«2s Universidad
A8l Zaragoza

Trabajo Fin de Grado

Deteccidon de malware utilizando técnicas de machine
learning

Malware detection using machine learning techniques

Autor/es
Julia Varea Palacios

Director/es
Pedro Javier Alvarez Pérez-Aradros

Codirector/es
Razvan Raducu

Departamento
Informatica e Ingenieria de Sistemas

Centro
Escuela de Ingenieria y Arquitectura

Titulacion del autor
Grado en Ingenieria Informatica

Escuela de Ingenieria y Arquitectura
2024

Resumen

En la era digital actual la ciberseguridad se ha convertido en un elemento critico para
individuos, empresas e instituciones de todo el mundo. Frente al aumento del nimero
de muestras de malware recopiladas y de su constante evolucion, las técnicas de Ma-
chine Learning se presentan como una solucién novedosa para la deteccion efectiva del
malware.

Este trabajo se centra en la deteccion de malware, identificando si una muestra es
maligna o no, empleando técnicas de Machine Learning para reconocer y clasificar
muestras de software maligno en sus categorias o familias correspondientes.

Mediante la automatizacion del proceso de deteccidon de comportamientos maliciosos en
trazas de ejecucion de sistemas software y aplicando modelos de Machine Learning, el
proposito de este trabajo es investigar la eficacia de técnicas de Machine Learning para
la deteccion de malware.

Para llevar a cabo el proyecto, el primer paso es la selecciéon de un dataset adecuado que
contenga muestras de varias familias de malware con sus trazas de ejecucion. Una vez
conseguido, se comenzara el proceso de filtrado y preparado de los datos hasta obtener
un dataset que se adecue a las necesidades del proyecto.

Estos datos se someten a una serie de procesos de extraccion de n-gramas, de creacion
de diccionarios y un célculo de features para obtener caracteristicas clasificatorias para
cada una de las familias de malware.

Para cada conjunto de features calculadas con cada valor de n se crean modelos de
Machine Learning. Estos modelos emplean varios clasificadores (KNN, SVM, Gradient
Boosting y Regresion Logistica) y se calcularan tanto clasificadores simples (un clasifi-
cador por familia de malware) como clasificadores multiples (un solo modelo capaz de
clasificar todas las muestras). Una vez obtenidos todos los modelos se calculan métricas
para realizar una comparacion de todos ellos.

Al analizarlos se ha observado que los resultados obtenidos por los clasificadores multi-
ples superan los obtenidos por los clasificadores simples.

Para intentar mejorar los valores obtenidos por los modelos se implementaré una mejora
basada en el filtrado de categorias de interés. Se definié una categoria de interés como
una categoria de llamadas al sistema asociada con comportamientos maliciosos o que
hagan vulnerable al sistema.

Tras analizar los nuevos resultados se observa que la totalidad de los valores devueltos
mejora, tanto en los clasificadores simples como en los clasificadores multiples. Esto
demuestra que la mejora implementada es efectiva a la hora de detectar y clasificar
distintas categorias de malware, independientemente del modelo utilizado para la cla-
sificacion de las mismas.

Gracias a la automatizacion del proceso, este proyecto abre paso a poder realizar tra-
bajos futuros, anadiendo més funcionalidades o aplicando el proceso a otros datasets.

Indice

1. Introduccién
1.1. Contexto del trabajo
1.2. Técnicas de analisis y detecccion
1.3. Problema aresolver Lo
1.4. Objetivos del proyectoo
1.5. Estructura de la memoriao

2. Deteccion de malware basado en TA
2.1. Técnicas habituales de Inteligencia Artificial
2.2. Técnicas de aprendizaje basado en Machine Learning
2.3. Trazas y extraccion de n-gramas
2.4. Trabajos similares

3. Modelos para el reconocimiento de malware basado en n-gramas
3.1. Proceso para programaciéon de modelos de deteccion
3.2. Metodologia
3.3. Descripcion del dataset o oL
3.4. Sistemas de reconocimiento a programar
3.5. Discusion sobre los resultadoso L

4. Evaluaciéon de mejoras
4.1. Filtrado basado en categorias de interés
4.2. Sistemas de reconocimiento a programar
4.3. Resultados obtenidos oL
4.4. Discusion sobre los resultados00

5. Conclusiones y trabajo futuros
5.1. Conclusiones técnicas
5.2. Conclusiones personales L.
5.3. Trabajo futuroo

6. Bibliografia

Apéndice A. Glosario

14
14
15
16
17
35

36
36
37
37
20

51
o1
51
52

53

58

1. Introduccion

Este primer capitulo de introduccién se abordan aspectos esenciales a la hora de enten-
der el contexto del trabajo. Inicia poniendo en contexto esencial en el que se desarrolla
el proyecto e identificando los problemas a abordar, finalizando estableciendo los obje-
tivos del trabajo. Ademas, se proporcionara una vision general de la organizacion del
documento.

1.1. Contexto del trabajo

El software malicioso, del inglés malicious software (malware), es un programa que
realiza acciones dafniinas en un sistema informéatico de forma intencionada y sin el co-
nocimiento del usuario. Afecta a la integridad, disponibilidad y confidencialidad de los
datos y los sistemas que los contienen, por lo que debe ser un tema que cause gran
preocupacion a todas las personas que usen un ordenador, ya sea en casas particulares,
empresas o instituciones piblicas.

En los ultimos anos, se ha visto un aumento considerable en el nimero de ciberataques,
amenazas y muestras de malware recolectadas por los proveedores de antivirus [1] [2].
La gran mayoria de archivos considerados maliciosos son ejecutables de Windows, pu-
diéndose ver una disminucion drastica, del 97 %, en el namero de ficheros maliciosos en
otros sistemas operativos como MacOS. También se puede apreciar que el nimero de
ataques de dia cero nuevos alcanz6 un nuevo récord, duplicando los encontrados el ano
anterior [3].

Asi mismo, durante 2021 se observé un aumento del 24 % respecto al ano anterior
del numero de muestras dedicadas a explotar vulnerabilidades, y si anadimos exploits
[4] aumentarfa hasta el 30 % [3]. Por todas estas razones, el ntimero de estudios e
investigacion en temas de ciberseguridad ha aumentado.

Como se puede ver en [5], el nimero total de muestras de malware y otro tipo de
programas no deseados ha ido en constante crecimiento, cada ano superando al anterior.
En este trabajo nos centraremos en la deteccion de malware cuyo objetivo es el sistema
operativo Windows debido a su predominancia y frecuencia de ocurrencia.

La identificacion de malware se divide en dos grandes subcategorias: la deteccion [6] y
la clasificacion [7]. La deteccion de malware es el proceso de identificar si un programa
es 0 no software malicioso y una vez detectado, la clasificacion de malware se dedica a
decidir a qué categoria o familia de malware pertenece. Las técnicas empleadas para la
clasificacion de malware serédn explicadas en mas detalle en secciones futuras.

Es un problema complejo, ya que el software malicioso emplea herramientas para ocul-
tar su presencia y entorpecer su andlisis. Las técnicas més comunes [8] incluyen los
metamorfismos [9], polimorfismos [10] y la ofuscacion de codigo [11].

Existen técnicas diversas dedicadas a la deteccion de software malicioso, entre ellas cabe
destacar:

» Analisis de firmas [12]: basandose en patrones de comportamiento conocidos,
identifican si el codigo es malicioso. Este tipo de técnicas se emplean principal-
mente en antivirus, manteniendo bases de datos con firmas conocidas que van
actualizando.

» Analisis heuristico [13]: este tipo de técnicas ayudan a detectar malware si no
ha sido reconocido por ninguna de las firmas conocidas. No analizara la firma del
malware, sino que se centra en analisis estadisticos y de tiempo de ejecuciéon. Esto
permite detectar muestras de malware previamente desconocidas.

» Aprendizaje automatico [14]: analiza grandes conjuntos de datos detectando
patrones en ellos para tratar de predecir si el software es maligno. Este enfoque es
especialmente 1til para reconocer muestras de malware nuevo y se lleva aplicando
durante décadas a la hora de detectar malware [15].

» Analisis de comportamiento [16]: método que se apoya de técnicas de apren-
dizaje automético e inteligencia artificial, entre otros, para detectar conductas
maliciosas. Observa el comportamiento en tiempo real del codigo y monitoriza las
acciones realizadas por el programa.

Entre las estrategias mas utilizadas a la hora de clasificar muestra de malware tenemos
el Machine Learning y el Deep Learning. Dentro de Machine Learning existen distintos
tipos de aprendizaje, que aunque se explicaran en detalle en capitulos posteriores, se
mencionaran brevemente a continuacion. Los distintos tipos son aprendizaje supervisa-
do, no supervisado, semi-supervisado y reforzado.

El dominio en el que se va a centrar este trabajo es el de la deteccion de malware, méas
concretamente empleando técnicas de Machine Learning para el reconocimiento y la
clasificacion de muestras de software maligno.

1.2. Técnicas de analisis y detecccién

En la actualidad, las técnicas mas empleadas para la deteccion de malware se pueden
dividir en tres: analisis estatico, dindmico e hibrido. Este trabajo hace uso de muestras
de codigo extraidas empleando anélisis dinamico.

En el analisis estatico [17] [18], la muestra de codigo maligno se estudia sin ser ejecu-
tada, siendo la manera mas segura de analizar malware. Principalmente, es empleado
para analizar el codigo binario [19] (o ensamblador) de un programa, generalmente
empleado por analistas para buscar indicios y determinar si un programa de origen des-
conocido es malicioso mediante técnicas como la ingenieria inversa. Este tipo de analisis
no solamente examina el codigo fuente [20] o binario, sino que también emplea otro ti-
po de técnicas como identificacion de patrones conocidos, analisis de dependencias y
generacion de firmas, entre otros.

Este tipo de anélisis trata de comprender la estructura y el comportamiento del software
sin ejecutarlo. Sin embargo, esta técnica tiene limitaciones, ya que el malware podria
implementar técnicas que dificulten su comprension y camuflen sus intenciones como,
por ejemplo, ofuscacion de codigo o técnicas anti-debug.

El analisis dinamico [21] ejecuta el codigo malicioso, idealmente, en entornos aisla-
dos, controlados y monitorizados (comtinmente llamados sandbox [22]) para analizar su
comportamiento en tiempo real. Este método proporciona més informacion acerca de
las acciones del software bajo analisis, ya que permite detectar, entre otros, cambios en
el registro del sistema, en el sistema de ficheros o llamadas al sistema.

Sin embargo, este tipo de anélisis se puede ver comprometido si el malware implementa
técnicas de evasion para detectar la presencia del sandbox y, en ese caso, cambiar su
comportamiento o bien finalizar la ejecucién directamente, no llegando nunca a ejecutar
el comportamiento malicioso. Este tipo de analisis es esencial para detectar variantes
del software que quiza hayan empleado técnicas de polimorfismo para modificar su
comportamiento en tiempo real y, por lo tanto, dificultar su analisis estético.

El analisis hibrido combina técnicas de los analisis estatico y dindmico para examinar
comportamientos de programas maliciosos. Al integrar ambas técnicas, busca obtener
una visiéon mas completa del malware.

Una vez empleado alguno de los anélisis mencionados se deben aplicar técnicas de
deteccion para saber si la muestra analizada es o no es maliciosa, las dos principales
son la deteccion basada en firmas y la basada en anomalias.

La deteccion basada en firmas [23] [24] es el enfoque clasico empleado por los anti-
virus y consiste en generar una firma de la muestra que se esta analizando y compararla
con las firmas ya presentes en una o varias bases de firmas, que se corresponden con
malware ya conocido. Estas firmas pueden ser desde el hash del fichero que se esta
analizando hasta un conjunto de patrones tnicos o caracteristicas especificas asociadas
a la muestra que se esta analizando.

Este método de deteccion sigue siendo una herramienta fundamental a la hora de detec-
tar amenazas de manera rapida, pero no es muy efectivo en detectar amenazas desco-
nocidas hasta la fecha. Su combinacién con planteamientos més avanzados es empleado
para detectar amenazas desconocidas.

A diferencia de la deteccion basada en firmas, la deteccién basada en anomalias
[25] busca encontrar desviaciones en la ejecucion normal de un programa. Para conse-
guirlo se debe conocer previamente cuéal es su comportamiento normal y para ello se
crean modelos del comportamiento normal del sistema, esta seria la primera fase de la
deteccion. La siguiente fase consiste en la deteccion y monitorizacion, en ella se vigila
que hace el software y se acttia sobre ellas.

Este enfoque puede detectar nuevas amenazas y ataques de dia cero, pero a menu-
do resulta en una alta tasa de falsos positivos (detecta como malware programas que
realmente no lo son), ya que se centra en identificar comportamientos inusuales o com-
portamientos atipicos. Por este motivo hay que ser muy cuidadoso en la configuraciéon
del modelo para evitar alertas innecesarias.

1.3. Problema a resolver

El problema que este trabajo busca resolver es la deteccion y reconocimiento de malwa-
re empleando trazas de llamadas al sistema, una secuencia ordenada de solicitudes
realizadas por un programa a funciones del sistema operativo [26]. Estas contienen
las funciones y llamadas al sistema obtenidas durante la ejecuciéon de cada una de las
muestras. Las trazas empleadas se obtuvieron del dataset APIMDS (API-based malware
detection system), el cual se explicara en més detalle en la seccion 3.

Este dataset incluye trazas con su secuencia de llamadas a APIs y al sistema, asi como
el hash de cada una de ellas y la familia de malware a la que pertenecen. Las APIs
son un conjunto de protocolos utilizados en el desarrollo e integracién de software en
aplicaciones, permitiendo la comunicacion entre dos aplicaciones a través del conjunto
de protocolos establecido [27].

Para cada una de estas trazas, la recoleccion de las llamadas a APIs se realizd empleando
analisis dindmico en un entorno virtual [28|. Aunque las trazas incluidas en el conjunto
de datos seleccionado se hayan conseguido tras emplear analisis dinamico del codigo,
este trabajo realizara un analisis estatico de las llamadas al sistema.

Se van a procesar las trazas para extraer n-gramas, sub secuencias de n items que se su-
perponen entre si. Estos n-gramas representan partes de comportamiento y se utilizaran
para detectar patrones comunes entre muestras de la misma familia de malware.

Existen muchos tipos de malware, pero a continuaciéon se explicarén los tres principales
en los que se centra este trabajo. Estos tipos son parte de los presentes en el dataset
elegido y la exclusion de los restantes serd explicada en capitulos posteriores.

» Pup [29] o programa potencialmente indeseable: programas que suelen ins-
talarse junto a programas que los usuarios si quieren instalar. A menudo causan
problemas de ralentizacion, rastreos y saturacion del sistema, aunque en algunos
casos terminan siendo de utilidad.

» Trojan [30] o Troyano: a menudo se camufla como software legitimo, pero se em-
plean para acceder a los sistemas de manera ilegitima y comprometerlos llevando
a cabo robos de informaciéon mediante el uso de puertas traseras.

» Worm (31| o Gusano: tipo de software malicioso disefiado para auto-replicarse
e infectar el mayor nimero de dispositivos posible, muchas veces sin necesidad de
interaccion por parte del usuario.

Todas las APIs que aparecen siguen la especificacion Windows API [32]| y todas ellas
se pueden ver en [33]. Todas ellas se pueden dividir en categorias dependiendo de que
funciones lleven a cabo dentro del sistema, estas pueden ser de comunicacién entre
procesos, almacenamiento, manejo de ficheros, entrada y salida, interfaz de usuario,
entre otros, pero no todas estas categorias tienen la misma criticidad dentro de un
sistema informatico.

Basandonos en su repercusion en el sistema operativo, se han considerado como cate-
gorfas criticas las de gestion de memoria, registros, ficheros, entrada y salida, comu-
nicaciones, mecanismos de sincronizacion y de procesos. La gestion efectiva de estos

recursos es esencial para garantizar la estabilidad general de un sistema operativo y su
correcta implementacion y protecciéon son cruciales para evitar problemas graves que
afecten a la vulnerabilidad y la integridad del sistema.

