
Trabajo Fin de Grado

Implementación y condicionamiento de la
herramienta Museformer para composicón

automática de obras musicales

Conditioning and implementation of the Museformer
tool for automatic generation of musical scores

Autor

Alexandru Cosmin Lancrajan

Director

Jose Ramón Beltrán Blázquez

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2024

AGRADECIMIENTOS

Agradezco a Jose Ramón por la proposición de este trabajo ya que combina la

música que es uno de mis tópicos favoritos con un tema tan interesante, actual y sujeto

aún a mejora como es la IA. También quiero agradecer a la EINA por haber puesto

a mi disposición los recursos necesarios para el desarrollo de este trabajo de fin de

grado, ya que sin estos medios hubiera resultado dif́ıcil hacer parte del mismo con las

herramientas personales de las que dispońıa. Por último me gustaŕıa incluir a Yann

LeCun y Alfredo Canziani de la NYU por haber dispuesto de manera gratuita el curso

de Deep Learing que imparten en dicha universidad, ya que ha sido de gran ayuda a

mi formación y entendimiento en general dentro del mundo del Deep Learning, y en

particular para la herramienta utilizada en este trabajo.

I

II

Museformer

RESUMEN / ABSTRACT

Las redes neuronales han experimentado un desarrollo importante en los últimos

años, especialmente en el procesado natural del lenguaje mediante el uso de una

arquitectura llamada Transformer, la cual ha impulsado el desarrollo de herramientas

como Chat-GPT o BERT Large. Dado que la música se puede representar en formato

MIDI, y consecuentemente en tokens, el equipo de Microsoft Asia desarrolló Museformer

basándose en la arquitectura Transformer y realizando unas variaciones dentro de la

misma para poder componer música de forma más precisa mediante el uso de dos tipos

de mecanismos de atención, fino y grueso. La atención fina se encarga de relacionar

compases dentro de la canción y la atención gruesa de generar variación dentro de la

pieza, además de reducir la complejidad computacional del mecanismo de atención.

Mediante un entrenamiento en una base de datos MIDI amplia, se pueden inferir

canciones a partir de ruido en la entrada. Para finalizar se describe de forma teórica

cómo debeŕıa implementarse un condicionamiento a la red para poder introducir texto

en la entrada en vez de ruido para indicarle el estilo, género, artista, etc.

Neural networks have experienced significant development in recent years, especially

in natural language processing using an architecture called Transformer, which has

driven the development of tools such as Chat-GPT or BERT Large. Since music can

be represented in MIDI format, and consequently in tokens, the Microsoft Asia team

developed Museformer based on the Transformer architecture and made some variations

within it in order to compose music more accurately by using two types of attention

mechanisms, fine and coarse. The fine attention is in charge of relating measures within

the song and the coarse attention is in charge of generating variation within the piece,

in addition to reducing the computational complexity of the attention mechanism. By

training on a large MIDI database, songs can be inferred from random noise given to

the input layer. Finally, we describe theoretically how a network conditioning should

be implemented to be able to introduce input text instead of noise to indicate style,

genre, artist, etc.

III

IV

Índice

1. Motivación y objetivos del trabajo 1

2. Introducción a las redes neuronales 4

2.1. Red Neuronal . 4

2.2. Entrenamiento de una red neuronal . 6

2.2.1. Función de coste y de pérdidas 6

2.2.2. Gradient Descent . 7

2.2.3. Backpropagation . 8

2.3. Inferencia de una red neuronal . 9

2.4. Funciones no lineales más empleadas 11

2.5. Bloques básicos de redes neuronales y sus gradientes 14

3. Arquitecturas de red más comunes en modelos de lenguaje 16

3.1. Redes Neuronales Recurrentes y LSTM 16

3.2. Seq2Seq . 19

3.3. Seq2Seq con mecanismo de atención . 19

3.4. Transformers . 20

4. Museformer 25

4.1. Introducción . 25

4.2. Atención de ajuste grueso y fino . 26

4.2.1. Resumen (Summarization) . 27

4.2.2. Agregación (Aggregation) . 27

4.3. Compases relacionados . 28

4.4. Análisis de complejidad . 29

5. Implementación, entrenamiento e inferencia del Museformer 31

5.1. Implementación . 31

5.2. Entrenamiento . 32

5.3. Inferencia . 35

V

6. Condicionamiento del Museformer (Teoŕıa) 39

7. Conclusiones 42

8. Bibliograf́ıa 43

Lista de Figuras 44

Lista de Tablas 45

Anexos 46

A. Código propio implementado mediante scripts de Python 47

VI

Caṕıtulo 1

Motivación y objetivos del trabajo

El auge de las redes neuronales en los últimos años ha generado una importante

mejora tecnológica en diversidad de ámbitos como pueden ser la robótica, la visión por

computador, la conducción, los motores de búsqueda Web, la traducción, el lenguaje

natural, etc. En particular en los últimos dos años la arquitectura Transformer ha

provocado una importante mejora dentro del Procesado Natural del Lenguaje (NLP

en inglés) con la llegada de Chat-GPT, BERT y otros modelos de lenguaje adicionales.

Esto ha provocado que diversos investigadores buscaran modelar la música de forma que

encajara con esta arquitectura ya que por una parte la música admite representación

mediante tokens1 que se comportan como elementos que son reconocidos por la red, y

por otra parte la música se puede entender como un lenguaje con sus elementos básicos

y relaciones entre ellos.

Una de los modelos propuestos para generar composiciones musicales simbólicas de

forma automática es Museformer por parte del equipo de Microsoft Asia. Su explicación

se encuentra detallada en la sección 4. Este modelo resuelve los problemas que tienen

los modelos Transformer para secuencias largas, que es el coste de computación, ya que

la capa de atención tiene un orden O(n2) para la secuencia de entrada, y la relación

entre la propia estructura musical de las obras, ya que existen compases relacionados

que se encuentran muy lejos entre ellos, y también hay compases que no tienen ninguna

relación.

El objetivo de este trabajo es implementar el modelo Museformer2 para poder

entrenarlo y hacer inferencia a partir del mismo. Como paso adicional y si hay tiempo

condicionarlo en el sentido de poder introducir datos de entrada para guiar al modelo

a la hora de generar piezas, por ejemplo, si queremos componer una pieza de Pop o

Rock se lo indicaremos como texto de entrada.

Para lograr este objetivo principal se tiene que seguir una serie de pasos u objetivos

1Explicados en su respectiva sección. (4)
2Repositorio Github: https://github.com/microsoft/muzic

1

https://github.com/microsoft/muzic

secundarios.

1. Entendimiento de la arquitectura Transformer (3.4).

2. Creación de un entorno para la implementación de Museformer (4).

3. Aprender a clonar un repositorio de GitHub3.

4. Ejecutar los distintos archivos descargados.

5. Comprensión de los parámetros de entrenamiento.

6. Comprensión de los parámetros de inferencia y el paso de generación de la red.

7. Posible condicionamiento de la red para añadirle funcionalidad extra.

La memoria se divide en 7 apartados (incluyendo este) que se van a resumir a

continuación.

1. El caṕıtulo de Motivación y objetivos del trabajo (1) se encarga de explicar los

objetivos del trabajo, y la motivación detrás del mismo.

2. El caṕıtulo de Introducción a las redes neuronales (2) explica de forma resumida

en qué consisten las redes neuronales junto a los conceptos más importantes de

las mismas necesarios para implementar una red cualquiera.

3. El caṕıtulo de Arquitecturas de red más comunes en modelos de lenguaje (3) se

encarga de explicar los tipos de redes más comunes empleadas dentro del ámbito

del Procesado del Lenguaje, más concretamente la arquitectura Transformer que

es el pilar de este trabajo.

4. El caṕıtulo de Museformer (4) explica la arquitectura y el funcionamiento del

modelo Museformer, y sus ventajas e inconvenientes frente a otros tipos de

modelos basados en Transformers.

5. El caṕıtulo de Implementación, entrenamiento e inferencia del Museformer (5)

habla del proceso de la implementación en śı de la red dentro de una máquina

concreta, la preparación de los datos, el entrenamiento con sus parámetros en śı

junto a los resultados y la generación de las piezas con sus medidas y valoraciones

correspondientes.

3https://github.com

2

https://github.com

6. El caṕıtulo de Condicionamiento (6) habla de cómo se podŕıa implementar

modificaciones al modelo Museformer para que a la hora de la generación se

puedan introducir datos por texto en vez de generar las piezas de forma aleatoria.

7. Por ultimo, el caṕıtulo Conclusiones (7) presenta una conclusión objetiva sobre

el cumplimiento de los objetivos propuesto en el trabajo junto a la valoración

del Museformer como herramienta de trabajo, y una valoración subjetiva sobre

el trabajo en śı.

3

Caṕıtulo 2

Introducción a las redes neuronales

2.1. Red Neuronal

Los Caṕıtulos 2 y 3 de esta memoria proporcionan una revisión de conceptos que

se han obtenido del curso ”Deep Learning Course”de la plataforma https://atcold.

github.io/NYU-DLSP21/ de Yann LeCun y Alfredo Canziani [1].

Una red neuronal es una función matemática compleja1 que para cada valor de

entrada genera su respectivo valor de salida. Dentro de esta función tenemos una serie

de capas, que van desde la capa de entrada, capas intermedias, también llamadas capas

ocultas, y una capa de salida. Dentro de estas capas tenemos una serie de nodos, a los

cuales llamaremos neuronas y constan de dos partes:

1. Una combinación lineal de neuronas anteriores.

2. Una función no lineal evaluada elemento a elemento.

Entre las distintas capas existen una serie de conexiones entre neuronas a las

que llamaremos pesos. Dada una capa H(i), estas conexiones determinan el grado de

aportación que tiene cada neurona de la capa H(i−1) con respecto a una neurona de

la capa H(i). Estos pesos son uno de los parámetros que se entrenan dentro de la red.

El otro parámetro es el bias (o sesgo) que se puede añadir a la combinación lineal de

las neuronas capa H(i−1) con los respectivos pesos asociados a cada neurona de la capa

H(i). En resumen, si llamamos a
(i)
k a la k-ésima neurona de la capa H(i) con k ∈ 1, ..., n

y a
(i−1)
j la j-ésima neurona de la capa la H(i−1) con j ∈ 1, ..., l obtenemos la siguiente

expresión para los pesos y bias para una neurona arbitraria de la capa H(i).

a
(i)
k =

l∑
j=1

wk,j · a(i−1)
j + bk (2.1)

1En el sentido de tener muchos parámetros dentro de la misma, ya que en realidad es una función
que toma valores reales.

