iss Universidad
18l Zaragoza

w
S
N

Trabajo Fin de Grado

ANAGRA 3.0: Herramienta para el estudio de
gramaticas libres de contexto y técnicas de analisis
sintactico

ANAGRA 3.0: A tool for the study of context-free
grammars and parsing techniques

Autora

Laura Gonzalez Pizarro

Director

Joaquin Ezpeleta Mateo

ESCUELA DE INGENIERIA Y ARQUITECTURA
2023-24

RESUMEN

Un compilador es un programa informatico que traduce un cédigo fuente escrito en un
lenguaje de programacion de alto nivel a un cédigo objeto, generalmente en lenguaje maquina
o en un lenguaje intermedio. Esta traduccién permite que el programa escrito por un progra-
mador sea ejecutado por un computador. El proceso de compilaciéon consta de varias fases,
y cada fase cumple una funcién especifica para convertir el codigo fuente en un programa
ejecutable.

El andlisis sintactico o proceso de parsing es una etapa fundamental de un compilador. Se
encarga de analizar la estructura gramatical del cédigo fuente y construir un arbol sintactico
que representa la jerarquia de las construcciones sintacticas. Su importancia radica en garan-
tizar que el cédigo fuente cumpla con las reglas sintacticas del lenguaje de programacion.

El proyecto ANAGRA surgié debido a que no existia una herramienta completa para el
estudio de graméticas libres de contexto y técnicas de andlisis sintdctico. Las versiones an-
teriores, ANAGRA 1.0 y ANAGRA 2.0, ofrecieron la posibilidad de realizar las operaciones
de transformacién mas habituales sobre gramaticas y diferentes tipos de analisis sintactico:
descendentes como LL(1), y ascendentes como SLR, LR y LALR. Ademads de proporcionar un
proceso interactivo de andlisis sintactico con visualizacién del arbol de sintaxis. Con el tiempo,
la dltima version, ANAGRA 2.0, basada en Java 1.3, perdié ciertas funcionalidades y soporte.

Este trabajo presenta ANAGRA 3.0, una reimplementacién de la herramienta, siguiendo
el estilo y caracteristicas de las versiones anteriores, con el objetivo de agregar funcionali-
dades y mejorar la experiencia del usuario. ANAGRA 3.0 no solo preserva la funcionalidad
de versiones anteriores, sino que también presenta nuevas caracteristicas. Ahora, es capaz
de transformar graméticas a las formas normales de Chomsky y Greibach. Ademds, la he-
rramienta puede guardar tablas de andlisis sintdactico para generar analizadores por tabla y
ofrece una simulacion interactiva con la capacidad de poder avanzar y retroceder en el proceso
de andlisis, mostrando la evolucién en la entrada, la pila y con su correspondiente &rbol de
sintaxis.

La interfaz se modernizd, haciéndola maés intuitiva, y se solucionaron problemas de la ver-
sién anterior, como la representacién de autématas correspondientes al andlisis ascendente
donde ahora se pueden visualizar los arcos de un nodo a si mismo y las etiquetas de dos no-
dos que se apuntan entre si. Ademads, se implementaron ciertas operaciones concurrentes para
evitar que la interfaz se quede congelada durante el andlisis sintactico en casos de gramati-
cas complejas. Se realizaron cambios en la presentacién de resultados como la reubicacion del
log y el formato de presentacién del autémata en texto, mejorando la legibilidad y usabilidad.

Estas mejoras, junto con la ampliacién de funcionalidades, consolidan ANAGRA 3.0 como
una herramienta robusta y versatil. De este modo, se cumplieron todos los objetivos propues-
tos, posicionando a ANAGRA como una valiosa herramienta de apoyo para el estudio de
gramaticas libres de contexto y técnicas de andlisis sintactico.

Indice general

1. Introduccién 1
1.1. Motivaciéon y contexto 1
1.2. Estadodel arte 2
1.3. Objetivos y alcance del proyecto 3
1.4. Metodologia y herramientas Lo 4
1.5. Estructura de la memoria L oo 4

2. Fundamentos previos 6
2.1, Gramaticao e e 6
2.2. Analisis sintactico e 7

2.2.1. Anélisis sintdctico descendente (top-down) 7
2.2.2. Andlisis sintdctico ascendente(bottom-up) 8

3. Analisis de la herramienta 11
3.1. AnAlisis de funcionalidades de la versién anterior 11
3.2. AnAlisis de nuevas funcionalidades y cambios respecto a la versiéon anterior . . 11
3.3. Analisis de requisitos Lo 13

4. Implementaciéon de la herramienta 15
4.1. Estructura general del sistema L Lo oL 15
4.2. Etapa de implementaciéon de gramdéticas 15

4.2.1. Abstraccién de una gramatica en un fichero Bison 16
4.3. FEtapa del andlisis sintactico oL oo 16
4.4. Etapa integracion de la interfaz 0oL 17

5. Resultados 18
5.1. Descripcién general de la herramientao 18
5.2. Menu Archivo e 19
5.3. Menu Editar e 19
5.4. Menu Buscar 19
5.5, Mentl Texto e e e e 20
5.6. Menu Ayuda 20
5.7. Menu Herramientas e 20
5.8. Menu Transformaciones 21
5.9. Menut Analisis e 21
5.10. Menu Simular e 22

6. Conclusiones 24
6.1. Cronogramao e e e 25
6.2. Trabajo futuro 25

A. Métodos de transformacion de una gramatica 29

A.1. Célculo del conjunto Primero 29
A.2. Célculo del conjunto Siguiente 30
A.3. Eliminacién simbolos no terminables 30
A.4. Eliminacién de recursividad a izquierda L. 30
A.5. Factorizacién a izquierda 31
A.6. Eliminacidn de ciclos 31
A.7. Eliminacion de producciones épsilon 31
A.8. Eliminacién de no terminales no derivables 32
A.9. Eliminacién de no accesibles o oL 32
B. Manual de usuario 33
B.1. Instalacién de la herramienta 33
B.1.1. Instalacion de la herramienta en Linux 33
B.1.2. Instalacion de la herramienta en Windows 33

B.2. Tutorial del sistema 33
B.2.1. Ment Gramatica 33
B.2.2. Menu Edicidén 35
B.2.3. Menu Buscar e 35
B.2.4. Menu Buscar 36
B.2.5. Menu Texto e 36
B.2.6. Menu Herramientas 37
B.2.7. Mentu Transformaciones 38
B.2.8. Mena Analizar 39
B.2.9. Menu Simular 41
B.2.10.Ment Ayuda 43
B.2.11. Formatos de entrada 43

11

Capitulo 1

Introduccion

1.1. Motivacion y contexto

Un compilador es un programa informatico que traduce un cédigo fuente escrito en un
lenguaje de programacion de alto nivel a un cédigo objeto, generalmente en lenguaje maquina
o en un lenguaje intermedio. Esta traduccién permite que el programa escrito por un progra-
mador sea ejecutado por un computador. El proceso de compilaciéon consta de varias fases,
y cada fase cumple una funcion especifica para convertir el cédigo fuente en un programa
ejecutable. A continuacién, se presenta un diagrama que abarca las fases esenciales de un
compilador.

PROGRAMA FUENTE

L Preprocesador ‘
con directivas)

!PROGRAMA FUENTE

Analizador |éxico
\ J
’ Analizador sintactico ‘
\ J
' Analizador semantico ‘
\ J
' Generador de cédigo intermedio ‘

|

Optimizador de codigo

|

‘ Optimizador }4——) Generador de cédigo objeto —> PROGRAMA OBJETO

Manejador de
errores

Tabla de
simbolos

MENSAIJES DE
ERROR

Figura 1.1: Diferentes partes para la creaciéon de un compilador

En la Figura 1.1, se pueden observar las diferentes partes que conforman un compilador. A
continuacién, se realiza una descripcién detallada de sus tres partes fundamentales: el analisis
léxico, el analisis sintactico y el andlisis semantico.

El anélisis léxico, también conocido como scanning, se encarga de examinar el codigo
fuente, descomponiéndolo en tokens. Los tokens representan elementos léxicos, tales como
palabras clave, identificadores, operadores y otros simbolos que conforman el lenguaje de
programacién. Este proceso es esencial para detectar errores léxicos en el cédigo fuente y pro-
porciona una base estructurada para la siguiente fase del proceso de compilacién: el analisis
sintactico.

La segunda fase del compilador es el andlisis sintactico [1] , también conocido como par-

sing, este agrupa los tokens suministrados por el analizador 1éxico para reconocer frases. Se
encarga de analizar la estructura gramatical del cédigo fuente y construir un arbol sintactico
que representa la jerarquia de las construcciones sintacticas. Su importancia radica en garan-
tizar que el cédigo fuente cumpla con las reglas sintdcticas del lenguaje de programacion.

El analisis semantico examina el significado del cédigo fuente para asegurar que cumpla
con las reglas semanticas del lenguaje. El analizador semantico identifica posibles errores co-
mo incoherencias en el uso de variables, operaciones y funciones, asi como la verificacién de
la conformidad del cédigo con las reglas semanticas especificas del lenguaje.

Debido a que no existia una herramienta completa para el estudio de gramaticas y analisis
sintactico surgié el proyecto de “ANAGRA 1.0. Un entorno para el estudio de las fases de
andlisis en el desarrollo de traductores” y posteriormente evolucioné “ANAGRA 2.0 Diseno
e implementacién de un entorno multiplataforma de ayuda para el estudio de asignaturas
de compiladores”[2]. Estas herramientas ofrecian mas tipos de analizadores sintécticos, in-
corporando ademas de los analizadores LL(1)[3] y SLR[4], los analizadores LR y LALR [5],
ademas de construir el proceso de andlisis sintactico interactivo siguiendo la evolucién en la
entrada y con su correspondiente arbol de sintaxis. Asimismo, se aniadié la posibilidad de
realizar operaciones de transformacién sobre gramaticas y obtener informacién adicional de
estas mediante el cdlculo de los conjuntos Primero y Siguiente.

La ultima versién de ANAGRA fue implementada en el ano 2000 utilizando la versién de
Java 1.3, versién que ya no recibe ningtn tipo de actualizaciones o soporte. Debido a esto la
herramienta ha perdido ciertas funcionalidades, por esto, se decidié hacer una reimplemen-
tacion de la herramienta “ANAGRA 3.0: Herramienta para el estudio de gramaéticas libres
de contexto y técnicas de andlisis sintdctico”, una nueva version que mejore la experiencia de
usuario y anada mas funcionalidades.

1.2. Estado del arte

En el ambito de las herramientas para el estudio de gramaticas y analisis sintactico, ca-
be destacar que la disponibilidad de opciones exhaustivas es limitada. Se realizé un anélisis
detallado de algunas de las herramientas mas destacadas, resaltando sus caracteristicas y
limitaciones. A continuacién se describen las principales herramientas.

En primer lugar, JFLAP[6] es una de las herramientas para el estudio de conceptos rela-
cionados con los lenguajes formales mas populares. Implementada en Java, permite construir
automatas finitos no deterministas y automatas de pila no deterministas, maquinas de Turing
de cintas multiples y sistemas L. Asimismo, permite realizar el andlisis sintactico de diferentes
tipos de gramaticas, asi como herramientas para la simulaciéon de gramaticas y autématas.
Sin embargo, es importante tener en cuenta que en lo que respecta al anélisis de graméaticas
y al andlisis sintactico, JFLAP se limita a los analizadores LL(1) y SLR. Esto implica que,
solo es posible realizar el andlisis de una entrada, la herramienta no admite otro tipo de
analizadores ni permite realizar operaciones de transformacién sobre gramaticas.

Por otro lado, ANTLRWorks[7] es una herramienta para el estudio de graméticas y su
analisis. La funcionalidad de ANTLRWorks es parecida a la de la herramienta anterior de-
bido a que solo permite realizar el andlisis de una entrada para determinar si una entrada
pertenece a la gramatica, con la limitacién de que unicamente permite realizar el analisis
LL(1). Ademés, ANTLRWorks tampoco permite realizar operaciones de transformacion so-
bre gramaticas.

