
Algoritmo ‘primal-dual’ para el problema
de flujo a costo mínimo

Blanca Gómez Sanz
Trabajo de fin de grado de Matemáticas

Universidad de Zaragoza

Director del trabajo: Pedro M. Mateo Collazos
31 de enero de 2024

Summary

In the field of network optimization, the Minimum Cost Flow Problem (MCFP) stands out as an
important problem with many applications. This is about determining the most cost-effective way to
transport goods through a network, considering the cost implications of each flow and aiming to minimi-
ze overall transportation expenses while taking capacity constraints into account.

In this scenario, networks are used to represent and model real-life systems. Nodes represent lo-
cations, and arcs, connections between them. These connections denote feasible paths for transporting
goods, with the flow of goods representing the quantity being transported. The associated cost of each
arch reflects the expenses incurred.

The goal of the MCFP is to find the optimal flow configuration that minimizes the total transporta-
tion cost. This involves determining the flow quantity along each arc to satisfy demand while considering
cost constraints. The significance of MCFP extends beyond logistics, reaching into diverse fields such
as power supply networks and financial management. In the field of power supply, it aids in optimizing
the flow of electricity, ensuring efficient energy distribution. In finances, its application offers insights
into optimizing cash flow and maximizing financial efficiency across various scenarios. In logistics, the
MCFP is used to design efficient supply chain routes, ensuring timely deliveries at a minimal cost. Its
impact is even more pronounced in transportation networks, where it aids in traffic management, op-
timizing the movement of vehicles to reduce congestion. Additionally, the MCFP is also employed in
communication networks, guiding data transmission routes for optimal resource utilization.

To solve the MCFP, we delve into the development of the ’primal-dual’ algorithm. This algorithm
employs a dual ascent approach, adjusting primal and dual variables iteratively to converge towards an
optimal solution. Our study shows that the dual problem consistently possesses a feasible solution for
any set of associated values of a certain subset of the dual variables, a critical insight for the algorithmic
development.

Let us summarize the content of this work, which has been structured in 3 chapters.

It begins in Chapter 1 by introducing the minimum cost flow problem along with relevant concepts.
Then, the associated dual problem is defined, and a result is highlighted, asserting that the dual problem
always possesses a feasible solution for any set of wi values. Additionally, the Complementary Slackness
Theorem, explored in the Operations Research course [3], is recalled. Finally, a graphical representation
of the Complementary Slackness Conditions is provided.

Moving to the second Chapter, concepts and outcomes related to dual ascent algorithms are exami-
ned to ultimately define and present the ’primal-dual’ algorithm for the Minimum Cost Flow Problem.
After the theoretical overview, a detailed step-by-step example is presented. Furthermore, a Python code
is developed from scratch using this algorithm, which is later utilized in the subsequent chapter and pro-
vided in Appendix A.

In Chapter 3, a comprehensive study of the algorithm is carried out, involving three configurations

III

IV Summary

where each modification targets a specific element. The first configuration adjusts the number of arcs,
the second modifies number of nodes with supply/demand, and the third alters minimum and maximum
capacities. With the help of R and RCommander, we evaluate the average resolution time of the algo-
rithm using statistical tools like ANOVA and Tukey’s test, and also we represent the results graphically.
For that, some simple R-scripts, provided in Appendix B, have been elaborated.

In summary, the purpose of this document has been to present and study in depth the Minimum Cost
Flow Problem along with its ’primal-dual’ algorithm for resolution. The work also includes an imple-
mentation in Python of the algorithm and a computational study to gain a more detailed understanding
of the algorithm’s behavior.

For the development of this work, I have used the knowledge acquired during my Mathematics degree
in courses such as Graphs and Combinatorics, Computer Science I, Mathematical Statistics, and, above
all, in Operations Research in the 3rd year.

Índice general

Summary III

1. Introducción 1
1.1. El problema de flujo a costo mínimo . 1
1.2. El problema dual del PFCM . 2
1.3. Las condiciones de la holgura complementaria (CHC) 4

2. Algoritmo ’primal-dual’ 7
2.1. Ascenso Dual . 7
2.2. Descripción general del algoritmo de ascenso dual . 11
2.3. Algoritmo primal-dual para el PFCM . 12

3. Estudio computacional del algoritmo 21

Bibliografía 27

Anexos 29

A. Algoritmo ’primal-dual’ 29

B. Script utilizado en R 37
B.1. Cálculo de la media y la desviación típica del tiempo de ejecución 37
B.2. Test de normalidad . 40
B.3. Test de Levene . 40
B.4. Test de ANOVA con aproximación de Welch . 41
B.5. Test de Tukey . 41

V

Capítulo 1

Introducción

1.1. El problema de flujo a costo mínimo

Una red de flujo 1 es un grafo dirigido G = (N,A) con N = {1, ...,n} un conjunto de nodos conec-
tados mediante un conjunto de arcos A = {(i, j)|i ∈ N, j ∈ N} ⊆ N×N, representando por (i, j) al arco
que conecta el nodo i con el nodo j. En una red, un cierto ítem es enviado de nodo a nodo a través de
los arcos. Nos podemos encontrar con dos tipos de nodos: aquellos que tienen oferta y asociamos con
flujo positivo, conocidos como fuente, y otros que tienen demanda y asociamos con flujo negativo, los
sumideros.

El problema de flujo a costo mínimo (PFCM) sobre una red de flujo viene definido por:

Minimizar ∑
(i, j)∈A

ci jxi j

sujeto a ∑
{ j|(i, j)∈A}

xi j− ∑
{ j|(j,i)∈A}

x ji = bi, ∀i ∈ N,

li j ≤ xi j ≤ ui j, ∀(i, j) ∈ A

(1.1)

donde ci j, li j, ui j, y bi j, ∀(i, j) ∈ A, son escalares dados y su significado es el siguiente:

xi j: el flujo, la cantidad enviada desde el nodo i al nodo j

ci j: el coeficiente de costo (o simplemente costo) de (i, j), costo de envío de una unidad de flujo
desde el nodo i al nodo j

li j: el límite inferior de flujo de (i, j)

ui j: el límite superior de flujo de (i, j)

[li j,ui j]: el rango de flujo factible de (i, j), el cual nos dice la capacidad del arco (i, j)

1Para el estudio y desarrollo del algoritmo he utilizado básicamente las referencias [1] y [2]. He utilizado [1] principalmente
para el establecimiento de la notación y elementos del PFCM, así como para el desarrollo de los elementos de dualidad ne-
cesarios en el Capítulo 2. En [1] se presentan para un PFCM particular denominado circulación con costo mínimo y yo lo he
adaptado a mi problema, el problema de flujo a costo mínimo, utilizando además los conocimientos adquiridos sobre Teoría
de la dualidad en PL en la asignatura de Investigación Operativa del grado [3]. El desarrollo del algoritmo primal-dual se ha
obtenido del capítulo 3 de la segunda referencia y en el cual he incluido algún desarrollo que en este se dejaban para el lector o
se realizaban de forma diferente (cálculo del gradiente de la función objetivo del problema dual, teorema de convergencia del
algoritmo). En cuanto a las otras referencias, [4] ha sido utilizada para la implementación de los códigos del algoritmo, [5] para
los scripts de R con los que se han realizado el estudio computacional, y de [6] se ha sacado la guía para la aplicación de las
técnicas del ANOVA.

1

2 Capítulo 1. Introducción

bi: el suministro del nodo i
bi > 0 nodo con oferta (fuente)
bi < 0 nodo con demanda (sumidero)
bi = 0 nodo de transbordo

El objetivo del PFCM es minimizar la función objetivo ∑
(i, j)∈A

ci jxi j sujeto a las restricciones de (1.1),

es decir, tratar de satisfacer la demanda de los nodos demandantes con la oferta disponible en los ofertan-
tes de forma que el flujo enviado por cada arco respete sus cotas y el envío tenga el costo total mínimo.
Las primeras se denominan restricciones de conservación de flujo, mientras que las segundas son las
restricciones de capacidad. Un vector de flujo que satisface ambas restricciones se denomina factible, y
si satisface solo las restricciones de capacidad, se denomina factible en capacidad. Si existe al menos un
vector de flujo factible, el problema (PFCM) se dirá factible; de lo contrario se dirá no factible. Notar
que una condición necesaria para la factibilidad es que

∑
i∈N

bi = 0, (1.2)

Hemos presentado el Problema de Flujo a Costo Mínimo (PFCM) general, pero podemos aplicarlo a
casos particulares, como son los conocidos: Problema de transporte, Problema de asignación y Problema
de transbordo, entre otros.

Vamos a mostrar gráficamente un sencillo ejemplo de red de flujo, Figura 1.1, en el que tenemos un
nodo 1 con 4 unidades de oferta, un nodo 4 con 4 unidades de demanda:

Figura 1.1: Ejemplo de red de flujo.

En cada arco dirigido tenemos (l,u,costo), donde l corresponde con el límite inferior de flujo, u con
el límite superior de flujo, y costo con el costo de envío de una unidad de flujo por el arco (i, j). Por
ejemplo, en el arco (2,3) que va del nodo 2 al nodo 3 podemos mandar de 0 hasta 2 unidades, con
costo por unidad de 1.

1.2. El problema dual del PFCM

El problema (1.1) es un problema de programación lineal y por tanto se puede definir su problema
dual asociado. 2

Si asociamos una variable dual wi a cada ecuación de conservación de flujo de cada nodo en el
Problema (1.1), una variable dual hi j a cada restricción xi j ≤ ui j (puesta en la forma −xi j ≥−ui j), y una
variable dual vi j con cada restricción xi j ≥ li j, el problema dual asociado al problema de flujo a costo
mínimo es:

2El caso general de dualidad para Problemas de Programación Lineal (PPL) se estudió en la asignatura Investigación Ope-
rativa de 3er curso.

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 3

Maximizar ∑
i∈N

wi bi + ∑
(i, j)∈A

li j vi j− ∑
(i, j)∈A

ui j hi j

sujeto a wi−w j + vi j−hi j = ci j, ∀(i, j) ∈ A

hi j,vi j ≥ 0, ∀(i, j) ∈ A

wi no restringido, ∀i ∈ N

(1.3)

La estructura de este problema nos permite obtener los siguientes resultados que son de gran impor-
tancia.

Lema 1.2.1. El problema dual siempre posee una solución factible dado cualquier conjunto de valores
de wi. De hecho, las elecciones de vi j y hi j que se proporcionan en la demostración producen valores
óptimos de vi j y hi j para un conjunto fijo de valores de wi.

Demostración. Supongamos que se selecciona un conjunto arbitrario de valores para wi, asumiendo que
estos valores son enteros. Además, consideremos que los valores li j y ui j son fijos. Luego, la restricción
dual para el arco (i, j) se expresa como:

vi j−hi j = ci j−wi +w j, hi j ≥ 0, vi j ≥ 0

Estas restricciones se satisfacen seleccionando vi j y hi j de la siguiente manera:

vi j = máx
{

0, ci j−wi +w j
}
,

hi j = máx
{

0, −(ci j−wi +w j)
} (1.4)

Si ci j−wi +w j es positivo, asignamos a vi j esa cantidad. Si ci j−wi +w j es negativo, le cambio el
signo, −(ci j−wi +w j), y asignamos a hi j esa cantidad.