4

https://atcold.github.io/NYU-DLSP21/
https://atcold.github.io/NYU-DLSP21/

En esta expresión wk,j es el peso que relaciona la neurona a
(i)
k con a

(i−1)
j y bk es el

sesgo asociado a la neurona a
(i)
k .

Si definimos a(i) como el vector de neuronas de la capa H(i) de tamaño [n, 1] y a(i−1)

como el vector de neuronas de la capa H(i−1) de tamaño [l, 1], entonces la expresión

para a(i) usando (2.1) queda de la siguiente forma:

a(i) = Wa(i−1) + b (2.2)

expresión en la cual W es la matriz de pesos de tamaño [n, l] y b es el vector bias de

tamaño [n, 1].

Con (2.2) obtenemos lo que se denomina FC-Layer (Full-Connected Layer o capa

completamente conectada), es decir, todas las neuronas de una capa están conectadas

con todas las neuronas de la siguiente capa. Este modelo es el más elemental dentro

de las arquitecturas que existen en Deep-Learning, pero a la vez es el más costoso en

términos de operaciones. Si todas las capas de una red son del tipo FC-Layer entonces

llamaremos FC-Network a la red neuronal en cuestión.

Hasta ahora hemos tratado la parte de la combinación lineal de las neuronas, por

lo que hablaremos brevemente de la parte no lineal de la neurona. Esta parte consta

de una función no lineal evaluada elemento a elemento dentro de cada capa de la red,

es decir, si llamamos f a la función no lineal en cuestión la expresión es la siguiente:

z
(i)
k = f(a

(i)
k) k ∈ 1, ..., n (2.3)

donde z
(i)
k es el resultado de aplicarle la función f a cada a

(i)
k . Como se puede ver

el vector resultante z(i) es del mismo tamaño que a(i) ya que lo hemos definido de

esta manera. Notar que de esta manera la combinación lineal de las ecuaciones (2.1) y

(2.2) toman z(i−1) como vector de entrada, ya que la función f produce la salida de la

neurona.

Para finalizar esta sección mencionaremos que el hecho de usar funciones no lineales

se debe a dos razones, siendo la primera de ellas la posibilidad de que la relación entre

datos de un problema dado que queremos solucionar aplicando redes neuronales no

tengan relación lineal entre ellos, por ejemplo si queremos clasificar imágenes según

algún tipo de etiquetas como fotos de animales por el tipo de animal en cuestión,

si un usuario hace click en un anuncio de una página, etc. La otra razón es que

si tenemos un conjunto de capas lineales conectadas se comporta como una única

capa ya que la combinación lineal de capas es lineal y se perdeŕıa el propósito del

Deep-Learning, el cual se basa en añadir capas intermedias que se encargan de extraer

distintas caracteŕısticas en cada una de ellas.

5

2.2. Entrenamiento de una red neuronal

2.2.1. Función de coste y de pérdidas

Hasta ahora hemos visto una estructura básica de una red neuronal, por lo que

el siguiente paso es ver cómo se puede entrenar para que nos produzca resultados

correctos. Para ello definimos el algoritmo del Descenso por Gradiente (Gradient

Descent Algorithm) y la forma de actualizar los pesos y sesgos de la red mediante

Backpropagation.

Para hablar del algoritmo de Descenso por Gradiente, al cual llamaremos Gradient

Descent, tenemos que definir una arquitectura que nos sirva para entrenar la red en

cuestión. En la siguiente figura se puede ver una posible representación de la misma:

Figura 2.1: Arquitectura básica de red neuronal para entender el entrenamiento.
Tomada de [1]

El elemento novedoso es la función de coste C(y, ȳ), la cual nos mide el error que se

produce entre la predicción ȳ de una red neuronal G(x,w) dada una entrada arbitraria

x, y el dato que queremos predecir y al cual llamaremos label (o etiqueta) y se usará

exclusivamente durante la fase de entrenamiento.

La función de coste puede definirse de muchas formas, por ejemplo, la norma

Eucĺıdea o L2, o la norma Manhattan o L1. A partir de la función de coste

podemos definir una función de pérdidas que será el objetivo a minimizar durante el

entrenamiento para reducir el error entre la predicción de la red neuronal y la muestra

real.

L(x, y, w) = C(y,G(x,w)) (2.4)

Donde L es la función de pérdidas por muestra. Notar que tanto la función de coste

como de pérdidas son paramétricas, donde los parámetros son los pesos de la red w,

6

los cuales además son impĺıcitos, por lo que se puede complicar mucho el cálculo de los

algoritmos propuestos.

Una vez definida la función de pérdidas por muestra definimos la función de pérdidas

promedio como:

S = {(x[p], y[p]) | p ∈ {0, ..., P − 1}}

L(S,w) =
1

P

P−1∑
p=0

L(x[p], y[p], w) (2.5)

donde hemos definido un conjunto S de P pares de muestras (x, y).

2.2.2. Gradient Descent

Una vez definida la función de pérdidas ya podemos definir el algoritmo de Gradient

Descent con la siguiente expresión, la cual se explicará debajo.

w ←− w − η
∂L(S,w)

∂w
(2.6)

Supongamos que la función de pérdidas L contiene dos pesos, w0 y w1, por lo que

podemos representar esta función como una curva en 2D de la siguiente forma:

(a) L en función de w0, w1 (b) Algoritmo Gradient Descent

Figura 2.2: Visualización del algoritmo de Gradient Descent. Tomada de [1]

La figura 2.2b es la representación de los cortes de la función L que tienen el mismo

valor numérico. Dado un valor arbitrario inicial a los pesos w0 y w1, el algoritmo

consiste en encontrar la dirección espacial de máximo crecimiento con respecto al punto

inicial e ir actualizando los pesos en la dirección contraria a este máximo crecimiento.

Este proceso se repite iterativamente hasta llegar a un mı́nimo local2 en la función de

2En este caso es absoluto, pero para funciones de millones de parámetros su forma es mucho más
compleja.

7

pérdidas. Una analoǵıa a este algoritmo seŕıa estar perdido en una montaña y para

llegar a un poblado hay que ir dando pasos en una dirección que nos gúıe hacia abajo.

En la expresión (2.6) la dirección de máximo con respecto a los pesos viene dada por

la derivada parcial de la función de pérdidas con respecto a los pesos, y al añadirle

el signo menos “descendemos en la función de coste”. Para finalizar la expresión, el

hiper-parámetro3 η se llama Learning Rate y nos controla la velocidad de convergencia

del algoritmo al mı́nimo de la función. Está definido en el intervalo [0, 1] y cuanto más

grande sea, más rápido es el algoritmo, pero corremos el riesgo de que acabe divergiendo

debido a que los pasos sean tan grandes que se salten el mı́nimo y en vez “descender

en la función” acabe creciendo desmesuradamente.

Por último cabe mencionar que la expresión (2.6) se denomina Full-Batch Gradient

porque hace la media de la función de pérdidas para todos los datos de entrenamiento

en cada paso. Esto no es eficiente de forma computacional, por lo que se recurre

a una técnica llamada SGD (Stochastic Gradient Descent) que en vez de usar

todos los datos usa un subconjunto de los mismos llamado mini-batch. Esto es más

rápido computacionalmente, pero nos genera un camino al mı́nimo ruidoso. Existen

modificaciones del algoritmo para ayudar a la convergencia rápida y eliminación de

ruido, pero no se van a tratar en este trabajo ya que su objetivo no es el estudio de

la convergencia. De todas estas técnicas, el Museformer usa el algoritmo de Adam [2]

que es el más popular y eficiente de todos los que existen a d́ıa de hoy.

2.2.3. Backpropagation

Hasta ahora hemos definido nuestra red neuronal y visto un algoritmo para poder

calcular los pesos y sesgos4 de la misma, pero aun nos falta un ultimo paso que es

actualizar los parámetros en śı de todas las capas. Esto se denomina Backpropagation

y consiste en aplicar la regla de la cadena a la función de coste con respecto a todas

las capas de la red neuronal. En concreto para la capa i-ésima queda la expresión de

la siguiente manera:

∂L(S,w, b)

∂wi

=
∂L(S,w, b)

∂zi+1

∂zi+1

∂wi

(2.7)

∂L(S,w, b)

∂bi
=

∂L(S,w, b)

∂zi+1

∂zi+1

∂bi
(2.8)

donde zi+1 viene de la expresión (2.3) y hace referencia a la salida de la capa H(i+1)

de la red. Si zi+1 tiene dimensión [M, 1] y wi tiene dimensión [N, 1], entonces la relación

3Es un parámetro que controla otros parámetros dentro de la fase de entrenamiento, por eso lo
denominamos aśı.

4No se ha mencionado de forma expĺıcita, pero se hace de forma análoga a los pesos.

8

entre dimensiones cumple en la expresión (2.7) que [1, N] = [1,M] × [M,N]. Ocurre

algo de manera similar con (2.8) ya que el sesgo tiene la misma dimensión que los pesos

de la capa i-ésima.5 La expresión ∂zi+1

∂wi
es una matriz jacobiana que cumple la siguiente

relación para cada componente:

(
∂zi+1

∂wi

)
k l

=
(∂zi+1)k
(∂wi)l

(2.9)

Es decir, la entrada (k, l) en la matriz es la componente k-ésima de la derivada

parcial del vector zi+1 con respecto a la componente l-ésima de la derivada parcial del

vector wi. Para el caso de los sesgos solo cambia la notación por lo que quedaŕıa de

forma similar la expresión, solo que esta vez se tienen en cuenta los sesgos en vez de

los pesos.

Aplicando de forma recursiva las expresiones (2.7) y (2.8), es decir, comenzando

por la capa de salida de la red y retrocediendo capa por capa hasta llegar a la capa

de entrada (sin incluir) acabamos actualizando todos los pesos y sesgos de la red

para un paso de iteración del algoritmo Gradient-Descent empleado. El nombre de

Backpropagation viene precisamente de ir hacia atrás propagando los pesos y sesgos

actualizados.