Cabe resaltar la existencia de otras herramientas que abordan distintos enfoques sobre
los analizadores sintécticos. Por ejemplo, CTPG [8], es una libreria que toma una descripcién
de lenguaje en forma de cédigo C++ y la convierte en un analizador LR(1) con una tabla
y un analizador 1éxico de autéomata finito determinista, que realiza el analisis sintactico du-
rante el tiempo de compilacién. Por otro lado, EllErre [9] es un generador de autématas LR,
que permite la construccién de los automatas SLR, LR y LALR para una gramética dada.
Asimismo, Parglare [10] representa un analizador disefiado para graméticas LR y GLR. Sin
embargo, es importante sefialar que estas librerias ofrecen limitadas funcionalidades para el
andlisis sintactico, ademas carecen de una interfaz grafica.

1.3. Objetivos y alcance del proyecto

El proyecto ANAGRA surge de la necesidad de crear una herramienta con dos claros ob-
jetivos muy diferenciados. El primero siendo facilitar el estudio de los lenguajes y gramaticas
libres de contexto. Con este propdsito, la herramienta deberd ser capaz de reconocer gramati-
cas, realizar las operaciones mas de transformacién sobre gramdticas (ejemplos ...).

El segundo objetivo se centra en la implementacion de una herramienta para el estudio
de las técnicas del andlisis sintactico. De este modo, es necesario poder generar las tablas
para el andlisis asociadas a diferentes tipos de andlisis sintéctico, ademads en caso que sea ne-
cesario, generar autématas correspondientes. Asimismo, la herramienta debe poder simular
entradas paso a paso, mostrando la evolucién del andlisis sintéctico incluyendo la evolucién
de la entrada y la pila, la secuencia de producciones, la construccién del arbol de sintaxis, y
determinar si pertenecen o no al lenguaje.

En la siguiente lista se describen las tareas concretas que se han realizado durante la
totalidad del trabajo.

1. Analisis de requisitos del trabajo: fase inicial del trabajo en la que se realiza un
analisis de la herramienta anterior, se fija el alcance del proyecto y se realiza una lista
de requisitos.

2. Definicion de gramatica y funcionalidades: durante esta etapa se define el con-
cepto de una gramatica libre de contexto. Por otra parte, se ha llevado a cabo la im-
plementacion de operaciones de transformacion de gramaticas, ademas de herramientas
auxiliares.

3. Implementaciéon de diferentes analizadores sintacticos: en esta tarea se desa-
rrollan los diferentes tipos de andlisis sintactico para una gramatica. Estos generan
tablas para el andlisis que se utilizan para simular entradas de texto, y determinar si
pertenecen al lenguaje o no.

4. Integracion de la interfaz: a lo largo de esta etapa, se ha disenado la interfaz grafica
de la herramienta, ademds, al mismo tiempo que se han integrado los mdédulos que
componen su funcionalidad.

5. Documentacién y Manual de uso: tarea en la que se genera la documentacién del
trabajo realizado y se proporciona un manual de uso a los usuarios futuros.

1.4. Metodologia y herramientas

Respecto a las herramientas empleadas en este proyecto, cabe destacar que la base del
desarrollo se ha llevado a cabo integramente en Python. Se ha llevado a cabo una reimple-
mentacion del proyecto anterior, ANAGRA, que estaba inicialmente implementado en Java.
La eleccion de Python proporciona a los usuarios la capacidad de comparar los algoritmos a
alto nivel con la implementacién realizada, este aspecto no estaba tan accesible en la versién
anterior debido a que Java es un lenguaje con mucha verbosidad.

Respecto al lenguaje a utilizar para la especificacion de la herramienta se decidié que el
fuera Bison, a diferencia de Yacc[11] que se utiliz6 en las versiones anteriores. El cambio de
lenguaje se determiné debido a que Bison es una alternativa de c6digo abierto mas avanzada
que mantiene compatibilidad con Yacc pero agrega funcionalidades adicionales y mejoras,
ademads de ser el lenguaje utilizado en asignaturas anteriores.

En cuanto a la las librerias para el desarrollo de una interfaz gréifica en Python, existen
diversas opciones, cada una con sus caracteristicas. Entre las bibliotecas méas destacadas se
encuentran Tkinter [12], wxPython [13], PyQt [14], PySide [15]. Se opt6 por utilizar PyQt,
para el desarrollo de la interfaz fundamentalmente debido a que es la biblioteca con mayor
robustez y madurez. Ademas, la eleccion se ve respaldada por su exhaustiva documentacion
donde se encuentran una abundancia de ejemplos y recursos disponibles, lo que ha facilitado
el desarrollo de la herramienta.

Existen diversas librerias para el analisis gramatical, entre las mas destacadas se encuen-
tran Yapps, PLY, Lrparsing, PlyPlus, APG, ANTLR. Se decididé por el uso de la libreria
PLY (Python Lex-Yacc) [16] para el andlisis gramatical de la aplicacién. Esto se debe, prin-
cipalmente, a que estd implementada también en Python, lo que facilita la integracién con
otros componentes del sistema.

El cédigo implementado para este proyecto se encuentra gestionado en su totalidad bajo
control de versiones mediante el uso de la herramienta Git. Ademads, la memoria del proyecto,
también gestionado mediante control de versiones, fue elaborado con el sistema de composi-
cién de textos LaTeX.

El resumen de principales tecnologias y herramientas incluye las siguientes:
» Python (https://www.python.org/)

» Bison https://www.gnu.org/software/bison/)

» PyQt (https://pypi.org/project/PyQt5/)

» PLY (https://www.dabeaz.com/ply/)

» Git (https://git-scm.com/)

KTEX (https://www.latex-project.org/)

1.5. Estructura de la memoria

La memoria de este Trabajo de Fin de Grado se estructura en los siguientes Capitulos. En
el Capitulo 1 se introduce y detalla la motivacién subyacente que ha impulsado la ejecucién
de este proyecto, asi como describir los objetivos y el alcance de la herramienta. Ademas de

https://www.python.org/
https://www.gnu.org/software/bison/
https://pypi.org/project/PyQt5/
https://www.dabeaz.com/ply/
https://git-scm.com/
https://www.latex-project.org/

exponer los diferentes enfoques metodolégicos y herramientas consideradas.

El Capitulo 2 proporciona una explicacion general sobre los conceptos de la informatica
vinculados a la herramienta desarrollada. Se presenta una breve introduccién a las graméticas
libres de contexto y al andlisis sintactico, detallado en el andlisis ascendente y descendente,
asi como de ejemplos concretos de analizadores como LL(1), SLR, LALR y LR.

Por otro lado, en el Capitulo 3 se describe la fase inicial del proyecto, en la que se realiza
un detallado andlisis de la versién anterior de la herramienta, las nuevas funcionalidades a
anadir en el proyecto y un andlisis de requisitos.

El Capitulo 4 muestra la implementacién y organizacién de la herramienta. Donde se
realiza un andlisis detallado de cada una de las etapas del desarrollo junto a los médulos
implementados.

En el Capitulo 5 se describen las principales caracteristicas generales de la herramienta
implementada, cada uno de los elementos que la componen junto a las funcionalidades que
incorporan y las diferentes acciones que se pueden realizar.

Finalmente, en el Capitulo 6 se comentan las conclusiones obtenidas tras el diseno e
implementacion de la herramienta. Por tltimo, se muestra un apartado con el cronograma de
trabajo del proyecto y otro con posibles lineas futuras de trabajo, donde ademads se proponen
mejoras a realizar con el fin de mejorar el funcionamiento de la herramienta.

Capitulo 2

Fundamentos previos

En este Capitulo, se establecen los fundamentos de los temas vinculados a la herramienta
desarrollada, con el objetivo de simplificar la comprension de los apartados siguientes. Se
presenta una introduccién a las gramaticas libres de contexto y al anélisis sintdctico. Dentro de
este ultimo, se llevara a cabo un enfoque méas detallado en el analisis ascendente y descendente,
destacando sus principales tipos, como los métodos LL(1), SLR, LALR y LR.

2.1. Gramatica

Los cuatro componentes que forman una gramdtica libre de contexto[17] o simplemente
gramatica son:

1. Terminales: conjunto finito de simbolos que forman las cadenas del lenguaje definido.
2. No-Terminales: conjunto finito de variables, donde cada una representa un lenguaje.

3. Simbolo inicial: representa el lenguaje definido. El simbolo inicial es el unico no
terminal que se utiliza para generar todos las cadenas del lenguaje.

4. Producciones: representan la definicion recursiva de un lenguaje. Cada produccién
consiste en:

a) Un no terminal que es definido por la produccién. A este no terminal se le llama
cabeza o parte izquierda de la produccion.

b) El simbolo —

¢) Una cadena de cero o mds terminales y no terminales. A esta lista se le denomina
cuerpo o parte derecha de la produccién, representa una manera de formar cadenas
en el lenguaje de la parte izquierda. Al hacerlo, se dejan los terminales sin cambios
y se sustituye cada no terminal por cualquier cadena que este en su lenguaje.

Una gramdtica se representa por sus cuatro componentes G = (N, T, S, P), donde N
es el conjunto de no terminales, T los terminales, S el simbolo inicial y P el conjunto de
producciones.

Las gramaticas libres de contexto tienen asociadas dos conjuntos, que son utilizados a la
hora de realizar el analisis sintactico. Antes de introducir los conjuntos, es crucial entender
el concepto de forma de frase, que se define como cualquier cadena de simbolos terminales
y no terminales.

» Conjunto Primero: PRI(a), donde “a” es cualquier forma de frase, es el conjunto de
terminales que comienzan las cadenas derivadas de “a”.

» Conjunto Siguiente: SIG(A), donde “A” es un no-terminal, es el conjunto de ter-
minales que pueden aparecer inmediatamente a la derecha de A en alguna forma de
frase.

2.2. Analisis sintactico

El anélisis sintactico es el proceso para determinar cémo se puede generar una cadena de
terminales por una gramatica. Para esto, en cada paso se realiza una derivacién, esto es, se
reemplaza repetidamente cada no terminal por una de las partes derecha de sus producciones.

Existen dos tipos de analizadores que se distinguen por la forma en que se deriva el no
terminal que se remplazard en cada paso. La eleccion se realiza de la siguiente manera, si la
derivacién es por la izquierda (leftmost) siempre se elige el no terminal més a la izquierda
en cada oracién. Por otro lado, si la derivacion es por la derecha (rightmost), se elige el no
terminal maés a la derecha.

Un analizador sintactico construye un arbol de analisis, en el que la raiz estd etiquetada
con el simbolo inicial, cada nodo interior corresponde a un no terminal, y cada hoja esta
etiquetada con un terminal o la cadena vacia (€). Los hijos de un nodo son los simbolos (de
izquierda a derecha) de una de las partes derechas de las producciones que tiene dicho nodo
como parte izquierda. Otra manera de clasificar analizadores es seglin su manera de cons-
truir el arbol de sintaxis, existen dos formas: si se generan del nodo raiz a las hojas es un
analizador descendente(top-down), mientras que si el drbol se genera desde las hojas hasta
el nodo inicial, el analizador es ascendente (bottom-up). Una gramética es ambigua cuando
existe mas de un arbol de sintaxis asociado a una misma cadena de entrada.

Los analizadores sintacticos pueden tener k simbolos de lookahead, estos son los siguientes
k simbolos de la entrada y se utilizan para decidir qué produccién aplicar en el andlisis. Su
funcionamiento es el siguiente: cuando el nodo del arbol que se esta analizando es un terminal,
y este coincide con el simbolo de lookahead, se avanza en el andlisis arbol y la entrada. El
siguiente terminal en la entrada se convierte en el nuevo simbolo de lookahead, y el siguiente
hijo en el arbol de anélisis se considera.

2.2.1. Anadlisis sintactico descendente (top-down)

El anadlisis descendente corresponde a la construccién del arbol de sintaxis comenzando
por la raiz y creando los nodos hasta llegar a las hojas. Equivalentemente, el analisis descen-
dente puede verse como derivar el simbolo més a la izquierda para una cadena de entrada.