Ahora, vamos a demostrar que estas elecciones son óptimas para los distintos casos:

Sea (i, j) ∈ A con ci j −wi + w j > 0, entonces vi j = ci j −wi + w j + hi j. Sustituyendo esto en su
sumando de la función objetivo obtenemos que la aportación de [i j] en la función objetivo dual es:

li j (ci j−wi +w j +hi j)− ui j hi j

= li j (ci j−wi +w j)+ li j hi j− ui j hi j

= li j (ci j−wi +w j)+ hi j (li j−ui j)

Dado que ci j−wi +w j > 0 y li j ≤ ui j (li j−ui j ≤ 0), y el objetivo es maximizar la función objetivo
con hi j ≥ 0 y vi j ≥ 0, es óptimo que hi j = 0, lo más pequeño posible y, por lo tanto, vi j = ci j−wi +w j,
lo más grande posible.

Del mismo modo, sea (i, j) ∈ A con ci j−wi +w j < 0, entonces hi j =−(ci j−wi +w j−vi j). Sustitu-
yendo de nuevo,

li j vi j − [−(ci j−wi +w j− vi j) ui j]

= li j vi j − ui j vi j − [−(ci j−wi +w j) ui j]

= (li j−ui j) vi j − [−(ci j−wi +w j) ui j]

Dado que ci j−wi +w j < 0 (luego −(ci j−wi +w j) > 0) y li j ≤ ui j (li j− ui j ≤ 0), y el objetivo es
maximizar la función objetivo sujeta a vi j ≥ 0 y hi j ≥ 0, es óptimo que vi j = 0, lo más pequeño posible,

4 Capítulo 1. Introducción

lo que conduce a hi j =−(ci j−wi +w j).

Por último, si ci j−wi +w j = 0, entonces vi j = hi j. En este caso, la aportación a la función objetivo
se reduce a

li j hi j− ui j hi j

= (li j−ui j) hi j

y como li j−ui j ≤ 0 y queremos maximizar, la elección apropiada es hi j = 0, y por tanto, vi j = 0.

En resumen, las elecciones vi j y hi j presentadas en la demostración generan las mejores soluciones
factibles para cualquier elección previa de wi.

1.3. Las condiciones de la holgura complementaria (CHC)

Vamos a recordar unos resultados estudiados en la asignatura de Investigación Operativa para luego
particularizarlos:

Teorema 1.3.1 (Teorema de la holgura complementaria). Sean x̄ y w̄, respectivamente, soluciones facti-
bles de los problemas primal y dual siguientes

Problema primal
max cx
sujeto a Ax≤ b

x≥ 0

Problema dual
min b′w
sujeto a A′w≥ c′

w≥ 0

donde c es 1xn, A es mxn, b es mx1, x es nx1, y w es mx1.
Dichas soluciones son óptimas si y sólo si

w̄′(b−Ax̄)+(w̄′A− c)x̄ = 0 (1.5)

Definiendo ūi, i = 1, ...,m, los valores de las variables de holgura del problema primal asociados a
la solución x̄, y v̄i, j = 1, ...,n, los valores de las variables de holgura del problema dual asociados a la
solución w̄, la condición del teorema anterior puede reescribirse:

0 = w̄′(b−Ax̄)+(w̄′A− c)x̄ = w̄′ ū+ v̄ x̄ (1.6)

de donde obtenemos que w̄′ ū = 0 y v̄ x̄ = 0.
Lo podemos expresar de manera equivalente, siendo esta la forma en la que lo utilizaremos:

x̄ j v̄ j = 0, j = 1, . . . ,n,

w̄i ūi = 0, i = 1, . . . ,m
(1.7)

A continuación vamos a desarrollar estas condiciones para el PFCM:

Notar que tenemos que el dual tiene todas las restricciones de igualdad, con lo cual no hay holguras y
por tanto nos olvidamos de la condición w̄i ūi = 0 ya que se cumple trivialmente. Luego las condiciones
de la holgura complementaria para la optimización del problema de flujo a costo mínimo se reducen a:

(xi j− li j) vi j = 0, ∀(i, j) ∈ A

(ui j− xi j) hi j = 0, ∀(i, j) ∈ A
(1.8)

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 5

Por tanto, vamos a trabajar con las condiciones de holgura complementaria restringidas a las wi y
a la definición dada de vi j y hi j en (1.4) de manera que en lugar de utilizar las vi j y hi j, escribimos
(ci j−wi +w j) cambiado de signo o no, dependiendo de lo que corresponda. De esta forma, las CHC
quedarán:

si ci j−wi +w j > 0⇒ vi j > 0⇒ xi j = li j, ∀(i, j) ∈ A

si ci j−wi +w j < 0⇒ hi j > 0⇒ xi j = ui j, ∀(i, j) ∈ A

si ci j−wi +w j = 0⇒ vi j = hi j = 0⇒ li j ≤ xi j ≤ ui j, ∀(i, j) ∈ A

(1.9)

La tercera ecuación solo refleja el hecho de que en ese tercer caso, que cumple trivialmente (1.8), el
flujo respeta las restricciones de cota.
A partir de ahora, clasificaremos los arcos en tres tipos,

inactivo si ci j−wi +w j > 0,

balanceado si ci j−wi +w j = 0,

activo si ci j−wi +w j < 0.

Esta es la notación que luego utilizaremos en el desarrollo del algoritmo.

Sabemos que si tenemos un conjunto de soluciones xi j y wi factibles que verifican las restricciones
de sus respectivos problemas, y se cumplen las condiciones de holgura complementaria, entonces ambas
soluciones son óptimas para sus problemas respectivos; esto lo enunciamos en el siguiente teorema cuya
demostración son los desarrollos anteriores.

Teorema 1.3.2. Sea x un flujo factible de (1.1), y sea w = (w1, ...,wn) un conjunto de valores w j ≥ 0, j =
1, ...,n. Entonces x y (w, v, h) con v y h construidos de acuerdo a (1.4) son, respectivamente, soluciones
óptimas del problema de flujo a costo mínimo y su dual si y sólo si para todo (i, j) ∈ A se cumple:

si ci j−wi +w j > 0 (arco inactivo) entonces xi j = li j,

si ci j−wi +w j = 0 (arco balanceado) entonces li j ≤ xi j ≤ ui j,

si ci j−wi +w j < 0 (arco activo) entonces xi j = ui j

□

Una forma de entender y representar estos resultados gráficamente sería mediante la silla de Kilter3

(Figura 1.2).

Figura 1.2: Ilustración de las Condiciones de la Holgura Complementaria. Un arco cumple las CHC si el
punto (xi j,wi−w j) se encuentra sobre la línea gruesa de la función.

3Dicho nombre hace referencia a otro algoritmo para el PFCM para circulaciones (bi = 0,∀i = 1, ...,n) denominado algo-
rithm “out–of–kilter”.

Capítulo 2

Algoritmo ’primal-dual’

2.1. Ascenso Dual

La mayoría de los métodos para hallar un óptimo en PFCM son por búsqueda direccional: partiendo
de un punto, se define una dirección de búsqueda y se determina un nuevo punto a lo largo de ésta que
mejora la función objetivo.
Por ese motivo, los principales algoritmos de ascenso dual se basan en construir una dirección d ̸= 0 tal
que a partir del w actual moverse w+α0 d, α0 > 0 de forma que w+α0 d tenga mayor valor de la función
objetivo del dual que w. Para ello, en nuestro algoritmo, se seleccionan en cada iteración un subconjunto
conectado de nodos S⊆ N y se cambian los precios de estos nodos (es decir, los valores de las variables
duales wi) en cantidades iguales, dejando los precios de todos los demás nodos sin cambios. En otras
palabras, cada iteración implica un cambio en el vector de precios a lo largo de una dirección de la forma
dS = (d1, ...,dN), donde

di =

{
1 si i ∈ S
0 si i /∈ S

(2.1)

y S es un subconjunto conectado de nodos. Estas direcciones dS se llamarán direcciones elementales
y generarán nuevas soluciones del dual de la forma w+α dS con α ≥ 0.

Para comprobar si dS es una dirección de ascenso dual, necesitamos calcular la derivada direccional
correspondiente del costo dual a lo largo de dS y comprobar si es positiva. De la expresión de la función
objetivo dual q(w) = ∑

i∈N
wi bi + ∑

(i, j)∈A
li j vi j − ∑

(i, j)∈A
ui j hi j y teniendo en cuenta la definición de las

variables hi j y vi j, calculamos su derivada direccional:

q′(w;dS) = lı́m
α↓0

q(w+α dS)−q(w)

α

Para facilitar las cuentas, voy a recuadrar del mismo color los sumandos de q(w+α dS) y de q(w)
que luego restaré y darán q(w+α dS)−q(w), utilizando en esta última también los mismos colores. Los
sumandos de q(w+α dS) y q(w) que al hacer la diferencia dan igual a 0 no los he recuadrado, ya que
no juegan un papel en el resultado final de q(w+α dS)−q(w).

Primero, calculamos el sumando q(w+α dS) siendo dS = (d1,d2, ...,dN) el vector con di = 1 si i ∈ S
y di = 0 en caso contrario. Para ello, vamos a separar los distintos casos posibles, dependiendo de si i∈ S

7

8 Capítulo 2. Algoritmo ’primal-dual’

y j ∈ S, y dependiendo de si se trata de arcos activos, inactivos o balanceados:

q(w+α dS) = ∑
i∈S

(wi +α)bi +∑
i/∈S

wi bi

+ ∑
i∈S, j/∈S

ci j−wi+w j>0

(ci j−wi−α +w j) li j + ∑
j/∈S, i∈S

c ji−w j+wi>0

(c ji−w j +wi +α) l ji

+ ∑
i∈S, j/∈S

ci j−wi+w j<0

(ci j−wi−α +w j)ui j + ∑
j/∈S, i∈S

c ji−w j+wi<0

(c ji−w j +wi +α)u ji

+ ∑
i∈S, j∈S
i/∈S, j/∈S

ci j−wi+w j>0

(ci j−wi +w j) li j + ∑
i∈S, j∈S
i/∈S, j/∈S

ci j−wi+w j<0

(ci j−wi +w j)ui j

+ ∑
j∈S, i∈S
j/∈S, i/∈S

c ji−w j+wi>0

(c ji−w j +wi) l ji + ∑
j∈S, i∈S
j/∈S, i/∈S

c ji−w j+wi<0

(c ji−w j +wi)u ji

+ ∑
i∈S, j/∈S

ci j−wi+w j=0

(ci j−wi−α +w j)ui j + ∑
j/∈S, i∈S

c ji−w j+wi=0

(c ji−w j +wi +α) l ji

+ ∑
i∈S, j∈S
i/∈S, j/∈S

ci j−wi+w j=0

(ci j−wi +w j) li j

Notar que los dos primeros sumatorios podemos reagruparlos de la siguiente forma para usarlos en
la resta:

∑
i∈S

(wi +α)bi + ∑
i/∈S

wi bi = ∑
i∈N

wi bi +∑
i∈S

α bi

A continuación vamos a calcular la función objetivo del dual q(w), distinguiendo también los distin-
tos casos posibles:

q(w) = ∑
i∈N

wi bi + ∑
i∈S, j/∈S

ci j−wi+w j>0

(ci j−wi +w j) li j + ∑
j/∈S, i∈S

c ji−w j+wi>0

(c ji−w j +wi) l ji

+ ∑
i∈S, j/∈S

ci j−wi+w j<0

(ci j−wi +w j)ui j + ∑
j/∈S, i∈S

c ji−w j+wi<0

(c ji−w j +wi)u ji

+ ∑
i∈S, j∈S
i/∈S, j/∈S

ci j−wi+w j>0

(ci j−wi +w j) li j + ∑
i∈S, j∈S
i/∈S, j/∈S

ci j−wi+w j<0

(ci j−wi +w j)ui j

+ ∑
j∈S, i∈S
j/∈S, i/∈S

c ji−w j+wi>0

(c ji−w j +wi) l ji + ∑
j∈S, i∈S
j/∈S, i/∈S

c ji−w j+wi<0

(c ji−w j +wi)u ji

+ ∑
i∈S, j/∈S

ci j−wi+w j=0

(ci j−wi +w j)ui j + ∑
j/∈S, i∈S

c ji−w j+wi=0

(c ji−w j +wi) l ji

+ ∑
i∈S, j∈S
i/∈S, j/∈S

ci j−wi+w j=0

(ci j−wi +w j) li j

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 9

Finalmente, calculamos la diferencia:

q(w+α dS)−q(w) = ∑
j/∈S, i∈S

c ji−w j+wi<0

α u ji + ∑
j/∈S, i∈S

c ji−w j+wi>0

α l ji + ∑
j/∈S, i∈S

c ji−w j+wi=0

α l ji

− ∑
i∈S, j/∈S

ci j−wi+w j<0

α ui j − ∑
i∈S, j/∈S

ci j−wi+w j=0

α ui j − ∑
i∈S, j/∈S

ci j−wi+w j>0

α li j

+ ∑
i∈N

α bi

Dividiendo esta expresión entre α y teniendo en cuenta que: si ci j−wi+w j < 0 (o c ji−w j +wi < 0)
es activo; si ci j−wi+w j > 0 (o c ji−w j +wi > 0) es inactivo; y si ci j−wi+w j = 0 (o c ji−w j +wi = 0)
es balanceado, tenemos

q(w+α dS)−q(w)

α
= ∑

j/∈S, i∈S
activo

u ji + ∑
j/∈S, i∈S
inactivo

l ji + ∑
j/∈S, i∈S

balanceado

l ji

− ∑
i∈S, j/∈S

activo

ui j − ∑
i∈S, j/∈S

balanceado

ui j − ∑
i∈S, j/∈S
inactivo

li j

+ ∑
i∈N

bi

= ∑
(j,i) : activo, j/∈S, i∈S

u ji + ∑
(j,i) : inactivo o balanceado, j/∈S, i∈S

l ji

− ∑
(i, j) : activo o balanceado, i∈S , j/∈S

ui j − ∑
(i, j) : inactivo, i∈S, j/∈S

li j

+ ∑
i∈S

bi

Finalmente, aplicando el límite cuando α → 0 obtenemos la expresión de la derivada direccional.

q′(w;dS) = lı́m
α↓0

q(w+α dS)−q(w)

α

= ∑
(j,i) : activo, j/∈S, i∈S

u ji + ∑
(j,i) : inactivo o balanceado, j/∈S, i∈S

l ji

− ∑
(i, j) : activo o balanceado, i∈S , j/∈S

ui j − ∑
(i, j) : inactivo, i∈S, j/∈S

li j

+ ∑
i∈S

bi

(2.2)

Esto es, la derivada direccional q′(w;dS) es la diferencia entre el flujo de entrada y salida a través
del conjunto de nodos S cuando los flujos de los arcos inactivos y activos se establecen en sus límites
inferior y superior, respectivamente, y el flujo de cada arco balanceado incidente en S se establece en su
límite inferior o superior dependiendo de si el arco entra a S o sale de S.

Para obtener un conjunto adecuado S, con derivada direccional positiva q′(w;dS), es conveniente
mantener un vector de flujo x que satisfaga las CHC junto con w. Esto ayuda a organizar la búsqueda de
una dirección de ascenso y a detectar la optimización, como se explicará a continuación.

10 Capítulo 2. Algoritmo ’primal-dual’

Para un vector de flujo x, definimos el exceso gi del nodo i como la diferencia entre el flujo total de
entrada a i menos el flujo total de salida de i, es decir,

gi = ∑
{ j|(j,i)∈A}

x ji− ∑
{ j|(i, j)∈A}

xi j +bi (2.3)

y tenemos que el exceso total de un conjunto de nodos S es

∑
i∈S

gi = ∑
{(j,i)∈A| j/∈S,i∈S}

x ji − ∑
{(i, j)∈A|i∈S, j/∈S}

xi j + ∑
i∈S

bi (2.4)

Obsérvese que si j ∈ S e i ∈ S entonces aparece x ji en el primer sumando de gi y x ji en el segundo su-
mando de g j y se cancelan, por lo que solo quedan en (2.4) arcos (i, j) y (j, i) con i ∈ S y j /∈ S

Si x satisface las CHC junto con w, es decir, se cumple el Teorema (1.3.2) [xi j = ui j si es activo;
xi j = li j si es inactivo; li j ≤ xi j ≤ ui j si es balanceado], podemos reescribir (2.4) como

∑
i∈S

gi = ∑
(j,i) : activo, j/∈S, i∈S

u ji + ∑
(j,i) : inactivo, j/∈S, i∈S

l ji + ∑
(j,i) : balanceado, j/∈S, i∈S

x ji

−

[
∑

(i, j) : activo, i∈S , j/∈S
ui j + ∑

(i, j) : inactivo, i∈S , j/∈S
li j + ∑

(i, j) : balanceado, i∈S , j/∈S
xi j

]
+ ∑

i∈S
bi

(2.5)

Despejando ∑
i∈S

bi de (2.2) y sustituyendo con este en (2.5) obtenemos

∑
i∈S

gi = q′(w;dS) + ∑
(j,i) : balanceado, j/∈S, i∈S

(x ji− l ji)

+ ∑
(i, j) : balanceado, i∈S, j/∈S

(ui j− xi j)

≥ q′(w;dS)

(2.6)

Vemos, por lo tanto, que sólo un conjunto de nodos S que tiene exceso total positivo puede ser candi-
dato para generar una dirección dS de ascenso dual, porque en caso contrario, por la desigualdad anterior,
si la suma de las gi es negativa, la derivada direccional q′(w;dS) sería menor o igual que algo negativo
y sería una dirección de descenso en lugar de ascenso. En particular, si no hay un arco balanceado (i, j)
con i ∈ S, j /∈ S, y xi j < ui j (es decir, si ∑(i, j) : balanceado, i∈S, j/∈S (ui j− xi j) = 0), y no hay un arco balan-
ceado (j, i) con j /∈ S, i ∈ S, y l ji < x ji (es decir, si ∑(j,i) : balanceado, j/∈S, i∈S (x ji− l ji) = 0), entonces la
desigualdad (2.6) queda

∑
i∈S

gi = q′(w;dS) (2.7)

luego si S tiene un exceso total positivo, entonces dS es una dirección de ascenso.
El siguiente lema expresa esta idea y proporciona la base para los algoritmos posteriores.

Lema 2.1.1. Supongamos que x y w satisfacen las CHC y sea S un subconjunto de nodos. Sea dS =
(d1,d2, ...,dN) el vector con di = 1 si i ∈ S y di = 0 en caso contrario, y supongamos que

∑
i∈S

gi > 0

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 11

Entonces, dS es una dirección de ascenso dual, es decir,

q′(w;dS)> 0,

o existen nodos i ∈ S y j /∈ S tales que (i, j) es un arco balanceado con xi j < ui j o (j, i) es un arco
balanceado con l ji < x ji.

Demostración. Se sigue de la Ecuación (2.6):

Si ∑
i∈S

gi > 0 y q′(w;dS)> 0, dS es una dirección de ascenso dual y se cumple el Lema.

En caso contrario, si ∑
i∈S

gi > 0 pero q′(w;dS) ≤ 0, por (2.6) vemos que se tiene que cumplir la

siguiente desigualdad

∑
(j,i) : balanceado, j/∈S, i∈S

(x ji− l ji) + ∑
(i, j) : balanceado, i∈S, j/∈S

(ui j− xi j)> 0

Es decir, tienen que existir nodos i ∈ S y j /∈ S tales que (i, j) es un arco balanceado con xi j < ui j o (j, i)
es un arco balanceado con l ji < x ji; lo que corresponde con la segunda parte del Lema.

2.2. Descripción general del algoritmo de ascenso dual

Los algoritmos comienzan con un par de vectores enteros flujo-precio (x,w), que satisfacen las CHC,
y funcionan realizando una serie de iteraciones. Al comienzo de cada iteración, tendremos un subcon-
junto de nodos S tal que

∑
i∈S

gi > 0;

es decir, inicialmente S consta de uno o más nodos con exceso positivo. Según el lema anterior, existen
dos posibilidades:

(a) S define una dirección de ascenso dual dS = (d1,d2, ...,dN), donde di = 1 si i ∈ S y di = 0 en caso
contrario.

(b) S se puede ampliar agregando un nodo j /∈ S con la propiedad descrita en el Lema 2.1.1, es decir,
para algún i ∈ S, (i, j) es un arco balanceado con xi j < ui j, o (j, i) es un arco balanceado con
l ji < x ji.
En el caso (b), hay dos posibilidades para el nodo j agregado:

(1) g j ≥ 0, en cuyo caso,

∑
i∈S∪{ j}

gi > 0;

y el proceso puede continuar con

S← S∪{ j}

(2) g j < 0, en cuyo caso, se puede ver que hay un camino que se origina en algún nodo i del
conjunto inicial S y termina en el nodo j que no está bloqueado, es decir, todos sus arcos
tienen espacio para un aumento de flujo en el dirección de i a j. Tal camino se llama camino
de aumento. Se puede aumentar el flujo de los arcos hacia adelante (dirección de i a j)
del camino y disminuir el flujo de los arcos hacia atrás (dirección de j a i) del camino,
podemos acercar ambos excesos gi y g j a cero sin afectar el exceso de todos los demás nodos
y manteniendo las CHC.

12 Capítulo 2. Algoritmo ’primal-dual’

Dado que el exceso absoluto total ∑i∈N |gi| no puede reducirse indefinidamente, se ve que a partir de
un par entero de vectores flujo-precio que satisfaga las CHC, después de como máximo un número finito
de iteraciones en las que se producen aumentos de flujo sin encontrar una dirección de ascenso, sucederá
una de estas tres cosas:

(a) Se encontrará una dirección de ascenso dual; esta dirección se puede utilizar para mejorar el costo
dual.

(b) gi = 0 para todo i; en este caso el vector de flujo x es factible, y dado que satisface las CHC junto
con w, según el Teorema 1.3.2, x es óptimo primal y w es óptimo dual.

(c) gi ≤ 0 para todo i pero gi < 0 para al menos un i; de la ecuación (2.4) tenemos ∑i∈N bi = ∑i∈N gi,
luego ∑i∈N bi < 0, y por consiguiente el problema es no factible.

Por lo tanto, para un problema factible, el procedimiento que acabamos de describir se puede utilizar
para encontrar una dirección de ascenso dual y mejorar el costo dual comenzando en cualquier vector de
precios no óptimo.