2.3. Inferencia de una red neuronal

Una vez hecha la fase de entrenamiento ya tenemos la red ajustada para obtener los

resultados correctos en función de unos datos de entrada “adecuados”. Por ejemplo si

estamos clasificando imágenes de coches la red sabrá discernir entre modelos de coches

si se ha entrenado con una cantidad suficiente de ellos. Pero si nos salimos del ámbito

de la red, es decir, le pedimos que nos genere un coche nuevo, dependiendo de como se

haya entrenado la red obtendremos un resultado u otro. Por ejemplo si la función de

coste es el error cuadrático medio el resultado será una mezcla de todos los modelos de

coches que conozca la red y saldrá una imagen probablemente borrosa o sin sentido.

Para solucionar este problema se recurre a unos modelos basados en enerǵıa [1] que se

encargan de modelar una función de enerǵıa para unos conjunto de datos de entrada

de tal manera que los valores de la función sean nulos en un entorno cercano a estos

mismos (sustituyendo a la función de coste).

La función de coste F (x, y) se define como una función escalar, es decir, para cada

par de puntos (x, y) tenemos un único valor numérico real. Las redes que contienen

este tipo de modelos de enerǵıa se entrenan de dos maneras:

5Por definición de gradiente su representación en forma vectorial es un vector fila.

9

Figura 2.3: Representación de F (x, y). Tomada de [1]

1. Métodos de contraste.

2. Métodos de regularización.

Los métodos de contraste se basan en comparar dos puntos dentro de la función,

uno de ellos perteneciente a los datos de entrada, y el otro puede ser aleatorio o una

perturbación del dato de entrada para posicionarse en un espacio cercano, de tal manera

que vamos aumentando la enerǵıa en aquellos puntos que se van alejando de los datos,

y vamos disminuyendo la enerǵıa en los puntos que están muy cerca de los datos de

entrada de tal forma que acabemos con una función como en 2.3, en la cual el color

gris representa valores de F (x, y) pequeños y conforme nos vamos alejando obtenemos

valores más grandes (naranja).

Figura 2.4: Arquitectura de red con variable latente. Tomada de [1]

10

Para los métodos de regularización se emplea una variable extra z representada en

la figura 2.4 la cual se llama variable latente6 (Latent-Variable) y su función es modelar

caracteŕısticas importantes de los datos de entrada que le vamos proporcionando

durante la fase de entrenamiento. Por ejemplo si estamos analizando imágenes de coches

esta variable aprende caracteŕısticas como tipos de rueda, carroceŕıa, maletero, puertas,

etc.

Los métodos de regularización se encargan de fijar un “volúmen” alrededor del

espacio de los datos de entrada y el resto del espacio tiene enerǵıa alta. Esta

regularización aparece para restringir la capacidad de la variable latente z, ya que

si no tiene restricciones z se adaptará a los datos de entrada y asignará enerǵıa cero a

todo el dominio de la función F (x, y), caso desfavorable.

Existen muchos modelos tanto de contraste como regularizados, e incluso de

contraste con variables latentes, en el caso de este trabajo se utilizará el método de

regularización L2, que consiste en añadirle la norma eucĺıdea o L2 de los pesos a la

función de pérdidas. En caso de querer profundizar más sobre los distintos tipos modelos

se pueden ver en [1].

Una vez ajustada la función de coste a los datos de entrada, el siguiente paso es la

inferencia y no es más el proceso de encontrar valores y tales que minimicen el valor

de F (x, y) dado por la siguiente ecuación:

ŷ = argminy F (x, y) (2.10)

La ecuación (2.10) ya incluye el caso de variable latente de forma impĺıcita ya que en

[1] se explica como se puede redefinir cierta función de enerǵıa E(x, y, z) para llegar a

(2.10).

Para finalizar, hay que remarcar el hecho de que el tema de modelos basados en

enerǵıa es amplio y en este apartado solamente se queŕıa introducir de forma muy

superficial la fase de inferencia para entender de forma general como funciona el

Museformer tratado unas secciones más adelante.

2.4. Funciones no lineales más empleadas

Uno de los aspectos a tratar es que tipo de funciones no lineales podemos emplear

para construir la red neuronal que resuelva el problema planteado. Hay muchas

funciones que cumplen este criterio, pero aqúı vamos a tener en cuenta las más

utilizadas.

6El valor de esta variable es impĺıcito.

11

La primera función no lineal, y a su vez la más empleada es la función ReLU y

viene dada por la siguiente expresión:

ReLU(x) =

{
x, si x > 0

0, si x ≤ 0
(2.11)

Como podemos observar la función solamente toma valores distintos de cero si la

entrada es positiva. En este caso la no linealidad viene dada por el punto en el origen

donde la función cambia de forma abrupta.

Representado la función obtenemos la siguiente figura 2.5:

Figura 2.5: Representación de la función ReLU.

La siguiente función es la tangente hiperbólica y viene dada por la siguiente

expresión:

tanh(x) =
ex − e−x

ex + e−x
(2.12)

Para ver las no linealidades de esta función la representamos primero para verlas

de forma más sencilla en la figura 2.6.

En este caso vemos que para valores muy grandes tanto negativos como positivos

la función converge a -1 y 1 respectivamente.

Para finalizar nos queda la función sigmoide que viene dada por la siguiente

expresión:

σ(x) =
1

1 + e−x
(2.13)

La representación queda de la podemos ver en la figura 2.7:

Notar que esta función es similar a la tangente hiperbólica, solamente que en este

caso esta desplazada en el eje positivo de tal manera que la convergencia de valores

grandes tanto negativos como positivos ocurren en el intervalo [0, 1].

12

Figura 2.6: Representación de la función tanh(x).

Figura 2.7: Representación de la función σ(x).

Existen más funciones no lineales, pero estas tres mencionadas son las más utilizadas

en redes neuronales debido a que debido a sus expresiones son fácilmente derivables7,

por lo que el entrenamiento es más rápido que utilizando otras funciones más complejas.

También permiten clasificar de forma sencilla los datos de un problema bajo distintas

etiquetas, por lo que tras varias modificaciones de dichos datos en sucesivas capas de

red obtenemos las respectivas agrupaciones entre datos bajo una misma etiqueta8.

Para finalizar, mencionar que de estas tres funciones la más utilizada es la función

ReLU debido a que a el gradiente no satura durante la fase de entrenamiento porque, o

es nulo para datos negativos y no se propaga, o es uno para datos positivos y se propaga

directamente actualizando los respectivos pesos y sesgos. En los otros dos casos tanh(x)

y σ(x) para datos con valores muy positivos o negativos el gradiente no es nulo, pero

es muy pequeño, y a la hora de propagar el gradiente implica que los pesos y sesgos se

7En el caso de ReLU se modifica el origen para poder ser derivable, ya que en principio no lo es.
8Para más información véase el algoritmo K-means en [3]

13

actualizan de forma muy lenta empeorando el tiempo de entrenamiento.

2.5. Bloques básicos de redes neuronales y sus

gradientes

Para finalizar esta sección de introducción a las redes neuronales vamos a mencionar

brevemente los bloques que construyen los distintos tipos de arquitecturas de redes

neuronales y sus respectivos gradientes para poder entrenarlas.

Comenzamos describiendo todos los bloques:

Bloque Lineal:

Y = W ·X
∂C

∂X
= W T · ∂C

∂Y

Este bloque hace referencia a las conexiones neuronales dentro de la red. El gradiente

se obtiene transponiendo la matriz de pesos.

Bloque no lineal (ReLU):

Y = ReLU(X){
Si x > 0 ∂C

∂X
= ∂C

∂Y

Si x < 0 ∂C
∂X

= 0

En este caso el gradiente solamente se propaga si los valores de entrada son positivos.

Bloque de duplicación:

Y 1 = X, Y 2 = X

∂C

∂X
=

∂C

∂Y 1
+

∂C

∂Y 2

Este bloque se usa en el caso de parámetros compartidos.9

Bloque suma

Y 1 = X1 + X2

∂C

∂X1
=

∂C

∂Y
;

∂C

∂X2
=

∂C

∂Y

Este bloque aparece junto a las capas de normalización de la red y ayuda a propagar

el gradiente en casos en los que se pueda desvanecer por el camino mediante unas

conexiones residuales10. Las capas de normalización no tienen una finalidad clara, pero

ayudan a la convergencia del aprendizaje de la red neuronal.

Bloque máximo:

Y = max(X1, X2)

9Los parámetros compartidos se usan el redes convolucionales donde se puede explotar la
redundancia de los datos. [1]

10En la sección 3.4 se verá en detalle.

14

{
Si X1 > X2 ∂C

∂X1
= ∂C

∂Y
; ∂C
∂X2

= 0

Si x1 < X2 ∂C
∂X2

= ∂C
∂Y

; ∂C
∂X1

= 0

Este bloque como su nombre indica propaga el gradiente del valor máximo de dos

entradas X1 y X2. Se puede usar dentro de los métodos de contraste explicados en la

sección 2.3, o para clasificar datos en función del que mayor contribución tenga dentro

de la red.

Bloque LogSoftMax:

Yi = Xi − log[
∑
j

eXj]

∂C

∂Xi

= 1− eXi∑
j e

Xj

Este bloque se usa principalmente en la capa de salida para asignar probabilidades

a las neuronas de dichas capas, y aśı tener una medida sobre que datos tienen más

impactos dado un problema arbitrario. La función viene de tomar el logaritmo a la

función SoftMax(Xi) = eXi∑
j e

Xj
para obtener valores más normalizados y sin variaciones

bruscas debido a la sensibilidad de la función SoftMax

Con esto concluimos esta sección de bloques básicos más usados dentro de la

construcción de redes neuronales. Aunque no esté mencionado aqúı también se usa tanto

la función tanh(x) como la σ(x), pero no son tan comunes como la función ReLU(x).

El resto de bloques más avanzados se construyen a partir de estos mencionados.

15

Caṕıtulo 3

Arquitecturas de red más comunes
en modelos de lenguaje

3.1. Redes Neuronales Recurrentes y LSTM

Hasta ahora hemos visto el concepto de red neuronal, cómo se entrena a nivel

básico y un poco más avanzado en modelos basados en enerǵıa, el proceso de inferencia

para que la red sea capaz de predecir información nueva, algunas funciones no lineas

utilizadas y los bloques básicos empleados para la construcción de redes neuronales.

