
Trabajo Fin de Grado

ANAGRA 3.0: Herramienta para el estudio de
gramáticas libres de contexto y técnicas de análisis

sintáctico

ANAGRA 3.0: A tool for the study of context-free
grammars and parsing techniques

Autora

Laura González Pizarro

Director

Joaqúın Ezpeleta Mateo

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2023-24

RESUMEN

Un compilador es un programa informático que traduce un código fuente escrito en un
lenguaje de programación de alto nivel a un código objeto, generalmente en lenguaje máquina
o en un lenguaje intermedio. Esta traducción permite que el programa escrito por un progra-
mador sea ejecutado por un computador. El proceso de compilación consta de varias fases,
y cada fase cumple una función espećıfica para convertir el código fuente en un programa
ejecutable.

El análisis sintáctico o proceso de parsing es una etapa fundamental de un compilador. Se
encarga de analizar la estructura gramatical del código fuente y construir un árbol sintáctico
que representa la jerarqúıa de las construcciones sintácticas. Su importancia radica en garan-
tizar que el código fuente cumpla con las reglas sintácticas del lenguaje de programación.

El proyecto ANAGRA surgió debido a que no exist́ıa una herramienta completa para el
estudio de gramáticas libres de contexto y técnicas de análisis sintáctico. Las versiones an-
teriores, ANAGRA 1.0 y ANAGRA 2.0, ofrecieron la posibilidad de realizar las operaciones
de transformación más habituales sobre gramáticas y diferentes tipos de análisis sintáctico:
descendentes como LL(1), y ascendentes como SLR, LR y LALR. Además de proporcionar un
proceso interactivo de análisis sintáctico con visualización del árbol de sintaxis. Con el tiempo,
la última versión, ANAGRA 2.0, basada en Java 1.3, perdió ciertas funcionalidades y soporte.

Este trabajo presenta ANAGRA 3.0, una reimplementación de la herramienta, siguiendo
el estilo y caracteŕısticas de las versiones anteriores, con el objetivo de agregar funcionali-
dades y mejorar la experiencia del usuario. ANAGRA 3.0 no solo preserva la funcionalidad
de versiones anteriores, sino que también presenta nuevas caracteŕısticas. Ahora, es capaz
de transformar gramáticas a las formas normales de Chomsky y Greibach. Además, la he-
rramienta puede guardar tablas de análisis sintáctico para generar analizadores por tabla y
ofrece una simulación interactiva con la capacidad de poder avanzar y retroceder en el proceso
de análisis, mostrando la evolución en la entrada, la pila y con su correspondiente árbol de
sintaxis.

La interfaz se modernizó, haciéndola más intuitiva, y se solucionaron problemas de la ver-
sión anterior, como la representación de autómatas correspondientes al análisis ascendente
donde ahora se pueden visualizar los arcos de un nodo a śı mismo y las etiquetas de dos no-
dos que se apuntan entre śı. Además, se implementaron ciertas operaciones concurrentes para
evitar que la interfaz se quede congelada durante el análisis sintáctico en casos de gramáti-
cas complejas. Se realizaron cambios en la presentación de resultados como la reubicación del
log y el formato de presentación del autómata en texto, mejorando la legibilidad y usabilidad.

Estas mejoras, junto con la ampliación de funcionalidades, consolidan ANAGRA 3.0 como
una herramienta robusta y versátil. De este modo, se cumplieron todos los objetivos propues-
tos, posicionando a ANAGRA como una valiosa herramienta de apoyo para el estudio de
gramáticas libres de contexto y técnicas de análisis sintáctico.

I

Índice general

1. Introducción 1

1.1. Motivación y contexto . 1

1.2. Estado del arte . 2

1.3. Objetivos y alcance del proyecto . 3

1.4. Metodoloǵıa y herramientas . 4

1.5. Estructura de la memoria . 4

2. Fundamentos previos 6

2.1. Gramática . 6

2.2. Análisis sintáctico . 7

2.2.1. Análisis sintáctico descendente (top-down) 7

2.2.2. Análisis sintáctico ascendente(bottom-up) 8

3. Análisis de la herramienta 11

3.1. Análisis de funcionalidades de la versión anterior 11

3.2. Análisis de nuevas funcionalidades y cambios respecto a la versión anterior . . 11

3.3. Análisis de requisitos . 13

4. Implementación de la herramienta 15

4.1. Estructura general del sistema . 15

4.2. Etapa de implementación de gramáticas . 15

4.2.1. Abstracción de una gramática en un fichero Bison 16

4.3. Etapa del análisis sintáctico . 16

4.4. Etapa integración de la interfaz . 17

5. Resultados 18

5.1. Descripción general de la herramienta . 18

5.2. Menú Archivo . 19

5.3. Menú Editar . 19

5.4. Menú Buscar . 19

5.5. Menú Texto . 20

5.6. Menú Ayuda . 20

5.7. Menú Herramientas . 20

5.8. Menú Transformaciones . 21

5.9. Menú Análisis . 21

5.10. Menú Simular . 22

6. Conclusiones 24

6.1. Cronograma . 25

6.2. Trabajo futuro . 25

II

A. Métodos de transformación de una gramática 29
A.1. Cálculo del conjunto Primero . 29
A.2. Cálculo del conjunto Siguiente . 30
A.3. Eliminación śımbolos no terminables . 30
A.4. Eliminación de recursividad a izquierda . 30
A.5. Factorización a izquierda . 31
A.6. Eliminación de ciclos . 31
A.7. Eliminación de producciones épsilon . 31
A.8. Eliminación de no terminales no derivables 32
A.9. Eliminación de no accesibles . 32

B. Manual de usuario 33
B.1. Instalación de la herramienta . 33

B.1.1. Instalación de la herramienta en Linux 33
B.1.2. Instalación de la herramienta en Windows 33

B.2. Tutorial del sistema . 33
B.2.1. Menú Gramática . 33
B.2.2. Menú Edición . 35
B.2.3. Menú Buscar . 35
B.2.4. Menú Buscar . 36
B.2.5. Menú Texto . 36
B.2.6. Menú Herramientas . 37
B.2.7. Menú Transformaciones . 38
B.2.8. Menú Analizar . 39
B.2.9. Menú Simular . 41
B.2.10.Menú Ayuda . 43
B.2.11. Formatos de entrada . 43

III

Caṕıtulo 1

Introducción

1.1. Motivación y contexto

Un compilador es un programa informático que traduce un código fuente escrito en un
lenguaje de programación de alto nivel a un código objeto, generalmente en lenguaje máquina
o en un lenguaje intermedio. Esta traducción permite que el programa escrito por un progra-
mador sea ejecutado por un computador. El proceso de compilación consta de varias fases,
y cada fase cumple una función espećıfica para convertir el código fuente en un programa
ejecutable. A continuación, se presenta un diagrama que abarca las fases esenciales de un
compilador.

Figura 1.1: Diferentes partes para la creación de un compilador

En la Figura 1.1, se pueden observar las diferentes partes que conforman un compilador. A
continuación, se realiza una descripción detallada de sus tres partes fundamentales: el análisis
léxico, el análisis sintáctico y el análisis semántico.

El análisis léxico, también conocido como scanning, se encarga de examinar el código
fuente, descomponiéndolo en tokens. Los tokens representan elementos léxicos, tales como
palabras clave, identificadores, operadores y otros śımbolos que conforman el lenguaje de
programación. Este proceso es esencial para detectar errores léxicos en el código fuente y pro-
porciona una base estructurada para la siguiente fase del proceso de compilación: el análisis
sintáctico.

La segunda fase del compilador es el análisis sintáctico [1] , también conocido como par-

1

sing, este agrupa los tokens suministrados por el analizador léxico para reconocer frases. Se
encarga de analizar la estructura gramatical del código fuente y construir un árbol sintáctico
que representa la jerarqúıa de las construcciones sintácticas. Su importancia radica en garan-
tizar que el código fuente cumpla con las reglas sintácticas del lenguaje de programación.

El análisis semántico examina el significado del código fuente para asegurar que cumpla
con las reglas semánticas del lenguaje. El analizador semántico identifica posibles errores co-
mo incoherencias en el uso de variables, operaciones y funciones, aśı como la verificación de
la conformidad del código con las reglas semánticas espećıficas del lenguaje.

Debido a que no exist́ıa una herramienta completa para el estudio de gramáticas y análisis
sintáctico surgió el proyecto de “ANAGRA 1.0. Un entorno para el estudio de las fases de
análisis en el desarrollo de traductores” y posteriormente evolucionó “ANAGRA 2.0 Diseño
e implementación de un entorno multiplataforma de ayuda para el estudio de asignaturas
de compiladores”[2]. Estas herramientas ofrećıan más tipos de analizadores sintácticos, in-
corporando además de los analizadores LL(1)[3] y SLR[4], los analizadores LR y LALR [5],
además de construir el proceso de análisis sintáctico interactivo siguiendo la evolución en la
entrada y con su correspondiente árbol de sintaxis. Asimismo, se añadió la posibilidad de
realizar operaciones de transformación sobre gramáticas y obtener información adicional de
estas mediante el cálculo de los conjuntos Primero y Siguiente.

La ultima versión de ANAGRA fue implementada en el año 2000 utilizando la versión de
Java 1.3, versión que ya no recibe ningún tipo de actualizaciones o soporte. Debido a esto la
herramienta ha perdido ciertas funcionalidades, por esto, se decidió hacer una reimplemen-
tación de la herramienta “ANAGRA 3.0: Herramienta para el estudio de gramáticas libres
de contexto y técnicas de análisis sintáctico”, una nueva versión que mejore la experiencia de
usuario y añada más funcionalidades.

1.2. Estado del arte

En el ámbito de las herramientas para el estudio de gramáticas y análisis sintáctico, ca-
be destacar que la disponibilidad de opciones exhaustivas es limitada. Se realizó un análisis
detallado de algunas de las herramientas más destacadas, resaltando sus caracteŕısticas y
limitaciones. A continuación se describen las principales herramientas.

En primer lugar, JFLAP[6] es una de las herramientas para el estudio de conceptos rela-
cionados con los lenguajes formales más populares. Implementada en Java, permite construir
autómatas finitos no deterministas y autómatas de pila no deterministas, máquinas de Turing
de cintas múltiples y sistemas L. Asimismo, permite realizar el análisis sintáctico de diferentes
tipos de gramáticas, aśı como herramientas para la simulación de gramáticas y autómatas.
Sin embargo, es importante tener en cuenta que en lo que respecta al análisis de gramáticas
y al análisis sintáctico, JFLAP se limita a los analizadores LL(1) y SLR. Esto implica que,
solo es posible realizar el análisis de una entrada, la herramienta no admite otro tipo de
analizadores ni permite realizar operaciones de transformación sobre gramáticas.

Por otro lado, ANTLRWorks[7] es una herramienta para el estudio de gramáticas y su
análisis. La funcionalidad de ANTLRWorks es parecida a la de la herramienta anterior de-
bido a que solo permite realizar el análisis de una entrada para determinar si una entrada
pertenece a la gramática, con la limitación de que únicamente permite realizar el análisis
LL(1). Además, ANTLRWorks tampoco permite realizar operaciones de transformación so-
bre gramáticas.

