
Trabajo Fin de Grado

Detección de malware utilizando técnicas de machine
learning

Malware detection using machine learning techniques

Autor/es
Julia Varea Palacios

Director/es
Pedro Javier Álvarez Pérez-Aradrós

Codirector/es
Razvan Raducu

Departamento
Informática e Ingeniería de Sistemas

Centro
Escuela de Ingeniería y Arquitectura

Titulación del autor
Grado en Ingeniería Informática

Escuela de Ingeniería y Arquitectura
2024

Resumen
En la era digital actual la ciberseguridad se ha convertido en un elemento crítico para
individuos, empresas e instituciones de todo el mundo. Frente al aumento del número
de muestras de malware recopiladas y de su constante evolución, las técnicas de Ma-
chine Learning se presentan como una solución novedosa para la detección efectiva del
malware.

Este trabajo se centra en la detección de malware, identificando si una muestra es
maligna o no, empleando técnicas de Machine Learning para reconocer y clasificar
muestras de software maligno en sus categorías o familias correspondientes.

Mediante la automatización del proceso de detección de comportamientos maliciosos en
trazas de ejecución de sistemas software y aplicando modelos de Machine Learning, el
propósito de este trabajo es investigar la eficacia de técnicas de Machine Learning para
la detección de malware.

Para llevar a cabo el proyecto, el primer paso es la selección de un dataset adecuado que
contenga muestras de varias familias de malware con sus trazas de ejecución. Una vez
conseguido, se comenzará el proceso de filtrado y preparado de los datos hasta obtener
un dataset que se adecue a las necesidades del proyecto.

Estos datos se someten a una serie de procesos de extracción de n-gramas, de creación
de diccionarios y un cálculo de features para obtener características clasificatorias para
cada una de las familias de malware.

Para cada conjunto de features calculadas con cada valor de n se crean modelos de
Machine Learning. Estos modelos emplean varios clasificadores (KNN, SVM, Gradient
Boosting y Regresión Logística) y se calcularán tanto clasificadores simples (un clasifi-
cador por familia de malware) como clasificadores múltiples (un solo modelo capaz de
clasificar todas las muestras). Una vez obtenidos todos los modelos se calculan métricas
para realizar una comparación de todos ellos.

Al analizarlos se ha observado que los resultados obtenidos por los clasificadores múlti-
ples superan los obtenidos por los clasificadores simples.

Para intentar mejorar los valores obtenidos por los modelos se implementará una mejora
basada en el filtrado de categorías de interés. Se definió una categoría de interés como
una categoría de llamadas al sistema asociada con comportamientos maliciosos o que
hagan vulnerable al sistema.

Tras analizar los nuevos resultados se observa que la totalidad de los valores devueltos
mejora, tanto en los clasificadores simples como en los clasificadores múltiples. Esto
demuestra que la mejora implementada es efectiva a la hora de detectar y clasificar
distintas categorías de malware, independientemente del modelo utilizado para la cla-
sificación de las mismas.

Gracias a la automatización del proceso, este proyecto abre paso a poder realizar tra-
bajos futuros, añadiendo más funcionalidades o aplicando el proceso a otros datasets.

2

Índice

1. Introducción 4
1.1. Contexto del trabajo . 4
1.2. Técnicas de análisis y deteccción . 5
1.3. Problema a resolver . 7
1.4. Objetivos del proyecto . 8
1.5. Estructura de la memoria . 8

2. Detección de malware basado en IA 10
2.1. Técnicas habituales de Inteligencia Artificial 10
2.2. Técnicas de aprendizaje basado en Machine Learning 11
2.3. Trazas y extracción de n-gramas . 12
2.4. Trabajos similares . 13

3. Modelos para el reconocimiento de malware basado en n-gramas 14
3.1. Proceso para programación de modelos de detección 14
3.2. Metodología . 15
3.3. Descripción del dataset . 16
3.4. Sistemas de reconocimiento a programar 17
3.5. Discusión sobre los resultados . 35

4. Evaluación de mejoras 36
4.1. Filtrado basado en categorías de interés 36
4.2. Sistemas de reconocimiento a programar 37
4.3. Resultados obtenidos . 37
4.4. Discusión sobre los resultados . 50

5. Conclusiones y trabajo futuros 51
5.1. Conclusiones técnicas . 51
5.2. Conclusiones personales . 51
5.3. Trabajo futuro . 52

6. Bibliografía 53

Apéndice A. Glosario 58

3

1. Introducción

Este primer capítulo de introducción se abordan aspectos esenciales a la hora de enten-
der el contexto del trabajo. Inicia poniendo en contexto esencial en el que se desarrolla
el proyecto e identificando los problemas a abordar, finalizando estableciendo los obje-
tivos del trabajo. Además, se proporcionará una visión general de la organización del
documento.

1.1. Contexto del trabajo

El software malicioso, del inglés malicious software (malware), es un programa que
realiza acciones dañinas en un sistema informático de forma intencionada y sin el co-
nocimiento del usuario. Afecta a la integridad, disponibilidad y confidencialidad de los
datos y los sistemas que los contienen, por lo que debe ser un tema que cause gran
preocupación a todas las personas que usen un ordenador, ya sea en casas particulares,
empresas o instituciones públicas.

En los últimos años, se ha visto un aumento considerable en el número de ciberataques,
amenazas y muestras de malware recolectadas por los proveedores de antivirus [1] [2].
La gran mayoría de archivos considerados maliciosos son ejecutables de Windows, pu-
diéndose ver una disminución drástica, del 97 %, en el número de ficheros maliciosos en
otros sistemas operativos como MacOS. También se puede apreciar que el número de
ataques de día cero nuevos alcanzó un nuevo récord, duplicando los encontrados el año
anterior [3].

Así mismo, durante 2021 se observó un aumento del 24 % respecto al año anterior
del número de muestras dedicadas a explotar vulnerabilidades, y si añadimos exploits
[4] aumentaría hasta el 30 % [3]. Por todas estas razones, el número de estudios e
investigación en temas de ciberseguridad ha aumentado.

Como se puede ver en [5], el número total de muestras de malware y otro tipo de
programas no deseados ha ido en constante crecimiento, cada año superando al anterior.
En este trabajo nos centraremos en la detección de malware cuyo objetivo es el sistema
operativo Windows debido a su predominancia y frecuencia de ocurrencia.

La identificación de malware se divide en dos grandes subcategorías: la detección [6] y
la clasificación [7]. La detección de malware es el proceso de identificar si un programa
es o no software malicioso y una vez detectado, la clasificación de malware se dedica a
decidir a qué categoría o familia de malware pertenece. Las técnicas empleadas para la
clasificación de malware serán explicadas en más detalle en secciones futuras.

Es un problema complejo, ya que el software malicioso emplea herramientas para ocul-
tar su presencia y entorpecer su análisis. Las técnicas más comunes [8] incluyen los
metamorfismos [9], polimorfismos [10] y la ofuscación de código [11].

Existen técnicas diversas dedicadas a la detección de software malicioso, entre ellas cabe
destacar:

4

Análisis de firmas [12]: basándose en patrones de comportamiento conocidos,
identifican si el código es malicioso. Este tipo de técnicas se emplean principal-
mente en antivirus, manteniendo bases de datos con firmas conocidas que van
actualizando.

Análisis heurístico [13]: este tipo de técnicas ayudan a detectar malware si no
ha sido reconocido por ninguna de las firmas conocidas. No analizará la firma del
malware, sino que se centra en análisis estadísticos y de tiempo de ejecución. Esto
permite detectar muestras de malware previamente desconocidas.

Aprendizaje automático [14]: analiza grandes conjuntos de datos detectando
patrones en ellos para tratar de predecir si el software es maligno. Este enfoque es
especialmente útil para reconocer muestras de malware nuevo y se lleva aplicando
durante décadas a la hora de detectar malware [15].

Análisis de comportamiento [16]: método que se apoya de técnicas de apren-
dizaje automático e inteligencia artificial, entre otros, para detectar conductas
maliciosas. Observa el comportamiento en tiempo real del código y monitoriza las
acciones realizadas por el programa.

Entre las estrategias más utilizadas a la hora de clasificar muestra de malware tenemos
el Machine Learning y el Deep Learning. Dentro de Machine Learning existen distintos
tipos de aprendizaje, que aunque se explicaran en detalle en capítulos posteriores, se
mencionarán brevemente a continuación. Los distintos tipos son aprendizaje supervisa-
do, no supervisado, semi-supervisado y reforzado.

El dominio en el que se va a centrar este trabajo es el de la detección de malware, más
concretamente empleando técnicas de Machine Learning para el reconocimiento y la
clasificación de muestras de software maligno.

1.2. Técnicas de análisis y deteccción

En la actualidad, las técnicas más empleadas para la detección de malware se pueden
dividir en tres: análisis estático, dinámico e híbrido. Este trabajo hace uso de muestras
de código extraídas empleando análisis dinámico.

En el análisis estático [17] [18], la muestra de código maligno se estudia sin ser ejecu-
tada, siendo la manera más segura de analizar malware. Principalmente, es empleado
para analizar el código binario [19] (o ensamblador) de un programa, generalmente
empleado por analistas para buscar indicios y determinar si un programa de origen des-
conocido es malicioso mediante técnicas como la ingeniería inversa. Este tipo de análisis
no solamente examina el código fuente [20] o binario, sino que también emplea otro ti-
po de técnicas como identificación de patrones conocidos, análisis de dependencias y
generación de firmas, entre otros.

Este tipo de análisis trata de comprender la estructura y el comportamiento del software
sin ejecutarlo. Sin embargo, esta técnica tiene limitaciones, ya que el malware podría
implementar técnicas que dificulten su comprensión y camuflen sus intenciones como,
por ejemplo, ofuscación de código o técnicas anti-debug.

5

El análisis dinámico [21] ejecuta el código malicioso, idealmente, en entornos aisla-
dos, controlados y monitorizados (comúnmente llamados sandbox [22]) para analizar su
comportamiento en tiempo real. Este método proporciona más información acerca de
las acciones del software bajo análisis, ya que permite detectar, entre otros, cambios en
el registro del sistema, en el sistema de ficheros o llamadas al sistema.

Sin embargo, este tipo de análisis se puede ver comprometido si el malware implementa
técnicas de evasión para detectar la presencia del sandbox y, en ese caso, cambiar su
comportamiento o bien finalizar la ejecución directamente, no llegando nunca a ejecutar
el comportamiento malicioso. Este tipo de análisis es esencial para detectar variantes
del software que quizá hayan empleado técnicas de polimorfismo para modificar su
comportamiento en tiempo real y, por lo tanto, dificultar su análisis estático.

El análisis híbrido combina técnicas de los análisis estático y dinámico para examinar
comportamientos de programas maliciosos. Al integrar ambas técnicas, busca obtener
una visión más completa del malware.

Una vez empleado alguno de los análisis mencionados se deben aplicar técnicas de
detección para saber si la muestra analizada es o no es maliciosa, las dos principales
son la detección basada en firmas y la basada en anomalías.

La detección basada en firmas [23] [24] es el enfoque clásico empleado por los anti-
virus y consiste en generar una firma de la muestra que se está analizando y compararla
con las firmas ya presentes en una o varias bases de firmas, que se corresponden con
malware ya conocido. Estas firmas pueden ser desde el hash del fichero que se está
analizando hasta un conjunto de patrones únicos o características específicas asociadas
a la muestra que se está analizando.

Este método de detección sigue siendo una herramienta fundamental a la hora de detec-
tar amenazas de manera rápida, pero no es muy efectivo en detectar amenazas desco-
nocidas hasta la fecha. Su combinación con planteamientos más avanzados es empleado
para detectar amenazas desconocidas.

A diferencia de la detección basada en firmas, la detección basada en anomalías
[25] busca encontrar desviaciones en la ejecución normal de un programa. Para conse-
guirlo se debe conocer previamente cuál es su comportamiento normal y para ello se
crean modelos del comportamiento normal del sistema, esta sería la primera fase de la
detección. La siguiente fase consiste en la detección y monitorización, en ella se vigila
que hace el software y se actúa sobre ellas.

Este enfoque puede detectar nuevas amenazas y ataques de día cero, pero a menu-
do resulta en una alta tasa de falsos positivos (detecta como malware programas que
realmente no lo son), ya que se centra en identificar comportamientos inusuales o com-
portamientos atípicos. Por este motivo hay que ser muy cuidadoso en la configuración
del modelo para evitar alertas innecesarias.

6

1.3. Problema a resolver

El problema que este trabajo busca resolver es la detección y reconocimiento de malwa-
re empleando trazas de llamadas al sistema, una secuencia ordenada de solicitudes
realizadas por un programa a funciones del sistema operativo [26]. Estas contienen
las funciones y llamadas al sistema obtenidas durante la ejecución de cada una de las
muestras. Las trazas empleadas se obtuvieron del dataset APIMDS (API-based malware
detection system), el cual se explicará en más detalle en la sección 3.