Si bien es cierto que hay muchas arquitecturas distintas para diferentes ámbitos de

trabajo e investigación como visión por ordenador, robótica, generación de fotogramas

en videojuegos, generación de voz, etc., nosotros nos centraremos en aquellas que dan

solución a problemas de lenguaje natural ya que Museformer, que es la arquitectura que

vamos a emplear en este trabajo, viene dado por la arquitectura Transformer propuesta

inicialmente en [4] para resolver el problema que teńıan otras redes a la hora de traducir

palabras de un idioma a otro.

El primer cambio que se puede hacer a una red neuronal básica en la que tenemos

capas de entrada, ocultas y de salida es generar un bucle en algunas capas ocultas de

la misma, de ello surge el concepto de Red Neuronal Recurrente (RNN en inglés) (ver

figura 3.1). Esto se hace para dotar de cierta capacidad de memoria a la red ya que

con la arquitectura básica Feed-Forward no tenemos esa capacidad.

El entrenamiento de una red de este estilo se basa en “estirar” en función del tiempo

la red comenzando por la izquierda el instante temporal inicial y añadiendo a la derecha

los sucesivos instantes temporales hasta llegar a un punto final, y aplicar el algoritmo

de Back-Propagation a través del tiempo (BPTT en inglés) yendo hacia atrás desde

la salida, pasando por los estados intermedios y llegando a la entrada finalmente. La

figura 3.2 ilustra este proceso.

En la figura 3.2 se puede ver tres iteraciones de una red recurrente y el algoritmo de

16

Figura 3.1: Ejemplo de Red Neuronal Recurrente. Tomada de [1]

Figura 3.2: Back-Propagation Through Time. Tomada de [1]

BPTT esta indicado con las flechas rojas. Empezamos en la salida actual y propagamos

el gradiente hacia el estado anterior y luego a la entrada. De la salida anterior hacemos

lo mismo, pero con sus estados anteriores correspondientes. Esto se hace hasta llegar

a la entrada en el tiempo inicial.

Aunque teóricamente este algoritmo es sencillo de implementar tiene dos grandes

inconvenientes por los cuales no se usa. El primero de ellos es el desvanecimiento del

gradiente (Gradient Vanishing) y ocurre cuando tenemos redes recurrentes de gran

tamaño en el tiempo por lo que al utilizar el algoritmo BPTT dependiendo de los

parámetros de la red el gradiente puede anularse o hacerse infinito antes de llegar

al tiempo inicial con lo que nos limita el tamaño temporal que puede tener la red.

Existen métodos para mitigar los efectos del desvanecimiento del Gradiente [1], pero

17

no se usan porque aun aśı la capacidad de memoria de la red se queda corta en la

mayoŕıa de los casos. El otro problema es la gran cantidad de información que hay

que guardar en memoria para una red de tamaño considerable, ya que dependiendo del

desarrollo temporal usado hay que guardar todos los valores de las capas intermedias

y de salida en todos los instantes temporales.

Figura 3.3: Red LSTM. Tomada de [1]

El otro tipo de red que viene a solucionar el problema principal de las RNN se

denomina LSTM (Long-Short Term Memory) o Memoria de Corto-Largo plazo. Es

más compleja la arquitectura que tiene (figura 3.3) y los detalles del funcionamiento se

pueden leer en el documento de sus autores en [5], pero en esencia se encarga de abrir

o cerrar caminos dentro de una RNN desarrollada a lo largo del tiempo como se puede

ver en la figura 3.4.

Figura 3.4: BPPT en LSTM. Tomada de [1]

En esta figura los ćırculos representan los caminos por donde se pueden propagar

los gradientes y las barras por donde no lo pueden hacer. Esto permite tanto agrandar

18

la capacidad de memoria de la red como reducir el número de parámetros que hay en

la red ya que aquellos caminos cerrados son valores nulos directamente.

3.2. Seq2Seq

Usando las redes de la sección previa se puede construir mediante la concatenación

de varios LSTM lo que se conoce como una red Seq2Seq (Secuencia a Secuencia) creada

por Sutskever en [6], y consiste introducir una secuencia de datos en la entrada, por

ejemplo una oración en inglés obtener un vector de caracteŕısticas intermedio y en la

capa de salida hacer el proceso inverso para obtener otra secuencia distinta, por ejemplo

la misma oración en alemán. La siguiente figura ilustra este párrafo.

Figura 3.5: Representación de Seq2Seq. Tomada de [1]

Uno de los problemas que tiene esta propuesta es la cantidad de LSTM necesarios,

ya que por cada entrada se necesitan dos de estos bloques, por lo que la escalabilidad

es reducida para secuencias largas. También existe un ĺımite de secuencia que si se

sobrepasa la red deja de funcionar correctamente. Yann LeCun mencionó en [1] que

era de 30 palabras mas o menos.

3.3. Seq2Seq con mecanismo de atención

Una modificación que se puede hacer a esta red es añadirle lo que se conoce

como mecanismo de atención, el cual se encarga de darle importancia a unos datos

de entrada frente a otros. Matemáticamente es un bloque que hace una combinación

lineal ponderada de las entradas con pesos de mayor tamaño a aquellas entradas que

19

aportan más valor para un instante determinado. Este mecanismo se profundizará más

en la sección 3.4 ya que es el pilar fundamental del mismo y su popularidad actual.

El resultado de añadirle el bloque de atención a esta red se ilustra en la figura

3.7, en la cual se puede apreciar que no solamente se consigue mejorar el resultado

de la salida por usar las entradas adecuadas, sino que también reducimos el coste

computacional para hacerlo ya que en cada instante de tiempo solo tenemos las entradas

con sus respectiva codificación1 G(x, z, w), el bloque de atención y la correspondiente

decodificación G(h, z, w).

Figura 3.6: Representación de Seq2Seq con mecanismo de atención. Tomada de [1]

3.4. Transformers

Para finalizar este apartado vamos a describir un poco más en detalle el mecanismo

más popular en el ámbito del lenguaje natural y también utilizado en el Museformer2,

que es el Transformer.

El Transformer es un tipo de arquitectura de red basada en un bloque llamado

atención. Este bloque tiene como entrada un conjunto de valores arbitrario, y a partir

de ellos mediante unas matrices de pesos calcula tres conjuntos de valores llamados

Query, Key y Value. Los valores de Query son el equivalente a las preguntas que hace

el módulo al conjunto de datos de entrada, por ejemplo si queremos comprar una

guitarra eléctrica, la pregunta puede ser si en una tienda tienen guitarras de la marca

Fender. Los valores de Key tienen el contenido “clave” para responder las preguntas,

1Transformación en tipos de datos útiles para la red.
2La parte -former viene precisamente de Transformer

20

normalmente una de las caracteŕısticas de los datos de entrada. En el ejemplo anterior

seŕıan las propias marcas de guitarra que hay en la tienda en la que estamos. Por

último, tenemos los valores Value que son todas las caracteŕısticas que contienen los

datos de entrada que no forman parte de la pregunta. En el ejemplo de las guitarras

puede ser el tipo de cuerpo, cuerdas, madera de construcción, color, etc.

Para poder obtener la respuesta dentro del bloque se calcula lo que se llama como

matriz de atención, la cual viene dada por la ecuación (3.1) y tiene los resultados de

proyectar los valores de Query con respecto a todos los de Key, es decir, nos da una

medida, que puede ser una puntuación o probabilidad, para saber qué valores de Key

son los que más se acercan a la Query.

A = [soft] (arg)maxβ(KTQ) (3.1)

En la expresión (3.1) si el conjunto de entrada x tiene dimensión [n, 1], entonces

Q es la matriz de Query de todos los datos de entrada, viene dada por Q = Wq x

y tiene tamaño [d, n] donde d es la dimensión de embedding3. K es la matriz de Key,

viene dada por K = Wk x y tiene tamaño [d, n], por lo que A tiene dimensión [n, n].

Una vez hecho el producto de las dos matrices anteriores tomamos el máximo que

puede ser [soft] o [hard] (aunque en la expresión ponga [soft]). Esto nos da unos valores

de medida de la respuesta que pueden ser una distribución continua [soft] o un único

valor y el resto nulos [hard]. Para finalizar tenemos el parámetro β el cual se denomina

temperatura y se encarga de controlar la uniformidad de los valores de la distribución

de la función argmax. En el caso de los transformer se toma β = 1√
d

para evitar que

la dimensionalidad usada en el embedding afecte a los resultados.

Una vez obtenida la matriz A con la matriz V de Value, que viene de V = Wv x

y tiene dimensión [d′, n]4, por lo que al final tenemos una salida que es una matriz

H = VA de tamaño [d′, n] con los valores a la respuesta obtenida. En la figura 3.7(A)

se puede ver el diagrama de bloques utilizado para implementar este párrafo y el

anterior.

Hasta ahora hemos utilizado este bloque para calcular la respuesta a una pregunta

dada sobre un conjunto de datos arbitrario, pero puede surgir la necesidad de hacer

muchas más preguntas sobre un mismo conjunto de datos, por ejemplo queremos

preguntar por más de una marca de guitarras ya que no solamente nos interesa Fender,

por lo que se para solventar este pequeño inconveniente se utiliza lo que se conoce

como Multi-Head Attention (figura 3.7(B))y no es más que la concatenación de varios

módulos de atención simples para poder realizar varias preguntas al mismo tiempo.

3Es un valor utilizado dentro de las capas de red para representar información contextual.
4d’ puede ser distinto a d ya que pueden haber más valores de Value que valores de Key.

21

La cantidad de preguntas que podemos realizar al mismo tiempo viene dado por

los módulos encadenados y viene dado por el tamaño de las cabezas (Heads) que

lo denotamos por H. Esta solución no solo permite hacer más preguntas, sino que

paraleliza el proceso al hacerlo al mismo tiempo y nos ahorra tiempo de cómputo.

Figura 3.7: Mecanismo de atención. Tomado de [1]

Este proceso empleado utilizando el mismo conjunto de datos de entrada para todo

se denomina Self-Attention. Si utilizamos otro conjunto de datos para responder a las

preguntas que obtenemos de un conjunto inicial lo denominaremos Cross-Attention y

el método es el mismo, solamente que si la matriz K′ tiene muchos más valores [τ, d],

expresión que viene de K′ = W′
K x′ tal que {x′

i}τi=0, entonces la matriz A tiene tamaño

[τ, n].

