2)

# Creamos una tabla para la Configuracion 2

tabla_conf2 <- data.frame(
num_ofertas = resumen_conf2$num_ofertas,
tiempo_medio = resumen_conf2$tiempoEjecucion[, "mean"],
desviacion_tipica = resumen_conf2$tiempoEjecucion[, "desviacion"]

)

print(tabla_conf2)
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# Generamos un grafico de puntos con lineas verticales para la Configuracion 2

grafico_conf2 <- ggplot(tabla_conf2, aes(x =
geom_point(color = "blue", size = 3) +
geom_segment (aes(xend = as.numeric(factor(n
1) +
"Tiempo medio de resolucidén po
"Namero de nodos con oferta",

color = "blue", size =
labs(title =
x =
y = "Tiempo medio") +
theme_minimal() +
theme (
plot.title = element_text(size =
axis.title.

18, face

x = element_text(size =
axis.title.y = element_text(size =
axis.text.x = element_text(size =
axis.text.y = element_text(size =

14, mar
14, mar

print(grafico_conf2)

# Guardamos el grafico como archivo PNG
ggsave("grafico_conf2.png", plot = grafico_co

##CONFIGURACION 3:
# Calculamos el tiempo medio y la desviacion
# combinacion de capacidad en la Configuracio
media_desviacion_conf3 <- function(datos) {
resumen <- aggregate(tiempoEjecucion ~ capa
FUN = function(x) c(me
return(resumen)

}

# Aplicamos esta funcion a la Configuracion 3
resumen_conf3 <- media_desviacion_conf3(datos
print (resumen_conf3)

# Creamos una tabla para la Configuracion 3
tabla_conf3 <- data.frame(
capacidad = resumen_conf3$capacidad,

factor(num_ofertas), y = tiempo_medio)) +
um_ofertas)), yend = 0),

r nimero de nodos con oferta'",

= "bold", margin = margin(b = 15)),
16, margin = margin(t = 15)),
16, margin = margin(r = 15)),

gin = margin(t = 10)),
gin = margin(r = 10))

nf2, width = 10, height = 8)

estandar para cada
n 3

cidad, data = datos,
an = mean(x), desviacion = sd(x)))

_conf3)

tiempo_medio = resumen_conf3$tiempoEjecucion[, "mean"],

desviacion_tipica = resumen_conf3$tiempoEje

)
print(tabla_conf3)

# Generamos un grdfico de puntos con lineas v
grafico_conf3 <- ggplot(tabla_conf3, aes(x =
geom_point(color = "blue", size = 3) +
geom_segment (aes(xend = as.numeric(factor(c
color = 1) +
labs(title = "Tiempo medio de resolucién po
x = "Capacidad minima y maxima",

"blue", size =

y = "Tiempo medio") +
theme_minimal() +
theme (
plot.title = element_text(size =
axis.title.

18, face
x = element_text(size =
axis.title.y = element_text(size
axis.text.x = element_text(size =
axis.text.y = element_text(size =

print(grafico_conf3)

# Guardamos el grafico como archivo PNG

cucion[, "desviacion"]

erticales para la Configuracion 3
factor(capacidad), y = tiempo_medio)) +

apacidad)), yend = 0),

r capacidad",

= "bold", margin = margin(b = 15)),
16, margin = margin(t = 15)),
16, margin = margin(r = 15)),
14, margin = margin(t = 10)),
14, margin = margin(r = 10))

ggsave("grafico_conf3.png", plot = grafico_conf3, width = 10, height = 8)
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B.2. Test de normalidad

##CONFIGURACION 1:
# Convertimos 'numero_arcos' a factor
datos_confl$numero_arcos <- as.factor(datos_confi$numero_arcos)

# Test de normalidad para 'numero_arcos'
normalityTest (tiempoEjecucion ~ numero_arcos, test="shapiro.test",
data=datos_confl)

##CONFIGURACION 2:
# Convertimos 'num_ofertas' a factor
datos_conf2$num_ofertas <- as.factor(datos_conf2$num_ofertas)

# Test de mormalidad para 'num_ofertas'
normalityTest (tiempoEjecucion ~ num_ofertas, test="shapiro.test",
data=datos_conf?2)

##CONFIGURACION 3:
# Convertimos 'capacidad' a factor
datos_conf3$capacidad <- as.factor(datos_conf3$capacidad)

# Test de mormalidad para 'capacidad'’
normalityTest (tiempoEjecucion ~ capacidad, test = "shapiro.test",
data = datos_conf3)

B.3. Test de Levene

##CONFIGURACION 1:

# Test igualdad de varianzas

print(leveneTest (tiempoEjecucion ~ numero_arcos, data=datos_confl,
center="median"))

##CONFIGURACION 2:
print (leveneTest (tiempoEjecucion
center="median"))

num_ofertas, data=datos_conf2,

##CONFIGURACION 3:
print (leveneTest (tiempoEjecucion
center="median"))

capacidad, data=datos_conf3,



Algoritmo ’primal-dual’ para el problema de flujo a costo minimo - Blanca Gémez Sanz 41
B.4. Test de ANOVA con aproximacion de Welch

##CONFIGURACION 1:
AnovaModel.1 <- aov(tiempoEjecucion ~ numero_arcos, data = datos_confl)

summary (AnovaModel. 1)
print (oneway.test(tiempoEjecucion ~ numero_arcos, data = datos_confl)) # Welch test

##CONFIGURACION 2:

AnovaModel .2 <- aov(tiempoEjecucion ~ num_ofertas, data = datos_conf2)

summary (AnovaModel.2)

print (oneway.test(tiempoEjecucion ~ num_ofertas, data = datos_conf2)) # Welch test

##CONFIGURACION 3:
AnovaModel.3 <- aov(tiempoEjecucion
summary (AnovaModel. 3)

print (oneway.test (tiempoEjecucion

capacidad, data = datos_conf3)

capacidad, data = datos_conf3)) # Welch test

B.5. Test de Tukey

##CONFIGURACION 1:
res_tukey_confl <- TukeyHSD(AnovaModel.1)
print (res_tukey_conf1)

##CONFIGURACION 2:
res_tukey_conf2 <- TukeyHSD(AnovaModel.2)
print (res_tukey_conf2)

##CONFIGURACION 3:
res_tukey_conf3 <- TukeyHSD(AnovaModel.3)
print (res_tukey_conf3)
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