w2s  Universidad
A0 Zaragoza

1542

Trabajo Fin de Grado

Implementacion y condicionamiento de la
herramienta Museformer para composicon
automatica de obras musicales

Conditioning and implementation of the Museformer
tool for automatic generation of musical scores

Autor

Alexandru Cosmin Lancrajan

Director

Jose Ramoén Beltran Blazquez

ESCUELA DE INGENIERIA Y ARQUITECTURA
2024






AGRADECIMIENTOS

Agradezco a Jose Ramén por la proposicion de este trabajo ya que combina la
musica que es uno de mis tépicos favoritos con un tema tan interesante, actual y sujeto
ain a mejora como es la [A. También quiero agradecer a la EINA por haber puesto
a mi disposicion los recursos necesarios para el desarrollo de este trabajo de fin de
grado, ya que sin estos medios hubiera resultado dificil hacer parte del mismo con las
herramientas personales de las que disponia. Por ultimo me gustaria incluir a Yann
LeCun y Alfredo Canziani de la NYU por haber dispuesto de manera gratuita el curso
de Deep Learing que imparten en dicha universidad, ya que ha sido de gran ayuda a
mi formacién y entendimiento en general dentro del mundo del Deep Learning, y en

particular para la herramienta utilizada en este trabajo.



IT



Museformer

RESUMEN / ABSTRACT

Las redes neuronales han experimentado un desarrollo importante en los tltimos
anos, especialmente en el procesado natural del lenguaje mediante el uso de una
arquitectura llamada Transformer, la cual ha impulsado el desarrollo de herramientas
como Chat-GPT o BERT Large. Dado que la musica se puede representar en formato
MIDI, y consecuentemente en tokens, el equipo de Microsoft Asia desarrollé Museformer
basandose en la arquitectura Transformer y realizando unas variaciones dentro de la
misma para poder componer musica de forma més precisa mediante el uso de dos tipos
de mecanismos de atencion, fino y grueso. La atencion fina se encarga de relacionar
compases dentro de la cancion y la atencion gruesa de generar variacion dentro de la
pieza, ademés de reducir la complejidad computacional del mecanismo de atencién.
Mediante un entrenamiento en una base de datos MIDI amplia, se pueden inferir
canciones a partir de ruido en la entrada. Para finalizar se describe de forma tedrica
como deberia implementarse un condicionamiento a la red para poder introducir texto
en la entrada en vez de ruido para indicarle el estilo, género, artista, etc.

Neural networks have experienced significant development in recent years, especially
in natural language processing using an architecture called Transformer, which has
driven the development of tools such as Chat-GPT or BERT Large. Since music can
be represented in MIDI format, and consequently in tokens, the Microsoft Asia team
developed Museformer based on the Transformer architecture and made some variations
within it in order to compose music more accurately by using two types of attention
mechanisms, fine and coarse. The fine attention is in charge of relating measures within
the song and the coarse attention is in charge of generating variation within the piece,
in addition to reducing the computational complexity of the attention mechanism. By
training on a large MIDI database, songs can be inferred from random noise given to
the input layer. Finally, we describe theoretically how a network conditioning should
be implemented to be able to introduce input text instead of noise to indicate style,

genre, artist, etc.
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Capitulo 1

Motivacion y objetivos del trabajo

El auge de las redes neuronales en los tultimos anos ha generado una importante
mejora tecnoldgica en diversidad de ambitos como pueden ser la robdtica, la vision por
computador, la conduccién, los motores de busqueda Web, la traduccion, el lenguaje
natural, etc. En particular en los ultimos dos anos la arquitectura Transformer ha
provocado una importante mejora dentro del Procesado Natural del Lenguaje (NLP
en inglés) con la llegada de Chat-GPT, BERT y otros modelos de lenguaje adicionales.
Esto ha provocado que diversos investigadores buscaran modelar la misica de forma que
encajara con esta arquitectura ya que por una parte la musica admite representacién
mediante tokens' que se comportan como elementos que son reconocidos por la red, y
por otra parte la musica se puede entender como un lenguaje con sus elementos basicos
y relaciones entre ellos.

Una de los modelos propuestos para generar composiciones musicales simbdlicas de
forma automatica es Museformer por parte del equipo de Microsoft Asia. Su explicacion
se encuentra detallada en la seccién 4. Este modelo resuelve los problemas que tienen
los modelos Transformer para secuencias largas, que es el coste de computacién, ya que
la capa de atencién tiene un orden O(n?) para la secuencia de entrada, y la relacién
entre la propia estructura musical de las obras, ya que existen compases relacionados
que se encuentran muy lejos entre ellos, y también hay compases que no tienen ninguna
relacion.

El objetivo de este trabajo es implementar el modelo Museformer? para poder
entrenarlo y hacer inferencia a partir del mismo. Como paso adicional y si hay tiempo
condicionarlo en el sentido de poder introducir datos de entrada para guiar al modelo
a la hora de generar piezas, por ejemplo, si queremos componer una pieza de Pop o
Rock se lo indicaremos como texto de entrada.

Para lograr este objetivo principal se tiene que seguir una serie de pasos u objetivos

Explicados en su respectiva seccién. (4)
2Repositorio Github: https://github.com/microsoft/muzic


https://github.com/microsoft/muzic

secundarios.

1. Entendimiento de la arquitectura Transformer (3.4).

2. Creacién de un entorno para la implementaciéon de Museformer (4).

3. Aprender a clonar un repositorio de GitHub?.

4. Ejecutar los distintos archivos descargados.

5. Comprension de los parametros de entrenamiento.

6. Comprension de los parametros de inferencia y el paso de generacion de la red.

7. Posible condicionamiento de la red para anadirle funcionalidad extra.

La memoria se divide en 7 apartados (incluyendo este) que se van a resumir a

continuacion.

1. El capitulo de Motivacién y objetivos del trabajo (1) se encarga de explicar los

objetivos del trabajo, y la motivacion detras del mismo.

2. El capitulo de Introduccion a las redes neuronales (2) explica de forma resumida
en qué consisten las redes neuronales junto a los conceptos mas importantes de

las mismas necesarios para implementar una red cualquiera.

3. El capitulo de Arquitecturas de red mas comunes en modelos de lenguaje (3) se
encarga de explicar los tipos de redes mas comunes empleadas dentro del ambito
del Procesado del Lenguaje, mas concretamente la arquitectura Transformer que

es el pilar de este trabajo.

4. El capitulo de Museformer (4) explica la arquitectura y el funcionamiento del
modelo Museformer, y sus ventajas e inconvenientes frente a otros tipos de

modelos basados en Transformers.

5. El capitulo de Implementacién, entrenamiento e inferencia del Museformer (5)
habla del proceso de la implementacion en si de la red dentro de una maquina
concreta, la preparacion de los datos, el entrenamiento con sus parametros en si
junto a los resultados y la generaciéon de las piezas con sus medidas y valoraciones

correspondientes.

Shttps://github.com
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6. El capitulo de Condicionamiento (6) habla de cémo se podria implementar
modificaciones al modelo Museformer para que a la hora de la generacién se

puedan introducir datos por texto en vez de generar las piezas de forma aleatoria.

7. Por ultimo, el capitulo Conclusiones (7) presenta una conclusién objetiva sobre
el cumplimiento de los objetivos propuesto en el trabajo junto a la valoracién
del Museformer como herramienta de trabajo, y una valoracién subjetiva sobre

el trabajo en si.



Capitulo 2

Introduccion a las redes neuronales

2.1. Red Neuronal

Los Capitulos 2 y 3 de esta memoria proporcionan una revision de conceptos que
se han obtenido del curso ”"Deep Learning Course”de la plataforma https://atcold.
github.io/NYU-DLSP21/ de Yann LeCun y Alfredo Canziani [1].

Una red neuronal es una funcién matemadtica compleja! que para cada valor de
entrada genera su respectivo valor de salida. Dentro de esta funcién tenemos una serie
de capas, que van desde la capa de entrada, capas intermedias, también llamadas capas
ocultas, y una capa de salida. Dentro de estas capas tenemos una serie de nodos, a los

cuales llamaremos neuronas y constan de dos partes:
1. Una combinacién lineal de neuronas anteriores.
2. Una funcion no lineal evaluada elemento a elemento.

Entre las distintas capas existen una serie de conexiones entre neuronas a las
que llamaremos pesos. Dada una capa H | estas conexiones determinan el grado de
aportacién que tiene cada neurona de la capa H~Y con respecto a una neurona de
la capa H®. Estos pesos son uno de los pardmetros que se entrenan dentro de la red.
El otro pardmetro es el bias (o sesgo) que se puede anadir a la combinacién lineal de
las neuronas capa H~Y con los respectivos pesos asociados a cada neurona de la capa

H® . En resumen, si llamamos a,(f) a la k-ésima neurona de la capa H® con k € 1,....n
y ag-ifl) la j-ésima neurona de la capa la H0~Y con j € 1,...,1 obtenemos la siguiente

expresién para los pesos y bias para una neurona arbitraria de la capa H®.

l
al =D w e+ by (2.1
j=1

'En el sentido de tener muchos pardmetros dentro de la misma, ya que en realidad es una funcién
que toma valores reales.
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. : i i
En esta expresién wy, ; es el peso que relaciona la neurona agg) con a§

(4)
e

2 v by es el
sesgo asociado a la neurona a

Si definimos a)) como el vector de neuronas de la capa H® de tamafio [n, 1] y at=1
como el vector de neuronas de la capa H(~Y de tamaiio [I,1], entonces la expresion

para a) usando (2.1) queda de la siguiente forma:

a = Wal=b b (2.2)

expresion en la cual W es la matriz de pesos de tamano [n,l] y b es el vector bias de
tamano [n, 1].