Este dataset incluye trazas con su secuencia de llamadas a APIs y al sistema, así como
el hash de cada una de ellas y la familia de malware a la que pertenecen. Las APIs
son un conjunto de protocolos utilizados en el desarrollo e integración de software en
aplicaciones, permitiendo la comunicación entre dos aplicaciones a través del conjunto
de protocolos establecido [27].

Para cada una de estas trazas, la recolección de las llamadas a APIs se realizó empleando
análisis dinámico en un entorno virtual [28]. Aunque las trazas incluidas en el conjunto
de datos seleccionado se hayan conseguido tras emplear análisis dinámico del código,
este trabajo realizará un análisis estático de las llamadas al sistema.

Se van a procesar las trazas para extraer n-gramas, sub secuencias de n ítems que se su-
perponen entre si. Estos n-gramas representan partes de comportamiento y se utilizarán
para detectar patrones comunes entre muestras de la misma familia de malware.

Existen muchos tipos de malware, pero a continuación se explicarán los tres principales
en los que se centra este trabajo. Estos tipos son parte de los presentes en el dataset
elegido y la exclusión de los restantes será explicada en capítulos posteriores.

Pup [29] o programa potencialmente indeseable: programas que suelen ins-
talarse junto a programas que los usuarios sí quieren instalar. A menudo causan
problemas de ralentización, rastreos y saturación del sistema, aunque en algunos
casos terminan siendo de utilidad.

Trojan [30] o Troyano: a menudo se camufla como software legítimo, pero se em-
plean para acceder a los sistemas de manera ilegítima y comprometerlos llevando
a cabo robos de información mediante el uso de puertas traseras.

Worm [31] o Gusano: tipo de software malicioso diseñado para auto-replicarse
e infectar el mayor número de dispositivos posible, muchas veces sin necesidad de
interacción por parte del usuario.

Todas las APIs que aparecen siguen la especificación Windows API [32] y todas ellas
se pueden ver en [33]. Todas ellas se pueden dividir en categorías dependiendo de que
funciones lleven a cabo dentro del sistema, estas pueden ser de comunicación entre
procesos, almacenamiento, manejo de ficheros, entrada y salida, interfaz de usuario,
entre otros, pero no todas estas categorías tienen la misma criticidad dentro de un
sistema informático.

Basándonos en su repercusión en el sistema operativo, se han considerado como cate-
gorías críticas las de gestión de memoria, registros, ficheros, entrada y salida, comu-
nicaciones, mecanismos de sincronización y de procesos. La gestión efectiva de estos

7

recursos es esencial para garantizar la estabilidad general de un sistema operativo y su
correcta implementación y protección son cruciales para evitar problemas graves que
afecten a la vulnerabilidad y la integridad del sistema.

Se emplearán n-gramas calculados a partir de las trazas de APIs para detectar com-
portamientos comunes entre muestras de la misma familia de malware y realizar el
entrenamiento de los modelos de clasificación. Finalmente, estos resultados se comple-
mentarán con la implementación de un filtro de criticidad para la categoría de cada
API que forma el n-grama.

1.4. Objetivos del proyecto

El objetivo principal del trabajo es la detección de comportamiento malicioso en pro-
gramas a partir de sus trazas de ejecución de sistemas software, aplicando algoritmos
de aprendizaje supervisado y buscando los mejores modelos.

Este trabajo busca filtrar y procesar trazas de llamadas al sistema para extraer co-
nocimientos a nivel de comportamiento haciendo uso de n-gramas y de esta manera
caracterizar cada una de ellas.

Otro de los objetivos de este proyecto es programar y evaluar modelos de Machine Lear-
ning para la detección de malware utilizando los resultados obtenidos tras la extracción
de n-gramas. Como resultado final, se esperan obtener modelos capaces de clasificar
cada muestra de manera correcta y con valores de precisión, recall y f1-score elevados.

Adicionalmente, se extiende la funcionalidad añadiendo un filtrado de criticidad de
APIs. Se espera que la mejora implementada mejore los valores obtenidos para todos
los clasificadores anteriores, demostrando que realizar filtrados de criticidad de APIs es
una buena manera de eliminar datos sin valor del proceso de clasificación.

1.5. Estructura de la memoria

La memoria se ha dividido en los siguientes capítulos:

En la sección 2, Detección basado en IA, se presenta el dominio en el que se va a trabajar
en detalle, explicando las técnicas de IA utilizadas en el reconocimiento, entre otros.

La sección 3, Modelos para el reconocimiento de malware basado en n-gramas, está
dedicada a explicar el bloque principal del trabajo, desde el dataset empleado hasta los
resultados obtenidos.

A continuación, la sección 4, Evaluación de mejoras, describe las mejores realizadas
a las primeras versiones de los clasificadores, principalmente las relativas a considerar
categorías de interés.

La sección 5, Conclusiones y trabajo futuro, incluye las conclusiones finales del trabajo
y posibles trabajos futuros.

8

En la última sección 6, Bibliografía, se incluyen todos los artículos, webs y documentos
referenciados a lo largo de la memoria.

Los anexos incluyen contenido adicional relevante para la memoria, pero que por sim-
plicidad se han separado de la parte principal. El anexo A, Glosario, incluye una lista
con terminología necesaria para la comprensión del contenido de la memoria. En el
glosario también se podrá encontrar otra lista con los acrónimos utilizados a lo largo
de la memoria.

9

2. Detección de malware basado en IA

El impacto generado por el malware es un problema que lleva existiendo mucho tiempo,
pero en los últimos años hemos visto como las amenazas cibernéticas se han vuelto cada
vez más frecuentes y como la necesidad de fortalecer nuestra ciberseguridad se ha vuelto
imperativa.

El uso de técnicas de Inteligencia Artificial (IA) aplicadas a la Seguridad Informática
se está mostrando efectivo [34]. Su uso ha demostrado la mejora de las defensas y en la
reducción del tiempo de análisis y detección de amenazas [35].

La IA se presenta como una solución innovadora y prometedora para llevar a cabo
trabajos de protección y evaluación de la seguridad de un sistema informático. Estas
herramientas pueden simular ataques, detectar vulnerabilidades y aprender de ellos,
mejorando de forma continua con el tiempo en su precisión [36].

Una IA es capaz de aprender de los datos y tomar decisiones eficaces y rápidas ante
eventos inesperados, por lo que al menos el 40 % de las empresas habrían implementado
IA para mejorar su capacidad de detección y respuesta ante ciberdelincuentes [37]. Estas
herramientas pueden detectar posibles vulnerabilidades en sistemas informáticos de
manera más rápida y eficiente que los métodos tradicionales, transformando la industria
de la seguridad informática gracias a su precisión y eficacia [36]. La IA puede ser
una muy buena herramienta tanto para identificar vulnerabilidades como para detectar
amenazas [38], entre muchas otras aplicaciones posibles.

2.1. Técnicas habituales de Inteligencia Artificial

Las dos principales estrategias de uso de IA para detección de malware tienen que ver
con el Machine Learning y el Deep Learning. La técnica que se emplea en la realización
de este trabajo es la de Machine Learning.

El Machine Learning se centra en el desarrollo de algoritmos y modelos que permiten
aprender patrones utilizando técnicas estadísticas para producir clasificaciones, realizar
predicciones acerca de los datos y obtener información útil de los mismos. Son más
dependientes de la interacción humana para aprender, ya que estos determinan el con-
junto de características que se deben de tener en cuenta a la hora de diferenciar los
datos y necesitan datos más estructurados para realizar su aprendizaje [39].

La clasificación basada en features se basa en la idea de que muestras con compor-
tamientos maliciosos similares necesitan llamar a las mismas APIs con argumentos
similares. El primer paso siempre es ejecutar los programas en un entorno controlado,
seguido de un proceso de extracción y selección de características. A continuación, con
esas features, se crean modelos de aprendizaje capaces de predecir si una muestra es
maliciosa o no. En este trabajo nos centraremos en este tipo de clasificación.

En la sección siguiente se explicarán en más detalle los diferentes tipos de aprendizaje
presentes dentro de la rama del Machine Learning.

10

Los algoritmos de Deep Learning son aplicados a redes neuronales con una estructura
en capas formada por tres tipos de capas. Una inicial de entrada, capas ocultas que
aplican cálculos matemáticos a los datos y una capa final de salida. Uno de los princi-
pales retos al usar este tipo de algoritmos es seleccionar el número adecuado de capas
ocultas y de neuronas pertenecientes a cada una de ellas. Las capas iniciales se espe-
cializan en identificar detalles simples, mientras que las capas subsiguientes consiguen
gradualmente representaciones más complejas al combinar características aprendidas
en capas anteriores.

Este tipo de aprendizaje puede ser combinado con otras estrategias para conseguir
buenos resultados. Por ejemplo, en [40] se puede ver su uso en conjunto a la represen-
tación de cada muestra como una imagen donde las distintas secciones del código se
representan con texturas únicas.

Al contrario que los métodos de Machine Learning, los clasificadores de Deep Learning
son entrenados mediante aprendizaje de características en lugar de por algoritmos es-
pecíficos. Esto significa que pueden aprender patrones en lugar de necesitar que una
persona le defina los patrones que tiene que buscar en la muestra. Esto resulta en la
detección automática de features y clasificación de datos en varias clases [41].

2.2. Técnicas de aprendizaje basado en Machine Learning

Dentro del Machine Learning (ML), según [42] y [43], existen diferentes tipos de apren-
dizaje:

Aprendizaje Supervisado: tipo de ML que entrena un modelo a partir de
datos ya etiquetados. Que un dato esté etiquetado significa que se proporciona
la respuesta correcta o la categoría asociada a ese dato. Este tipo de modelos
predicen una salida en base al entrenamiento y el hecho de que los datos estén
etiquetados permite validar la salida para cada caso. Gracias a este aprendizaje
es posible realizar predicciones sobre datos nuevos. Este modelo es muy utilizado
en detección de spam [44]. Puede ser categorizado en dos tipos, clasificación y
regresión. La clasificación consiste en asignar una etiqueta o categoría a la entrada.
Estas etiquetas representan a la totalidad de los datos. El objetivo de la regresión
es predecir un valor numérico a partir de unas variables de entrada, buscando una
relación funcional entre los datos de entrada y los de salida. Un ejemplo del uso
de este tipo de aprendizaje se puede ver en [45].

Aprendizaje no Supervisado: en este tipo de aprendizaje, los modelos son en-
trenados con datos sin ningún tipo de etiquetado. Estos modelos tratan de obtener
información importante de los datos sin conocer con anterioridad su estructura.
Existen dos categorías principales dentro del Aprendizaje no Supervisado, el clus-
tering y la reducción de la dimensionalidad. El clustering agrupa un conjunto de
datos en subconjuntos con atributos similares. La reducción de la dimensionali-
dad busca reducir el número de variables o características del conjunto de datos
mientras conserva la información relevante con el objetivo de simplificar la repre-
sentación de los mismos, reduciendo la complejidad computacional de los modelos.
Un ejemplo del uso de aprendizaje no supervisado puede verse en [46].

11

Aprendizaje semi-supervisado: término medio entre los dos tipos anteriores,
ya que es entrenado con algunos datos etiquetados y muchos sin etiquetar. En
este tipo de aprendizaje el modelo es entrenado sin tener que entrenar un modelo
sin tener la totalidad de los datos categorizados. Es especialmente útil cuando la
recopilación de datos etiquetados es difícil y se dispone de una gran cantidad de
datos no categorizados. El uso de este tipo de aprendizaje se puede apreciar en
[47].

Aprendizaje Reforzado [48]: método de entrenamiento basado en recompensar
comportamientos mientras penaliza los indeseados. Este modelo no requiere datos
de entrenamiento etiquetados, ya que no se conoce de antemano la respuesta co-
rrecta. En lugar de ello, depende de un agente de refuerzo, cuya función es evaluar
y determinar si la tarea realizada se llevó a cabo de la manera más óptima posible.
Este agente toma decisiones secuenciales en un entorno dinámico, aprendiendo a
través de la retroalimentación en forma de recompensas o castigos, con el objetivo
de maximizar la recompensa acumulativa a lo largo del tiempo. Un ejemplo de la
aplicación de aprendizaje reforzado se puede ver en [49].

Este trabajo empleará técnicas de aprendizaje supervisado, ya que se hará uso de un
conjunto de datos de trazas de malware previamente etiquetados con las familias de
malware a las que pertenecen.

2.3. Trazas y extracción de n-gramas

Recientemente, el uso de n-gramas se ha convertido en una técnica de uso habitual
en el ámbito del estudio de malware [50] [51] [52]. Estos estudios presentan resultados
prometedores hacia la detección de malware haciendo uso de n-gramas.