Se emplearan n-gramas calculados a partir de las trazas de APIs para detectar com-
portamientos comunes entre muestras de la misma familia de malware y realizar el
entrenamiento de los modelos de clasificacion. Finalmente, estos resultados se comple-
mentaran con la implementacion de un filtro de criticidad para la categoria de cada
API que forma el n-grama.

1.4. Objetivos del proyecto

El objetivo principal del trabajo es la deteccion de comportamiento malicioso en pro-
gramas a partir de sus trazas de ejecucion de sistemas software, aplicando algoritmos
de aprendizaje supervisado y buscando los mejores modelos.

Este trabajo busca filtrar y procesar trazas de llamadas al sistema para extraer co-
nocimientos a nivel de comportamiento haciendo uso de n-gramas y de esta manera
caracterizar cada una de ellas.

Otro de los objetivos de este proyecto es programar y evaluar modelos de Machine Lear-
ning para la deteccion de malware utilizando los resultados obtenidos tras la extraccion
de n-gramas. Como resultado final, se esperan obtener modelos capaces de clasificar
cada muestra de manera correcta y con valores de precision, recall y fl-score elevados.

Adicionalmente, se extiende la funcionalidad anadiendo un filtrado de criticidad de
APIs. Se espera que la mejora implementada mejore los valores obtenidos para todos
los clasificadores anteriores, demostrando que realizar filtrados de criticidad de APIs es
una buena manera de eliminar datos sin valor del proceso de clasificacion.

1.5. Estructura de la memoria

La memoria se ha dividido en los siguientes capitulos:

En la seccion 2, Deteccion basado en 1A, se presenta el dominio en el que se va a trabajar
en detalle, explicando las técnicas de IA utilizadas en el reconocimiento, entre otros.

La seccion 3, Modelos para el reconocimiento de malware basado en n-gramas, esta
dedicada a explicar el bloque principal del trabajo, desde el dataset empleado hasta los
resultados obtenidos.

A continuacion, la seccion 4, Evaluacion de mejoras, describe las mejores realizadas
a las primeras versiones de los clasificadores, principalmente las relativas a considerar
categorias de interés.

La seccion 5, Conclusiones y trabajo futuro, incluye las conclusiones finales del trabajo
y posibles trabajos futuros.

En la dltima seccion 6, Bibliografia, se incluyen todos los articulos, webs y documentos
referenciados a lo largo de la memoria.

Los anexos incluyen contenido adicional relevante para la memoria, pero que por sim-
plicidad se han separado de la parte principal. El anexo A, Glosario, incluye una lista
con terminologia necesaria para la comprension del contenido de la memoria. En el
glosario también se podra encontrar otra lista con los acrénimos utilizados a lo largo
de la memoria.

2. Deteccion de malware basado en TA

El impacto generado por el malware es un problema que lleva existiendo mucho tiempo,
pero en los tltimos anos hemos visto como las amenazas cibernéticas se han vuelto cada
vez mas frecuentes y como la necesidad de fortalecer nuestra ciberseguridad se ha vuelto
imperativa.

El uso de técnicas de Inteligencia Artificial (IA) aplicadas a la Seguridad Informética
se estd mostrando efectivo [34]. Su uso ha demostrado la mejora de las defensas y en la
reduccion del tiempo de analisis y deteccion de amenazas [35].

La TA se presenta como una solucién innovadora y prometedora para llevar a cabo
trabajos de proteccion y evaluacion de la seguridad de un sistema informatico. Estas
herramientas pueden simular ataques, detectar vulnerabilidades y aprender de ellos,
mejorando de forma continua con el tiempo en su precision [36].

Una IA es capaz de aprender de los datos y tomar decisiones eficaces y rapidas ante
eventos inesperados, por lo que al menos el 40 % de las empresas habrian implementado
A para mejorar su capacidad de deteccion y respuesta ante ciberdelincuentes [37]. Estas
herramientas pueden detectar posibles vulnerabilidades en sistemas informéaticos de
manera mas rapida y eficiente que los métodos tradicionales, transformando la industria
de la seguridad informatica gracias a su precision y eficacia [36]. La IA puede ser
una muy buena herramienta tanto para identificar vulnerabilidades como para detectar
amenazas [38|, entre muchas otras aplicaciones posibles.

2.1. Técnicas habituales de Inteligencia Artificial

Las dos principales estrategias de uso de TA para deteccion de malware tienen que ver
con el Machine Learning y el Deep Learning. La técnica que se emplea en la realizacion
de este trabajo es la de Machine Learning.

El Machine Learning se centra en el desarrollo de algoritmos y modelos que permiten
aprender patrones utilizando técnicas estadisticas para producir clasificaciones, realizar
predicciones acerca de los datos y obtener informacion 1til de los mismos. Son mas
dependientes de la interaccion humana para aprender, ya que estos determinan el con-
junto de caracteristicas que se deben de tener en cuenta a la hora de diferenciar los
datos y necesitan datos mas estructurados para realizar su aprendizaje [39].

La clasificacion basada en features se basa en la idea de que muestras con compor-
tamientos maliciosos similares necesitan llamar a las mismas APIs con argumentos
similares. El primer paso siempre es ejecutar los programas en un entorno controlado,
seguido de un proceso de extraccion y seleccion de caracteristicas. A continuaciéon, con
esas features, se crean modelos de aprendizaje capaces de predecir si una muestra es
maliciosa o no. En este trabajo nos centraremos en este tipo de clasificacion.

En la seccién siguiente se explicaran en méas detalle los diferentes tipos de aprendizaje
presentes dentro de la rama del Machine Learning.

10

Los algoritmos de Deep Learning son aplicados a redes neuronales con una estructura
en capas formada por tres tipos de capas. Una inicial de entrada, capas ocultas que
aplican célculos mateméticos a los datos y una capa final de salida. Uno de los princi-
pales retos al usar este tipo de algoritmos es seleccionar el niimero adecuado de capas
ocultas y de neuronas pertenecientes a cada una de ellas. Las capas iniciales se espe-
cializan en identificar detalles simples, mientras que las capas subsiguientes consiguen
gradualmente representaciones mas complejas al combinar caracteristicas aprendidas
en capas anteriores.

Este tipo de aprendizaje puede ser combinado con otras estrategias para conseguir
buenos resultados. Por ejemplo, en [40] se puede ver su uso en conjunto a la represen-
tacion de cada muestra como una imagen donde las distintas secciones del codigo se
representan con texturas tinicas.

Al contrario que los métodos de Machine Learning, los clasificadores de Deep Learning
son entrenados mediante aprendizaje de caracteristicas en lugar de por algoritmos es-
pecificos. Esto significa que pueden aprender patrones en lugar de necesitar que una
persona le defina los patrones que tiene que buscar en la muestra. Esto resulta en la
deteccion automatica de features y clasificacion de datos en varias clases [41].

2.2. Técnicas de aprendizaje basado en Machine Learning

Dentro del Machine Learning (ML), segtn [42] y [43], existen diferentes tipos de apren-
dizaje:

= Aprendizaje Supervisado: tipo de ML que entrena un modelo a partir de
datos ya etiquetados. Que un dato esté etiquetado significa que se proporciona
la respuesta correcta o la categoria asociada a ese dato. Este tipo de modelos
predicen una salida en base al entrenamiento y el hecho de que los datos estén
etiquetados permite validar la salida para cada caso. Gracias a este aprendizaje
es posible realizar predicciones sobre datos nuevos. Este modelo es muy utilizado
en deteccion de spam [44]. Puede ser categorizado en dos tipos, clasificacion y
regresion. La clasificacion consiste en asignar una etiqueta o categoria a la entrada.
Estas etiquetas representan a la totalidad de los datos. El objetivo de la regresion
es predecir un valor numérico a partir de unas variables de entrada, buscando una
relacion funcional entre los datos de entrada y los de salida. Un ejemplo del uso
de este tipo de aprendizaje se puede ver en [45].

= Aprendizaje no Supervisado: en este tipo de aprendizaje, los modelos son en-
trenados con datos sin ningtn tipo de etiquetado. Estos modelos tratan de obtener
informacion importante de los datos sin conocer con anterioridad su estructura.
Existen dos categorias principales dentro del Aprendizaje no Supervisado, el clus-
tering y la reduccion de la dimensionalidad. El clustering agrupa un conjunto de
datos en subconjuntos con atributos similares. La reducciéon de la dimensionali-
dad busca reducir el nimero de variables o caracteristicas del conjunto de datos
mientras conserva la informacion relevante con el objetivo de simplificar la repre-
sentacion de los mismos, reduciendo la complejidad computacional de los modelos.
Un ejemplo del uso de aprendizaje no supervisado puede verse en [46].

11

» Aprendizaje semi-supervisado: término medio entre los dos tipos anteriores,
ya que es entrenado con algunos datos etiquetados y muchos sin etiquetar. En
este tipo de aprendizaje el modelo es entrenado sin tener que entrenar un modelo
sin tener la totalidad de los datos categorizados. Es especialmente ttil cuando la
recopilacion de datos etiquetados es dificil y se dispone de una gran cantidad de
datos no categorizados. El uso de este tipo de aprendizaje se puede apreciar en
[47].

» Aprendizaje Reforzado [48|: método de entrenamiento basado en recompensar
comportamientos mientras penaliza los indeseados. Este modelo no requiere datos
de entrenamiento etiquetados, ya que no se conoce de antemano la respuesta co-
rrecta. En lugar de ello, depende de un agente de refuerzo, cuya funciéon es evaluar
y determinar si la tarea realizada se llevo a cabo de la manera mas 6ptima posible.
Este agente toma decisiones secuenciales en un entorno dinédmico, aprendiendo a
través de la retroalimentacion en forma de recompensas o castigos, con el objetivo
de maximizar la recompensa acumulativa a lo largo del tiempo. Un ejemplo de la
aplicacion de aprendizaje reforzado se puede ver en [49].

Este trabajo empleara técnicas de aprendizaje supervisado, ya que se hara uso de un
conjunto de datos de trazas de malware previamente etiquetados con las familias de
malware a las que pertenecen.

2.3. Trazas y extraccion de n-gramas

Recientemente, el uso de n-gramas se ha convertido en una técnica de uso habitual
en el ambito del estudio de malware [50] [51] [52]. Estos estudios presentan resultados
prometedores hacia la deteccion de malware haciendo uso de n-gramas.

Esto se debe a que esta técnica permite conocer qué conjunto de n-gramas son represen-
tativos, pudiendo asi diferenciarlos de otros archivos similares, por lo tanto, permitiendo
su clasificacion.

El objetivo del uso de n-gramas tiene que ver con analizar las secuencias de operaciones
que se realizan de manera conjunta, centrandonos asi en comportamientos en vez de en
operaciones realizadas de manera individual.

De esta manera es mas facil identificar comportamientos similares dentro de una misma
familia de malware, ya que tienden a exhibir comportamientos similares.

El uso de n-gramas junto con IA para la detecciéon de patrones, concretamente su uso
con malware, comienza con la extraccion de una lista de los n-gramas presentes en la
muestra maligna. Esta lista es filtrada dependiendo del niimero o frecuencia de aparicién
de cada n-grama. Una vez filtrada, esta lista se usa como entrada de los modelos de
prediccién para que aprendan sobre qué conjuntos de n-gramas son indicios maliciosos.

Este trabajo hace uso de este enfoque, ya las caracteristicas identificativas de cada
familia de malware se calculan haciendo uso de n-gramas. Estas caracteristicas son em-
pleadas posteriormente para la creacion y entrenamiento de modelos para la calcificacion
de las muestras de malware.

12

2.4. 'Trabajos similares

En el proceso de preparacion para la realizacion del proyecto se leyd mucha de la
literatura acerca de la clasificacion de malware para entrar al contexto sobre el que se
iba a realizar el trabajo. De todos los articulos y bibliografia leida, estos destacan en
proximidad.

El primero de ellos es [53]. En este articulo se sigue una estrategia similar a la que
se explicara en este documento, ya que también se hace uso de n-gramas para crear
features a partir de las que calcular modelos para la clasificacién de malware.

Una de las diferencias es el dataset empleado, ya que emplean binarios a partir de los
que extraen las APIs. Otra de las similitudes es el empleo de features de frecuencia de
n-gramas. Esta similitud no es tan importante, ya que la mayoria de los proyectos de
clasificacion de malware emplean features estadisticas de este tipo.

Otro articulo con caracteristicas similares es [28]. En este caso, la principal similitud
es el uso de features similares, similar al articulo explicado anteriormente. Las features
seleccionadas son frecuencias de apariciones de APIs, de APIs en categorias distintas o
de ntimero de apariciones totales.

A diferencia del articulo anterior, este no usa n-gramas para extraccion de caracteris-
ticas, pero aplica algoritmos similares a los aplicados en el alineamiento de cadenas de
ADN. Este enfoque nos parecié muy novedoso para extraer sub secuencias de patrones
en muestras de malware de la misma categoria.

En [54] se propone una deteccion de malware mediante la extraccién de caracteristicas
comunes entre ellos. Hace uso de n-gramas relevantes, calculados a partir de n-gramas
seleccionados por su frecuencia normalizada dentro del documento, y de combinaciones
de clasificadores gracias a WEKA, una plataforma software empleada en aprendizaje
automatico y mineria de datos.

El trabajo realizado en [50] también hace uso de trazas de llamadas al sistema a las
que posteriormente aplica modelos bag-of-n-grams [55]. Este tipo de modelos son co-
munmente aplicados en clasificacion de documentos, ya que representan textos como
un vector de frecuencias de palabras. Otra de las diferencias es el uso de RFE [56], ya
que en este trabajo se emplearan tests estadisticos para realizar la funciéon de seleccion
de features.

Otro de los articulos que cabe mencionar es [51]. La principal diferencia es el uso de
un método de clasificacién y deteccion de malware basado en n-gramas hexadecimales
y de bytes. Extraen unigramas de bytes de archivos benignos y malignos, y n-gramas
hexadecimales de muestra de malware. Las caracteristicas utilizadas en el proceso de
clasificaciéon son la combinacion de los unigramas de bytes de bloque y n-gramas hexa-
decimales.

Por tltimo, en [52] también se hace uso de los n-gramas, aunque de una manera distinta.
Cada muestra de malware se utiliza para determinar un solo vector de subfamilia al
que denominan centroide de familia. Este centroide se construye con los n-gramas que
aparecen con mayor frecuencia en la subfamilia

13

3. Modelos para el reconocimiento de malware basado
en n-gramas

En este capitulo se profundiza en la metodologia y procesos aplicados en el desarrollo de
los modelos. Se explica detalladamente el conjunto de datos utilizado y se describen los
sistemas implementados. Finalmente, se presentan los resultados obtenidos, asi como
una discusiéon y explicaciéon de los mismos.

3.1. Proceso para programaciéon de modelos de detecciéon

Los pasos seguidos para llevar a cabo el proceso se pueden ver en la Figura 1 y aunque
se mencionaran brevemente a continuacién con el objetivo de tener una idea general
del proceso, se explicaran en mas detalle en las siguientes secciones.

El primer paso es encontrar un dataset que se adecue al trabajo que se va a realizar.
Una vez seleccionado se comienza el proceso de implementacion, empleando el lenguaje
de programaciéon Python, de un filtrado del dataset. Este filtrado se lleva a cabo para
preparar el dataset a las necesidades especificas del proyecto, eliminando datos que no
se van a utilizar.

A continuacién se hace uso de una libreria de calculo de n-gramas para obtener los
n-gramas maés representativos de cada traza y de esa manera crear diccionarios para
cada familia de malware.

¥

Datos [C_regcwn_de H Calculofeatures}
diccionarios
y

3 }
Evaluacion de

resultados

Clasificacion simple
v
Filtrado Obtener n-grams Crear_ data_s_els Clasificacion multiple
clasificacion

Figura 1: Figura en alto nivel del proceso seguido.

