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Resumen

En el ambito del andlisis estadistico multivariante se encuentran los modelos graficos probabilisticos,
que surgen como una poderosa herramienta para representar y comprender relaciones complejas entre
variables aleatorias. Entre estos se encuentran las redes Bayesianas, que son modelos gréficos dirigidos
que tienen como estructura un grafo aciclico dirigido. Estas redes ofrecen una representacion gréfica
de las dependencias e independencias condicionales entre un conjunto de variables que intervienen en
un determinado problema. En la actualidad, se utilizan modelos probabilisticos muy complejos, lo que
hace de la inferencia probabilistica un problema dificil de tratar. El objetivo de las redes Bayesianas
reside en aprovechar las relaciones de independencia reflejadas en su estructura, lo que permite reducir
la complejidad computacional de los problemas estudiados. En otras palabras, buscan minimizar la can-
tidad de pardmetros necesarios para abordar un problema, lo que conduce a una mayor eficiencia de los
algoritmos de inferencia asociados.

Las redes Bayesianas destacan por su capacidad para modelar problemas complejos en numerosos
dmbitos de la actualidad, especialmente cuando la cantidad de datos aumenta exponencialmente. Algunas
de sus aplicaciones incluyen desde la inteligencia artificial, hasta dmbitos de medicina, ingenieria o
economia, demostrando su versatilidad en la resolucién de problemas complejos en diversas areas.

El objetivo de este trabajo es ofrecer una comprension detallada de las redes Bayesianas, estudiando
los elementos basicos que intervienen en un modelo grafico probabilistico, tanto dirigido como no diri-
gido y las relaciones de independencia condicional que cada uno de estos representa. Ademds, se llevard
a cabo un andlisis de algunos algoritmos de inferencia exacta para problemas con variables discretas.
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Abstract

In the field of multivariate statistical analysis, probabilistic graphical models are emerging as po-
werful tools to represent and understand complex relationships between random variables. Among the-
se models are Bayesian networks, which are directed graphical models structured as directed acyclic
graphs. These networks provide a graphical representation of conditional dependencies and independen-
cies among a set of variables involved in a particular problem. Presently, highly complex probabilistic
models are used, making probabilistic inference a challenging issue. The objective of Bayesian net-
works lies in leveraging the independence relationships reflected in their structure, thereby reducing the
computational complexity of the studied problems. In other words, they aim to minimize the number of
parameters necessary to address a problem, leading to greater efficiency in associated inference algo-
rithms.

Bayesian networks stand out for their ability to model complex problems in numerous contempo-
rary fields, especially as the volume of data increases exponentially. Some of their applications range
from artificial intelligence to domains such as medicine, engineering, or economics, demonstrating their
versatility in solving complex problems across various areas.

The goal of this work is to provide a detailed understanding of Bayesian networks, studying the
basic elements involved in a probabilistic graphical model, both directed and undirected, and the condi-
tional independence relationships that each of these represents. Additionally, an analysis of some exact
inference algorithms for problems with discrete variables will be conducted.
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Capitulo 1

Grafos dirigidos y no dirigidos

1.1. Introduccion

En este trabajo se estudian los modelos graficos probabilisticos, conocidos como MGP. Estos mo-
delos estan formados por un conjunto de nodos, que representan las variables aleatorias del problema a
estudiar, unas aristas que unen los nodos definiendo asf las relaciones de dependencia que existen entre
las variables aleatorias y una funcién de probabilidad conjunta que caracteriza el modelo. Entre estos
modelos graficos se encuentran las redes Bayesianas, que son el principal concepto que estudiaremos en
el trabajo, para luego ver algunos algoritmos de inferencia en redes Bayesianas.

Los MGP juegan un papel muy importante en el andlisis estadistico multivariante ya que nos per-
miten simplificar el niimero de pardmetros de la funcién de probabilidad conjunta que define el modelo
mediante las relaciones de independencia condicional que refleja su estructura de grafo.

Este trabajo se estructura de la siguiente forma: en este capitulo se definen los conceptos basicos
sobre grafos y se estudian algunas propiedades, también se introduce un ejemplo sencillo que se utilizara
a lo largo del trabajo. En el Capitulo 2 se estudiardn las relaciones de independencia condicional en
grafos dirigidos y no dirigidos y cémo factorizar las funciones de probabilidad conjunta segin el tipo
de modelo grafico que tengamos. En el Capitulo 3 se verdn diferentes tipos de algoritmos de inferencia
exacta ilustrados con ejemplos, estos desempefian un papel muy importante ya que permiten calcular
con precision las probabilidades requeridas para resolver problemas especificos en el contexto de redes
Bayesianas. Finalmente, a lo largo de todo el trabajo, se han ido identificando las distintas funciones del
paquete bnlearn [9] que permiten trabajar con modelos graficos. Estas se enumeran en el Anexo B, lo que
permite analizar y garantizar el buen funcionamiento de estos algoritmos de manera prictica, también
se incluyen en el Anexo, algunos conceptos y ejemplos que pueden servir de repaso o de ayuda para la
comprension del trabajo.

Los conceptos tedricos se han extraido principalmente de [1], aunque también se han consultado
otras fuentes como [2], [3], [4, Cap. 1], [5], [6], [7] y todos los ejemplos son de elaboracién propia.

1.2. Conceptos basicos de grafos

Definicion 1 (Grafo). Un grafo es un par de conjuntos G = (X, L), donde X = {Xy,..., X, } es un conjun-
to finito de elementos (nodos) y L es un conjunto de aristas, es decir, un subconjunto de pares ordenados
de elementos distintos de X. Las aristas entre los nodos X; — X; y X; — X; se denotan L;; y L;; respecti-
vamente. Y L = {L,- | Xi conecta con X, con X; # X j} es el conjunto de todas las aristas del grafo.

Definicién 2 (Arista). Una arista L;; se dice dirigida si dado un grafo G = (X,L) se tiene que L;j € L,
pero Lj; ¢ Ly serd no dirigida si Lijj € Ly Lj; € L.
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Aunque existe una definicién mds general de grafo, en este trabajo estamos interesados en aquellos
en los que no existe un arco de un nodo a si mismo y entre dos nodos conectados existe una unica arista.
Los grafos pueden ser dirigidos o no dirigidos. Seran dirigidos si todas sus aristas son dirigidas, y serdn
no dirigidos si todas sus aristas son no dirigidas. Para ilustrar este y el resto de conceptos, se utilizaran
los grafos que se muestran en la Figura 1.1.

(B8 )——(E)

Figura 1.1: Un grafo dirigido (izquierda) y no dirigido (derecha).