Esto se debe a que esta técnica permite conocer qué conjunto de n-gramas son represen-
tativos, pudiendo así diferenciarlos de otros archivos similares, por lo tanto, permitiendo
su clasificación.

El objetivo del uso de n-gramas tiene que ver con analizar las secuencias de operaciones
que se realizan de manera conjunta, centrándonos así en comportamientos en vez de en
operaciones realizadas de manera individual.

De esta manera es más fácil identificar comportamientos similares dentro de una misma
familia de malware, ya que tienden a exhibir comportamientos similares.

El uso de n-gramas junto con IA para la detección de patrones, concretamente su uso
con malware, comienza con la extracción de una lista de los n-gramas presentes en la
muestra maligna. Esta lista es filtrada dependiendo del número o frecuencia de aparición
de cada n-grama. Una vez filtrada, esta lista se usa como entrada de los modelos de
predicción para que aprendan sobre qué conjuntos de n-gramas son indicios maliciosos.

Este trabajo hace uso de este enfoque, ya las características identificativas de cada
familia de malware se calculan haciendo uso de n-gramas. Estas características son em-
pleadas posteriormente para la creación y entrenamiento de modelos para la calcificación
de las muestras de malware.

12

2.4. Trabajos similares

En el proceso de preparación para la realización del proyecto se leyó mucha de la
literatura acerca de la clasificación de malware para entrar al contexto sobre el que se
iba a realizar el trabajo. De todos los artículos y bibliografía leída, estos destacan en
proximidad.

El primero de ellos es [53]. En este artículo se sigue una estrategia similar a la que
se explicara en este documento, ya que también se hace uso de n-gramas para crear
features a partir de las que calcular modelos para la clasificación de malware.

Una de las diferencias es el dataset empleado, ya que emplean binarios a partir de los
que extraen las APIs. Otra de las similitudes es el empleo de features de frecuencia de
n-gramas. Esta similitud no es tan importante, ya que la mayoría de los proyectos de
clasificación de malware emplean features estadísticas de este tipo.

Otro artículo con características similares es [28]. En este caso, la principal similitud
es el uso de features similares, similar al artículo explicado anteriormente. Las features
seleccionadas son frecuencias de apariciones de APIs, de APIs en categorías distintas o
de número de apariciones totales.

A diferencia del artículo anterior, este no usa n-gramas para extracción de caracterís-
ticas, pero aplica algoritmos similares a los aplicados en el alineamiento de cadenas de
ADN. Este enfoque nos pareció muy novedoso para extraer sub secuencias de patrones
en muestras de malware de la misma categoría.

En [54] se propone una detección de malware mediante la extracción de características
comunes entre ellos. Hace uso de n-gramas relevantes, calculados a partir de n-gramas
seleccionados por su frecuencia normalizada dentro del documento, y de combinaciones
de clasificadores gracias a WEKA, una plataforma software empleada en aprendizaje
automático y minería de datos.

El trabajo realizado en [50] también hace uso de trazas de llamadas al sistema a las
que posteriormente aplica modelos bag-of-n-grams [55]. Este tipo de modelos son co-
múnmente aplicados en clasificación de documentos, ya que representan textos como
un vector de frecuencias de palabras. Otra de las diferencias es el uso de RFE [56], ya
que en este trabajo se emplearán tests estadísticos para realizar la función de selección
de features.

Otro de los artículos que cabe mencionar es [51]. La principal diferencia es el uso de
un método de clasificación y detección de malware basado en n-gramas hexadecimales
y de bytes. Extraen unigramas de bytes de archivos benignos y malignos, y n-gramas
hexadecimales de muestra de malware. Las características utilizadas en el proceso de
clasificación son la combinación de los unigramas de bytes de bloque y n-gramas hexa-
decimales.

Por último, en [52] también se hace uso de los n-gramas, aunque de una manera distinta.
Cada muestra de malware se utiliza para determinar un solo vector de subfamilia al
que denominan centroide de familia. Este centroide se construye con los n-gramas que
aparecen con mayor frecuencia en la subfamilia

13

3. Modelos para el reconocimiento de malware basado
en n-gramas

En este capítulo se profundiza en la metodología y procesos aplicados en el desarrollo de
los modelos. Se explica detalladamente el conjunto de datos utilizado y se describen los
sistemas implementados. Finalmente, se presentan los resultados obtenidos, así como
una discusión y explicación de los mismos.

3.1. Proceso para programación de modelos de detección

Los pasos seguidos para llevar a cabo el proceso se pueden ver en la Figura 1 y aunque
se mencionaran brevemente a continuación con el objetivo de tener una idea general
del proceso, se explicaran en más detalle en las siguientes secciones.

El primer paso es encontrar un dataset que se adecue al trabajo que se va a realizar.
Una vez seleccionado se comienza el proceso de implementación, empleando el lenguaje
de programación Python, de un filtrado del dataset. Este filtrado se lleva a cabo para
preparar el dataset a las necesidades específicas del proyecto, eliminando datos que no
se van a utilizar.

A continuación se hace uso de una librería de cálculo de n-gramas para obtener los
n-gramas más representativos de cada traza y de esa manera crear diccionarios para
cada familia de malware.

Figura 1: Figura en alto nivel del proceso seguido.

Posteriormente, se calculan las features y se crean los datasets que se emplean para el
proceso de detección y clasificación de malware. El proceso de clasificación se lleva a
cabo en JupyterLab y se hizo uso de varios tests estadísticos (chi2 [57] y t-test [58]) y
distintos tipos de clasificadores (KNN [59], SVM [60], Gradient Boosting [61] y Regre-
sión Logística [62]). En este proceso se hace uso de clasificadores simples y múltiples.
Finalmente, se calculan los resultados y métricas para cada uno de ellos y se evalúan.
Las siguientes secciones están dedicadas a la explicación en detalle de cada uno de los
pasos mencionados.

Una vez analizados se presenta una idea de mejora basada en el filtrado de categorías de
interés, el proceso se pueden ver en la Figura 2. Este sistema pretende filtrar el número
n-gramas calculados por traza, reduciéndolos y seleccionando solo aquellos que tienen
un número de APIs pertenecientes a categorías de interés.

14

Figura 2: Figura en alto nivel del proceso seguido.

Por último se hace un análisis final de los resultados donde se explicará si han resultado
ser favorables y los valores finales para cada clasificador. La sección 4, Evaluación de
mejoras, se dedicará a la explicación de la idea de mejora implementada y la discusión
de sus resultados.

3.2. Metodología

Antes de comenzar con la explicación del proceso seguido es fundamental hablar de
las herramientas que se emplearon en el desarrollo de este trabajo. A continuación se
presentarán junto con su aplicación dentro del proyecto.

Python se destaca como el lenguaje de programación principal de este proyecto debido a
su facilidad de uso, su gran variedad de librerías especializadas y el conocimiento previo
que se tiene del propio lenguaje. Una de las librerías más esenciales en el desarrollo de
este proyecto es Scikit-Learn [63], una librería de aprendizaje automático fundamental
para desarrollar algoritmos de clasificación y la evaluación de modelos. Será utilizada
para entrenar y validar los modelos creados.

Otra de las herramientas fundamentales es JupyterLab, una interfaz de usuario basada
en web para Proyecto Jupyter. Proporciona un entorno de desarrollo interactivo para
trabajar con Jupyter Notebooks, código y datos [64]. Se va a emplear esta herramienta
para el proceso de clasificación de malware, empleando tanto clasificación simple como
múltiple.

Para la extracción de información relevante de las trazas de llamadas al sistema se
hace uso de la especificación Win32 así como de la librería nltk [65] de n-gramas. Esta
librería ofrece recursos para la tokenización y procesamiento del lenguaje natural.

Como se ha mencionado en secciones anteriores, este trabajo realizara un análisis es-
tático de las trazas de llamadas al sistema. Este análisis se lleva a cabo gracias a las
herramientas mencionadas.

15

3.3. Descripción del dataset

El primer paso fue encontrar un dataset adecuado, es decir, que contuviesen muestras
de varias familias de malware con sus trazas de ejecución y muestras de programas
benignos si fuese posible.

Una traza de ejecución describe la secuencia de acciones llevadas a cabo durante la eje-
cución de un programa. En este contexto específico, nos referimos a trazas de ejecución
como la secuencia de llamadas a APIs para cada una de las muestras.

Uno de los primeros datasets que se sopesaron fue Windows Malware Dataset with PE
API Calls [66]. Este dataset contiene muestras de 8 categorías de malware: Spyware,
Downloader, Trojan, Worms, Adware, Dropper, Virus y Backdoor. Contiene un número
de trazas similar para la mayoría de ellas, pero no contienen ninguna traza de código
benigno.

Otro de los datasets que se tuvieron en cuenta fue el Microsoft Malware Classification
Challenge [67]. El problema de este conjunto de datos es que solamente contiene los
binarios de los ejecutables. Un caso similar es el dataset de Malware Analysis Datasets:
API Call Sequences [68], ya que contiene trazas de ejecución, pero no aparecen las APIs
implicadas en cada llamada, sino un ID identificatorio de cada una de ella, haciendo
imposible identificarlas, ya que no se explica.

Por los motivos que se han explicado, ninguno de estos datasets encajaba con los ob-
jetivos del trabajo, por ese motivo se decidió utilizar el dataset APIMDS (API-based
malware detection system) [69]. Este conjunto de datos incluye un total de 23146 trazas
de código maligno de 5 categorías: Backdoor, Worm, Packed, PUP, Trojan y Miscelania,
así como de subcategorías. La ventaja que tiene es que también contiene los ejecutables
de los binarios de código benigno, pudiendo en un futuro poder emplearlos para obtener
las trazas de ejecución.

Este conjunto de datos se encuentra en un fichero con formato CSV. El fichero presenta
una estructura que consta de una primera columna que contiene el nombre de la clase
de malware analizado, uno de los mencionados anteriormente, o puede ser que esté
la celda vacía, en ese caso, correspondería a la categoría de Miscelania. La segunda
columna contiene un hash sha256 y a partir de la tercera columna se encuentra la
secuencia de APIs, toda ellas siguiendo el formato Win32.

Como se ha explicado anteriormente, el dataset elegido contiene 5 categorías de malwa-
re. Este trabajo nos centraremos en clasificar 3 de ellas. Las dos categorías con las que
no se trabajara son Packed y Backdoor. La razón de esta decisión es que ninguna de
las dos son un tipo de malware. El hecho de que un archivo haya sido empaquetado no
indica automáticamente que sea de carácter malicioso. Algo similar pasa con Backdoor,
ya que estos se consideran vectores de ataque y no constituyen un tipo específico de
malware.

16

3.4. Sistemas de reconocimiento a programar

En esta sección se explicarán todos los pasos presentados en el apartado anterior en
detalle. En la Figura 1 se puede ver un diagrama que pretende servir de apoyo visual a
las explicaciones futuras.

3.4.1. Filtrado y preparación de los datos

El primer paso fue trabajar con el dataset y filtrarlo para que se adecuase a las necesi-
dades del proyecto. Para conseguirlo se creó un script de Python para realizar el filtrado
de los datos. Queremos obtener trazas organizadas por tipo de malware con dos niveles
de abstracción: API y categorías de API. Estas abstracciones permiten simplificar la
representación de los datos, disminuyendo así su complejidad y de esta forma facilitar
la identificación de comportamientos maliciosos.

El objetivo del filtrado es obtener ficheros por familia de malware, eliminando el nombre
y el hash, dejando presente en la traza solamente las llamadas al sistema. El script
crea ficheros individuales en los que aparecen las trazas pertenecientes a la misma
familia. Este proceso se realiza recorriendo la colección de datos filtrando cada muestra,
aplicando expresiones regulares sobre el hash y el nombre, quedándonos solamente con
la lista de llamadas a APIs.

Una vez se tenían las trazas separadas por familia, el siguiente paso fue la extracción
de las categorías correspondientes a las que pertenecen cada una de las APIs. Estas
categorías hacen referencia al área de funcionalidad en la que se encuentra la API, estas
funcionalidades pueden ir desde el control de la exclusión mutua hasta controles del
ratón.

Para llevar a cabo este proceso se hizo uso de un fichero [70] JSON donde las claves son
cada una de las categorías y los valores son las funciones pertenecientes a esa categoría,
tal y como se puede ver en el Listado 1.

Se iteró el fichero JSON, creándose un diccionario donde las APIs actúan como claves
y las categorías como valor para optimizar el proceso de realizar consultas. Se crearon
ficheros para cada tipo de malware con la misma estructura de los generados en el paso
anterior, pero en este caso ya no aparecen las APIs sino su categoría.

17

{
"Dynamic Data Exchange (DDE)": [

"DdeSetQualityOfService",
"FreeDDElParam",
"ImpersonateDdeClientWindow",
"PackDDElParam",
"ReuseDDElParam",
"UnpackDDElParam"

],
"Windows Sockets (Winsock)": [

"accept",
"AcceptEx",
"bind",

...