En cada paso del analisis descendente, se determina la produccién que se aplicard para
un no terminal. Una vez elegida la produccion del no terminal, el resto del proceso de anélisis
consiste en “hacer coincidir” los terminales en el cuerpo de la produccién con los de la cadena
de entrada.

Existen dos tipos de analizadores descendentes, los analizadores recursivos y los analiza-
dores por tabla. Los analizadores recursivos descendentes traducen la gramadtica en procedi-
mientos o funciones en el cédigo fuente. Cada no terminal tiene asociada una funcién que
intenta reconocer y derivar la cadena de entrada correspondiente. Mientras que los analiza-
dores descendentes por tabla, se basan en el uso de tablas de andlisis precalculadas. Estas
tablas ayudan a determinar las acciones a realizar en funcién del simbolo de entrada y el
estado actual del analisis.

Anélisis LL(1)

Los analizadores LL(1) son analizadores descendentes por tabla, son también conocidos
como analizadores sintacticos predicativos. La primera “L” en LL(1) implica escanear la en-
trada de izquierda a derecha, la segunda “L” para derivar el simbolo mas a la izquierda de la
entrada, y el “1” significa que se utiliza un simbolo de lookahead en cada paso para la toma
decisiones en el analisis.

La tabla para el andlisis LL(1) se construye a partir de los conjuntos Primero y Siguiente
de la gramatica. Las filas se indexan por los simbolos no terminales, mientras que las colum-
nas corresponden a los terminales y al simbolo $, que indica fin de cadena. Cada elemento [A,
t] de la tabla contiene la produccién que se debe aplicar cuando se encuentra el no terminal
A y t como simbolo de entrada.

Una gramatica es LL(1) cuando en la tabla del andlisis cada elemento es un error o un
conjunto con una unica produccién. Algunas gramdticas pueden tener entradas con mas de
una produccién, esto puede ser debido a que la gramatica tenga recursién a izquierda o que
sea ambigua. La implementacién del algoritmo de construccién de la tabla de anélisis LL(1)
se encuentra en el Anexo B.

2.2.2. Anadlisis sintactico ascendente(bottom-up)

Un anadlisis ascendente corresponde a la construcciéon de un arbol que comienza en las ho-
jas y avanza hacia la raiz. Equivalentemente el andlisis ascendente puede verse como derivar
el simbolo més a la derecha para una cadena de entrada.

El anédlisis ascendente utiliza una pila que estara inicialmente vacia e ira apilando simbolos
segun vayan siendo analizados. En cada paso del andlisis ascendente se puede realizar una de
las siguientes funciones:

Desplazamiento(shift): operaciéon de mover un simbolo de la entrada a la pila. Esto
corresponde a crear un nodo hoja en el arbol de sintaxis.

Reduccidén(reduce): encontrar en la parte superior de la pila una parte derecha de una
produccion y sustituirla por su parte izquierda. Corresponde a que la parte izquierda
de la produccién sea la raiz y agrupe todos sus subarboles que son su parte derecha de
la produccion.

El analizador reconoce la cadena cuando la entrada ha sido consumida por completo y
la pila contiene unicamente el simbolo inicial. El uso de estas funciones hace que los ana-
lizadores ascendentes sean también conocidos como analizadores desplazamiento/reduccién.
Existen tres técnicas para la construccién de analizadores desplazamiento/reduccién, anali-
zadores SLR, LR y LR, estos dependen de la complejidad en su desarrollo, del tamano del
analizador y de su potencia.

Los analizadores ascendentes construyen un autémata finito determinista donde cada es-
tado almacena la informacién de los posibles prefijos, que son fragmentos de las partes
derechas de las producciones gramaticales, recorridos hasta alcanzar dicho estado. Los es-
tados representan conjuntos de configuraciones, una configuracién de una gramaética G es
una produccién de G con un punto en alguna posicién de su parte derecha. A partir de los
estados en la pila y del simbolo de entrada se puede determinar las acciones a ejecutar.

Las tablas para analizadores ascendentes estan conformadas por dos partes, la tabla Ac-
cién y la tabla Ir A. Estas tablas cambian dependiendo de qué tipo de analizador desplaza-
miento/reduccién se escoja debido a que se basan en el autémata del analisis.

La tabla Accion indexa las filas por los estados del autéomata, mientras que las columnas
corresponden a los terminales y el simbolo $ que indica fin de cadena. Cada entrada en la
tabla Accién indica indica qué accién llevar a cabo, esta puede ser: un desplazamiento, una
reduccién, la aceptacién de la cadena o la senalizacién de un error en la entrada.

En cuanto a la tabla Ir A, se indexan las filas con los estados del autémata y las columnas
con los no terminales. El elemento [i, A] indica a que estado conduce cuando el andlisis se
encuentra en el estado i y el no terminal A conducen al estado j.

Una gramatica admite un andlisis ascendente cuando en la tabla Accién cada elemento es
una error o un conjunto con una unica produccién. La presencia de mas de una produccién
en un elemento de la tabla indica la existencia de conflictos en el anélisis, existen dos tipos
de conflictos:

» Conflicto desplazamiento/reduccién: se puede tanto realizar un desplazamiento
como una reduccién.

» Conflicto reduccién/reduccidn: el analizador detecta en la cima de la pila partes
derechas de mas de una produccion.

Analisis SLR

Los analizadores LR(0) o més bien conocidos como analizadores SLR(simple-LR) son el
tipo de analizadores desplazamiento/reduccién mas sencillos de construir, los mas pequenos
y los menos potentes de los tres. La “L” de LR(0) implica escanear la entrada de izquierda
a derecha, la “R” para derivar el simbolo méas la derecha y el “0” indica que no se utilizan
simbolos de lookahead en el andlisis.

La coleccién candénica LR(0) proporciona la base para construir el autémata que se utiliza
para tomar decisiones de andlisis. Cada estado del autémata LR(0) representa un conjunto
de elementos en la coleccién candnica LR(0). Para construir la coleccién canénica LR(0) de
una gramatica es necesario definir gramatica aumentada y dos funciones, Clausura y Sucesor.

Si G es una gramética que tiene como simbolo inicial S, entonces G’, la gramatica au-
mentada para G, es G con un nuevo simbolo inicial S’ y la producciéon S’ — S. El propédsito
de esta nueva produccién inicial es indicar al analizador cudndo debe detener el andlisis y de-
terminar si la entrada ha sido aceptada, es decir, la cadena se acepta cuando se reduce S’ — S.

La funcién Clausura determina todos los elementos que pueden ser alcanzados directa o
indirectamente desde un conjunto dado de elementos. Mientras que, la funcién Sucesor para
un conjunto de elementos I y un simbolo de la gramatica X, se define como la clausura del
conjunto de todos los elementos A — a.Xf tal que A — aX.f esté en 1. La funcién Sucesor
se utiliza para definir las transiciones en el autémata LR(0) para una gramética.

Los estados del autémata LR (0) corresponden a conjuntos canénicos LR(0) y la transicion
del estado I para el simbolo X las especifica la funcién Sucesor(I,X). Los autématas ayudan
con las decisiones de desplazamiento/reduccién. Supongamos que la cadena X de simbolos
gramaticales lleva el autémata LR(0) desde el estado inicial 0 a algin estado j. Entonces, se

realiza una operacion de desplazamiento del siguiente simbolo de entrada “a” si el estado j
tiene una transicién con el simbolo “a”. De lo contrario, se realiza una reduccién, los elementos
en el estado j dirdn qué produccién utilizar.

Analisis LR

El anélisis LR candnico o simplemente LR es un tipo de andlisis desplazamiento /reduccién
que toma un simbolo como lookahead, a diferencia del SLR que no utilizaba ninguno. Para
la construccion del autémata, cada estado contiene una configuraciéon y de un conjunto de
simbolos de lookahead. En un estado con la configuracion A — X;...X;. X;41...X,, y el conjun-
to de lookahead “a”, implica que se han reconocido Xj...X;, y se espera reconocer X;1...Xp.

Wa

Ademsds, después de haber reconocido Xj...X;X;11...X,, es posible encontrar “a”.

Debido a este cambio en la creacidon del autémata, el andlisis LR es mas potente que el
SLR, de hecho, los analizadores LR son los méas potentes de todos los analizadores ascen-
dentes. Sin embargo, es importante senialar que esta mayor capacidad conlleva asociado un
aumento en el tamano del autémata, ya que puede haber varias configuraciones LR para cada
configuracién SLR posible.

Analisis LALR

Los analizadores LALR(lookahead-LR) son una solucién intermedia entre el analizador
SLR y LR. Su autémata se construye como el analizador LR, pero agrupa aquellos estados
que unicamente se diferencian en el simbolo lookahead. Por ello, se obtiene un autémata con
el mismo numero de estados que el del analizador SLR atin maéas potente debido al uso del
conjunto de simbolos de lookahead.

10

Capitulo 3

Analisis de la herramienta

En este Capitulo se presenta el anélisis realizado en la fase inicial del proyecto, este implica
un analisis del estado de la versién anterior de la herramienta junto con sus limitaciones, asi
como de las nuevas funcionalidades a incorporar. Por tltimo, se realiza un anélisis de requisitos
del proyecto.

3.1. Analisis de funcionalidades de la versién anterior

ANAGRA fue una herramienta muy completa y util en su época, sin embargo, con el
transcurso del tiempo y el avance en los lenguajes de programacion junto con el desarrollo de
nuevas librerias, y también reconociendo aspectos que no fueron abordados en su momento,
han surgido dos inconvenientes notables:

El primero de ellos es que debido a que fue desarrollada con Java 1.3, versiéon que a dia
de hoy estd obsoleta y ha perdido soporte. Esta situacién impide una correcta visualizacién
de ciertas partes de la interfaz, como son los autématas asociados al andlisis ascendente de
una gramatica.

El segundo inconveniente radica en la implementacién secuencial de la herramienta, por
ello, cuando se realiza el analisis ascendente de una gramaética compleja la interfaz se congela,
impidiendo al usuario realizar otras operaciones hasta que se complete el calculo de las tablas
del andlisis, el cual puede prolongarse durante varios minutos. Esto genera la impresion de
que la aplicacién se ha quedado bloqueada, afectando la experiencia del usuario.

Adicionalmente, el tercer inconveniente se presenta en la representacion grafica de los
autématas asociados al analisis ascendente, se observa que no se mostraban los arcos de un
nodo a si mismo, por otra parte, cuando dos nodos se apuntaban entre ellos no se podia
leer la etiqueta debido a que los textos de ambos arcos se sobreponian uno encima de otro.
Del mismo modo, no se verificaban las precondiciones de las operaciones de transformacion
de gramaticas. Por lo tanto, si se intentaba realizar una operacién en una gramatica que no
cumplia con las condiciones necesarias, la aplicaciéon podia quedarse bloqueada en algunos
casos, o mostrar resultados incorrectos en otros.

3.2. Analisis de nuevas funcionalidades y cambios respecto a
la version anterior

Este proyecto representa una implementacién completamente renovada de la herramienta,
manteniendo las lineas de diseno y funcionalidades de las versiones anteriores. Sin embargo,

11

se ha llevado a cabo una serie de acciones clave para mejorar y ampliar significativamente
la herramienta. En primer lugar, se ha trabajado en la expansién de la funcionalidad de la
herramienta, incorporando caracteristicas adicionales que enriquecen su utilidad. Asimismo,
se ha dedicado especial atencién a mejorar la experiencia del usuario, implementando ajustes
que promueven una interfaz mas moderna e intuitiva. Ademaés, se han abordado y corregido
los problemas identificados en la versién anterior, asegurando asi una mejora sustancial en el
rendimiento de la herramienta. Estos esfuerzos combinados constituyen una evolucién signi-
ficativa en comparacion con la versiéon previa.

La primera funcionalidad incorporara las operaciones de transformacién de gramaéticas
para convertirlas en la forma normal de Chomsky[18] y de Greibach[19]. Que una gramatica
esté en una forma normal implica que las reglas de producciéon adoptan una estructura es-
tandarizada y mas simple, lo que hace que la gramética sea mas facil de analizar.