Definicion 3 (Conjunto adyacente). El conjunto adyacente de un nodo X; dado un grafo G = (X,L) es
el conjunto de nodos que son directamente alcanzables desde X;, es decir, Ady(X;) = {X i EX|Lij € L}.

Ejemplo 1 (Conjunto adyacente). En la Figura 1.2 se muestra que en el caso del grafo dirigido Ady(D) =
{F, G}, mientras que en el grafo no dirigido Ady(D) = {B,C,E,F,G}.

-

Figura 1.2: Conjunto adyacente del nodo D en un grafo dirigido (izquierda) y en un grafo no dirigido
(derecha). Se resaltan con lineas amarillas los arcos que lo determinan.

Se observa entonces, que para determinar el conjunto de nodos adyacentes en un grafo dirigido es
necesario tener en cuenta las direcciones de los arcos.

Definicién 4 (Camino entre dos nodos). Un camino entre dos nodos X; y X; es una sucesion de nodos
(X, ..., Xi,), siendo X;, = X; el nodo inicial y X;, = X; el nodo final, de forma que existe una arista del
nodo X;, al nodo X;, ,; conk=1,...,r — 1, es decir, X;,,, es Ady(X;,).

k+1? k+1

Definicién 5 (Camino cerrado, bucle y ciclo). Un camino (X, ...,X;,) es cerrado si el nodo inicial
coincide con el final, X;, = X; . En grafos no dirigidos los caminos cerrados se denominan bucles, y en

dirigidos se denominan ciclos.

Para encontrar un camino entre dos nodos, como se ve en la Figura 1.3, hay que tener en cuenta la
direccionalidad del grafo, por lo que el camino tomado en el no dirigido no lo podriamos tomar en el
dirigido, pero al revés si.

Ejemplo 2 (Caminos, ciclos y bucles). La Figura 1.3 muestra en el grafo dirigido (izquierda) el camino
A—C—E—D—F — B— D — G, que contiene el subcamino cerrado (ciclo) D — F — B — D.
Eliminando este ciclo del camino, se obtiene un camino mds corto entre los nodos: A —C —E — D — G.
Lo mismo sucede en el no dirigido (derecha) con el camino A—B —D — E —C — D — G, que contiene
el subcamino cerrado (bucle) D — E — C — D, que cuando se elimina, se obtiene un camino mds corto:
A—-B—-D-G.
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Figura 1.3: Caminos entre A-G con subcaminos cerrados.

Definicion 6 (Grafo completo). Se dice que un grafo es completo si contiene una arista entre cada par
de nodos. Ademds, un conjunto completo es un subconjunto de nodos S de un grafo G en el que existe
una arista para cada par de nodos de S.

Ejemplo 3 (Subconjuntos completos). En la Figura 1.4 (izquierda) se muestra que ademds de los
grafos de dos nodos unidos por una arista, como por ejemplo Dy, tenemos los subconjuntos comple-
tos D3y = {C,D,E} y Dy = {B,D,F,G}. Dentro de D4 también se tienen los subconjuntos completos
D4y ={B,D,F}yDsy ={D,F,G}.

A lo largo de esta memoria usaremos, en general, grafos en los que existe al menos un camino (no
necesariamente dirigido) entre todo par de nodos, denominados grafos conexos. Ademads, en el caso de
grafos dirigidos solo estardn incluidos aquellos que no tengan ciclos, denominados DAG (directed acyclic
graphs), que son los que definen la estructura de una red Bayesiana.

1.3. Grafos no dirigidos

En este apartado se van a presentar algunos conceptos basicos sobre grafos no dirigidos.

Definicion 7 (Clique). En un grafo no dirigido, un clique es un conjunto completo de nodos C que no
es subconjunto propio de otro conjunto completo, es decir, es maximal.

— ) ]
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Figura 1.4: Conjuntos de cliques.

Ejemplo 4 (Clique). En la Figura 1.4 el grafo de la izquierda contiene los 4 cliques: Dy (rosa), D,
(verde), D3 (amarillo), D4 (azul). Pero si se aiiade por ejemplo la arista C — B, como se muestra en el
grafo de la derecha, D y D, dejan de ser conjuntos maximales, por lo que se tienen los cliques Cy, C,,
Cs, C4 que se muestran en el grafo de la derecha.

Definicion 8 (Conjunto de vecinos). El conjunto de nodos adyacentes a un nodo X; en un grafo no

dirigido se denomina conjunto de vecinos de X;, Vec(X;) = {X;|X; € Ady(X;) }.

Un tipo muy importante de grafos son los grafos triangulados. Antes de ver como son estos grafos,
se introduce una definicion previa.
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Definicion 9 (Cuerda). Se denomina cuerda de un bucle a una arista que une dos nodos de un bucle y
que no pertenece al bucle.

Los bucles de longitud 3 son los tnicos que no pueden poseer cuerdas, es decir, son los menores
elementos en los que puede descomponerse un bucle mediante la incorporacién de cuerdas en el grafo.
Se denominan tridngulos a estos bucles.

Definicion 10 (Grafo triangulado o cordal). Un grafo triangulado (o cordal) es un grafo no dirigido
en el que cada bucle de longitud mayor o igual que 4 contiene al menos una cuerda.

Se puede convertir un grafo en triangulado mediante la triangulacion, que consiste en afiadir cuerdas.
Aunque hay varias formas de triangular un grafo, para preservar al maximo la topologfa original de un
grafo, la triangulacién debe ser minimal, que consiste en afiadir el minimo nimero de aristas posibles.

Definicion 11 (Triangulaciéon minimal). Se dird que la triangulacion es minimal si contiene el minimo
ntimero de cuerdas por debajo del cual no es posible triangular el grafo original.

Ejemplo 5 (Grafo triangulado y triangulacion minimal). La Figura 1.5 muestra un ejemplo de que la
triangulacion no es tinica, ya que en el grafo del centro se ha afiadido una cuerda entre B 'y C, pero
podria haberse ariadido la cuerda A — D o incluso las dos, como en el grafo de la derecha. En este caso,
el grafo del centro tiene una triangulacion minimal, mientras que el de la derecha no.

Figura 1.5: Grafo no dirigido no triangulado (izquierda) y grafos no dirigidos triangulados (centro y
derecha).

Una propiedad interesante de los grafos triangulados que utilizaremos mds adelante en los modelos
gréficos no dirigidos es la propiedad de interseccion dindmica.

Definicion 12 (Propiedad de interseccion dinamica). Se dice que un conjunto de cliques Cy,..,Cy,
cumplen la propiedad de interseccion dindmica si el conjunto C;N (C1U...UC;_1) estd contenido en al
menos uno de los cliques {C\,...,Ci—1} ,Vi=1,....m.