Listado 1: Ejemplo del fichero usado para obtener las categorías de cada API.

3.4.2. Reconocedores binarios de 2 a 5 n-gramas

El siguiente paso fue obtener los n-gramas correspondientes a cada traza. Un n-grama
es una sub secuencia de ‘n’ ítems dada una secuencia. Esta ‘n’ puede ser de distintos
tamaños: 1 (unigrama), 2 (bigrama), 3 (trigrama), etc. . En este trabajo se calcularán los
resultados para n-gramas de 2 a 5. Muchos estudios han aplicado n-gramas al problema
de clasificación de malware y se ha demostrado que es una estrategia eficiente para
resolver problemas de clasificación [53].

Para poder aplicar n-gramas al proyecto, el primer paso fue encontrar una librería de
Python que se adecuase a las necesidades. Entre las librerías que se tuvieron en cuenta
se encuentran lpngram [71], python-ngram [72] y nltk [65].

La librería lpngram proporciona métodos para la recolección y suavizado de n-gramas,
de abstracción de secuencias, para análisis de patrones y es útil para el modelado
de lenguajes. La librería python-ngram extiende la clase “set”, utiliza medidas de
similitud entre n-gramas para la comparación de cadenas y es idónea para la búsqueda
de similitudes entre ellas, así como de agrupaciones de datos.

Finalmente, contamos con la librería elegida, la librería nltk. Esta proporciona am-
plios recursos para el procesamiento del lenguaje natural, proporciona bibliotecas para
la tokenización y clasificación y contiene funcionalidades complejas para el análisis y
razonamiento semántico, haciéndola versátil. Así mismo, nltk cuenta con una gran do-
cumentación, lo que facilita el aprendizaje y la eficiencia en el desarrollo del proyecto.

Una vez seleccionada la librería se comenzó con el proceso de cálculo de n-gramas, para
ello se creó un script de Python encargado de extraer los n-gramas a cada una de las
trazas. El proceso de extracción puede verse en el Listado 2, a cada una de las líneas del
fichero se les aplica la función extract ngrams (Línea 2), esta devuelve la línea separada
en n-gramas de tamaño num. A estos n-gramas se les aplica la función FreqDist (Línea
13) de la librería para obtener la frecuencia de cada uno de los n-gramas en la traza y

18

seleccionamos los primeros ‘n’ elementos.

1 # Generar n-grama
2 def extract_ngrams(data, num):
3 n_grams = ngrams(nltk.word_tokenize(data), num)
4 return [' '.join(grams) for grams in n_grams]
5
6 def create_ngrams(malware_data, fichero, num_ngrams, n):
7 fichero = open(fichero, 'w')
8
9 ngrams_malware = []
10 for line in malware_data.splitlines():
11 lista = extract_ngrams(line, num_ngrams)
12
13 frequency_distribution = FreqDist(lista)
14 ngrams = str(frequency_distribution.most_common(n))
15
16 ngrams_malware.append(ngrams)
17
18 # Escribir ngrams en fichero de salida
19 for element in ngrams_malware:
20 fichero.write(element + "\n")

Listado 2: Ejemplo del fichero usado para la extracción de n-gramas.

Una vez calculados los n-gramas por familia, el siguiente paso fue la creación de dic-
cionarios globales para cada familia de malware, donde la clave es cada n-grama y su
valor es su número de repeticiones. El porqué del uso de diccionarios proviene de la
eficiencia que proporcionan en la búsqueda de un n-grama en específico durante la fase
de creación y actualización del diccionario. Proveen una estructura de datos organizada
y eficiente para su posterior uso en la creación de modelos.

Utilizando expresiones regulares se extraen los n-gramas y el número de repeticiones
de cada uno de ellos. Como se van a calcular diccionarios globales a partir de muchas
trazas, puede ser que varios n-gramas coincidan entre ellas. Para solucionarlo, si un n-
grama ya ha sido añadido al diccionario, simplemente se actualizará el valor al número
de repeticiones existente.

Aprovechando que se tiene el número total de repeticiones por n-grama, se aplicó un
paso más de filtrado, calculándose el porcentaje de apariciones de cada uno de ellos y
eliminando los que no superen un valor mínimo de aparición. Los restantes se ordenan
por porcentaje de aparición, solamente quedándonos con los ‘n’ primeros, dándoles más
importancia a los que más aparecen. Tanto el valor ‘n’ como el valor mínimo de porcen-
taje de aparición son introducidos por el usuario, siendo estos valores completamente
personalizables.

Como el tamaño del dataset es grande, el valor seleccionado para el porcentaje mínimo
de aparición ha sido de 0.05, ya que escogiendo valores mayores el tamaño del diccionario

19

resultante se reducía considerablemente. Esto puede deberse a que en un conjunto de
datos grande, es común que aparezcan n-gramas únicos, pero muchos de ellos contener
frecuencias bajas. Filtrando por el umbral de 0.05 nos centramos en los n-gramas con
una mayor presencia dentro del dataset.

Como paso final se realizó la automatización de todo el proceso, calculándose todos los
resultados para n-gramas de 2 a 5 con longitud máxima 100 y el porcentaje de aparición
previamente explicado de 0.05. Las razones por las que se seleccionó 100 como valor
máximo tienen que ver conque cuando el valor aplicado a la longitud máxima era
mayor se obtenían gran cantidad de n-gramas con frecuencias de aparición muy bajas.
Así mismo, en artículos como en [53] también reducen la lista a los 100 primeros. Todos
estos parámetros son introducidos por el usuario y se calculan de manera automatizada.

3.4.3. Extracción de features

El objetivo de este paso es obtener un conjunto de datos representativo y útil para su
uso en la creación de modelos de aprendizaje. Una buena selección de features es crucial
para mejorar la precisión de los modelos.

El enfoque de la selección de features se basa en un análisis de la literatura científica
relacionada, así como de una selección personal previa de características que se consi-
deraban de relevancia. Se han incorporado conceptos respaldados por varios estudios
en el campo, los cuales se mencionarán a continuación.

Las features empleadas en [73] incluyen el porcentaje de aparición de categorías de cada
API presente en las trazas. En [53] podemos ver el uso de la frecuencia de cada n-grama
como feature y como se reduce la lista total a los 100 primeros. También emplean las
frecuencias de cada llamada. Finalmente, en [28] emplean el número total de llamadas
a cada API junto a su frecuencia de uso.

Tras esta revisión, la selección de features adoptada en este trabajo se centra en el
recuento total de repeticiones para cada n-grama en cada una de las trazas. Esta elección
se basa en las observaciones anteriores, ya que el uso de porcentajes o frecuencias,
así como el número de apariciones de APIs han sido empleados y han proporcionado
resultados significativos en investigaciones similares.

Como salida generada en este paso se obtiene un fichero por familia de malware que
contiene una línea por traza en la que aparecen el número de repeticiones de cada
n-grama.

3.4.4. Creación de datasets para clasificación

Para iniciar el proceso de clasificación de las muestras y desde este punto en adelante nos
sumergimos en la plataforma JupyterLab para llevar a cabo todos los pasos siguientes.

El primer paso fue obtener las features calculadas para cada familia de malware en
dos partes, una de train dedicada a realizar el entrenamiento de los modelos y otra de
test o validación, destinada a comprobar la eficacia del modelo. Este proceso se realiza

20

separando el conjunto de datos gracias a un script de Python en el que se introduce el
porcentaje de elementos presentes en el conjunto de train. En el caso de este proyecto
se utiliza un 80 % para datos de entrenamiento y un 20 % para datos de validación.
Usando estos elementos se crearon datasets para cada familia de malware.

La primera columna de todos los datasets indica el tipo de malware al que corresponde la
traza, los tipos siempre serán other o uno de los tipos de malware. El resto corresponde
el número de repeticiones de cada n-gram. Los datasets contienen un número de trazas
equilibrado, esto significa que hay el mismo número de trazas de other como del otro
tipo y todas tienen la misma longitud. Las trazas clasificadas como other no solamente
provienen de un tipo de malware sino de una mezcla de todos los tipos, excluyendo
claramente la categoría de malware sobre la que se está creando el dataset.

Una vez obtenidos los datasets, se comenzó con la creación de los modelos.

3.4.5. Programación de modelos

El siguiente paso es la creación de modelos. Este paso consta de varias fases: aplicar tests
estadísticos, seleccionar las mejores features, aplicar clasificadores y realizar prediccio-
nes. Los modelos creados en este trabajo se construyen mediante clasificadores simples
y múltiples. En este apartado se explicarán los clasificadores aplicados, explicando los
valores de entrada y salida, así como su comportamiento.

El primer paso es aplicar tests estadísticos. Su objetivo es determinar la eficacia con la
que las features describen el conjunto de datos, es decir, funcionan como una hipótesis.
Los tests aplicados son el chi2 [57] y el t-test [58], los cuales devuelven las features que
mejor describen el conjunto de datos. Una vez obtenidos sus resultados se selecciona las
mejores features devueltas por ambos para ser pasadas a los clasificadores. La manera
en la que se calculan las mejores features es aplicando estrategias de voting, donde las
features devueltas por los tests estadísticos son unificadas seleccionando las mejores de
cada uno de ellos.

El siguiente paso consiste en la creación de modelos a partir de diferentes algoritmos de
ML. Los algoritmos seleccionados han sido: KNN, SVM, Gradient Boosting y Regresión
Logística. Se han seleccionado estos cuatro algoritmos por su diversidad en el enfoque
que utilizan y su capacidad para trabajar con diferentes tipos de datos.

KNN: utiliza la proximidad para hacer clasificaciones o predicciones sobre la
agrupación de datos [59]. El algoritmo KNN funciona considerando puntos simi-
lares cercanos en un espacio de datos, donde la K hace referencia al número de
vecinos que se tienen en cuenta. Cuando este algoritmo realiza predicciones, mira
a sus vecinos cercanos empleando una medida de distancia entre puntos, como
por ejemplo la distancia euclídea.

SVM: encuentra la mejor línea o hiperplano que separe de la mejor forma posible
dos clases diferentes de datos [60]. Busca maximizar la distancia entre los puntos
más cercanos de las distintas clases. Une vez encontrada la línea o el hiperplano,
clasifica los nuevos puntos dependiendo del lado en el que caigan.

21

Gradient Boosting: técnica de aprendizaje automático utilizada para el análisis
de la regresión que produce un modelo predictivo uniendo modelos de predicción
débiles [61]. Comienza con un modelo simple y se centra en corregir sus errores
agregando modelos débiles. Cada modelo tiene un peso según su capacidad pa-
ra corregir dichos errores. Estos modelos mejoran gradualmente la precisión del
modelo.

Regresión Logística: modelo estadístico que estudia las relaciones entre un
conjunto de variables cuantitativas y una variable cualitativa [62] para predecir la
probabilidad de pertenencia a una categoría. Ajusta sus parámetros para maxi-
mizar dicha probabilidad y establece un umbral de decisión para la clasificación.

Para todos los modelos y clasificadores el entrenamiento se realiza empleando los datos
de train y se realizan predicciones con los datos de test, calculándose métricas para
comprobar el comportamiento del modelo. Un ejemplo de este proceso se puede ver en
el Listado 3.

Sin embargo, para mejorar la robustez de la evaluación también se aplica K-Fold Cross
Validation con un valor de k de 5, ya que proporciona un buen equilibrio entre varianza
y sesgo de estimación del rendimiento [74] del modelo. Este método permite evaluar los
modelos en múltiples divisiones para obtener la más confiable.

La función salida es la clase en la que se ha clasificado cada una de las muestras. En el
caso de los clasificadores simples solamente pueden ser dos valores (other y la clase de
malware con la que se entrena el modelo) y en los clasificadores múltiples pueden ser
cuatro (other, trojan, pup o worm).

Las métricas calculadas para la evaluación del rendimiento de los modelos son precision,
recall, f1-score y matrices de confusión [75]. Todos estos valores se guardaron en ficheros
CSV para que su posterior análisis fuese rápido. En estas tablas se puede ver el número
de n-gramas que se ha empleado, el modelo de ML utilizado y el número de trazas con
las que se ha realizado la creación del modelo. Así mismo también aparecen los valores
para cada una de las métricas calculadas.

1 # Crear modelo de KNN
2 model = KNeighborsClassifier()
3
4 # Entrenar con datos de train
5 model.fit(X_train, y_train)
6
7 # Realizar predicciones
8 y_predict = model.predict(X_test)

Listado 3: Ejemplo de creación, entrenamiento y realización de predicciones a modelos.

22

3.4.6. Clasificadores simples

A continuación se muestran los resultados obtenidos tras la clasificación y el uso de
los clasificadores simples de KNN, SVM, Gradient Boosting y Regresión Logística para
cada una de las categorías de malware presentes en el dataset. Aunque se calcularon
resultados para n-gramas desde 2 hasta 5, nos enfocaremos en aquellos que arrojaron
mejores resultados. Específicamente, los trigramas y 4-gramas fueron los que ofrecieron
mejores resultados.