2

Cabe resaltar la existencia de otras herramientas que abordan distintos enfoques sobre
los analizadores sintácticos. Por ejemplo, CTPG [8], es una libreŕıa que toma una descripción
de lenguaje en forma de código C++ y la convierte en un analizador LR(1) con una tabla
y un analizador léxico de autómata finito determinista, que realiza el análisis sintáctico du-
rante el tiempo de compilación. Por otro lado, EllErre [9] es un generador de autómatas LR,
que permite la construcción de los automatas SLR, LR y LALR para una gramática dada.
Asimismo, Parglare [10] representa un analizador diseñado para gramáticas LR y GLR. Sin
embargo, es importante señalar que estas libreŕıas ofrecen limitadas funcionalidades para el
análisis sintáctico, además carecen de una interfaz gráfica.

1.3. Objetivos y alcance del proyecto

El proyecto ANAGRA surge de la necesidad de crear una herramienta con dos claros ob-
jetivos muy diferenciados. El primero siendo facilitar el estudio de los lenguajes y gramáticas
libres de contexto. Con este propósito, la herramienta deberá ser capaz de reconocer gramáti-
cas, realizar las operaciones más de transformación sobre gramáticas (ejemplos ...).

El segundo objetivo se centra en la implementación de una herramienta para el estudio
de las técnicas del análisis sintáctico. De este modo, es necesario poder generar las tablas
para el análisis asociadas a diferentes tipos de análisis sintáctico, además en caso que sea ne-
cesario, generar autómatas correspondientes. Asimismo, la herramienta debe poder simular
entradas paso a paso, mostrando la evolución del análisis sintáctico incluyendo la evolución
de la entrada y la pila, la secuencia de producciones, la construcción del árbol de sintaxis, y
determinar si pertenecen o no al lenguaje.

En la siguiente lista se describen las tareas concretas que se han realizado durante la
totalidad del trabajo.

1. Análisis de requisitos del trabajo: fase inicial del trabajo en la que se realiza un
análisis de la herramienta anterior, se fija el alcance del proyecto y se realiza una lista
de requisitos.

2. Definición de gramática y funcionalidades: durante esta etapa se define el con-
cepto de una gramática libre de contexto. Por otra parte, se ha llevado a cabo la im-
plementación de operaciones de transformación de gramáticas, además de herramientas
auxiliares.

3. Implementación de diferentes analizadores sintácticos: en esta tarea se desa-
rrollan los diferentes tipos de análisis sintáctico para una gramática. Estos generan
tablas para el análisis que se utilizan para simular entradas de texto, y determinar si
pertenecen al lenguaje o no.

4. Integración de la interfaz: a lo largo de esta etapa, se ha diseñado la interfaz gráfica
de la herramienta, además, al mismo tiempo que se han integrado los módulos que
componen su funcionalidad.

5. Documentación y Manual de uso: tarea en la que se genera la documentación del
trabajo realizado y se proporciona un manual de uso a los usuarios futuros.

3

1.4. Metodoloǵıa y herramientas

Respecto a las herramientas empleadas en este proyecto, cabe destacar que la base del
desarrollo se ha llevado a cabo ı́ntegramente en Python. Se ha llevado a cabo una reimple-
mentación del proyecto anterior, ANAGRA, que estaba inicialmente implementado en Java.
La elección de Python proporciona a los usuarios la capacidad de comparar los algoritmos a
alto nivel con la implementación realizada, este aspecto no estaba tan accesible en la versión
anterior debido a que Java es un lenguaje con mucha verbosidad.

Respecto al lenguaje a utilizar para la especificación de la herramienta se decidió que el
fuera Bison, a diferencia de Yacc[11] que se utilizó en las versiones anteriores. El cambio de
lenguaje se determinó debido a que Bison es una alternativa de código abierto más avanzada
que mantiene compatibilidad con Yacc pero agrega funcionalidades adicionales y mejoras,
además de ser el lenguaje utilizado en asignaturas anteriores.

En cuanto a la las libreŕıas para el desarrollo de una interfaz gráfica en Python, existen
diversas opciones, cada una con sus caracteŕısticas. Entre las bibliotecas más destacadas se
encuentran Tkinter [12], wxPython [13], PyQt [14], PySide [15]. Se optó por utilizar PyQt,
para el desarrollo de la interfaz fundamentalmente debido a que es la biblioteca con mayor
robustez y madurez. Además, la elección se ve respaldada por su exhaustiva documentación
donde se encuentran una abundancia de ejemplos y recursos disponibles, lo que ha facilitado
el desarrollo de la herramienta.

Existen diversas libreŕıas para el análisis gramatical, entre las más destacadas se encuen-
tran Yapps, PLY, Lrparsing, PlyPlus, APG, ANTLR. Se decididó por el uso de la libreŕıa
PLY (Python Lex-Yacc) [16] para el análisis gramatical de la aplicación. Esto se debe, prin-
cipalmente, a que está implementada también en Python, lo que facilita la integración con
otros componentes del sistema.

El código implementado para este proyecto se encuentra gestionado en su totalidad bajo
control de versiones mediante el uso de la herramienta Git. Además, la memoria del proyecto,
también gestionado mediante control de versiones, fue elaborado con el sistema de composi-
ción de textos LaTeX.

El resumen de principales tecnoloǵıas y herramientas incluye las siguientes:

Python (https://www.python.org/)

Bison https://www.gnu.org/software/bison/)

PyQt (https://pypi.org/project/PyQt5/)

PLY (https://www.dabeaz.com/ply/)

Git (https://git-scm.com/)

LATEX(https://www.latex-project.org/)

1.5. Estructura de la memoria

La memoria de este Trabajo de Fin de Grado se estructura en los siguientes Caṕıtulos. En
el Caṕıtulo 1 se introduce y detalla la motivación subyacente que ha impulsado la ejecución
de este proyecto, aśı como describir los objetivos y el alcance de la herramienta. Además de

4

https://www.python.org/
https://www.gnu.org/software/bison/
https://pypi.org/project/PyQt5/
https://www.dabeaz.com/ply/
https://git-scm.com/
https://www.latex-project.org/

exponer los diferentes enfoques metodológicos y herramientas consideradas.

El Caṕıtulo 2 proporciona una explicación general sobre los conceptos de la informática
vinculados a la herramienta desarrollada. Se presenta una breve introducción a las gramáticas
libres de contexto y al análisis sintáctico, detallado en el análisis ascendente y descendente,
aśı como de ejemplos concretos de analizadores como LL(1), SLR, LALR y LR.

Por otro lado, en el Caṕıtulo 3 se describe la fase inicial del proyecto, en la que se realiza
un detallado análisis de la versión anterior de la herramienta, las nuevas funcionalidades a
añadir en el proyecto y un análisis de requisitos.

El Caṕıtulo 4 muestra la implementación y organización de la herramienta. Donde se
realiza un análisis detallado de cada una de las etapas del desarrollo junto a los módulos
implementados.

En el Caṕıtulo 5 se describen las principales caracteŕısticas generales de la herramienta
implementada, cada uno de los elementos que la componen junto a las funcionalidades que
incorporan y las diferentes acciones que se pueden realizar.

Finalmente, en el Caṕıtulo 6 se comentan las conclusiones obtenidas tras el diseño e
implementación de la herramienta. Por último, se muestra un apartado con el cronograma de
trabajo del proyecto y otro con posibles ĺıneas futuras de trabajo, donde además se proponen
mejoras a realizar con el fin de mejorar el funcionamiento de la herramienta.

5

Caṕıtulo 2

Fundamentos previos

En este Caṕıtulo, se establecen los fundamentos de los temas vinculados a la herramienta
desarrollada, con el objetivo de simplificar la comprensión de los apartados siguientes. Se
presenta una introducción a las gramáticas libres de contexto y al análisis sintáctico. Dentro de
este último, se llevará a cabo un enfoque más detallado en el análisis ascendente y descendente,
destacando sus principales tipos, como los métodos LL(1), SLR, LALR y LR.

2.1. Gramática

Los cuatro componentes que forman una gramática libre de contexto[17] o simplemente
gramática son:

1. Terminales: conjunto finito de śımbolos que forman las cadenas del lenguaje definido.

2. No-Terminales: conjunto finito de variables, donde cada una representa un lenguaje.

3. Śımbolo inicial: representa el lenguaje definido. El śımbolo inicial es el único no
terminal que se utiliza para generar todos las cadenas del lenguaje.

4. Producciones: representan la definición recursiva de un lenguaje. Cada producción
consiste en:

a) Un no terminal que es definido por la producción. A este no terminal se le llama
cabeza o parte izquierda de la producción.

b) El śımbolo →

c) Una cadena de cero o más terminales y no terminales. A esta lista se le denomina
cuerpo o parte derecha de la producción, representa una manera de formar cadenas
en el lenguaje de la parte izquierda. Al hacerlo, se dejan los terminales sin cambios
y se sustituye cada no terminal por cualquier cadena que este en su lenguaje.

Una gramática se representa por sus cuatro componentes G = (N, T, S, P), donde N
es el conjunto de no terminales, T los terminales, S el śımbolo inicial y P el conjunto de
producciones.

Las gramáticas libres de contexto tienen asociadas dos conjuntos, que son utilizados a la
hora de realizar el análisis sintáctico. Antes de introducir los conjuntos, es crucial entender
el concepto de forma de frase, que se define como cualquier cadena de śımbolos terminales
y no terminales.

Conjunto Primero: PRI(a), donde “a” es cualquier forma de frase, es el conjunto de
terminales que comienzan las cadenas derivadas de “a”.

6

Conjunto Siguiente: SIG(A), donde “A” es un no-terminal, es el conjunto de ter-
minales que pueden aparecer inmediatamente a la derecha de A en alguna forma de
frase.

2.2. Análisis sintáctico

El análisis sintáctico es el proceso para determinar cómo se puede generar una cadena de
terminales por una gramática. Para esto, en cada paso se realiza una derivación, esto es, se
reemplaza repetidamente cada no terminal por una de las partes derecha de sus producciones.

Existen dos tipos de analizadores que se distinguen por la forma en que se deriva el no
terminal que se remplazará en cada paso. La elección se realiza de la siguiente manera, si la
derivación es por la izquierda (leftmost) siempre se elige el no terminal más a la izquierda
en cada oración. Por otro lado, si la derivación es por la derecha (rightmost), se elige el no
terminal más a la derecha.

Un analizador sintáctico construye un árbol de análisis, en el que la ráız está etiquetada
con el śımbolo inicial, cada nodo interior corresponde a un no terminal, y cada hoja está
etiquetada con un terminal o la cadena vaćıa (ϵ). Los hijos de un nodo son los śımbolos (de
izquierda a derecha) de una de las partes derechas de las producciones que tiene dicho nodo
como parte izquierda. Otra manera de clasificar analizadores es según su manera de cons-
truir el árbol de sintaxis, existen dos formas: si se generan del nodo ráız a las hojas es un
analizador descendente(top-down), mientras que si el árbol se genera desde las hojas hasta
el nodo inicial, el analizador es ascendente (bottom-up). Una gramática es ambigua cuando
existe más de un árbol de sintaxis asociado a una misma cadena de entrada.

Los analizadores sintácticos pueden tener k śımbolos de lookahead, estos son los siguientes
k śımbolos de la entrada y se utilizan para decidir qué producción aplicar en el análisis. Su
funcionamiento es el siguiente: cuando el nodo del árbol que se está analizando es un terminal,
y este coincide con el śımbolo de lookahead, se avanza en el análisis árbol y la entrada. El
siguiente terminal en la entrada se convierte en el nuevo śımbolo de lookahead, y el siguiente
hijo en el árbol de análisis se considera.

2.2.1. Análisis sintáctico descendente (top-down)

El análisis descendente corresponde a la construcción del árbol de sintaxis comenzando
por la ráız y creando los nodos hasta llegar a las hojas. Equivalentemente, el análisis descen-
dente puede verse como derivar el śımbolo más a la izquierda para una cadena de entrada.