Es decir, se pueden ordenar los cliques de un grafo de forma que cumplan esta propiedad, a esta
sucesion de cliques se le denomina cadena de cligues.

Ejemplo 6 (Propiedad de interseccién dindmica). La Figura 1.4 (izquierda) muestra una sucesion de
cliques que no cumplen la propiedad de interseccion dindmica, ya que D40 (D U...UD3) = {B,D},
que no estd contenido en ninguno de los cliques D1,D, y D3. Pero el grafo de la derecha si muestra una
sucesion que la cumple, pues se puede comprobar que:

GNC ={B,C} CCy;
GN(CUG) ={C,D} C Cy;
CsN(CUCUGCs) ={B,D} C C,.

Es decir, {Cy,C,,C3,Cy} forman una cadena de cliques.

El siguiente teorema caracteriza el tipo de grafos que tienen asociados una cadena de cliques.

Teorema 1 (Cadena de cliques). Un grafo no dirigido tiene asociada una cadena de cliques si'y solo si
es triangulado.



1.4. Grafos dirigidos

Una vez visto qué son los grafos no dirigidos, vamos a estudiar los grafos dirigidos. En particular en
este trabajo nos interesan los grafos aciclicos dirigidos.

Definicién 13 (Padres e hijos). Dados dos nodos X; y X;, si existe una arista dirigida X; — X, del nodo
X; al nodo X, entonces se dice que el nodo X; es padre del nodo X, y que el nodo X; es hijo del nodo X;.

Definicion 14 (Familia de un nodo.). Se denomina familia de un nodo al conjunto formado por un nodo
y sus padres.

Ejemplo 7 (Padres de un nodo). El conjunto de padres del grafo de la Figura 1.6 es: Padres(A) =
{0}, Padres(B) = {A,F}, Padres(C) = {A}, Padres(D) = {B,C}, Padres(E) = {C}, Padres(F) = {0},
Padres(G) = {F}, Padres(H) = {D,G,I}.

En grafos dirigidos el conjunto de hijos de un nodo coincide con el conjunto de nodos adyacentes.

Ejemplo 8 (Familia de un nodo). En la Figura 1.6 la familia asociadas al nodo B es {A,B,F}.

Figura 1.6: Grafo dirigido

Definicion 15 (Ascendientes y descendientes). Se dice que X; es ascendiente de un nodo X; si existe un
camino de X; a X; y se dice que X; es descendiente de X; si existe un camino de X; a X;.

Ejemplo 9 (Ascendientes y descendientes). En la Figura 1.6, A es ascendiente de {B,C,D,E ,H} porque
todos estos nodos son alcanzables a través de un camino que comienza en el nodo A. Al igual que
C y D son algunos de los ascendientes del nodo H. Por otra parte, {B,C,D,E,H} es el conjunto de
descendientes del nodo A.

Definicion 16 (Esqueleto o grafo asociado). Dado un grafo dirigido G, el grafo no dirigido obtenido al
reemplazar cada arista dirigida por la correspondiente arista no dirigida, se denomina grafo no dirigido
asociado a G o esqueleto de G.

Definicion 17 (V-estructura). Una terna de nodos (X,Z,Y) se dice que es una v-estructura si las aristas
desde los nodos X e Y convergen al nodo Z y ademds, no existe ninguna arista entre los nodos X e Y.

Ejemplo 10 (V-estructura). En el grafo de la Figura 1.6 las v-estructuras son las ternas de nodos
(A,B,F), (C,D,B), (D,H,G), (G,H,I), (D,H,I).

Definicion 18 (Grafo moral). El grafo moral de un grafo dirigido G es el grafo no dirigido asociado
que se obtiene al ailadir una arista entre los nodos padre en una v-estructura en el grafo no dirigido.

Ejemplo 11 (Esqueleto y grafo moral). La Figura 1.7 muestra un grafo dirigido y su correspondiente
esqueleto y grafo moral.
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Figura 1.7: Grafo dirigido (izquierda), su esqueleto (centro) y su grafo moral (derecha).

Definicion 19 (Arbol simple y poliarbol). Un grafo dirigido se denomina drbol si existe un iinico
camino (no necesariamente dirigido) entre cada par de nodos. Se dice que es un drbol simple si cada
nodo tiene como mdximo un padre, y se dice que es un polidrbol en caso contrario.

Este tipo de grafos tendran un papel relevante en los algoritmos de inferencia exacta del Capitulo 3.

Vamos a introducir un ejemplo sencillo de modelo grafico dirigido o red Bayesiana que modela el
riesgo de que haya un incendio en el norte y en el sur de una regién segin ciertos factores que intervienen.
En este capitulo se definirdn las variables aleatorias del problema y las relaciones existentes entre ellas,
mientras que en el Capitulo 2 se estudiarén las relaciones de independencia existentes entre las variables.
Finalmente, en el Capitulo 3 se utilizaran la inferencia probabilistica para calcular la probabilidad de que
ocurra un incendio segun ciertos factores dados.

Ejemplo 12 (Riesgo de incendio en una region). En la Figura 1.8 se muestra una red Bayesiana con
5 variables aleatorias binarias (nodos) y las aristas representan como estdn relacionadas estas. Se han
definido las variables con solo 2 posibles valores por simplicidad en la descripcion del modelo: el nodo
V representa la estacion del afio, tomard el valor V = 1 para las estaciones verano/primavera, y el valor
V = 0 para invierno/otorio. El nodo N representa la situacion en el mapa, tomard el valor N =1 si se
trata del norte, y el valor N = 0 si se trata del sur. El nodo C representa si es un dia caluroso, tomando el
valor C =1 si hace calor, y el valor C = 0 si hace frio. El nodo L representa si es un dia lluvioso, tomando
elvalor L =1 si llueve, y el valor L = 0 si no llueve. Finalmente, el nodo I representa la probabilidad de
que haya un incendio, tomando el valor I =1 si hay incendio y el valor I = 0 si no lo hay.

Figura 1.8: Grafo dirigido que representa las relaciones entre las variables del problema.

En un grafo dirigido, las relaciones directas (que en determinadas ocasiones se pueden interpretar
como causas) entre las variables se indican mediante flechas entre estas. Por lo que este grafo representa
las siguientes relaciones mediante su estructura: que un dia sea caluroso, depende de la estacion del afio
en la que nos encontremos y de la region del mapa que se estd observando. Sin embargo, que un dia sea
lluvioso se considera que solo depende de la region del mapa (aunque normalmente estaria influenciada
por mds factores, se considera asi en este caso por simplicidad). Por iltimo, que haya un incendio
dependerd de la temperatura y las precipitaciones de ese dia.