Posteriormente, se calculan las features y se crean los datasets que se emplean para el
proceso de deteccion y clasificacion de malware. El proceso de clasificacion se lleva a
cabo en JupyterLab y se hizo uso de varios tests estadisticos (chi2 [57] y t-test [58]) v
distintos tipos de clasificadores (KNN [59], SVM [60], Gradient Boosting [61| y Regre-
sion Logistica [62]). En este proceso se hace uso de clasificadores simples y multiples.
Finalmente, se calculan los resultados y métricas para cada uno de ellos y se evalian.
Las siguientes secciones estan dedicadas a la explicacion en detalle de cada uno de los
pasos mencionados.

Una vez analizados se presenta una idea de mejora basada en el filtrado de categorias de
interés, el proceso se pueden ver en la Figura 2. Este sistema pretende filtrar el ntimero
n-gramas calculados por traza, reduciéndolos y seleccionando solo aquellos que tienen
un niamero de APIs pertenecientes a categorias de interés.

14

¥

Datos [C_regcwn_de H Calculofeatures}
diccionarios

h

Clasificacion simple
Clasificacion maltiple

Evaluacion de
resultados

Crear datasels
clasificacion

¥

Obtener n-grams Seleccion de n-grams
relevantes

Figura 2: Figura en alto nivel del proceso seguido.

Por tltimo se hace un analisis final de los resultados donde se explicara si han resultado
ser favorables y los valores finales para cada clasificador. La seccion 4, Evaluacion de
mejoras, se dedicaréd a la explicacion de la idea de mejora implementada y la discusion
de sus resultados.

3.2. Metodologia

Antes de comenzar con la explicacion del proceso seguido es fundamental hablar de
las herramientas que se emplearon en el desarrollo de este trabajo. A continuaciéon se
presentaran junto con su aplicaciéon dentro del proyecto.

Python se destaca como el lenguaje de programacion principal de este proyecto debido a
su facilidad de uso, su gran variedad de librerias especializadas y el conocimiento previo
que se tiene del propio lenguaje. Una de las librerias mas esenciales en el desarrollo de
este proyecto es Scikit-Learn [63], una libreria de aprendizaje automéatico fundamental
para desarrollar algoritmos de clasificacion y la evaluaciéon de modelos. Sera utilizada
para entrenar y validar los modelos creados.

Otra de las herramientas fundamentales es JupyterLab, una interfaz de usuario basada
en web para Proyecto Jupyter. Proporciona un entorno de desarrollo interactivo para
trabajar con Jupyter Notebooks, codigo y datos [64]. Se va a emplear esta herramienta
para el proceso de clasificacion de malware, empleando tanto clasificaciéon simple como
multiple.

Para la extraccion de informacion relevante de las trazas de llamadas al sistema se
hace uso de la especificacion Win32 asi como de la libreria nltk [65] de n-gramas. Esta
libreria ofrece recursos para la tokenizacion y procesamiento del lenguaje natural.

Como se ha mencionado en secciones anteriores, este trabajo realizara un anélisis es-
tatico de las trazas de llamadas al sistema. Este anélisis se lleva a cabo gracias a las
herramientas mencionadas.

15

3.3. Descripciéon del dataset

El primer paso fue encontrar un dataset adecuado, es decir, que contuviesen muestras
de varias familias de malware con sus trazas de ejecucién y muestras de programas
benignos si fuese posible.

Una traza de ejecucion describe la secuencia de acciones llevadas a cabo durante la eje-
cucién de un programa. En este contexto especifico, nos referimos a trazas de ejecucion
como la secuencia de llamadas a APIs para cada una de las muestras.

Uno de los primeros datasets que se sopesaron fue Windows Malware Dataset with PE
API Calls |66]. Este dataset contiene muestras de 8 categorias de malware: Spyware,
Downloader, Trojan, Worms, Adware, Dropper, Virus y Backdoor. Contiene un niimero
de trazas similar para la mayoria de ellas, pero no contienen ninguna traza de c6édigo
benigno.

Otro de los datasets que se tuvieron en cuenta fue el Microsoft Malware Classification
Challenge [67]. El problema de este conjunto de datos es que solamente contiene los
binarios de los ejecutables. Un caso similar es el dataset de Malware Analysis Datasets:
API Call Sequences [68], ya que contiene trazas de ejecucion, pero no aparecen las APIs
implicadas en cada llamada, sino un ID identificatorio de cada una de ella, haciendo
imposible identificarlas, ya que no se explica.

Por los motivos que se han explicado, ninguno de estos datasets encajaba con los ob-
jetivos del trabajo, por ese motivo se decidié utilizar el dataset APIMDS (API-based
malware detection system) [69]. Este conjunto de datos incluye un total de 23146 trazas
de codigo maligno de 5 categorias: Backdoor, Worm, Packed, PUP, Trojan y Miscelania,
asi como de subcategorias. La ventaja que tiene es que también contiene los ejecutables
de los binarios de c6digo benigno, pudiendo en un futuro poder emplearlos para obtener
las trazas de ejecucion.

Este conjunto de datos se encuentra en un fichero con formato CSV. El fichero presenta
una estructura que consta de una primera columna que contiene el nombre de la clase
de malware analizado, uno de los mencionados anteriormente, o puede ser que esté
la celda vacia, en ese caso, corresponderia a la categoria de Miscelania. La segunda
columna contiene un hash sha256 y a partir de la tercera columna se encuentra la
secuencia de APIs, toda ellas siguiendo el formato Win32.

Como se ha explicado anteriormente, el dataset elegido contiene 5 categorias de malwa-
re. Este trabajo nos centraremos en clasificar 3 de ellas. Las dos categorias con las que
no se trabajara son Packed y Backdoor. La razén de esta decision es que ninguna de
las dos son un tipo de malware. El hecho de que un archivo haya sido empaquetado no
indica automaticamente que sea de caracter malicioso. Algo similar pasa con Backdoor,
ya que estos se consideran vectores de ataque y no constituyen un tipo especifico de
malware.

16

3.4. Sistemas de reconocimiento a programar

En esta seccion se explicaran todos los pasos presentados en el apartado anterior en
detalle. En la Figura 1 se puede ver un diagrama que pretende servir de apoyo visual a
las explicaciones futuras.

3.4.1. Filtrado y preparacién de los datos

El primer paso fue trabajar con el dataset y filtrarlo para que se adecuase a las necesi-
dades del proyecto. Para conseguirlo se cre6 un script de Python para realizar el filtrado
de los datos. Queremos obtener trazas organizadas por tipo de malware con dos niveles
de abstraccion: API y categorfas de API. Estas abstracciones permiten simplificar la
representacion de los datos, disminuyendo asi su complejidad y de esta forma facilitar
la identificacién de comportamientos maliciosos.

El objetivo del filtrado es obtener ficheros por familia de malware, eliminando el nombre
y el hash, dejando presente en la traza solamente las llamadas al sistema. El script
crea ficheros individuales en los que aparecen las trazas pertenecientes a la misma
familia. Este proceso se realiza recorriendo la colecciéon de datos filtrando cada muestra,
aplicando expresiones regulares sobre el hash y el nombre, quedandonos solamente con
la lista de llamadas a APIs.

Una vez se tenian las trazas separadas por familia, el siguiente paso fue la extraccion
de las categorias correspondientes a las que pertenecen cada una de las APIs. Estas
categorias hacen referencia al area de funcionalidad en la que se encuentra la API, estas
funcionalidades pueden ir desde el control de la exclusion mutua hasta controles del
raton.

Para llevar a cabo este proceso se hizo uso de un fichero [70| JSON donde las claves son
cada una de las categorias y los valores son las funciones pertenecientes a esa categoria,
tal y como se puede ver en el Listado 1.

Se iter6 el fichero JSON, creandose un diccionario donde las APIs actiian como claves
y las categorias como valor para optimizar el proceso de realizar consultas. Se crearon
ficheros para cada tipo de malware con la misma estructura de los generados en el paso
anterior, pero en este caso ya no aparecen las APIs sino su categoria.

17

"Dynamic Data Exchange (DDE)": [
"DdeSetQuality0fService",
"FreeDDElParam",
"ImpersonateDdeClientWindow",
"PackDDE1Param",
"ReuseDDEl1Param",
"UnpackDDEl1Param"

1,

"Windows Sockets (Winsock)": [
"accept",

"AcceptEx",
"bind",

Listado 1: Ejemplo del fichero usado para obtener las categorias de cada API.

3.4.2. Reconocedores binarios de 2 a 5 n-gramas

El siguiente paso fue obtener los n-gramas correspondientes a cada traza. Un n-grama
es una sub secuencia de ‘n’ items dada una secuencia. Esta ‘n’ puede ser de distintos
tamarnios: 1 (unigrama), 2 (bigrama), 3 (trigrama), etc. . En este trabajo se calcularan los
resultados para n-gramas de 2 a 5. Muchos estudios han aplicado n-gramas al problema
de clasificacion de malware y se ha demostrado que es una estrategia eficiente para
resolver problemas de clasificacion [53].

Para poder aplicar n-gramas al proyecto, el primer paso fue encontrar una libreria de
Python que se adecuase a las necesidades. Entre las librerias que se tuvieron en cuenta
se encuentran lpngram [71|, python-ngram [72| y nltk [65].

La librerfa lpngram proporciona métodos para la recolecciéon y suavizado de n-gramas,
de abstraccion de secuencias, para analisis de patrones y es ttil para el modelado
de lenguajes. La libreria python-ngram extiende la clase “set”, utiliza medidas de
similitud entre n-gramas para la comparacion de cadenas y es idonea para la bisqueda
de similitudes entre ellas, asi como de agrupaciones de datos.

Finalmente, contamos con la libreria elegida, la libreria nltk. Esta proporciona am-
plios recursos para el procesamiento del lenguaje natural, proporciona bibliotecas para
la tokenizaciéon y clasificacion y contiene funcionalidades complejas para el analisis y
razonamiento seméntico, haciéndola versatil. Asi mismo, nltk cuenta con una gran do-
cumentacion, lo que facilita el aprendizaje y la eficiencia en el desarrollo del proyecto.

Una vez seleccionada la libreria se comenzo con el proceso de calculo de n-gramas, para
ello se cre6 un script de Python encargado de extraer los n-gramas a cada una de las
trazas. El proceso de extraccion puede verse en el Listado 2, a cada una de las lineas del
fichero se les aplica la funcion extract ngrams (Linea 2), esta devuelve la linea separada
en n-gramas de tamano num. A estos n-gramas se les aplica la funcion FregDist (Linea
13) de la libreria para obtener la frecuencia de cada uno de los n-gramas en la traza y

18

seleccionamos los primeros ‘n’ elementos.

1 # Generar n-grama

2 def extract_ngrams(data, num):

3 n_grams = ngrams(nltk.word_tokenize(data), num)

4 return [' '.join(grams) for grams in n_grams]

5

6 def create_ngrams(malware_data, fichero, num_ngrams, n):
7 fichero = open(fichero, 'w')

8

9

ngrams_malware = []
10 for line in malware_data.splitlines():

11 lista = extract_ngrams(line, num_ngrams)

12

13 frequency_distribution = FreqDist(lista)

14 ngrams = str(frequency_distribution.most_common(n))
15

16 ngrams_malware.append (ngrams)

17

18 # Escribir ngrams en fichero de salida
19 for element in ngrams_malware:
20 fichero.write(element + "\n")

Listado 2: Ejemplo del fichero usado para la extracciéon de n-gramas.

Una vez calculados los n-gramas por familia, el siguiente paso fue la creacién de dic-
cionarios globales para cada familia de malware, donde la clave es cada n-grama y su
valor es su numero de repeticiones. El porqué del uso de diccionarios proviene de la
eficiencia que proporcionan en la btisqueda de un n-grama en especifico durante la fase
de creacion y actualizacion del diccionario. Proveen una estructura de datos organizada
y eficiente para su posterior uso en la creacién de modelos.

Utilizando expresiones regulares se extraen los n-gramas y el niimero de repeticiones
de cada uno de ellos. Como se van a calcular diccionarios globales a partir de muchas
trazas, puede ser que varios n-gramas coincidan entre ellas. Para solucionarlo, si un n-
grama ya ha sido anadido al diccionario, simplemente se actualizara el valor al ntimero
de repeticiones existente.

Aprovechando que se tiene el nimero total de repeticiones por n-grama, se aplic6 un
paso mas de filtrado, calculdndose el porcentaje de apariciones de cada uno de ellos y
eliminando los que no superen un valor minimo de apariciéon. Los restantes se ordenan
por porcentaje de aparicion, solamente quedandonos con los ‘n’ primeros, dandoles mas
importancia a los que més aparecen. Tanto el valor ‘n’ como el valor minimo de porcen-
taje de aparicion son introducidos por el usuario, siendo estos valores completamente
personalizables.

Como el tamano del dataset es grande, el valor seleccionado para el porcentaje minimo
de aparicion ha sido de 0.05, ya que escogiendo valores mayores el tamano del diccionario

19

resultante se reducia considerablemente. Esto puede deberse a que en un conjunto de
datos grande, es comuUn que aparezcan n-gramas tnicos, pero muchos de ellos contener
frecuencias bajas. Filtrando por el umbral de 0.05 nos centramos en los n-gramas con
una mayor presencia dentro del dataset.

Como paso final se realiz6 la automatizaciéon de todo el proceso, calculandose todos los
resultados para n-gramas de 2 a 5 con longitud maxima 100 y el porcentaje de aparicién
previamente explicado de 0.05. Las razones por las que se selecciondé 100 como valor
méaximo tienen que ver conque cuando el valor aplicado a la longitud maxima era
mayor se obtenfan gran cantidad de n-gramas con frecuencias de aparicion muy bajas.
Asi mismo, en articulos como en [53] también reducen la lista a los 100 primeros. Todos
estos parametros son introducidos por el usuario y se calculan de manera automatizada.

3.4.3. Extraccion de features

El objetivo de este paso es obtener un conjunto de datos representativo y ttil para su
uso en la creacion de modelos de aprendizaje. Una buena seleccion de features es crucial
para mejorar la precision de los modelos.

El enfoque de la seleccion de features se basa en un anélisis de la literatura cientifica
relacionada, asi como de una selecciéon personal previa de caracteristicas que se consi-
deraban de relevancia. Se han incorporado conceptos respaldados por varios estudios
en el campo, los cuales se mencionaran a continuacion.

Las features empleadas en [73] incluyen el porcentaje de aparicion de categorias de cada
API presente en las trazas. En [53| podemos ver el uso de la frecuencia de cada n-grama
como feature y como se reduce la lista total a los 100 primeros. También emplean las
frecuencias de cada llamada. Finalmente, en [28] emplean el ntumero total de llamadas
a cada API junto a su frecuencia de uso.

Tras esta revision, la seleccion de features adoptada en este trabajo se centra en el
recuento total de repeticiones para cada n-grama en cada una de las trazas. Esta eleccion
se basa en las observaciones anteriores, ya que el uso de porcentajes o frecuencias,
asi como el numero de apariciones de APIs han sido empleados y han proporcionado
resultados significativos en investigaciones similares.

Como salida generada en este paso se obtiene un fichero por familia de malware que
contiene una linea por traza en la que aparecen el ntimero de repeticiones de cada
n-grama.

3.4.4. Creacion de datasets para clasificacion
Para iniciar el proceso de clasificacion de las muestras y desde este punto en adelante nos
sumergimos en la plataforma JupyterLab para llevar a cabo todos los pasos siguientes.

El primer paso fue obtener las features calculadas para cada familia de malware en
dos partes, una de train dedicada a realizar el entrenamiento de los modelos y otra de
test o validacion, destinada a comprobar la eficacia del modelo. Este proceso se realiza

20

separando el conjunto de datos gracias a un script de Python en el que se introduce el
porcentaje de elementos presentes en el conjunto de train. En el caso de este proyecto
se utiliza un 80 % para datos de entrenamiento y un 20 % para datos de validacion.
Usando estos elementos se crearon datasets para cada familia de malware.