En cada paso del análisis descendente, se determina la producción que se aplicará para
un no terminal. Una vez elegida la producción del no terminal, el resto del proceso de análisis
consiste en “hacer coincidir” los terminales en el cuerpo de la producción con los de la cadena
de entrada.

Existen dos tipos de analizadores descendentes, los analizadores recursivos y los analiza-
dores por tabla. Los analizadores recursivos descendentes traducen la gramática en procedi-
mientos o funciones en el código fuente. Cada no terminal tiene asociada una función que
intenta reconocer y derivar la cadena de entrada correspondiente. Mientras que los analiza-
dores descendentes por tabla, se basan en el uso de tablas de análisis precalculadas. Estas
tablas ayudan a determinar las acciones a realizar en función del śımbolo de entrada y el
estado actual del análisis.

7

Análisis LL(1)

Los analizadores LL(1) son analizadores descendentes por tabla, son también conocidos
como analizadores sintácticos predicativos. La primera “L” en LL(1) implica escanear la en-
trada de izquierda a derecha, la segunda “L” para derivar el śımbolo más a la izquierda de la
entrada, y el “1” significa que se utiliza un śımbolo de lookahead en cada paso para la toma
decisiones en el análisis.

La tabla para el análisis LL(1) se construye a partir de los conjuntos Primero y Siguiente
de la gramática. Las filas se indexan por los śımbolos no terminales, mientras que las colum-
nas corresponden a los terminales y al śımbolo $, que indica fin de cadena. Cada elemento [A,
t] de la tabla contiene la producción que se debe aplicar cuando se encuentra el no terminal
A y t como śımbolo de entrada.

Una gramática es LL(1) cuando en la tabla del análisis cada elemento es un error o un
conjunto con una única producción. Algunas gramáticas pueden tener entradas con más de
una producción, esto puede ser debido a que la gramática tenga recursión a izquierda o que
sea ambigua. La implementación del algoritmo de construcción de la tabla de análisis LL(1)
se encuentra en el Anexo B.

2.2.2. Análisis sintáctico ascendente(bottom-up)

Un análisis ascendente corresponde a la construcción de un árbol que comienza en las ho-
jas y avanza hacia la ráız. Equivalentemente el análisis ascendente puede verse como derivar
el śımbolo más a la derecha para una cadena de entrada.

El análisis ascendente utiliza una pila que estará inicialmente vaćıa e irá apilando śımbolos
según vayan siendo analizados. En cada paso del análisis ascendente se puede realizar una de
las siguientes funciones:

Desplazamiento(shift): operación de mover un śımbolo de la entrada a la pila. Esto
corresponde a crear un nodo hoja en el árbol de sintaxis.

Reducción(reduce): encontrar en la parte superior de la pila una parte derecha de una
producción y sustituirla por su parte izquierda. Corresponde a que la parte izquierda
de la producción sea la ráız y agrupe todos sus subárboles que son su parte derecha de
la producción.

El analizador reconoce la cadena cuando la entrada ha sido consumida por completo y
la pila contiene únicamente el śımbolo inicial. El uso de estas funciones hace que los ana-
lizadores ascendentes sean también conocidos como analizadores desplazamiento/reducción.
Existen tres técnicas para la construcción de analizadores desplazamiento/reducción, anali-
zadores SLR, LR y LR, estos dependen de la complejidad en su desarrollo, del tamaño del
analizador y de su potencia.

Los analizadores ascendentes construyen un autómata finito determinista donde cada es-
tado almacena la información de los posibles prefijos, que son fragmentos de las partes
derechas de las producciones gramaticales, recorridos hasta alcanzar dicho estado. Los es-
tados representan conjuntos de configuraciones, una configuración de una gramática G es
una producción de G con un punto en alguna posición de su parte derecha. A partir de los
estados en la pila y del śımbolo de entrada se puede determinar las acciones a ejecutar.

8

Las tablas para analizadores ascendentes están conformadas por dos partes, la tabla Ac-
ción y la tabla Ir A. Estas tablas cambian dependiendo de qué tipo de analizador desplaza-
miento/reducción se escoja debido a que se basan en el autómata del análisis.

La tabla Acción indexa las filas por los estados del autómata, mientras que las columnas
corresponden a los terminales y el śımbolo $ que indica fin de cadena. Cada entrada en la
tabla Acción indica indica qué acción llevar a cabo, esta puede ser: un desplazamiento, una
reducción, la aceptación de la cadena o la señalización de un error en la entrada.

En cuanto a la tabla Ir A, se indexan las filas con los estados del autómata y las columnas
con los no terminales. El elemento [i, A] indica a que estado conduce cuando el análisis se
encuentra en el estado i y el no terminal A conducen al estado j.

Una gramática admite un análisis ascendente cuando en la tabla Acción cada elemento es
una error o un conjunto con una única producción. La presencia de más de una producción
en un elemento de la tabla indica la existencia de conflictos en el análisis, existen dos tipos
de conflictos:

Conflicto desplazamiento/reducción: se puede tanto realizar un desplazamiento
como una reducción.

Conflicto reducción/reducción: el analizador detecta en la cima de la pila partes
derechas de más de una producción.

Análisis SLR

Los analizadores LR(0) o más bien conocidos como analizadores SLR(simple-LR) son el
tipo de analizadores desplazamiento/reducción más sencillos de construir, los más pequeños
y los menos potentes de los tres. La “L” de LR(0) implica escanear la entrada de izquierda
a derecha, la “R” para derivar el śımbolo más la derecha y el “0” indica que no se utilizan
śımbolos de lookahead en el análisis.

La colección canónica LR(0) proporciona la base para construir el autómata que se utiliza
para tomar decisiones de análisis. Cada estado del autómata LR(0) representa un conjunto
de elementos en la colección canónica LR(0). Para construir la colección canónica LR(0) de
una gramática es necesario definir gramática aumentada y dos funciones, Clausura y Sucesor.

Si G es una gramática que tiene como śımbolo inicial S, entonces G’, la gramática au-
mentada para G, es G con un nuevo śımbolo inicial S’ y la producción S’ → S. El propósito
de esta nueva producción inicial es indicar al analizador cuándo debe detener el análisis y de-
terminar si la entrada ha sido aceptada, es decir, la cadena se acepta cuando se reduce S’ → S.

La función Clausura determina todos los elementos que pueden ser alcanzados directa o
indirectamente desde un conjunto dado de elementos. Mientras que, la función Sucesor para
un conjunto de elementos I y un śımbolo de la gramática X, se define como la clausura del
conjunto de todos los elementos A → α.Xβ tal que A → αX.β esté en I. La función Sucesor
se utiliza para definir las transiciones en el autómata LR(0) para una gramática.

Los estados del autómata LR(0) corresponden a conjuntos canónicos LR(0) y la transición
del estado I para el śımbolo X las especifica la función Sucesor(I,X). Los autómatas ayudan
con las decisiones de desplazamiento/reducción. Supongamos que la cadena X de śımbolos
gramaticales lleva el autómata LR(0) desde el estado inicial 0 a algún estado j. Entonces, se

9

realiza una operación de desplazamiento del siguiente śımbolo de entrada “a” si el estado j
tiene una transición con el śımbolo “a”. De lo contrario, se realiza una reducción, los elementos
en el estado j dirán qué producción utilizar.

Análisis LR

El análisis LR canónico o simplemente LR es un tipo de análisis desplazamiento/reducción
que toma un śımbolo como lookahead, a diferencia del SLR que no utilizaba ninguno. Para
la construcción del autómata, cada estado contiene una configuración y de un conjunto de
śımbolos de lookahead. En un estado con la configuración A → X1...Xi.Xi+1...Xn y el conjun-
to de lookahead “a”, implica que se han reconocido X1...Xi, y se espera reconocer Xi+1...Xn.
Además, después de haber reconocido X1...XiXi+1...Xn es posible encontrar “a”.

Debido a este cambio en la creación del autómata, el análisis LR es más potente que el
SLR, de hecho, los analizadores LR son los más potentes de todos los analizadores ascen-
dentes. Sin embargo, es importante señalar que esta mayor capacidad conlleva asociado un
aumento en el tamaño del autómata, ya que puede haber varias configuraciones LR para cada
configuración SLR posible.

Análisis LALR

Los analizadores LALR(lookahead-LR) son una solución intermedia entre el analizador
SLR y LR. Su autómata se construye como el analizador LR, pero agrupa aquellos estados
que únicamente se diferencian en el śımbolo lookahead. Por ello, se obtiene un autómata con
el mismo número de estados que el del analizador SLR aún más potente debido al uso del
conjunto de śımbolos de lookahead.

10

Caṕıtulo 3

Análisis de la herramienta

En este Caṕıtulo se presenta el análisis realizado en la fase inicial del proyecto, este implica
un análisis del estado de la versión anterior de la herramienta junto con sus limitaciones, aśı
como de las nuevas funcionalidades a incorporar. Por último, se realiza un análisis de requisitos
del proyecto.

3.1. Análisis de funcionalidades de la versión anterior

ANAGRA fue una herramienta muy completa y útil en su época, sin embargo, con el
transcurso del tiempo y el avance en los lenguajes de programación junto con el desarrollo de
nuevas libreŕıas, y también reconociendo aspectos que no fueron abordados en su momento,
han surgido dos inconvenientes notables:

El primero de ellos es que debido a que fue desarrollada con Java 1.3, versión que a d́ıa
de hoy está obsoleta y ha perdido soporte. Esta situación impide una correcta visualización
de ciertas partes de la interfaz, como son los autómatas asociados al análisis ascendente de
una gramática.

El segundo inconveniente radica en la implementación secuencial de la herramienta, por
ello, cuando se realiza el análisis ascendente de una gramática compleja la interfaz se congela,
impidiendo al usuario realizar otras operaciones hasta que se complete el cálculo de las tablas
del análisis, el cual puede prolongarse durante varios minutos. Esto genera la impresión de
que la aplicación se ha quedado bloqueada, afectando la experiencia del usuario.

Adicionalmente, el tercer inconveniente se presenta en la representación gráfica de los
autómatas asociados al análisis ascendente, se observa que no se mostraban los arcos de un
nodo a śı mismo, por otra parte, cuando dos nodos se apuntaban entre ellos no se pod́ıa
leer la etiqueta debido a que los textos de ambos arcos se sobrepońıan uno encima de otro.
Del mismo modo, no se verificaban las precondiciones de las operaciones de transformación
de gramáticas. Por lo tanto, si se intentaba realizar una operación en una gramática que no
cumpĺıa con las condiciones necesarias, la aplicación pod́ıa quedarse bloqueada en algunos
casos, o mostrar resultados incorrectos en otros.

3.2. Análisis de nuevas funcionalidades y cambios respecto a
la versión anterior

Este proyecto representa una implementación completamente renovada de la herramienta,
manteniendo las ĺıneas de diseño y funcionalidades de las versiones anteriores. Sin embargo,

11

se ha llevado a cabo una serie de acciones clave para mejorar y ampliar significativamente
la herramienta. En primer lugar, se ha trabajado en la expansión de la funcionalidad de la
herramienta, incorporando caracteŕısticas adicionales que enriquecen su utilidad. Asimismo,
se ha dedicado especial atención a mejorar la experiencia del usuario, implementando ajustes
que promueven una interfaz más moderna e intuitiva. Además, se han abordado y corregido
los problemas identificados en la versión anterior, asegurando aśı una mejora sustancial en el
rendimiento de la herramienta. Estos esfuerzos combinados constituyen una evolución signi-
ficativa en comparación con la versión previa.