Capitulo 2

Independencias condicionales en grafos

En este capitulo se estudian los conceptos de separacion en grafos tanto dirigidos como no dirigidos,
que nos permitirdn determinar las relaciones de independencia condicional entre las variables del grafo.
Estas relaciones de independencia juegan un papel muy importante ya que son las que permiten factorizar
y simplificar la funcién de probabilidad conjunta que caracteriza un modelo grifico probabilistico. La
siguiente definicion se ha tomado de [0, pag. 28].

Definicion 20 (Independencia condicional). Sean X, Y y Z variables aleatorias, se dice que X e Y son
condicionalmente independientes dado Z si se cumple que:

" PX=x,Y=y|Z=2)=P(X =x|Z=2)P(Y =y|Z =2z), Vztal que P(Z =z) > 0, si las variables
son discretas; o bien

» fxyz(x,Y]2) = fx|z(x|2) fr|z(V]2), si las variables admiten una funcion de densidad continua res-
pecto a una medida producto.

Dados X, Y y Z tres subconjuntos disjuntos de nodos de un grafo, se utilizard la notacién I(X,Y|Z),
para expresar la independencia condicional entre X e Y dado Z. En caso de que Z = 0, se dird que la
independencia es marginal, y se denotard como /(X,Y|0); mientras que para indicar la dependencia, se
utiliza D(X,Y|Z).

2.1. Separacion en grafos no dirigidos. U-separacion

Para representar la independencia condicional por medio de grafos no dirigidos se define el criterio de
separacion grafica U-separacion, que permite obtener la lista de relaciones de independencia asociadas
a un grafo no dirigido.

Definicion 21 (U-separacion). Sean X, Y y Z conjuntos disjuntos de nodos en un grafo no dirigido G,
entonces Z separa X e Y < cada camino entre X e Y contiene algiin nodo de Z.

Ejemplo 13 (U-separacién). Para ilustrar este concepto la Figura 2.1 muestra mediante 4 ejemplos
algunas de las relaciones de dependencia e independencia condicional. Aunque las relaciones que nos
interesan realmente son las de independencia, se ven también las de dependencia para mayor claridad
del concepto.

1. Ay G son condicionalmente independientes dado D, ya que cada camino entre A’y G contiene al
nodo D.

2. Los subconjuntos {A,C} y {F,G} son condicionalmente independientes dado el subconjunto {B,D}
pues cada camino entre los dos subconjuntos contiene al menos un nodo del conjunto {B,D}.

7



8 Capitulo 2. Independencias condicionales en grafos

3. Ay G son dependientes dado D, ya que existe al menos un camino A — B — F — G que no contiene
al nodo D.

4. Los subconjuntos {A,C} y {F,G} son dependientes dado el subconjunto {D,E}, pues el camino
A — B —F — G no pasa por ninguno de los nodos D, E.

Figura 2.1: Ejemplos de dependencia e independencia condicional en grafos no dirigidos: el grafo
1 representa I(A,G|D), el 2 representa I({A,C},{F,G}|{B,D}), el 3 D(A,G|D) y por dltimo, el 4
D({A,C} ,{F,G}|{D,E}). Los colores azul y rosa corresponden a los nodos pertenecientes a los con-
juntos X e Y y el amarillo a los nodos del conjunto separador Z en la notacién I(X,Y|Z) y D(X,Y|Z).

2.2. Separacion en grafos dirigidos. D-separacion

Para representar las relaciones de independencia en un grafo dirigido G, se define el criterio de
separacion grifica D-separacion. Para definir este criterio necesitaremos recordar la Definicién 17 de
v-estructura o nodo de aristas convergentes.

En ambos casos, los criterios de separacién no solo sirven para representar las relaciones de indepen-
dencia, sino también son ttiles para dado un grafo G, determinarlas.

Definicion 22 (D-separacion). Sean X, Y y Z conjuntos disjuntos de nodos en un grafo aciclico dirigido
G, entonces, se dice que Z D-separa X e Y < a lo largo de todo camino no dirigido entre cualquier nodo
de X y cualquier nodo de Y, existe un nodo intermedio A tal que:

1. A es nodo de aristas convergentes en el camino y ni A ni sus descendientes estdn en Z, o bien,

2. A no es nodo de aristas convergentes y A estd en Z.

Entonces, si se puede encontrar un nodo en algin camino no dirigido que no cumpla ninguna de las
condiciones anteriores, se dird que X e Y son dependientes dado Z.

Ejemplo 14 (D-separacién). Para ilustrar estos conceptos utilizamos el grafo de la Figura 1.8 del ejem-
plo 12, donde vamos a ver algunas de las relaciones de independencia que nos servirdn mds adelante
para simplificar la funcion de probabilidad. Al igual que para grafos no dirigidos, también veremos las
relaciones de dependencia.

1. Elnodo LYy el conjunto {C,V'} son condicionalmente independientes dado N, ya que los caminos
entre L'y {C,V} o bien contienen a N que no es de aristas convergentes y estd contenido en N



(cumple la condicion 2); o bien contiene al nodo I que es de aristas convergentes y ni I ni sus
descendientes estdn contenidos en N (cumple la condicion 1).

2. El nodo I es condiconalmente independiente del conjunto {V,N} dado los nodos {C,L} ya que
todo camino entre I y {V,N} contiene a los nodos C y L que no son de aristas convergentes y
pertenecen a {C,L} (cumple la condicion 2).

3. Los nodos N e I son dependientes dado L ya que existe un camino N — C — I que contiene al
nodo C que no es de aristas convergentes y no pertenece a L, luego no cumple ninguna de las
condiciones.

4. Los conjuntos {V,N} y {C,L} son dependientes dado I ya que existe un camino entre L'y V,
L — I < C <V que contiene al nodo I que es de aristas convergentes y pertenece a I, por lo que
no cumple ninguna condicion.

Figura 2.2: Ejemplos de dependencia e independencia condicional en grafos dirigidos: el grafo 1
representa I(L,{C,V}|N), el 2 representa I(I,{V,N}|{C,L}), el 3 D(N,I|L) y por iltimo, el 4
D({V,N},{C,L}|I). Los colores azul y rosa corresponden a los nodos pertenecientes a los conjuntos
X e Y y el amarillo a los nodos del conjunto separador Z en la notacion I(X,Y|Z) y D(X,Y|Z).

5. Por iltimo, los nodos N y V son marginalmente independientes, es decir, I[(N,V|0) ya que todos
los caminos entre N y V contienen al nodo C que es un nodo de aristas convergentes y no estd
contenido en 0.