Con los bloques de Self-Attention, Cross-Attention y algunos más podemos construir

la arquitectura completa. La figura 3.8 es el Transformer original del art́ıculo Attenion

is all You Need [4] y los bloques extra son una capa de suma y normalización,

empleada para ayudar a la convergencia del entrenamiento de la red, ya que evita

el Gradient-Vanishing, una capa de Feed-Forward que se usa para ajustar los valores

de salida de una capa de atención previa para ”tener una forma adecuada” en la capa

posterior una capa llamada Positional Encoding que se encarga de asignar un orden a

los datos de entrada ya que los módulos de atención no asignan posición a los datos de

entrada.

La arquitectura final consiste en intentar predecir un valor deseado mediante una

entrada x que nos proporciona información contextual mediante el mecanismo de

Self-Attention, hacer un Cross-Attention con un valor de referencia y con un retardo de

una unidad para poder predecir un resultado futuro y la salida de ese módulo evaluarla

22

Figura 3.8: Arquitectura Transformer de referencia. Tomado de [4]

mediante una función de coste arbitraria. En el caso de utilizar modelos basado en

enerǵıa se utiliza una función de enerǵıa y el entrenamiento se hace ya sea mediante

métodos de contraste o de regularización. La inferencia se puede hacer a partir de datos

propios o con valores arbitrarios. Una representación de la arquitectura viene dada por

la siguiente figura:

Figura 3.9: Arquitectura Transformer completa. Tomado de [1]

Cabe destacar que gracias al potencial que tiene la arquitectura Transformer tanto

en sus módulos de atención como en su capa Feed-Forward, se puede escalar bien y

el tiempo necesario tanto para entrenar como para inferir es drásticamente menor que

23

para una red recurrente arbitraria ya que los gradientes se actualizan al mismo tiempo

no tener bucles. Por contra el módulo de atención tiene un orden de operaciones O(n2)

por lo que puede llegar a limitar el número de datos de entrada que puede aceptar.

24

Caṕıtulo 4

Museformer

4.1. Introducción

La herramienta Museformer [7] se basa en una arquitectura Transformer ligeramente

modificada en la capa de atención para intentar adaptarse de la mejor manera posible

a la estructura de una obra musical. Esta modificación consiste en usar dos métodos

de atención distintos, Coarse-Grain Attention y Fine-Grain Attention (ajuste de grano

grueso y de grano fino).

Para entender los tipos de atención descritos en el párrafo anterior hay que recordar

que la música se puede describir de forma simbólica mediante partituras, las cuales

tienen sus elementos básicos de representación como son los compases, las notas,

silencios, BPM1, etc. La figura 4.1 muestra un ejemplo de representación mediante

partitura. Para poder emplear esta información es necesaria traducirla a un lenguaje

que entienda la máquina como puede ser MIDI, donde toda la información de la

partitura se representa mediante distintos códigos numéricos, y de esta manera permite

la comunicación entre instrumentos electrónicos y máquinas como ordenadores. Aunque

esta solución permite que la máquina sea capaz de interpretar la información, no es

la forma más adecuada de representación de cara a la red neuronal, por lo que se

recurre a otro tipo de representación que son los tokens, y consiste en traducir la

información MIDI a un lenguaje de más alto nivel en el que se especifica elementos

más relacionados con la música como puede ser la frecuencia de las notas, su duración,

el BPM, la duración del compás, intensidad de la nota, etc. Esto se puede ver en la

figura 4.1.

El conjunto de tokens descritos en el párrafo anterior son la secuencia de entrada

de la capa de atención modificada del Museformer, se describen de la siguiente

manera X = X1, X2, ..., Xb donde X hace referencia a la secuencia de tokens

completa y b al número de compases de la obra. Para el i-ésimo compás tenemos

1Beats o pulsaciones por minuto

25

Figura 4.1: Partitura y su respectiva representación en tokens. Tomado de [7]

Xi = xi,1, ..., xi,|xi| tokens correspondientes. Tras cada compás se agrega un token

de resumen s para el mecanismo de ajuste grueso, por lo que la representación final

queda X = X1s1, ..., Xbsb. Esta representación se pasa por una capa de incrustación

(embedding) para convertir la información en vectores dentro de un espacio vectorial

y se concatenan los compases incrustados con los beats incrustados como información

posicional2 seguidos de una proyección lineal [7]. Las capas del Museformer se encargan

de modelar la representación contextual, y la salida de la última capa oculta se pasa

por un clasificador SoftMax para predecir el siguiente token. Esto se puede representar

mediante un diagrama de bloques para un head descrito en la figura 4.2.

El mecanismo de atención se puede describir mediante la siguiente expresión3:

Attn(x′
i,X) = softmax

(
x′
iWQ(XWK)T√

d

)
XWV (4.1)

Donde X ∈ Rne×d es la secuencia de entrada con ne el tamaño de la secuencia

de entrada y d la dimensión de embedding, X′ ∈ Rns×d es la secuencia objetivo

con ne el tamaño de la secuencia objetivo, WQ,WK,WV ∈ Rd×d son las matrices

de pesos correspondientes a la filosof́ıa Query, Key, Value mencionada en la sección

Transformer. Este mecanismo obtiene la representación contextual para cada x′
i ∈ R1×d

de la secuencia objetivo X ′.

4.2. Atención de ajuste grueso y fino

Hasta ahora hemos descrito el proceso general del mecanismo de atención y la

forma de organizar tokens de entrada de la manera adecuada para poder entrenar la

red. A continuación vamos a describir los mecanismos que utiliza Museformer en śı

para obtener los dos tipos de atención mencionados previamente.

2Recordemos que el Transformer no incluye un mecanismo de ordenación por defecto.
3Se ha descrito para una sola cabeza para simplificar la expresión.

26

Figura 4.2: Diagrama de bloques de la arquitectura Museformer (un head). Imagen
propia.

4.2.1. Resumen (Summarization)

Este es un proceso en el cual obtenemos los tokens de resumen si que nos darán la

información para el ajuste grueso. La forma de obtener estos tokens vienen dados por

la siguiente expresión.

s̃i = Attn(si, [Xi, si]) (4.2)

En esta expresión obtenemos el token de resumen para el compás i-ésimo mediante el

mecanismo de atención sobre los propios tokens de dicho compás dado por la expresión

Xi = {xi,1, ..., xi,|Xi|} ∈ R|Xi|×d y el propio token de resumen asignado a dicho compás

si. La operación [·] es la concatenación.

4.2.2. Agregación (Aggregation)

En este proceso actualizamos cada token mediante el mecanismo de atención

teniendo en cuenta qué compases tienen relación directa con el token que se va a

27

calcular, y cuáles no son tan importantes de manera que se utiliza el token de resumen

de dichos compases. La expresión para un token en concreto es la siguiente:

x̃i,j = Attn(xi,j, [XR(i), Xi,k≤j, S̃R̃(i)]) (4.3)

xi,j es el j-ésimo token del i-ésimo compás. XR(i) es la matriz de tokens del conjunto

de compáses relacionados R(i) con el compás i-éismo. Xi,k≤j es el conjunto de tokens

del compás i-ésimo definido por Xi,k≤j = {xi,k |xi,k ∈ Xi, k ≤ j}, es decir, los tokens

previos al token xi,j dentro del compás i-ésimo, y S̃R̃(i) es el conjunto de tokens de

resumen de los compases que no están relacionados con el i-ésimo, R̃(i).

De esta forma obtenemos los dos mecanismos de atención, ya que los compases que

tienen relación entre ellos se calculan a nivel de token (ajuste fino) y los que no utilizan

los tokens de resumen (ajuste grueso).

4.3. Compases relacionados

En la sección previa hemos definido la forma de obtener los mecanismos de atención

del Museformer, pero no hemos definido los compases relacionados. Los compases

relacionados son aquellos compases que tienden a repetir la estructura musical, ya sea

mediante la estructura melódica, ŕıtmica o ambas. Para ello los autores de Museformer

definen el conjunto de notas del compás i-ésimo como N(i), y la medida utilizada es

una medida de similaridad entre pares de conjuntos de notas dada por la expresión:

li,j =
|N(i) ∩N(j)|
|N(i) ∪N(j)|

(4.4)

Esta expresión nos da un número entre 0 y 1, dependiendo de cuántas notas comunes

haya entre dos compases arbitrarios. Dos notas son iguales si tienen la misma frecuencia,

duración y posición dentro del compás [7]. Finalmente se toma la media de similaridad

entre pares de compases que se encuentran t intervalos dentro de un conjunto de

entrenamiento dado D. Esto es:

Lt = media

(∑
D

∑
j=i+t

li,j

)
(4.5)

Aplicando esta medida al conjunto de datos de entrenamiento del Museformer que

es la base de datos MIDI Lack MIDI Dataset, LMD4 con más de 100.000 archivos

MIDI, y luego a otra base de datos TopMAGD5 para 12 géneros musicales distintos, se

4https://colinraffel.com/projects/lmd/
5http://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html

28

https://colinraffel.com/projects/lmd/
http://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html

obtiene la siguiente gráfica en la que se puede ver un patrón de repetición cada 2 y 4

compáses de media.

Figura 4.3: Medida de similaridad entre compases para los datos de entrenamiento del
Museformer. Tomado de [7]

4.4. Análisis de complejidad

Para finalizar este apartado vamos a observar si realmente el hecho de modificar la

capa de atención para implementar los mecanismo de ajuste grueso y fino reducen el

orden de operación de O(n2) a un orden inferior como puede ser lineal.

Sea n la longitud de la secuencia de tokens, b el número promedio de compases,

m la longitud promedio de un compás, y k el número de compases relacionados

seleccionados. El orden de operación del paso de resumen (Summarization) es O(n), y

el paso de agregación (Aggregation) es de O((km+b)n) = O((km+n/m)n)m, es decir,

dependiendo de la longitud de promedio del compás tenemos entre un orden cuadrático

y un orden lineal. Como en promedio m es mayor a 100 [7] se reduce en gran medida

este orden y, por ende, la complejidad de las operaciones.

Las figuras 4.4a y 4.4b muestran cómo afecta esto a la capacidad y tiempo

de entrenamiento en comparación otro tipo de Transformer que tiene complejidad

cuadrática.