La primera funcionalidad incorporará las operaciones de transformación de gramáticas
para convertirlas en la forma normal de Chomsky[18] y de Greibach[19]. Que una gramática
esté en una forma normal implica que las reglas de producción adoptan una estructura es-
tandarizada y más simple, lo que hace que la gramática sea más fácil de analizar.

Por otro lado, la segunda permitirá guardar las tablas de los diferentes tipos de análisis
sintáctico, siempre que la gramática no tenga conflictos durante el análisis. Estas tablas son
de utilidad en caso de que el usuario desee construir un analizador sintáctico ascendente o
descendente mediante tablas.

La tercera funcionalidad a desarrollar permitirá la simulación interactiva de una entrada
para un analizador sintáctico pudiendo avanzar o retroceder en el proceso. Esto permitirá al
usuario volver a estados anteriores del análisis sin tener que realizar una nueva ejecución de
la simulación, como ocurŕıa en la versión anterior debido a que solo se pod́ıa avanzar en el
análisis.

Con el objetivo de mejorar la experiencia de usuario se ha modernizado la interfaz y se
han corregido los problemas detectados en la versión anterior. Esta mejora incluye, hacer la
interfaz más intuitiva y el uso de hilos[20] para aśı impedir que la interfaz se congele cuando
se esta realizando el análisis de una gramática. Además, en esta versión se muestran los arcos
de un nodo a śı mismo, también, modificar la localización de la etiqueta del arco cuando
dos nodos se apuntaban entre ellos para que sea legible para el usuario. Asimismo, se hace
una comprobación exhaustiva de las precondiciones de cada operación de transformación y en
caso de que la gramática no cumpla con alguna de las condiciones, se le notifca al usuario cual.

Sumado a ello, en esta versión actualizada se han propuesto algunos cambios con res-
pecto a la versión anterior. El primero de ellos consiste en la reestructuración del formato
de presentación del autómata del análisis ascendente en texto siguiendo un estilo similar al
utilizado por Bison, haciéndolo más legible y comprensible para el usuario, ya que muestra
más información.

Otra modificación de esta versión afecta al log, ventana que muestra las operaciones que
se han realizado en la aplicación, que ahora se encuentra ubicado en un Menú dentro de
la pestaña Ayuda. Este cambio ha contribuido a una interfaz más limpia y estéticamente
agradable, además, el concentrar la visualización del log en una acción espećıfica del menú
permite que la interfaz sea más intuitiva y centrada en las funciones de la aplicación.

El uso de Python como lenguaje para la implementación de este proyecto proporciona
a los usuarios la capacidad de comparar los algoritmos a alto nivel con la implementación
realizada, este aspecto no estaba tan accesible en la versión anterior debido a que Java es
un lenguaje con mucha verbosidad. En la Figura 3.3 se muestra una comparativa de del
pseudocódigo del algoritmo de eliminación de śımbolos no alcanzables y la implementación

12

realizada en Python.

Algoritmo removalUnreachableTerminals:

Require: G=(N, T, P, S) t.q L(G) != ø

old := {}

new := {X in (N union T) | S-> aYb in P} union {S}

While old != new

old := new

new := old union {Y in (N union T) | A-> aYb in P, A in old}

End While

N' := new intersection N

T' := new intersection T

P' := {A->w in P | A in N', w in (N' union T')*}

Figura 3.1: Pseudocódigo del algoritmo

def removal_unreachable_terminals(grammar):

gr = grammar.copy()

old = set()

new = set(smb for prod in gr.prods[gr.initial_tok]

if prod is not None for smb in prod) | set(gr.initial_tok)

while old != new:

new_smbs = new.difference(old)

old = new

for smb in new_smbs & gr.non_terminals:

new |= set(smb for prod in gr.prods[smb]

if prod is not None for smb in prod)

gr.terminals &= new

unreachable_smbs = gr.non_terminals.difference(new)

gr.non_terminals &= new

gr.prods = {key: value for key, value in gr.prods.items()

if key not in unreachable_smbs}

return gr

Figura 3.2: Algoritmo en Python

Figura 3.3: Comparativa Pseudocódigo e implementación del algoritmo eliminación de śımbo-
los no alcanzables

3.3. Análisis de requisitos

Tras el análisis de la herramienta anterior junto a su funcionalidad y problemas asociados,
y la definición de nuevas caracteŕısticas, se realizó una lista con los requisitos de la aplicación.
Es importante señalar que esta lista experimentó modificaciones a lo largo del desarrollo del
proyecto. Inicialmente, se contempló únicamente la implementación del analizador LL(1). Sin
embargo, tras su implementación, se consideró extender la funcionalidad para incluir el ana-
lizador SLR, y finalmente se añadieron los analizadores LR y LALR.

Los requisitos definidos tras el proceso se resumen en la Tabla 3.1. Para cada requisito se
muestra un código y una pequeña descripción.

13

Código Descripción

Usuario

RF-01 El usuario deberá poder editar fuentes Bison con gramáticas en un editor ami-
gable, con las caracteŕısticas básicas de búsqueda (buscar, reemplazar), edi-
ción(copiar, cortar, pegar, borrar, seleccionar todo) y formato(cambiar fuente,
color, espacios de tabulación).

RF-02 El usuario deberá poder tanto abrir como guardar archivos con gramáticas, se-
leccionándolas a lo largo del sistema de ficheros de la máquina donde se ejecute.

RF-03 El usuario deberá poder cambiar el idioma de la aplicación cuando lo desee.
RF-04 El usuario deberá poder calcular el conjunto Primero de una gramática.
RF-05 El usuario deberá poder calcular el conjunto Siguiente de una gramática.
RF-06 El usuario deberá poder calcular el conjunto Primero de una forma frase de una

gramática.
RF-07 El usuario deberá poder eliminar los śımbolos no derivables de una gramática.
RF-08 El usuario deberá poder eliminar los terminales no accesibles de una gramática.
RF-09 El usuario deberá poder eliminar las producciones ϵ de una gramática.
RF-10 El usuario deberá poder eliminar la recursividad a izquierda de una gramática.
RF-11 El usuario deberá poder eliminar los ciclos de una gramática.
RF-12 El usuario deberá poder factorizar a izquierda la gramática.
RF-13 El usuario deberá poder transformar la gramática a forma normal de Chomsky.
RF-14 El usuario deberá poder transformar la gramática a forma normal de Greibach.
RF-15 El usuario deberá poder calcular las tablas de análisis LL(1), SLR, LALR y LR.
RF-16 El usuario deberá poder guardar las tablas del análisis (LL(1), SLR, LALR, LR)

en un fichero JSON.
RF-17 El usuario deberá poder calcular el autómata del análisis ascendente (SLR, LALR

y LR) y acceder a la información de cada uno de los nodos. También, podrá
visualizar la información del autómata en texto plano.

RF-18 El usuario deberá poder simular una entrada LL(1), SLR, LALR o LR interac-
tivamente (pudiendo avanzar y retroceder) donde se mostrará la evolución de la
pila entrada, la secuencia de producciones aplicadas, y el árbol de sintaxis.

Software

RF-19 La herramienta ha de ser multiplataforma
RF-20 La herramienta ha de ser multilenguaje, es decir, todos sus textos estarán dispo-

nibles en varios idiomas. El idioma se podrá cambiar fácilmente desde un menú
dedicado a ello.

RF-21 La herramienta ha de poder compilar gramáticas descritas en el lenguaje Bison,
con la salvedad de que no contengan bloques de código.

RF-22 La herramienta dispondrá de un editor, donde se mostrará la gramática. Este
contendrá una barra de estado donde se indicará el estado de la fuente activa, si
está en modo de lectura o escritura, y la ĺınea y columna donde está posicionado
el cursor. Contendrá una serie de menús mediante los cuales el usuario podrá
acceder a todas las funcionalidades de la aplicación descritas anteriormente.

RF-23 La herramienta comprobará las precondiciones de las operaciones de transfor-
mación antes de realizarlas, en caso de no cumplir las condiciones se indicará al
usuario cuáles.

Cuadro 3.1: Análisis de requisitos.

14

Caṕıtulo 4

Implementación de la herramienta

4.1. Estructura general del sistema

El nuevo ANAGRA cuenta con una estructura modular que desacopla la funcionalidad
de la interfaz de la herramienta, siguiendo la estructura del patrón de arquitectura Modelo-
Vista-Controlador(MVC) [21]. Por esto, es posible utilizar ANAGRA como ejecutable o como
libreŕıa, permitiendo aśı que pueda ser integrada en otros sistemas.

Cada módulo implementa una etapa en la que se realizan tareas independientes del resto,
partiendo de la definición de la gramática hasta la simulación sintáctica de esta. Cada módulo
funcional dentro de ANAGRA cuenta con su contraparte espećıfica en la capa de interfaz.
Las etapas definidas son las siguientes:

Etapa de implementación de gramáticas: en esta etapa se define la estructura de
datos de una gramática, se implementan todas las operaciones de transformación sobre
gramáticas. A su vez, también se desarrollan herramientas auxiliares como el cálculo
del conjunto Primero y Siguiente sobre una gramática.

Etapa implementación análisis sintáctico: a partir de una gramática se han desa-
rrollado los analizadores sintácticos. En el caso del análisis descendente solo se calcula la
tabla de análisis, mientras que para el análisis ascendente, se calculan las tablas Acción
e Ir A, junto con la construcción del autómata asociado. Asimismo, se ha implementado
la simulación de entradas a partir de las tablas del análisis de una gramática.

Etapa integración de la interfaz: en esta etapa se implementa toda la interfaz gráfica
y funcionalidad de la herramienta junto a la integración de los módulos el gramáticas,
análisis y la simulación.

4.2. Etapa de implementación de gramáticas

En esta primera etapa se define el concepto de gramática libre de contexto, esto incluye
sus estructuras de datos y las funciones asociadas como cargar una gramática a partir de un
fichero Bison o el cálculo del conjunto Primero y Siguiente. Igualmente, de los algoritmos para
las diferentes operaciones de transformación, aśı como, de formas normales. A continuación
se muestran los módulos implementados en esta etapa:

Gramática: este módulo representa el concepto de gramática. Esta compuesto por un
conjunto de śımbolos terminales, otro de no terminales, un śımbolo inicial y por un
conjunto de producciones. Ofrece las operaciones de transformación y formas normales
descritas en el Caṕıtulo 3. Aśı como del cálculo del conjunto Primero y Siguiente.

15

Conjuntos: este módulo representa gráficamente él concepto de gramática, en el se
implementan las ventanas emergentes cuando se calcula el conjunto Primero, conjunto
Siguiente y conjunto Primero de una forma de frase.

bisonlex y bisonparse: archivos implementados para la abstracción de una gramática
en un fichero Bison. Este proceso se explica detalladamente en la siguiente sección.

4.2.1. Abstracción de una gramática en un fichero Bison

El proceso consiste en la abstracción de los diferentes parámetros de la gramática de un
fichero Bison a partir de la generalización de la gramática de este lenguaje, para ello se utilizó
la libreŕıa PLY(Python Lex-Yacc), una herramienta para la construcción de compiladores lex
y yacc.

PLY consta de dos módulos separados: lex.py y yacc.py. El módulo lex.py se utiliza para
dividir el texto de entrada en una colección de tokens especificados por un conjunto de re-
glas de expresiones regulares. Mientras que yacc.py se utiliza para reconocer la sintaxis del
lenguaje que ha sido especificada en forma de una gramática libre de contexto.