Las independencias condicionales en un DAG también pueden leerse en su grafo moral asociado
(Definicién 18) mediante el criterio de U-separacion. Por lo que se introduce a continuacién este resulta-
do como alternativa a la D-separacién que es mds fécil de aplicar en la préctica, para esto se introduce la
definicién previa de conjunto ancestral, para la cual se recuerda también la Definicidn 15 de ascendien-
tes.

Definicion 23 (Conjunto ancestral). Un conjunto de nodos S se denomina conjunto ancestral si con-
tiene los ascendientes de todos sus nodos.

Proposicion 1. Sean X, Y y Z tres subconjuntos disjuntos de nodos en un grafo aciclico dirigido, en-
tonces: Z D-separa X e Y < Z separa X e Y en el grafo moral del menor subconjunto ancestral que
contenga a los nodos de X, Y y Z.

La demostracién de esta proposicién se encuentra en [0, pag. 48]. Para ilustrar este concepto se
utilizard el grafo y las relaciones condicionales del Ejemplo 14, y se comprobard que las cumple en el
Anexo A.1.

Una vez hemos visto como se obtienen las relaciones de independencia condicional en cada tipo de
grafo, vamos a ver cdmo se factoriza la funcién de probabilidad conjunta asociada a cada uno de estos.
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2.3. Modelos graficos no dirigidos o redes de Markov

Para construir la distribucién de probabilidad conjunta asociada a un grafo no dirigido necesitamos
recordar el concepto de cligue dado en la Definicién 7.

Definicion 24 (Modelo grafico no dirigido o red de Markov). Una red de Markov o modelo grdfico no
dirigido es un par (G, y) donde G es un grafo no dirigido definido sobre un conjunto de variables aleato-
rias X ={X1,. X, } y w ={w1,..., Wy} es un conjunto de funciones no negativas (denominadas funciones
potenciales) definidas en los cliques Cy,...,C,, de G que permiten definir una funcion de probabilidad
P(X1,...,Xy) por medio de:

m

P(X1,.., X,) o< [Twi(Co). 2.1)

i=1

Por lo tanto la ecuacién (2.1) define una factorizacién de la funcién de probabilidad de una red de
Markov mediante el producto de factores potenciales. El problema de esta factorizacion es que las fun-
ciones potenciales no tienen por qué ser funciones de probabilidad y la asignacién de valores numéricos
para la definicién del modelo no es sencilla.

Ejemplo 15 (Factorizacién de un modelo no dirigido). El grafo de la Figura 2.3 es un ejemplo cldsico
donde su distribucion se puede factorizar mediante funciones potenciales pero no mediante funciones de
probabilidad. Su factorizacion mediante la ecuacion (2.1) es:

P(A’B’C’D) o< V/l(A’B)WZ(B’C)V@(C’D)W4(D7A)'

(B—®)
O—©

Figura 2.3: Grafo de 4 nodos

Este grafo muestra dos independencias condicionales: 1(A,C|{B,D}) y I(B,D|{A,C}), si aplicamos la
regla de la cadena obtenemos una factorizacion donde solo se puede aplicar una de las independencias.
En caso de tener la factorizacion P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D) solo podriamos
utilizar I(A,C|{B,D}), por lo que la distribucion quedaria de la forma:

P(A,B,C,D) = P(A|B,D)P(B|C,D)P(C|D)P(D),

es decir, la factorizacion mediante la regla de la cadena, en general, no es equivalente a la factorizacion
mediante funciones potenciales y por tanto estas no se pueden poner como distribuciones de probabili-
dad condicionada.

En cambio si el grafo es triangulado (Definicion 10), podemos obtener una factorizacién como pro-
ducto de funciones de probabilidad condicionada y dan lugar a los modelos descomponibles. Para defi-
nirlos necesitamos utilizar la propiedad de interseccion dindmica introducida en la Definicién 12.

Definicion 25 (Modelo grafico descomponible). Sean {Ci,...,Cy} los cliques de un grafo no diri-
gido triangulado ordenados de forma que cumplen la propiedad de interseccion dindmica. Sean S; =
CiN(CLU...UCi-1), i =2,...,m los conjuntos separadores. Dado que S; € C; se definen los conjuntos
residuales como R; = C;\ S;. La factorizacion resultante es de la forma:

P(Xi,....X,) = [TP(RilS)). (2.2)
i=1
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Por lo tanto, en el caso de modelos descomponibles, las funciones potenciales pueden ser definidas
mediante funciones de probabiliad condicionada, W;(C;) = P(R;|S;), i = 1,...,m, donde m es el niimero
de cliques del grafo.

Ejemplo 16 (Factorizacién de un modelo no dirigido descomponible). Tomando el grafo de la Figura 2.3
y aplicando una triangulacion minimal, obtenemos el grafo de la Figura 2.4. Este nuevo grafo mediante
la ecuacion (2.1) admite la factorizacion:

P(A7B7C7D) o< ll’l <A7B7C) III2<B7C7D)7

que dados los conjuntos separadores S = {0} y S, = {B,D} y los conjuntos residuales Ry = {A,B,D}
y Ry = {C} asociados a cada clique, se puede factorizar mediante la ecuacion (2.2) tal que:

P(A,B,C) = P(A,B,C)P(C|B,D).

(B—B)
o—©

Figura 2.4: Grafo de 4 nodos con la triangulacién minimal que se tiene mediante la arista B — D.

2.4. Modelos graficos dirigidos o redes Bayesianas

Definicion 26 (Modelo grafico dirigido o red Bayesiana). Un modelo grdfico dirigido o red Bayesiana
es un par (G,P), donde G es un grafo aciclico dirigido definido sobre un conjunto de variables alea-
torias X = {X1,....X,} y P ={P(X1|IL}),...,P(X,|IL,) } es un conjunto de n funciones de probabilidad
condicionada, una para cada variable, donde 11; representa el conjunto de padres del nodo X; en G. El
conjunto P define una funcion de probabilidad asociada mediante la factorizacion

n
P(Xi,....X,) = [ [P(Xi|TT;). (2.3)
i=1
Ejemplo 17 (Riesgo de incendio en una region, continuacion). Volviendo al Ejemplo 12 del apartado
1.4, una factorizacion del modelo mediante la regla de la cadena o de la multiplicacion seria:
P(V,N,C,L,I)=P(V)P(N|V)P(C|V,N)P(L|V,N,C)P(I|C,L,N,V). 2.4)

Si las variables toman valores 0 y 1, para definir el modelo mediante esta factorizacion necesitariamos
en general 2" — 1 pardmetros, siendo n el niimero de nodos del grafo. En este caso, se necesitarian 31
pardmetros. Si aplicamos las independencias condicionales que se pueden leer del grafo y que se han
obtenido ya en el Ejemplo 14 de D-separacion, podemos simplificar la ecuacion (2.4) de la forma:

1. Utilizando que I(N,V|0), reemplazamos el factor P(N|V) = P(N).

2. Utilizando que I(L,{C,V }|N), reemplazamos el factor P(L|C,V,N) = P(L|N).

3. Poriiltimo, utilizando que I(I1,{V,N} |{C,L}), reemplazamos el factor P(I\V,N,C,L) = P(I|C,L).
Obteniendo la factorizacion vista en la ecuacion (2.5) que requiere tan solo 12 pardmetros. Un ejemplo

de esto se muestra en la Figura 2.5.