La primera columna de todos los datasets indica el tipo de malware al que corresponde la
traza, los tipos siempre serdn other o uno de los tipos de malware. El resto corresponde
el nimero de repeticiones de cada n-gram. Los datasets contienen un niimero de trazas
equilibrado, esto significa que hay el mismo nimero de trazas de other como del otro
tipo y todas tienen la misma longitud. Las trazas clasificadas como other no solamente
provienen de un tipo de malware sino de una mezcla de todos los tipos, excluyendo
claramente la categoria de malware sobre la que se esta creando el dataset.

Una vez obtenidos los datasets, se comenzé con la creacion de los modelos.

3.4.5. Programacién de modelos

El siguiente paso es la creacion de modelos. Este paso consta de varias fases: aplicar tests
estadisticos, seleccionar las mejores features, aplicar clasificadores y realizar prediccio-
nes. Los modelos creados en este trabajo se construyen mediante clasificadores simples
y multiples. En este apartado se explicaran los clasificadores aplicados, explicando los
valores de entrada y salida, asi como su comportamiento.

El primer paso es aplicar tests estadisticos. Su objetivo es determinar la eficacia con la
que las features describen el conjunto de datos, es decir, funcionan como una hipotesis.
Los tests aplicados son el chi2 [57] y el t-test [58], los cuales devuelven las features que
mejor describen el conjunto de datos. Una vez obtenidos sus resultados se selecciona las
mejores features devueltas por ambos para ser pasadas a los clasificadores. La manera
en la que se calculan las mejores features es aplicando estrategias de voting, donde las
features devueltas por los tests estadisticos son unificadas seleccionando las mejores de
cada uno de ellos.

El siguiente paso consiste en la creacién de modelos a partir de diferentes algoritmos de
ML. Los algoritmos seleccionados han sido: KNN, SVM, Gradient Boosting y Regresion
Logistica. Se han seleccionado estos cuatro algoritmos por su diversidad en el enfoque
que utilizan y su capacidad para trabajar con diferentes tipos de datos.

= KNN: utiliza la proximidad para hacer clasificaciones o predicciones sobre la
agrupacion de datos [59]. El algoritmo KNN funciona considerando puntos simi-
lares cercanos en un espacio de datos, donde la K hace referencia al ntiimero de
vecinos que se tienen en cuenta. Cuando este algoritmo realiza predicciones, mira
a sus vecinos cercanos empleando una medida de distancia entre puntos, como
por ejemplo la distancia euclidea.

= SVM: encuentra la mejor linea o hiperplano que separe de la mejor forma posible
dos clases diferentes de datos [60]. Busca maximizar la distancia entre los puntos
mas cercanos de las distintas clases. Une vez encontrada la linea o el hiperplano,
clasifica los nuevos puntos dependiendo del lado en el que caigan.

21

» Gradient Boosting: técnica de aprendizaje automatico utilizada para el analisis
de la regresion que produce un modelo predictivo uniendo modelos de prediccion
débiles [61]. Comienza con un modelo simple y se centra en corregir sus errores
agregando modelos débiles. Cada modelo tiene un peso segtin su capacidad pa-
ra corregir dichos errores. Estos modelos mejoran gradualmente la precision del
modelo.

= Regresion Logistica: modelo estadistico que estudia las relaciones entre un
conjunto de variables cuantitativas y una variable cualitativa [62] para predecir la
probabilidad de pertenencia a una categoria. Ajusta sus parametros para maxi-
mizar dicha probabilidad y establece un umbral de decisiéon para la clasificacion.

Para todos los modelos y clasificadores el entrenamiento se realiza empleando los datos
de train y se realizan predicciones con los datos de test, calculandose métricas para
comprobar el comportamiento del modelo. Un ejemplo de este proceso se puede ver en
el Listado 3.

Sin embargo, para mejorar la robustez de la evaluaciéon también se aplica K-Fold Cross
Validation con un valor de k de 5, ya que proporciona un buen equilibrio entre varianza
y sesgo de estimacion del rendimiento |74] del modelo. Este método permite evaluar los
modelos en miltiples divisiones para obtener la mas confiable.

La funcioén salida es la clase en la que se ha clasificado cada una de las muestras. En el
caso de los clasificadores simples solamente pueden ser dos valores (other y la clase de
malware con la que se entrena el modelo) y en los clasificadores miltiples pueden ser
cuatro (other, trojan, pup o worm,).

Las métricas calculadas para la evaluacion del rendimiento de los modelos son precision,
recall, f1-score y matrices de confusion [75]. Todos estos valores se guardaron en ficheros
CSV para que su posterior analisis fuese rapido. En estas tablas se puede ver el ntimero
de n-gramas que se ha empleado, el modelo de ML utilizado y el niimero de trazas con
las que se ha realizado la creacion del modelo. Asi mismo también aparecen los valores
para cada una de las métricas calculadas.

Crear modelo de KNN
model = KNeighborsClassifier()

Entrenar con datos de train
model.fit(X_train, y_train)

Realizar predicciones
y_predict = model.predict(X_test)

O N O Ok WN -

Listado 3: Ejemplo de creacion, entrenamiento y realizacion de predicciones a modelos.

22

3.4.6.

A continuacién se muestran los resultados obtenidos tras la clasificacion y el uso de
los clasificadores simples de KNN, SVM, Gradient Boosting y Regresion Logistica para
cada una de las categorias de malware presentes en el dataset. Aunque se calcularon
resultados para n-gramas desde 2 hasta 5, nos enfocaremos en aquellos que arrojaron
mejores resultados. Especificamente, los trigramas y 4-gramas fueron los que ofrecieron

mejores resultados.

Las Tablas 1, 2 y 3 contienen los resultados obtenidos con trigramas y las Figuras 3, 4

Clasificadores simples

y b presentan las matrices de confusion para pup, trojan y worm respectivamente.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

3 KNN 2433 0.357 0.331 | 0.344 | 465 -0.214
3 svm 2433 0.5 0.865 | 0.634 | 465 0.098
3 gradient 2433 0.438 0.572 | 0.496 | 465 -0.101
3 regression 2433 0.516 0.731 | 0.605 | 465 0.112

Tabla 1: Resultados obtenidos para pup con trigramas.

N-grams | Modelo MLL | Num. traza | precision | recall | f1 support | mcc

3 KNN 7314 0.678 0.825 | 0.744 | 1408 -0.011
3 svm 7314 0.754 0.765 | 0.759 | 1408 0.236
3 gradient 7314 0.646 0.546 | 0.592 | 1408 -0.084
3 regression 7314 0.722 0.695 | 0.708 | 1408 0.124

Tabla 2: Resultados obtenidos para trojan con trigramas.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

3 KNN 605 0.558 0.653 | 0.602 | 118 0.162
3 svm 605 0.361 0.559 | 0.439 | 118 -0.447
3 gradient 605 0.49 1 0.657 | 118 0.063
3 regression 605 0.375 0.585 | 0.457 | 118 -0.401

Tabla 3: Resultados obtenidos para worm con trigramas.

23

Elemento pup con clasificador KNN:

precision recall fl-score support

other 0.43 0.46 0.44 509

pup 0.36 0.33 6.34 465

accuracy 0.40 974
macro avg 0.39 0.39 0.39 974
weighted avg 0.39 0.40 0.39 974

Matriz de confusidn:

[[232 277]
[311 154]]

Elemento pup con clasificador svm:

precision recall fl-score support

other 0.63 6.21 0.32 509

pup 0.50 0.86 0.63 465

accuracy 0.52 974
macro avg 0.56 B.54 0.47 974
weighted avg 0.57 B.52 0.47 974

Matriz de confusian:

[[167 402]
[63 402]]

Elemento pup con clasificador gradient:

precision recall fl-score support

other 0.46 0.33 0.38 509

pup 0.44 0.57 8.50 465

accuracy 0.45 974
macro avg 0.45 B.45 0.44 974
weighted avg 0.45 6.45 0.44 974

Matriz de confusidn:

[[168 341]
[199 266]]

Elemento pup con clasificador regression:

precision recall fl-score support

other 0.60 8.37 8.46 509

pup 8.52 8.73 0.60 465

accuracy 0.54 974
macro avg 0.56 B.55 .53 974
weighted avg 0.56 B.54 0.53 974

Matriz de confusidn:

[[196 319]
[125 340]]

Figura 3: Matrices de confusién obtenidas con los clasificadores simples para pup em-
pleando trigramas.

24

Elemento trojan con clasificador KNN:

precision recall fl-score support

other 0.31 0.17 0.22 663

trojan 0.68 6.83 B.74 1408
accuracy 0.61 2071
macro avg 0.49 6.50 0.48 2071
weighted avg 0.56 8.61 0.58 2071

Matriz de confusidn:

[[118 553]
[246 1162]]

Elemento trojan con clasificador svm:

precision recall fl-score support

other 0.48 0.47 0.48 663

trojan 0.75 0.76 8.76 1408
accuracy 0.67 2071
macro avg 0.62 B.62 0.62 2071
weighted avg 0.67 8.67 0.67 2071

Matriz de confusidn:

[[311 352]
[331 1077]]

Elemento trojan con clasificador gradient:

precision recall fl-score support

other 0.27 0.37 8.31 663

trojan 0.65 0.55 0.59 1408
accuracy 0.49 2071
macro avg 0.46 0.46 0.45 2071
weighted avg 0.53 B.49 0.50 2071

Matriz de confusidn:

[[242 421]
[639 769]]

Elemento trojan con clasificador regression:

precision recall fl-score support

other 0.40 0.43 0.42 663

trojan 6.72 6.70 8.71 1408
accuracy .61 2071
macro avg 0.56 B.56 0.56 2071
weighted avg 0.62 B.61 0.61 2071

Matriz de confusidn:

[[286 377]
[429 979]]

Figura 4: Matrices de confusiéon obtenidas con los clasificadores simples para trojan
empleando trigramas.

25

Elemento worm con clasificador KNN:

precision recall fl-score support

other 0.61 8.51 0.55 124

worm 0.56 0.65 0.60 118
accuracy 0.58 242
macro avg 0.58 B.58 0.58 242
weighted avg 0.58 B.58 0.58 242

Matriz de confusian:

[[B3 B1]
[41 77]]

Elemento worm con clasificador swm:

precision recall fl-score support

other 6.12 0.06 0.08 124

worm 0.36 0.56 0.44 118
accuracy 0.30 242
macro avg 0.24 B.31 0.26 242
weighted avg 0.24 B.30 0.25 242

Matriz de confusidn:

[[7 117]
[52 66]]

Elemento worm con clasificador gradient:

precision recall fl-score support

other 1.00 6.01 0.02 124

worm 0.49 1.00 0.66 118
accuracy 0.49 242
macro avg 0.74 6.50 0.34 242
weighted avg 0.75 6.49 .33 242

Matriz de confusidn:

Elemento worm con clasificador regression:

precision recall fl-score support

other 0.16 0.07 8.10 124

worm 0.38 0.58 0.46 118
accuracy 0.32 242
macro avg 0.27 B.33 0.28 242
weighted avg 0.26 B.32 0.27 242

Matriz de confusidn:

[[9 115]
[49 69]]

Figura 5: Matrices de confusion obtenidas con los clasificadores simples para worm
empleando trigramas.

26

También se incluyen las Tablas 4, 5 y 6 que contienen los resultados obtenidos con
4-gramas y las Figuras 6, 7 y 8 que presentan las matrices de confusion para pup, trojan

y worm respectivamente.

N-grams | Modelo MLL | Num. traza | precision | recall | f1 support | mcc

4 KNN 2433 0.415 0.645 | 0.505 | 468 -0.226
4 svm 2433 0.297 0.111 | 0.162 | 468 -0.172
4 gradient 2433 0.464 0.562 | 0.508 | 468 -0.039
4 regression 2433 0.27 0.128 | 0.174 | 468 -0.229

Tabla 4: Resultados obtenidos para pup con n-gramas de 4.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

4 KNN 7314 0.706 0.505 | 0.589 | 1474 -0.013
4 svm 7314 0.704 0.904 | 0.792 | 1474 -0.054
4 gradient 7314 0.624 0.361 | 0.457 | 1474 -0.163
4 regression 7314 0.707 0.943 | 0.808 | 1474 -0.041

Tabla 5: Resultados obtenidos para trojan con n-gramas de 4.

N-grams | Modelo MLL | Num. traza | precision | recall | f1 support | mcc

4 KNN 605 0.527 0.556 | 0.541 | 124 0.031
4 svm 605 0.479 0.452 | 0.465 | 124 -0.065
4 gradient 605 0.403 0.452 | 0.426 | 124 -0.255
4 regression 605 0.495 0.444 | 0.468 | 124 -0.031

Tabla 6: Resultados obtenidos para worm con n-gramas de 4.

27

Elemento pup con clasificador KNN:

precision recall fl-score support

other 6.33 0.16 8.21 506

pup 6.41 0.65 @.51 468

accuracy 8.39 974
macro avg 0.37 0.48 0.36 974
welghted avg 0.37 0.39 0.35 974

Matriz de confusidn:

[[80 426]
[166 302]]

Elemento pup con clasificador svm:

precision recall fl-score support

other 0.48 0.76 @.59 506

pup 6.38 0.11 8.16 468

accuracy 0.45 974
macro avg 0.39 0.43 0.37 974
welghted avg 0.39 0.45 0.38 974

Matriz de confusion:

[[383 123]
[416 52]]

Elemento pup con clasificador gradient:

precision recall fl-score support

other 0.50 0.460 0.44 5086

pup 0.46 0.56 8.51 468

accuracy 0.48 974
macro avg 0.48 0.48 0.48 974
weighted avg 0.48 0.48 0.47 974

Matriz de confusiodn:

[[202 304]
[205 263]]

Elemento pup con clasificador regression:

precision recall fl-score support

other 0.46 0.68 8.55 5086

pup 0.27 0.13 8.17 468

accuracy 0.41 974
macro avg 0.36 0.460 0.36 974
weighted avg 0.37 0.41 8.37 974

Matriz de confusiodn:

[[344 162]
[408 60]]

Figura 6: Matrices de confusiéon obtenidas con los clasificadores simples para pup em-

leando 4-gramas.
p g o8

Elemento trojan con clasificador KNN:

precision recall fl-score support

other 6.28 0.48 8.36 597

trojan 8.71 0.50 8.59 1474
accuracy 0.50 2071
macro avg 0.49 0.49 0.47 2071
welghted avg 0.58 0.58 8.52 2071

Matriz de confusion:

[[287 316]
[730 744]]

Elemento trojan con clasificador swvm:

precision recall fl-score support

other 0.21 0.06 8.10 597

trojan B.70 0.90 8.79 1474
accuracy 0.66 2071
macro avg 0.46 0.48 0.44 2071
weilghted avg B.56 0.66 8.59 2871

Matriz de confusion:

[[37 568]
[141 1333]]

Elemento trojan con clasificador gradient:

precision recall fl-score support

other 0.23 0.46 0.30 597

trojan 0.62 0.36 0.46 1474
accuracy 0.39 2071
macro avg 0.43 0.41 8.38 2871
weilghted avg B.51 0.39 8.41 2871

Matriz de confusidn:

[[278 321]
[942 532]]

Elemento trojan con clasificador regression:

precision recall fl-score support

other 6.21 0.04 8.06 597

trojan 6.71 0.94 8.81 1474
accuracy 0.68 2871
macro avg 0.46 0.49 0.44 2871
weighted avg 0.56 0.68 0.59 2071

Matriz de confusidn:

[[22 575]
[84 1390]]

Figura 7: Matrices de confusiéon obtenidas con los clasificadores simples para trojan

empleando 4-gramas. 5

Elemento worm con clasificador KNN:

precision recall fl-score support

other 0.50 0.47 8.49 118

worm 0.53 B.56 8.54 124
accuracy B.52 242
macro avg 0.52 B.52 B.52 242
weighted avg 0.52 8.52 B.52 242

Matriz de confusion:

Elemento worm con clasificador svm:

precision recall fl-score support

other 0.46 0.48 8.47 118

worm 0.48 B.45 8.46 124
accuracy B.47 242
macro avg 0.47 B.47 B.47 242
weighted avg 0.47 B.47 B.47 242

Matriz de confusian:

[[57 B1]
[68 56]]

Elemento worm con clasificador gradient:

precision recall fl-score support

other 0.34 6.30 8.32 118

worm Q.48 0.45 0.43 124
accuracy B.38 242
macro avg 0.37 B.37 8.37 242
weighted avg 0.37 B.38 B.37 242

Matriz de confusian:

Elemento worm con clasificador regression:

precision recall fl-score support

other Q.47 B.53 a.50 118

worm 0.58 6.44 a.47 124
accuracy 0.48 242
macro avg 0.48 0.48 0.48 242
weighted avg 0.48 0.48 0.48 242

Matriz de confusian:

Figura 8: Matrices de confusiéon obtenidas con los clasificadores simples para worm

empleando 4-gramas. 20

Como se puede apreciar en las tablas, los trigramas consiguen mejores resultados para
pup con SVM con fl-score de 0.634 (Tabla 1) y worm con Gradient Boosting con un
fl-score de 0.657 (Tabla 3).