2.3. Algoritmo primal-dual para el PFCM

El algoritmo primal-dual comienza con cualquier par de enteros (x,w) que satisfaga las CHC. Una
posibilidad es elegir arbitrariamente el vector entero w y establecer xi j = li j si (i, j) está inactivo o ba-
lanceado, y xi j = ui j en caso contrario. Otra posibilidad podría ser elegir estos x y w basándonos, por
ejemplo, en los resultados de una optimización anterior. El algoritmo preserva las CHC del par (x,w) en
todo momento.

Al comienzo de la iteración, tenemos un par de enteros (x,w) que satisface las CHC. La iteración
indicará: que el problema primal es no factible; o bien indicará que (x,w) es óptimo; o bien transformará
este par en otro par que satisfacerá las CHC.
En particular, si gi ≤ 0 para todo i, entonces teniendo en cuenta ∑i∈N bi = ∑i∈N gi (por la Ecuación (2.4)
con S = N), hay dos posibilidades:

(1) gi < 0 para algún i, en cuyo caso ∑i∈N bi < 0 y el problema es no factible.

(2) gi = 0 para todo i, en cuyo caso x es factible y por lo tanto también es óptimo, ya que satisface
CHC junto con w.

En cualquiera de los dos casos, el algoritmo termina.

Si por otro lado tenemos gi > 0 para al menos un nodo i, la iteración comienza seleccionando un
subconjunto I no vacío de nodos i con gi > 0. La iteración mantiene dos conjuntos de nodos S y L, con
S⊂ L. Inicialmente, S está vacío y L consta del subconjunto I.

Vamos a usar la siguiente terminología:

S : Conjunto de nodos escaneados (son los nodos cuyos arcos incidentes se han “examinado”
durante la iteración).

L : Conjunto de nodos etiquetados (estos son los nodos que se han escaneado durante la
iteración o son candidatos actuales para escanear).

En el transcurso de la iteración, continuamos agregando nodos a L y S hasta que se encuentre un
camino de aumento o L = S, en cuyo caso se demostrará que dS es una dirección de ascenso. La iteración

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 13

también mantiene una etiqueta para cada nodo i ∈ L− I , que es un arco incidente de i. Las etiquetas son
útiles para construir caminos de aumento (lo veremos en el Paso 3 del algoritmo).

Pasos de la iteración:

Paso 0 (Inicialización):
Seleccionamos un conjunto I de nodos i con gi > 0, tomamos L := I y S := /0, y vamos al
Paso 1.
Si no hay un nodo i con gi > 0, terminamos, ya que:

• Si gi = 0 ∀i , entonces ∑
{ j|(i, j)∈A}

xi j− ∑
{ j|(j,i)∈A}

x ji = bi se cumple ⇒ el par (x,w) es

óptimo.

• Si gi ≤ 0 ∀i y ∃g j < 0, el problema es no factible.

Paso 1 (Eligir un nodo para escanear): Si S = L, vamos al Paso 4; de lo contrario, selec-
cionamos un nodo i ∈ L−S, establecemos S := S∪{i} y vamos al Paso 2.

Paso 2 (Etiquetar los nodos vecinos de i): Añadimos a L todos los nodos j /∈ L tales que
(j, i) esté balanceado y l ji < x ji o (i, j) esté balanceado y xi j < ui j ; también para cada uno
de esos j, asignamos a j la etiqueta “(i−,x ji− l ji)” si (j, i) está balanceado y l ji < x ji, y
de lo contrario asignamos a j la etiqueta “(i+,ui j− xi j)”. Si para todos los nodos j recién
agregados a L tenemos g j ≥ 0, vamos al Paso 1. De lo contrario, seleccionamos uno de estos
nodos j con g j < 0 y vamos al Paso 3.

Paso 3 (Aumento de flujo): Hemos encontrado un camino de aumento P que comienza en
un nodo i perteneciente al conjunto inicial I y termina en el nodo j identificado en el Paso
2. La ruta se construye rastreando las etiquetas hacia atrás comenzando desde j, y es tal que
tenemos

xmn < umn, ∀(m,n) ∈ P+, ∀n con etiqueta m+, umn− xmn

xmn > lmn, ∀(m,n) ∈ P−, ∀m con etiqueta n−, umn− xmn

donde P+ y P− son los conjuntos de arcos hacia delante y hacia atrás de P, respectivamente.
Sea

δ = mı́n
{

gi,−g j,{umn− xmn | (m,n) ∈ P+} ,{xmn− lmn | (m,n) ∈ P−}
}

Aumentamos en δ los flujos de todos los arcos en P+, disminuimos en δ los flujos de todos
los arcos en P−, restamos δ a gi y sumamos δ a g j, y vamos a la siguiente iteración (Paso 0).

Paso 4 (Cambio de precio): Sea

α = mı́n
{{

ci j−wi +w j | (i, j) ∈ A, xi j < ui j, i ∈ S, j /∈ S
}
,{

− (c ji−w j +wi) | (j, i) ∈ A, l ji < x ji, i ∈ S, j /∈ S
}} (2.8)

Establecemos:

wi =

{
wi +α, si i ∈ S
wi, en otro caso

14 Capítulo 2. Algoritmo ’primal-dual’

Añadimos a L todos los nodos j para los cuales el mínimo en (2.8) se obtiene mediante un
arco (i, j) o un arco (j, i); también para cada tal j, asignamos a j la etiqueta “(i+,ui j− xi j)”
si el mínimo en Eq. (2.8) se obtiene mediante un arco (i, j), y en caso contrario damos a j
la etiqueta “(i−,x ji− l ji)”. Si para todos los nodos j recién agregados a L tenemos g j ≥ 0,
vamos al Paso 1. De lo contrario, seleccionamos uno de estos nodos j con g j < 0 y va-
mos al Paso 3. [Nota: si no hay arcos (i, j) con xi j < ui j, i ∈ S, y j /∈ S, o arcos (j, i) con
l ji < x ji, i∈ S, y j /∈ S, el problema es no factible y el algoritmo termina; véase la Prop. 2.3.1
que sigue.]

Tengamos en cuenta lo siguiente con respecto a la iteración típica del algoritmo primal-dual:

(a) Todas las operaciones de la iteración preservan la integralidad del par de vectores flujo-precio.

(b) La iteración mantiene las CHC del par de vectores flujo-precio. Para ver esto, observamos que
los arcos con ambos extremos en S, que están balanceados justo antes de un cambio de precio,
continúan estando balanceados después de un cambio de precio. Esto significa que un camino de
aumento de flujo, incluso si ocurre después de varias ejecuciones del Paso 4, cambia solo los flujos
de arcos balanceados, por lo que no puede destruir las CHC. Además, un cambio de precio en el
Paso 4 mantiene las CHC porque no se modifica ningún flujo de arco en este paso y el incremento
de precio α de la Ecuación (2.8) es tal que ningún arco cambia de estado de activo a inactivo o
viceversa.

(c) En todo momento tenemos S⊂ L. Además, cuando vamos al Paso 4, tenemos S= L y L no contiene
ningún nodo con exceso negativo. Por lo tanto, según la lógica del Paso 2, no existe un arco
balanceado (i, j) con xi j < ui j, i ∈ S y j /∈ S, ni un arco balanceado (j, i) con l ji < x ji, i ∈ S, y
j /∈ S. Luego por el razonamiento utilizado para obtener la Ec. (2.7), llegamos a que dS es una
dirección de ascenso.

(d) Sólo se producen un número finito de cambios de precios en cada iteración, por lo que cada itera-
ción se ejecuta hasta su finalización, ya sea terminando con un aumento de flujo en el Paso 3 o con
una indicación de no factibilidad en el Paso 4. Para ver esto, observamos que entre dos cambios de
precio, el conjunto L se amplía en al menos un nodo, por lo que no puede haber más de N cambios
de precio por iteración.

(e) El algoritmo sólo ejecuta un número finito de pasos de aumento de flujo, ya que cada uno de ellos
reduce el exceso absoluto total ∑i∈N |gi| en una cantidad entera, mientras que los cambios de precio
no afectan al exceso absoluto total.

(f) El algoritmo termina. La razón es que cada iteración se ejecutará hasta su finalización (por (d)) e
involucrará exactamente un aumento, mientras que solo habrá un número finito de aumentos (por
(e)).

La siguiente proposición establece la validez del método.

Proposición 2.3.1. Considerar el problema del flujo de costo mínimo y suponer que ci j, li j,ui j y bi son
todos números enteros.

(a) Si el problema es factible, entonces el método primal-dual termina con un vector de flujo óptimo
entero x y un vector de precio óptimo entero w.

(b) Si el problema no es factible, entonces el método primal-dual termina porque gi ≤ 0 para todo i y
gi < 0 para al menos un i o porque no hay ningún arco (i, j) con xi j < ui j, i ∈ S, y j /∈ S, y ningún
arco (j, i) con l ji < x ji, i ∈ S y j /∈ S en el Paso 4.

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 15

Demostración. Los items (a) a (f) anteriores garantizan (a) de esta proposición.
Para demostrar (b), nos fijamos que al acabar pueden darse 3 casos:

• En el Paso 0, con gi = 0 ∀i, llegamos a: solución óptima, función objetivo factible, w factible y se
verifican las CHC (apartado (a)).

• En el Paso 0, con gi ≤ 0 ∀i y ∃ g j < 0, el problema es no factible. Suma de ofertas distinta de
suma de demandas.

• En el cálculo de α en (2.8), si no encontramos arcos para definir α , llegamos a que el problema es
no factible.

Vamos a ver este último caso:
Empezamos la iteración tomando un conjunto I de nodos i con gi > 0. Continuamos con el algoritmo

y llegados a un punto tenemos que S = L, con lo que iríamos al Paso 4. Notar que como I ⊆ L = S,
entonces ∑

i∈S
gi > 0 ya que gi ≥ 0, ∀i ∈ S y, en particular, gi > 0, ∀i ∈ I ⊆ S. Aplicando el Lema 2.1.1,

tenemos que dS = (d1,d2, ...,dN) con di = 1 si i ∈ S y di = 0 si i /∈ S es una dirección de ascenso dual.
Ahora, en el Paso 4, suponer que no encontramos arcos para definir α; por lo tanto, los arcos (i, j)

balanceados con i ∈ S y j /∈ S cumplen que xi j = ui j, y los arcos (j, i) balanceados con i ∈ S y j /∈ S
cumplen que x ji = l ji (porque si no en el Paso 4 sí que podría definirse α). Esto implica que ∑

i∈S
gi =

q′(w;dS) (eq. 2.7). Por tanto, al movernos en la dirección dS, el nuevo wα = w+α dS, α > 0, mantendrá
los arcos (i, j) y (j, i), i ∈ S, j /∈ S, en las mismas condiciones.

• Si (i, j) ∈ A, i ∈ S, j /∈ S y ci j−wi +w j ≤ 0 entonces el nuevo costo marginal es
ci j−wi +w j−α ≤ 0, ∀α > 0, por lo tanto todos esos arcos siguen estando activos o balanceados.

• Si (j, i) ∈ A, i ∈ S, j /∈ S y c ji−w j +wi ≥ 0 entonces el nuevo costo marginal es
c ji−w j+wi+α ≥ 0, ∀α > 0, por lo tanto todos esos arcos siguen estando inactivos o balanceados.