La entrada se compone por dos ficheros, el primero, se definen los tokens del lenguaje
mediante expresiones regulares, además de las acciones a realizar cuando se encuentra cada
token. En el segundo, se definen las reglas gramaticales utilizando la notación BNF(Backus-
Naur Form)[22], además de las acciones a realizar cuando se aplica cada regla gramatical.
Por ello, en el primero bisonlex, se indicaron los diferentes śımbolos de Bison. Mientras que
en el segundo, bisonparse, se definieron las reglas de Bison y las acciones para ir completando
los diferentes parámetros de una gramática. Aśı, una vez finalizada la compilación se podrán
abstraer, en una estructura de datos, los diferentes parámetros de cualquier gramática escrita
en Bison.

4.3. Etapa del análisis sintáctico

En esta etapa se han implementado los algoritmos necesarios para realizar el análisis
sintáctico de una gramática. Esto incluye los algoritmos para el cálculo las tablas de análisis
para cada tipo de analizador, aśı como el cálculo del autómata asociado en el caso del análisis
ascendente. Además de los algoritmos utilizados para la simulación de cadenas a partir de las
tablas del análisis. A continuación se muestran los módulos implementados en esta etapa:

Análisis LL(1): módulo que implementa las funciones del análisis LL(1), estas son, el
cálculo de la tabla de análisis LL(1), la comprobación de que la gramática es LL(1), y
la simulación de una entrada.

Analizador ascendente: este módulo implementa las operaciones comunes en todos
los tipos de analizador ascendente, estas son, expandir gramática y comprobar que no
tiene ningún conflicto, y el algoritmo de simulación de una entrada.

Análisis SLR: módulo que implementa las funciones Clausura, Sucesor del análisis
SLR. Además del cálculo de configuraciones canónicas SLR, tabla Acción e Ir A, y el
autómata correspondiente al análisis SLR.

Análisis LR: módulo que implementa las funciones Clausura, Sucesor del análisis LR.
Además del cálculo de configuraciones canónicas LR, tabla Acción e Ir A, y el autómata
correspondiente al análisis LR.

16

Análisis LALR: este módulo implementa las funciones Clausura, Sucesor del análisis
LALR. Además del cálculo de configuraciones canónicas LALR, tabla Acción e Ir A, y
el autómata correspondiente al análisis LALR.

Tablas: este módulo implementa las ventanas emergentes de la tabla del análisis LL(1),
las tablas Acción e Ir A, la gramática expandida y el autómata en formato texto co-
rrespondiente al análisis ascendente.

Autómata: módulo que representa gráficamente el autómata correspondiente al análi-
sis ascendente.

Simular: este módulo implementa la ventana que se muestra al simular una entrada,
además de toda la lógica detrás del análisis interactivo.

Árbol: módulo que representa gráficamente el árbol de sintaxis generado al realizar el
análisis sintáctico.

4.4. Etapa integración de la interfaz

En esta última etapa se desarrolla todo el proceso de integración de la interfaz gráfica
de la herramienta junto a los módulos descritos en las secciones anteriores. Este paso abarca
desde la implementación de las funcionalidades de la aplicación hasta el tratamiento de po-
sibles errores.

El tratamiento de errores en la herramienta consiste desde la gestión de errores tanto
léxicos como sintácticos de gramática, como de entradas de texto introducidas por el usuario
no válidas, entre otras. Además, se incorporan mensajes auxiliares informativos para orientar
al usuario a lo largo del proceso, como notificar si la gramática introducida no produce ningún
lenguaje o, si una cadena es reconocida por la gramática o no. Los módulos implementados
en esta fase:

Utils: este módulo implementa las ventanas relacionadas con la funcionalidad de la
aplicación que no están directamente relacionadas con el análisis de una gramática,
estas son, la ventana de búsqueda de una palabra en la gramática, el remplazamiento
de una palabra por otra en la gramática, la ventana de log de la herramienta, la ventana
para introducir la entrada a simular y la barra de progreso que se muestra cuando se
esta realizando el análisis sintáctico de una gramática.

Main: modulo principal de la aplicación que integra toda la funcionaliad de la herra-
mienta junto a la interfaz gráfica.

17

Caṕıtulo 5

Resultados

En este Caṕıtulo se describen las principales caracteŕısticas generales de la herramienta
implementada, aśı como cada uno de los elementos que la componen junto a las funcionali-
dades que se incorporan. Junto con las diferentes acciones que se pueden realizar.

5.1. Descripción general de la herramienta

La interfaz de esta nueva versión de ANAGRA se ha diseñado siguiendo el mismo estilo
que la de su versión anterior. La interfaz esta compuesta por un menú situado en la parte
superior de la ventana con los submenus Archivo, Editar, Buscar, Texto y Ayuda, que se
detallarán en las siguientes subsecciones. Una barra de estado situada en la parte inferior de
la ventana que muestra el estado de la fuente activa, si está en modo de lectura o escritura, la
ĺınea y columna donde está posicionado el cursor. También, un editor en el que se encuentra
la gramática que se podrá editar solo si se esta en modo escritura. La Figura 5.1 muestra la
interfaz de la herramienta, mientras que la Figura 5.2 muestra las principales opciones.

Figura 5.1: Interfaz de usuario.

Figura 5.2: Opciones de la aplicación.

ANAGRA acepta gramáticas escritas con la sintaxis de Bison, detecta errores en la misma,
informando de ello mostrando un mensaje señalando el carácter, la ĺınea y la columna con
el error, y colocando el cursor sobre la ĺınea en la que ha sido detectado. A su vez, cuando
una transformación es aplicada sobre una gramática, la gramática resultante se abre en una
nueva ventana, de manera que el usuario pueda compararlas y trabajar independientemente
con ambas. Dispone, además, de otras facilidades de edición, como son la configuración en
varios idiomas o el formateado automático de la fuente de la gramática

18

5.2. Menú Archivo

Las acciones recogidas en el menú Archivo son las permiten al usuario abrir una nueva
ventana, abrir un fichero con una gramática, editar la gramática previamente aceptada, acep-
tar la gramática introducida, guardar la gramática en un fichero y cerrar la aplicación. Tanto
si se acepta la gramática como si se abre de un fichero se comprueba que tenga la sintaxis de
una gramática de Bison, en caso de que haya algún error sintáctico o léxico se informa de ello,
mostrando un mensaje que señala el carácter, la ĺınea y la columna, y colocando el cursor so-
bre la ĺınea en la que ha sido detectado. En caso contrario, el editor cambiará a modo lectura,
impidiendo que se pueda editar, y se añadirán las opciones Herramientas, Transformaciones,
Análisis y Simular al menú. La Figura 5.3 muestra las ventanas tras aceptar una gramática
sin errores.

Figura 5.3: Opciones espećıficas de la aplicación para gramáticas.

5.3. Menú Editar

Las acciones del menú Editar permiten copiar, cortar, pegar y borrar el texto seleccionado,
además de seleccionar todo el texto en el editor. Cabe destacar que estas acciones pueden
realizarse mediante las combinaciones de teclas habituales.

5.4. Menú Buscar

En el menú Buscar se permite al usuario buscar una palabra en el editor o remplazarla
otra. La búsqueda que hace sobre la gramática diferencia entre mayúsculas y minúsculas.
Para buscar una palabra en la gramática, primero, se abrirá una ventana donde el usuario
podrá introducir la palabra a buscar, cuando pulse el botón de aceptar se subrayarán en
verde las coincidencias, mientras, que en caso de no haber ninguna coincidencia, se mostrará
un mensaje indicándolo. La Figura 5.4 muestra el proceso de buscar una palabra en el texto.

Figura 5.4: Resultados tras la búsqueda

19

Para remplazar una palabra por otra en la gramática, primero, se abrirá una ventana
donde el usuario podrá introducir la palabra a buscar y aquella por la que la quiera cam-
biar, cuando pulse el botón de aceptar se remplazarán todas las coincidencias encontradas,
mientras, en caso de no haber ninguna coincidencia se mostrará un mensaje indicándolo.

5.5. Menú Texto

Dentro del menú Texto se realizar las acciones de cambiar el color y fuente de la letra,
el espacio de tabulación, el idioma, el formato en el que se muestra la gramática y guardar
las preferencias. Cuando se guardan las preferencias, la siguiente ejecución de la aplicación
aparece con las preferencias indicadas. En la Figura B.11 se muestran las ventanas emergentes
para cambiar el color o fuente de la letra, o los espacios de tabulación.

Figura 5.5: Cambiar color Figura 5.6: Cambiar fuente Figura 5.7: Cambiar espacios

Figura 5.8: Menús

5.6. Menú Ayuda

En el menú Ayuda ofrece dos opciones, la primera de ellas es mostrar el log de la herra-
mienta que indica las acciones que se han ido realizando en la aplicación, mientras que la
segunda muestra una ventana con información relativa sobre el TFG (autora, director, enlace
al repositorio...).

Figura 5.9: Log de la aplicación. Figura 5.10: Información sobre ANAGRA.

5.7. Menú Herramientas

Dentro del menú de Herramientas se permite al usuario calcular el conjunto Primero,
Siguiente o Primero de una forma de frase que introduzca el usuario, de una gramática. Cada
conjunto se mostrará en una nueva ventana emergente, como indica la Figura 5.11. Para
calcular el conjunto Primero de una forma de frase primero se abrirá una ventana con dos
entradas de texto, en la de arriba es donde el usuario podrá introducir la forma de frase a
calcular y una vez pulse el botón de aceptar se mostrará el conjunto en la de abajo. Este
proceso se muestra en la Figura 5.12.

20

Figura 5.11: Conjunto Primero y Siguiente Figura 5.12: Conjunto Primero forma frase

5.8. Menú Transformaciones

Dentro del menú Transformaciones puede realizar las diferentes operaciones de transfor-
mación y formas normales sobre la gramática detalladas en la Sección 3.2. Si la gramática
no cumple con las precondiciones necesarias para realizar la operación deseada se mostrará
un mensaje al usuario cual son las condiciones que no cumple, sino se realizara la operación
y gramática resultante se abrirá en una nueva ventana emergente. El psuedocodigo de las
operaciones de transformación se puede consultar en el Anexo A.

5.9. Menú Análisis

Dentro del menú Análisis se permite al usuario realizar el análisis sintáctico LL(1), SLR,
LALR o LR de la gramática. Para el análisis descendente se mostrará solo la tabla de análisis,
mientras que para el análisis ascendente se mostrarán: la gramática expandida, el autómata
en ventana y otra en texto plano, y las tablas Acción e Ir A. Cada componente del análisis se
mostrará en una nueva ventana emergente. En el caso de que no haya conflictos en el análisis
habilitará al usuario poder guardar las tablas calculadas en un fichero JSON.

La Figura 5.13 muestra las tablas del análisis (SLR en este caso) correspondientes a
la misma gramática, mientras que en la Figura 5.14 se muestra el autómata asociado a la
gramática. En caso de conflictos en las tablas, por no tratarse de una gramática de la clase,
las celdas con conflictos se destacan en rojo.

Figura 5.13: Tablas análisis SLR

Figura 5.14: Autómata análisis SLR

21

En la representación gráfica, se puede mover un nodo por la pantalla simplemente haciendo
clic sobre él y arrastrándolo. Mientras que con dos clic sobre un nodo, se mostraŕıa el conjunto
de configuraciones asociadas al mismo, pudiendo organizarse de la manera como en la Figura
5.15. ANAGRA lleva a cabo una distribución automática de los nodos en la ventana, de
manera que se facilita la interpretación del mismo.