Por otro lado, la segunda permitird guardar las tablas de los diferentes tipos de analisis
sintdctico, siempre que la gramaética no tenga conflictos durante el analisis. Estas tablas son
de utilidad en caso de que el usuario desee construir un analizador sintactico ascendente o
descendente mediante tablas.

La tercera funcionalidad a desarrollar permitira la simulacién interactiva de una entrada
para un analizador sintactico pudiendo avanzar o retroceder en el proceso. Esto permitira al
usuario volver a estados anteriores del andlisis sin tener que realizar una nueva ejecucién de
la simulaciéon, como ocurria en la version anterior debido a que solo se podia avanzar en el
analisis.

Con el objetivo de mejorar la experiencia de usuario se ha modernizado la interfaz y se
han corregido los problemas detectados en la versién anterior. Esta mejora incluye, hacer la
interfaz m4s intuitiva y el uso de hilos[20] para asi impedir que la interfaz se congele cuando
se esta realizando el anélisis de una gramatica. Ademads, en esta versién se muestran los arcos
de un nodo a si mismo, también, modificar la localizacién de la etiqueta del arco cuando
dos nodos se apuntaban entre ellos para que sea legible para el usuario. Asimismo, se hace
una comprobacion exhaustiva de las precondiciones de cada operacion de transformacién y en
caso de que la gramatica no cumpla con alguna de las condiciones, se le notifca al usuario cual.

Sumado a ello, en esta version actualizada se han propuesto algunos cambios con res-
pecto a la versién anterior. El primero de ellos consiste en la reestructuracién del formato
de presentacién del autémata del andlisis ascendente en texto siguiendo un estilo similar al
utilizado por Bison, haciéndolo més legible y comprensible para el usuario, ya que muestra
mas informacion.

Otra modificacion de esta version afecta al log, ventana que muestra las operaciones que
se han realizado en la aplicaciéon, que ahora se encuentra ubicado en un Meni dentro de
la pestana Ayuda. Este cambio ha contribuido a una interfaz més limpia y estéticamente
agradable, ademads, el concentrar la visualizacién del log en una accién especifica del ment
permite que la interfaz sea mas intuitiva y centrada en las funciones de la aplicacién.

El uso de Python como lenguaje para la implementaciéon de este proyecto proporciona
a los usuarios la capacidad de comparar los algoritmos a alto nivel con la implementacién
realizada, este aspecto no estaba tan accesible en la versién anterior debido a que Java es
un lenguaje con mucha verbosidad. En la Figura 3.3 se muestra una comparativa de del
pseudocddigo del algoritmo de eliminacién de simbolos no alcanzables y la implementacién

12

realizada en Python.

def removal_unreachable_terminals(grammar) :
gr = grammar.copy ()

old = set()
new = set(smb for prod in gr.prods[gr.initial_tok]
Algoritmo removalUnreachableTerminals: if prod is not None for smb in prod) | set(gr.initial_tok)
Require: G=(N, T, P, S8) t.q L(G) '= g
while old != new:
old := {} new_smbs = new.difference(old)
new := {X in (N union T) | S-> aYb in P} union {S} old = new
While old != new for smb in new_smbs & gr.non_terminals:
old := new new |= set(smb for prod in gr.prods[smb]
new := old union {Y in (N union T) | A-> aYb in P, A in old} if prod is not None for smb in prod)
End While
gr.terminals &= new
N' := new intersection N unreachable_smbs = gr4non_terminals4difference(new>
T' := new intersection T gr.non_terminals &= new
P' := {A->w in P | A in N', w in (N' union T')*}
gr.prods = {key: value for key, value in gr.prods.items()
if key not in unreachable_smbs}
. S T .
Figura 3.1: Pseudocédigo del algoritmo rerurn gr

Figura 3.2: Algoritmo en Python

Figura 3.3: Comparativa Pseudocédigo e implementacion del algoritmo eliminacién de simbo-
los no alcanzables

3.3. Analisis de requisitos

Tras el anélisis de la herramienta anterior junto a su funcionalidad y problemas asociados,
y la definicién de nuevas caracteristicas, se realizé una lista con los requisitos de la aplicacién.
Es importante senalar que esta lista experimenté modificaciones a lo largo del desarrollo del
proyecto. Inicialmente, se contemplé tinicamente la implementacién del analizador LL(1). Sin
embargo, tras su implementacion, se consider6 extender la funcionalidad para incluir el ana-
lizador SLR, y finalmente se anadieron los analizadores LR y LALR.

Los requisitos definidos tras el proceso se resumen en la Tabla 3.1. Para cada requisito se
muestra un cédigo y una pequena descripcién.

13

Cédigo \

Descripcion

Usuario

RF-01

RF-02

RF-03
RF-04
RF-05
RF-06

RF-07
RF-08
RF-09
RF-10
RF-11
RF-12
RF-13
RF-14
RF-15
RF-16

RF-17

RF-18

El usuario deberd poder editar fuentes Bison con graméticas en un editor ami-
gable, con las caracteristicas bdsicas de busqueda (buscar, reemplazar), edi-
cién(copiar, cortar, pegar, borrar, seleccionar todo) y formato(cambiar fuente,
color, espacios de tabulacion).

El usuario deberd poder tanto abrir como guardar archivos con gramaticas, se-
leccionandolas a lo largo del sistema de ficheros de la maquina donde se ejecute.
El usuario deberd poder cambiar el idioma de la aplicacién cuando lo desee.

El usuario debera poder calcular el conjunto Primero de una gramatica.

El usuario deberd poder calcular el conjunto Siguiente de una gramatica.

El usuario deberd poder calcular el conjunto Primero de una forma frase de una
gramatica.

El usuario deberd poder eliminar los simbolos no derivables de una gramaética.
El usuario debera poder eliminar los terminales no accesibles de una gramaética.
El usuario debera poder eliminar las producciones € de una gramatica.

El usuario deberd poder eliminar la recursividad a izquierda de una gramaética.
El usuario deberd poder eliminar los ciclos de una gramatica.

El usuario debera poder factorizar a izquierda la gramatica.

El usuario deberd poder transformar la gramatica a forma normal de Chomsky.
El usuario debera poder transformar la gramética a forma normal de Greibach.
El usuario debera poder calcular las tablas de anélisis LL(1), SLR, LALR y LR.
El usuario deberd poder guardar las tablas del andlisis (LL(1), SLR, LALR, LR)
en un fichero JSON.

El usuario debera poder calcular el autémata del andlisis ascendente (SLR, LALR
y LR) y acceder a la informacién de cada uno de los nodos. También, podrd
visualizar la informacioén del autémata en texto plano.

El usuario deberd poder simular una entrada LL(1), SLR, LALR o LR interac-
tivamente (pudiendo avanzar y retroceder) donde se mostrara la evolucién de la
pila entrada, la secuencia de producciones aplicadas, y el arbol de sintaxis.

Software

RF-19
RF-20

RF-21

RF-22

RF-23

La herramienta ha de ser multiplataforma

La herramienta ha de ser multilenguaje, es decir, todos sus textos estaran dispo-
nibles en varios idiomas. El idioma se podrd cambiar facilmente desde un ment
dedicado a ello.

La herramienta ha de poder compilar gramaticas descritas en el lenguaje Bison,
con la salvedad de que no contengan bloques de cédigo.

La herramienta dispondra de un editor, donde se mostrara la gramatica. Este
contendra una barra de estado donde se indicara el estado de la fuente activa, si
estd en modo de lectura o escritura, y la linea y columna donde estd posicionado
el cursor. Contendra una serie de mentus mediante los cuales el usuario podra
acceder a todas las funcionalidades de la aplicacién descritas anteriormente.

La herramienta comprobara las precondiciones de las operaciones de transfor-
macién antes de realizarlas, en caso de no cumplir las condiciones se indicara al
usuario cuédles.

Cuadro 3.1: Anélisis de requisitos.

14

Capitulo 4

Implementacion de la herramienta

4.1. Estructura general del sistema

El nuevo ANAGRA cuenta con una estructura modular que desacopla la funcionalidad
de la interfaz de la herramienta, siguiendo la estructura del patrén de arquitectura Modelo-
Vista-Controlador(MVC) [21]. Por esto, es posible utilizar ANAGRA como ejecutable o como
libreria, permitiendo asi que pueda ser integrada en otros sistemas.

Cada moédulo implementa una etapa en la que se realizan tareas independientes del resto,
partiendo de la definicién de la gramatica hasta la simulacién sintactica de esta. Cada médulo
funcional dentro de ANAGRA cuenta con su contraparte especifica en la capa de interfaz.
Las etapas definidas son las siguientes:

» Etapa de implementaciéon de gramaticas: en esta etapa se define la estructura de
datos de una gramatica, se implementan todas las operaciones de transformacién sobre
gramaticas. A su vez, también se desarrollan herramientas auxiliares como el célculo
del conjunto Primero y Siguiente sobre una gramaética.

» Etapa implementacién analisis sintactico: a partir de una gramética se han desa-
rrollado los analizadores sintéacticos. En el caso del anélisis descendente solo se calcula la
tabla de andlisis, mientras que para el analisis ascendente, se calculan las tablas Accién
e Ir A, junto con la construccion del autémata asociado. Asimismo, se ha implementado
la simulacién de entradas a partir de las tablas del andlisis de una gramatica.

= Etapa integracion de la interfaz: en esta etapa se implementa toda la interfaz grafica
y funcionalidad de la herramienta junto a la integracién de los moédulos el gramaticas,
andlisis y la simulacién.

4.2. Etapa de implementaciéon de gramaticas

En esta primera etapa se define el concepto de gramatica libre de contexto, esto incluye
sus estructuras de datos y las funciones asociadas como cargar una gramatica a partir de un
fichero Bison o el célculo del conjunto Primero y Siguiente. Igualmente, de los algoritmos para
las diferentes operaciones de transformacion, asi como, de formas normales. A continuacién
se muestran los médulos implementados en esta etapa:

= Gramatica: este médulo representa el concepto de gramatica. Esta compuesto por un
conjunto de simbolos terminales, otro de no terminales, un simbolo inicial y por un
conjunto de producciones. Ofrece las operaciones de transformacién y formas normales
descritas en el Capitulo 3. Asi como del cédlculo del conjunto Primero y Siguiente.

15

= Conjuntos: este modulo representa graficamente él concepto de gramatica, en el se
implementan las ventanas emergentes cuando se calcula el conjunto Primero, conjunto
Siguiente y conjunto Primero de una forma de frase.

= bisonlex y bisonparse: archivos implementados para la abstraccién de una gramatica
en un fichero Bison. Este proceso se explica detalladamente en la siguiente seccion.

4.2.1. Abstraccion de una gramatica en un fichero Bison

El proceso consiste en la abstraccién de los diferentes parametros de la gramatica de un
fichero Bison a partir de la generalizacion de la gramética de este lenguaje, para ello se utiliz6
la libreria PLY (Python Lex-Yacc), una herramienta para la construccién de compiladores lex

y yacc.

PLY consta de dos moédulos separados: lex.py y yacc.py. El médulo lex.py se utiliza para
dividir el texto de entrada en una coleccién de tokens especificados por un conjunto de re-
glas de expresiones regulares. Mientras que yacc.py se utiliza para reconocer la sintaxis del
lenguaje que ha sido especificada en forma de una gramatica libre de contexto.

La entrada se compone por dos ficheros, el primero, se definen los tokens del lenguaje
mediante expresiones regulares, ademéas de las acciones a realizar cuando se encuentra cada
token. En el segundo, se definen las reglas gramaticales utilizando la notacién BNF(Backus-
Naur Form)[22|, ademds de las acciones a realizar cuando se aplica cada regla gramatical.
Por ello, en el primero bisonlex, se indicaron los diferentes simbolos de Bison. Mientras que
en el segundo, bisonparse, se definieron las reglas de Bison y las acciones para ir completando
los diferentes parametros de una gramatica. Asi, una vez finalizada la compilacién se podran
abstraer, en una estructura de datos, los diferentes parametros de cualquier gramatica escrita
en Bison.