P(V,N,C,L,1) = P(V)P(N)P(C|V,N) P(L|N) P(I|C,L). (2.5)
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v [ P N v]c]|prclvn cl L] 1 ]rucy N | L [PLIN)
0| o0s o|lo]o 0.3 o/ o]o 0.8 0| o] 09
1| 05 0|01 0.7 0|01 0.2 0| 1] o1
o| 1|0/ 005 0|10 0.9 10| 03
o| 1|1/ 005 011 0.1 11| 07
P(N) 1]o]|o 0.9 100 0.7
0| 06 101 0.1 1|01 0.3
1| 04 11|00 075 110 0.9
1]1|1] o025 111 0.1

Figura 2.5: Red Bayesiana con las tablas de probabilidad necesarias para definir el modelo completo: las
funciones de probabilidad marginal P(V) y P(N) y las funciones de probabilidad condicional P(C|V,N),
P(LIN) y P(I|C,L).

Asi, en caso de tener una red Bayesiana, la factorizacién de la funcién de probabilidad se obtiene
de manera directa a partir del grafo dirigido, teniendo en cuenta las distribuciones de probabilidad que
relacionan a cada nodo X; con sus padres I1;. A diferencia de una red de Markov, que requiere algunos
pasos previos.

Para terminar este capitulo vamos a ver qué relacion existe entre las estructuras gréaficas y el conjunto
de relaciones de independencia condicional que representan.

2.5. Modelos graficos equivalentes

Dos grafos no dirigidos diferentes siempre representan diferentes relaciones de independencia con-
dicional, mientras que dos grafos dirigidos distintos pueden estar asociados al mismo conjunto de inde-
pendencias condicionales, que determinaria una misma funcién de probabilidad.

Figura 2.6: Grafos dirigidos de 3 nodos y 2 arcos

Ejemplo 18. En los grafos 1, 2 y 3 tenemos que A 'y C son independientes dado B, I1(A,C|B) por lo que
la factorizacion de la distribucion de probabilidad serd igual en los tres casos. Sin embargo, el caso del
grafo 4, representa un modelo en el que A 'y C son incondicionalmente independientes, 1(A,C|0).

Definicion 27. Dos modelos grdficos se dicen equivalentes si los grafos correspondientes tienen asocia-
do el mismo conjunto de relaciones de independecia condicional.

(Qué se tiene que cumplir para que 2 grafos dirigidos sean equivalentes? El siguiente teorema nos da
una solucién a la pregunta.

Teorema 2. Dos grafos dirigidos son equivalentes si tienen asociados tanto el mismo esqueleto como
las mismas v-estructuras.

Ejemplo 19. Por lo tanto, en la Figura 2.6, los grafos 1, 2 y 3 representan modelos grdficos equivalentes.



Capitulo 3

Inferencia probabilistica

Una de las tareas mas importantes de los MGP es la de resolver los problemas de inferencia probabi-
listica. La inferencia probabilistica, también conocida como propagacion de evidencia, trata de calcular
la probabilidad de una serie de variables dado un conjunto de variables observadas, a las que llamamos
variables evidenciales. Lo que se utiliza para obtener conclusiones y predicciones basadas en una serie
de datos conocidos, denominados evidencia.

Definicion 28 (Evidencia). La evidencia en un modelo grdfico es un conjunto de nodos E, C X cuyos
valores son conocidos, es decir, E, = e, en una situacion dada.

Existen varios tipos de algoritmos de propagacion, en este capitulo nos centraremos en los de propa-
gacidn exacta y se verdn las ventajas e inconvenientes de cada uno de ellos. También existen los algorit-
mos de propagacion aproximada, que se utilizan cuando los exactos no son aplicables o son computacio-
nalmente muy costosos, aunque no los trataremos en este trabajo.

Los problemas de propagacién de evidencia requieren resolver algunos problemas como el célcu-
lo de la distribucién marginal de un conjunto particular de nodos o la distribucién condicional, como
por ejemplo cuando se tiene cierta evidencia y se quiere calcular la probabilidad de un nodo dado el
conocimiento de esa informacién, P(X; = x;|E, = ey).

Es decir, se quiere propagar la evidencia en un conjunto de variables aleatorias X = {Xj,..., X, } (en
este trabajo se considera ademads que son discretas), del cual se puede tener evidencia E,, o no.

= Si no se dispone de evidencia, el proceso de propagacion consiste en calcular las probabilidades
marginales P(X; = x;) para todos los valores posibles de X;,

PXi=x) =Y P(X1,...Xi =Xi,.... Xn).
X\X;

= Si se dispone de evidencia E, C X, entonces la inferencia consiste en calcular las funciones de
probabilidad condicionada P(X; = x;|E, = e,) para cada valor de la variable X; y para toda variable
X; de la que no se tenga evidencia, es decir X; ¢ E,,

P(Xl = )Ci,Ev = ev)
P(E, =ey)

P(X,-:x,-|Ev:ev) = «P(Xi:xi’EV:ev),

donde siendo k = 1 j una constante de normalizacidn, se tiene que P(X; = x;,E, =¢,),

P(E,=e,

P(Xi=xi,E,=e,) =k Y Pg(Xi,....X;=xi,....X,).
X\X;,E,

Pg,(X1,....,Xi = xi,...,X,) es la funcién de probabilidad conjunta P(Xj,...,X,) en la que se han
sustituido las variables con evidencia por sus valores correspondientes.

13
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A continuacién se estudian algunos algoritmos de inferencia exacta que tienen en cuenta la estructura
de independencia de un grafo. Algunos de estos métodos son aplicables tanto a redes de Markov co-
mo a redes Bayesianas, mientras que otros solo se podrdn aplicar a redes Bayesianas, ya que también
aprovechan la estructura de los grafos dirigidos.

Primero se estudiard el algoritmo de propagacion en drboles y polidrboles, su principal inconveniente
es que solo sirve cuando las redes tienen esta estructura, por lo que es necesario definir otros tipos de
algoritmos como el de condicionamiento, el de agrupamiento o el de agrupamiento en drboles de union.