29

(a) Memoria GPU utilizada. (b) Tiempo por iteración.

Figura 4.4: Análisis de tiempo y capacidad para el entrenamiento del Museformer en
función de la longitud de secuencia de tokens. Tomada de [7]

Los resultados del entrenamiento, validación e inferencia del Museformer se pueden

ver en el papel original [7], pero el hecho de utilizar el mecanismo de atención de ajuste

grueso y fino mejora tanto la generación de música en términos de los parámetros de

medida utilizados6 en comparación a otros tipos de Transformer mencionados en dicho

papel, y permite tratar secuencias de mayor longitud (Figura 4.4) al no enfocar la

atención en todos los tokens.

6Se verán en la siguiente sección.

30

Caṕıtulo 5

Implementación, entrenamiento e
inferencia del Museformer

5.1. Implementación

El proceso de implementación consiste en hacer funcionar la red neuronal de manera

que se pueda entrenar, hacer inferencia y modificarla a necesidad de los distintos

objetivos propuestos. En este caso para implementar el Museformer se ha seguido una

serie de pasos, algunos de los cuales se pueden encontrar en su repositorio en GitHub1, y

que se detallarán en este apartado junto con las aportaciones y modificaciones realizadas

al mismo.

En primer lugar se ha determinado los recursos hardware necesarios para poder

implementar de manera eficiente el Museformer, en este caso se ha usado una máquina

de la propia universidad con las siguientes caracteŕısticas importantes:

− Tarjeta de Vı́deo: NVIDIA RTX 3090 24 GB VRAM GDDR6X

− Procesador: Intel Core i7-6700 8 núcleos (16 Hilos) @ 3.40 GHz

− OS: CentOS 7

En segundo lugar se ha determinado que el lenguaje de programación es Python,

en concreto la versión 3.8, aśı que se ha optado por implementar un entorno virtual

mediante el gestor de paquetes Anaconda2, aunque por ahorrar espacio en la máquina

empleada y para el propósito de este TFG se ha usado su versión ligera miniconda3.

Una vez creado el entorno, se han instalado todas las dependencias mencionadas en el

repositorio del Museformer, junto al VS Code3 para modificar código, MidiProcessor

para transformar los archivos MIDI a tokens de los propios autores del Museformer,

1https://github.com/microsoft/muzic
2https://www.anaconda.com/
3https://code.visualstudio.com/

31

https://github.com/microsoft/muzic
https://www.anaconda.com/
https://code.visualstudio.com/

triton4 como alternativa al lenguaje CUDA y Musescore 3 5 para poder leer y escuchar

los archivos MIDI.

Para comprobar el funcionamiento de la implementación se han obtenido las piezas

mencionadas por los autores del Museformer a partir de la base de datos LMD6 sin

preprocesar, a diferencia de como lo han implementado ellos. Dado que no exist́ıa

ningún mecanismo para obtener los archivos directamente se ha tenido que escribir un

script propio en Python7 para poder generar un directorio con todos los archivos a partir

de una lista en formato texto. Una vez hecho esto se han seleccionado de forma aleatoria

unos 50 archivos dentro de ese directorio, se han convertido en tokens, mediante

otros dos scripts propios se han separado en el formato estándar de entrenamiento

train/valid/test, que en este caso es un 8/1/1, y estos archivos se han preprocesado

mediante el un comando de la libreŕıa Fairseq8.

Para el resto de tamaños empleados en el entrenamiento el procedimiento ha sido

el mismo.

5.2. Entrenamiento

El primer entrenamiento ha sido con 500 datos totales, los cuales se han repartido

de la siguiente forma: 8/1/1, es decir, de cada 10 datos, 8 son de entrenamiento, 1 es de

validación y 1 es de test. Esto es una forma habitual de entrenar las redes neuronales

en general, donde los datos de entrenamiento se usan para ajustar los parámetros de

la red, los de validación9 se usan para ajustar los hiper-parámetros de la red y los de

test se usan para comprobar la precisión de la red una vez entrenada.

Los hiper-parámetros utilizados se pueden ver en la tabla 5.1:

Vamos a describir brevemente la utilidad de estos parámetros.

− Update hace referencia al paso completo de un dato de entrada a la red, es decir,

el paso forward y backward.

− Update-Frequency es el tamaño del batch, en este caso el gradiente se actualiza

cada 5 muestras.

− El Epoch es la cantidad de veces que le pasamos los datos de entrenamiento a la

red.

4https://github.com/openai/triton
5https://musescore.org/es/download
6https://colinraffel.com/projects/lmd/
7Los códigos de los scripts se pueden ver en el anexo.
8https://github.com/facebookresearch/fairseq
9Las palabras validación y test pueden intercambiarse dependiendo del autor, pero en general se

denotan de esta manera.

32

https://github.com/openai/triton
https://musescore.org/es/download
https://colinraffel.com/projects/lmd/
https://github.com/facebookresearch/fairseq

− Peak Learning Rate (PLR) es la tasa de aprendizaje máxima.

− Warm-up Updates son las actualizaciones en la que la tasa de aprendizaje crece

de forma lineal hasta PLR.

− Lr-Scheduler es un planificador que modifica la tasa de aprendizaje a partir de

la PLR multiplicando la inversa de la ráız cuadrada del número de actualización

actual.

− El optimizador es Adam y su utilidad es complementar a la tasa de aprendizaje

para optimizar el entrenamiento, se determina por tres parámetros mencionados

en la tabla previa.

− Los tokens per sample indican la cantidad máxima de tokens que puede tener

cada dato de entrada a la red.

− Con2con y con2sum indican que compases van a ser de ajuste fino y grueso

respectivamente.

Nombre Valor
Update 1
Update-Freq 5
Epoch 5000
Peak Learning Rate (PLR) 5× 10−4

Warm Up Updates 16000
Lr Scheduler 1/

√
Updateactual

Adam βs = (0,9, 0,98)
ϵ = 1× 10−9

wd = 0,01
Tokens per sample 100000
Layer Number 4
con2con cada 4 compases
con2sum el resto de compases

Tabla 5.1: Hiper-parámetros entrenamiento 500 datos.

El resultado del entrenamiento se ha medido mediante dos parámetros objetivos que

son el error de coste y la perplejidad. El error de coste mide el error entre la predicción

de la red y los datos de entrada para ajustar, y la perplejidad es una medida de la

calidad de predicción de la red para un token en particular. Tras llegar a 1129 Epochs

se cumplió el criterio propuesto de error inferior a 0.1 y los resultados se pueden ver

en la tabla 5.2:

El tiempo de entrenamiento ha sido de 24 horas aproximadamente.

33

Epoch Loss Perplexity
1129 0.099 1.07

Tabla 5.2: Resultado entrenamiento con 500 muestras.

En este caso interesa que tanto la pérdida como la perplejidad sean lo más

pequeñas posible. Para comprobar si realmente el entrenamiento ha sido útil hacemos

la validación con los datos de test mencionados al principio del párrafo, el resultado se

puede ver en la siguiente tabla:

Test Loss Perplexity
- 1.836 3.57

Tabla 5.3: Validación entrenamiento con 500 muestras.

Como podemos apreciar a pesar de que el error cometido en el entrenamiento era

pequeño, al pasarle datos desconocidos a la red no ha sido capaz de interpretar los

resultados correctamente y ha cometido muchos fallos. Esto se debe principalmente al

hecho de haber utilizado pocos datos de entrenamiento, ya que solamente conoce los

datos que se le han pasado y no es capaz de aprender todas las caracteŕısticas necesarias

para adaptarse a cualquier pieza musical en general. La solución a este problema y en

general a cualquier problema de redes neuronales es utilizar una cantidad amplia de

datos para que pueda aprender una gran cantidad de caracteŕısticas determinantes a

la hora de resolver un problema dado.

A continuación vamos a realizar un entrenamiento mucho más extenso en cuanto

a la cantidad de datos empleada, y vamos a contrastarlo con el caso anterior para ver

como evoluciona la capacidad de la red según los datos de entrada proporcionados10.

En este caso hemos utilizado 9300 datos totales con la misma división anterior

8/1/1. En la tabla 5.4 se resumen los hiper-parámetros empleados, de los cuales

solamente hemos modificado el tamaño del Batch y el número de Epochs ya que para

el caso de 500 datos los demás hiper-parámetros ya nos han dado buenos resultados.

Los resultados del entrenamiento se pueden ver en la tabla 5.5:

El tiempo de entrenamiento para este caso ha sido de 72 horas aproximadamente,

a un ritmo de 31 minutos por epoch aproximadamente. Esto es debido al hecho de

aumentar el tamaño del batch haciendo que el entrenamiento converja de forma más

robusta, pero tarde más tiempo.

En cuanto a la validación los resultados se muestran en la tabla 5.6:

10Debido a la limitación de Hardware, solamente se proporcionan estos dos casos, pero se puede
seguir ampliando hasta la cantidad que queramos y contrastar los resultados

34

Nombre Valor
Update 1
Update-Freq 8
Epoch 1200
Peak Learning Rate (PLR) 5× 10−4

Warm Up Updates 16000
Lr Scheduler 1/

√
Updateactual

Adam βs = (0,9, 0,98)
ϵ = 1× 10−9

wd = 0,01
Tokens per sample 100000
Layer Number 4
con2con cada 4 compases
con2sum el resto de compases

Tabla 5.4: Hiperparámetros entrenamiento 9300 datos.

Epoch Loss Perplexity
183 0.533 1.45

Tabla 5.5: Resultado entrenamiento con 9300 muestras.

Como podemos observar la principal diferencia entre ambos casos es la capacidad

de adaptación a los datos, es decir, como hemos utilizado más datos de entrenamiento

la red no se “sorprende” tanto al introducirle datos nuevos ya que entiende mejor las

estructuras de la canciones y se adapta mejor. En cuanto a las pérdidas vemos que

son superiores en el caso con más datos y esto es normal ya que la dimensionalidad

de los datos es mucho mayor en este caso y tiene que ir adaptándose a todos ellos,

además de haber entrenado menos epochs que en el otro caso, aunque el tiempo de

entrenamiento ha sido mucho mayor. Este segundo problema se arregla entrenando

durante más tiempo la red, pero debido a falta de tiempo para ello en la memoria se

presentan estos resultados.