Como se cumplen estas condiciones, se sigue manteniendo la expresión (2.7), de manera que ∑
i∈S

gi =

q′(wα ;dS), y tenemos que q′(wα ;dS) se mantiene constante e igual a ∑
i∈S

gi > 0, ∀α > 0.

Resumiendo: dS es una dirección de ascenso que mantiene constante q′(wα ;dS), ∀α > 0, por lo que
si α → +∞, el valor de la función objetivo del dual tenderá a +∞ (ya que aumenta en α ∑

i∈S
gi), con lo

cual, el problema dual es no acotado. Aplicando el Teorema fundamental de la dualidad, si el problema
dual es no acotado, el primal es no factible y con eso finalizamos la demostración.

Con el objetivo de entender el funcionamiento del algoritmo descrito, vamos a proceder a estudiar en
detalle el siguiente ejemplo:

16 Capítulo 2. Algoritmo ’primal-dual’

Comenzamos con el Paso 0: seleccionamos el nodo i = {1} ya que es el único con gi > 0, tomamos
L := {1} y S := /0 y vamos al Paso 1. Como S ̸= L, tomamos un nodo i ∈ L− S = {1}, establecemos
S := S∪ {i} = {1} y continuamos con el Paso 2. No encontramos ningún arco balanceado, luego no
añadimos ningún arco a L y volvemos al Paso 1. Ahora sí, tenemos que S = L = {1}, y continuamos con

el Paso 4. Calculamos α: α = mı́n{c12 = 1, c13 = 5}= 1, y establecemos wi =

{
wi +α, si i ∈ S
wi, en otro caso

es decir, w1 = 1, w2 = 0, w3 = 0, w4 = 0. Actualizamos los precios en el grafo:

Añadimos a L todos los nodos j para los cuales el mínimo α = 1 se obtiene mediante un arco (i, j)
o un arco (j, i); en este caso, el nodo 2, y lo etiquetamos: 2 −→ (1+, 1). Así, el conjunto pasa a ser
L = {1,2}. Como g2 ≥ 0, vamos al Paso 1.

Tenemos que {1}= S ̸= L= {1,2}, luego seleccionamos i∈ L−S= {2}, establecemos S := S∪{i}=
{1,2} y vamos al Paso 2. No encontramos ningún arco balanceado, luego volvemos al Paso 1. Ahora sí, se
cumple que S=L= {1,2} y podemos ir al Paso 4. Hallamos α =mı́n{c13−w1 = 5−1, c23 = 1, c24 = 4}=
1 y actualizamos los precios, de manera que w1 = 2, w2 = 1, w3 = 0, w4 = 0 :

Añadimos el nodo 3 a L, L= {1,2,3}, y lo etiquetamos 3 −→ (2+, 2). Como g3≥ 0, vamos al Paso
1. Vemos que S ̸= L, luego seleccionamos i ∈ L−S = {3}, definimos S := S∪{i}= {1,2,3} y vamos al
Paso 2. De nuevo, no encontramos ningún arco balanceado y pasamos al Paso 1. Como S = L = {1,2,3},
podemos ir al Paso 4, en el que calculamos α = mı́n{c34 = 2, c24−w2 = 4−1}= 2 y actualizamos los
precios, w1 = 4, w2 = 3, w3 = 2, w4 = 0 :

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 17

Añadimos a L el nodo 4, L = {1,2,3,4}, y lo etiquetamos: 4 −→ (3+, 3). Como g4 < 0, procede-
mos a ir al Paso 3. Notar que hemos encontrado un camino de aumento P que comienza en 1 y termina
en 4 , siendo este: (1,2), (2,3), (3,4).
Hallamos δ = mı́n{g1 = 4,−g4 = 4, u12− x12 = 1, u23− x23 = 2, u34− x34 = 3}= 1.
Aumentamos en δ = 1 los flujos de todos los arcos en P+, es decir, x12 = 1, x23 = 1, x34 = 1. También,
restamos δ a g1: g1 := 4−1 = 3; y sumamos δ a g4: g4 :=−4+1 =−3 :

A continuación, pasamos a la siguiente iteración (Paso 0).

Iniciamos de nuevo tomando L = {1} y S := /0, y como S ̸= L, tomamos i ∈ L−S = {1}, definimos
S := S∪{i}= {1} y vamos al Paso 2. Notar que ahora sí hay un arco balanceado (c12−w1+w2 = 1−4+
3 = 0); sin embargo, no cumple la cota xi j < ui j, luego no añadimos ningún nodo y volvemos al Paso 1.
Tenemos S = L = {1}, así que continuamos con el Paso 4. Calculamos α = mı́n{c13−w1 +w3 = 3}= 3
y actualizamos los precios: w1 = 7, w2 = 3, w3 = 2, w4 = 0.

Añadimos el nodo 3 a L, L = {1,3}, y procedemos a su etiquetación: 3 −→ (1+, 3). Como g3 ≥ 0,
vamos al Paso 1. Tenemos {1} = S ̸= L = {1,3}, luego modificamos S tal que S := S∪{i} = {1,3} y
continuamos con el Paso 2. Nos encontramos con dos nodos j /∈ L tales que son balanceados y cumplen

18 Capítulo 2. Algoritmo ’primal-dual’

las cotas: el primero, el nodo 4 , cumple que c34−w3 +w4 = 2−2+0 = 0 y x34 < u34 ; y el segundo,
el nodo 2 , cumple que c23−w2 +w3 = 1−3+2 = 0 y l23 < x23. Llevamos a cabo sus respectivas eti-
quetaciones: 4 −→ (3+, 1), 2 −→ (3−, 1). Como g4 < 0, nos dirigimos al Paso 3. Hemos encontrado
un camino de aumento P que comienza en 1 y termina en 4 , cuyos arcos son: (1,3), (3,4). Hallamos
δ = mı́n{g1 = 3, −g4 = 3, u13− x13 = 3, u34− x34 = 2}= 2. Aumentamos en δ = 2 los flujos de todos
los arcos en P+, es decir, x13 = 2, x34 = 3. También, restamos δ a g1: g1 := 3−2 = 1; y sumamos δ a
g4: g4 :=−3+2 =−1 :

A continuación, vamos a llevar a cabo la siguiente iteración, comenzando de nuevo con el Paso 0:
L = {1} y S := /0. Como S ̸= L, añadimos i = {1} a S y nos movemos al Paso 2. Nos encontramos
con que el nodo 3 cumple que c13−w1 +w3 = 5− 7+ 2 = 0 y x13 < u13, luego lo añadimos a L y lo
etiquetamos tal que 3 −→ (1+, 1). Como g3 ≥ 0, vamos al Paso 1. Notar que {1} = S ̸= L = {1,3},
luego añadimos el nodo 3 a S y seguimos con el Paso 2. Estudiamos los nodos j /∈ L y vemos que el
nodo 2 cumple las condiciones necesarias: c23−w2 +w3 = 1−3+2 = 0 y l23 < x23. Lo añadimos a L,
L = {1,3,2}, y lo etiquetamos 2 −→ (3−, 1). (Notar que se trata de un arco hacia atrás.) Como g2 ≥ 0,
vamos al Paso 1. Tenemos {1,3}= S ̸= L = {1,3,2}, entonces añadimos i = {2} a S y proseguimos con
el Paso 2. No encontramos ningún arco balanceado así que volvemos al Paso 1. Ahora sí que se cumple
que S = L = {1,3,2}, y continuamos con el Paso 4. Hallamos α = mı́n{c24−w2 +w4 = 1} = 1, y con
este actualizamos los precios, de forma que: w1 = 8, w2 = 4, w3 = 3, w4 = 0.

Añadimos a L el nodo 4, L = {1,3,2,4}, y le asignamos: 4 −→ (2+, 1). Vemos que g4 < 0, luego
seguimos con el Paso 3. Hemos conseguido un camino de aumento P que comienza en 1 y termina en
4 . En este caso, el camino es: (1,3), (3,2), (2,4).

Calculamos el valor de α = mı́n{g1 = 1, −g4 = 1, u13− x13 = 1, x23− l23 = 1, u24− x24 = 1}= 1.
Procedemos a aumentar en δ = 1 los flujos de todos los arcos en P+ y disminuir en δ = 1 los flujos de
todos los arcos en P−, es decir, x13 = 3, x23 = 0, x24 = 1. Por último, restamos δ = 1 a g1: g1 := 1−1= 0,
y sumamos δ = 1 a g4: g4 :=−1+1 = 0, y vamos al Paso 0:

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 19

Llegados a este punto, vemos que gi = 0, ∀i, lo que significa que el par (x,w) es óptimo y finaliza-
mos las iteraciones del algoritmo. Por tanto, como podemos ver en el último grafo, la solución óptima de
nuestro ejemplo es:

x = (x12 = 1, x13 = 3, x23 = 0, x24 = 1, x34 = 3), w = (w1 = 8, w2 = 4, w3 = 3, w4 = 0)

Capítulo 3

Estudio computacional del algoritmo

En este capítulo vamos a realizar un estudio computacional del algoritmo estudiado. El algoritmo
primal-dual presentado en el Capítulo 2 ha sido implementado en Python (su código se proporciona en
el Anexo B) y vamos a aplicarlo a una colección de 450 problemas1 creados con una versión simplificada
del generador de redes PGRIDGEN.

Estos 450 problemas están agrupados en 3 configuraciones de redes distintas. En cada una de ellas,
fijaremos los valores de todas las variables de interés excepto de una, la cual variaremos con el objetivo
de estudiar el comportamiento del tiempo de resolución del algoritmo. Para la Configuración 1, incre-
mentaremos el número de arcos de 100 a 500; para la Configuración 2, el número de nodos con oferta y
demanda de 10 a 50; y para la Configuración 3, la capacidad de los arcos 2 desde (100-200) a (800-1000).
Los parámetros considerados en detalle se muestran en la Tabla 3.1.

nodos arcos of/dem costo capacidad of total
Conf 1 200 1000 20 (100-500) (500-1000) 20000

200 2000 20 (100-500) (500-1000) 20000
200 3000 20 (100-500) (500-1000) 20000
200 4000 20 (100-500) (500-1000) 20000
200 5000 20 (100-500) (500-1000) 20000

Conf 2 400 2500 10 (100-500) (500-1000) 20000
400 2500 20 (100-500) (500-1000) 20000
400 2500 30 (100-500) (500-1000) 20000
400 2500 40 (100-500) (500-1000) 20000
400 2500 50 (100-500) (500-1000) 20000

Conf 3 200 2500 20 (100-500) (100−200) 20000
200 2500 20 (100-500) (200−400) 20000
200 2500 20 (100-500) (400−600) 20000
200 2500 20 (100-500) (600−800) 20000
200 2500 20 (100-500) (800−1000) 20000

Tabla 3.1: Características de las configuraciones de los problemas test.

Para cada caso de cada configuración se han generado 30 problemas aleatorios y se han resuelto
almacenando su tiempo de ejecución. Posteriormente, he desarrollado unos pequeños scripts en R (código
proporcionado en el Anexo C) para realizar distintos cálculos que utilizaré en el estudio.