Con (2.2) obtenemos lo que se denomina FC-Layer (Full-Connected Layer o capa
completamente conectada), es decir, todas las neuronas de una capa estdn conectadas
con todas las neuronas de la siguiente capa. Este modelo es el més elemental dentro
de las arquitecturas que existen en Deep-Learning, pero a la vez es el més costoso en
términos de operaciones. Si todas las capas de una red son del tipo FC-Layer entonces
llamaremos F'C-Network a la red neuronal en cuestion.

Hasta ahora hemos tratado la parte de la combinacion lineal de las neuronas, por
lo que hablaremos brevemente de la parte no lineal de la neurona. Esta parte consta
de una funcion no lineal evaluada elemento a elemento dentro de cada capa de la red,

es decir, si llamamos f a la funcién no lineal en cuestién la expresion es la siguiente:

z,(f) = f(ag)) kel,..n (2.3)

donde z,(f) es el resultado de aplicarle la funcién f a cada ag). Como se puede ver
el vector resultante z® es del mismo tamano que a) ya que lo hemos definido de
esta manera. Notar que de esta manera la combinacion lineal de las ecuaciones (2.1) y
(2.2) toman z~Y como vector de entrada, ya que la funcién f produce la salida de la
neurona.

Para finalizar esta secciéon mencionaremos que el hecho de usar funciones no lineales
se debe a dos razones, siendo la primera de ellas la posibilidad de que la relaciéon entre
datos de un problema dado que queremos solucionar aplicando redes neuronales no
tengan relacion lineal entre ellos, por ejemplo si queremos clasificar imagenes segin
algin tipo de etiquetas como fotos de animales por el tipo de animal en cuestion,
si un usuario hace click en un anuncio de una pagina, etc. La otra razon es que
si tenemos un conjunto de capas lineales conectadas se comporta como una unica
capa ya que la combinacion lineal de capas es lineal y se perderia el propédsito del
Deep-Learning, el cual se basa en anadir capas intermedias que se encargan de extraer

distintas caracteristicas en cada una de ellas.



2.2. Entrenamiento de una red neuronal

2.2.1. Funcion de coste y de pérdidas

Hasta ahora hemos visto una estructura basica de una red neuronal, por lo que
el siguiente paso es ver como se puede entrenar para que nos produzca resultados
correctos. Para ello definimos el algoritmo del Descenso por Gradiente (Gradient
Descent Algorithm) y la forma de actualizar los pesos y sesgos de la red mediante
Backpropagation.

Para hablar del algoritmo de Descenso por Gradiente, al cual llamaremos Gradient
Descent, tenemos que definir una arquitectura que nos sirva para entrenar la red en

cuestién. En la siguiente figura se puede ver una posible representacion de la misma:

y =——{C(y,y)
A

G(x,w)

OO

Figura 2.1: Arquitectura bésica de red neuronal para entender el entrenamiento.
Tomada de [1]

El elemento novedoso es la funcién de coste C(y, 3), la cual nos mide el error que se
produce entre la prediccién g de una red neuronal G(x,w) dada una entrada arbitraria
z, y el dato que queremos predecir y al cual llamaremos label (o etiqueta) y se usard
exclusivamente durante la fase de entrenamiento.

La funcién de coste puede definirse de muchas formas, por ejemplo, la norma
Fuclidea o L2, o la norma Manhattan o LI. A partir de la funcion de coste
podemos definir una funcion de pérdidas que sera el objetivo a minimizar durante el
entrenamiento para reducir el error entre la prediccion de la red neuronal y la muestra

real.

L(z,y,w) = Cly, G(z,w)) (2.4)

Donde L es la funcién de pérdidas por muestra. Notar que tanto la funcién de coste

como de pérdidas son paramétricas, donde los parametros son los pesos de la red w,

6



los cuales ademas son implicitos, por lo que se puede complicar mucho el calculo de los
algoritmos propuestos.
Una vez definida la funcién de pérdidas por muestra definimos la funcién de pérdidas

promedio como:

S =A{(=pl,ylp) [ p €10,..., P = 1}}

= L3 Lialplylpl.w) (2.5)

donde hemos definido un conjunto S de P pares de muestras (z,y).

2.2.2. Gradient Descent

Una vez definida la funcién de pérdidas ya podemos definir el algoritmo de Gradient

Descent con la siguiente expresion, la cual se explicard debajo.

OL(S,w)
ow

Supongamos que la funcién de pérdidas L contiene dos pesos, wy y wy, por lo que

w —w—n (2.6)

podemos representar esta funcion como una curva en 2D de la siguiente forma:

(a) L en funcién de wy, wq (b) Algoritmo Gradient Descent

Figura 2.2: Visualizacién del algoritmo de Gradient Descent. Tomada de [1]

La figura 2.2b es la representacion de los cortes de la funcién L que tienen el mismo
valor numérico. Dado un valor arbitrario inicial a los pesos wy y wy, el algoritmo
consiste en encontrar la direccion espacial de maximo crecimiento con respecto al punto
inicial e ir actualizando los pesos en la direccién contraria a este maximo crecimiento.

Este proceso se repite iterativamente hasta llegar a un minimo local? en la funcién de

2En este caso es absoluto, pero para funciones de millones de pardmetros su forma es mucho més
compleja.



pérdidas. Una analogia a este algoritmo seria estar perdido en una montana y para
llegar a un poblado hay que ir dando pasos en una direccién que nos guie hacia abajo.
En la expresiéon (2.6) la direccién de maximo con respecto a los pesos viene dada por
la derivada parcial de la funcion de pérdidas con respecto a los pesos, y al anadirle
el signo menos “descendemos en la funcién de coste”. Para finalizar la expresion, el
hiper-pardametro® n se llama Learning Rate y nos controla la velocidad de convergencia
del algoritmo al minimo de la funcién. Esté definido en el intervalo [0, 1] y cuanto més
grande sea, mas rapido es el algoritmo, pero corremos el riesgo de que acabe divergiendo
debido a que los pasos sean tan grandes que se salten el minimo y en vez “descender
en la funcién” acabe creciendo desmesuradamente.

Por tltimo cabe mencionar que la expresion (2.6) se denomina Full-Batch Gradient
porque hace la media de la funcién de pérdidas para todos los datos de entrenamiento
en cada paso. Esto no es eficiente de forma computacional, por lo que se recurre
a una técnica llamada SGD (Stochastic Gradient Descent) que en vez de usar
todos los datos usa un subconjunto de los mismos llamado mini-batch. Esto es mas
rapido computacionalmente, pero nos genera un camino al minimo ruidoso. Existen
modificaciones del algoritmo para ayudar a la convergencia rapida y eliminacién de
ruido, pero no se van a tratar en este trabajo ya que su objetivo no es el estudio de
la convergencia. De todas estas técnicas, el Museformer usa el algoritmo de Adam [2]

que es el mas popular y eficiente de todos los que existen a dia de hoy.

2.2.3. Backpropagation

Hasta ahora hemos definido nuestra red neuronal y visto un algoritmo para poder
calcular los pesos y sesgos* de la misma, pero aun nos falta un ultimo paso que es
actualizar los parametros en si de todas las capas. Esto se denomina Backpropagation
y consiste en aplicar la regla de la cadena a la funciéon de coste con respecto a todas
las capas de la red neuronal. En concreto para la capa i-ésima queda la expresién de

la siguiente manera:

OL(S,w,b)  OL(S,w,b) 0zi41
ow; Oz Owy

(2.7)

OL(S,w,b)  OL(S,w,b) 0zi41
abl B azi—i—l abz

donde z;,; viene de la expresién (2.3) y hace referencia a la salida de la capa H(

(2.8)
i+1)

de lared. Si z;41 tiene dimensién [M, 1] y w; tiene dimensién [N, 1], entonces la relacién

3Es un pardmetro que controla otros parametros dentro de la fase de entrenamiento, por eso lo
denominamos asi.
4No se ha mencionado de forma explicita, pero se hace de forma analoga a los pesos.



entre dimensiones cumple en la expresion (2.7) que [1, N] = [1, M] x [M, N]. Ocurre
algo de manera similar con (2.8) ya que el sesgo tiene la misma dimensién que los pesos
de la capa i-ésima.’ La expresién 88‘%1 es una matriz jacobiana que cumple la siguiente
relacién para cada componente:

(85;1)“ - % (2.9)

Es decir, la entrada (k,l) en la matriz es la componente k-ésima de la derivada
parcial del vector z; ;1 con respecto a la componente [-ésima de la derivada parcial del
vector w;. Para el caso de los sesgos solo cambia la notacién por lo que quedaria de
forma similar la expresion, solo que esta vez se tienen en cuenta los sesgos en vez de
los pesos.

Aplicando de forma recursiva las expresiones (2.7) y (2.8), es decir, comenzando
por la capa de salida de la red y retrocediendo capa por capa hasta llegar a la capa
de entrada (sin incluir) acabamos actualizando todos los pesos y sesgos de la red
para un paso de iteracion del algoritmo Gradient-Descent empleado. El nombre de
Backpropagation viene precisamente de ir hacia atras propagando los pesos y sesgos

actualizados.