5.3. Inferencia

Una vez entrenada la red vamos a comprobar la eficacia de los resultados generando

unas piezas en particular. Para ello a partir de ruido en la entrada le indicamos a la

red que se encargue de obtener resultados, el procedimiento es el siguiente.

1. Indicamos la carpeta de salida de las piezas generadas.

2. Generamos una semilla para crear el ruido que le vamos a pasar por la entrada.

35

Test Loss Perplexity
- 0.637 1.55

Tabla 5.6: Validación entrenamiento con 9300 muestras.

3. Introducimos el script con la cantidad de piezas a generar y tras un tiempo nos

genera un archivo log.

4. Con dos comandos proporcionados por los autores generamos primero los tokens

y luego los archivos MIDI.

Los detalles de los comandos se pueden ver en la documentación del Museformer,

aqúı se va a describir brevemente el proceso de generación de las piezas y los resultados

propiamente dichos.

Primero observamos los parámetros del script que se encarga de generar los

resultados.

Nombre Valor
Top-K Sampling 8
Beam 1
nBest 1
Min-Length 2048
Max-Length-b 2048
seed 1

Tabla 5.7: Parámetros para la generación de piezas en el caso de 500 muestras.

En NLP (Procesado Natural del Lenguaje) hay varias formas de generar palabras o

tokens a partir de una red entrenada, pero en nuestro caso se usa un método llamado

Top-K Sampling el cual se encarga de generar el conjunto de los K siguientes tokens más

probables a partir del actual y escoge uno de ellos de forma aleatoria. Los parámetros

asociados beam y nbest se utilizan en un algoritmo llamado Beam-Search11 que consiste

en buscar uno o varios caminos (nbest) con el conjunto de palabras más probables a

partir de una palabra actual, con la profundidad del camino dada por el parámetro

beam. La figura 5.1 ilustra este proceso de forma más clara con beam = 2 y nbest = 1.

En el caso del Museformer necesitamos extraer un token del conjunto de K palabras a

una distancia de una unidad, luego se mantienen ambos valores a 1.

El tamaño de las piezas generadas viene dado por los parámetros Min-Length y

Max-Length-b, es decir, se generan siguiendo una distribución uniforme [Min-Length,

11https://en.wikipedia.org/wiki/Beam_search

36

https://en.wikipedia.org/wiki/Beam_search

Max-Length-b]. En nuestro caso por temas de tiempo se han puesto ambos valores del

mismo tamaño y no muy grande para comprobar los resultados generados.

Por último, el parámetro Seed se utiliza para generar el número pseudo-aleatorio

que le vamos a pasar como input a la red para que genere las piezas deseadas.

Con el entrenamiento de 500 datos se han generado 5 piezas de longitud 2048 tokens,

los cuales equivalen aproximadamente a menos de un minuto de música, aunque esto es

relativo ya que depende de que tipo de tokens genere la red puede haber más o menos

compáses en función de los instrumentos y las notas.

Para la generación a partir del entrenamiento con 9300 datos solamente se ha

modificado la longitud de las piezas a 4096 tokens para poder apreciar los efectos

de los ajustes grueso y fino a la hora de generar una estructura musical.

En cuanto a tiempo de generación podemos resumir los distintos casos realizados

según el tamaño de token.

Nº Piezas Nº Tokens Tiempo(min)
5 1024 6
5 2048 12
5 4096 41

Tabla 5.8: Tiempo de generación para distintos tamaños de piezas.

Estos tiempos son válidos para todo entrenamiento realizado y se puede apreciar

que el tiempo se duplica, e incluso se triplica al aumentar el tamaño de los tokens. Si

bien es cierto que al aumentar el tamaño de los tokens a la red le cuesta más tiempo

generar una pieza, sigue sin ser justificable el tiempo total, ya que es demasiado elevado

para este proceso, porque en comparación con otras arquitecturas Transformer a estas

les cuesta como mucho unos pocos minutos generar estructuras con muchos tokens, por

lo que la conclusión en este caso es que hay algún fallo de implementación por parte

de los autores del Museformer en algún punto de la generación.

Para finalizar este apartado, la descripción subjetiva que puedo hacer sobre las 5

piezas a nivel general es que a nivel de ritmo la estructura está bien definida, pero a

nivel de armońıa no termina de darle coherencia a las piezas, por lo que se nota el

efecto de entrenar con pocos datos. Con el segundo entrenamiento sigue ocurriendo

algo similar, solo que esta vez la red mezcla los distintos elementos aprendidos de cada

canción de entrenamiento quitándole coherencia a las piezas generadas, pero aun aśı se

puede observar la mejora.

37

Figura 5.1: Ejemplo de algoritmo de Beam-Search. El algoritmo esta sacado de la
siguiente página: https://towardsdatascience.com

38

https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24

Caṕıtulo 6

Condicionamiento del Museformer
(Teoŕıa)

Hasta ahora hemos aprendido el concepto de una red neuronal, en particular

una variación de la arquitectura Transformer, la hemos implementado, entrenado y

generado música con ella, pero esto ha sido a partir de generar un ruido en la entrada

de la red, es decir, a su voluntad. Pero, ¿Y si queremos indicarle nosotros que queremos

una pieza musical basada en cierto instrumento, artista, género, ...? En este caso hay

que hacer lo que se conoce como condicionamiento de la red, es decir, tenemos que

modificar los datos de manera que incluyan información extra como t́ıtulo de la obra,

autor, género, etc. El procedimiento se va a describir de forma teórica a continuación.

El primer paso es usar un método de codificación que nos permita incluir

información adicional a la hora de generar los tokens que le vamos a pasar a la red,

en el caso de Museformer tenemos el método REMIGEN que consiste en codificar la

información MIDI en tokens de compás, posición relativa, tempo, instrumento, pitch,

duración y velocidad o intensidad. También existen otros métodos como REMI+,

Compound Word, TSD, Octuple, etc1. En este caso aprovechando que se usa Python

en el entorno, se puede instalar el paquete Miditok [8], el cual contiene los métodos

mencionados anteriormente junto a algunos más, e incluso se puede crear un método

propio.

Como segundo paso hay que plantear uno de los dos siguientes escenarios, que no

necesariamente son los únicos que se pueden plantear en general.

1. Sin modificar la estructura del Museformer, entrenamos la red con los nuevos

tokens añadidos de meta datos, los cuales irán colocados al principio de cada

pieza musical y tendŕıan su propia estructura previamente codificada en el paso

anterior. El cambio seŕıa para la generación ya que en vez de pasarle como dato de

entrada un número aleatorio, habŕıa que pasarle uno o varios tokens de meta datos

1Explicación detallada en https://miditok.readthedocs.io/en/latest/tokenizations.html

39

https://miditok.readthedocs.io/en/latest/tokenizations.html

a partir de un texto dado como input, traducirlo a los tokens correspondientes y,

a partir de estos, la red tendŕıa que buscar en el espacio de datos los que tengan

mayor similitud para generar a partir de ese punto tal como lo hace por defecto

mediante el algoritmo Sampling Top k.

2. El escenario anterior plantea muchos problemas, entre ellos la variabilidad de

los meta datos de entrada, la implementación de la nueva generación de datos,

ya que habŕıa que estudiar las libreŕıas Fairseq-generation y Fairseq-interactive

empleadas para ver como se pueden traducir palabras a tokens, si es posible

asociar los tokens al espacio de datos, etc. Por lo que en este caso se puede

optar por modificar la arquitectura manteniendo la estructura original, pero en

vez de utilizar el método de regularización empleado por parte de Museformer se

optaŕıa por un método de contraste explicado en Text Conditioning), que consiste

en codificar una imagen (en nuestro caso una pieza musical) y un texto de entrada

por separado (mediante un Transformer más reducido en tamaño por ejemplo), y

mediante un pre-entrenamiento inicial, se pueden entrenar las redes para asociar

los textos de entrada con sus respectivas piezas. Luego a la hora de la generación,

mediante el texto de entrada correspondiente generaŕıa las piezas más cercanas

mediante el algoritmo utilizado por Museformer. Este método permite mitigar la

variabilidad de los meta datos de entrada, pero a cambio introduce modificaciones

y no se sabe a priori el impacto que puede tener de manera computacional y

temporal en cuanto a entrenamiento y generación.

Como tercer paso, a la hora de la generación, hay que cambiar el método aleatorio

por uno de entrada por texto y que la red sea capaz de entender ese texto y traducirlo

a la información adicional de la pieza, es decir, si indicamos que genere una pieza de

Pop basada en un autor determinado, la red tiene que interpretar ambas informaciones

de manera correcta y relacionarlas con los tokens de información adicional respectivos.

Una problemática que genera este nuevo planteamiento es la necesidad de una base

de datos muy extensa con piezas musicales en formato MIDI, los cuales además deberán

tener bastante información de tipo meta datos con nombres de autor(es), género(s),

duración, etc. La base de datos TopMAGD2 contiene una gran cantidad de música

catalogada por géneros, pero no contiene artistas y otro tipo de información extra, por

lo que a la hora de implementar este condicionamiento lo restringiŕıamos al género en

cuestión.

El otro problema que genera esta implementación adicional es la necesidad de una

gran cantidad de tiempo para implementar cada uno de los tres pasos mencionados

2https://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html

40

https://eugeneyan.com/writing/text-to-image/#text-conditioning-influencing-image-output-via-text
https://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html

anteriormente, junto a su correspondiente corrección de bugs o errores, además del

requerido para construir la propia base de datos extensa con toda la información

adicional.

Debido a las dos problemáticas mostradas anteriormente este apartado se va a

quedar de forma teórica y, finalmente, no se ha implementado en este trabajo.

41

Caṕıtulo 7

Conclusiones

Museformer es una red/herramienta que proporciona un método alternativo y

eficiente de generar piezas musicales bien estructuradas musicalmente de larga duración

dentro del ámbito de los Transformers, debido a que reduce la carga computacional

y permite tratar una mayor cantidad de datos, además de reducir el tiempo de

computación necesario para entrenarla. Como hemos podido observar los resultados

mejoran a partir de introducirle más datos de entrenamiento a la red ya sea de

manera objetiva, reduciendo la perplejidad, o de manera subjetiva, escuchando las

piezas resultantes. Aun aśı se puede mejorar más el Museformer llegando a condicionar

la red para que sea capaz ya no de generar piezas aleatoriamente, sino indicándole

información extra como autor, género, etc. En cuanto a la lista de objetivos secundarios

propuestos en la sección 1 se ha llegado a cumplir todos los propuestos al máximo

posible, excepto la implementación del condicionamiento del Museformer. A pesar de

ello, se ha desarrollado un planteamiento teórico de los pasos y los detalles necesarios

para implementar el condicionamiento a partir del trabajo realizado.