1Los problemas los proporciona el director del TFG para hacer el estudio.
2En este estudio computational hemos fijado el valor de la cota inferior de los arcos de manera que li j = 0 para todos los

problemas. Además, cuando hablemos de cap_min y cap_max, nos referiremos al rango de valores que puede tomar ui j, la
cota superior, siendo esta el factor de estudio en la Configuración 3, al que llamaremos capacidad.

21

22 Capítulo 3. Estudio computacional del algoritmo

En la Tabla 3.2 presentamos las medias y desviaciones típicas del tiempo de ejecución obtenidas
para cada configuración (Anexo C.1). Para determinar si existen diferencias significativas en los tiempos
para cada configuración realizaré un test ANOVA de un factor en cada configuración (Anexo C.4) y
posteriormente una comparación múltiple de las medias de los tiempos en cada valor del factor de interés
mediante el test de Tukey.

Tabla 3.2: Medias y desviaciones típicas de los tiempos de ejecución de cada una de las distintas confi-
guraciones.

Para entender y analizar más fácilmente estos resultados, podemos representarlos gráficamente. En
las figuras 3.1 a 3.3 podemos observar los tiempos medios de ejecución.

Figura 3.1: Tiempo medio de resolución por
número de arcos para la Configuración 1.

Figura 3.2: Tiempo medio de resolución por
número de ofertas para la Configuración 2.

Figura 3.3: Tiempo medio de resolución por capacidad de los arcos para la Configuración 3.

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 23

Para realizar el ANOVA se ha realizado previamente un test de normalidad de Shapiro-Wilk (Anexo
C.2) de la variable tiempoEjecucion con las variables que van cambiando, es decir, numero_arcos pa-
ra la Configuración 1; num_ofertas para la Conf. 2; y cap_min y cap_max para la Conf. 3. Examinando
los p-valores obtenidos (ver en la Figura 3.4), no se rechaza la normalidad de los datos (α = 0,05) para la
mayoría de los conjuntos (se rechaza únicamente con Conf. 2, cuando of = 20, que da un p-valor = 0,01
debido a un único dato un poco elevado. Se eliminó dicho dato pero los resultados del ANOVA eran
iguales por lo que se mantiene el resto con los datos originales).

Figura 3.4: Test de normalidad de Shapiro-Wilk para cada una de las Configuraciones.

Seguidamente, procedemos a realizar un test de igualdad de varianzas: test de Levene (Anexo C.3),
con el factor correspondiente en cada caso y la variable tiempoEjecucion, rechazándose la hipótesis
de igualdad de varianzas en las configuraciones 1 y 3 (α = 0,05).

Figura 3.5: Test de Levene para cada una de las Configuraciones.

Por tanto, aplicamos el test de ANOVA de Welch (Anexo C.4), ya que esta nos permite evitar asumir
la igualdad de varianzas y obtenemos en los 3 casos (ver en la Figura 3.6) un p-valor prácticamente nulo,
por lo que asumimos que los tiempos de ejecución medios no son iguales para los distintos valores del
factor de cada configuración.

Figura 3.6: Test de ANOVA de Welch para cada una de las Configuraciones.

24 Capítulo 3. Estudio computacional del algoritmo

Finalmente, realizamos el test de Tukey (Anexo C.5), y con él obtenemos los siguientes resultados
mostrados en la Figura 3.7.

Figura 3.7: Test de Tukey para las distintas configuraciones.

En la Configuración 1 se obtiene lo siguiente: el tiempo de ejecución de las redes con 1000 arcos es
el mayor y significativamente diferente del resto; 2000, 3000 y 5000 arcos son equivalentes en tiempo y
menores significativamente que 1000; y el tiempo de ejecución con 4000 arcos es menor que con 2000 y
equivalente a 3000 y 5000 arcos.

Por tanto, se observa que al ir aumentando el número de arcos el tiempo disminuye hasta llegar a
4000, momento en el que comienza a aumentar otra vez.

Por la estructura de la red, podemos interpretar este resultado pensando en que al tener más arcos
es más fácil que existan trayectorias cortas que si tenemos menos arcos. Si hay menos arcos pueden
existir trayectorias cortas pero tendremos que redistribuir y aprovechar más los arcos porque la oferta
es constante, es decir, hay fijadas 20000 unidades de flujo para repartir de los 20 nodos iniciales a los
20 finales, luego al tener la red con pocos arcos hay que saturarlos y utilizarlos mucho, lo cual implica
que le cuesta más tiempo que si tiene muchísimos arcos ya que tendrá más para elegir y será capaz de
encontrar trayectorias de menor costo computacional (de menos arcos).

Esto sucede hasta que llega un momento en el que el hecho de tener más arcos ya no da beneficios,
sino que hace que el tiempo de ejecución aumente debido a que hay demasiados arcos para etiquetar y
mirar, pero que no llegan a aportar más caminos nuevos cortos.

Por otro lado, en el test de Tukey de la Configuración 2, podemos ver que 10 y 20 nodos con oferta
se muestran equivalentes, y también 30 y 40. En el resto de comparaciones, podemos ver que hay dife-
rencias significativas en la media de los tiempos de ejecución entre las siguientes parejas de números de
nodos con oferta/demanda: 10 - 30; 10 - 40; 10 - 50; 20 - 30; 20 - 40; 20 - 50; 30 - 50; 40 - 50. Ahora,
en la columna diff podemos ver que los valores son positivos, lo cual indica que el tiempo medio de
ejecución va aumentando conforme aumenta el número de nodos con oferta/demanda (también podemos
verlo en la Figura 3.2. Si, por ejemplo, empezamos con 10 nodos con oferta y 10 con demanda, entonces
tenemos que manejar menos que si tuviésemos 20, porque tan solo al inicio el conjunto I ya tendría más
nodos. Luego conforme aumentamos el número de nodos con oferta, la oferta total está más repartida y
por tanto tendrá que hacer muchas más búsquedas para ir redistribuyendo el exceso de los nodos de I.

Por último, en la Configuración 3 podemos observar que el p-valor es menor que 0.05 en todas las
parejas excepto en las 3 últimas, es decir, (100,200) presenta el mayor tiempo de resolución; y (200,400)
mayor que (400,600), (600,800) y (800,1000), los cuales son equivalentes entre sí. Valorando el test de
Tukey y la Figura 3.3, llegamos a la conclusión de que si las capacidades son muy pequeñas, digamos
entre 100-200, el algoritmo tiene que buscar muchos caminos y hacer muchas iteraciones para transportar
el flujo; pero conforme aumentamos la capacidad, al emplear un arco puedo utilizarlo para enviar mucho
flujo, luego tendrá que realizar menos iteraciones.

Llega un punto en el que se estabiliza, porque los arcos tienen tal capacidad que aunque fuese au-

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 25

mentada ya no se podría enviar más porque no dispondríamos de más flujo.

Como conclusión de este estudio estadístico, podemos decir que en la Configuración 1 el tiempo
de ejecución disminuye conforme aumenta el número de arcos, hasta tener un determinado número de
arcos en el que volvería a crecer el tiempo medio, es decir, el incremento del número de arcos no afecta
en general negativamente como sería de esperar. En la Configuración 2, cuantos más nodos con oferta
haya, mayor será su tiempo medio de ejecución, lo cual concuerda con lo esperado. Finalmente, en
la Configuración 3, el algoritmo es más rápido cuanto mayor sea la capacidad de los arcos, hasta que
llegados a un punto se estabiliza y el tiempo medio es el mismo aunque se incremente la capacidad, lo
cual nuevamente es lo esperado ya que si la capacidad de los arcos es pequeña hay muchas saturaciones
de arcos y esto obliga a tener que hacer muchos envíos de flujos y las correspondientes actualizaciones
de w’s que nos permitan generar nuevos arcos balanceados para continuar el etiquetado.

Bibliografía

[1] M. S. BAZARAA, J. J. JARVIS Y H. D. SHERALI, Linear Programming and Network Flows, New
Jersey, 2010.

[2] D. P. BERTSEKAS, Linear Network Optimization: Algorithms and Codes, Massachusetts, 1991.

[3] Material de estudio de la asignatura Investigación Operativa del grado en Matemáticas de la Uni-
versidad de Zaragoza, 2020.

[4] Python, https://docs.python.org/3/tutorial/index.html.

[5] Introducción a R, https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.
1.pdf.

[6] AURORA GONZÁLEZ VIDAL, FEIR 30: Comparación paramétrica de medias, https://gauss.
inf.um.es/feir/30/, Enero 2024.

27

https://docs.python.org/3/tutorial/index.html
https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.1.pdf
https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.1.pdf
https://gauss.inf.um.es/feir/30/
https://gauss.inf.um.es/feir/30/

Anexo A

Algoritmo ’primal-dual’

Vamos a presentar el código de Python que corresponde con el algoritmo primal-dual visto en el
Capítulo 2.

import sys
import numpy as np
import time
import os

ruta_principal = "./Datos/"
fichero_principal = ruta_principal + "listado.txt"
CONF_1_ficheros = []
CONF_2_ficheros = []
CONF_3_ficheros = []

def leer_ficheros(fichero_principal):
with open(fichero_principal,"r") as f:

ficheros = f.readlines()

for fichero in ficheros:
if fichero.strip().startswith('CONF_1_'):

nombre_fichero = fichero.strip().strip("\n")
CONF_1_ficheros.append(nombre_fichero)
nombre_fichero_CONF_1 = 'CONF_1_listado.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_CONF_1)
with open(ruta_completa, 'a') as resultado:

resultado.write(f"{nombre_fichero}\n")

elif fichero.strip().startswith('CONF_2_'):
nombre_fichero = fichero.strip().strip("\n")
CONF_2_ficheros.append(nombre_fichero)
nombre_fichero_CONF_2 = 'CONF_2_listado.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_CONF_2)
with open(ruta_completa, 'a') as resultado:

resultado.write(f"{nombre_fichero}\n")

elif fichero.strip().startswith('CONF_3_'):
nombre_fichero = fichero.strip().strip("\n")
CONF_3_ficheros.append(nombre_fichero)
nombre_fichero_CONF_3 = 'CONF_3_listado.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_CONF_3)

29

30 Capítulo A. Algoritmo ’primal-dual’

with open(ruta_completa, 'a') as resultado:
resultado.write(f"{nombre_fichero}\n")

leer_ficheros(fichero_principal)

def leeFichero(nombre_fichero):
with open(nombre_fichero, "r") as f:

lineas = f.readlines()

Definimos las variables que usaremos
numeroNodos = 0
numeroArcos = 0
num_ofertas = 0
nodo = 0
Of = 0
nodoInicial = 0
nodoFinal = 0
minflow = 0
maxflow = 0
cost = 0
cost_min = 0
cost_max = 0
cap_min = 0
cap_max = 0
seed = 0
arcs_count = 0

Variables para almacenar los datos como vectores
l = []
u = []
c = []
x = []
w = []

Leemos el fichero linea por linea
for linea in lineas:

Si encontramos una linea que empieza con 'c', leemos el num_ofertas, cost_min,
cost_max, cap_min, cap_max, seed
if linea.strip().startswith('c'):

trozos = linea.strip().strip("\n").split()
if trozos[1] == 'no._supplies/demands':

num_ofertas = int(trozos[2])
elif trozos[1] == 'cost_min':

cost_min = int(trozos[2])
elif trozos[1] == 'cost_max':

cost_max = int(trozos[2])
elif trozos[1] == 'cap_min_arcs':

cap_min = int(trozos[2])
elif trozos[1] == 'cap_max_arcs':

cap_max = int(trozos[2])
elif trozos[1] == 'seed':

seed = int(trozos[2])