Las Tablas 1, 2 y 3 contienen los resultados obtenidos con trigramas y las Figuras 3, 4
y 5 presentan las matrices de confusión para pup, trojan y worm respectivamente.

N-grams Modelo ML Num. traza precision recall f1 support mcc
3 KNN 2433 0.357 0.331 0.344 465 -0.214
3 svm 2433 0.5 0.865 0.634 465 0.098
3 gradient 2433 0.438 0.572 0.496 465 -0.101
3 regression 2433 0.516 0.731 0.605 465 0.112

Tabla 1: Resultados obtenidos para pup con trigramas.

N-grams Modelo ML Num. traza precision recall f1 support mcc
3 KNN 7314 0.678 0.825 0.744 1408 -0.011
3 svm 7314 0.754 0.765 0.759 1408 0.236
3 gradient 7314 0.646 0.546 0.592 1408 -0.084
3 regression 7314 0.722 0.695 0.708 1408 0.124

Tabla 2: Resultados obtenidos para trojan con trigramas.

N-grams Modelo ML Num. traza precision recall f1 support mcc
3 KNN 605 0.558 0.653 0.602 118 0.162
3 svm 605 0.361 0.559 0.439 118 -0.447
3 gradient 605 0.49 1 0.657 118 0.063
3 regression 605 0.375 0.585 0.457 118 -0.401

Tabla 3: Resultados obtenidos para worm con trigramas.

23

Figura 3: Matrices de confusión obtenidas con los clasificadores simples para pup em-
pleando trigramas.

24

Figura 4: Matrices de confusión obtenidas con los clasificadores simples para trojan
empleando trigramas.

25

Figura 5: Matrices de confusión obtenidas con los clasificadores simples para worm
empleando trigramas.

26

También se incluyen las Tablas 4, 5 y 6 que contienen los resultados obtenidos con
4-gramas y las Figuras 6, 7 y 8 que presentan las matrices de confusión para pup, trojan
y worm respectivamente.

N-grams Modelo ML Num. traza precision recall f1 support mcc
4 KNN 2433 0.415 0.645 0.505 468 -0.226
4 svm 2433 0.297 0.111 0.162 468 -0.172
4 gradient 2433 0.464 0.562 0.508 468 -0.039
4 regression 2433 0.27 0.128 0.174 468 -0.229

Tabla 4: Resultados obtenidos para pup con n-gramas de 4.

N-grams Modelo ML Num. traza precision recall f1 support mcc
4 KNN 7314 0.706 0.505 0.589 1474 -0.013
4 svm 7314 0.704 0.904 0.792 1474 -0.054
4 gradient 7314 0.624 0.361 0.457 1474 -0.163
4 regression 7314 0.707 0.943 0.808 1474 -0.041

Tabla 5: Resultados obtenidos para trojan con n-gramas de 4.

N-grams Modelo ML Num. traza precision recall f1 support mcc
4 KNN 605 0.527 0.556 0.541 124 0.031
4 svm 605 0.479 0.452 0.465 124 -0.065
4 gradient 605 0.403 0.452 0.426 124 -0.255
4 regression 605 0.495 0.444 0.468 124 -0.031

Tabla 6: Resultados obtenidos para worm con n-gramas de 4.

27

Figura 6: Matrices de confusión obtenidas con los clasificadores simples para pup em-
pleando 4-gramas.

28

Figura 7: Matrices de confusión obtenidas con los clasificadores simples para trojan
empleando 4-gramas.

29

Figura 8: Matrices de confusión obtenidas con los clasificadores simples para worm
empleando 4-gramas.

30

Como se puede apreciar en las tablas, los trigramas consiguen mejores resultados para
pup con SVM con f1-score de 0.634 (Tabla 1) y worm con Gradient Boosting con un
f1-score de 0.657 (Tabla 3).

En cambio, el mejor modelo para trojan es conseguido empleando 4-grams y Regresión
Logística dando un f1-score de 0.808 (Tabla 5). En todos ellos el mejor clasificador
varía.

El mejor modelo generado es el de trojan utilizando Regresión Logística y 4-gramas
(ver Figura 7). En el resultado podemos observar que la clasificación de trojan es muy
efectiva, con un f1-score de 0.81, en cambio, la clasificación de other devuelve un f1-
score de 0.06, dejando el valor medio en 0.59. Esto puede deberse a que el número
de muestras de trojan en comparación con su opuesto es mucho mayor y no contiene
solamente muestras de un tipo de malware.

La matriz nos muestra que 1390 muestras han sido categorizadas de manera correcta
como trojan y solamente 84 han sido mal clasificadas. En el caso de other podemos ver
que 575 muestras han sido mal clasificadas y solamente 22 han sido identificadas como
other.

3.4.7. Clasificadores múltiples

Una vez que se obtuvieron clasificadores simples que funcionaban correctamente, se
procedió a la implementación de clasificadores múltiples.

El dataset empleado varía un poco de los empleados en los clasificadores simples, ya que
en ellos solo existían dos tipos de clases a clasificar, en cambio, en este dataset están
presentes todas las categorías de malware y other que incluye el resto de muestras. Este
dataset también contiene un número de muestras balanceado. En cuanto al proceso
seguido, este no difiere del empleado en los clasificadores simples.

Como se podrá ver en los resultados obtenidos, no se calculó el resultado para Regresión
Logística, ya que el proceso de clasificación era el más largo y JupyterLab cortaba la
ejecución. Esto mismo pasaba cuando la longitud de la traza introducida era mayor a
100, de ahí una de las razones de seleccionar ese valor como longitud máxima de cada
traza.

La organización de los resultados está organizada de la misma manera que en apartado
anterior. La Tabla 7 contiene los resultados obtenidos con trigramas y las Figuras 9, 10
y 11 presentan las matrices de confusión obtenidas para cada clasificador.

N-grams Modelo ML precision recall f1 support mcc
3 KNN 0.758 0.782 0.762 2290 0.577
3 svm 0.712 0.737 0.713 2290 0.476
3 gradient 0.78 0.794 0.77 2290 0.591

Tabla 7: Resultados obtenidos para el clasificador múltiple usando trigramas.

También se incluye la Tabla 8 que muestra los resultados obtenidos con 4-gramas y las
Figuras 12, 13 y 14 presentan las matrices de confusión obtenidas para cada clasificador..

31

Figura 9: Matriz de confusión obtenida por el clasificador múltiple empleando KNN
para trigramas.

Figura 10: Matriz de confusión obtenida por el clasificador múltiple empleando SVM
para trigramas.

32

Figura 11: Matriz de confusión obtenida por el clasificador múltiple empleando Gradient
Boosting para trigramas.

n-grams Modelo ML precision recall f1 support mcc
4 KNN 0.769 0.789 0.772 2290 0.579
4 svm 0.727 0.751 0.726 2290 0.489
4 gradient 0.77 0.791 0.764 2290 0.575

Tabla 8: Resultados obtenidos para el clasificador múltiple usando n-gramas de 4.

Los resultados obtenidos por los clasificadores múltiples también se obtuvieron con
trigramas y 4-grams. Como se puede ver en las tablas, los 4-grams consiguen el mejor
valor al emplear KNN, ya que devuelve un valor de f1-score de 0.772 (Tabla 8), este valor
no tiene gran diferencia con el obtenido con los trigramas, ya que el mejor clasificador,
el Gradient Boosting, devuelve un valor de 0.77 (Tabla 7). Tanto en trigramas como en
4-gramas, el clasificador que peores resultados ha devuelto ha sido el SVM.

El mejor modelo fue conseguido tras aplicar KNN (ver Figura 12). Al analizar este
resultado podemos ver que el tipo de malware que mejor se clasifica es trojan con un
f1-score de 0.87, seguido de pup con 0.74, worm con 0.49 y finalmente other con 0.28,
dejando el valor medio en 0.77. Este orden sigue el del número de trazas disponibles
para cada una de las categorías de malware.

Otro elemento a tener en cuenta son los valores de la matriz de confusión. Podemos
ver que en todos los casos, excepto en el de other, la mayor parte de las muestras han
sido clasificadas de manera correcta. Podemos ver que 44 muestras han sido clasificadas
de manera correcta como other mientras que 116 han sido identificadas erróneamente
como trojan. En el caso de pup 370 han sido clasificadas correctamente y 81 como trojan.
El número de muestras correctamente clasificadas como trojan ha sido 1343, mientras
que 87 han sido clasificadas como pup. Finalmente, 49 muestras de worm han sido bien
clasificadas, mientras que 40 han sido clasificadas como trojan.

33

Figura 12: Matriz de confusión obtenida por el clasificador múltiple empleando KNN
para 4-gramas.

Figura 13: Matriz de confusión obtenida por el clasificador múltiple empleando SVM
para 4-gramas.

34

Figura 14: Matriz de confusión obtenida por el clasificador múltiple empleando Gradient
Boosting para 4-gramas.

Las muestras no identificadas correctamente como trojan han sido confundidas, en su
mayoría, con pup. Esto también pasa con las muestras de pup, worm y other, mal
clasificadas en su mayoría como trojan.

3.5. Discusión sobre los resultados

En esta sección se aborda la comparación entre los resultados obtenidos por los clasifi-
cadores simples y los clasificadores múltiples. El análisis se centra en evaluar la eficacia
de ambos enfoques para identificar la aproximación más efectiva para la clasificación
de malware.

Tras haber analizado todos los resultados, se puede ver que los resultados obtenidos
por los clasificadores múltiples superan a los obtenidos por los clasificadores simples,
exceptuando el caso de trojan empleando Regresión Logística, ya que devuelve un f1-
score de 0.808, mayor que los resultados devueltos por cualquier clasificador múltiple.

La aproximación que se muestra más efectiva es la utilización de clasificación múltiple.
En general, los resultados obtenidos superan a los devueltos por los clasificadores sim-
ples, indicando una mayor capacidad para manejar la diversidad de las categorías de
malware que presenta el dataset. Casos como el clasificador simple de trojan menciona-
do, que devuelve un resultado que mejora los obtenidos por los clasificadores múltiples,
necesitan de un análisis detallado, ya que puede ser que empleando Regresión Logística
y clasificación múltiple en otro entorno se obtengan aún mejores resultados.

Tras analizar la efectividad de los clasificadores, se sugiere la posibilidad de mejorar
enfoques mejores al actual. La estrategia decidida es la implementación de un filtrado
más específico de los n-gramas.

35

4. Evaluación de mejoras

Una vez ya analizados los resultados se decidió intentar mejorarlo. La opción por la que
se optó fue realizar un filtrado de los n-gramas basado en categorías de interés. Cen-
trarse en categorías que sean más vulnerables a ser relacionadas con comportamientos
maliciosos puede tener un impacto significativo en la precisión de los modelos.

4.1. Filtrado basado en categorías de interés

El filtrado basado en categorías de interés busca mejorar los resultados obtenidos por los
clasificadores. Para conseguirlo se propuso un filtrado de los n-gramas para quedarnos
y calcular features a partir de una selección de n-gramas que se consideren relevantes.

Los paso seguidos para la implementación de esta mejora se pueden ver en la Figura
15. Como se puede ver se ha añadido un paso adicional llamado “Selección de n-gramas
relevantes” pero el resto del proceso no ha tenido modificaciones.

El primer paso a realizar para llevar a cabo el filtrado fue hacer una selección de ca-
tegorías relevantes. Se recopilaron una serie de categorías de APIs más asociadas con
comportamientos maliciosos o que su uso hiciese más vulnerable el sistema informático.
Todas ellas se obtuvieron del fichero listado en el Listado 1, ya explicado anteriormente.
Estas categorías son: Files and I/O (Local file system), Cryptography, Cryptographic
Next Generation (CNG), CNG Cryptographic Primitive, Network Management, Win-
dows Networking (WNet), Windows Internet (WinINet), Windows Sockets (Winsock),
Memory Management, Processes, Synchronization, Registry y System Information Fun-
ctions.

A continuación se realiza el filtrado de los n-gramas, seleccionando aquellos n-gramas
que contengan dos o más APIs de las categorías relevantes. Una vez realizado el filtrado
se calculan el mismo tipo de resultados, estos serán explicados y comentados en las
próximas secciones.

Figura 15: Figura en alto nivel del proceso seguido.

36

4.2. Sistemas de reconocimiento a programar

El principal sistema a programar en este proceso fue un script de Python encargado de
realizar el filtrado y selección de los n-gramas relevantes. Una vez terminado, el script
se añadió al proceso automatizado final.