Figura 5.15: Autómata mostrando la información de cada nodo

5.10. Menú Simular

Dentro del menú Simular se permite al usuario realizar la simulación interactiva de los
diferentes analizadores para una entrada de texto, siempre que se haya realizado el análisis
previamente y no haya encontrado ningún conflicto. Para ello, primero se mostrará un menú
donde el usuario podrá introducir una entrada de texto. Una vez el usuario pulse el botón
de aceptar se cerrará la ventana anterior y se abrirán dos ventanas, la primera mostrará la
simulación de la pila, la entrada, la secuencia de producciones aplicadas y los botones de
avanzar y retroceder, mientras la segunda mostrará la construcción dinámica del árbol de
sintaxis. Una vez acabada la simulación se le indicará al usuario si la frase es reconocida por
la gramática o no. Este proceso se muestra en las Figuras 5.16, mientras que la Figura 5.17
muestra paso a paso la construcción del árbol de sintaxis.

Figura 5.16: Estado del analizador durante el proceso de análisis

22

Figura 5.17: Construcción del árbol de sintaxis paso a paso

En la representación gráfica del árbol de sintaxis, los nodos azules se utilizan para denotar
śımbolos no terminales, mientras que los nodos rojos se reservan para los śımbolos terminales.
Además, los colores y estilos de ĺınea han sido cuidadosamente seleccionados para garantizar
una legibilidad óptima en ambos modos de visualización, ya sea en entornos de fondo claro
u oscuro.

23

Caṕıtulo 6

Conclusiones

Este trabajo teńıa como objetivo principal implementar una herramienta para el estudio
de gramáticas libres de contexto y análisis sintáctico. A modo de conclusión se destacan los
principales hitos logrados. En primer lugar, con la herramienta ANAGRA se permite el es-
tudio de gramáticas libres de contexto ya que se pueden reconocer gramáticas a partir de
una especificada en Bison. También, se puede obtener información relativa a gramáticas co-
mo el conjunto Primero, el conjunto Siguiente y el conjunto Primero de una forma de frase.
Además de realizar operaciones de transformación sobre gramáticas, estas son: factorización a
izquierda, eliminación de no terminales no derivables, eliminación de recursividad a izquierda,
eliminación de śımbolos no alcanzables, eliminación de producciones ϵ, eliminación de ciclos
y transformación a forma normal de Chomsky y de Greibach.

Del mismo modo, ANAGRA también sirve para el estudio del análisis sintáctico ya que
permite el análisis ascendente LL(1) donde se calcula la tabla para el análisis, mientras que
para análisis descendente de tipo SLR, LR canónico y LALR se puede calcular la gramática
ampliada, la tabla Acción e Ir A y el autómata correspondiente al análisis tanto en formato
gráfico como en texto. También, se puede simular interactivamente una entrada de texto mos-
trando la evolución de la entrada, la pila, la secuencia de producciones y el árbol de sintaxis,
y determinar si la entrada pertenecen o no al lenguaje.

Asimismo, se ha ampliado la funcionalidad de la herramienta respecto a la versión ante-
rior, incorporando caracteŕısticas adicionales que enriquecen su utilidad. Las mejoras incluyen
la implementación de operaciones de transformación de gramáticas a las formas normales de
Chomsky y Greibach, facilitando su análisis. También se ha habilitado la capacidad de guar-
dar tablas de análisis sintáctico, proporcionando utilidad para la generación de analizadores
por tabla. Una tercera funcionalidad permite la simulación interactiva del análisis sintáctico,
con la posibilidad de avanzar o retroceder en el proceso.

Para mejorar la experiencia del usuario, se modernizó la interfaz y se resolvieron proble-
mas de la versión anterior, como la representación de autómatas correspondientes al análisis
ascendente donde ahora se pueden visualizar los arcos de un nodo a śı mismo y las etique-
tas de dos nodos que se apuntan entre śı. Además, se implementaron ciertas operaciones
concurrentes para evitar que la interfaz se quede congelada durante el análisis sintáctico en
casos de gramáticas complejas. Además, se propusieron cambios como la reubicación del log
de la herramienta y reestructuración del formato de presentación del autómata del análisis
ascendente en texto siguiendo un estilo similar al utilizado por Bison.

Estas mejoras, junto con la ampliación de funcionalidades, consolidan ANAGRA 3.0 como
una herramienta robusta y versátil. De este modo, se cumplieron todos los objetivos propues-

24

tos, posicionando a ANAGRA como una valiosa herramienta de apoyo para el estudio de
gramáticas libres de contexto y técnicas de análisis sintáctico.

6.1. Cronograma

Durante los 10 meses aproximados de duración de este Trabajo Fin de Grado, el proyecto
se ha divido en las tareas mostradas en la la Cuadro 6.1, la cual expresa la evolución temporal
de este proyecto desde que se inicio en febrero hasta su finalización en enero. El Cuadro 6.2
expone la dedicación en horas a cada uno de las tareas de este proyecto.

Tarea Feb Mar Abr May Ago Sep Dic Ene

Revisar documentación de libreŕıas
Implementar las gramáticas
Implementación de la interfaz de usuario
Implementar el analizador LL(1)
Implementar el analizador SLR
Implementar el analizador LR
Implementar el analizador LALR
Redactar la memoria

Cuadro 6.1: Diagrama de Gantt.

Tarea Tiempo (horas)

Revisión del estado del arte 10

Implementación de la funcionalidad 150

Implementación de la interfaz 125

Reuniones 20

Redacción de la memoria 75

Redacción manual de usuario 10

Total 390

Cuadro 6.2: Horas dedicadas a cada tarea del proyecto.

Finalmente, el código del trabajo realizado es accesible públicamente desde el repositorio
mostrado a continuación bajo la licencia GNU GPL-3.0:

https://github.com/llauragonzalezz/ANAGRA

6.2. Trabajo futuro

Finalizado el trabajo, se plantea su incorporación como material de apoyo para la asig-
natura de Procesadores de Lenguajes de la Universidad de Zaragoza. Como ayuda, se ha
redactado un manual de usuario de la herramienta, que se puede consultar en el Apéndice B.

Para futuras investigaciones y mejoras en este proyecto, se pueden considerar diversas
ĺıneas de trabajo con el objetivo de ampliar y perfeccionar las capacidades del sistema. En
primer lugar, se podŕıa explorar la implementación de analizadores sintácticos alternativos,
incluyendo aquellos con un lookahead diferente de 1 o analizadores recursivos como el GLR
(Generalized Left-to-right Rightmost derivation)[23]. Esto permitiŕıa evaluar y comparar el

25

https://github.com/llauragonzalezz/ANAGRA

rendimiento de distintos enfoques en la fase de análisis sintáctico, contribuyendo aśı a la ro-
bustez y versatilidad del sistema.

Adicionalmente, también se podŕıa considerar la implementación de ciertas funcionalida-
des de la herramienta para ser concurrente o distribuida. Esto agilizaŕıa el cálculo de opera-
ciones costosas, como el cálculo de configuraciones canónicas en gramáticas muy grandes.

Por ultimo, otra ĺınea de trabajo prometedora seŕıa la implementación de herramientas
adicionales para el análisis de lenguajes. Esto podŕıa abarcar desde el análisis léxico hasta la
el análisis semántico. La expansión de estas capacidades proporcionaŕıa una mayor profun-
didad y amplitud en la comprensión del código fuente, permitiendo abordar aspectos de los
programas analizados.

26

Bibliograf́ıa

[1] Alfred V Hoe, Ravi Sethi y Jeffrey D Ullman. “Compilers—principles, techniques, and
tools”. En: (1986).

[2] Joaqúın Ezpeleta. “Material de apoyo”. En: (2009). url: https://webdiis.unizar.
es/~ezpeleta/doku.php?id=material_de_apoyo.

[3] Terence Parr y Kathleen Fisher. “LL (*) the foundation of the ANTLR parser genera-
tor”. En: ACM Sigplan Notices 46.6 (2011), págs. 425-436.

[4] Alfred V. Aho y Stephen C. Johnson. “LR parsing”. En: ACM Computing Surveys
(CSUR) 6.2 (1974), págs. 99-124.

[5] Frank DeRemer y Thomas Pennello. “Efficient computation of LALR (1) look-ahead
sets”. En: ACM Transactions on Programming Languages and Systems (TOPLAS) 4.4
(1982), págs. 615-649.

[6] Thomas Finley Susan Rodger. FLAP - An Interactive Formal Languages and Automata
Package. .O’Reilly Media, Inc.”, 2006.

[7] Jean Bovet y Terence Parr. “ANTLRWorks: an ANTLR grammar development envi-
ronment”. En: Software: Practice and Experience 38.12 (2008), págs. 1305-1332.

[8] Peter winter. “Proyecto ctpg”. En: (2021). url: https://github.com/peter-winter/
ctpg.

[9] schnorr. “Proyecto Ellerre”. En: (2021). url: https://github.com/schnorr/ellerre.

[10] Igor Dejanović. “Parglare: A LR/GLR parser for Python”. En: Science of Compu-
ter Programming (2021), pág. 102734. issn: 0167-6423. doi: 10 . 1016 / j . scico .

2021.102734. url: https://www.sciencedirect.com/science/article/pii/
S0167642321001271.

[11] Stephen C Johnson et al. Yacc: Yet another compiler-compiler. Vol. 32. Bell Laborato-
ries Murray Hill, NJ, 1975.

[12] Fredrik Lundh. “An introduction to tkinter”. En: URL: www. pythonware. com/library-
/tkinter/introduction/index. htm (1999).

[13] Noel Rappin. wxPython in Action. 2006.

[14] Mark Summerfield. Rapid GUI Programming with Python and Qt: The Definitive Guide
to PyQt Programming (paperback). Pearson Education, 2007.

[15] Gopinath Jaganmohan y Venkateshwaran Loganathan. PySide GUI Application Deve-
lopment. Packt Publishing Ltd, 2016.

[16] Shannon Behrens. “Prototyping Interpreters using Python Lex-Yacc”. En: Dr. Dobb’s
Journal. (2004).

[17] Armin Cremers y Seymour Ginsburg. “Context-free grammar forms”. En: Journal of
Computer and System Sciences 11.1 (1975), págs. 86-117.

[18] Noam Chomsky. “On the representation of form and function”. En: (1981).

27

https://webdiis.unizar.es/~ezpeleta/doku.php?id=material_de_apoyo
https://webdiis.unizar.es/~ezpeleta/doku.php?id=material_de_apoyo
https://github.com/peter-winter/ctpg
https://github.com/peter-winter/ctpg
https://github.com/schnorr/ellerre
https://doi.org/10.1016/j.scico.2021.102734
https://doi.org/10.1016/j.scico.2021.102734
https://www.sciencedirect.com/science/article/pii/S0167642321001271
https://www.sciencedirect.com/science/article/pii/S0167642321001271

[19] Sheila A Greibach. “A new normal-form theorem for context-free phrase structure gram-
mars”. En: Journal of the ACM (JACM) 12.1 (1965), págs. 42-52.

[20] Leodanis Pozo Ramos. “Use PyQt’s QThread to Prevent Freezing GUIs”. En: (2019).
url: https://realpython.com/python-pyqt-qthread/.

[21] Glenn E Krasner, Stephen T Pope et al. “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system”. En: Journal of object oriented
programming 1.3 (1988), págs. 26-49.

[22] Dave Crocker y Paul Overell. Augmented BNF for syntax specifications: ABNF. Inf. téc.
2008.

[23] Scott McPeak y George C Necula. “Elkhound: A fast, practical GLR parser generator”.
En: International Conference on Compiler Construction. Springer. 2004, págs. 73-88.