2.3. Inferencia de una red neuronal

Una vez hecha la fase de entrenamiento ya tenemos la red ajustada para obtener los
resultados correctos en funcién de unos datos de entrada “adecuados”. Por ejemplo si
estamos clasificando imédgenes de coches la red sabra discernir entre modelos de coches
si se ha entrenado con una cantidad suficiente de ellos. Pero si nos salimos del ambito
de la red, es decir, le pedimos que nos genere un coche nuevo, dependiendo de como se
haya entrenado la red obtendremos un resultado u otro. Por ejemplo si la funcién de
coste es el error cuadratico medio el resultado serd una mezcla de todos los modelos de
coches que conozca la red y saldrd una imagen probablemente borrosa o sin sentido.
Para solucionar este problema se recurre a unos modelos basados en energia [1] que se
encargan de modelar una funcién de energia para unos conjunto de datos de entrada
de tal manera que los valores de la funcién sean nulos en un entorno cercano a estos
mismos (sustituyendo a la funcién de coste).

La funcién de coste F(z,y) se define como una funcién escalar, es decir, para cada
par de puntos (z,y) tenemos un tnico valor numérico real. Las redes que contienen

este tipo de modelos de energia se entrenan de dos maneras:

5Por definicién de gradiente su representacién en forma vectorial es un vector fila.

9



Figura 2.3: Representacién de F(z,y). Tomada de [1]

1. Métodos de contraste.
2. Métodos de regularizacién.

Los métodos de contraste se basan en comparar dos puntos dentro de la funcién,
uno de ellos perteneciente a los datos de entrada, y el otro puede ser aleatorio o una
perturbacion del dato de entrada para posicionarse en un espacio cercano, de tal manera
que vamos aumentando la energia en aquellos puntos que se van alejando de los datos,
y vamos disminuyendo la energia en los puntos que estan muy cerca de los datos de
entrada de tal forma que acabemos con una funcién como en 2.3, en la cual el color
gris representa valores de F'(z,y) pequenos y conforme nos vamos alejando obtenemos

valores mas grandes (naranja).

y BCyy)

A

Pred(x)

O ©

Figura 2.4: Arquitectura de red con variable latente. Tomada de [1]
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Para los métodos de regularizacion se emplea una variable extra z representada en
la figura 2.4 la cual se llama variable latente® (Latent- Variable) y su funcién es modelar
caracteristicas importantes de los datos de entrada que le vamos proporcionando
durante la fase de entrenamiento. Por ejemplo si estamos analizando imagenes de coches
esta variable aprende caracteristicas como tipos de rueda, carroceria, maletero, puertas,
ete.

Los métodos de regularizacion se encargan de fijar un “volimen” alrededor del
espacio de los datos de entrada y el resto del espacio tiene energia alta. Esta
regularizacion aparece para restringir la capacidad de la variable latente z, ya que
si no tiene restricciones z se adaptara a los datos de entrada y asignara energia cero a
todo el dominio de la funcién F(zx,y), caso desfavorable.

Existen muchos modelos tanto de contraste como regularizados, e incluso de
contraste con variables latentes, en el caso de este trabajo se utilizara el método de
regularizacion L2, que consiste en anadirle la norma euclidea o L2 de los pesos a la
funcién de pérdidas. En caso de querer profundizar més sobre los distintos tipos modelos
se pueden ver en [1].

Una vez ajustada la funcién de coste a los datos de entrada, el siguiente paso es la
inferencia y no es mas el proceso de encontrar valores y tales que minimicen el valor

de F(z,y) dado por la siguiente ecuacion:

gy = argmin, F(z,y) (2.10)

La ecuacién (2.10) ya incluye el caso de variable latente de forma implicita ya que en
[1] se explica como se puede redefinir cierta funcién de energia E(x,y, z) para llegar a
(2.10).

Para finalizar, hay que remarcar el hecho de que el tema de modelos basados en
energia es amplio y en este apartado solamente se queria introducir de forma muy
superficial la fase de inferencia para entender de forma general como funciona el

Museformer tratado unas secciones méas adelante.

2.4. Funciones no lineales mas empleadas

Uno de los aspectos a tratar es que tipo de funciones no lineales podemos emplear
para construir la red neuronal que resuelva el problema planteado. Hay muchas
funciones que cumplen este criterio, pero aqui vamos a tener en cuenta las mas

)

utilizadas.

6l valor de esta variable es implicito.
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La primera funcién no lineal, y a su vez la méas empleada es la funcion ReLU y

viene dada por la siguiente expresion:

x, six>0

2.11
0, six<O0 ( )

ReLU(z) = {

Como podemos observar la funcién solamente toma valores distintos de cero si la
entrada es positiva. En este caso la no linealidad viene dada por el punto en el origen
donde la funciéon cambia de forma abrupta.

Representado la funciéon obtenemos la siguiente figura 2.5:

-100 -75 =50 -25 0.0 2.5 5.0 75

Figura 2.5: Representacion de la funcién ReLU.

La siguiente funcion es la tangente hiperbolica y viene dada por la siguiente

expresion:

x x

e —e
et 4+ e %

Para ver las no linealidades de esta funcion la representamos primero para verlas

tanh(z) = (2.12)

de forma mas sencilla en la figura 2.6.
En este caso vemos que para valores muy grandes tanto negativos como positivos
la funcién converge a -1 y 1 respectivamente.
Para finalizar nos queda la funcién sigmoide que viene dada por la siguiente
expresion:
1
o) = 14+e®

La representacion queda de la podemos ver en la figura 2.7:

(2.13)

Notar que esta funcién es similar a la tangente hiperbdlica, solamente que en este
caso esta desplazada en el eje positivo de tal manera que la convergencia de valores

grandes tanto negativos como positivos ocurren en el intervalo [0, 1].
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0.8 / 4

D4 / b

Figura 2.6: Representacion de la funcién tanh(z).

104

0.8 4

0.6 4

0.4 4

0.2 4

0.0 4

Figura 2.7: Representacion de la funcién o(x).

Existen mas funciones no lineales, pero estas tres mencionadas son las mas utilizadas
en redes neuronales debido a que debido a sus expresiones son facilmente derivables”,
por lo que el entrenamiento es mas rapido que utilizando otras funciones mas complejas.
También permiten clasificar de forma sencilla los datos de un problema bajo distintas
etiquetas, por lo que tras varias modificaciones de dichos datos en sucesivas capas de
red obtenemos las respectivas agrupaciones entre datos bajo una misma etiqueta®.

Para finalizar, mencionar que de estas tres funciones la més utilizada es la funcién
ReLU debido a que a el gradiente no satura durante la fase de entrenamiento porque, o
es nulo para datos negativos y no se propaga, o es uno para datos positivos y se propaga
directamente actualizando los respectivos pesos y sesgos. En los otros dos casos tanh(z)
y o(x) para datos con valores muy positivos o negativos el gradiente no es nulo, pero

es muy pequeno, y a la hora de propagar el gradiente implica que los pesos y sesgos se

"En el caso de ReLU se modifica el origen para poder ser derivable, ya que en principio no lo es.
8Para méas informacién véase el algoritmo K-means en [3]
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actualizan de forma muy lenta empeorando el tiempo de entrenamiento.

2.5. Bloques basicos de redes neuronales y sus
gradientes

Para finalizar esta seccién de introduccion a las redes neuronales vamos a mencionar
brevemente los bloques que construyen los distintos tipos de arquitecturas de redes
neuronales y sus respectivos gradientes para poder entrenarlas.

Comenzamos describiendo todos los bloques:

Bloque Lineal:

Y=W-X
acC ; OC
ax -V oy

Este bloque hace referencia a las conexiones neuronales dentro de la red. El gradiente

se obtiene transponiendo la matriz de pesos.
Bloque no lineal (ReLU):

Y = ReLU(X)
Six >0 g_g(:g_g
Six<0 2£=0

En este caso el gradiente solamente se propaga si los valores de entrada son positivos.
Bloque de duplicacién:
Yi=X, Y2=X
oC oC oC

ax ~ oyl ov2
Este bloque se usa en el caso de pardmetros compartidos.”
Bloque suma

Y1=X1+X2
oC oC oC oC

oX1 9y’ 0X2 oY
Este bloque aparece junto a las capas de normalizacion de la red y ayuda a propagar
el gradiente en casos en los que se pueda desvanecer por el camino mediante unas
conexiones residuales'®. Las capas de normalizacién no tienen una finalidad clara, pero
ayudan a la convergencia del aprendizaje de la red neuronal.
Bloque maximo:
Y = maz (X1, X2)

9Los pardmetros compartidos se usan el redes convolucionales donde se puede explotar la
redundancia de los datos. [1]
10En la seccién 3.4 se verd en detalle.
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; oCc _ oC. oC __
Sixl < X2 m_ay’ax1_0

~ 8C _ 8C. 9C _
{SIX1>X2 W_W7m_0
Este bloque como su nombre indica propaga el gradiente del valor méaximo de dos
entradas X1 y X2. Se puede usar dentro de los métodos de contraste explicados en la
seccién 2.3, o para clasificar datos en funcién del que mayor contribucion tenga dentro
de la red.

Bloque LogSoftMax:
Y = X; —log)_eV]
J

oc l eXi
(‘9X, N Zj eXi

Este bloque se usa principalmente en la capa de salida para asignar probabilidades

a las neuronas de dichas capas, y asi tener una medida sobre que datos tienen mas

impactos dado un problema arbitrario. La funcién viene de tomar el logaritmo a la

funcién SoftMax(X;) = ZE_XEZXJ- para obtener valores més normalizados y sin variaciones
bruscas debido a la sensibilidad de la funcién So ftMazx

Con esto concluimos esta secciéon de bloques bésicos méas usados dentro de la
construccién de redes neuronales. Aunque no esté mencionado aqui también se usa tanto
la funcién tanh(x) como la o(x), pero no son tan comunes como la funciéon ReLU(z).