3.1. Propagacion exacta en poliarboles

La propagacion exacta en polidrboles es muy ttil cuando se tiene una red Bayesiana con estructura
de arbol o polidrbol, ya que permite calcular las distribuciones de manera eficiente y exacta.

En un polidrbol todos los nodos estdn unidos por un dnico camino (no necesariamente dirigido), por
lo que cada nodo divide el grafo en dos polidrboles inconexos: uno que contiene a los padres y a los
nodos a los que estd conectado pasando por los padres, y otro que contiene a los hijos y a los nodos
que esta conectado pasando por los hijos. En el grafo de la Figura 3.1, el nodo D separa el conjunto
de los ancestros de D, {A,B,E} del de los descendientes de D, {C,F,G}. El proceso de propagacion
que se define a continuacién combina informacién procedente de ambos subgrafos mediante el envio de
mensajes. Por esta razén el algoritmo también se llama de paso de mensajes (message-passing).

Suponer que se tiene un polidrbol formado por los nodos X = {Xj,...,X,} y que se conoce la evi-
dencia E,. La propagacién de evidencia consiste en calcular las probabilidades P(X;|E,) para todas las
variables X; de las que no se tiene evidencia, es decir, X; ¢ E,. Para facilitar el cédlculo se descompone el
conjunto E, en dos subconjuntos disjuntos separados por la variable X;: el subconjunto E,! que incluye
los padres de X; y los nodos accesibles a través de sus padres y E|; que incluye los hijos de X; y los nodos
accesibles a través de sus hijos. Por el Teorema de Bayes y considerando que X; separa Evf y E,; se puede
calcular P(X;|E,) como:

P(Xi|E,) = P(X|E,; E,;) = k P(X;)P(E,;, E,; |X;) = k P(X;)P(E,; |X;)P(E,; |X;)

=k P(X;, E,;)P(E,; |X;)-
Definiendo las funciones 4;(X;) = P(E,; |X;) y pi(Xi) = P(X;,E,;), donde A;(X;) son los mensajes que
tienen en cuenta la evidencia procedente de los hijos de X; y p;(X;) son los mensajes que tienen en cuenta
la evidencia procedente de los padres de X;, se obtiene la siguiente expresion:

P(X|E,) = k Xi(X;) pi(X;). (3.1

La inferencia se realiza mediante un mecanismo de paso de mensajes, en donde cada nodo envia los
mensajes correspondientes a sus padres y a sus hijos. Al final de la inferencia, cada nodo tiene asociado
un vector A y un vector p, y se obtiene la probabilidad de cada nodo aplicando la ecuacién (3.1).

Para calcular los mensajes A;(X;) y pi(X;), consideramos la situaciéon genérica donde se tiene un
polidrbol en el que un nodo arbitrario X; tiene p padres U = {Uj, ...,U, } y chijos Y = {Y1, ..., Y. }. Gracias
a la estructura de polidrbol del grafo, los conjuntos de evidencia E} y E,; pueden descomponerse en p y
¢ subconjuntos disjuntos respectivamente:

B = {Ef Bl b Bt = { By iy}

donde E{]Fj x; s el subconjunto de E contenido en el subgrafo asociado al nodo U ; cuando se elimina la

arista U; — X; y Eyy es el subconjunto de E; contenido en el subgrafo asociado al nodo Y; cuando se
elimina la arista X; — ¥;. Y de nuevo se utilizard la estructura de polidrbol que hace que los conjuntos
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{U s E(J}] Xl} y {Uk, EZ,’k Xl} sean condicionalmente independientes para k # j. Los detalles del calculo de
las funciones p; y A; se encuentran en el Anexo A.2.
La descripcién completa de la propagacion en polidrboles viene dada en el Algoritmo 1, se incluye a

continuacion un ejemplo aplicado a la red Bayesiana de la Figura 3.1, las soluciones de los cédlculos de
este ejemplo se inlcuyen en la Figura 3.2.

A | pa) A | B [P(BlA) B | E |P(E|B) B | D |PD|B)

0| 06 o| o] o7 o o] 02 o| 0| 045

1| 04 o| 1] o3 0| 1| o8 0| 1| o055
1| 0| 05 1| 0| 065 1| 0| 09
1| 1] o5 1| 11035 1| 1| 03
c | D |P(CID) c | F |P(FIO) D | G |P(GID)
o| o] os o| o] o3 o o] oss
1 | 0| 02 0 | 1, | 07 0| 1| 0415
o| 1] 05 1| 0] 01 fi | 0| 104
1| 1] os 1| 1| o9 1| 1| o6

Figura 3.1: Red Bayesiana sobre la que se aplica el algoritmo de propagacion en poliarboles.

Ejemplo 20 (Propagacién en polidrboles). Consideramos la red Bayesiana de la Figura 3.1, en la que
se conoce la evidencia E, = {B = 1,C = 0}. Si no se dispone de evidencia, se omite la primera fase de
la etapa inicial y se continua con el algoritmo.

= Etapa de iniciacion

1. Definir las funciones A y p para los nodos evidenciales:

pp(B=0)=0, A5(B=0)=0, pc(B=0)=1, Ac(B=0)=1
ps(B=1)=1, Ag(B=1)=1, pc(B=1)=0, Ac(B=1)=0.

2. Asignar a los nodos sin padres la funcion px,(X;) = P(X;):

3. Asignar a todos los nodos sin hijos la funcion A;(X;) = 1:

Ae(E =0)

I, Ar(F=0)=1, Ag(G=0)=1,
Ae(E=1)=1, A 1, A I

~
—~
B!
|
p—
~
I

= Etapa iterativa

Paso 1 (Iteraciones).
* Primera iteracion.

Nodo A. Se ha calculado la funcion ps(A) y B es el vinico hijo de A, por lo que se puede
enviar el mensaje pag(A) = pa(A).

Nodo B. Se tiene Ag(B) y dado que A es su inico padre, se puede enviar el mesaje Aap(A)
tal que Asp(A) =Y g Ag(B)P(B|A): Aap(A=0)=03y Ap(A=1)=0.5.

Nodo C. Se tiene Ag(E) y su tinico padre es B, por lo que puede enviar los mensajes Agp(B)
tal que AEB(B) =Yz AE(E>P(E|B) AEB(B = 0) =1y AEB(B = 1) =1

Nodo D. En el nodo D ni se ha recibido ni se han calculado las funciones A o p, por lo que
no se puede efectuar ninguna operacion en esta iteracion.
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Nodo C. Se ha calculado A¢(C) y su vinico padre es D por lo que de manera andloga a los
nodos By E se pueden calcular los mensajes Acp(D =0) =0.8 y Acp(D =1) =0.5.
Ademds, para este nodo también se ha calculado la funcion pc(C), y su dnico hijo
es F, por lo que se pueden enviar los mensajes pcr(C) = pc(C): pcr(C=0) =1y
PcF (C = 1) =0.