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 31

Si encontramos una linea que empieza con 'p', definimos las matrices
elif linea.strip().startswith('p'):

trozos = linea.strip().strip("\n").split()
numeroNodos = int(trozos[2])
numeroArcos = int(trozos[3])
A = np.full((numeroNodos, numeroNodos), -1, dtype=int)
l = np.zeros(numeroArcos, dtype=int)
u = np.zeros(numeroArcos, dtype=int)
c = np.zeros(numeroArcos, dtype=int)
x = np.zeros(numeroArcos, dtype=int)
w = np.zeros(numeroNodos, dtype=int)
Of = np.zeros(shape=numeroNodos, dtype=int)

Si encontramos una linea que empieza con 'n', leemos el nodo y su oferta/demanda
elif linea.strip().startswith('n'):

trozos = linea.strip().strip("\n").split()
nodo = int(trozos[1]) - 1
Of[nodo] = int(trozos[2])

Si encontramos una linea que empieza con 'a', leemos los nodos final e inicial,
la cota inferior y superior, y el costo
elif linea.strip().startswith('a'):

trozos = linea.strip().strip("\n").split()
nodoInicial = int(trozos[1]) - 1
nodoFinal = int(trozos[2]) - 1
minflow = int(trozos[3])
maxflow = int(trozos[4])
cost = int(trozos[5])

Asignamos un numero de arco a la posicion de la matriz A
A[nodoInicial][nodoFinal] = arcs_count

Guardamos las cotas y costos en los vectores correspondientes
l[arcs_count] = minflow
u[arcs_count] = maxflow
c[arcs_count] = cost
arcs_count += 1

continue

return (A, l, u, c, Of, numeroNodos, numeroArcos, x, w, arcs_count,
num_ofertas, cost_min, cost_max, cap_min, cap_max, seed)

def calcular_exceso(i, A, x, Of, numeroNodos):
Calculamos el flujo de entrada a i (sum_ji) y el flujo de salida desde i (sum_ij)
sum_ij = []
sum_ji = []

for j in range(numeroNodos):
if A[i][j] != -1:

a = A[i][j]
x_ij = x[a]

32 Capítulo A. Algoritmo ’primal-dual’

sum_ij.append(x_ij)

if A[j][i] != -1:
a = A[j][i]
x_ji = x[a]
sum_ji.append(x_ji)

total_sum_ij = sum(sum_ij)
total_sum_ji = sum(sum_ji)
exceso = total_sum_ji - total_sum_ij + Of[i]

return exceso

def paso1(L, S):
for i in L:

if i not in S:
S.append(i)
break # Detenemos el bucle al encontrar el primer nodo en L-S

return i

def paso2(L, S, i, c, w, arcs_count, l, u, x, Of, numeroNodos, A,excesos,etiquetas_nodos):
Comprobamos todos los nodos vecinos de i que cumplan las condiciones:
for j in range(numeroNodos):

if A[i][j] != -1 and j not in L:
a = A[i][j] # Indice del arco (i,j)
if c[a] - w[i] + w[j] == 0 and x[a] < u[a]:

L.append(j)
Etiqueta para arcos (i,j)
etiqueta = (i, '+', min(u[a] - x[a],etiquetas_nodos[i][2]),a)
etiquetas_nodos[j] = etiqueta

if A[j][i] != -1 and j not in L:
a = A[j][i] # Indice del arco (j,i)
if c[a] - w[j] + w[i] == 0 and l[a] < x[a]:

L.append(j)
Etiqueta para arcos (j, i)
etiqueta = (i, '-', min(x[a] - l[a],etiquetas_nodos[i][2]),a)
etiquetas_nodos[j] = etiqueta

if all(excesos[j]>=0 for j in L):
return 0

else:
Seleccionamos uno de esos nodos j con exceso < 0 y vamos al paso3
Usamos un bucle sobre los nodos en L para encontrar el primer nodo con exceso < 0
for j in L:

if excesos[j] < 0:
return j
break # Detenemos el bucle al encontrar el primer nodo con exceso < 0

def paso3(nodo_j, etiquetas_nodos, L, A, x, u, l, Of, numeroNodos,excesos):

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 33

delta = etiquetas_nodos[nodo_j][2]

excesos[nodo_j] += delta

while etiquetas_nodos[nodo_j][0] != -1 :
if etiquetas_nodos[nodo_j][1] == '+':

x[etiquetas_nodos[nodo_j][3]] += delta
if etiquetas_nodos[nodo_j][1] == '-':

x[etiquetas_nodos[nodo_j][3]] -= delta
nodo_j = etiquetas_nodos[nodo_j][0]

excesos[nodo_j] -= delta

def calcular_alpha(S, numeroNodos, x, w, A, u, l, c):
alphas_forward = [] # Almacenara los valores minimos de arcos (i, j)
alphas_backward = [] # Almacenara los valores minimos de arcos (j, i)

for i in S:
for j in range(numeroNodos):

if j not in S and A[i][j] != -1 and x[A[i][j]] < u[A[i][j]]:
alphas_forward.append(c[A[i][j]] - w[i] + w[j])

if j not in S and A[j][i] != -1 and x[A[j][i]] > l[A[j][i]]:
alphas_backward.append(-(c[A[j][i]] - w[j] + w[i]))

Verificamos si las listas estan vacias antes de encontrar el minimo
alpha_forward = min(alphas_forward) if alphas_forward else float('inf')
alpha_backward = min(alphas_backward) if alphas_backward else float('inf')

alpha = min(alpha_forward, alpha_backward)

return alpha

def paso4(S, L, numeroNodos, x, w, A, u, l, c, Of,excesos,etiquetas_nodos):
Calculamos alpha usando la función 'calcular_alpha'
alpha = calcular_alpha(S, numeroNodos, x, w, A, u, l, c)

Verificamos si alpha es infinito (lo que significa que no hay arcos que cumplan las
condiciones para calcular 'alpha'), lo que indica un problema no factible
if alpha == float('inf'):

print("El problema es no factible.")
sys.exit()

else:
Añadimos a L todos los nodos j para los cuales el minimo se obtiene
mediante un arco (i,j) o un arco (j,i)
for i in S:

for j in range(numeroNodos):
if j not in S and j not in L:

if (A[i][j] != -1 and x[A[i][j]] < u[A[i][j]]
and c[A[i][j]] - w[i] + w[j] == alpha):
a = A[i][j] # Indice del arco (i,j)

34 Capítulo A. Algoritmo ’primal-dual’

L.append(j)
Etiqueta para arcos (i,j)
etiqueta = (i, '+', min(u[a] - x[a],etiquetas_nodos[i][2]),a)
etiquetas_nodos[j] = etiqueta

if (A[j][i] != -1 and x[A[j][i]] > l[A[j][i]]
and -(c[A[j][i]] - w[j] + w[i]) == alpha):
a = A[j][i] # Indice del arco (j,i)
L.append(j)
Etiqueta para arcos (j, i)
etiqueta = (i, '-', min(x[a] - l[a],etiquetas_nodos[i][2]),a)
etiquetas_nodos[j] = etiqueta

Actualizamos precios:
for i in range(numeroNodos):

if i in S:
w[i] = w[i] + alpha

if all(excesos[j]>=0 for j in L):
return 0

else:
Seleccionamos uno de esos nodos j con exceso < 0 y vamos al paso3
Usamos un bucle sobre los nodos en L para encontrar el primer nodo
con exceso < 0
for j in L:

if excesos[j] < 0:
return j
break # Detenemos el bucle al encontrar el primer nodo con exceso < 0

def programa_principal(nombre_fichero):
(A, l, u, c, Of, numeroNodos, numeroArcos, x, w, arcs_count, num_ofertas, cost_min,
cost_max, cap_min, cap_max, seed) = leeFichero(nombre_fichero)

etiquetas_nodos = []*numeroNodos
L = []
S = []
x = [0]*numeroArcos
w = [0]*numeroNodos
excesos= [0] * numeroNodos

etiquetas_nodos=[[]]*numeroNodos
L.clear()
S.clear()

for i in range(numeroNodos):
excesos[i] = Of[i]
if excesos[i] > 0:

L.append(i)
etiquetas_nodos[i] = (-1, '*', excesos[i]);

it=0

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 35

while(L!=0):
it += 1
if S == L:

j = paso4(S, L, numeroNodos, x, w, A, u, l, c, Of,excesos,etiquetas_nodos)
if j == 0:

continue
else:

paso3(j, etiquetas_nodos, L, A, x, u, l, Of, numeroNodos,excesos)
etiquetas_nodos = [[]]*numeroNodos

S.clear()
L.clear()

for i in range(numeroNodos):
if excesos[i] > 0:

L.append(i)
etiquetas_nodos[i] = (-1, '*', excesos[i]);

else:
i = paso1(L, S)
j = paso2(L, S, i, c, w, arcs_count, l, u, x, Of, numeroNodos, A,excesos,

etiquetas_nodos)

if j == 0:
continue

else:
paso3(j, etiquetas_nodos, L, A, x, u, l, Of, numeroNodos,excesos)

etiquetas_nodos = [[]]*numeroNodos
L.clear()
S.clear()

for i in range(numeroNodos):
if excesos[i] > 0:

L.append(i)
etiquetas_nodos[i] = (-1, '*', excesos[i]);

if len(L) == 0:
if all(exceso_i == 0 for exceso_i in excesos):

tiempo_fin = time.time()
tiempo_ejecucion = tiempo_fin - tiempo_inicio

if fichero in CONF_1_ficheros:
nombre_fichero_resultados = 'CONF_1_resultados.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_resultados)
with open(ruta_completa, 'a') as resultado:

resultado.write(f"{seed} {numeroNodos} {numeroArcos} {num_ofertas} "
f"{cost_min} {cost_max} {cap_min} {cap_max} "
f"{tiempo_ejecucion}\n")

break

if fichero in CONF_2_ficheros:
nombre_fichero_resultados = 'CONF_2_resultados.txt'

36 Capítulo A. Algoritmo ’primal-dual’

ruta_completa = os.path.join(ruta_principal, nombre_fichero_resultados)
with open(ruta_completa, 'a') as resultado:

resultado.write(f"{seed} {numeroNodos} {numeroArcos} {num_ofertas} "
f"{cost_min} {cost_max} {cap_min} {cap_max} "
f"{tiempo_ejecucion}\n")

break

if fichero in CONF_3_ficheros:
nombre_fichero_resultados = 'CONF_3_resultados.txt'
ruta_completa = os.path.join(ruta_principal, nombre_fichero_resultados)
with open(ruta_completa, 'a') as resultado:

resultado.write(f"{seed} {numeroNodos} {numeroArcos} {num_ofertas} "
f"{cost_min} {cost_max} {cap_min} {cap_max} "
f"{tiempo_ejecucion}\n")

break

else:
print('El problema es no factible')
sys.exit()

for fichero in CONF_1_ficheros:
nombre_fichero = ruta_principal + fichero
tiempo_inicio = time.time()
programa_principal(nombre_fichero)

for fichero in CONF_2_ficheros:
nombre_fichero = ruta_principal + fichero
tiempo_inicio = time.time()
programa_principal(nombre_fichero)

for fichero in CONF_3_ficheros:
nombre_fichero = ruta_principal + fichero
tiempo_inicio = time.time()
programa_principal(nombre_fichero)