El resto de bloques més avanzados se construyen a partir de estos mencionados.
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Capitulo 3

Arquitecturas de red mas comunes
en modelos de lenguaje

3.1. Redes Neuronales Recurrentes y LSTM

Hasta ahora hemos visto el concepto de red neuronal, como se entrena a nivel
basico y un poco més avanzado en modelos basados en energia, el proceso de inferencia
para que la red sea capaz de predecir informacién nueva, algunas funciones no lineas

utilizadas y los bloques basicos empleados para la construccion de redes neuronales.

Si bien es cierto que hay muchas arquitecturas distintas para diferentes ambitos de
trabajo e investigacion como vision por ordenador, robdtica, generacion de fotogramas
en videojuegos, generacién de voz, etc., nosotros nos centraremos en aquellas que dan
solucién a problemas de lenguaje natural ya que Museformer, que es la arquitectura que
vamos a emplear en este trabajo, viene dado por la arquitectura Transformer propuesta
inicialmente en [4] para resolver el problema que tenian otras redes a la hora de traducir

palabras de un idioma a otro.

El primer cambio que se puede hacer a una red neuronal béasica en la que tenemos
capas de entrada, ocultas y de salida es generar un bucle en algunas capas ocultas de
la misma, de ello surge el concepto de Red Neuronal Recurrente (RNN en inglés) (ver
figura 3.1). Esto se hace para dotar de cierta capacidad de memoria a la red ya que

con la arquitectura basica Feed-Forward no tenemos esa capacidad.

El entrenamiento de una red de este estilo se basa en “estirar” en funcién del tiempo
la red comenzando por la izquierda el instante temporal inicial y anadiendo a la derecha
los sucesivos instantes temporales hasta llegar a un punto final, y aplicar el algoritmo
de Back-Propagation a través del tiempo (BPTT en inglés) yendo hacia atrds desde
la salida, pasando por los estados intermedios y llegando a la entrada finalmente. La

figura 3.2 ilustra este proceso.

En la figura 3.2 se puede ver tres iteraciones de una red recurrente y el algoritmo de
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Figura 3.1: Ejemplo de Red Neuronal Recurrente. Tomada de [1]

glt — 1] glt] glt +1]

Figura 3.2: Back-Propagation Through Time. Tomada de [1]

BPTT esta indicado con las flechas rojas. Empezamos en la salida actual y propagamos
el gradiente hacia el estado anterior y luego a la entrada. De la salida anterior hacemos
lo mismo, pero con sus estados anteriores correspondientes. Esto se hace hasta llegar
a la entrada en el tiempo inicial.

Aunque tedricamente este algoritmo es sencillo de implementar tiene dos grandes
inconvenientes por los cuales no se usa. El primero de ellos es el desvanecimiento del
gradiente (Gradient Vanishing) y ocurre cuando tenemos redes recurrentes de gran
tamano en el tiempo por lo que al utilizar el algoritmo BPTT dependiendo de los
parametros de la red el gradiente puede anularse o hacerse infinito antes de llegar
al tiempo inicial con lo que nos limita el tamano temporal que puede tener la red.

Existen métodos para mitigar los efectos del desvanecimiento del Gradiente [1], pero
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no se usan porque aun asi la capacidad de memoria de la red se queda corta en la
mayoria de los casos. El otro problema es la gran cantidad de informacion que hay
que guardar en memoria para una red de tamano considerable, ya que dependiendo del
desarrollo temporal usado hay que guardar todos los valores de las capas intermedias

y de salida en todos los instantes temporales.

| ift] = o (W; [hz[?*,[ﬂl

Flt = o (W [,5,

olf] = o (o[,

&[t] = tanh (W, [,21 ]
c[t] =|f[t] © c[t — 1]
ht] [O[t] ©tanh(c [t])]

Figura 3.3: Red LSTM. Tomada de [1]

El otro tipo de red que viene a solucionar el problema principal de las RNN se
denomina LSTM (Long-Short Term Memory) o Memoria de Corto-Largo plazo. Es
méas compleja la arquitectura que tiene (figura 3.3) y los detalles del funcionamiento se
pueden leer en el documento de sus autores en [5], pero en esencia se encarga de abrir

o cerrar caminos dentro de una RNN desarrollada a lo largo del tiempo como se puede

so90

=y 11&-@-&-#0
ceceeces

Figura 3.4: BPPT en LSTM. Tomada de [1]

ver en la figura 3.4.

Outputs

Inputs

Time

En esta figura los circulos representan los caminos por donde se pueden propagar

los gradientes y las barras por donde no lo pueden hacer. Esto permite tanto agrandar
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la capacidad de memoria de la red como reducir el nimero de parametros que hay en

la red ya que aquellos caminos cerrados son valores nulos directamente.

3.2. Seq2Seq

Usando las redes de la seccion previa se puede construir mediante la concatenacion
de varios LSTM lo que se conoce como una red Seq2Seq (Secuencia a Secuencia) creada
por Sutskever en [6], y consiste introducir una secuencia de datos en la entrada, por
ejemplo una oracion en inglés obtener un vector de caracteristicas intermedio y en la
capa de salida hacer el proceso inverso para obtener otra secuencia distinta, por ejemplo

la misma oracién en aleman. La siguiente figura ilustra este parrafo.

G(h,z,w)

—’@-’qT,Z@—’G(h,Z,W) - G(x,z,w)

—- G (X,Z,W) G(X,2,w) G(X,Z,W) é é
é é é Representation
Of the input sequence

Figura 3.5: Representacién de Seg2Seq. Tomada de [1]

Uno de los problemas que tiene esta propuesta es la cantidad de LSTM necesarios,
ya que por cada entrada se necesitan dos de estos bloques, por lo que la escalabilidad
es reducida para secuencias largas. También existe un limite de secuencia que si se
sobrepasa la red deja de funcionar correctamente. Yann LeCun mencioné en [1] que

era de 30 palabras mas o menos.

3.3. Seq2Seq con mecanismo de atencion

Una modificacién que se puede hacer a esta red es anadirle lo que se conoce
como mecanismo de atencion, el cual se encarga de darle importancia a unos datos
de entrada frente a otros. Matematicamente es un bloque que hace una combinacién

lineal ponderada de las entradas con pesos de mayor tamano a aquellas entradas que
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aportan més valor para un instante determinado. Este mecanismo se profundizara mas
en la seccion 3.4 ya que es el pilar fundamental del mismo y su popularidad actual.
El resultado de anadirle el bloque de atencion a esta red se ilustra en la figura
3.7, en la cual se puede apreciar que no solamente se consigue mejorar el resultado
de la salida por usar las entradas adecuadas, sino que también reducimos el coste
computacional para hacerlo ya que en cada instante de tiempo solo tenemos las entradas

con sus respectiva codificacion! G(z, z,w), el bloque de atencién y la correspondiente

decodificaciéon G(h, z, w).

G(h,z,w)
attention

G(x,z,w) ’

Figura 3.6: Representacion de Seg2Seq con mecanismo de atencién. Tomada de [1

attention

attention attention attention

G (X, Z,W) G(x,z,w) G(x,z,w) G(x,z,w)

3.4. Transformers

Para finalizar este apartado vamos a describir un poco mas en detalle el mecanismo
méas popular en el &mbito del lenguaje natural y también utilizado en el Museformer?,
que es el Transformer.

El Transformer es un tipo de arquitectura de red basada en un bloque llamado
atenciéon. Este bloque tiene como entrada un conjunto de valores arbitrario, y a partir
de ellos mediante unas matrices de pesos calcula tres conjuntos de valores llamados
Query, Key y Value. Los valores de Query son el equivalente a las preguntas que hace
el médulo al conjunto de datos de entrada, por ejemplo si queremos comprar una
guitarra eléctrica, la pregunta puede ser si en una tienda tienen guitarras de la marca

Fender. Los valores de Key tienen el contenido “clave” para responder las preguntas,

ITransformacién en tipos de datos ttiles para la red.
2La parte -former viene precisamente de Transformer
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normalmente una de las caracteristicas de los datos de entrada. En el ejemplo anterior
serfan las propias marcas de guitarra que hay en la tienda en la que estamos. Por
ultimo, tenemos los valores Value que son todas las caracteristicas que contienen los
datos de entrada que no forman parte de la pregunta. En el ejemplo de las guitarras
puede ser el tipo de cuerpo, cuerdas, madera de construccién, color, etc.

Para poder obtener la respuesta dentro del bloque se calcula lo que se llama como
matriz de atencién, la cual viene dada por la ecuacién (3.1) y tiene los resultados de
proyectar los valores de Query con respecto a todos los de Key, es decir, nos da una
medida, que puede ser una puntuacién o probabilidad, para saber qué valores de Key

son los que mas se acercan a la Query.

A = [soft] (arg)mazs(KTQ) (3.1)

En la expresién (3.1) si el conjunto de entrada x tiene dimensién [n, 1], entonces
Q es la matriz de Query de todos los datos de entrada, viene dada por Q = Wyx
y tiene tamano [d,n] donde d es la dimensién de embedding®. K es la matriz de Key,
viene dada por K = Wy x y tiene tamano [d, n], por lo que A tiene dimensién [n,n|.
Una vez hecho el producto de las dos matrices anteriores tomamos el maximo que
puede ser [soft] o [hard] (aunque en la expresién ponga [soft]). Esto nos da unos valores
de medida de la respuesta que pueden ser una distribucién continua [soft] o un tnico
valor y el resto nulos [hard]. Para finalizar tenemos el pardmetro [ el cual se denomina
temperatura y se encarga de controlar la uniformidad de los valores de la distribucion
de la funciéon argmaz. En el caso de los transformer se toma = \/Lg para evitar que
la dimensionalidad usada en el embedding afecte a los resultados.