El primer paso fue crear un índice con los contenidos del JSON de categorías. De esta
manera es más eficiente realizar búsquedas para cada API que haya en los n-gramas.
Este índice se utiliza para obtener la categoría de cada API, creándose una lista con
ellas. Esta lista se compara con las categorías previamente seleccionadas como relevantes
y si el número de categorías relevantes es igual o mayor a 2 el n-grama se guardará en
un diccionario final, utilizado para calcular las features en pasos posteriores.

Finalmente, el resto del sistema se deja igual, añadiéndose este paso como adicional al
proceso automatizado que ya se tenía.

4.3. Resultados obtenidos

En esta sección se discutirán y analizarán los resultados obtenidos. Se realizará del
mismo modo que en apartados anteriores, comenzando por los resultados de los cla-
sificadores simples y finalizando con los devueltos por los clasificadores múltiples. Los
algoritmos seleccionados para el proceso son iguales a los empleados en las clasifica-
ciones anteriores. Estos algoritmos son KNN, SVM, Gradient Boosting y Regresión
Logística.

Nos centraremos en explicar los mejores resultados obtenidos con n-gramas desde 2
hasta 5. Tal y como pasaba en el proceso de clasificación anterior, estos resultados
fueron obtenidos con trigramas y 4-gramas.

Comenzando con los resultados obtenidos con los clasificadores simples, las Tablas 9,
10 y 11 contienen los resultados obtenidos con trigramas y las Figuras 16, 17 y 18
presentan las matrices de confusión para pup, trojan y worm respectivamente.

N-grams Modelo ML Num. traza precision recall f1 support mcc
3 KNN 2433 0.468 0.497 0.482 465 -0.02
3 svm 2433 0.556 0.927 0.695 465 0.311
3 gradient 2433 0.949 0.4 0.563 465 0.474
3 regression 2433 0.613 0.929 0.738 465 0.439

Tabla 9: Resultados obtenidos para pup con trigramas empleando filtrado de categorías
relevantes.

37

Figura 16: Matriz de confusión obtenida por el clasificador simple empleando trigramas
para pup.

38

N-grams Modelo ML Num. traza precision recall f1 support mcc
3 KNN 7314 0.682 0.616 0.648 1408 0.007
3 svm 7314 0.777 0.984 0.868 1408 0.518
3 gradient 7314 0.681 0.996 0.809 1408 0.021
3 regression 7314 0.788 0.976 0.872 1408 0.536

Tabla 10: Resultados obtenidos para trojan con trigramas empleando filtrado de cate-
gorías relevantes.

N-grams Modelo ML Num. traza precision recall f1 support mcc
3 KNN 605 0.474 0.839 0.606 118 -0.07
3 svm 605 0.55 0.932 0.692 118 0.272
3 gradient 605 0.496 1 0.663 118 0.126
3 regression 605 0.642 0.941 0.763 118 0.488

Tabla 11: Resultados obtenidos para worm con trigramas empleando filtrado de cate-
gorías relevantes.

39

Figura 17: Matriz de confusión obtenida por el clasificador simple empleando trigramas
para trojan.

40

Figura 18: Matriz de confusión obtenida por el clasificador simple empleando trigramas
para worm.

41

También se pueden ver las Tablas 12, 13 y 14 contienen los resultados obtenidos con
4-gramas y las Figuras 19, 20 y 21 que contienen las matrices de confusión para pup,
trojan y worm respectivamente.

N-grams Modelo ML Num. traza precision recall f1 support mcc
4 KNN 2433 0.452 0.528 0.487 468 -0.066
4 svm 2433 0.553 0.934 0.695 468 0.301
4 gradient 2433 0.841 0.417 0.557 468 0.403
4 regression 2433 0.621 0.942 0.749 468 0.462

Tabla 12: Resultados obtenidos para pup con n-gramas de 4 empleando filtrado de
categorías relevantes.

N-grams Modelo ML Num. traza precision recall f1 support mcc
4 KNN 7314 0.714 0.594 0.649 1474 0.006
4 svm 7314 0.789 0.989 0.878 1474 0.492
4 gradient 7314 0.714 0.995 0.831 1474 0.053
4 regression 7314 0.819 0.927 0.87 1474 0.481

Tabla 13: Resultados obtenidos para trojan con n-gramas de 4 empleando filtrado de
categorías relevantes.

N-grams Modelo ML Num. traza precision recall f1 support mcc
4 KNN 605 0.502 0.944 0.655 124 -0.104
4 svm 605 0.515 1 0.679 124 0.066
4 gradient 605 0.521 1 0.685 124 0.133
4 regression 605 0.674 1 0.805 124 0.576

Tabla 14: Resultados obtenidos para worm con n-gramas de 4 empleando filtrado de
categorías relevantes.

42

Figura 19: Matriz de confusión obtenida por el clasificador simple empleando 4-gramas
para pup.

43

Figura 20: Matriz de confusión obtenida por el clasificador simple empleando 4-gramas
para trojan.

44

Figura 21: Matriz de confusión obtenida por el clasificador simple empleando 4-gramas
para worm.

45

Como se puede ver en las Tablas, los mejores resultados obtenidos para cada clase
se han conseguido al emplear 4-grams al conseguir un f1-score de 0.749 para pup con
Regresión Logística (Tabla 12), para trojan con KNN un f1-score de 0.878 (Tabla 13)
y para worm con Regresión Logística un f1-score de 0.805 (Tabla 14).

El mejor modelo generado por los clasificadores simples fue el de trojan utilizando
SVM con 4-gramas (ver Figura 20). Se puede observar que la clasificación de trojan es
efectiva, teniendo un valor de 0.88 en el f1-score. En cambio, la clasificación de other
resulta con un f1-score de 0.51, mejorando bastante el resultado obtenido sin aplicar el
filtrado. Esto deja el valor medio en un 0.77, mejorando claramente la media obtenida
anteriormente, de 0.59.

En la matriz podemos ver que 1458 muestras han sido bien clasificadas como trojan,
dejando 16 mal clasificadas. En el caso de other solamente 208 muestras han sido
bien identificadas, dejando 389 mal clasificadas. Estos valores son una gran mejora
comparándolos con los obtenidos sin aplicar el filtrado de categorías.

En cuanto a los resultados obtenidos por los clasificadores múltiples, la Tabla 15 contiene
los resultados obtenidos con trigramas y las Figuras 22, 23 y 24 presentan las matrices
de confusión para cada clasificador.

N-grams Modelo ML precision recall f1 support mcc
3 KNN 0.789 0.801 0.788 2287 0.614
3 svm 0.716 0.729 0.683 2287 0.43
3 gradient 0.796 0.794 0.76 2287 0.586

Tabla 15: Resultados obtenidos para el clasificador múltiple usando trigramas emplean-
do filtrado de categorías relevantes.

Figura 22: Matriz de confusión obtenida por el clasificador múltiple empleando KNN
para trigramas.

Los resultados obtenidos con 4-gramas pueden verse en la Tabla 16 junto con las ma-
trices de confusión obtenidas para cada clasificador en las Figuras 25, 26 y 27.

46

Figura 23: Matriz de confusión obtenida por el clasificador múltiple empleando SVM
para trigramas.

Figura 24: Matriz de confusión obtenida por el clasificador múltiple empleando KNN
para trigramas.

47

Figura 25: Matriz de confusión obtenida por el clasificador múltiple empleando KNN
para 4-gramas.

Figura 26: Matriz de confusión obtenida por el clasificador múltiple empleando SVM
para 4-gramas.

48

n-grams Modelo ML precision recall f1 support mcc
4 KNN 0.787 0.801 0.78 2287 0.612
4 svm 0.768 0.725 0.666 2287 0.431
4 gradient 0.786 0.79 0.758 2287 0.584

Tabla 16: Resultados obtenidos para el clasificador múltiple usando n-gramas de 4
empleando filtrado de categorías relevantes.

Figura 27: Matriz de confusión obtenida por el clasificador múltiple empleando Gradient
Boosting para 4-gramas.

Al analizar las tablas podemos ver que los valores obtenidos por los trigramas superan
a los del los 4-gramas, aunque no con una gran ventaja, ya que los valores son muy
cercanos en ambos casos. El mejor resultado para ambos se consigue al aplicar KNN,
en el caso de los trigramas se obtiene un f1-score de 0.788 (Tabla 15) y en los 4-grams
un valor de 0.78 (Tabla 16).

De la misma manera que ocurría en los resultados sin filtrado, el mejor modelo calculado
por los clasificadores múltiples fue conseguido tras aplicar KNN (ver Figura 22), pero
en este caso con trigramas. Tal y como se ha observado en los resultados obtenidos
por los clasificadores simples, aquí también se ve una gran mejoría en los resultados,
especialmente en el caso de other, subiendo de un valor de 0.28 a uno de 0.46, aunque
se puede ver que el valor devuelto por el f1-score para worm ha bajado de 0.49 a 0.39.

El mejor resultado vuelve a tenerlo trojan con 0.86, seguido de pup con 0.82, other con
0.46 y finalmente worm con 0.39, dejando el valor medio en 0.79, mejorando el resultado
anterior de 0.77, aunque no por mucho.

Al comparar estos resultados con los obtenidos sin el filtrado de categorías podemos
apreciar que todos ellos han mejorado. Esto demuestra la eficacia de la mejora imple-
mentada a la hora de clasificar muestras de malware.

49

4.4. Discusión sobre los resultados

A continuación se realizará la discusión de los resultados y matrices de confusión obte-
nidas. Se compararán los resultados obtenidos en la sección anterior y se examinará la
efectividad de los modelos implementados respecto a los conseguidos sin la mejora.

Si analizamos los resultados podemos ver que en los casos de trojan y pup la mayoría
de las muestras han sido clasificadas de manera correcta, siendo las dos categorías que
obtienen mejores resultados. En los casos de other y worm la mayoría de las muestras
no han sido clasificadas de manera correcta, obteniendo valores del f1-score menores a
0.5 en ambos casos.

Se puede apreciar que other y worm han sido confundidos mayoritariamente con trojan
y que pup ha sido clasificado bien en su gran mayoría, aunque la clase con la que más
se la ha confundido ha sido trojan. Finalmente, trojan ha sido bien clasificado en su
gran mayoría, aunque la mayor confusión ha ocurrido con other.

En general, los valores obtenidos tras aplicar el filtrado han mejorado los anteriores,
especialmente a la hora de la clasificación de other, subiendo su f1-score de 0.06 a 0.51
en los clasificadores simples y de 0.28 a 0.46 en los clasificadores múltiples. El resto de
valores también han visto mejoría.

Esta mejora en los resultados se puede atribuir al filtrado basado en categorías de interés
implementado. Este filtrado ha permitido a los modelos enfocarse en las características
más relevantes y distintivas entre categorías. Además, al conservar únicamente los n-
gramas que contienen dos o más APIs de las categorías relevantes, se consigue una
representación de los patrones característicos más precisa. Esto se ve traducido en una
mejora considerable en los resultados.

En cuanto a la comparativa entre clasificadores simples y múltiples, no se ve una gran
mejoría en los múltiples frente a los simples, ya que el rango de valores en los que se
encuentra el f1-score es muy similar.

Si nos centramos en los resultados obtenidos con trigramas podemos ver que solamente
un clasificador mejora el valor obtenido por el clasificador múltiple, el modelo que
emplea Regresión Logística para la clasificación de trojan, cuyo f1-score de 0.872 mejora
el 0.788 del clasificador múltiple.

En el caso de los resultados obtenidos con 4-gramas solamente hay un clasificador que
no es capaz de superar el resultado obtenido por el clasificador múltiple, este es el
modelo que emplea Regresión Logística para la clasificación de pup, obtiene un f1-score
de 0.749 frente al 0.78 del clasificador múltiple. Aunque no supere el resultado, si que se
encuentra mucho más cerca de él si lo comparamos con el conseguido con los trigramas.

50

5. Conclusiones y trabajo futuros

En esta sección de la memoria se expondrán las conclusiones finales del proyecto, tanto
técnicas como personales, así como posibles trabajos futuros.

5.1. Conclusiones técnicas

La solución propuesta a la detección de malware utilizando técnicas de Machine Lear-
ning ha demostrado ser efectiva a la hora de detectar distintas categorías de malware.
Esto ha demostrado que el uso de n-gramas en el ámbito de la detección de malware
es de gran utilidad, ya que permite detectar comportamientos analizando subsecciones
de las secuencias en vez de analizar una a una las APIs que van apareciendo en cada
muestra.

En cuanto a la implementación, se han cumplido los objetivos del proyecto, incluso
llegando a ampliar la funcionalidad planteada inicialmente. Esto demuestra que la im-
plementación inicial es robusta y admite extensiones y mejoras de la misma.

En una reflexión sobre el trabajo desarrollado, se destaca que la elección de algoritmos
de clasificación o técnicas se pudo haber abordado de una manera diferente. Al tomar
otro rumbo o elegir algoritmos distintos habría influido directamente en las conclusiones
obtenidas.