4.3. Etapa del analisis sintactico

En esta etapa se han implementado los algoritmos necesarios para realizar el analisis
sintactico de una gramatica. Esto incluye los algoritmos para el cédlculo las tablas de anélisis
para cada tipo de analizador, asi como el cdlculo del autémata asociado en el caso del analisis
ascendente. Ademas de los algoritmos utilizados para la simulacién de cadenas a partir de las
tablas del andlisis. A continuacién se muestran los médulos implementados en esta etapa:

» Andlisis LL(1): médulo que implementa las funciones del anélisis LL(1), estas son, el
calculo de la tabla de andlisis LL(1), la comprobacién de que la gramatica es LL(1), y
la simulacién de una entrada.

= Analizador ascendente: este mdédulo implementa las operaciones comunes en todos
los tipos de analizador ascendente, estas son, expandir gramatica y comprobar que no
tiene ningtn conflicto, y el algoritmo de simulacién de una entrada.

= Analisis SLR: mddulo que implementa las funciones Clausura, Sucesor del andlisis
SLR. Ademaés del calculo de configuraciones canénicas SLR, tabla Accién e Ir A, y el
autémata correspondiente al analisis SLR.

= Analisis LR: médulo que implementa las funciones Clausura, Sucesor del anélisis LR.
Ademas del calculo de configuraciones canénicas LR, tabla Accién e Ir A, y el autémata
correspondiente al andlisis LR.

16

= Anilisis LALR: este modulo implementa las funciones Clausura, Sucesor del analisis
LALR. Ademas del calculo de configuraciones canénicas LALR, tabla Accién e Ir A, y
el autémata correspondiente al anéalisis LALR.

» Tablas: este médulo implementa las ventanas emergentes de la tabla del analisis LL(1),
las tablas Accién e Ir A, la gramdtica expandida y el autémata en formato texto co-
rrespondiente al andlisis ascendente.

= Autémata: médulo que representa graficamente el autémata correspondiente al anali-
sis ascendente.

= Simular: este médulo implementa la ventana que se muestra al simular una entrada,
ademaés de toda la légica detras del andlisis interactivo.

= Arbol: médulo que representa graficamente el arbol de sintaxis generado al realizar el
analisis sintactico.

4.4. Etapa integracion de la interfaz

En esta tltima etapa se desarrolla todo el proceso de integracion de la interfaz grafica
de la herramienta junto a los modulos descritos en las secciones anteriores. Este paso abarca
desde la implementacién de las funcionalidades de la aplicacién hasta el tratamiento de po-
sibles errores.

El tratamiento de errores en la herramienta consiste desde la gestiéon de errores tanto
léxicos como sintacticos de gramatica, como de entradas de texto introducidas por el usuario
no validas, entre otras. Ademas, se incorporan mensajes auxiliares informativos para orientar
al usuario a lo largo del proceso, como notificar si la gramatica introducida no produce ningin
lenguaje o, si una cadena es reconocida por la gramatica o no. Los médulos implementados
en esta fase:

= Utils: este médulo implementa las ventanas relacionadas con la funcionalidad de la
aplicacién que no estan directamente relacionadas con el andlisis de una gramaética,
estas son, la ventana de busqueda de una palabra en la gramaética, el remplazamiento
de una palabra por otra en la gramatica, la ventana de log de la herramienta, la ventana
para introducir la entrada a simular y la barra de progreso que se muestra cuando se
esta realizando el andlisis sintactico de una gramética.

= Main: modulo principal de la aplicaciéon que integra toda la funcionaliad de la herra-
mienta junto a la interfaz grafica.

17

Capitulo 5

Resultados

En este Capitulo se describen las principales caracteristicas generales de la herramienta
implementada, asi como cada uno de los elementos que la componen junto a las funcionali-
dades que se incorporan. Junto con las diferentes acciones que se pueden realizar.

5.1. Descripcién general de la herramienta

La interfaz de esta nueva versién de ANAGRA se ha disenado siguiendo el mismo estilo
que la de su version anterior. La interfaz esta compuesta por un menu situado en la parte
superior de la ventana con los submenus Archivo, Editar, Buscar, Texto y Ayuda, que se
detallaran en las siguientes subsecciones. Una barra de estado situada en la parte inferior de
la ventana que muestra el estado de la fuente activa, si estd en modo de lectura o escritura, la
linea y columna donde esta posicionado el cursor. También, un editor en el que se encuentra
la gramdtica que se podra editar solo si se esta en modo escritura. La Figura 5.1 muestra la
interfaz de la herramienta, mientras que la Figura 5.2 muestra las principales opciones.

ANAGRA

Gramitica Editar Buscar Texto Ayuda

|Gramatiea) Editar Buscar -
CrleN

Curl+O

Borrar

Guardar preferencias

Reemplazar

Figura 5.2: Opciones de la aplicacion.

Linea; 1 Columna; 1

Figura 5.1: Interfaz de usuario.

ANAGRA acepta gramaticas escritas con la sintaxis de Bison, detecta errores en la misma,
informando de ello mostrando un mensaje senalando el caracter, la linea y la columna con
el error, y colocando el cursor sobre la linea en la que ha sido detectado. A su vez, cuando
una transformacién es aplicada sobre una gramaética, la gramdtica resultante se abre en una
nueva ventana, de manera que el usuario pueda compararlas y trabajar independientemente
con ambas. Dispone, ademds, de otras facilidades de edicién, como son la configuracién en
varios idiomas o el formateado automatico de la fuente de la gramatica

18

5.2. Mentu Archivo

Las acciones recogidas en el meni Archivo son las permiten al usuario abrir una nueva
ventana, abrir un fichero con una gramaética, editar la gramdtica previamente aceptada, acep-
tar la gramdtica introducida, guardar la gramatica en un fichero y cerrar la aplicacion. Tanto
si se acepta la gramatica como si se abre de un fichero se comprueba que tenga la sintaxis de
una gramatica de Bison, en caso de que haya algtin error sintdctico o léxico se informa de ello,
mostrando un mensaje que senala el caracter, la linea y la columna, y colocando el cursor so-
bre la linea en la que ha sido detectado. En caso contrario, el editor cambiara a modo lectura,
impidiendo que se pueda editar, y se anadirdn las opciones Herramientas, Transformaciones,
Anilisis y Simular al ment. La Figura 5.3 muestra las ventanas tras aceptar una gramética
sin errores.

es Analizar Simular [ARSlZER Ayuda

ramatica LL(1)

forma de frase Analizar gramtica SLR(1)

Analizar gramatica LALR(1) Analizar gramética LALR(1

Analiz R(1) Analizar gramitica LR(1)

Figura 5.3: Opciones especificas de la aplicacién para graméaticas.

5.3. Menu Editar

Las acciones del ment Editar permiten copiar, cortar, pegar y borrar el texto seleccionado,
ademds de seleccionar todo el texto en el editor. Cabe destacar que estas acciones pueden
realizarse mediante las combinaciones de teclas habituales.

5.4. Mentu Buscar

En el menti Buscar se permite al usuario buscar una palabra en el editor o remplazarla
otra. La busqueda que hace sobre la gramatica diferencia entre mayusculas y minusculas.
Para buscar una palabra en la gramatica, primero, se abrird una ventana donde el usuario
podra introducir la palabra a buscar, cuando pulse el botén de aceptar se subrayaran en
verde las coincidencias, mientras, que en caso de no haber ninguna coincidencia, se mostrara
un mensaje indicdndolo. La Figura 5.4 muestra el proceso de buscar una palabra en el texto.

Gramitica Buscar Texto Herramientas Transformaciones Analizar Simular Ayuda

kenc d

Aceptar

Linea: 1 Columna: 1

Figura 5.4: Resultados tras la bisqueda

19

Para remplazar una palabra por otra en la gramdtica, primero, se abrird una ventana
donde el usuario podra introducir la palabra a buscar y aquella por la que la quiera cam-
biar, cuando pulse el botén de aceptar se remplazaran todas las coincidencias encontradas,
mientras, en caso de no haber ninguna coincidencia se mostrara un mensaje indicandolo.

5.5. Menu Texto

Dentro del menu Texto se realizar las acciones de cambiar el color y fuente de la letra,
el espacio de tabulacion, el idioma, el formato en el que se muestra la gramdtica y guardar
las preferencias. Cuando se guardan las preferencias, la siguiente ejecucién de la aplicacion
aparece con las preferencias indicadas. En la Figura B.11 se muestran las ventanas emergentes
para cambiar el color o fuente de la letra, o los espacios de tabulacién.

Pick Screen Color

Add to Custom Colors.

© cancel

Figura 5.5: Cambiar color Figura 5.6: Cambiar fuente Figura 5.7: Cambiar espacios

Figura 5.8: Ments

5.6. Menui Ayuda

En el meni Ayuda ofrece dos opciones, la primera de ellas es mostrar el log de la herra-
mienta que indica las acciones que se han ido realizando en la aplicacién, mientras que la
segunda muestra una ventana con informacién relativa sobre el TFG (autora, director, enlace
al repositorio...).

Mensaje

Figura 5.9: Log de la aplicacién. Figura 5.10: Informacién sobre ANAGRA.

5.7. Menu Herramientas

Dentro del menti de Herramientas se permite al usuario calcular el conjunto Primero,
Siguiente o Primero de una forma de frase que introduzca el usuario, de una gramética. Cada
conjunto se mostrard en una nueva ventana emergente, como indica la Figura 5.11. Para
calcular el conjunto Primero de una forma de frase primero se abrird una ventana con dos
entradas de texto, en la de arriba es donde el usuario podra introducir la forma de frase a
calcular y una vez pulse el botén de aceptar se mostrara el conjunto en la de abajo. Este
proceso se muestra en la Figura 5.12.

20

Figura 5.11: Conjunto Primero y Siguiente Figura 5.12: Conjunto Primero forma frase

5.8. Menu Transformaciones

Dentro del mend Transformaciones puede realizar las diferentes operaciones de transfor-
macién y formas normales sobre la gramatica detalladas en la Seccién 3.2. Si la gramaética
no cumple con las precondiciones necesarias para realizar la operacién deseada se mostrara
un mensaje al usuario cual son las condiciones que no cumple, sino se realizara la operacién
y gramatica resultante se abrird en una nueva ventana emergente. El psuedocodigo de las
operaciones de transformacién se puede consultar en el Anexo A.

5.9. Menu Analisis

Dentro del mend Anélisis se permite al usuario realizar el andlisis sintdctico LL(1), SLR,
LALR o LR de la gramética. Para el anélisis descendente se mostrara solo la tabla de anélisis,
mientras que para el andlisis ascendente se mostraran: la gramatica expandida, el automata
en ventana y otra en texto plano, y las tablas Accion e Ir A. Cada componente del analisis se
mostrara en una nueva ventana emergente. En el caso de que no haya conflictos en el analisis
habilitara al usuario poder guardar las tablas calculadas en un fichero JSON.

La Figura 5.13 muestra las tablas del andlisis (SLR en este caso) correspondientes a
la misma gramatica, mientras que en la Figura 5.14 se muestra el autémata asociado a la
gramatica. En caso de conflictos en las tablas, por no tratarse de una gramatica de la clase,
las celdas con conflictos se destacan en rojo.

Automata gramat

Tabla Accién SLR(1) WA K TablaIr ASLR(1) v ~ X

Figura 5.13: Tablas analisis SLR

Figura 5.14: Autémata anglisis SLR

21

En la representacion grafica, se puede mover un nodo por la pantalla simplemente haciendo
clic sobre él y arrastrandolo. Mientras que con dos clic sobre un nodo, se mostraria el conjunto
de configuraciones asociadas al mismo, pudiendo organizarse de la manera como en la Figura
5.15. ANAGRA lleva a cabo una distribucién automaética de los nodos en la ventana, de
manera que se facilita la interpretacién del mismo.