Una vez obtenida la matriz A con la matriz V de Value, que viene de V.= Wy x
y tiene dimensién [d’,n]*, por lo que al final tenemos una salida que es una matriz
H = V A de tamano [d’, n] con los valores a la respuesta obtenida. En la figura 3.7(A)
se puede ver el diagrama de bloques utilizado para implementar este parrafo y el
anterior.

Hasta ahora hemos utilizado este bloque para calcular la respuesta a una pregunta
dada sobre un conjunto de datos arbitrario, pero puede surgir la necesidad de hacer
muchas mas preguntas sobre un mismo conjunto de datos, por ejemplo queremos
preguntar por mas de una marca de guitarras ya que no solamente nos interesa Fender,
por lo que se para solventar este pequeno inconveniente se utiliza lo que se conoce
como Multi-Head Attention (figura 3.7(B))y no es mas que la concatenacién de varios

modulos de atencion simples para poder realizar varias preguntas al mismo tiempo.

3Es un valor utilizado dentro de las capas de red para representar informacién contextual.
4d’ puede ser distinto a d ya que pueden haber més valores de Value que valores de Key,.
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La cantidad de preguntas que podemos realizar al mismo tiempo viene dado por
los médulos encadenados y viene dado por el tamano de las cabezas (Heads) que
lo denotamos por H. Esta solucién no solo permite hacer mas preguntas, sino que

paraleliza el proceso al hacerlo al mismo tiempo y nos ahorra tiempo de cémputo.

Scaled Dot-Product Attention Multi-Head Attention

Concat

y 1

Mask(opt.)

3 b r 3

[rLinear ]]J [(Linear ]j] [(Linear ]JJ
t f t

Q K V s g s¥
(A) (B)

Figura 3.7: Mecanismo de atencién. Tomado de [1]

Este proceso empleado utilizando el mismo conjunto de datos de entrada para todo
se denomina Self-Attention. Si utilizamos otro conjunto de datos para responder a las
preguntas que obtenemos de un conjunto inicial lo denominaremos Cross-Attention y
el método es el mismo, solamente que si la matriz K’ tiene muchos mas valores |7, d],
expresion que viene de K" = Wi X’ tal que {x!}7_,, entonces la matriz A tiene tamano
[T, n].

Con los bloques de Self-Attention, Cross-Attention y algunos mas podemos construir
la arquitectura completa. La figura 3.8 es el Transformer original del articulo Attenion
is all You Need [4] y los bloques extra son una capa de suma y normalizacidn,
empleada para ayudar a la convergencia del entrenamiento de la red, ya que evita
el Gradient-Vanishing, una capa de Feed-Forward que se usa para ajustar los valores
de salida de una capa de atencion previa para "tener una forma adecuada” en la capa
posterior una capa llamada Positional Encoding que se encarga de asignar un orden a
los datos de entrada ya que los médulos de atencion no asignan posicion a los datos de
entrada.

La arquitectura final consiste en intentar predecir un valor deseado mediante una
entrada x que nos proporciona informacién contextual mediante el mecanismo de
Self-Attention, hacer un Cross-Attention con un valor de referencia y con un retardo de

una unidad para poder predecir un resultado futuro y la salida de ese médulo evaluarla
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Figura 3.8: Arquitectura Transformer de referencia. Tomado de [4]

mediante una funcién de coste arbitraria. En el caso de utilizar modelos basado en
energia se utiliza una funcién de energia y el entrenamiento se hace ya sea mediante
métodos de contraste o de regularizacion. La inferencia se puede hacer a partir de datos
propios o con valores arbitrarios. Una representacion de la arquitectura viene dada por

la siguiente figura:

WRONG
“decoder”

Decoder

: Predictor
@—> Em:oderJl \ {EncIC_l
ylj —1] ¢t e yl]

unit delay

Figura 3.9: Arquitectura Transformer completa. Tomado de [1]

Cabe destacar que gracias al potencial que tiene la arquitectura Transformer tanto
en sus modulos de atencion como en su capa Feed-Forward, se puede escalar bien y

el tiempo necesario tanto para entrenar como para inferir es drasticamente menor que
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para una red recurrente arbitraria ya que los gradientes se actualizan al mismo tiempo
no tener bucles. Por contra el médulo de atencién tiene un orden de operaciones O(n?)

por lo que puede llegar a limitar el nimero de datos de entrada que puede aceptar.
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Capitulo 4

Museformer

4.1. Introducciéon

La herramienta Museformer [7] se basa en una arquitectura Transformer ligeramente
modificada en la capa de atencién para intentar adaptarse de la mejor manera posible
a la estructura de una obra musical. Esta modificacién consiste en usar dos métodos
de atencién distintos, Coarse-Grain Attention y Fine-Grain Attention (ajuste de grano
grueso y de grano fino).

Para entender los tipos de atencion descritos en el parrafo anterior hay que recordar
que la musica se puede describir de forma simbédlica mediante partituras, las cuales
tienen sus elementos basicos de representacion como son los compases, las notas,
silencios, BPM!, etc. La figura 4.1 muestra un ejemplo de representacién mediante
partitura. Para poder emplear esta informacién es necesaria traducirla a un lenguaje
que entienda la maquina como puede ser MIDI, donde toda la informacién de la
partitura se representa mediante distintos cédigos numéricos, y de esta manera permite
la comunicacion entre instrumentos electrénicos y maquinas como ordenadores. Aunque
esta solucién permite que la maquina sea capaz de interpretar la informacién, no es
la forma mas adecuada de representacién de cara a la red neuronal, por lo que se
recurre a otro tipo de representacién que son los tokens, y consiste en traducir la
informacion MIDI a un lenguaje de mas alto nivel en el que se especifica elementos
maés relacionados con la musica como puede ser la frecuencia de las notas, su duracién,
el BPM, la duracion del compaés, intensidad de la nota, etc. Esto se puede ver en la
figura 4.1.

El conjunto de tokens descritos en el parrafo anterior son la secuencia de entrada
de la capa de atencién modificada del Museformer, se describen de la siguiente
manera X = Xi,Xs,...,X, donde X hace referencia a la secuencia de tokens

completa y b al nimero de compases de la obra. Para el i-ésimo compéas tenemos

!Beats o pulsaciones por minuto
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Figura 4.1: Partitura y su respectiva representaciéon en tokens. Tomado de [7]

Xi = Ty, ..., Tz, tokens correspondientes. Tras cada compds se agrega un token
de resumen s para el mecanismo de ajuste grueso, por lo que la representacién final
queda X = Xjsq,..., Xpsp. Esta representacion se pasa por una capa de incrustacion
(embedding) para convertir la informacién en vectores dentro de un espacio vectorial
y se concatenan los compases incrustados con los beats incrustados como informacién
posicional? seguidos de una proyeccién lineal [7]. Las capas del Museformer se encargan
de modelar la representacion contextual, y la salida de la 1ltima capa oculta se pasa
por un clasificador SoftMax para predecir el siguiente token. Esto se puede representar
mediante un diagrama de bloques para un head descrito en la figura 4.2.

El mecanismo de atencién se puede describir mediante la siguiente expresion?:
W (XWk)T

Vd

Donde X € R™*4 g5 la secuencia de entrada con n. el tamafio de la secuencia

Atin(x}, X) = softmax ( ) XWy (4.1)

de entrada y d la dimensién de embedding, X' € R™*? es la secuencia objetivo
con n, el tamano de la secuencia objetivo, Wq, Wk, Wy € R?? son las matrices
de pesos correspondientes a la filosofia Query, Key, Value mencionada en la seccion
Transformer. Este mecanismo obtiene la representacién contextual para cada z; € R1*?

de la secuencia objetivo X'.

4.2. Atencion de ajuste grueso y fino

Hasta ahora hemos descrito el proceso general del mecanismo de atencion y la
forma de organizar tokens de entrada de la manera adecuada para poder entrenar la
red. A continuacién vamos a describir los mecanismos que utiliza Museformer en si

para obtener los dos tipos de atencion mencionados previamente.

2Recordemos que el Transformer no incluye un mecanismo de ordenacién por defecto.
3Se ha descrito para una sola cabeza para simplificar la expresién.
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Figura 4.2: Diagrama de bloques de la arquitectura Museformer (un head). Imagen
propia.
4.2.1. Resumen (Summarization)

Este es un proceso en el cual obtenemos los tokens de resumen s; que nos daran la
informacion para el ajuste grueso. La forma de obtener estos tokens vienen dados por

la siguiente expresion.

En esta expresion obtenemos el token de resumen para el compas i-ésimo mediante el
mecanismo de atencion sobre los propios tokens de dicho compés dado por la expresion
X; = {1, .., xi)x, } € RXiIX y el propio token de resumen asignado a dicho compds

s;. La operacién [] es la concatenacion.

4.2.2. Agregacién (Aggregation)

En este proceso actualizamos cada token mediante el mecanismo de atencién

teniendo en cuenta qué compases tienen relacion directa con el token que se va a
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calcular, y cudles no son tan importantes de manera que se utiliza el token de resumen

de dichos compases. La expresion para un token en concreto es la siguiente:

15 = Attn(x; 5, [Xre), Xik<i» Sqm)) (4.3)

x;; es el j-ésimo token del i-ésimo compas. Xpg(;) es la matriz de tokens del conjunto

de compdses relacionados R(i) con el compas i-¢ismo. X, x<; es el conjunto de tokens

del compds i-ésimo definido por X, y<; = {zix | xix € Xi, k < j}, es decir, los tokens

previos al token z;; dentro del compdés i-ésimo, y S R@G) €S el conjunto de tokens de
resumen de los compases que no estan relacionados con el i-ésimo, R(7).