Por ejemplo, la selección de los n-gramas y categorías de interés podría haber adoptado
enfoques completamente distintos. Al añadir o modificar alguna de las APIs conside-
radas potencialmente maliciosas se hubiesen obtenido resultados distintos. En futuros
proyectos se explorarían estas alternativas para mejorar potencialmente los resultados
obtenidos.

5.2. Conclusiones personales

El hecho de que este trabajo haya dado los frutos deseados, demostrando la utilidad
del uso de n-gramas y técnicas de Machine Learning a la hora de lidiar con problemas
de clasificación de malware, hace que todo el esfuerzo dedicado a él merezca la pena.

Desde el inicio del proyecto he intentado esforzarme al máximo y ver que ha dado
sus frutos es muy gratificante, no solo por los resultados obtenidos sino por todo el
conocimiento adquirido. Este trabajo ha sido un desafío tanto de investigación como de
programación y he podido aplicar conocimientos adquiridos durante la totalidad de mi
educación universitaria.

En este trabajo he podido aplicar conocimientos de ciberseguridad y Machine Learning,
desarrollando habilidades prácticas en la detección de malware. La utilización de herra-
mientas como JupyterLab, Scikit-Learn o nltk ha ampliado mis capacidades técnicas,
brindándome una perspectiva más completa.

51

La evaluación de modelos y la comprensión de las métricas de rendimiento han enri-
quecido mi comprensión sobre cómo abordar problemas complejos y tomar decisiones
informadas. Estas experiencias han sido esenciales para mi desarrollo profesional co-
mo ingeniera informática, proporcionándome una valiosa oportunidad para enfrentar
desafíos reales en el ámbito de la seguridad informática.

5.3. Trabajo futuro

El proyecto sienta las bases para futuros trabajos, estableciendo un punto de partida
para futuros desarrollos. Se plantea la posibilidad de ampliar las capacidades del sis-
tema mediante la incorporación de funcionalidades adicionales al proceso. Esto podría
enriquecer y ampliar su aplicación en diferentes conjuntos de datos y categorías de
malware.

La automatización implementada no solo simplifica la modificación de partes del código,
sino que también blinda la posibilidad de introducir pasos intermedios. Un ejemplo
concreto de la inclusión del filtrado de categorías relevantes, una mejora especifica que
ha demostrado ser eficaz. Esta modularidad hace que sea más fácil ajustar el proceso a
problemas particulares.

Además de las posibles mejoras previamente mencionadas, cabe la posibilidad de inte-
grar la automatización con otras herramientas y enfoques. Por ejemplo, explorar técni-
cas adicionales de Machine Learning o incluso de Deep Learning para proporcionar al
proyecto una mayor precisión en la detección de malware.

Así mismo, el desarrollo de un dataset propio podría mejorar el rendimiento de los cla-
sificadores al incluir datos más específicos o trazas con mayor relevancia. Esto podría
involucrar incorporar trazas de código benigno para mejorar la capacidad de clasifica-
ción de los modelos.

La implementación de estos cambios implica que el sistema se vuelva más flexible y
efectivo. La modularidad facilita añadir nuevas funcionalidades y el dataset propio
mejoraría la precisión de los modelos.

52

6. Bibliografía

[1] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the age of
sophisticated cyber attacks,” Computers Security, vol. 72, pp. 212–233, 2018.

[2] “Más de 4,9 millones de muestras de malware identificadas.” https://www.itdi
gitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-d
e-malware-fueron-identificadas-en-2019. Accedido el 01-12-2023.

[3] “VirusTotal’s 2021 Malware Trends Report.” https://assets.virustotal.com/
reports/2021trends.pdf. Accedido el 11-12-2023.

[4] “¿Qué es un Exploit? Prevención de Exploits.” https://www.bitdefender.es/c
onsumer/support/answer/22884/. Accedido el 02-12-2023.

[5] “Malware Statistics Trends Report | AV-TEST.” https://www.av-test.org/en
/statistics/malware/. Accedido el 12-12-2023.

[6] “What is Malware Detection? | Importance of Malware Tool.” https://enterpri
se.xcitium.com/what-is-malware-detection/. Accedido el 09-01-2024.

[7] “Malware Classification.” https://serp.ai/malware-classification/. Accedi-
do el 09-01-2024.

[8] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” pp. 297–300,
2010.

[9] “Metamorfismo (malware) - Wikipedia, la enciclopedia libre.” https://es.wikip
edia.org/wiki/Metamorfismo_(malware). Accedido el 02-12-2023.

[10] “Polimorfismo (malware) - Wikipedia, la enciclopedia libre.” https://es.wikip
edia.org/wiki/Polimorfismo_(malware). Accedido el 02-12-2023.

[11] “Ofuscación - Wikipedia, la enciclopedia libre.” https://es.wikipedia.org/wik
i/OfuscaciÃşn. Accedido el 02-12-2023.

[12] “Qué es una firma de archivo de malware y cómo funciona.” https://cibersegur
idad.com/amenzas/firma-archivo-malware/. Accedido el 09-01-2024.

[13] “¿Qué es un análisis heurístico?.” https://latam.kaspersky.com/resource-c
enter/definitions/heuristic-analysis. Accedido el 09-01-2024.

[14] “¿Qué es el aprendizaje automático? | Glosario | HPE LAMERICA.” https://
www.hpe.com/lamerica/es/what-is/machine-learning.html. Accedido el
09-01-2024.

[15] E. Raff and C. K. Nicholas, “A survey of machine learning methods and challenges
for windows malware classification,” ArXiv, vol. abs/2006.09271, 2020.

[16] “Análisis del comportamiento | ES.” https://www.vmware.com/es/topics/glo
ssary/content/behavioral-analysis.html. Accedido el 09-01-2024.

[17] “Análisis estático de malware – CYBER OPSEC.” https://www.cyberopsec.c
om.mx/blog/analisis-estatico-de-malware/. Accedido el 09-01-2024.

53

https://www.itdigitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-de-malware-fueron-identificadas-en-2019
https://www.itdigitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-de-malware-fueron-identificadas-en-2019
https://www.itdigitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-de-malware-fueron-identificadas-en-2019
https://assets.virustotal.com/reports/2021trends.pdf
https://assets.virustotal.com/reports/2021trends.pdf
https://www.bitdefender.es/consumer/support/answer/22884/
https://www.bitdefender.es/consumer/support/answer/22884/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://enterprise.xcitium.com/what-is-malware-detection/
https://enterprise.xcitium.com/what-is-malware-detection/
https://serp.ai/malware-classification/
https://es.wikipedia.org/wiki/Metamorfismo_(malware)
https://es.wikipedia.org/wiki/Metamorfismo_(malware)
https://es.wikipedia.org/wiki/Polimorfismo_(malware)
https://es.wikipedia.org/wiki/Polimorfismo_(malware)
https://es.wikipedia.org/wiki/Ofuscación
https://es.wikipedia.org/wiki/Ofuscación
https://ciberseguridad.com/amenzas/firma-archivo-malware/
https://ciberseguridad.com/amenzas/firma-archivo-malware/
https://latam.kaspersky.com/resource-center/definitions/heuristic-analysis
https://latam.kaspersky.com/resource-center/definitions/heuristic-analysis
https://www.hpe.com/lamerica/es/what-is/machine-learning.html
https://www.hpe.com/lamerica/es/what-is/machine-learning.html
https://www.vmware.com/es/topics/glossary/content/behavioral-analysis.html
https://www.vmware.com/es/topics/glossary/content/behavioral-analysis.html
https://www.cyberopsec.com.mx/blog/analisis-estatico-de-malware/
https://www.cyberopsec.com.mx/blog/analisis-estatico-de-malware/

[18] “WeLiveSecurity - Análisis estático.” https://www.welivesecurity.com/la-e
s/2014/01/14/bases-analisis-estatico-malware-bases-desensamblado/.
Accedido el 09-01-2024.

[19] “Código binario: la base de todo - DevCamp.” https://devcamp.es/codigo-bin
ario-la-base-de-todo/. Accedido el 09-01-2024.

[20] “Qué es Código fuente - Definición, significado y ejemplos.” https://www.arimet
rics.com/glosario-digital/codigo-fuente. Accedido el 09-01-2024.

[21] “WeLiveSecurity - Análisis dinámico.” https://www.welivesecurity.com/la-e
s/2011/12/22/herramientas-analisis-dinamico-malware/. Accedido el
09-01-2024.

[22] “Sandbox - ¿Qué es y cómo funciona? | Proofpoint ES.” https://www.proofpoi
nt.com/es/threat-reference/sandbox. Accedido el 09-01-2024.

[23] “¿Qué es la detección basada en firmas? | phoenixNAP Glosario de TI.” https:
//www.phoenixnap.mx/glosario/detecciÃşn-basada-en-firmas. Accedido el
09-01-2024.

[24] “¿Qué hace un antivirus para detectar el malware? | Empresas | INCIBE.” https:
//www.incibe.es/empresas/blog/hace-antivirus-detectar-el-malware.
Accedido el 09-01-2024.

[25] “Exploración, identificación y detección de malware inteligente para evitar caos
ciberepidemiológico y ciberpandemias - Ciberseguridad.” https://www.interemp
resas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacio
n-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.htm
l. Accedido el 09-01-2024.

[26] “System call: la importancia de las llamadas al sistema - IONOS.” https://www.
ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls
-de-linux/. Accedido el 09-01-2024.

[27] “Api: qué es y para qué sirve.” https://www.xataka.com/basics/api-que-sir
ve. Accedido el 02-12-2023.

[28] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on
api call sequence analysis,” International Journal of Distributed Sensor Networks,
vol. 2015, pp. 1–9, 06 2015.

[29] “Software potencialmente no deseado - Wikipedia, la enciclopedia libre.” https:
//es.wikipedia.org/wiki/Software_potencialmente_no_deseado. Accedido
el 02-12-2023.

[30] “Qué es un virus troyano | Definición de virus troyano.” https://www.kaspersk
y.es/resource-center/threats/trojans. Accedido el 02-12-2023.

[31] “Gusano informático: definición y riesgos - Panda Security.” https://www.pand
asecurity.com/es/security-info/worm/. Accedido el 02-12-2023.

[32] “Win32 API - Wikipedia, la enciclopedia libre.” https://es.wikipedia.org/wik
i/Win32_API. Accedido el 02-12-2023.

54

https://www.welivesecurity.com/la-es/2014/01/14/bases-analisis-estatico-malware-bases-desensamblado/
https://www.welivesecurity.com/la-es/2014/01/14/bases-analisis-estatico-malware-bases-desensamblado/
https://devcamp.es/codigo-binario-la-base-de-todo/
https://devcamp.es/codigo-binario-la-base-de-todo/
https://www.arimetrics.com/glosario-digital/codigo-fuente
https://www.arimetrics.com/glosario-digital/codigo-fuente
https://www.welivesecurity.com/la-es/2011/12/22/herramientas-analisis-dinamico-malware/
https://www.welivesecurity.com/la-es/2011/12/22/herramientas-analisis-dinamico-malware/
https://www.proofpoint.com/es/threat-reference/sandbox
https://www.proofpoint.com/es/threat-reference/sandbox
https://www.phoenixnap.mx/glosario/detección-basada-en-firmas
https://www.phoenixnap.mx/glosario/detección-basada-en-firmas
https://www.incibe.es/empresas/blog/hace-antivirus-detectar-el-malware
https://www.incibe.es/empresas/blog/hace-antivirus-detectar-el-malware
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls-de-linux/
https://www.ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls-de-linux/
https://www.ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls-de-linux/
https://www.xataka.com/basics/api-que-sirve
https://www.xataka.com/basics/api-que-sirve
https://es.wikipedia.org/wiki/Software_potencialmente_no_deseado
https://es.wikipedia.org/wiki/Software_potencialmente_no_deseado
https://www.kaspersky.es/resource-center/threats/trojans
https://www.kaspersky.es/resource-center/threats/trojans
https://www.pandasecurity.com/es/security-info/worm/
https://www.pandasecurity.com/es/security-info/worm/
https://es.wikipedia.org/wiki/Win32_API
https://es.wikipedia.org/wiki/Win32_API

[33] “Servicios del sistema - Win32 apps | Microsoft Learn.” https://learn.micros
oft.com/es-es/windows/win32/api/_base/. Accedido el 02-12-2023.

[34] “Uso de IA y Machine Learning en ciberseguridad | OpenWebinars.” https://op
enwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learn
ing-en-ciberseguridad/. Accedido el 20-12-2023.

[35] “Ai brings speed to security.” https://www.oreilly.com/content/ai-brings-s
peed-to-security/. Accedido el 01-12-2023.

[36] “La IA en la automatización de pruebas de seguridad informática.” https://www.
imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seg
uridad-informatica/. Accedido el 01-12-2023.

[37] “¿Cómo aporta la inteligencia artificial a la ciberseguridad? - Ikusi ES.” https:
//www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-l
a-ciberseguridad/. Accedido el 20-12-2023.