Figura 5.15: Autémata mostrando la informacién de cada nodo

5.10. Menu Simular

Dentro del ment Simular se permite al usuario realizar la simulacién interactiva de los
diferentes analizadores para una entrada de texto, siempre que se haya realizado el anélisis
previamente y no haya encontrado ningin conflicto. Para ello, primero se mostrara un menu
donde el usuario podra introducir una entrada de texto. Una vez el usuario pulse el botén
de aceptar se cerrard la ventana anterior y se abriran dos ventanas, la primera mostrard la
simulacién de la pila, la entrada, la secuencia de producciones aplicadas y los botones de
avanzar y retroceder, mientras la segunda mostrard la construccién dinamica del arbol de
sintaxis. Una vez acabada la simulacién se le indicard al usuario si la frase es reconocida por
la gramatica o no. Este proceso se muestra en las Figuras 5.16, mientras que la Figura 5.17
muestra paso a paso la construccién del arbol de sintaxis.

Ventana de simulacién

Entrada

Texto a analizar

Retroceder

Figura 5.16: Estado del analizador durante el proceso de anélisis

22

Figura 5.17: Construccién del arbol de sintaxis paso a paso

En la representacién gréafica del arbol de sintaxis, los nodos azules se utilizan para denotar
simbolos no terminales, mientras que los nodos rojos se reservan para los simbolos terminales.
Ademds, los colores y estilos de linea han sido cuidadosamente seleccionados para garantizar
una legibilidad éptima en ambos modos de visualizacién, ya sea en entornos de fondo claro
u oscuro.

23

Capitulo 6

Conclusiones

Este trabajo tenia como objetivo principal implementar una herramienta para el estudio
de gramaéticas libres de contexto y andlisis sintactico. A modo de conclusion se destacan los
principales hitos logrados. En primer lugar, con la herramienta ANAGRA se permite el es-
tudio de gramaticas libres de contexto ya que se pueden reconocer gramaticas a partir de
una especificada en Bison. También, se puede obtener informacién relativa a gramaticas co-
mo el conjunto Primero, el conjunto Siguiente y el conjunto Primero de una forma de frase.
Ademas de realizar operaciones de transformacién sobre gramaticas, estas son: factorizacién a
izquierda, eliminacién de no terminales no derivables, eliminacién de recursividad a izquierda,
eliminacion de simbolos no alcanzables, eliminacién de producciones ¢, eliminacién de ciclos
y transformacién a forma normal de Chomsky y de Greibach.

Del mismo modo, ANAGRA también sirve para el estudio del andlisis sintdctico ya que
permite el andlisis ascendente LL(1) donde se calcula la tabla para el analisis, mientras que
para andlisis descendente de tipo SLR, LR canénico y LALR se puede calcular la gramética
ampliada, la tabla Accién e Ir A y el autémata correspondiente al andlisis tanto en formato
grafico como en texto. También, se puede simular interactivamente una entrada de texto mos-
trando la evolucion de la entrada, la pila, la secuencia de producciones y el arbol de sintaxis,
y determinar si la entrada pertenecen o no al lenguaje.

Asimismo, se ha ampliado la funcionalidad de la herramienta respecto a la versién ante-
rior, incorporando caracteristicas adicionales que enriquecen su utilidad. Las mejoras incluyen
la implementacion de operaciones de transformacion de gramaticas a las formas normales de
Chomsky y Greibach, facilitando su andlisis. También se ha habilitado la capacidad de guar-
dar tablas de analisis sintactico, proporcionando utilidad para la generacion de analizadores
por tabla. Una tercera funcionalidad permite la simulacién interactiva del analisis sintactico,
con la posibilidad de avanzar o retroceder en el proceso.

Para mejorar la experiencia del usuario, se modernizo la interfaz y se resolvieron proble-
mas de la versién anterior, como la representacién de autématas correspondientes al analisis
ascendente donde ahora se pueden visualizar los arcos de un nodo a si mismo y las etique-
tas de dos nodos que se apuntan entre si. Ademads, se implementaron ciertas operaciones
concurrentes para evitar que la interfaz se quede congelada durante el andlisis sintactico en
casos de gramaticas complejas. Ademds, se propusieron cambios como la reubicacién del log
de la herramienta y reestructuracion del formato de presentacion del autémata del analisis
ascendente en texto siguiendo un estilo similar al utilizado por Bison.

Estas mejoras, junto con la ampliacién de funcionalidades, consolidan ANAGRA 3.0 como
una herramienta robusta y versatil. De este modo, se cumplieron todos los objetivos propues-

24

tos, posicionando a ANAGRA como una valiosa herramienta de apoyo para el estudio de
gramaticas libres de contexto y técnicas de andlisis sintactico.

6.1. Cronograma

Durante los 10 meses aproximados de duracién de este Trabajo Fin de Grado, el proyecto
se ha divido en las tareas mostradas en la la Cuadro 6.1, la cual expresa la evolucion temporal
de este proyecto desde que se inicio en febrero hasta su finalizacién en enero. El Cuadro 6.2
expone la dedicaciéon en horas a cada uno de las tareas de este proyecto.

Tarea Feb ‘ Mar ‘ Abr ‘ May ‘ Ago ‘ Sep ‘ Dic ‘ Ene ‘
Revisar documentacion de librerias
Implementar las gramaticas
Implementacién de la interfaz de usuario
Implementar el analizador LL(1)
Implementar el analizador SLR
Implementar el analizador LR
Implementar el analizador LALR
Redactar la memoria

Cuadro 6.1: Diagrama de Gantt.

Tarea ‘ Tiempo (horas) ‘
Revisién del estado del arte 10
Implementacion de la funcionalidad 150
Implementacion de la interfaz 125
Reuniones 20
Redaccién de la memoria 75
Redacciéon manual de usuario 10
’ Total 390

Cuadro 6.2: Horas dedicadas a cada tarea del proyecto.

Finalmente, el cédigo del trabajo realizado es accesible publicamente desde el repositorio
mostrado a continuacién bajo la licencia GNU GPL-3.0:

https://github.com/1lauragonzalezz/ANAGRA

6.2. Trabajo futuro

Finalizado el trabajo, se plantea su incorporacién como material de apoyo para la asig-
natura de Procesadores de Lenguajes de la Universidad de Zaragoza. Como ayuda, se ha
redactado un manual de usuario de la herramienta, que se puede consultar en el Apéndice B.

Para futuras investigaciones y mejoras en este proyecto, se pueden considerar diversas
lineas de trabajo con el objetivo de ampliar y perfeccionar las capacidades del sistema. En
primer lugar, se podria explorar la implementaciéon de analizadores sintdcticos alternativos,
incluyendo aquellos con un lookahead diferente de 1 o analizadores recursivos como el GLR
(Generalized Left-to-right Rightmost derivation)[23]. Esto permitiria evaluar y comparar el

25

https://github.com/llauragonzalezz/ANAGRA

rendimiento de distintos enfoques en la fase de andlisis sintdctico, contribuyendo asi a la ro-
bustez y versatilidad del sistema.

Adicionalmente, también se podria considerar la implementacién de ciertas funcionalida-
des de la herramienta para ser concurrente o distribuida. Esto agilizaria el cdlculo de opera-
ciones costosas, como el cdlculo de configuraciones canénicas en graméticas muy grandes.

Por ultimo, otra linea de trabajo prometedora seria la implementacién de herramientas
adicionales para el andlisis de lenguajes. Esto podria abarcar desde el andlisis léxico hasta la
el andlisis semantico. La expansién de estas capacidades proporcionaria una mayor profun-
didad y amplitud en la comprensién del cédigo fuente, permitiendo abordar aspectos de los
programas analizados.

26

Bibliografia

Alfred V Hoe, Ravi Sethi y Jeffrey D Ullman. “Compilers—principles, techniques, and
tools”. En: (1986).

Joaquin Ezpeleta. “Material de apoyo”. En: (2009). URL: https://webdiis.unizar.
es/~ezpeleta/doku.php?id=material_de_apoyo.

Terence Parr y Kathleen Fisher. “LL (*) the foundation of the ANTLR parser genera-
tor”. En: ACM Sigplan Notices 46.6 (2011), pags. 425-436.

Alfred V. Aho y Stephen C. Johnson. “LR parsing”. En: ACM Computing Surveys
(CSUR) 6.2 (1974), pags. 99-124.

Frank DeRemer y Thomas Pennello. “Efficient computation of LALR (1) look-ahead
sets”. En: ACM Transactions on Programming Languages and Systems (TOPLAS) 4.4
(1982), pags. 615-649.

Thomas Finley Susan Rodger. FLAP - An Interactive Formal Languages and Automata
Package. .©'Reilly Media, Inc.”, 2006.

Jean Bovet y Terence Parr. “ANTLRWorks: an ANTLR grammar development envi-
ronment”. En: Software: Practice and Experience 38.12 (2008), pags. 1305-1332.

Peter winter. “Proyecto ctpg”. En: (2021). URL: https://github.com/peter-winter/
ctpg.
schnorr. “Proyecto Ellerre”. En: (2021). URL: https://github.com/schnorr/ellerre.

Igor Dejanovié. “Parglare: A LR/GLR parser for Python”. En: Science of Compu-
ter Programming (2021), pdg. 102734. 1SsN: 0167-6423. por: 10 . 1016/ j . scico .
2021 .102734. URL: https://www . sciencedirect . com/science/article/pii/
S0167642321001271.

Stephen C Johnson et al. Yacc: Yet another compiler-compiler. Vol. 32. Bell Laborato-
ries Murray Hill, NJ, 1975.

Fredrik Lundh. “An introduction to tkinter”. En: URL: www. pythonware. com/library-
/tkinter/introduction/index. htm (1999).

Noel Rappin. wzPython in Action. 2006.

Mark Summerfield. Rapid GUI Programming with Python and Qt: The Definitive Guide
to PyQt Programming (paperback). Pearson Education, 2007.

Gopinath Jaganmohan y Venkateshwaran Loganathan. PySide GUI Application Deve-
lopment. Packt Publishing Ltd, 2016.

Shannon Behrens. “Prototyping Interpreters using Python Lex-Yacc”. En: Dr. Dobb’s
Journal. (2004).

Armin Cremers y Seymour Ginsburg. “Context-free grammar forms”. En: Journal of
Computer and System Sciences 11.1 (1975), pags. 86-117.

Noam Chomsky. “On the representation of form and function”. En: (1981).

27

https://webdiis.unizar.es/~ezpeleta/doku.php?id=material_de_apoyo
https://webdiis.unizar.es/~ezpeleta/doku.php?id=material_de_apoyo
https://github.com/peter-winter/ctpg
https://github.com/peter-winter/ctpg
https://github.com/schnorr/ellerre
https://doi.org/10.1016/j.scico.2021.102734
https://doi.org/10.1016/j.scico.2021.102734
https://www.sciencedirect.com/science/article/pii/S0167642321001271
https://www.sciencedirect.com/science/article/pii/S0167642321001271

Sheila A Greibach. “A new normal-form theorem for context-free phrase structure gram-
mars”. En: Journal of the ACM (JACM) 12.1 (1965), pags. 42-52.

Leodanis Pozo Ramos. “Use PyQt’s QThread to Prevent Freezing GUIs”. En: (2019).
URL: https://realpython.com/python-pyqt-qthread/.

Glenn E Krasner, Stephen T Pope et al. “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system”. En: Journal of object oriented
programming 1.3 (1988), pags. 26-49.

Dave Crocker y Paul Overell. Augmented BNF for syntax specifications: ABNF. Inf. téc.
2008.

Scott McPeak y George C Necula. “Elkhound: A fast, practical GLR parser generator”.
En: International Conference on Compiler Construction. Springer. 2004, pags. 73-88.