De esta forma obtenemos los dos mecanismos de atencién, ya que los compases que

tienen relacion entre ellos se calculan a nivel de token (ajuste fino) y los que no utilizan

los tokens de resumen (ajuste grueso).

4.3. Compases relacionados

En la seccion previa hemos definido la forma de obtener los mecanismos de atencion
del Museformer, pero no hemos definido los compases relacionados. Los compases
relacionados son aquellos compases que tienden a repetir la estructura musical, ya sea
mediante la estructura melddica, ritmica o ambas. Para ello los autores de Museformer
definen el conjunto de notas del compds i-ésimo como N (i), y la medida utilizada es

una medida de similaridad entre pares de conjuntos de notas dada por la expresion:

L YO ONG) "
[N (i) UN ()]

Esta expresién nos da un niimero entre 0 y 1, dependiendo de cuantas notas comunes
haya entre dos compases arbitrarios. Dos notas son iguales si tienen la misma frecuencia,
duracién y posicién dentro del compas [7]. Finalmente se toma la media de similaridad
entre pares de compases que se encuentran t intervalos dentro de un conjunto de

entrenamiento dado D. Esto es:

L; = media (Z Z li,j> (4.5)

D j=i+t
Aplicando esta medida al conjunto de datos de entrenamiento del Museformer que
es la base de datos MIDI Lack MIDI Dataset, LMD* con més de 100.000 archivos
MIDI, y luego a otra base de datos TopMAGD? para 12 géneros musicales distintos, se

‘https://colinraffel.com/projects/1lmd/
Shttp://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html
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obtiene la siguiente gréfica en la que se puede ver un patrén de repeticién cada 2 y 4

compases de media.

14
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Figura 4.3: Medida de similaridad entre compases para los datos de entrenamiento del
Museformer. Tomado de [7]

4.4. Analisis de complejidad

Para finalizar este apartado vamos a observar si realmente el hecho de modificar la
capa de atencién para implementar los mecanismo de ajuste grueso y fino reducen el
orden de operacién de O(n?) a un orden inferior como puede ser lineal.

Sea n la longitud de la secuencia de tokens, b el niimero promedio de compases,
m la longitud promedio de un compas, y k el nimero de compases relacionados
seleccionados. El orden de operacion del paso de resumen (Summarization) es O(n), y
el paso de agregacion (Aggregation) es de O((km+b)n) = O((km+n/m)n)m, es decir,
dependiendo de la longitud de promedio del compéas tenemos entre un orden cuadratico
y un orden lineal. Como en promedio m es mayor a 100 [7] se reduce en gran medida
este orden y, por ende, la complejidad de las operaciones.

Las figuras 4.4a y 4.4b muestran cémo afecta esto a la capacidad y tiempo
de entrenamiento en comparacién otro tipo de Transformer que tiene complejidad

cuadratica.
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(b) Tiempo por iteracién.

Figura 4.4: Anélisis de tiempo y capacidad para el entrenamiento del Museformer en
funcién de la longitud de secuencia de tokens. Tomada de [7]

Los resultados del entrenamiento, validacién e inferencia del Museformer se pueden

ver en el papel original [7], pero el hecho de utilizar el mecanismo de atencién de ajuste

grueso y fino mejora tanto la generacién de misica en términos de los parametros de

medida utilizados® en comparacién a otros tipos de Transformer mencionados en dicho

papel, y permite tratar secuencias de mayor longitud (Figura 4.4) al no enfocar la

atencion en todos los tokens.

6Se veran en la siguiente seccién.
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Capitulo 5

Implementacion, entrenamiento e
inferencia del Museformer

5.1. Implementacion

El proceso de implementacién consiste en hacer funcionar la red neuronal de manera
que se pueda entrenar, hacer inferencia y modificarla a necesidad de los distintos
objetivos propuestos. En este caso para implementar el Museformer se ha seguido una
serie de pasos, algunos de los cuales se pueden encontrar en su repositorio en GitHub!,y
que se detallaran en este apartado junto con las aportaciones y modificaciones realizadas
al mismo.

En primer lugar se ha determinado los recursos hardware necesarios para poder
implementar de manera eficiente el Museformer, en este caso se ha usado una maquina

de la propia universidad con las siguientes caracteristicas importantes:

— Tarjeta de Video: NVIDIA RTX 3090 24 GB VRAM GDDR6X
— Procesador: Intel Core i7-6700 8 nticleos (16 Hilos) @ 3.40 GHz

— 0OS: CentOS 7

En segundo lugar se ha determinado que el lenguaje de programacion es Python,
en concreto la versién 3.8, asi que se ha optado por implementar un entorno virtual
mediante el gestor de paquetes Anaconda?, aunque por ahorrar espacio en la maquina
empleada y para el proposito de este TFG se ha usado su versién ligera minicondas.
Una vez creado el entorno, se han instalado todas las dependencias mencionadas en el
repositorio del Museformer, junto al VS Code® para modificar cédigo, MidiProcessor

para transformar los archivos MIDI a tokens de los propios autores del Museformer,

"https://github.com/microsoft/muzic
’https://www.anaconda. com/
3https://code.visualstudio.com/
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triton* como alternativa al lenguaje CUDA y Musescore 3° para poder leer y escuchar
los archivos MIDI.

Para comprobar el funcionamiento de la implementacion se han obtenido las piezas
mencionadas por los autores del Museformer a partir de la base de datos LMDS sin
preprocesar, a diferencia de como lo han implementado ellos. Dado que no existia
ningiin mecanismo para obtener los archivos directamente se ha tenido que escribir un
script propio en Python” para poder generar un directorio con todos los archivos a partir
de una lista en formato texto. Una vez hecho esto se han seleccionado de forma aleatoria
unos 50 archivos dentro de ese directorio, se han convertido en tokens, mediante
otros dos scripts propios se han separado en el formato estandar de entrenamiento
train/valid /test, que en este caso es un 8/1/1, y estos archivos se han preprocesado
mediante el un comando de la librerfa Fairseg®.

Para el resto de tamanos empleados en el entrenamiento el procedimiento ha sido

el mismo.

5.2. Entrenamiento

El primer entrenamiento ha sido con 500 datos totales, los cuales se han repartido
de la siguiente forma: 8/1/1, es decir, de cada 10 datos, 8 son de entrenamiento, 1 es de
validacion y 1 es de test. Esto es una forma habitual de entrenar las redes neuronales
en general, donde los datos de entrenamiento se usan para ajustar los parametros de

9 se usan para ajustar los hiper-parametros de la red y los de

la red, los de validacién
test se usan para comprobar la precision de la red una vez entrenada.
Los hiper-parametros utilizados se pueden ver en la tabla 5.1:

Vamos a describir brevemente la utilidad de estos parametros.

— Update hace referencia al paso completo de un dato de entrada a la red, es decir,

el paso forward y backward.

— Update-Frequency es el tamano del batch, en este caso el gradiente se actualiza

cada 5 muestras.

— El Epoch es la cantidad de veces que le pasamos los datos de entrenamiento a la
red.

‘https://github.com/openai/triton

Shttps://musescore.org/es/download

Shttps://colinraffel.com/projects/lmd/

"Los cédigos de los scripts se pueden ver en el anexo.

Shttps://github.com/facebookresearch/fairseq

9Las palabras validacién y test pueden intercambiarse dependiendo del autor, pero en general se
denotan de esta manera.
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Peak Learning Rate (PLR) es la tasa de aprendizaje méxima.

Warm-up Updates son las actualizaciones en la que la tasa de aprendizaje crece
de forma lineal hasta PLR.

Lr-Scheduler es un planificador que modifica la tasa de aprendizaje a partir de
la PLR multiplicando la inversa de la raiz cuadrada del nimero de actualizacion

actual.

El optimizador es Adam y su utilidad es complementar a la tasa de aprendizaje
para optimizar el entrenamiento, se determina por tres parametros mencionados

en la tabla previa.

Los tokens per sample indican la cantidad maxima de tokens que puede tener

cada dato de entrada a la red.

Con2con y con2sum indican que compases van a ser de ajuste fino y grueso

respectivamente.

Nombre Valor

Update 1

Update-Freq 5t

Epoch 5000

Peak Learning Rate (PLR) 5x 107

Warm Up Updates 16000

Lr Scheduler 1/+/Updateerya

Adam Bs = (0,9,0,98)

e=1x107"*

wg = 0,01

Tokens per sample 100000

Layer Number 4

con2con cada 4 compases

con2sum el resto de compases

Tabla 5.1: Hiper-parametros entrenamiento 500 datos.

El resultado del entrenamiento se ha medido mediante dos parametros objetivos que

son el error de coste y la perplejidad. El error de coste mide el error entre la prediccién

de la red y los datos de entrada para ajustar, y la perplejidad es una medida de la

calidad de prediccion de la red para un token en particular. Tras llegar a 1129 Epochs

se cumplio el criterio propuesto de error inferior a 0.1 y los resultados se pueden ver
en la tabla 5.2:

El tiempo de entrenamiento ha sido de 24 horas aproximadamente.
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Epoch | Loss | Perplexity
1129 | 0.099 1.07

Tabla 5.2: Resultado entrenamiento con 500 muestras.

En este caso interesa que tanto la pérdida como la perplejidad sean lo més
pequenas posible. Para comprobar si realmente el entrenamiento ha sido 1util hacemos
la validacién con los datos de test mencionados al principio del parrafo, el resultado se

puede ver en la siguiente tabla:

Test | Loss | Perplexity
- 1.836 3.57

Tabla 5.3: Validacion entrenamiento con 500 muestras.