Anexo B

Script utilizado en R

B.1. Cálculo de la media y la desviación típica del tiempo de ejecución

install.packages("ggplot2")
library(ggplot2)
library(Rcmdr)

Leemos los datos de cada configuracion
datos_conf1 <- read.table("CONF_1_resultados.txt", header = FALSE)
datos_conf2 <- read.table("CONF_2_resultados.txt", header = FALSE)
datos_conf3 <- read.table("CONF_3_resultados.txt", header = FALSE)

Damos nombres a las columnas
colnames(datos_conf1) <- c("seed", "numero_nodos", "numero_arcos",

"num_ofertas", "cost_min", "cost_max", "cap_min",
"cap_max", "tiempoEjecucion")

colnames(datos_conf2) <- c("seed", "numero_nodos", "numero_arcos",
"num_ofertas", "cost_min", "cost_max", "cap_min",
"cap_max", "tiempoEjecucion")

colnames(datos_conf3) <- c("seed", "numero_nodos", "numero_arcos",
"num_ofertas", "cost_min", "cost_max", "cap_min",
"cap_max", "tiempoEjecucion")

Cambiamos los niveles de 'numero_arcos'
datos_conf1$numero_arcos <- factor(datos_conf1$numero_arcos,

levels = c(1020, 2020, 3020, 4020, 5020),
labels = c('1000', '2000', '3000', '4000', '5000'))

Creamos la variable 'capacidad'
datos_conf3$capacidad <- factor(datos_conf3$cap_min,

levels = c(100, 200, 400, 600, 800),
labels = c('(100,200)', '(200,400)', '(400,600)',

'(600,800)', '(800,1000)'))

##CONFIGURACIÓN 1:
Calculamos el tiempo medio y la desviacion estandar para cada
numero de arcos en la Configuracion 1
media_desviacion_conf1 <- function(datos) {

resumen <- aggregate(tiempoEjecucion ~ numero_arcos, data = datos,
FUN = function(x) c(mean = mean(x), desviacion = sd(x)))

return(resumen)
}

37

38 Capítulo B. Script utilizado en R

Aplicamos esta funcion a la Configuracion 1
resumen_conf1 <- media_desviacion_conf1(datos_conf1)
print(resumen_conf1)

Creamos una tabla para la Configuracion 1
tabla_conf1 <- data.frame(

numero_arcos = resumen_conf1$numero_arcos,
tiempo_medio = resumen_conf1$tiempoEjecucion[, "mean"],
desviacion_tipica = resumen_conf1$tiempoEjecucion[, "desviacion"]

)

print(tabla_conf1)

Generamos un gráfico de puntos con líneas verticales para la Configuración 1
grafico_conf1 <- ggplot(tabla_conf1, aes(x = factor(numero_arcos), y = tiempo_medio)) +

geom_point(color = "blue", size = 3) +
geom_segment(aes(xend = as.numeric(factor(numero_arcos)), yend = 0),

color = "blue", size = 1) +
labs(title = "Tiempo medio de resolución por número de arcos",

x = "Número de arcos",
y = "Tiempo medio") +

theme_minimal() +
scale_y_continuous(limits = c(0, 6)) +
theme(

plot.title = element_text(size = 18, face = "bold", margin = margin(b = 15)),
axis.title.x = element_text(size = 16, margin = margin(t = 15)),
axis.title.y = element_text(size = 16, margin = margin(r = 15)),
axis.text.x = element_text(size = 14, margin = margin(t = 10)),
axis.text.y = element_text(size = 14, margin = margin(r = 10))

)

print(grafico_conf1)

Guardamos el gráfico como archivo PNG
ggsave("grafico_conf1.png", plot = grafico_conf1, width = 10, height = 8)

##CONFIGURACIÓN 2:
Calculamos el tiempo medio y la desviacion estandar para cada
numero de ofertas en la Configuracion 2
media_desviacion_conf2 <- function(datos) {

resumen <- aggregate(tiempoEjecucion ~ num_ofertas, data = datos,
FUN = function(x) c(mean = mean(x), desviacion = sd(x)))

return(resumen)
}

Aplicamos esta funcion a la Configuracion 2
resumen_conf2 <- media_desviacion_conf2(datos_conf2)
print(resumen_conf2)

Creamos una tabla para la Configuracion 2
tabla_conf2 <- data.frame(

num_ofertas = resumen_conf2$num_ofertas,
tiempo_medio = resumen_conf2$tiempoEjecucion[, "mean"],
desviacion_tipica = resumen_conf2$tiempoEjecucion[, "desviacion"]

)

print(tabla_conf2)

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 39

Generamos un grafico de puntos con lineas verticales para la Configuracion 2
grafico_conf2 <- ggplot(tabla_conf2, aes(x = factor(num_ofertas), y = tiempo_medio)) +

geom_point(color = "blue", size = 3) +
geom_segment(aes(xend = as.numeric(factor(num_ofertas)), yend = 0),

color = "blue", size = 1) +
labs(title = "Tiempo medio de resolución por número de nodos con oferta",

x = "Número de nodos con oferta",
y = "Tiempo medio") +

theme_minimal() +
theme(

plot.title = element_text(size = 18, face = "bold", margin = margin(b = 15)),
axis.title.x = element_text(size = 16, margin = margin(t = 15)),
axis.title.y = element_text(size = 16, margin = margin(r = 15)),
axis.text.x = element_text(size = 14, margin = margin(t = 10)),
axis.text.y = element_text(size = 14, margin = margin(r = 10))

)

print(grafico_conf2)

Guardamos el grafico como archivo PNG
ggsave("grafico_conf2.png", plot = grafico_conf2, width = 10, height = 8)

##CONFIGURACIÓN 3:
Calculamos el tiempo medio y la desviacion estandar para cada
combinación de capacidad en la Configuracion 3
media_desviacion_conf3 <- function(datos) {

resumen <- aggregate(tiempoEjecucion ~ capacidad, data = datos,
FUN = function(x) c(mean = mean(x), desviacion = sd(x)))

return(resumen)
}

Aplicamos esta funcion a la Configuracion 3
resumen_conf3 <- media_desviacion_conf3(datos_conf3)
print(resumen_conf3)

Creamos una tabla para la Configuracion 3
tabla_conf3 <- data.frame(

capacidad = resumen_conf3$capacidad,
tiempo_medio = resumen_conf3$tiempoEjecucion[, "mean"],
desviacion_tipica = resumen_conf3$tiempoEjecucion[, "desviacion"]

)

print(tabla_conf3)

Generamos un gráfico de puntos con líneas verticales para la Configuración 3
grafico_conf3 <- ggplot(tabla_conf3, aes(x = factor(capacidad), y = tiempo_medio)) +

geom_point(color = "blue", size = 3) +
geom_segment(aes(xend = as.numeric(factor(capacidad)), yend = 0),

color = "blue", size = 1) +
labs(title = "Tiempo medio de resolución por capacidad",

x = "Capacidad mínima y máxima",
y = "Tiempo medio") +

theme_minimal() +
theme(

plot.title = element_text(size = 18, face = "bold", margin = margin(b = 15)),
axis.title.x = element_text(size = 16, margin = margin(t = 15)),
axis.title.y = element_text(size = 16, margin = margin(r = 15)),
axis.text.x = element_text(size = 14, margin = margin(t = 10)),
axis.text.y = element_text(size = 14, margin = margin(r = 10))

)

print(grafico_conf3)

Guardamos el grafico como archivo PNG
ggsave("grafico_conf3.png", plot = grafico_conf3, width = 10, height = 8)

40 Capítulo B. Script utilizado en R

B.2. Test de normalidad

##CONFIGURACION 1:
Convertimos 'numero_arcos' a factor
datos_conf1$numero_arcos <- as.factor(datos_conf1$numero_arcos)

Test de normalidad para 'numero_arcos'
normalityTest(tiempoEjecucion ~ numero_arcos, test="shapiro.test",

data=datos_conf1)

##CONFIGURACION 2:
Convertimos 'num_ofertas' a factor
datos_conf2$num_ofertas <- as.factor(datos_conf2$num_ofertas)

Test de normalidad para 'num_ofertas'
normalityTest(tiempoEjecucion ~ num_ofertas, test="shapiro.test",

data=datos_conf2)

##CONFIGURACION 3:
Convertimos 'capacidad' a factor
datos_conf3$capacidad <- as.factor(datos_conf3$capacidad)

Test de normalidad para 'capacidad'
normalityTest(tiempoEjecucion ~ capacidad, test = "shapiro.test",

data = datos_conf3)

B.3. Test de Levene

##CONFIGURACION 1:
Test igualdad de varianzas
print(leveneTest(tiempoEjecucion ~ numero_arcos, data=datos_conf1,

center="median"))

##CONFIGURACION 2:
print(leveneTest(tiempoEjecucion ~ num_ofertas, data=datos_conf2,

center="median"))

##CONFIGURACION 3:
print(leveneTest(tiempoEjecucion ~ capacidad, data=datos_conf3,

center="median"))

Algoritmo ’primal-dual’ para el problema de flujo a costo mínimo - Blanca Gómez Sanz 41

B.4. Test de ANOVA con aproximación de Welch

##CONFIGURACION 1:
AnovaModel.1 <- aov(tiempoEjecucion ~ numero_arcos, data = datos_conf1)
summary(AnovaModel.1)
print(oneway.test(tiempoEjecucion ~ numero_arcos, data = datos_conf1)) # Welch test

##CONFIGURACION 2:
AnovaModel.2 <- aov(tiempoEjecucion ~ num_ofertas, data = datos_conf2)
summary(AnovaModel.2)
print(oneway.test(tiempoEjecucion ~ num_ofertas, data = datos_conf2)) # Welch test

##CONFIGURACION 3:
AnovaModel.3 <- aov(tiempoEjecucion ~ capacidad, data = datos_conf3)
summary(AnovaModel.3)
print(oneway.test(tiempoEjecucion ~ capacidad, data = datos_conf3)) # Welch test

B.5. Test de Tukey

##CONFIGURACION 1:
res_tukey_conf1 <- TukeyHSD(AnovaModel.1)
print(res_tukey_conf1)

##CONFIGURACION 2:
res_tukey_conf2 <- TukeyHSD(AnovaModel.2)
print(res_tukey_conf2)

##CONFIGURACION 3:
res_tukey_conf3 <- TukeyHSD(AnovaModel.3)
print(res_tukey_conf3)

42 Capítulo B. Script utilizado en R

	Summary
	Introducción
	El problema de flujo a costo mínimo
	El problema dual del PFCM
	Las condiciones de la holgura complementaria (CHC)

	Algoritmo 'primal-dual'
	Ascenso Dual
	Descripción general del algoritmo de ascenso dual
	Algoritmo primal-dual para el PFCM

	Estudio computacional del algoritmo
	Bibliografía
	Anexos
	Algoritmo 'primal-dual'
	Script utilizado en R
	Cálculo de la media y la desviación típica del tiempo de ejecución
	Test de normalidad
	Test de Levene
	Test de ANOVA con aproximación de Welch
	Test de Tukey