28

https://realpython.com/python-pyqt-qthread/

Apéndice A

Métodos de transformacion de una
gramatica

A.1. Calculo del conjunto Primero

Algorithm 1 Calcular Conjunto Primero

Require: X e NUT
Ensure: calcula PRI(X)
repeat
if X € T then
anadir X a PRI(X)
end if
if X — ¢ es una produccién then
anadir ¢ a PRI(X)
end if
if X —Y7...Y, es una produccion then
for j < 1to k do
if a € PRI(Y;) N\e € PRI(Y1)N...N PRI(Y;_1) then
anadir a a PRI(X)
end if
end for
if e € PRI(Y1)N...N PRI(Y) then
anadir € a PRI(X)
end if
end if
until no se anada nada a ningin PRI

29

A.2. Calculo del conjunto Siguiente

Algorithm 2 Calcular Conjunto Siguiente

Require: True
Ensure: calcula SIG(A) para todo A € N
anadir $ a SIG(S)
repeat
for cada producciéon A — aBS do
anadir PRI(B)\{e} a SIG(B)
end for
for cada produccion A - aB o A — aBf con € € PRI(f) do
anadir SIG(A) a SIG(B)
end for
until no se anada nada a ningtin SIG

A.3. Eliminacion simbolos no terminables

Algorithm 3 EliminaNoTerminables
Require: G = (N, T,P,S) t.q. L(G) # 0
Ensure: G' = (N, T,P,S)NG' ~GAVX' e NIweTx*. X' =*w
viejo :={}
nuevo:={Ae€N|A—wePweTl"}
while viejo # nuevo do
V1eJ0 = NUevo
nuevo :=viejoU{B € N | B — a € P,a € (T Uviejo)*}
end while
N’ := nuevo
P:={A—-weP|AecN,we (N UT)*}

A.4. Eliminacién de recursividad a izquierda

Algorithm 4 Algoritmo eliminaReclzda
Require: G = (N,T,P,S) sin “ciclos” (A =% A) ni producciones ¢ (A — ¢) y N =

{Ay,..., A}
Ensure: G’ ~ G, sin rec. a izda.
G+ G

for i + 1 ton do
for j«— 1toi—1do

Aj; — 61|... |05 son las producciones actuales de A; sustituir en P’
A; = Ajapor A; — di1af ... |0
end for
eliminar rec. inmediata de A;
end for

30

A.5. Factorizacion a izquierda

Algorithm 5 Factorizar Gramatica a la Izquierda

Require: G = (N, T, P,S5)
Ensure: Graméatica G factorizada a la izquierda
P+ P
for cada no terminal A € N do
for cada par de producciones A — af y A — ay en P’ do
if « es un prefijo comin de 8y v then
Crear un nuevo no terminal A’ y actualizar N, P’
N+ NU{A’}
Reemplazar A — aff y A — a-y con:
A — aA
A= By
end if
end for
end for

A.6. Eliminacion de ciclos

Algorithm 6 Eliminacion de ciclos

Require: G = (N, T, P,S)
Ensure: Elimina los ciclos de una gramatica
Eliminar las producciones €
for cada regla unitaria A — B do
for cada regla B — X;...X,, do

Anadir la regla A — X;...X,, a menos que sea una regla unitaria ya eliminada

end for
end for

A.7. Eliminaciéon de producciones épsilon

Algorithm 7 Eliminacién de producciones épsilon en una Gramatica

Require: G = (N, T, P,S)
Ensure:
for cada regla A — X;... X, do
Si todos los X; son nulos, marcar A como nulo
end for
for cada regla A — X ... X, do
Crear todas las combinaciones omitiendo los X; nulos
Eliminar todas las reglas €, excepto si la regla es Sy — ¢
end for

31

A.8. Eliminacion de no terminales no derivables

Algorithm 8 EliminaNoDerivables

Require: G = (N, T,P,S) t.q. L(G) # 0
Ensure: G' = (N, T,P,S)NG' ~GAVX' e NIweTx X' =*w
viejo :={}
nuevo:={A€N|S —we Pwe N}
while viejo # nuevo do
V1€J0 1= NUevo
nuevo := viejoU{B € N | A— B € P, A € viejo}
end while
N’ := nuevo
P:={A—-weP|Aec N, we (N UT)*}

A.9. Eliminacion de no accesibles

Algorithm 9 EliminaNoAccesibles

Require: G = (N,T,P,S) t.q. L(G) # 0 A VX € N.X es terminable
Ensure: G' = (N, T, P,S) NG' =G AVX € (N'UT"). 3, € (N'UT").S =" aXp
viejo := {S}
nuevo :={X € (NUT) | S —- aXp e P}U{S}
while viejo # nuevo do
V1€JO 1= NUEVO
nuevo := viejoU{Y € (NUT) | A — aYp € P, A € viejo}
end while
N’ := nuevoN N
T := nuevoNT
P={A—-weP|Ae N,we (N UT)*}

32

Apéndice B

Manual de usuario

B.1. Instalacion de la herramienta

Una vez clonado el repositorio de Github es necesario la instalacion de los paquetes PyQt5,
networkx y pygraphviz.

B.1.1. Instalacion de la herramienta en Linux

Para instalar los paquetes necesarios para la ejecucién de ANAGRA en Linux es necesario
realizar los siguientes pasos:

pip install PyQt5

pip install networkx

pip install pygraphviz

B.1.2. Instalacion de la herramienta en Windows

Para instalar los paquetes necesarios para la ejecucion de ANAGRA en Windows es ne-
cesario realizar los siguientes pasos:

pip install PyQtb
pip install networkx

Para instalar pygraphviz es necesario seguir el tutorial en su web .

B.2. Tutorial del sistema

B.2.1. Ment Gramaéatica

Para trabajar con ANAGRA lo primero de todo es disponer de una gramatica sobre la
que poder operar. Para ello existen dos posibilidades, se puede obtener de un fichero o la
pode escribir el usuario en el editor.

Nueva (CTRL+N)

Esta opcion crea una ventana nueva ventana independiente de la actual donde se puede
trabajar con otra gramaética distinta.

'Tutorial instalacion pygraphviz.

33

https://pygraphviz.github.io/documentation/stable/install.html

Abrir (CTRL+O0)

Esta opcién permite abrir el fichero la gramatica con la que se va trabajar. Para ello, el
usuario debe seleccionar del un cuadro de didlogo mostrado en la Figura B.1 el fichero. El
formato del fichero aparece en el anexo B.2.11. Una vez seleccionada la gramaética y esta no
contenga errores, se mostrard en el editor.

(X} Abrir archivo

Look in: P /home/laura/Escritorio...dataset/Mis gramaticas ~

! Computer Name

b (=0 c.dot

File name:

Files of type: Al Files (*) & cancel

Figura B.1: Menu abrir fichero.

Editar

Esta opcion se utiliza para modificar una gramatica abierta anteriormente o editada an-
teriormente y que ya haya sido comprobadas. Esto hace que el editor vuelva a modo edicién
y el usuario pueda realizar los cambios deseados en la gramaética.

Guardar (CTRL+4+G)

Con esta opcién se guarda la gramatica actual de trabajo en fichero. Si la gramatica ya
habia sido leida de un fichero, se guardard automaticamente. En caso contrario de comportara
como la opcién Guardar como explicada en el apartado siguiente.

Guardar como

Esta opcién permite lo mismo que la anterior pero dando la opcién de que el fichero donde

se guarde la gramdtica sea introducido. El dialogo es el mismo que el de la Figura B.1

Salir

Provoca el cierre de la aplicacion y la pérdida de toda aquella informacién que no haya
sido guardada. Aparece un didlogo como el de la Figura B.2 recordando al usuario guardar
las preferencias y dandole la posibilidad de continuar la operacién o cancelarla.

X | :Desea salir de la aplicacion?

:Desea salir de la aplicacion?(Se perderan los datos no guardados)

| + Yes | & Cancel

Figura B.2: Opciones especificas de la aplicacién para graméticas.

34

B.2.2. Menu Edicién
Cortar (CTRL+X)
Borra el texto seleccionado del area de edicién de la gramatica y lo copia en el portapapeles
del sistema.
Copiar (CTRL+C)

Copia el texto seleccionado del area de edicién de la gramética al portapapeles del sistema.

Pegar (CTRL+V)

Pega el contenido del portapapeles en el area de edicién de la gramatica.

Borrar

Borra el de texto seleccionado por el cursor.

Seleccionar todo (CTRL+A)

Selecciona todo el texto introducido en el drea de edicién de gramaéticas.

Aceptar gramatica

Se ha de presionar esta opcién cuando se haya terminado de editar la gramatica y se
quiera poder utilizar las opciones de andlisis y transformacién sobre ella. Una vez presionado
se verificard la correccion de la gramatica editada. Si es correcta finalizara el modo edicién. En
caso contrario se mostrard un mensaje como el de la figura B.3 donde se muestra el caracter,
la linea y la columna donde esta el error, y se permanecerd en el modo edicién.

Figura B.3: Mensaje de error

B.2.3. Menu Buscar
Buscar (CTRL+F)

Para buscar una palabra en la gramética, primero, se abrird una ventana donde el usuario
podra introducir la palabra a buscar, cuando pulse el botén de aceptar se subrayaran en
verde las coincidencias, mientras, que en caso de no haber ninguna coincidencia, se mostrara
un mensaje indicdndolo. La Figura 5.4 muestra el proceso de buscar una palabra en el texto.

35

Buscar (CTRL+B)

ANAGRA

Gramatica Buscar Texto Herramientas Transformaciones Analizar Simular Ayuda

ANAGRA
Gramitica Buscar Texto Herramientas Transformaciones Analizar Simular Ayuda

ken cd ken cd

Aceptar Aceptar

Linea: 1 Columna: 1 Linea: 1_Columna: 1

Figura B.4: Tablas andlisis SLR Figura B.5: Autémata andlisis SLR

Reemplazar (CTRL+R)

Para remplazar una palabra por otra en la gramética, primero, se abrird una ventana
donde el usuario podra introducir la palabra a buscar y aquella por la que la quiera cam-
biar, cuando pulse el botén de aceptar se remplazardn todas las coincidencias encontradas,
mientras, en caso de no haber ninguna coincidencia se mostrard un mensaje indicindolo. La
Figura 5.4 muestra el proceso de remplazar una palabra por otra en el texto.

B.2.4. Ment Buscar

Buscar (CTRL+B)

ANAGRA X ANAGRA
Gramatica Buscar Texto Herramientas Trans ones Analizar Simular Ayuda amitica Buscar Texto Herramientas Transformaciones Analizar Simular Ayuda

ken cd encd

Aceptar

Linea: 1 Columna: 1 Modos: lectura Linea: 1 Columna: 1

Figura B.6: Tablas andlisis SLR Figura B.7: Autémata analisis SLR

B.2.5. Mentu Texto
Fuente

Permite cambiar el tipo de letra con el que estamos editando o mostrando la gramatica.
En la Figura B.9 aparece el didlogo.

36

Color

Permite cambiar el color de letra con el que estamos editando o mostrando la gramatica.
En la Figura B.8 aparece el didlogo.

Tabulador

Permite cambiar el nimero de espacios que formaran un tabulador por defecto. En la
Figura B.10 aparece el didlogo.

HTML: #fFFf

[vox © cancel

Figura B.8: Cambiar color Figura B.9: Cambiar fuente Figura B.10: Cambiar espacios

Figura B.11: Ments

Extendido

Permite cambiar el formato en el que aparece la gramatica al formato compacto. En este
formato las producciones aparecen de la siguiente manera.

Parte Izquierda
Parte Derechal
| Parte Derecha?

| Parte Derecha n

Compacto

Permite cambiar el formato en el que aparece la gramatica al formato compacto. En este
formato las producciones aparecen de la siguiente manera.

Parte Izquierda : Parte Derechal | Parte Derecha2 | | Parte Derechan;

Guardar preferencias

Permite guardar las opciones de tipo de letra, color de letra y espacios de tabulador
elegidos, para que la préxima vez que se abrd la aplicacién sean tomados como valores por
defecto.

B.2.6. Menu Herramientas

Calcular conjunto Primero

Muestra una nueva ventana como la Figura B.12a donde se muestra el conjunto de Primero
de los simbolos de la gramatica.

37

Calcular conjunto Siguiente

Muestra una nueva ventana como la Figura B.12a donde se muestra el conjunto de Si-
guiente de los simbolos de la gramatica.