Como podemos apreciar a pesar de que el error cometido en el entrenamiento era
pequeno, al pasarle datos desconocidos a la red no ha sido capaz de interpretar los
resultados correctamente y ha cometido muchos fallos. Esto se debe principalmente al
hecho de haber utilizado pocos datos de entrenamiento, ya que solamente conoce los
datos que se le han pasado y no es capaz de aprender todas las caracteristicas necesarias
para adaptarse a cualquier pieza musical en general. La solucién a este problema y en
general a cualquier problema de redes neuronales es utilizar una cantidad amplia de
datos para que pueda aprender una gran cantidad de caracteristicas determinantes a
la hora de resolver un problema dado.

A continuaciéon vamos a realizar un entrenamiento mucho méas extenso en cuanto
a la cantidad de datos empleada, y vamos a contrastarlo con el caso anterior para ver
como evoluciona la capacidad de la red segin los datos de entrada proporcionados'®.

En este caso hemos utilizado 9300 datos totales con la misma divisién anterior
8/1/1. En la tabla 5.4 se resumen los hiper-pardmetros empleados, de los cuales
solamente hemos modificado el tamano del Batch y el nimero de Epochs ya que para
el caso de 500 datos los demas hiper-parametros ya nos han dado buenos resultados.

Los resultados del entrenamiento se pueden ver en la tabla 5.5:

El tiempo de entrenamiento para este caso ha sido de 72 horas aproximadamente,
a un ritmo de 31 minutos por epoch aproximadamente. Esto es debido al hecho de
aumentar el tamano del batch haciendo que el entrenamiento converja de forma mas
robusta, pero tarde mas tiempo.

En cuanto a la validacién los resultados se muestran en la tabla 5.6:

ODebido a la limitacién de Hardware, solamente se proporcionan estos dos casos, pero se puede
seguir ampliando hasta la cantidad que queramos y contrastar los resultados
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Nombre Valor

Update 1

Update-Freq 8

Epoch 1200

Peak Learning Rate (PLR) 5x 1074

Warm Up Updates 16000

Lr Scheduler 1/\/Update,crual

Adam Bs = (0,9,0,98)

e=1x10""°

wg = 0,01

Tokens per sample 100000

Layer Number 4

con2con cada 4 compases

con2sum el resto de compases

Tabla 5.4: Hiperparametros entrenamiento 9300 datos.

Epoch | Loss | Perplexity
183 | 0.533 1.45

Tabla 5.5: Resultado entrenamiento con 9300 muestras.

Como podemos observar la principal diferencia entre ambos casos es la capacidad
de adaptacién a los datos, es decir, como hemos utilizado mas datos de entrenamiento
la red no se “sorprende” tanto al introducirle datos nuevos ya que entiende mejor las
estructuras de la canciones y se adapta mejor. En cuanto a las pérdidas vemos que
son superiores en el caso con més datos y esto es normal ya que la dimensionalidad
de los datos es mucho mayor en este caso y tiene que ir adaptandose a todos ellos,
ademas de haber entrenado menos epochs que en el otro caso, aunque el tiempo de
entrenamiento ha sido mucho mayor. Este segundo problema se arregla entrenando
durante mas tiempo la red, pero debido a falta de tiempo para ello en la memoria se

presentan estos resultados.

5.3. Inferencia

Una vez entrenada la red vamos a comprobar la eficacia de los resultados generando
unas piezas en particular. Para ello a partir de ruido en la entrada le indicamos a la

red que se encargue de obtener resultados, el procedimiento es el siguiente.

1. Indicamos la carpeta de salida de las piezas generadas.
2. Generamos una semilla para crear el ruido que le vamos a pasar por la entrada.
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Test | Loss | Perplexity
- 0.637 1.55

Tabla 5.6: Validacion entrenamiento con 9300 muestras.

3. Introducimos el script con la cantidad de piezas a generar y tras un tiempo nos

genera un archivo log.

4. Con dos comandos proporcionados por los autores generamos primero los tokens

y luego los archivos MIDI.

Los detalles de los comandos se pueden ver en la documentacién del Museformer,
aqui se va a describir brevemente el proceso de generacion de las piezas y los resultados
propiamente dichos.

Primero observamos los parametros del script que se encarga de generar los

resultados.
Nombre Valor
Top-K Sampling 8
Beam 1
nBest 1
Min-Length 2048
Max-Length-b 2048
seed 1

Tabla 5.7: Parametros para la generacion de piezas en el caso de 500 muestras.

En NLP (Procesado Natural del Lenguaje) hay varias formas de generar palabras o
tokens a partir de una red entrenada, pero en nuestro caso se usa un método llamado
Top-K Sampling el cual se encarga de generar el conjunto de los K siguientes tokens mas
probables a partir del actual y escoge uno de ellos de forma aleatoria. Los pardametros
asociados beam y nmbest se utilizan en un algoritmo llamado Beam-Search!! que consiste
en buscar uno o varios caminos (nbest) con el conjunto de palabras més probables a
partir de una palabra actual, con la profundidad del camino dada por el parametro
beam. La figura 5.1 ilustra este proceso de forma més clara con beam = 2 y nbest = 1.
En el caso del Museformer necesitamos extraer un token del conjunto de K palabras a
una distancia de una unidad, luego se mantienen ambos valores a 1.

El tamano de las piezas generadas viene dado por los parametros Min-Length y

Maz-Length-b, es decir, se generan siguiendo una distribucién uniforme [Min-Length,

Uhttps://en.wikipedia.org/wiki/Beam_search
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Max-Length-b]. En nuestro caso por temas de tiempo se han puesto ambos valores del
mismo tamano y no muy grande para comprobar los resultados generados.

Por ltimo, el pardametro Seed se utiliza para generar el niimero pseudo-aleatorio
que le vamos a pasar como input a la red para que genere las piezas deseadas.

Con el entrenamiento de 500 datos se han generado 5 piezas de longitud 2048 tokens,
los cuales equivalen aproximadamente a menos de un minuto de musica, aunque esto es
relativo ya que depende de que tipo de tokens genere la red puede haber mas o menos
compases en funcién de los instrumentos y las notas.

Para la generacién a partir del entrenamiento con 9300 datos solamente se ha
modificado la longitud de las piezas a 4096 tokens para poder apreciar los efectos
de los ajustes grueso y fino a la hora de generar una estructura musical.

En cuanto a tiempo de generacion podemos resumir los distintos casos realizados

segun el tamano de token.

N Piezas | N® Tokens | Tiempo(min)
> 1024 6
> 2048 12
Y 4096 41

Tabla 5.8: Tiempo de generacién para distintos tamanos de piezas.

Estos tiempos son validos para todo entrenamiento realizado y se puede apreciar
que el tiempo se duplica, e incluso se triplica al aumentar el tamano de los tokens. Si
bien es cierto que al aumentar el tamano de los tokens a la red le cuesta més tiempo
generar una pieza, sigue sin ser justificable el tiempo total, ya que es demasiado elevado
para este proceso, porque en comparacion con otras arquitecturas Transformer a estas
les cuesta como mucho unos pocos minutos generar estructuras con muchos tokens, por
lo que la conclusion en este caso es que hay algin fallo de implementacién por parte
de los autores del Museformer en algin punto de la generacién.

Para finalizar este apartado, la descripciéon subjetiva que puedo hacer sobre las 5
piezas a nivel general es que a nivel de ritmo la estructura esta bien definida, pero a
nivel de armonia no termina de darle coherencia a las piezas, por lo que se nota el
efecto de entrenar con pocos datos. Con el segundo entrenamiento sigue ocurriendo
algo similar, solo que esta vez la red mezcla los distintos elementos aprendidos de cada
cancién de entrenamiento quitandole coherencia a las piezas generadas, pero aun asi se

puede observar la mejora.
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<START=>

AE-END

Candidate
Sequences AC AB, AE ABC, AED

Position 1 Position 2 Position 3

Beam Search example, with width = 2 (Image by Author)

Figura 5.1: Ejemplo de algoritmo de Beam-Search. El algoritmo esta sacado de la
siguiente pagina: https://towardsdatascience.com
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Capitulo 6

Condicionamiento del Museformer
(Teoria)

Hasta ahora hemos aprendido el concepto de una red neuronal, en particular
una variacion de la arquitectura Transformer, la hemos implementado, entrenado y
generado musica con ella, pero esto ha sido a partir de generar un ruido en la entrada
de la red, es decir, a su voluntad. Pero, ;Y si queremos indicarle nosotros que queremos
una pieza musical basada en cierto instrumento, artista, género, ...7 En este caso hay
que hacer lo que se conoce como condicionamiento de la red, es decir, tenemos que
modificar los datos de manera que incluyan informacién extra como titulo de la obra,
autor, género, etc. El procedimiento se va a describir de forma tedrica a continuacion.

El primer paso es usar un método de codificaciéon que nos permita incluir
informacion adicional a la hora de generar los tokens que le vamos a pasar a la red,
en el caso de Museformer tenemos el método REMIGEN que consiste en codificar la
informacion MIDI en tokens de compas, posicion relativa, tempo, instrumento, pitch,
duracion y velocidad o intensidad. También existen otros métodos como RFEMI+,
Compound Word, TSD, Octuple, etc'. En este caso aprovechando que se usa Python
en el entorno, se puede instalar el paquete Miditok [8], el cual contiene los métodos
mencionados anteriormente junto a algunos mas, e incluso se puede crear un método
propio.