[38] “La revolución de la Inteligencia Artificial en la ciberseguridad y como Auditech
se mantiene a la vanguardia | Auditech.” https://auditech.es/blog/la-revol
ucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-aud
itech-se-mantiene-a-la-vanguardia/. Accedido el 20-12-2023.

[39] “What is Machine Learning? | IBM.” https://www.ibm.com/topics/machine-l
earning. Accedido el 02-12-2023.

[40] S. Venkatraman, M. Alazab, and R. Vinayakumar, “A hybrid deep learning image-
based analysis for effective malware detection,” Journal of Information Security
and Applications, vol. 47, pp. 377–389, 2019.

[41] “Malware Detection Using Deep Learning | by Ria Kulshrestha | Towards Data
Science.” https://towardsdatascience.com/malware-detection-using-dee
p-learning-6c95dd235432. Accedido el 02-12-2023.

[42] “Machine Learning | Qué es, tipos, ejemplos y cómo implementarlo.” https://ww
w.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-com
o-implementarlo/. Accedido el 02-12-2023.

[43] “Malware Detection Using Machine Learning Techniques.” https://www.einfochi
ps.com/blog/malware-detection-using-machine-learning-techniques/#:
~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide
%20range%20of%20threats. Accedido el 02-12-2023.

[44] S. Trivedi, “A study of machine learning classifiers for spam detection,” pp. 176–
180, 09 2016.

[45] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day malware de-
tection based on supervised learning algorithms of api call signatures,” p. 171–182,
2011.

[46] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-based malwa-
re detection using hardware features,” pp. 109–129, 2014.

55

https://learn.microsoft.com/es-es/windows/win32/api/_base/
https://learn.microsoft.com/es-es/windows/win32/api/_base/
https://openwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learning-en-ciberseguridad/
https://openwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learning-en-ciberseguridad/
https://openwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learning-en-ciberseguridad/
https://www.oreilly.com/content/ai-brings-speed-to-security/
https://www.oreilly.com/content/ai-brings-speed-to-security/
https://www.imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seguridad-informatica/
https://www.imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seguridad-informatica/
https://www.imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seguridad-informatica/
https://www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-la-ciberseguridad/
https://www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-la-ciberseguridad/
https://www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-la-ciberseguridad/
https://auditech.es/blog/la-revolucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-auditech-se-mantiene-a-la-vanguardia/
https://auditech.es/blog/la-revolucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-auditech-se-mantiene-a-la-vanguardia/
https://auditech.es/blog/la-revolucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-auditech-se-mantiene-a-la-vanguardia/
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-como-implementarlo/
https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-como-implementarlo/
https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-como-implementarlo/
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.

[47] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for unknown
malware detection,” in International Symposium on Distributed Computing and
Artificial Intelligence (A. Abraham, J. M. Corchado, S. R. González, and J. F.
De Paz Santana, eds.), (Berlin, Heidelberg), pp. 415–422, Springer Berlin Heidel-
berg, 2011.

[48] “What is Reinforcement Learning? – Overview of How it Works | Synopsys.” http
s://www.synopsys.com/ai/what-is-reinforcement-learning.html. Accedido
el 02-12-2023.

[49] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber security,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8,
pp. 3779–3795, 2023.

[50] R. Canzanese, S. Mancoridis, and M. Kam, “System call-based detection of mali-
cious processes,” pp. 119–124, 08 2015.

[51] Y. Tang, X. Qi, J. Jing, C. Liu, and W. Dong, “Bhmdc: A byte and hex n-gram
based malware detection and classification method,” Computers Security, vol. 128,
p. 103118, 2023.

[52] A. Pektas, M. D. Eriş, and T. Acarman, “Proposal of n-gram based algorithm for
malware classification,” in International Conference on Emerging Security Infor-
mation, Systems and Technologies, 2011.

[53] M. Alazab, R. Layton, S. Venkatraman, and P. Watters, “Malware detection based
on structural and behavioural features of api calls,” International Cyber Resilience
conference, 03 2012.

[54] D. Reddy and A. K. Pujari, “N-gram analysis for computer virus detection,” Jour-
nal in Computer Virology, vol. 2, pp. 231–239, 12 2006.

[55] “Bag-of-n-grams - Machine Learning Glossary.” https://machinelearning.wtf/
terms/bag-of-n-grams/. Accedido el 15-12-2023.

[56] “Recursive Feature Elimination (RFE) for Feature Selection in Python - Machine-
LearningMastery.com.” https://machinelearningmastery.com/rfe-feature-s
election-in-python/. Accedido el 15-12-2023.

[57] “Prueba de Chi-cuadrado - Explicación sencilla - DATAtab.” https://datatab.
es/tutorial/chi-square-test. Accedido el 15-12-2023.

[58] “La prueba t | Introducción a la estadística | JMP.” https://www.jmp.com/es_e
s/statistics-knowledge-portal/t-test.html. Accedido el 15-12-2023.

[59] “¿Qué es el algoritmo de k vecinos más cercanos? | IBM.” https://www.ibm.com/
es-es/topics/knn. Accedido el 15-12-2023.

[60] “Conceptos clave de Support Vector Machine (SVM) - MATLAB Simulink.” http
s://es.mathworks.com/discovery/support-vector-machine.html. Accedido
el 15-12-2023.

[61] “Gradient boosting - Wikipedia, la enciclopedia libre.” https://es.wikipedia.o
rg/wiki/Gradient_boosting. Accedido el 15-12-2023.

56

https://www.synopsys.com/ai/what-is-reinforcement-learning.html
https://www.synopsys.com/ai/what-is-reinforcement-learning.html
https://machinelearning.wtf/terms/bag-of-n-grams/
https://machinelearning.wtf/terms/bag-of-n-grams/
https://machinelearningmastery.com/rfe-feature-selection-in-python/
https://machinelearningmastery.com/rfe-feature-selection-in-python/
https://datatab.es/tutorial/chi-square-test
https://datatab.es/tutorial/chi-square-test
https://www.jmp.com/es_es/statistics-knowledge-portal/t-test.html
https://www.jmp.com/es_es/statistics-knowledge-portal/t-test.html
https://www.ibm.com/es-es/topics/knn
https://www.ibm.com/es-es/topics/knn
https://es.mathworks.com/discovery/support-vector-machine.html
https://es.mathworks.com/discovery/support-vector-machine.html
https://es.wikipedia.org/wiki/Gradient_boosting
https://es.wikipedia.org/wiki/Gradient_boosting

[62] “¿Qué es la regresión logística? - DataScientest.” https://datascientest.com/
es/que-es-la-regresion-logistica. Accedido el 15-12-2023.

[63] “Scikit-learn: machine learning in Python — scikit-learn 1.4.0 documentation.”
https://scikit-learn.org/stable/. Accedido el 01-12-2023.

[64] “JupyterLab información general.” https://experienceleague.adobe.com/doc
s/experience-platform/data-science-workspace/jupyterlab/overview.h
tml?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%2
0Notebooks%2C%20c%C3%B3digo%20y%20datos. Accedido el 01-12-2023.

[65] “NLTK :: Natural Language Toolkit.” https://www.nltk.org/index.html.
Accedido el 01-12-2023.

[66] “Public malware dataset generated by Cuckoo Sandbox based on Windows OS API
calls analysis for cyber security researchers.” https://github.com/ocatak/malw
are_api_class. Accedido el 15-12-2023.

[67] “Microsoft Malware Classification Challenge (BIG 2015) | Kaggle.” https://ww
w.kaggle.com/competitions/malware-classification/data. Accedido el
15-12-2023.

[68] “Malware Analysis Datasets: API Call Sequences | IEEE DataPort.” https://ie
ee-dataport.org/open-access/malware-analysis-datasets-api-call-seq
uences. Accedido el 15-12-2023.

[69] “HCRL - [HIDE]APIMDS-dataset.” https://ocslab.hksecurity.net/apimds
-dataset. Accedido el 15-12-2023.

[70] “RazviOverflow winapi categories json.” https://github.com/RazviOverflow/w
inapi_categories_json/blob/main/winapi_functions_by_category.json.
Accedido el 15-12-2023.

[71] “lingpy/lpngram: Python library for ngram collection and frequency smoothing.”
https://github.com/lingpy/lpngram. Accedido el 15-12-2023.

[72] “gpoulter/python-ngram: Set that supports searching by ngram similarity.” https:
//github.com/gpoulter/python-ngram. Accedido el 15-12-2023.

[73] P. Trinius, T. Holz, J. Göbel, and F. C. Freiling, “Visual analysis of malware
behavior using treemaps and thread graphs,” in 2009 6th International Workshop
on Visualization for Cyber Security, pp. 33–38, 2009.

[74] “Sesgo y Varianza en Machine Learning - Aprende IA.” https://aprendeia.co
m/bias-y-varianza-en-machine-learning/. Accedido el 15-12-2023.

[75] “Evaluando los modelos de Clasificación en Aprendizaje Automático: La matriz de
confusión.| profesorDATA.com.” https://profesordata.com/2020/08/07/eval
uando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-mat
riz-de-confusion-claramente-explicada/. Accedido el 15-12-2023.

57

https://datascientest.com/es/que-es-la-regresion-logistica
https://datascientest.com/es/que-es-la-regresion-logistica
https://scikit-learn.org/stable/
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://www.nltk.org/index.html
https://github.com/ocatak/malware_api_class
https://github.com/ocatak/malware_api_class
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/competitions/malware-classification/data
https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences
https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences
https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences
https://ocslab.hksecurity.net/apimds-dataset
https://ocslab.hksecurity.net/apimds-dataset
https://github.com/RazviOverflow/winapi_categories_json/blob/main/winapi_functions_by_category.json
https://github.com/RazviOverflow/winapi_categories_json/blob/main/winapi_functions_by_category.json
https://github.com/lingpy/lpngram
https://github.com/gpoulter/python-ngram
https://github.com/gpoulter/python-ngram
https://aprendeia.com/bias-y-varianza-en-machine-learning/
https://aprendeia.com/bias-y-varianza-en-machine-learning/
https://profesordata.com/2020/08/07/evaluando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-matriz-de-confusion-claramente-explicada/
https://profesordata.com/2020/08/07/evaluando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-matriz-de-confusion-claramente-explicada/
https://profesordata.com/2020/08/07/evaluando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-matriz-de-confusion-claramente-explicada/

Apéndice A Glosario

Terminología

Malware Software o programa maligno que realiza acciones dañinas en un sistema
informático de forma intencionada y sin el conocimiento del usuario.

Categoría de API Clasifica las APIs en función de sus funciones específicas dentro
del sistema.

Traza de API Una traza que muestra las categorías a las que pertenece cada una de
las APIs en lugar de listar cada API individualmente.

Ataques de día cero Ataque contra un sistema informático con el objetivo de ejecu-
tar código maligno gracias a vulnerabilidades desconocidas tanto para los usuarios
como para el fabricante del producto.

Features Características o rasgos interesantes o importantes que identifican cada una
de las instancias de un conjunto de datos.

Tree map Metodo para mostrar datos jerárquicos utilizando figuras anidadas, normal-
mente rectángulos. Se emplean rectángulos de distintos tamaños para transmitir
valores numéricos.

Thread graph Muestra información en forma de hilos (threads) de en forma de grá-
fico.

Dense Pixel Display Técnica de exploración visual de los datos, busca poder analizar
una gran cantidad de datos multidimensionales detectando patrones.

Dataset Conjunto de datos corresponde a los contenidos de una tabla, donde cada
columna representa una variable y cada fila una muestra.

N-gramas Sub secuencia de ‘n’ elementos de una secuencia dada.

Acrónimos

API Aplication Programming Interfaces

ML Machine Learning

RFE Recursive Feature Elimination

CSV Comma Separated Values

JSON JavaScript Object Notation

KNN K Nearest Neighbors

SVM Support Vector Machine

58

	Introducción
	Contexto del trabajo
	Técnicas de análisis y deteccción
	Problema a resolver
	Objetivos del proyecto
	Estructura de la memoria

	Detección de malware basado en IA
	Técnicas habituales de Inteligencia Artificial
	Técnicas de aprendizaje basado en Machine Learning
	Trazas y extracción de n-gramas
	Trabajos similares

	Modelos para el reconocimiento de malware basado en n-gramas
	Proceso para programación de modelos de detección
	Metodología
	Descripción del dataset
	Sistemas de reconocimiento a programar
	Discusión sobre los resultados

	Evaluación de mejoras
	Filtrado basado en categorías de interés
	Sistemas de reconocimiento a programar
	Resultados obtenidos
	Discusión sobre los resultados

	Conclusiones y trabajo futuros
	Conclusiones técnicas
	Conclusiones personales
	Trabajo futuro

	Bibliografía
	Apéndice Glosario