En cambio, el mejor modelo para trojan es conseguido empleando 4-grams y Regresion
Logistica dando un fl-score de 0.808 (Tabla 5). En todos ellos el mejor clasificador
varia.

El mejor modelo generado es el de trojan utilizando Regresion Logistica y 4-gramas
(ver Figura 7). En el resultado podemos observar que la clasificacion de trojan es muy
efectiva, con un fl-score de 0.81, en cambio, la clasificacion de other devuelve un fl1-
score de 0.06, dejando el valor medio en 0.59. Esto puede deberse a que el ntimero
de muestras de trojan en comparaciéon con su opuesto es mucho mayor y no contiene
solamente muestras de un tipo de malware.

La matriz nos muestra que 1390 muestras han sido categorizadas de manera correcta
como trojan y solamente 84 han sido mal clasificadas. En el caso de other podemos ver
que 575 muestras han sido mal clasificadas y solamente 22 han sido identificadas como
other.

3.4.7. Clasificadores maultiples

Una vez que se obtuvieron clasificadores simples que funcionaban correctamente, se
procedi6 a la implementacion de clasificadores multiples.

El dataset empleado varia un poco de los empleados en los clasificadores simples, ya que
en ellos solo existian dos tipos de clases a clasificar, en cambio, en este dataset estan
presentes todas las categorias de malware y other que incluye el resto de muestras. Este
dataset también contiene un ntmero de muestras balanceado. En cuanto al proceso
seguido, este no difiere del empleado en los clasificadores simples.

Como se podra ver en los resultados obtenidos, no se calcul6 el resultado para Regresion
Logistica, ya que el proceso de clasificacion era el més largo y JupyterLab cortaba la
ejecucion. Esto mismo pasaba cuando la longitud de la traza introducida era mayor a
100, de ahi una de las razones de seleccionar ese valor como longitud maxima de cada
traza.

La organizacion de los resultados esté organizada de la misma manera que en apartado
anterior. La Tabla 7 contiene los resultados obtenidos con trigramas y las Figuras 9, 10
y 11 presentan las matrices de confusion obtenidas para cada clasificador.

N-grams | Modelo ML | precision | recall | f1 support | mcc

3 KNN 0.758 0.782 | 0.762 | 2290 0.577
3 svm 0.712 0.737 | 0.713 | 2290 0.476
3 gradient 0.78 0.794 | 0.77 | 2290 0.591

Tabla 7: Resultados obtenidos para el clasificador miltiple usando trigramas.

También se incluye la Tabla 8 que muestra los resultados obtenidos con 4-gramas y las
Figuras 12, 13 y 14 presentan las matrices de confusion obtenidas para cada clasificador..

31

Clasificador KHNN:

precision recall fl-score support

other 0.43 0.18 0.26 225

pup 0.69 0.81 0.75 479

trojan 0.84 6.90 0.87 1458

worm 0.61 8.35 0.45 128
accuracy 0.78 2290
macro avg 0.64 0.56 0.58 2290
weighted avg 0.76 B.78 .76 2290

Matriz de confusian:

[

[

[38 83 1318 19]
[4 23 568 45]]

Figura 9: Matriz de confusiéon obtenida por el clasificador miltiple empleando KNN
para trigramas.

Clasificador swvm:

precision recall fl-score support

other 0.46 0.16 0.24 225

pup 0.62 0.67 0.64 479

trojan 0.80 0.89 0.84 1458

worm 0.56 0.28 0.38 128
accuracy 0.74 2290
macro avg 0.61 6.50 0.52 2290
weighted avg 0.71 B.74 0.71 2290

Matriz de confusidn:

[36 60 125 4]
[& 319 149 5]
[35 107 1297 19]
[2 32 58 36]]

Figura 10: Matriz de confusion obtenida por el clasificador multiple empleando SVM
para trigramas.

32

Clasificador gradient:

precision recall fl-score support

other 0.65 0.21 6.32 225

pup 6.73 B.79 .76 479

trojan 0.82 6.93 6.87 1458

worm 0.71 6.32 0.44 128
accuracy 8.79 2290
macro avg 0.73 0.56 0.60 2290
weighted avg 0.78 B.79 0.77 2290

Matriz de confusidn:

[[47 58 128 8]
[3 377 99 8]
[21 &7 1353 17]
[1 13 73 41]]

Figura 11: Matriz de confusion obtenida por el clasificador miltiple empleando Gradient
Boosting para trigramas.

n-grams | Modelo ML | precision | recall | f1 support | mcc

4 KNN 0.769 0.789 | 0.772 | 2290 0.579
4 svim 0.727 0.751 | 0.726 | 2290 0.489
4 gradient 0.77 0.791 | 0.764 | 2290 0.575

Tabla 8: Resultados obtenidos para el clasificador multiple usando n-gramas de 4.

Los resultados obtenidos por los clasificadores miiltiples también se obtuvieron con
trigramas y 4-grams. Como se puede ver en las tablas, los 4-grams consiguen el mejor
valor al emplear KNN, ya que devuelve un valor de fl-score de 0.772 (Tabla 8), este valor
no tiene gran diferencia con el obtenido con los trigramas, ya que el mejor clasificador,
el Gradient Boosting, devuelve un valor de 0.77 (Tabla 7). Tanto en trigramas como en
4-gramas, el clasificador que peores resultados ha devuelto ha sido el SVM.

El mejor modelo fue conseguido tras aplicar KNN (ver Figura 12). Al analizar este
resultado podemos ver que el tipo de malware que mejor se clasifica es trojan con un
f1-score de 0.87, seguido de pup con 0.74, worm con 0.49 y finalmente other con 0.28,
dejando el valor medio en 0.77. Este orden sigue el del nimero de trazas disponibles
para cada una de las categorias de malware.

Otro elemento a tener en cuenta son los valores de la matriz de confusiéon. Podemos
ver que en todos los casos, excepto en el de other, la mayor parte de las muestras han
sido clasificadas de manera correcta. Podemos ver que 44 muestras han sido clasificadas
de manera correcta como other mientras que 116 han sido identificadas erréneamente
como trojan. En el caso de pup 370 han sido clasificadas correctamente y 81 como trojan.
El nimero de muestras correctamente clasificadas como trojan ha sido 1343, mientras
que 87 han sido clasificadas como pup. Finalmente, 49 muestras de worm han sido bien
clasificadas, mientras que 40 han sido clasificadas como trojan.

33

Clasificador KNN:

precision recall fl-score support

other Q.46 6.20 0.28 216

pup Q.78 6.79 a.74 466

trojan 0.85 6.90 0.87 1491

worm 0.59 0.42 0.49 117
accuracy B.79 2290
macro avg 0.65 B.58 0.60 2290
weighted avg 0.77 B.79 B.77 2290

Matriz de confusidn:

[[44 54 116 2]
[6 3708 81 9]
[38 87 1343 23]
[7 21 40 49]]

Figura 12: Matriz de confusion obtenida por el clasificador multiple empleando KNN
para 4-gramas.

Clasificador svm:

precision recall fl-score support

other 6.49 8.12 0.20 216

pup 0.63 0.68 0.65 466

trojan 6.81 6.98 0.85 1491

worm 8.55 B.33 0.41 117
accuracy 8.75 2290
macro avg 0.62 B.51 0.53 2290
weighted avg 0.73 B.75 0.73 2290

Matriz de confusion:

[27 53 132 4]
[4 317 141 4]
[22 108 1337 24]
[2 26 50 39]

Figura 13: Matriz de confusiéon obtenida por el clasificador miltiple empleando SVM
para 4-gramas.

34

Clasificador gradient:

precision recall fl-score support

other 0.56 0.12 8.20 216

pup 0.72 .79 08.75 466

trojan 0.83 0.92 0.87 1491

wWOrm 0.62 0.38 0.47 117
accuracy 0.79 2290
macro avg 0.68 0.55 0.57 2290
weighted avg 0.77 0.79 8.76 2290

Matriz de confusidn:

Figura 14: Matriz de confusion obtenida por el clasificador multiple empleando Gradient
Boosting para 4-gramas.

Las muestras no identificadas correctamente como trojan han sido confundidas, en su
mayoria, con pup. Esto también pasa con las muestras de pup, worm y other, mal
clasificadas en su mayoria como trojan.

3.5. Discusion sobre los resultados

En esta seccion se aborda la comparacion entre los resultados obtenidos por los clasifi-
cadores simples y los clasificadores multiples. El anélisis se centra en evaluar la eficacia
de ambos enfoques para identificar la aproximacion més efectiva para la clasificacion
de malware.

Tras haber analizado todos los resultados, se puede ver que los resultados obtenidos
por los clasificadores miiltiples superan a los obtenidos por los clasificadores simples,
exceptuando el caso de trojan empleando Regresion Logistica, ya que devuelve un f1-
score de 0.808, mayor que los resultados devueltos por cualquier clasificador multiple.

La aproximacion que se muestra mas efectiva es la utilizacion de clasificacion miltiple.
En general, los resultados obtenidos superan a los devueltos por los clasificadores sim-
ples, indicando una mayor capacidad para manejar la diversidad de las categorias de
malware que presenta el dataset. Casos como el clasificador simple de trojan menciona-
do, que devuelve un resultado que mejora los obtenidos por los clasificadores multiples,
necesitan de un anélisis detallado, ya que puede ser que empleando Regresion Logistica
y clasificaciéon multiple en otro entorno se obtengan atin mejores resultados.

Tras analizar la efectividad de los clasificadores, se sugiere la posibilidad de mejorar
enfoques mejores al actual. La estrategia decidida es la implementacion de un filtrado
més especifico de los n-gramas.

35

4. Evaluacién de mejoras

Una vez ya analizados los resultados se decidi6 intentar mejorarlo. La opcién por la que
se opto fue realizar un filtrado de los n-gramas basado en categorias de interés. Cen-
trarse en categorias que sean mas vulnerables a ser relacionadas con comportamientos
maliciosos puede tener un impacto significativo en la precision de los modelos.

4.1. Filtrado basado en categorias de interés

El filtrado basado en categorias de interés busca mejorar los resultados obtenidos por los
clasificadores. Para conseguirlo se propuso un filtrado de los n-gramas para quedarnos
y calcular features a partir de una selecciéon de n-gramas que se consideren relevantes.

Los paso seguidos para la implementacion de esta mejora se pueden ver en la Figura
15. Como se puede ver se ha anadido un paso adicional llamado “Selecciéon de n-gramas
relevantes” pero el resto del proceso no ha tenido modificaciones.

El primer paso a realizar para llevar a cabo el filtrado fue hacer una seleccién de ca-
tegorias relevantes. Se recopilaron una serie de categorias de APIs mas asociadas con
comportamientos maliciosos o que su uso hiciese mas vulnerable el sistema informético.
Todas ellas se obtuvieron del fichero listado en el Listado 1, ya explicado anteriormente.
Estas categorias son: Files and 1/0 (Local file system), Cryptography, Cryptographic
Next Generation (CNG), CNG Cryptographic Primitive, Network Management, Win-
dows Networking (WNet), Windows Internet (WinINet), Windows Sockets (Winsock),
Memory Management, Processes, Synchronization, Registry y System Information Fun-
ctions.

A continuacion se realiza el filtrado de los n-gramas, seleccionando aquellos n-gramas
que contengan dos o mas APIs de las categorias relevantes. Una vez realizado el filtrado
se calculan el mismo tipo de resultados, estos seran explicados y comentados en las
proximas secciones.

Y

Datos [C_regcwn_de H Calculofeatures}
diccionarios

h

Clasificacion simple
Clasificacion multiple

Evaluacion de
resultados

Crear datasets

Filtrado i .
clasificacion

Obtener n-grams Seleccion de n-grams
relevantes

Figura 15: Figura en alto nivel del proceso seguido.

36

4.2. Sistemas de reconocimiento a programar

El principal sistema a programar en este proceso fue un script de Python encargado de
realizar el filtrado y selecciéon de los n-gramas relevantes. Una vez terminado, el script
se anadi6 al proceso automatizado final.

El primer paso fue crear un indice con los contenidos del JSON de categorias. De esta
manera es més eficiente realizar busquedas para cada API que haya en los n-gramas.
Este indice se utiliza para obtener la categoria de cada API, creandose una lista con
ellas. Esta lista se compara con las categorias previamente seleccionadas como relevantes
y si el namero de categorias relevantes es igual o mayor a 2 el n-grama se guardara en
un diccionario final, utilizado para calcular las features en pasos posteriores.

Finalmente, el resto del sistema se deja igual, anadiéndose este paso como adicional al
proceso automatizado que ya se tenia.

4.3. Resultados obtenidos

En esta seccion se discutirdan y analizaran los resultados obtenidos. Se realizara del
mismo modo que en apartados anteriores, comenzando por los resultados de los cla-
sificadores simples y finalizando con los devueltos por los clasificadores multiples. Los
algoritmos seleccionados para el proceso son iguales a los empleados en las clasifica-
ciones anteriores. Estos algoritmos son KNN, SVM, Gradient Boosting y Regresion
Logistica.

Nos centraremos en explicar los mejores resultados obtenidos con n-gramas desde 2
hasta 5. Tal y como pasaba en el proceso de clasificaciéon anterior, estos resultados
fueron obtenidos con trigramas y 4-gramas.

Comenzando con los resultados obtenidos con los clasificadores simples, las Tablas 9,
10 y 11 contienen los resultados obtenidos con trigramas y las Figuras 16, 17 y 18
presentan las matrices de confusion para pup, trojan y worm respectivamente.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

3 KNN 2433 0.468 0.497 | 0.482 | 465 -0.02
3 svm 2433 0.556 0.927 | 0.695 | 465 0.311
3 gradient 2433 0.949 0.4 0.563 | 465 0.474
3 regression | 2433 0.613 0.929 | 0.738 | 465 0.439

Tabla 9: Resultados obtenidos para pup con trigramas empleando filtrado de categorias

relevantes.

37

Elemento pup con clasificador KNN:

precision recall fl-score support

other 6.51 0.48 8.50 509

pup 0.47 0.50 0.48 465

accuracy 0.49 974
macro avg 0.49 6.49 0.49 974
weighted avg 0.49 6.49 0.49 974

Matriz de confusidn:

[[246 263]
[234 231]]

Elemento pup con clasificador svm:

precision recall fl-score support

other 6.83 6.32 0.47 509

pup 0.56 0.93 8.70 465

accuracy 0.61 974
macro avg 0.69 0.63 0.58 974
weighted avg .70 B.61 0.58 974

Matriz de confusidn:

[[165 344]
[34 431]]

Elemento pup con clasificador gradient:

precision recall fl-score support

other 0.64 0.98 8.78 509

pup 0.95 0.40 8.56 465

accuracy .70 974
macro avg 0.80 B.69 0.67 974
weighted avg 0.79 B.70 0.67 974

Matriz de confusian:

[[499 10]
[279 186]]

Elemento pup con clasificador regression:

precision recall fl-score support

other 0.88 0.46 0.61 509

pup 0.61 0.93 0.74 465

accuracy 0.69 974
macro avg 08.75 B.70 0.67 974
weighted avg 8.75 B.69 0.67 974

Matriz de confusian:

[[236 273]
[33 432]]

Figura 16: Matriz de confusién obtenida por el clasificador simple empleando trigramas
para pup.