Como segundo paso hay que plantear uno de los dos siguientes escenarios, que no

necesariamente son los Uinicos que se pueden plantear en general.

1. Sin modificar la estructura del Museformer, entrenamos la red con los nuevos
tokens anadidos de meta datos, los cuales irdn colocados al principio de cada
pieza musical y tendrian su propia estructura previamente codificada en el paso
anterior. El cambio seria para la generacién ya que en vez de pasarle como dato de

entrada un nimero aleatorio, habria que pasarle uno o varios tokens de meta datos

!Explicacién detallada en https://miditok.readthedocs.io/en/latest/tokenizations.html
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a partir de un texto dado como input, traducirlo a los tokens correspondientes y,
a partir de estos, la red tendria que buscar en el espacio de datos los que tengan
mayor similitud para generar a partir de ese punto tal como lo hace por defecto

mediante el algoritmo Sampling Top k.

2. El escenario anterior plantea muchos problemas, entre ellos la variabilidad de
los meta datos de entrada, la implementacién de la nueva generacién de datos,
ya que habria que estudiar las librerias Fairseq-generation y Fairseq-interactive
empleadas para ver como se pueden traducir palabras a tokens, si es posible
asociar los tokens al espacio de datos, etc. Por lo que en este caso se puede
optar por modificar la arquitectura manteniendo la estructura original, pero en
vez de utilizar el método de regularizacion empleado por parte de Museformer se
optaria por un método de contraste explicado en Text Conditioning), que consiste
en codificar una imagen (en nuestro caso una pieza musical) y un texto de entrada
por separado (mediante un Transformer mas reducido en tamano por ejemplo), y
mediante un pre-entrenamiento inicial, se pueden entrenar las redes para asociar
los textos de entrada con sus respectivas piezas. Luego a la hora de la generacion,
mediante el texto de entrada correspondiente generaria las piezas mas cercanas
mediante el algoritmo utilizado por Museformer. Este método permite mitigar la
variabilidad de los meta datos de entrada, pero a cambio introduce modificaciones
vy no se sabe a priori el impacto que puede tener de manera computacional y

temporal en cuanto a entrenamiento y generacion.

Como tercer paso, a la hora de la generacién, hay que cambiar el método aleatorio
por uno de entrada por texto y que la red sea capaz de entender ese texto y traducirlo
a la informacién adicional de la pieza, es decir, si indicamos que genere una pieza de
Pop basada en un autor determinado, la red tiene que interpretar ambas informaciones
de manera correcta y relacionarlas con los tokens de informacion adicional respectivos.

Una problemaética que genera este nuevo planteamiento es la necesidad de una base
de datos muy extensa con piezas musicales en formato MIDI, los cuales ademas deberan
tener bastante informacion de tipo meta datos con nombres de autor(es), género(s),
duracién, etc. La base de datos TopMAGD? contiene una gran cantidad de musica
catalogada por géneros, pero no contiene artistas y otro tipo de informacion extra, por
lo que a la hora de implementar este condicionamiento lo restringiriamos al género en
cuestion.

El otro problema que genera esta implementacion adicional es la necesidad de una

gran cantidad de tiempo para implementar cada uno de los tres pasos mencionados

’https://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html
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anteriormente, junto a su correspondiente correccién de bugs o errores, ademas del
requerido para construir la propia base de datos extensa con toda la informacién
adicional.

Debido a las dos problematicas mostradas anteriormente este apartado se va a

quedar de forma tedrica y, finalmente, no se ha implementado en este trabajo.

41



Capitulo 7

Conclusiones

Museformer es una red/herramienta que proporciona un método alternativo y
eficiente de generar piezas musicales bien estructuradas musicalmente de larga duracién
dentro del ambito de los Transformers, debido a que reduce la carga computacional
y permite tratar una mayor cantidad de datos, ademés de reducir el tiempo de
computacién necesario para entrenarla. Como hemos podido observar los resultados
mejoran a partir de introducirle mas datos de entrenamiento a la red ya sea de
manera objetiva, reduciendo la perplejidad, o de manera subjetiva, escuchando las
piezas resultantes. Aun asi se puede mejorar mas el Museformer llegando a condicionar
la red para que sea capaz ya no de generar piezas aleatoriamente, sino indicdndole
informacion extra como autor, género, etc. En cuanto a la lista de objetivos secundarios
propuestos en la seccion 1 se ha llegado a cumplir todos los propuestos al méaximo
posible, excepto la implementacién del condicionamiento del Museformer. A pesar de
ello, se ha desarrollado un planteamiento teérico de los pasos y los detalles necesarios
para implementar el condicionamiento a partir del trabajo realizado.

Para finalizar a nivel personal este trabajo ha sido tanto de formacién en materia
casi totalmente desconocida como lo es el aprendizaje profundo, como aprendizaje de
implementacion en materia de entender de manera basica el lenguaje de programaciéon
Python, KETEX, la distribucién CentOS dentro de Linux para el manejo de la
maquina del laboratorio, junto a una cantidad elevada de horas para solucionar
problemas surgidos durante esta fase, entender de manera préactica la utilidad de los
parametros de entrenamiento e inferencia del Museformer y de forma tedrica las posibles
modificaciones que se le podrian hacer para implementar el condicionamiento de la
red. Han sido unos meses largos de trabajo, pero gracias a este esfuerzo ahora tengo
un entendimiento en un campo que hasta hace poco era desconocido para mi, junto
a unas habilidades bésicas en otros entornos que no he tratado durante los anos que

llevo en telecomunicaciones.
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1

2

Anexos A

Cddigo propio implementado
mediante scripts de Python

El objetivo de este anexo es proporcionar el cédigo de los scripts utilizados para
agilizar el proceso de procesamiento de los datos a la hora de entrenar la red del
Museformer. En estos scripts los directorios estan referidos al sistema operativo de
Windows, ya que el tratamiento de datos se ha realizado desde mi maquina personal,
ademas de incluir una ruta genérica que habria que sustituir por la asociada al directorio
donde se haya implementado Museformer en caso de querer probarlos. Para Linux o
Mac habria que consultar el formato de directorio que tengan.

Como primer script tenemos el que se encarga de filtrar las canciones utilizadas por

parte del Museformer desde la base de datos original LMD.

# Import Module
import os

# Folder Path
path = "data"

# Change the directory
os.chdir (path)

# Read data

with open("meta/train.txt","r") as train_file:
train_data = train_file.read().split(’\n’)

with open("meta/test.txt","r") as test_file:
test_data = test_file.read().split(’\n’)

5 with open("meta/valid.txt","r") as valid_file:

valid_data = valid_file.read().split(’\n’)
total_data = train_data + test_data + valid_data

# Move necesary data from directory A to B and check if it is doing
# correctly.
i=1
total_data_prime = total_data[l:len(total_data)]
for elem in total_data_prime:
src_path = ’X:\\...\\muzic\\museformer\\data\\1lmd_full\\’+elem
dst_path = ’X:\\...\\muzic\\museformer\\data\\midi_filt\\’+elem
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print(i,": "+elem)
i=1i+1
os.rename (src_path,dst_path)

#Just for debugging purposes.
print(len(total_data))

Como segundo script tenemos el que se encarga de generar los ficheros train, test y

valid para el paso de split data.

#Necesary libraries.
import random
import os

#Define path
path = "X:\\...\\muzic\\museformer"
os.chdir (path)

with open("data\\token\\token_names.txt", "r") as f:
data = f.read().split(’.txt\n’)

#Shuffling data to make it random and not ordered.
random.shuffle (data)

5 # From here to the end of code it’s just data organization and

# writting on file.

7 train_L = round(len(data) * 0.8)

test_L = round(len(data) * 0.1)
valid_L = round(len(data) * 0.1)

train_data = datal[O:train_L]
test_data = datal[train_L+1:train_L+test_L]
valid_data = datal[train_L+test_L+1:train_L+test_L+valid_L]

meta = path + "\\datal\\meta"
os.chdir (meta)

train = open("train.txt","w")
test = open("test.txt","w")
valid = open("valid.txt","w")

for data in train_data:
train.write (data)
train.write("\n")

5 train.close ()

for data in test_data:
test.write (data)
test.write("\n")

test.close ()

for data in valid_data:
valid.write (data)
valid.write("\n")

valid.close ()

El tercer y ultimo script se encarga de eliminar las extensiones .txt que le anade
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MidiProcessor a los tokens, los cuales provocan que el paso de split no se ejecute
correctamente.

import os

path = "X:\\...\\muzic\\museformer\\data\\meta"
os.chdir (path)

; # Change filename of the files to v'"...".txt before executing this
# code just in case to prevent erasing the files.

s with open("vtrain.txt", "r") as f:

Ltrain = f.read () .split(’.txt\n’)

Ltrain.clear (".txt") #This is for the final element.

with open("vtest.txt", "r") as f:

Ltest = f.read().split(’.txt\n’)

Ltest.clear (".txt")

; with open("vvalid.txt",

"r") as f:

Lvalid = f.read() .split(’.txt\n’)

Lvalid.clear(".txt")

train = open("train.txt","w")
test = open("test.txt","w")
valid = open("valid.txt","w")

for index,element in enumerate(Ltrain):

train.write(element)

if (index !'= len(Ltrain-1)):

train.write ("\n"
train.close ()

for index,element in enumerate(Ltest):

test.write(element)

if (index '= len(Ltest-1)):

test.write("\n")
test.close ()

for index,element in enumerate(Lvalid):

valid.write(element)

if (index '= len(Lvalid-1)):

valid.write("\n"
valid.close ()

)

)
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