28

https://realpython.com/python-pyqt-qthread/

Apéndice A

Métodos de transformación de una
gramática

A.1. Cálculo del conjunto Primero

Algorithm 1 Calcular Conjunto Primero

Require: X ∈ N ∪ T
Ensure: calcula PRI(X)
repeat

if X ∈ T then
añadir X a PRI(X)

end if
if X → ε es una producción then

añadir ε a PRI(X)
end if
if X → Y1 . . . Yk es una producción then

for j ← 1 to k do
if a ∈ PRI(Yj) ∧ ε ∈ PRI(Y1) ∩ . . . ∩ PRI(Yj−1) then

añadir a a PRI(X)
end if

end for
if ε ∈ PRI(Y1) ∩ . . . ∩ PRI(Yk) then

añadir ε a PRI(X)
end if

end if
until no se añada nada a ningún PRI

29

A.2. Cálculo del conjunto Siguiente

Algorithm 2 Calcular Conjunto Siguiente

Require: True
Ensure: calcula SIG(A) para todo A ∈ N

añadir $ a SIG(S)
repeat

for cada producción A→ αBβ do
añadir PRI(β)\{ε} a SIG(B)

end for
for cada producción A→ αB o A→ αBβ con ε ∈ PRI(β) do

añadir SIG(A) a SIG(B)
end for

until no se añada nada a ningún SIG

A.3. Eliminación śımbolos no terminables

Algorithm 3 EliminaNoTerminables

Require: G = (N,T, P, S) t.q. L(G) ̸= ∅
Ensure: G′ = (N ′, T, P ′, S) ∧ G′ ≈ G ∧ ∀X ′ ∈ N ′.∃w ∈ T ∗ .X ′ ⇒∗ w

viejo := {}
nuevo := {A ∈ N | A→ w ∈ P,w ∈ T ∗}
while viejo ̸= nuevo do

viejo := nuevo
nuevo := viejo ∪ {B ∈ N | B → α ∈ P, α ∈ (T ∪ viejo)∗}

end while
N ′ := nuevo
P ′ := {A→ w ∈ P | A ∈ N ′, w ∈ (N ′ ∪ T)∗}

A.4. Eliminación de recursividad a izquierda

Algorithm 4 Algoritmo eliminaRecIzda

Require: G = (N,T, P, S) sin “ciclos” (A ⇒+ A) ni producciones ε (A → ε) y N =
{A1, . . . , An}

Ensure: G′ ≈ G, sin rec. a izda.
G′ ← G
for i← 1 to n do

for j ← 1 to i− 1 do
Aj → δ1| . . . |δk son las producciones actuales de Aj sustituir en P ′

Ai → Ajα por Ai → δ1α| . . . |δkα
end for
eliminar rec. inmediata de Ai

end for

30

A.5. Factorización a izquierda

Algorithm 5 Factorizar Gramática a la Izquierda

Require: G = (N,T, P, S)
Ensure: Gramática G factorizada a la izquierda

P ′ ← P
for cada no terminal A ∈ N do

for cada par de producciones A→ αβ y A→ αγ en P ′ do
if α es un prefijo común de β y γ then

Crear un nuevo no terminal A′ y actualizar N,P ′:
N ← N ∪ {A′}
Reemplazar A→ αβ y A→ αγ con:

A→ αA′

A′ → β | γ
end if

end for
end for

A.6. Eliminación de ciclos

Algorithm 6 Eliminación de ciclos

Require: G = (N,T, P, S)
Ensure: Elimina los ciclos de una gramática

Eliminar las producciones ϵ
for cada regla unitaria A→ B do

for cada regla B → X1 . . . Xn do
Añadir la regla A→ X1 . . . Xn, a menos que sea una regla unitaria ya eliminada

end for
end for

A.7. Eliminación de producciones épsilon

Algorithm 7 Eliminación de producciones épsilon en una Gramática

Require: G = (N,T, P, S)
Ensure:

for cada regla A→ X1 . . . Xn do
Si todos los Xi son nulos, marcar A como nulo

end for
for cada regla A→ X1 . . . Xn do

Crear todas las combinaciones omitiendo los Xi nulos
Eliminar todas las reglas ϵ, excepto si la regla es S0 → ε

end for

31

A.8. Eliminación de no terminales no derivables

Algorithm 8 EliminaNoDerivables

Require: G = (N,T, P, S) t.q. L(G) ̸= ∅
Ensure: G′ = (N ′, T, P ′, S) ∧ G′ ≈ G ∧ ∀X ′ ∈ N ′.∃w ∈ T ∗ .X ′ ⇒∗ w

viejo := {}
nuevo := {A ∈ N | S → w ∈ P,w ∈ N}
while viejo ̸= nuevo do

viejo := nuevo
nuevo := viejo ∪ {B ∈ N | A→ B ∈ P,A ∈ viejo}

end while
N ′ := nuevo
P ′ := {A→ w ∈ P | A ∈ N ′, w ∈ (N ′ ∪ T)∗}

A.9. Eliminación de no accesibles

Algorithm 9 EliminaNoAccesibles

Require: G = (N,T, P, S) t.q. L(G) ̸= ∅ ∧ ∀X ∈ N.X es terminable
Ensure: G′ = (N ′, T ′, P ′, S) ∧ G′ ≈ G ∧ ∀X ∈ (N ′ ∪ T ′).∃α, β ∈ (N ′ ∪ T ′).S ⇒∗ αXβ

viejo := {S}
nuevo := {X ∈ (N ∪ T) | S → αXβ ∈ P} ∪ {S}
while viejo ̸= nuevo do

viejo := nuevo
nuevo := viejo ∪ {Y ∈ (N ∪ T) | A→ αY β ∈ P,A ∈ viejo}

end while
N ′ := nuevo ∩N
T ′ := nuevo ∩ T
P ′ := {A→ w ∈ P | A ∈ N ′, w ∈ (N ′ ∪ T ′)∗}

32

Apéndice B

Manual de usuario

B.1. Instalación de la herramienta

Una vez clonado el repositorio de Github es necesario la instalacion de los paquetes PyQt5,
networkx y pygraphviz.

B.1.1. Instalación de la herramienta en Linux

Para instalar los paquetes necesarios para la ejecución de ANAGRA en Linux es necesario
realizar los siguientes pasos:

pip install PyQt5

pip install networkx

pip install pygraphviz

B.1.2. Instalación de la herramienta en Windows

Para instalar los paquetes necesarios para la ejecución de ANAGRA en Windows es ne-
cesario realizar los siguientes pasos:

pip install PyQt5

pip install networkx

Para instalar pygraphviz es necesario seguir el tutorial en su web 1.

B.2. Tutorial del sistema

B.2.1. Menú Gramática

Para trabajar con ANAGRA lo primero de todo es disponer de una gramática sobre la
que poder operar. Para ello existen dos posibilidades, se puede obtener de un fichero o la
pode escribir el usuario en el editor.

Nueva (CTRL+N)

Esta opción crea una ventana nueva ventana independiente de la actual donde se puede
trabajar con otra gramática distinta.

1Tutorial instalacion pygraphviz.

33

https://pygraphviz.github.io/documentation/stable/install.html

Abrir (CTRL+O)

Esta opción permite abrir el fichero la gramática con la que se va trabajar. Para ello, el
usuario debe seleccionar del un cuadro de diálogo mostrado en la Figura B.1 el fichero. El
formato del fichero aparece en el anexo B.2.11. Una vez seleccionada la gramática y esta no
contenga errores, se mostrará en el editor.

Figura B.1: Menú abrir fichero.

Editar

Esta opción se utiliza para modificar una gramática abierta anteriormente o editada an-
teriormente y que ya haya sido comprobadas. Esto hace que el editor vuelva a modo edición
y el usuario pueda realizar los cambios deseados en la gramática.

Guardar (CTRL+G)

Con esta opción se guarda la gramática actual de trabajo en fichero. Si la gramática ya
hab́ıa sido léıda de un fichero, se guardará automáticamente. En caso contrario de comportará
como la opción Guardar como explicada en el apartado siguiente.

Guardar como

Esta opción permite lo mismo que la anterior pero dando la opción de que el fichero donde
se guarde la gramática sea introducido. El dialogo es el mismo que el de la Figura B.1

Salir

Provoca el cierre de la aplicación y la pérdida de toda aquella información que no haya
sido guardada. Aparece un diálogo como el de la Figura B.2 recordando al usuario guardar
las preferencias y dándole la posibilidad de continuar la operación o cancelarla.

Figura B.2: Opciones especificas de la aplicación para gramáticas.

34

B.2.2. Menú Edición

Cortar (CTRL+X)

Borra el texto seleccionado del área de edición de la gramática y lo copia en el portapapeles
del sistema.

Copiar (CTRL+C)

Copia el texto seleccionado del área de edición de la gramática al portapapeles del sistema.

Pegar (CTRL+V)

Pega el contenido del portapapeles en el área de edición de la gramática.

Borrar

Borra el de texto seleccionado por el cursor.

Seleccionar todo (CTRL+A)

Selecciona todo el texto introducido en el área de edición de gramáticas.

Aceptar gramática

Se ha de presionar esta opción cuando se haya terminado de editar la gramática y se
quiera poder utilizar las opciones de análisis y transformación sobre ella. Una vez presionado
se verificará la corrección de la gramática editada. Si es correcta finalizará el modo edición. En
caso contrario se mostrará un mensaje como el de la figura B.3 donde se muestra el carácter,
la linea y la columna donde esta el error, y se permanecerá en el modo edición.

Figura B.3: Mensaje de error

B.2.3. Menú Buscar

Buscar (CTRL+F)

Para buscar una palabra en la gramática, primero, se abrirá una ventana donde el usuario
podrá introducir la palabra a buscar, cuando pulse el botón de aceptar se subrayarán en
verde las coincidencias, mientras, que en caso de no haber ninguna coincidencia, se mostrará
un mensaje indicándolo. La Figura 5.4 muestra el proceso de buscar una palabra en el texto.

35

Buscar (CTRL+B)

Figura B.4: Tablas análisis SLR Figura B.5: Autómata análisis SLR

Reemplazar (CTRL+R)

Para remplazar una palabra por otra en la gramática, primero, se abrirá una ventana
donde el usuario podrá introducir la palabra a buscar y aquella por la que la quiera cam-
biar, cuando pulse el botón de aceptar se remplazarán todas las coincidencias encontradas,
mientras, en caso de no haber ninguna coincidencia se mostrará un mensaje indicándolo. La
Figura 5.4 muestra el proceso de remplazar una palabra por otra en el texto.

B.2.4. Menú Buscar

Buscar (CTRL+B)

Figura B.6: Tablas análisis SLR Figura B.7: Autómata análisis SLR

B.2.5. Menú Texto

Fuente

Permite cambiar el tipo de letra con el que estamos editando o mostrando la gramática.
En la Figura B.9 aparece el diálogo.

36

Color

Permite cambiar el color de letra con el que estamos editando o mostrando la gramática.
En la Figura B.8 aparece el diálogo.

Tabulador

Permite cambiar el número de espacios que formarán un tabulador por defecto. En la
Figura B.10 aparece el diálogo.

Figura B.8: Cambiar color Figura B.9: Cambiar fuente Figura B.10: Cambiar espacios

Figura B.11: Menús

Extendido

Permite cambiar el formato en el que aparece la gramática al formato compacto. En este
formato las producciones aparecen de la siguiente manera.

Parte Izquierda :

Parte Derecha1

| Parte Derecha2

|

| Parte Derecha n

;

Compacto

Permite cambiar el formato en el que aparece la gramática al formato compacto. En este
formato las producciones aparecen de la siguiente manera.