38

N-grams | Modelo MLi | Num. traza | precision | recall | f1 support | mcc

3 KNN 7314 0.682 0.616 | 0.648 | 1408 0.007
3 svm 7314 0.777 0.984 | 0.868 | 1408 0.518
3 gradient 7314 0.681 0.996 | 0.809 | 1408 0.021
3 regression 7314 0.788 0.976 | 0.872 | 1408 0.536

Tabla 10: Resultados obtenidos para trojan con trigramas empleando filtrado de cate-

gorias relevantes.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

3 KNN 605 0.474 0.839 | 0.606 | 118 -0.07
3 svm 605 0.55 0.932 | 0.692 | 118 0.272
3 gradient 605 0.496 1 0.663 | 118 0.126
3 regression 605 0.642 0.941 | 0.763 | 118 0.488

Tabla 11: Resultados obtenidos para worm con trigramas empleando filtrado de cate-

gorias relevantes.

39

Elemento trojan con clasificador KNN:

precision recall fl-score support

other 6.32 0.39 0.35 663

trojan 0.68 0.62 0.65 1408
accuracy .54 2071
macro avg .58 B.50 .50 2071
weighted avg 0.57 B.54 0.55 2071

Matriz de confusian:

[[259 404]
[540 868]]

Elemento trojan con clasificador svm:

precision recall fl-score support

other 6.92 0.40 0.56 663

trojan 0.78 0.98 0.87 1408
accuracy 0.80 2071
macro avg 0.85 0.69 0.71 2071
weighted avg 0.82 0.80 .77 2071

Matriz de confusian:

[[266 397]
[23 1385]]

Elemento trojan con clasificador gradient:

precision recall fl-score support

other 0.45 0.01 6.01 663

trojan 0.68 1.00 6.81 1408
accuracy 0.68 2071
macro avg 0.57 6.50 0.41 2071
weighted avg 0.61 0.68 0.55 2071

Matriz de confusidn:

[[5 &58]
[6 1482]]

Elemento trojan con clasificador regression:

precision recall fl-score support

other 0.90 0.44 8.59 663

trojan 6.79 0.98 0.87 1408
accuracy .81 2071
macro avg 0.84 B.71 .73 2071
weighted avg 0.82 6.81 0.78 2071

Matriz de confusidn:

[[294 369]
[34 1374]]

Figura 17: Matriz de confusién obtenida por el clasificador simple empleando trigramas
para trojan.

40

Elemento worm con clasificador KNN:

precision recall fl-score support

other 0.42 8.11 6.18 124

worm 0.47 0.84 8.61 118
accuracy 0.47 242
macro avg 0.45 0.48 0.39 242
weighted avg 0.45 0.47 0.39 242

Matriz de confusian:

[[14 116]
[19 99]]

Elemento worm con clasificador swvm:

precision recall fl-score support

other 6.81 0.27 6.41 124

worm 6.55 0.93 0.69 118
accuracy 0.60 242
macro avg 0.68 0.60 B0.55 242
weighted avg 0.68 0.60 0.55 242

Matriz de confusian:

[[34 98]
[& 118]]

Elemento worm con clasificador gradient:

precision recall fl-score support

other 1.00 0.063 0.06 124

worm 0.50 1.00 0.66 118
accuracy 0.50 242
macro avg 0.75 B.52 0.36 242
weighted avg 0.75 0.50 .36 242

Matriz de confusian:

[[4 120]
[@& 118]]

Elemento worm con clasificador regression:

precision recall fl-score support

other 0.90 0.50 0.64 124

worm 0.64 0.94 8.76 118
accuracy 0.71 242
macro avg 0.77 B.72 .70 242
weighted avg 0.77 B.71 .70 242

Matriz de confusidn:

[[62 62]
[7 111]]

Figura 18: Matriz de confusién obtenida por el clasificador simple empleando trigramas
para worm.

41

También se pueden ver las Tablas 12, 13 y 14 contienen los resultados obtenidos con
4-gramas y las Figuras 19, 20 y 21 que contienen las matrices de confusion para pup,

trojan y worm respectivamente.

N-grams | Modelo MLL | Num. traza | precision | recall | f1 support | mcc

4 KNN 2433 0.452 0.528 | 0.487 | 468 -0.066
4 svm 2433 0.553 0.934 | 0.695 | 468 0.301
4 gradient 2433 0.841 0.417 | 0.557 | 468 0.403
4 regression | 2433 0.621 0.942 | 0.749 | 468 0.462

Tabla 12: Resultados obtenidos para pup con n-gramas de 4 empleando filtrado de

categorias relevantes.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

4 KNN 7314 0.714 0.594 | 0.649 | 1474 0.006
4 svm 7314 0.789 0.989 | 0.878 | 1474 0.492
4 gradient 7314 0.714 0.995 | 0.831 | 1474 0.053
4 regression 7314 0.819 0.927 | 0.87 | 1474 0.481

Tabla 13: Resultados obtenidos para trojan con n-gramas de 4 empleando filtrado de

categorias relevantes.

N-grams | Modelo ML | Num. traza | precision | recall | f1 support | mcc

4 KNN 605 0.502 0.944 | 0.655 | 124 -0.104
4 svm 605 0.515 1 0.679 | 124 0.066
4 gradient 605 0.521 1 0.685 | 124 0.133
4 regression 605 0.674 1 0.805 | 124 0.576

Tabla 14: Resultados obtenidos para worm con n-gramas de 4 empleando filtrado de

categorias relevantes.

42

Elemento pup con clasificador KNN:

precision recall fl-score support

other 0.48 6.41 0.44 506

pup Q.45 B.53 0.49 468

accuracy 0.47 974
macro avg 0.47 0.47 0.46 974
weighted avg 0.47 0.47 0.46 974

Matriz de confusidn:

[[206 308]
[221 247]]

Elemento pup con clasificador svm:

precision recall fl-score support

other 0.83 6.30 0.44 506

pup 0.55 6.93 0.69 468

accuracy 0.61 974
macro avg 0.69 B.62 0.57 974
weighted avg 0.70 B.61 B.56 974

Matriz de confusidn:

[[153 353]
[31 437]]

Elemento pup con clasificador gradient:

precision recall fl-score support

other 0.63 8.93 8.75 586

pup 0.84 B.42 8.56 468

accuracy 0.68 974
macro avg 0.74 B.67 B.65 974
weighted avg 0.73 B.68 B.66 974

Matriz de confusidn:

[[469 37]
[273 195]]

Elemento pup con clasificador regression:

precision recall fl-score support

other 0.90 B.47 8.62 5086

pup 0.62 6.94 0.75 468

accuracy B.70 974
macro avg 0.76 B.71 0.68 974
weighted avg 0.76 B.70 0.68 974

Matriz de confusidn:

[[237 269]
[27 441]]

Figura 19: Matriz de confusion obtenida por el clasificador simple empleando 4-gramas

ara pup.
para pup 43

Elemento trojan con clasificador KNN:

precision recall fl-score support

other 0.29 B.41 8.34 597

trojan 0.71 B.59 B.65 1474
accuracy 0.54 2071
macro avg 0.50 B.50 0.50 2071
weighted avg 0.59 B.54 B.56 2871

Matriz de confusidn:

[[246 351]
[598 876]]

Elemento trojan con clasificador swvm:

precision recall fl-score support

other 0.93 B.35 8.51 597

trojan 0.79 6.99 0.88 1474
accuracy 0.80 2071
macro avg 0.86 B.67 B.69 2871
weighted avg 0.83 B.80 B.77 2871

Matriz de confusidn:

[[208 389]
[16 1458]]

Elemento trojan con clasificador gradient:

precision recall fl-score support

other 0.56 0.02 0.03 597

trojan 0.71 1.00 0.83 1474
accuracy 8.71 2071
macro avg 0.64 B.51 0.43 2871
weighted avg 0.67 B.71 0.60 2071

Matriz de confusion:

[[9 588]
[7 1467]]

Elemento trojan con clasificador regression:

precision recall fl-score support

other 0.73 6.49 0.59 597

trojan 0.82 6.93 0.87 1474
accuracy 0.80 2871
macro avg 0.78 B.71 B8.73 2071
weighted avg 0.79 B.80 .79 2071

Matriz de confusidn:

[[294 303]
[187 1367]]

Figura 20: Matriz de confusion obtenida por el clasificador simple empleando 4-gramas

ara trojan.
p J A4

Elemento worm con clasificador KNN:

precision recall fl-score support

other D.22 0.02 8.03 118

worm 0.50 0.94 0.66 124
accuracy 0.49 242
macro avg 0.36 0.48 0.34 242
welghted avg 6.37 0.49 8.35 242

Matriz de confusion:

[[2 116]
[7 117]]

Elemento worm con clasificador svm:

precision recall fl-score support

other 1.00 0.01 8.02 118

worm 0.51 1.00 0.68 124
accuracy 0.52 242
macro avg 0.76 0.50 8.35 242
weighted avg B0.75 0.52 8.36 242

Matriz de confusidn:

[[1117]
[B 124]]

Elemento worm con clasificador gradient:

precision recall fl-score support

other 1.080 0.683 8.07 118

WOTm 6.52 1.66 8.69 124
accuracy 8.53 242
macro avg B0.76 0.52 8.38 242
weighted avg B8.75 0.53 0.38 242

Matriz de confusidn:

[[4 114]
[B 124]]

Elemento worm con clasificador regression:

precision recall fl-score support

other 1.00 0.49 8.66 118

WOTm 0.67 1.60 8.81 124
accuracy 8.75 242
macro avg 0.84 0.75 8.73 242
weighted avg 0.83 0.75 0.73 242

Matriz de confusidn:

[[58 60]
[8 124]]

Figura 21: Matriz de confusion obtenida por el clasificador simple empleando 4-gramas

ara worm.
P 45

Como se puede ver en las Tablas, los mejores resultados obtenidos para cada clase
se han conseguido al emplear 4-grams al conseguir un fl-score de 0.749 para pup con
Regresion Logistica (Tabla 12), para trojan con KNN un fl-score de 0.878 (Tabla 13)
y para worm con Regresion Logistica un fl-score de 0.805 (Tabla 14).

El mejor modelo generado por los clasificadores simples fue el de trojan utilizando
SVM con 4-gramas (ver Figura 20). Se puede observar que la clasificacion de trojan es
efectiva, teniendo un valor de 0.88 en el fl-score. En cambio, la clasificacion de other
resulta con un fl-score de 0.51, mejorando bastante el resultado obtenido sin aplicar el
filtrado. Esto deja el valor medio en un 0.77, mejorando claramente la media obtenida
anteriormente, de 0.59.

En la matriz podemos ver que 1458 muestras han sido bien clasificadas como trojan,
dejando 16 mal clasificadas. En el caso de other solamente 208 muestras han sido
bien identificadas, dejando 389 mal clasificadas. Estos valores son una gran mejora
comparandolos con los obtenidos sin aplicar el filtrado de categorias.

En cuanto a los resultados obtenidos por los clasificadores miiltiples, la Tabla 15 contiene
los resultados obtenidos con trigramas y las Figuras 22, 23 y 24 presentan las matrices
de confusion para cada clasificador.

N-grams | Modelo ML | precision | recall | f1 support | mcc
3 KNN 0.789 0.801 | 0.788 | 2287 0.614
3 svm 0.716 0.729 | 0.683 | 2287 0.43
3 gradient 0.796 0.794 | 0.76 | 2287 0.586

Tabla 15: Resultados obtenidos para el clasificador multiple usando trigramas emplean-
do filtrado de categorias relevantes.

Clasificador KNN:

precision recall fl-score support

other 0.54 0.40 0.46 227

pup 0.82 0.82 0.82 481

trojan 0.83 6.90 0.86 1451

wWOorm 0.66 6.27 0.39 128
accuracy .80 2287
macro avg 0.71 0.60 0.63 2287
weighted avg 0.79 B.80 0.79 2287

Matriz de confusian:

[[91 19 116 1]
[6 395 77 3]
[64 61 1312 14]
[6 8 79 35]]

Figura 22: Matriz de confusién obtenida por el clasificador miltiple empleando KNN
para trigramas.

Los resultados obtenidos con 4-gramas pueden verse en la Tabla 16 junto con las ma-
trices de confusion obtenidas para cada clasificador en las Figuras 25, 26 y 27.

46

Clasificador svm:

precision recall fl-score support

other 0.31 0.09 0.14 227

pup 0.85 0.50 0.63 481

trojan 0.72 0.96 0.82 1451

worm 0.83 8.15 0.25 128
accuracy 0.73 2287
macro avg 0.68 0.42 0.46 2287
weighted avg 0.72 B.73 0.68 2287

Matriz de confusidn:

1 3 185 19]]

Figura 23: Matriz de confusion obtenida por el clasificador multiple empleando SVM
para trigramas.

Clasificador gradient:

precision recall fl-score support

other 0.74 0.20 6.31 227

pup 0.85 0.74 0.79 481

trojan 0.78 0.96 0.86 1451

worm 0.84 0.16 8.27 128
accuracy 8.79 2287
macro avg 0.80 B.52 8.56 2287
weighted awvg 0.80 B.79 8.76 2287

Matriz de confusidn:

2 9 96 21]]

Figura 24: Matriz de confusion obtenida por el clasificador multiple empleando KNN
para trigramas.

47

Clasificador KNN:

precision recall fl-score support

other 6.63 8.27 0.38 234

pup 6.82 6.80 0.81 511

trojan 6.81 6.93 0.87 1429

worm 6.69 0.26 8.37 113
accuracy 0.80 2287
macro avg 0.74 B.56 0.61 2287
weighted avg 0.79 B.80 0.78 2287

Matriz de confusion:

[1
[18 487 91 3
[26 61 1333 g
[2 13 69 29

Figura 25: Matriz de confusion obtenida por el clasificador multiple empleando KNN
para 4-gramas.

Clasificador svm:

precision recall fl-score support

other 1.80 0.00 8.01 234

pup 6.81 B.52 0.63 511

trojan 6.71 6.96 0.82 1429

worm 6.83 6.18 6.29 113
accuracy 8.72 2287
macro avg 0.84 B.42 0.44 2287
weighted avg 0.77 B.72 0.67 2287

Matriz de confusion:

1 1 230 2]
@ 266 245 0]
B 56 1371 2]
:] 4 89 20]

Figura 26: Matriz de confusiéon obtenida por el clasificador miltiple empleando SVM
para 4-gramas.

48

n-grams | Modelo ML | precision | recall | f1 support | mcc

4 KNN 0.787 0.801 | 0.78 | 2287 0.612
4 svm 0.768 0.725 | 0.666 | 2287 0.431
4 gradient 0.786 0.79 | 0.758 | 2287 0.584

Tabla 16: Resultados obtenidos para el clasificador multiple usando n-gramas de 4
empleando filtrado de categorias relevantes.

Clasificador gradient:

precision recall fl-score support

other 0.75 8.21 @.33 234

pup 0.83 B.74 0.78 511

trojan 0.78 8.95 0.86 1429

worm 0.72 0.16 0.26 113
accuracy B.79 2287
macro avg 0.77 8.52 B.56 2287
weighted avg 0.79 B.79 B.76 2287

Matriz de confusion:

[58 18 172 2]
[1 378 131 1]
[16 49 1360 4]
[@ 16 79 18]]

Figura 27: Matriz de confusion obtenida por el clasificador miltiple empleando Gradient
Boosting para 4-gramas.