Para finalizar a nivel personal este trabajo ha sido tanto de formación en materia

casi totalmente desconocida como lo es el aprendizaje profundo, como aprendizaje de

implementación en materia de entender de manera básica el lenguaje de programación

Python, LATEX, la distribución CentOS dentro de Linux para el manejo de la

máquina del laboratorio, junto a una cantidad elevada de horas para solucionar

problemas surgidos durante esta fase, entender de manera práctica la utilidad de los

parámetros de entrenamiento e inferencia del Museformer y de forma teórica las posibles

modificaciones que se le podŕıan hacer para implementar el condicionamiento de la

red. Han sido unos meses largos de trabajo, pero gracias a este esfuerzo ahora tengo

un entendimiento en un campo que hasta hace poco era desconocido para mı́, junto

a unas habilidades básicas en otros entornos que no he tratado durante los años que

llevo en telecomunicaciones.

42

Caṕıtulo 8

Bibliograf́ıa

[1] Yann LeCun and Alfredo Canziani. Deep learning course. https://atcold.

github.io/NYU-DLSP21/, 2021.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[3] G.H. Ball and D.J. Hall. Isodata, a novel method of data analysis and pattern

classification. Stanford Research Institute, Menlo Park, 1965.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

NIPS, 2017.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735–80, 12 1997.

[6] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with

neural networks. CoRR, abs/1409.3215, 2014.

[7] Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan, Wei Ye, Shikun Zhang, Tao

Qin, and Tie-Yan Liu. Museformer: Transformer with fine-and coarse-grained

attention for music generation. Advances in Neural Information Processing Systems,

35:1376–1388, 2022.

[8] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni, and

Nicolas Gutowski. MidiTok: A python package for MIDI file tokenization. In

Extended Abstracts for the Late-Breaking Demo Session of the 22nd International

Society for Music Information Retrieval Conference, 2021.

43

https://atcold.github.io/NYU-DLSP21/
https://atcold.github.io/NYU-DLSP21/

Lista de Figuras

2.1. Arquitectura básica de red neuronal para entender el entrenamiento.

Tomada de [1] . 6

2.2. Visualización del algoritmo de Gradient Descent. Tomada de [1] 7

2.3. Representación de F (x, y). Tomada de [1] 10

2.4. Arquitectura de red con variable latente. Tomada de [1] 10

2.5. Representación de la función ReLU. 12

2.6. Representación de la función tanh(x). 13

2.7. Representación de la función σ(x). 13

3.1. Ejemplo de Red Neuronal Recurrente. Tomada de [1] 17

3.2. Back-Propagation Through Time. Tomada de [1] 17

3.3. Red LSTM. Tomada de [1] . 18

3.4. BPPT en LSTM. Tomada de [1] . 18

3.5. Representación de Seq2Seq. Tomada de [1] 19

3.6. Representación de Seq2Seq con mecanismo de atención. Tomada de [1] . 20

3.7. Mecanismo de atención. Tomado de [1] 22

3.8. Arquitectura Transformer de referencia. Tomado de [4] 23

3.9. Arquitectura Transformer completa. Tomado de [1] 23

4.1. Partitura y su respectiva representación en tokens. Tomado de [7] . . . 26

4.2. Diagrama de bloques de la arquitectura Museformer (un head). Imagen

propia. 27

4.3. Medida de similaridad entre compases para los datos de entrenamiento

del Museformer. Tomado de [7] . 29

4.4. Análisis de tiempo y capacidad para el entrenamiento del Museformer

en función de la longitud de secuencia de tokens. Tomada de [7] 30

5.1. Ejemplo de algoritmo de Beam-Search. El algoritmo esta sacado de la

siguiente página: https://towardsdatascience.com 38

44

https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24

Lista de Tablas

5.1. Hiper-parámetros entrenamiento 500 datos. 33

5.2. Resultado entrenamiento con 500 muestras. 34

5.3. Validación entrenamiento con 500 muestras. 34

5.4. Hiperparámetros entrenamiento 9300 datos. 35

5.5. Resultado entrenamiento con 9300 muestras. 35

5.6. Validación entrenamiento con 9300 muestras. 36

5.7. Parámetros para la generación de piezas en el caso de 500 muestras. . . 36

5.8. Tiempo de generación para distintos tamaños de piezas. 37

45

Anexos

46

Anexos A

Código propio implementado
mediante scripts de Python

El objetivo de este anexo es proporcionar el código de los scripts utilizados para

agilizar el proceso de procesamiento de los datos a la hora de entrenar la red del

Museformer. En estos scripts los directorios están referidos al sistema operativo de

Windows, ya que el tratamiento de datos se ha realizado desde mi maquina personal,

además de incluir una ruta genérica que habŕıa que sustituir por la asociada al directorio

donde se haya implementado Museformer en caso de querer probarlos. Para Linux o

Mac habŕıa que consultar el formato de directorio que tengan.

Como primer script tenemos el que se encarga de filtrar las canciones utilizadas por

parte del Museformer desde la base de datos original LMD.

1 # Import Module

2 import os

3

4 # Folder Path

5 path = "data"

6

7 # Change the directory

8 os.chdir(path)

9

10 # Read data

11 with open("meta/train.txt","r") as train_file:

12 train_data = train_file.read().split(’\n’)

13 with open("meta/test.txt","r") as test_file:

14 test_data = test_file.read().split(’\n’)

15 with open("meta/valid.txt","r") as valid_file:

16 valid_data = valid_file.read().split(’\n’)

17

18 total_data = train_data + test_data + valid_data

19

20 # Move necesary data from directory A to B and check if it is doing

21 # correctly.

22 i = 1

23 total_data_prime = total_data [1: len(total_data)]

24 for elem in total_data_prime:

25 src_path = ’X:\\...\\ muzic \\ museformer \\data\\ lmd_full \\’+elem

26 dst_path = ’X:\\...\\ muzic \\ museformer \\data\\ midi_filt \\’+elem

47

27 print(i,": "+elem)

28 i = i + 1

29 os.rename(src_path ,dst_path)

30

31 #Just for debugging purposes.

32 print(len(total_data))

Como segundo script tenemos el que se encarga de generar los ficheros train, test y

valid para el paso de split data.

1 #Necesary libraries.

2 import random

3 import os

4

5 #Define path

6 path = "X:\\...\\ muzic\\ museformer"

7 os.chdir(path)

8

9 with open("data\\ token\\ token_names.txt", "r") as f:

10 data = f.read().split(’.txt\n’)

11

12 #Shuffling data to make it random and not ordered.

13 random.shuffle(data)

14

15 # From here to the end of code it’s just data organization and

16 # writting on file.

17 train_L = round(len(data) * 0.8)

18 test_L = round(len(data) * 0.1)

19 valid_L = round(len(data) * 0.1)

20

21 train_data = data [0: train_L]

22 test_data = data[train_L +1: train_L+test_L]

23 valid_data = data[train_L+test_L +1: train_L+test_L+valid_L]

24

25 meta = path + "\\data\\meta"

26 os.chdir(meta)

27

28 train = open("train.txt","w")

29 test = open("test.txt","w")

30 valid = open("valid.txt","w")

31

32 for data in train_data:

33 train.write(data)

34 train.write("\n")

35 train.close ()

36

37

38 for data in test_data:

39 test.write(data)

40 test.write("\n")

41 test.close()

42

43 for data in valid_data:

44 valid.write(data)

45 valid.write("\n")

46 valid.close ()

El tercer y último script se encarga de eliminar las extensiones .txt que le añade

48

MidiProcessor a los tokens, los cuales provocan que el paso de split no se ejecute

correctamente.

1 import os

2

3 path = "X:\\...\\ muzic\\ museformer \\data\\meta"

4 os.chdir(path)

5

6 # Change filename of the files to v"...". txt before executing this

7 # code just in case to prevent erasing the files.

8 with open("vtrain.txt", "r") as f:

9 Ltrain = f.read().split(’.txt\n’)

10 Ltrain.clear(".txt") #This is for the final element.

11

12 with open("vtest.txt", "r") as f:

13 Ltest = f.read().split(’.txt\n’)

14 Ltest.clear(".txt")

15

16 with open("vvalid.txt", "r") as f:

17 Lvalid = f.read().split(’.txt\n’)

18 Lvalid.clear(".txt")

19

20 train = open("train.txt","w")

21 test = open("test.txt","w")

22 valid = open("valid.txt","w")

23

24 for index ,element in enumerate(Ltrain):

25 train.write(element)

26 if(index != len(Ltrain -1)):

27 train.write("\n")

28 train.close ()

29

30 for index ,element in enumerate(Ltest):

31 test.write(element)

32 if(index != len(Ltest -1)):

33 test.write("\n")

34 test.close()

35

36 for index ,element in enumerate(Lvalid):

37 valid.write(element)

38 if(index != len(Lvalid -1)):

39 valid.write("\n")

40 valid.close ()

49

	Motivación y objetivos del trabajo
	Introducción a las redes neuronales
	Red Neuronal
	Entrenamiento de una red neuronal
	Función de coste y de pérdidas
	Gradient Descent
	Backpropagation

	Inferencia de una red neuronal
	Funciones no lineales más empleadas
	Bloques básicos de redes neuronales y sus gradientes

	Arquitecturas de red más comunes en modelos de lenguaje
	Redes Neuronales Recurrentes y LSTM
	Seq2Seq
	Seq2Seq con mecanismo de atención
	Transformers

	Museformer
	Introducción
	Atención de ajuste grueso y fino
	Resumen (Summarization)
	Agregación (Aggregation)

	Compases relacionados
	Análisis de complejidad

	Implementación, entrenamiento e inferencia del Museformer
	Implementación
	Entrenamiento
	Inferencia

	Condicionamiento del Museformer (Teoría)
	Conclusiones
	Bibliografía
	Lista de Figuras
	Lista de Tablas
	Anexos
	Código propio implementado mediante scripts de Python