Parte Izquierda : Parte Derecha1 | Parte Derecha2 | | Parte Derechan;

Guardar preferencias

Permite guardar las opciones de tipo de letra, color de letra y espacios de tabulador
elegidos, para que la próxima vez que se abrá la aplicación sean tomados como valores por
defecto.

B.2.6. Menú Herramientas

Calcular conjunto Primero

Muestra una nueva ventana como la Figura B.12a donde se muestra el conjunto de Primero
de los śımbolos de la gramática.

37

Calcular conjunto Siguiente

Muestra una nueva ventana como la Figura B.12a donde se muestra el conjunto de Si-
guiente de los śımbolos de la gramática.

(a) Conjunto Primero (b) Conjunto Siguiente

Calcular conjunto Primero de una forma frase

Esta opción permite calcular el conjunto Primero de una forma de frase. Para ello, primero
se mostrará una ventana en la que el usuario podrá ingresar la forma de la frase que desea
analizar en el campo superior. Luego, al pulsar el botón “Calcula”, el conjunto Primero de la
forma de frase se mostrará en el campo inferior de la ventana. En la Figura B.13 se muestra
la ventana:

Figura B.13: Opciones especificas de la aplicación para gramáticas.

B.2.7. Menú Transformaciones

En este menú aparece la posibilidad de aplicar distintas transformaciones a la gramática
actual para convertirla en otra equivalente con objeto de que se pueda adaptar a uno u otro
tipo de gramática. Las posibles transformaciones se enumeran a continuación:

Eliminación de no derivables: eliminar los śımbolos que no son capaces de derivar
ningún otro śımbolo.

Factorización a izquierda: factorizar a izquierda de todas aquellas producciones que
pueden provocar backtracking en el analizador.

Eliminación de ciclos: eliminar todos aquellos śımbolos no terminales de la gramática
que derivan en śı mismos en uno o más pasos.

38

Eliminación de no accesibles: eliminar todos aquellos śımbolos de la gramática que
no pueden ser accedidos desde el śımbolo inicial.

Eliminación de anulables: eliminar todas aquellas producciones cuya parte derecha
es lambda

Eliminación de la recursividad a izquierda: eliminar la recursividad a izquierda
de las producciones.

Forma normal de Greibach: transforma la gramática en la forma normal de Grei-
bach.

Forma normal de Chomsky: transforma la gramática en la forma normal de Chomsky.

Antes de realizar una transformación se comprueba las precondiciones de la operación, si la
gramática no cumple con las condiciones se mostrará un mensaje como el de la Figura B.14
indicando cuales y no se realizará la operación. Si la gramática cumple la precondición se
aplicará la transformación y la gramática resultante aparecerá en una ventana nueva para
que puedan compararse las diferencias entre la gramática original y la transformada.

Figura B.14: Opciones especificas de la aplicación para gramáticas.

B.2.8. Menú Analizar

En el menú Analizar se puede realizar el análisis sintáctico de la gramática, mostrando
las diferentes partes del análisis e indicando si corresponde o no al tipo espećıfico de análisis
llevado a cabo

Analizar gramática LL(1)

Esta opción ejecuta el análisis LL(1) de la gramática, mostrando, en ventanas indepen-
dientes, la tabla para análisis LL(1). Las casillas de la tabla que aparecen con el fondo rojo
son aquellas en las que existe un conflicto. En la Figura B.15 aparece una de estas tablas
generadas a partir del análisis LL(1) de la gramática. El análisis solo se realiza si es la primera
vez que se pulsa en esta opción, las siguientes veces solo se muestran las ventanas.

Figura B.15: Opciones especificas de la aplicación para gramáticas.

39

Guardar tabla análisis LL(1)

Esta opción está solamente activa si se ha ejecutado el análisis LL(1) anteriormente y la
gramática no tiene conflictos, y muestra para seleccionar el fichero donde guardar las tablas
para el análisis.

Analizar gramática SLR

Esta opción ejecuta el análisis SLR de la gramática, mostrando, en ventanas indepen-
dientes, las tablas para análisis SLR, el autómata de conjuntos de configuraciones LR(0), la
gramática ampliada y una versión del autómata en modo texto. Las casillas de la tabla que
aparecen con el fondo rojo son aquellas en las que existe un conflicto. En la Figura B.16
aparece una de estas tablas generadas a partir del análisis SLR de la gramática, en la Figura
B.18 se muestra el autómata en ventana y en texto, y en la Figura se muestra la gramática
expandida. El análisis solo se realiza si es la primera vez que se pulsa en esta opción, las
siguientes veces solo se muestran las ventanas.

Figura B.16: Tablas análisis SLR.

Figura B.17: Autómatas análisis SLR.

Guardar tablas SLR

Esta opción está solamente activa si se ha ejecutado el análisis SLR anteriormente y la
gramática no tiene conflictos, y muestra para seleccionar el fichero donde guardar las tablas
para el análisis.

40

Figura B.18: Gramática ampliada del análisis SLR.

Analizar gramática LALR

El proceso para esta opción es idéntico al que se explica en la Sección B.2.8. La única
diferencia es que en este caso cambia el algoritmo de simulación.

Guardar tabla tablas LALR

El proceso para esta opción es idéntico al que se explica en la Sección B.2.8. La única
diferencia es que en este caso cambia el algoritmo de simulación.

Analizar gramática LR

El proceso para esta opción es idéntico al que se explica en la Sección B.2.8. La única
diferencia es que en este caso cambia el algoritmo de simulación.

Guardar tabla tablas LR

El proceso para esta opción es idéntico al que se explica en la Sección B.2.8. La única
diferencia es que en este caso cambia el algoritmo de simulación.

B.2.9. Menú Simular

Simular entrada LL(1)

Esta opción permite, una vez que se ha comprobado que la gramática actual es del tipo
LL(1), simular el analizador sintáctico tipo LL(1) asociado a la gramática. Para ello, el pro-
grama muestra una ventana como la de la Figura B.19 donde el usuario podrá introducir la
entrada a simular.

Figura B.19: Opciones especificas de la aplicación para gramáticas.

41

Una vez el usuario pulse el botón Aceptar, aparecerán dos ventanas, la de la derecha ven-
tana de simulación donde se recogen las estructuras internas del simulador (pila de śımbolos,
producciones emitidas, entrada que falta por analizar y entrada original del simulador). Esta
ventana se muestra en la Figura B.20. En esta ventana, cada vez que se pulse el botón Avan-
zar, se ejecutará avanzará un paso del proceso de simulación y se actualizarán las estructuras
del analizador en pantalla. Mientras que si se pulsa el botón Retroceder, se retorcerá un paso
en el análisis.

La ventana de la derecha contiene el árbol de sintaxis que corresponde a la entrada que
se está simulando. El árbol ira avanzando o retrocediendo en su construcción a medida que
el usuario avance o retroceda en el análisis. Dicha ventana aparece en la B.21.

Figura B.20: Ventana con la entrada, pila y
producción disparada. Figura B.21: Árbol de sintaxis.

Al final del análisis, se indicará como en la Figura B.22 si la entrada es aceptada por la
gramática es aceptada según el analizador LL(1) o no.

(a) Entrada aceptada. (b) Entrada No aceptada.

Figura B.22: Mensaje si el analizador acepta la entrada o no.

Simular entrada SLR

El proceso para esta opción es idéntico al que se explica en la sección B.2.9. La única
diferencia es que en este caso cambia el algoritmo de simulación.

Simular entrada LALR

El proceso para esta opción es idéntico al que se explica en la sección B.2.9. La única
diferencia es que en este caso cambia el algoritmo de simulación.

42

Simular entrada LR

El proceso para esta opción es idéntico al que se explica en la sección B.2.9. La única
diferencia es que en este caso cambia el algoritmo de simulación.

B.2.10. Menú Ayuda

Log

En la ventana de log se muestran la lista de acciones que el usuario ha realizado en la
aplica. Esta ventana se muestra en la Figura B.23.

Acerca de

Contiene información acerca del proyecto y las personas que han intervenido en él. Esta
ventana se muestra en la Figura B.24.

Figura B.23: Log de la aplicación. Figura B.24: Información sobre ANAGRA.

B.2.11. Formatos de entrada

Formato de los ficheros de gramáticas

El formato de los ficheros para introducir las gramáticas es el formato utilizado por YACC.
Es decir, que podemos pasarle un fichero YACC y el programa lo reconocerá y obtendrá una
gramática de él. Hay que advertir que existen varias restricciones a lo indicado en el párrafo
anterior.

1. Los tokens terminales de la gramática podrán ser definidos como identificador de texto
al inicio del fichero con la declaración%token..., o como carácter entre comillas simples
en las producciones de la gramática.

Cuando leamos una gramática desde un fichero, en la pantalla principal aparecerá el contenido
ı́ntegro del fichero. Cuando editemos la gramática o apliquemos alguna transformación sobre
ella, en la pantalla principal solo aparecerá información acerca de las producciones y definición
de tokens. Esta información será la que se almacene en un fichero de disco en caso de que
seleccionemos dicha opción del menú.

Formato de las formas de frase que se introducen en la aplicación

Forma de frase que se introduce para obtener el conjunto Primero.: se in-
troducirán los śımbolos de la gramática separados por uno o más espacios en blanco
o tabuladores. Las mismas palabras reservadas que tenemos para los ficheros donde se
almacenan las gramáticas, los tenemos aqúı. Dichas palabras se especifican en el punto
anterior. Ante cualquier error en la formación de la forma de frase, ANAGRA mostraŕıa
un mensaje de error indicándolo.

43

Entrada que simularemos con el analizador sintáctico asociado a las gramáti-
cas: se introducirán los śımbolos terminales de la gramática separados por uno o más
espacios en blanco o tabuladores.

44

	Introducción
	Motivación y contexto
	Estado del arte
	Objetivos y alcance del proyecto
	Metodología y herramientas
	Estructura de la memoria

	Fundamentos previos
	Gramática
	Análisis sintáctico
	Análisis sintáctico descendente (top-down)
	Análisis sintáctico ascendente(bottom-up)

	Análisis de la herramienta
	Análisis de funcionalidades de la versión anterior
	Análisis de nuevas funcionalidades y cambios respecto a la versión anterior
	Análisis de requisitos

	Implementación de la herramienta
	Estructura general del sistema
	Etapa de implementación de gramáticas
	Abstracción de una gramática en un fichero Bison

	Etapa del análisis sintáctico
	Etapa integración de la interfaz

	Resultados
	Descripción general de la herramienta
	Menú Archivo
	Menú Editar
	Menú Buscar
	Menú Texto
	Menú Ayuda
	Menú Herramientas
	Menú Transformaciones
	Menú Análisis
	Menú Simular

	Conclusiones
	Cronograma
	Trabajo futuro

	Métodos de transformación de una gramática
	Cálculo del conjunto Primero
	Cálculo del conjunto Siguiente
	Eliminación símbolos no terminables
	Eliminación de recursividad a izquierda
	Factorización a izquierda
	Eliminación de ciclos
	Eliminación de producciones épsilon
	Eliminación de no terminales no derivables
	Eliminación de no accesibles

	Manual de usuario
	Instalación de la herramienta
	Instalación de la herramienta en Linux
	Instalación de la herramienta en Windows

	Tutorial del sistema
	Menú Gramática
	Menú Edición
	Menú Buscar
	Menú Buscar
	Menú Texto
	Menú Herramientas
	Menú Transformaciones
	Menú Analizar
	Menú Simular
	Menú Ayuda
	Formatos de entrada