Al analizar las tablas podemos ver que los valores obtenidos por los trigramas superan
a los del los 4-gramas, aunque no con una gran ventaja, ya que los valores son muy
cercanos en ambos casos. El mejor resultado para ambos se consigue al aplicar KNN,
en el caso de los trigramas se obtiene un fl-score de 0.788 (Tabla 15) y en los 4-grams
un valor de 0.78 (Tabla 16).

De la misma manera que ocurria en los resultados sin filtrado, el mejor modelo calculado
por los clasificadores multiples fue conseguido tras aplicar KNN (ver Figura 22), pero
en este caso con trigramas. Tal y como se ha observado en los resultados obtenidos
por los clasificadores simples, aqui también se ve una gran mejoria en los resultados,
especialmente en el caso de other, subiendo de un valor de 0.28 a uno de 0.46, aunque
se puede ver que el valor devuelto por el fl-score para worm ha bajado de 0.49 a 0.39.

El mejor resultado vuelve a tenerlo trojan con 0.86, seguido de pup con 0.82, other con
0.46 y finalmente worm con 0.39, dejando el valor medio en 0.79, mejorando el resultado
anterior de 0.77, aunque no por mucho.

Al comparar estos resultados con los obtenidos sin el filtrado de categorias podemos
apreciar que todos ellos han mejorado. Esto demuestra la eficacia de la mejora imple-
mentada a la hora de clasificar muestras de malware.

49

4.4. Discusion sobre los resultados

A continuacion se realizara la discusion de los resultados y matrices de confusion obte-
nidas. Se compararan los resultados obtenidos en la seccién anterior y se examinara la
efectividad de los modelos implementados respecto a los conseguidos sin la mejora.

Si analizamos los resultados podemos ver que en los casos de trojan y pup la mayoria
de las muestras han sido clasificadas de manera correcta, siendo las dos categorias que
obtienen mejores resultados. En los casos de other y worm la mayoria de las muestras
no han sido clasificadas de manera correcta, obteniendo valores del fl-score menores a
0.5 en ambos casos.

Se puede apreciar que other y worm han sido confundidos mayoritariamente con trojan
y que pup ha sido clasificado bien en su gran mayoria, aunque la clase con la que mas
se la ha confundido ha sido trojan. Finalmente, trojan ha sido bien clasificado en su
gran mayoria, aunque la mayor confusiéon ha ocurrido con other.

En general, los valores obtenidos tras aplicar el filtrado han mejorado los anteriores,
especialmente a la hora de la clasificacion de other, subiendo su fl-score de 0.06 a 0.51
en los clasificadores simples y de 0.28 a 0.46 en los clasificadores multiples. El resto de
valores también han visto mejoria.

Esta mejora en los resultados se puede atribuir al filtrado basado en categorias de interés
implementado. Este filtrado ha permitido a los modelos enfocarse en las caracteristicas
mas relevantes y distintivas entre categorias. Ademas, al conservar tinicamente los n-
gramas que contienen dos o més APIs de las categorias relevantes, se consigue una
representacion de los patrones caracteristicos méas precisa. Esto se ve traducido en una
mejora considerable en los resultados.

En cuanto a la comparativa entre clasificadores simples y miiltiples, no se ve una gran
mejoria en los multiples frente a los simples, ya que el rango de valores en los que se
encuentra el fl-score es muy similar.

Si nos centramos en los resultados obtenidos con trigramas podemos ver que solamente
un clasificador mejora el valor obtenido por el clasificador multiple, el modelo que
emplea Regresion Logistica para la clasificacion de trojan, cuyo fl-score de 0.872 mejora
el 0.788 del clasificador multiple.

En el caso de los resultados obtenidos con 4-gramas solamente hay un clasificador que
no es capaz de superar el resultado obtenido por el clasificador miltiple, este es el
modelo que emplea Regresion Logistica para la clasificacién de pup, obtiene un fl-score
de 0.749 frente al 0.78 del clasificador multiple. Aunque no supere el resultado, si que se
encuentra mucho mas cerca de él si lo comparamos con el conseguido con los trigramas.

20

5. Conclusiones y trabajo futuros

En esta seccion de la memoria se expondran las conclusiones finales del proyecto, tanto
técnicas como personales, asi como posibles trabajos futuros.

5.1. Conclusiones técnicas

La solucién propuesta a la deteccion de malware utilizando técnicas de Machine Lear-
ning ha demostrado ser efectiva a la hora de detectar distintas categorias de malware.
Esto ha demostrado que el uso de n-gramas en el &mbito de la deteccion de malware
es de gran utilidad, ya que permite detectar comportamientos analizando subsecciones
de las secuencias en vez de analizar una a una las APIs que van apareciendo en cada
muestra.

En cuanto a la implementacion, se han cumplido los objetivos del proyecto, incluso
llegando a ampliar la funcionalidad planteada inicialmente. Esto demuestra que la im-
plementacion inicial es robusta y admite extensiones y mejoras de la misma.

En una reflexion sobre el trabajo desarrollado, se destaca que la eleccion de algoritmos
de clasificacion o técnicas se pudo haber abordado de una manera diferente. Al tomar
otro rumbo o elegir algoritmos distintos habria influido directamente en las conclusiones
obtenidas.

Por ejemplo, la seleccion de los n-gramas y categorias de interés podria haber adoptado
enfoques completamente distintos. Al anadir o modificar alguna de las APIs conside-
radas potencialmente maliciosas se hubiesen obtenido resultados distintos. En futuros
proyectos se explorarian estas alternativas para mejorar potencialmente los resultados
obtenidos.

5.2. Conclusiones personales

El hecho de que este trabajo haya dado los frutos deseados, demostrando la utilidad
del uso de n-gramas y técnicas de Machine Learning a la hora de lidiar con problemas
de clasificacion de malware, hace que todo el esfuerzo dedicado a él merezca la pena.

Desde el inicio del proyecto he intentado esforzarme al maximo y ver que ha dado
sus frutos es muy gratificante, no solo por los resultados obtenidos sino por todo el
conocimiento adquirido. Este trabajo ha sido un desafio tanto de investigacién como de
programacion y he podido aplicar conocimientos adquiridos durante la totalidad de mi
educacion universitaria.

En este trabajo he podido aplicar conocimientos de ciberseguridad y Machine Learning,
desarrollando habilidades préacticas en la deteccion de malware. La utilizacion de herra-
mientas como JupyterLab, Scikit-Learn o nltk ha ampliado mis capacidades técnicas,
brinddndome una perspectiva mas completa.

o1

La evaluacion de modelos y la comprension de las métricas de rendimiento han enri-
quecido mi comprension sobre como abordar problemas complejos y tomar decisiones
informadas. Estas experiencias han sido esenciales para mi desarrollo profesional co-
mo ingeniera informética, proporcionandome una valiosa oportunidad para enfrentar
desafios reales en el ambito de la seguridad informatica.

5.3. Trabajo futuro

El proyecto sienta las bases para futuros trabajos, estableciendo un punto de partida
para futuros desarrollos. Se plantea la posibilidad de ampliar las capacidades del sis-
tema mediante la incorporacion de funcionalidades adicionales al proceso. Esto podria
enriquecer y ampliar su aplicacion en diferentes conjuntos de datos y categorias de
malware.

La automatizacion implementada no solo simplifica la modificacion de partes del codigo,
sino que también blinda la posibilidad de introducir pasos intermedios. Un ejemplo
concreto de la inclusion del filtrado de categorias relevantes, una mejora especifica que
ha demostrado ser eficaz. Esta modularidad hace que sea mas facil ajustar el proceso a
problemas particulares.

Ademas de las posibles mejoras previamente mencionadas, cabe la posibilidad de inte-
grar la automatizacion con otras herramientas y enfoques. Por ejemplo, explorar técni-
cas adicionales de Machine Learning o incluso de Deep Learning para proporcionar al
proyecto una mayor precision en la deteccion de malware.

Asi mismo, el desarrollo de un dataset propio podria mejorar el rendimiento de los cla-
sificadores al incluir datos més especificos o trazas con mayor relevancia. Esto podria
involucrar incorporar trazas de cdédigo benigno para mejorar la capacidad de clasifica-
cion de los modelos.

La implementacién de estos cambios implica que el sistema se vuelva mas flexible y
efectivo. La modularidad facilita anadir nuevas funcionalidades y el dataset propio
mejoraria la precision de los modelos.

02

6. Bibliografia

[1] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the age of
sophisticated cyber attacks,” Computers Security, vol. 72, pp. 212233, 2018.

2| “Mas de 4,9 millones de muestras de malware identificadas.” https://www.itdi
P
gitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-d
e-malware-fueron-identificadas-en-2019. Accedido el 01-12-2023.

[3] “VirusTotal’s 2021 Malware Trends Report.” https://assets.virustotal.com/
reports/2021trends.pdf. Accedido el 11-12-2023.

[4] “;Qué es un Exploit? Prevencion de Exploits.” https://www.bitdefender.es/c
onsumer/support/answer/22884/. Accedido el 02-12-2023.

[5] “Malware Statistics Trends Report | AV-TEST.” https://wuw.av-test.org/en
/statistics/malware/. Accedido el 12-12-2023.

[6] “What is Malware Detection? | Importance of Malware Tool.” https://enterpri
se.xcitium.com/what-is-malware-detection/. Accedido el 09-01-2024.

[7] “Malware Classification.” https://serp.ai/malware-classification/. Accedi-
do el 09-01-2024.

[8] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” pp. 297-300,
2010.

[9] “Metamorfismo (malware) - Wikipedia, la enciclopedia libre.” https://es.wikip
edia.org/wiki/Metamorfismo_(malware). Accedido el 02-12-2023.

[10] “Polimorfismo (malware) - Wikipedia, la enciclopedia libre.” https://es.wikip
edia.org/wiki/Polimorfismo_(malware). Accedido el 02-12-2023.

[11] “Ofuscacion - Wikipedia, la enciclopedia libre.” https://es.wikipedia.org/wik
i/0fuscacilign. Accedido el 02-12-2023.

[12] “Qué es una firma de archivo de malware y como funciona.” https://cibersegur
idad.com/amenzas/firma-archivo-malware/. Accedido el 09-01-2024.

[13] “;Qué es un analisis heuristico?.” https://latam.kaspersky.com/resource-c
enter/definitions/heuristic-analysis. Accedido el 09-01-2024.

[14] “;Qué es el aprendizaje automéatico? | Glosario | HPE LAMERICA.” https://
www.hpe.com/lamerica/es/what-is/machine-learning.html. Accedido el
09-01-2024.

[15] E. Raff and C. K. Nicholas, “A survey of machine learning methods and challenges
for windows malware classification,” ArXiv, vol. abs/2006.09271, 2020.

[16] “Analisis del comportamiento | ES.” https://www.vmware.com/es/topics/glo
ssary/content/behavioral-analysis.html. Accedido el 09-01-2024.

[17] “Anélisis estatico de malware — CYBER OPSEC.” https://www.cyberopsec.c
om.mx/blog/analisis-estatico-de-malware/. Accedido el 09-01-2024.

23

https://www.itdigitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-de-malware-fueron-identificadas-en-2019
https://www.itdigitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-de-malware-fueron-identificadas-en-2019
https://www.itdigitalsecurity.es/endpoint/2020/02/mas-de-49-millones-de-muestras-de-malware-fueron-identificadas-en-2019
https://assets.virustotal.com/reports/2021trends.pdf
https://assets.virustotal.com/reports/2021trends.pdf
https://www.bitdefender.es/consumer/support/answer/22884/
https://www.bitdefender.es/consumer/support/answer/22884/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://enterprise.xcitium.com/what-is-malware-detection/
https://enterprise.xcitium.com/what-is-malware-detection/
https://serp.ai/malware-classification/
https://es.wikipedia.org/wiki/Metamorfismo_(malware)
https://es.wikipedia.org/wiki/Metamorfismo_(malware)
https://es.wikipedia.org/wiki/Polimorfismo_(malware)
https://es.wikipedia.org/wiki/Polimorfismo_(malware)
https://es.wikipedia.org/wiki/Ofuscación
https://es.wikipedia.org/wiki/Ofuscación
https://ciberseguridad.com/amenzas/firma-archivo-malware/
https://ciberseguridad.com/amenzas/firma-archivo-malware/
https://latam.kaspersky.com/resource-center/definitions/heuristic-analysis
https://latam.kaspersky.com/resource-center/definitions/heuristic-analysis
https://www.hpe.com/lamerica/es/what-is/machine-learning.html
https://www.hpe.com/lamerica/es/what-is/machine-learning.html
https://www.vmware.com/es/topics/glossary/content/behavioral-analysis.html
https://www.vmware.com/es/topics/glossary/content/behavioral-analysis.html
https://www.cyberopsec.com.mx/blog/analisis-estatico-de-malware/
https://www.cyberopsec.com.mx/blog/analisis-estatico-de-malware/

[18] “WeLiveSecurity - Anélisis estatico.” https://www.welivesecurity.com/la-e
s/2014/01/14/bases-analisis-estatico-malware-bases-desensamblado/.
Accedido el 09-01-2024.

[19] “Codigo binario: la base de todo - DevCamp.” https://devcamp.es/codigo-bin
ario-la-base-de-todo/. Accedido el 09-01-2024.

[20] “Qué es Codigo fuente - Definicion, significado y ejemplos.” https://www.arimet
rics.com/glosario-digital/codigo-fuente. Accedido el 09-01-2024.

[21] “WeLiveSecurity - Anélisis dindmico.” https://www.welivesecurity.com/la-e
s/2011/12/22/herramientas-analisis-dinamico-malware/. Accedido el
09-01-2024.

[22] “Sandbox - ;Qué es y como funciona? | Proofpoint ES.” https://www.proofpoi
nt.com/es/threat-reference/sandbox. Accedido el 09-01-2024.

[23] “;Qué es la deteccion basada en firmas? | phoenixNAP Glosario de T1.” https:
//www.phoenixnap.mx/glosario/deteccilgn-basada-en-firmas. Accedido el
09-01-2024.

[24] “;Qué hace un antivirus para detectar el malware? | Empresas | INCIBE.” https:

//www.incibe.es/empresas/blog/hace-antivirus-detectar-el-malware.
Accedido el 09-01-2024.

[25] “Exploracion, identificacion y deteccion de malware inteligente para evitar caos
ciberepidemiologico y ciberpandemias - Ciberseguridad.” https://www.interemp
resas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacio

n-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.htm
1. Accedido el 09-01-2024.

[26] “System call: la importancia de las llamadas al sistema - IONOS.” https://www.
ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls
-de-linux/. Accedido el 09-01-2024.

[27] “Api: qué es y para qué sirve.” https://www.xataka.com/basics/api-que-sir
ve. Accedido el 02-12-2023.

[28] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on
api call sequence analysis,” International Journal of Distributed Sensor Networks,
vol. 2015, pp. 1-9, 06 2015.

[29] “Software potencialmente no deseado - Wikipedia, la enciclopedia libre.” https:
//es.wikipedia.org/wiki/Software_potencialmente_no_deseado. Accedido
el 02-12-2023.

[30] “Qué es un virus troyano | Definicién de virus troyano.” https://www.kaspersk
y.es/resource-center/threats/trojans. Accedido el 02-12-2023.

[31] “Gusano informaético: definicion y riesgos - Panda Security.” https://www.pand
asecurity.com/es/security-info/worm/. Accedido el 02-12-2023.