Conjunto PRIMERO Conjunto SIGUIENTE

SigiCr:$,d, c

(a) Conjunto Primero (b) Conjunto Siguiente

Calcular conjunto Primero de una forma frase

Esta opcién permite calcular el conjunto Primero de una forma de frase. Para ello, primero
se mostrard una ventana en la que el usuario podré ingresar la forma de la frase que desea
analizar en el campo superior. Luego, al pulsar el botén “Calcula”, el conjunto Primero de la
forma de frase se mostrard en el campo inferior de la ventana. En la Figura B.13 se muestra
la ventana:

Calcular conju...forma de frase

Forma frase:

Conjunto PRIMERO forma frase:

Calcular

Figura B.13: Opciones especificas de la aplicacién para gramaticas.

B.2.7. Ment Transformaciones

En este menu aparece la posibilidad de aplicar distintas transformaciones a la gramatica
actual para convertirla en otra equivalente con objeto de que se pueda adaptar a uno u otro
tipo de gramatica. Las posibles transformaciones se enumeran a continuacion:

= Eliminacién de no derivables: eliminar los simbolos que no son capaces de derivar
ningdn otro simbolo.

» Factorizacion a izquierda: factorizar a izquierda de todas aquellas producciones que
pueden provocar backtracking en el analizador.

= Eliminacién de ciclos: eliminar todos aquellos simbolos no terminales de la gramatica
que derivan en si mismos en uno o mas pasos.

38

= Eliminacion de no accesibles: eliminar todos aquellos simbolos de la gramatica que
no pueden ser accedidos desde el simbolo inicial.

= Eliminacién de anulables: eliminar todas aquellas producciones cuya parte derecha
es lambda

= Eliminacién de la recursividad a izquierda: eliminar la recursividad a izquierda
de las producciones.

= Forma normal de Greibach: transforma la gramatica en la forma normal de Grei-

bach.
= Forma normal de Chomsky: transforma la gramaética en la forma normal de Chomsky.

Antes de realizar una transformacién se comprueba las precondiciones de la operacién, si la
gramdatica no cumple con las condiciones se mostrard un mensaje como el de la Figura B.14
indicando cuales y no se realizard la operacién. Si la gramdtica cumple la precondicién se
aplicard la transformaciéon y la gramaética resultante aparecerd en una ventana nueva para
que puedan compararse las diferencias entre la gramatica original y la transformada.

Warning

El algoritmo de eliminacién de recursividad a izquierda exige en la
PREgque haya cicle i pro i 4n. En la gramatica

suministrada hay ciclos y

Figura B.14: Opciones especificas de la aplicacién para gramaticas.

B.2.8. Ment Analizar

En el menu Analizar se puede realizar el andlisis sintactico de la gramatica, mostrando
las diferentes partes del andlisis e indicando si corresponde o no al tipo especifico de anélisis
llevado a cabo

Analizar gramatica LL(1)

Esta opcién ejecuta el andlisis LL(1) de la gramatica, mostrando, en ventanas indepen-
dientes, la tabla para andlisis LL(1). Las casillas de la tabla que aparecen con el fondo rojo
son aquellas en las que existe un conflicto. En la Figura B.15 aparece una de estas tablas
generadas a partir del andlisis LL(1) de la gramatica. El anélisis solo se realiza si es la primera
vez que se pulsa en esta opcidn, las siguientes veces solo se muestran las ventanas.

Tabla analisis LL{1)

Figura B.15: Opciones especificas de la aplicacién para gramaéticas.

39

Guardar tabla andalisis LL(1)

Esta opcidn estd solamente activa si se ha ejecutado el andlisis LL(1) anteriormente y la
gramdtica no tiene conflictos, y muestra para seleccionar el fichero donde guardar las tablas
para el analisis.

Analizar gramatica SLR

Esta opcién ejecuta el andlisis SLR de la gramatica, mostrando, en ventanas indepen-
dientes, las tablas para analisis SLR, el autémata de conjuntos de configuraciones LR(0), la
gramatica ampliada y una versién del autémata en modo texto. Las casillas de la tabla que
aparecen con el fondo rojo son aquellas en las que existe un conflicto. En la Figura B.16
aparece una de estas tablas generadas a partir del andlisis SLR de la gramatica, en la Figura
B.18 se muestra el autémata en ventana y en texto, y en la Figura se muestra la gramética
expandida. El analisis solo se realiza si es la primera vez que se pulsa en esta opcién, las
siguientes veces solo se muestran las ventanas.

Tabla Accidn SLR(1) TablaIr ASLR({1) ~

d 5
dz2 1
acep

rC—=d

Automata gramatica SLR(1) A X Autémata escrito SLR(1)

Figura B.17: Autématas andlisis SLR.

Guardar tablas SLR

Esta opcién estd solamente activa si se ha ejecutado el andlisis SLR anteriormente y la
gramdtica no tiene conflictos, y muestra para seleccionar el fichero donde guardar las tablas
para el analisis.

40

Gramatica ampliadaSLR(1) ~

0)S* =S
1N5=CC
2)C=c C
3)C—d

Figura B.18: Gramatica ampliada del analisis SLR.

Analizar gramatica LALR

El proceso para esta opcién es idéntico al que se explica en la Seccion B.2.8. La tnica
diferencia es que en este caso cambia el algoritmo de simulacién.

Guardar tabla tablas LALR

El proceso para esta opcién es idéntico al que se explica en la Secciéon B.2.8. La tnica
diferencia es que en este caso cambia el algoritmo de simulacién.

Analizar gramatica LR

El proceso para esta opcién es idéntico al que se explica en la Seccion B.2.8. La tnica
diferencia es que en este caso cambia el algoritmo de simulacién.

Guardar tabla tablas LR

El proceso para esta opcién es idéntico al que se explica en la Seccion B.2.8. La tnica
diferencia es que en este caso cambia el algoritmo de simulacién.

B.2.9. Ment Simular
Simular entrada LL(1)

Esta opcién permite, una vez que se ha comprobado que la gramética actual es del tipo
LL(1), simular el analizador sintactico tipo LL(1) asociado a la gramadtica. Para ello, el pro-
grama muestra una ventana como la de la Figura B.19 donde el usuario podra introducir la
entrada a simular.

Input

Input:

Aceptar

Figura B.19: Opciones especificas de la aplicacién para gramaticas.

41

Una vez el usuario pulse el boton Aceptar, aparecerdn dos ventanas, la de la derecha ven-
tana de simulacién donde se recogen las estructuras internas del simulador (pila de simbolos,
producciones emitidas, entrada que falta por analizar y entrada original del simulador). Esta
ventana se muestra en la Figura B.20. En esta ventana, cada vez que se pulse el botén Avan-
zar, se ejecutard avanzard un paso del proceso de simulacion y se actualizaran las estructuras
del analizador en pantalla. Mientras que si se pulsa el botéon Retroceder, se retorcera un paso
en el andlisis.

La ventana de la derecha contiene el arbol de sintaxis que corresponde a la entrada que
se estd simulando. El arbol ira avanzando o retrocediendo en su construccién a medida que
el usuario avance o retroceda en el analisis. Dicha ventana aparece en la B.21.

Ventana de simulacion

Secuencia de producciones

Entrada

Texto a analizar

Avanzar

Figura B.20: Ventana con la entrada, pila y

produccién disparada Figura B.21: Arbol de sintaxis.

Al final del anélisis, se indicara como en la Figura B.22 si la entrada es aceptada por la
gramadtica es aceptada segin el analizador LL(1) o no.

Mensaje Mensaje

" La entrada MO es aceptada por la gramética
La entrada es aceptada por la gramatica

v OK |

(a) Entrada aceptada. (b) Entrada No aceptada.

Figura B.22: Mensaje si el analizador acepta la entrada o no.

Simular entrada SLR

El proceso para esta opcién es idéntico al que se explica en la seccién B.2.9. La tunica
diferencia es que en este caso cambia el algoritmo de simulacién.

Simular entrada LALR

El proceso para esta opcién es idéntico al que se explica en la seccién B.2.9. La unica
diferencia es que en este caso cambia el algoritmo de simulacién.

42

Simular entrada LR

El proceso para esta opcién es idéntico al que se explica en la seccién B.2.9. La unica
diferencia es que en este caso cambia el algoritmo de simulacién.

B.2.10. Menu Ayuda
Log

En la ventana de log se muestran la lista de acciones que el usuario ha realizado en la
aplica. Esta ventana se muestra en la Figura B.23.

Acerca de

Contiene informacion acerca del proyecto y las personas que han intervenido en él. Esta
ventana se muestra en la Figura B.24.

Mensaje

ichero.txt

Figura B.23: Log de la aplicacion. Figura B.24: Informacién sobre ANAGRA.

B.2.11. Formatos de entrada
Formato de los ficheros de gramaticas

El formato de los ficheros para introducir las gramaéticas es el formato utilizado por YACC.
Es decir, que podemos pasarle un fichero YACC y el programa lo reconocera y obtendra una
gramdtica de él. Hay que advertir que existen varias restricciones a lo indicado en el péarrafo
anterior.

1. Los tokens terminales de la gramatica podran ser definidos como identificador de texto
al inicio del fichero con la declaraciéon %token..., o como cardcter entre comillas simples
en las producciones de la gramatica.

Cuando leamos una gramatica desde un fichero, en la pantalla principal aparecera el contenido
integro del fichero. Cuando editemos la gramética o apliquemos alguna transformacién sobre
ella, en la pantalla principal solo aparecerd informacién acerca de las producciones y definicién
de tokens. Esta informacién serd la que se almacene en un fichero de disco en caso de que
seleccionemos dicha opcién del meni.

Formato de las formas de frase que se introducen en la aplicacion

» Forma de frase que se introduce para obtener el conjunto Primero.: se in-
troduciran los simbolos de la gramatica separados por uno o més espacios en blanco
o tabuladores. Las mismas palabras reservadas que tenemos para los ficheros donde se
almacenan las gramaticas, los tenemos aqui. Dichas palabras se especifican en el punto
anterior. Ante cualquier error en la formacién de la forma de frase, ANAGRA mostraria
un mensaje de error indicandolo.

43

= Entrada que simularemos con el analizador sintéctico asociado a las gramati-
cas: se introduciran los simbolos terminales de la gramatica separados por uno o mas
espacios en blanco o tabuladores.

44

	Introducción
	Motivación y contexto
	Estado del arte
	Objetivos y alcance del proyecto
	Metodología y herramientas
	Estructura de la memoria

	Fundamentos previos
	Gramática
	Análisis sintáctico
	Análisis sintáctico descendente (top-down)
	Análisis sintáctico ascendente(bottom-up)

	Análisis de la herramienta
	Análisis de funcionalidades de la versión anterior
	Análisis de nuevas funcionalidades y cambios respecto a la versión anterior
	Análisis de requisitos

	Implementación de la herramienta
	Estructura general del sistema
	Etapa de implementación de gramáticas
	Abstracción de una gramática en un fichero Bison

	Etapa del análisis sintáctico
	Etapa integración de la interfaz

	Resultados
	Descripción general de la herramienta
	Menú Archivo
	Menú Editar
	Menú Buscar
	Menú Texto
	Menú Ayuda
	Menú Herramientas
	Menú Transformaciones
	Menú Análisis
	Menú Simular

	Conclusiones
	Cronograma
	Trabajo futuro

	Métodos de transformación de una gramática
	Cálculo del conjunto Primero
	Cálculo del conjunto Siguiente
	Eliminación símbolos no terminables
	Eliminación de recursividad a izquierda
	Factorización a izquierda
	Eliminación de ciclos
	Eliminación de producciones épsilon
	Eliminación de no terminales no derivables
	Eliminación de no accesibles

	Manual de usuario
	Instalación de la herramienta
	Instalación de la herramienta en Linux
	Instalación de la herramienta en Windows

	Tutorial del sistema
	Menú Gramática
	Menú Edición
	Menú Buscar
	Menú Buscar
	Menú Texto
	Menú Herramientas
	Menú Transformaciones
	Menú Analizar
	Menú Simular
	Menú Ayuda
	Formatos de entrada