[32] “Win32 API - Wikipedia, la enciclopedia libre.” https://es.wikipedia.org/wik
1/Win32_API. Accedido el 02-12-2023.

o4

https://www.welivesecurity.com/la-es/2014/01/14/bases-analisis-estatico-malware-bases-desensamblado/
https://www.welivesecurity.com/la-es/2014/01/14/bases-analisis-estatico-malware-bases-desensamblado/
https://devcamp.es/codigo-binario-la-base-de-todo/
https://devcamp.es/codigo-binario-la-base-de-todo/
https://www.arimetrics.com/glosario-digital/codigo-fuente
https://www.arimetrics.com/glosario-digital/codigo-fuente
https://www.welivesecurity.com/la-es/2011/12/22/herramientas-analisis-dinamico-malware/
https://www.welivesecurity.com/la-es/2011/12/22/herramientas-analisis-dinamico-malware/
https://www.proofpoint.com/es/threat-reference/sandbox
https://www.proofpoint.com/es/threat-reference/sandbox
https://www.phoenixnap.mx/glosario/detección-basada-en-firmas
https://www.phoenixnap.mx/glosario/detección-basada-en-firmas
https://www.incibe.es/empresas/blog/hace-antivirus-detectar-el-malware
https://www.incibe.es/empresas/blog/hace-antivirus-detectar-el-malware
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.interempresas.net/Ciberseguridad/Articulos/353718-Exploracion-identificacion-deteccion-malware-inteligente-evitar-caos-ciberepidemiologico.html
https://www.ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls-de-linux/
https://www.ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls-de-linux/
https://www.ionos.es/digitalguide/servidores/know-how/que-son-las-system-calls-de-linux/
https://www.xataka.com/basics/api-que-sirve
https://www.xataka.com/basics/api-que-sirve
https://es.wikipedia.org/wiki/Software_potencialmente_no_deseado
https://es.wikipedia.org/wiki/Software_potencialmente_no_deseado
https://www.kaspersky.es/resource-center/threats/trojans
https://www.kaspersky.es/resource-center/threats/trojans
https://www.pandasecurity.com/es/security-info/worm/
https://www.pandasecurity.com/es/security-info/worm/
https://es.wikipedia.org/wiki/Win32_API
https://es.wikipedia.org/wiki/Win32_API

[33] “Servicios del sistema - Win32 apps | Microsoft Learn.” https://learn.micros
oft.com/es-es/windows/win32/api/_base/. Accedido el 02-12-2023.

[34] “Uso de IA y Machine Learning en ciberseguridad | OpenWebinars.” https://op
enwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learn
ing-en-ciberseguridad/. Accedido el 20-12-2023.

[35] “Ai brings speed to security.” https://www.oreilly.com/content/ai-brings-s
peed-to-security/. Accedido el 01-12-2023.

[36] “La IA en la automatizacion de pruebas de seguridad informética.” https://wuw.
imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seg
uridad-informatica/. Accedido el 01-12-2023.

[37] “;Como aporta la inteligencia artificial a la ciberseguridad? - Tkusi ES.” https:
//www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-1
a-ciberseguridad/. Accedido el 20-12-2023.

[38] “La revolucion de la Inteligencia Artificial en la ciberseguridad y como Auditech
se mantiene a la vanguardia | Auditech.” https://auditech.es/blog/la-revol
ucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-aud
itech-se-mantiene-a-la-vanguardia/. Accedido el 20-12-2023.

[39] “What is Machine Learning? | IBM.” https://www.ibm.com/topics/machine-1
earning. Accedido el 02-12-2023.

[40] S. Venkatraman, M. Alazab, and R. Vinayakumar, “A hybrid deep learning image-
based analysis for effective malware detection,” Journal of Information Security
and Applications, vol. 47, pp. 377-389, 2019.

[41] “Malware Detection Using Deep Learning | by Ria Kulshrestha | Towards Data
Science.” https://towardsdatascience.com/malware-detection-using-dee
p-learning-6c95dd235432. Accedido el 02-12-2023.

[42] “Machine Learning | Qué es, tipos, ejemplos y como implementarlo.” https://ww
w.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-com
o-implementarlo/. Accedido el 02-12-2023.

[43] “Malware Detection Using Machine Learning Techniques.” https://www.einfochi
ps.com/blog/malware-detection-using-machine-learning-techniques/#:
~:text=)E2%80%9CMachine’20Learning’20has?%20improved’20the, a%,20wide
%h20range’,200f%20threats. Accedido el 02-12-2023.

[44] S. Trivedi, “A study of machine learning classifiers for spam detection,” pp. 176
180, 09 2016.

[45] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day malware de-
tection based on supervised learning algorithms of api call signatures,” p. 171-182,
2011.

[46] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-based malwa-
re detection using hardware features,” pp. 109-129, 2014.

25

https://learn.microsoft.com/es-es/windows/win32/api/_base/
https://learn.microsoft.com/es-es/windows/win32/api/_base/
https://openwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learning-en-ciberseguridad/
https://openwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learning-en-ciberseguridad/
https://openwebinars.net/blog/uso-de-inteligencia-artificial-y-machine-learning-en-ciberseguridad/
https://www.oreilly.com/content/ai-brings-speed-to-security/
https://www.oreilly.com/content/ai-brings-speed-to-security/
https://www.imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seguridad-informatica/
https://www.imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seguridad-informatica/
https://www.imediacomunicacion.com/la-ia-en-la-automatizacion-de-pruebas-de-seguridad-informatica/
https://www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-la-ciberseguridad/
https://www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-la-ciberseguridad/
https://www.ikusi.com/es/blog/como-aporta-la-inteligencia-artificial-a-la-ciberseguridad/
https://auditech.es/blog/la-revolucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-auditech-se-mantiene-a-la-vanguardia/
https://auditech.es/blog/la-revolucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-auditech-se-mantiene-a-la-vanguardia/
https://auditech.es/blog/la-revolucion-de-la-inteligencia-artificial-en-la-ciberseguridad-y-como-auditech-se-mantiene-a-la-vanguardia/
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-como-implementarlo/
https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-como-implementarlo/
https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-como-implementarlo/
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.
https://www.einfochips.com/blog/malware-detection-using-machine-learning-techniques/#:~:text=%E2%80%9CMachine%20Learning%20has%20improved%20the,a%20wide%20range%20of%20threats.

[47] 1. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for unknown
malware detection,” in International Symposium on Distributed Computing and
Artificial Intelligence (A. Abraham, J. M. Corchado, S. R. Gonzélez, and J. F.
De Paz Santana, eds.), (Berlin, Heidelberg), pp. 415-422, Springer Berlin Heidel-
berg, 2011.

[48] “What is Reinforcement Learning? — Overview of How it Works | Synopsys.” http
s://www.synopsys.com/ai/what-is-reinforcement-learning.html. Accedido
el 02-12-2023.

[49] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber security,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8§,
pp. 3779-3795, 2023.

[50] R. Canzanese, S. Mancoridis, and M. Kam, “System call-based detection of mali-
cious processes,” pp. 119-124, 08 2015.

[51] Y. Tang, X. Qi, J. Jing, C. Liu, and W. Dong, “Bhmdc: A byte and hex n-gram
based malware detection and classification method,” Computers Security, vol. 128,
p. 103118, 2023.

[52] A. Pektas, M. D. Erig, and T. Acarman, “Proposal of n-gram based algorithm for
malware classification,” in International Conference on Emerging Security Infor-
mation, Systems and Technologies, 2011.

[53] M. Alazab, R. Layton, S. Venkatraman, and P. Watters, “Malware detection based
on structural and behavioural features of api calls,” International Cyber Resilience
conference, 03 2012.

[54] D. Reddy and A. K. Pujari, “N-gram analysis for computer virus detection,” Jour-
nal in Computer Virology, vol. 2, pp. 231-239, 12 2006.

[55] “Bag-of-n-grams - Machine Learning Glossary.” https://machinelearning.wtf/
terms/bag-of-n-grams/. Accedido el 15-12-2023.

[56] “Recursive Feature Elimination (RFE) for Feature Selection in Python - Machine-
LearningMastery.com.” https://machinelearningmastery.com/rfe-feature-s
election-in-python/. Accedido el 15-12-2023.

[57] “Prueba de Chi-cuadrado - Explicacion sencilla - DATAtab.” https://datatab.
es/tutorial/chi-square-test. Accedido el 15-12-2023.

[58] “La prueba t | Introduccion a la estadistica | JMP.” https://www. jmp.com/es_e
s/statistics-knowledge-portal/t-test.html. Accedido el 15-12-2023.

[59] “;Qué es el algoritmo de k vecinos més cercanos? | IBM.” https://www.ibm. com/
es-es/topics/knn. Accedido el 15-12-2023.

[60] “Conceptos clave de Support Vector Machine (SVM) - MATLAB Simulink.” http
s://es.mathworks.com/discovery/support-vector-machine.html. Accedido
el 15-12-2023.

[61] “Gradient boosting - Wikipedia, la enciclopedia libre.” https://es.wikipedia.o
rg/wiki/Gradient_boosting. Accedido el 15-12-2023.

26

https://www.synopsys.com/ai/what-is-reinforcement-learning.html
https://www.synopsys.com/ai/what-is-reinforcement-learning.html
https://machinelearning.wtf/terms/bag-of-n-grams/
https://machinelearning.wtf/terms/bag-of-n-grams/
https://machinelearningmastery.com/rfe-feature-selection-in-python/
https://machinelearningmastery.com/rfe-feature-selection-in-python/
https://datatab.es/tutorial/chi-square-test
https://datatab.es/tutorial/chi-square-test
https://www.jmp.com/es_es/statistics-knowledge-portal/t-test.html
https://www.jmp.com/es_es/statistics-knowledge-portal/t-test.html
https://www.ibm.com/es-es/topics/knn
https://www.ibm.com/es-es/topics/knn
https://es.mathworks.com/discovery/support-vector-machine.html
https://es.mathworks.com/discovery/support-vector-machine.html
https://es.wikipedia.org/wiki/Gradient_boosting
https://es.wikipedia.org/wiki/Gradient_boosting

[62] “;Qué es la regresion logistica? - DataScientest.” https://datascientest.com/
es/que-es-la-regresion-logistica. Accedido el 15-12-2023.

[63] “Scikit-learn: machine learning in Python — scikit-learn 1.4.0 documentation.”
https://scikit-learn.org/stable/. Accedido el 01-12-2023.

[64] “JupyterLab informacion general.” https://experienceleague.adobe.com/doc
s/experience-platform/data-science-workspace/jupyterlab/overview.h
tml?lang=es#:~:text=JupyterLab}20es’20una’20interfaz}20de, Jupyters2
ONotebooks’2C%20c%C3%B3digo’%20y%20datos. Accedido el 01-12-2023.

[65] “NLTK :: Natural Language Toolkit.” https://www.nltk.org/index.html.
Accedido el 01-12-2023.

[66] “Public malware dataset generated by Cuckoo Sandbox based on Windows OS API
calls analysis for cyber security researchers.” https://github.com/ocatak/malw
are_api_class. Accedido el 15-12-2023.

[67] “Microsoft Malware Classification Challenge (BIG 2015) | Kaggle.” https://ww
w.kaggle.com/competitions/malware-classification/data. Accedido el
15-12-2023.

[68] “Malware Analysis Datasets: API Call Sequences | IEEE DataPort.” https://ie
ee-dataport.org/open-access/malware-analysis-datasets-api-call-seq
uences. Accedido el 15-12-2023.

[69] “HCRL - [HIDE|APIMDS-dataset.” https://ocslab.hksecurity.net/apimds
-dataset. Accedido el 15-12-2023.

[70] “RazviOverflow winapi categories json.” https://github.com/RazviOverflow/w
inapi_categories_json/blob/main/winapi_functions_by_category. json.
Accedido el 15-12-2023.

[71] “lingpy/lpngram: Python library for ngram collection and frequency smoothing.”
https://github.com/lingpy/lpngram. Accedido el 15-12-2023.

[72| “gpoulter/python-ngram: Set that supports searching by ngram similarity.” https:
//github.com/gpoulter/python-ngram. Accedido el 15-12-2023.

[73] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling, “Visual analysis of malware
behavior using treemaps and thread graphs,” in 2009 6th International Workshop
on Visualization for Cyber Security, pp. 33-38, 2009.

[74] “Sesgo y Varianza en Machine Learning - Aprende IA.” https://aprendeia.co
m/bias-y-varianza-en-machine-learning/. Accedido el 15-12-2023.

[75] “Evaluando los modelos de Clasificacion en Aprendizaje Automético: La matriz de
confusion.| profesorDATA.com.” https://profesordata.com/2020/08/07/eval
uando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-mat
riz-de-confusion-claramente-explicada/. Accedido el 15-12-2023.

27

https://datascientest.com/es/que-es-la-regresion-logistica
https://datascientest.com/es/que-es-la-regresion-logistica
https://scikit-learn.org/stable/
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://experienceleague.adobe.com/docs/experience-platform/data-science-workspace/jupyterlab/overview.html?lang=es#:~:text=JupyterLab%20es%20una%20interfaz%20de,Jupyter%20Notebooks%2C%20c%C3%B3digo%20y%20datos.
https://www.nltk.org/index.html
https://github.com/ocatak/malware_api_class
https://github.com/ocatak/malware_api_class
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/competitions/malware-classification/data
https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences
https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences
https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences
https://ocslab.hksecurity.net/apimds-dataset
https://ocslab.hksecurity.net/apimds-dataset
https://github.com/RazviOverflow/winapi_categories_json/blob/main/winapi_functions_by_category.json
https://github.com/RazviOverflow/winapi_categories_json/blob/main/winapi_functions_by_category.json
https://github.com/lingpy/lpngram
https://github.com/gpoulter/python-ngram
https://github.com/gpoulter/python-ngram
https://aprendeia.com/bias-y-varianza-en-machine-learning/
https://aprendeia.com/bias-y-varianza-en-machine-learning/
https://profesordata.com/2020/08/07/evaluando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-matriz-de-confusion-claramente-explicada/
https://profesordata.com/2020/08/07/evaluando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-matriz-de-confusion-claramente-explicada/
https://profesordata.com/2020/08/07/evaluando-los-modelos-de-clasificacion-en-aprendizaje-automatico-la-matriz-de-confusion-claramente-explicada/

Apéndice A Glosario

Terminologia
Malware Software o programa maligno que realiza acciones daninas en un sistema
informatico de forma intencionada y sin el conocimiento del usuario.

Categoria de API Clasifica las APIs en funciéon de sus funciones especificas dentro
del sistema.

Traza de API Una traza que muestra las categorias a las que pertenece cada una de
las APIs en lugar de listar cada API individualmente.

Ataques de dia cero Ataque contra un sistema informatico con el objetivo de ejecu-
tar codigo maligno gracias a vulnerabilidades desconocidas tanto para los usuarios
como para el fabricante del producto.

Features Caracteristicas o rasgos interesantes o importantes que identifican cada una
de las instancias de un conjunto de datos.

Tree map Metodo para mostrar datos jerarquicos utilizando figuras anidadas, normal-
mente rectangulos. Se emplean rectangulos de distintos tamanos para transmitir
valores numeéricos.

Thread graph Muestra informacion en forma de hilos (threads) de en forma de gra-
fico.

Dense Pixel Display Técnica de exploracion visual de los datos, busca poder analizar
una gran cantidad de datos multidimensionales detectando patrones.

Dataset Conjunto de datos corresponde a los contenidos de una tabla, donde cada
columna representa una variable y cada fila una muestra.

N-gramas Sub secuencia de ‘n’ elementos de una secuencia dada.

Acréonimos

API Aplication Programming Interfaces
ML Machine Learning

RFE Recursive Feature Elimination
CSV Comma Separated Values

JSON JavaScript Object Notation
KNN K Nearest Neighbors

SVM Support Vector Machine

o8

	Introducción
	Contexto del trabajo
	Técnicas de análisis y deteccción
	Problema a resolver
	Objetivos del proyecto
	Estructura de la memoria

	Detección de malware basado en IA
	Técnicas habituales de Inteligencia Artificial
	Técnicas de aprendizaje basado en Machine Learning
	Trazas y extracción de n-gramas
	Trabajos similares

	Modelos para el reconocimiento de malware basado en n-gramas
	Proceso para programación de modelos de detección
	Metodología
	Descripción del dataset
	Sistemas de reconocimiento a programar
	Discusión sobre los resultados

	Evaluación de mejoras
	Filtrado basado en categorías de interés
	Sistemas de reconocimiento a programar
	Resultados obtenidos
	Discusión sobre los resultados

	Conclusiones y trabajo futuros
	Conclusiones técnicas
	Conclusiones personales
	Trabajo futuro

	Bibliografía
	Apéndice Glosario