Nodos Gy F. Paralos nodos G y F se tienen las funciones A y ambos tienen un vinico padre,
luego de forma andloga a los casos anteriores se pueden calcular: Agp(D = 0) = 1,
AGD(D: ]) =1, A,Fc(CZO) = l,y)ch<C: 1) =1.

Nodo F. Ademds, F ha recibido los mensajes p de todos sus padres, luego se puede calcular
pr(F) tal que pp(F) = Y.c P(F|C)pcr(C), entonces: pp(F =0) =03y pp(F=1) =
0.7.

» Segunda iteracion.

Nodo A. El nodo A ha recibido los mensajes A de todos sus hijos, por lo que se puede
calcular Ay (A) = Aga(A), entonces: Ay(A=0) =03y (A=1)=0.5.

Nodo B. Se tiene pg(B) y B ha recibido el mensaje Agp de su hijo E, por lo que puede
enviar a su otro hijo D el mensaje pgp(B) tal que ppp(B) = pp(B)Ags(B), es decir:
pep(B=0)=0yppp(B=1) = 1.

Nodo D. El nodo D ha recibido el mensaje ppp de su iinico padre, por lo que se puede
calcular su funcion pp(D) =Y g P(D|B)ppp(B), y se tiene: pp(D=0)=0.9y pp(D =
1)=0.1.

Andlogamente se calculan también en este paso los mensajes ppc(D), ppc(D), Aps(B)
y la funcion Ap(D).
e Tercera iteracion.

Nodo B. Se ha calculado la funcion pg(B) y B ha recibido Apg de su hijo D, luego pue-
de enviar el mensaje ppg a su otro hijo D tal que ppr(B) = pp(B)App(B), y se tiene:
pse(B=0)=0y pge(B=1)=0.77.

Nodo E. Para terminar esta iteracion solo queda calcular las funciones pg(E) y pc(G), de
forma que pg(E) =Y,_oP(E|B)ppr(B), y se tiene: pg(E =0) =0.5005y pr(E =1) =
0.2695.

Nodo G. Andlogamente para el nodo G se tienen: pg(G=0)=0.632y pg(G=1)=0.138.

Por lo que ya tenemos las funciones necesarias para calcular las probabilidades asociadas a cada nodo,
lo siguiente es pasar a los Pasos 2 y 3, multiplicando A;(X;) - pi(X;), VX; ¢ E, y normalizando el resultado
para obtener P(X;|E,). Estos resultados se muestran en la Figura 3.2.

La ventaja de este algoritmo es que el nimero de operaciones aumenta linealmente con el tamafio de
la red, y su principal inconveniente es que no se aplica a redes multiplemente conectadas ya que carece
de generalidad, para este tipo de estructura de redes se presentan a continuacién otros algoritmos. Dos
de los métodos mds importantes son los métodos de condicionamiento y los métodos de agrupamiento.

3.2. Métodos de condicionamiento

A diferencia de los polidrboles, las redes multiplemente conexas se caracterizan por tener mas de
un camino entre dos o mds nodos, es decir, de la existencia de bucles (Definicién 5) en el grafo no
dirigido asociado (Definicién 16). La idea principal de los métodos de condicionamiento es cortar los
multiples caminos existentes entre dos nodos mediante la asignacion de valores a un conjunto de variables
contenidas en los bucles, este conjunto de variables se denomina conjunto de corte, C = {Cy,...,Cp }. Es
decir, se puede cortar un bucle considerando como nodo evidencial a un nodo o un conjunto de nodos
contenidos en él, y asi transformar el grafo en un polidrbol donde aplicar el Algoritmo 1.
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Pa(A) [ a(a) | P(A)
A=O | 0.6 | 0.3 | 0.47
A=1 0.4 05 [ 53
Pas
’:lAB
pe(B) | Az(B)| P(B) pc(C) | Ac(C) | P(C)
B=0 0 0 0 = 1 ik 1
B=1 1 1 i 0 0
PsE PeD Aep Pcr
Aep App Arc
pe(E) | 2e(E)| P(E) po(D)| Ap(D)| P(D) pe(F) | A:(F) | P(F)
E=0 |0.500% 1 0.65 D=0 | 0.9 0.8 | 0.83 F=0 0.3 il 0.3
E=1 |0.2695 1 0.35 D=1 | G1 0.5 | 0.07 F=1 0.7 1 0.7
Ppe
Agp
pc(G)| Ac(G)| P(G)
G=0 |0.632| 1 0.82
G=1 10.138] 1 0.18
PaB | Aap Pee | AsB Poc | Acp
A=0 | 0.6 0.3 B=0 0 1 D=0 | 0.9 0.8
A=1 | 0.4 0.5 B=1 | 0.77 1 D=1 ]| 0.1 0.5
Pep | Apg Pcr | Arc Poc | Agp
B=0 0 |[0.635 C=0 1 D=0 | 0.72 1
B=1 1 0.77 C=1 0 1 D=1 | 0.05 1

Figura 3.2: Funciones y mensajes obtenidos aplicando el algoritmo de propagacion de evidencia en
polidrboles (Algoritmo 1) a la red Bayesiana definida por la Figura 3.1.

Si por ejemplo consideramos X; como nodo evidencial, se pueden eliminar del grafo todas las aristas
de la forma X; — X;, y para que la red Bayesiana resultante sea equivalente a la inicial, se sustituye
la funcion de probabilidad condicionada del nodo X; por una funcién definida sobre un conjunto mas
reducido de variables (donde se excluyen las variables que hemos considerado evidenciales):

Py (X;|T;\ X;) = P(X; [T\ X3, X; = x;).

La funcion de probabilidad P(X;|E, ), se obtiene promediando las probabilidades ponderadas obteni-
das para cada valor posible de las variables del conjunto de corte:

P(X|E,) = Z P(X|E,,Cy,...,C)P(Cy,...,Cn|E))
CtyeeeiCon
=k Z P(Xi|EV7C17"'7C ) (E |Cla ) (C17 s Cm )a
CiyersCn
siendo k = 57— la constante de normalizacién, y donde los dos primeros productos se pueden calcular

mediante el Algorltmo 1 y el tercero asignando valores secuencialmente a los nodos de forma que solo
sea necesaria una parte del grafo que tenga estructura de polidrbol para calcularlo.

Ejemplo 21. La funcién de probabilidad conjunta de la red Bayesiana de la Figura 3.3 es:
P(A,B,C,D,E,F,G) = P(A)P(B|A)P(E|B)P(D|B)P(C|A,D)P(F|C)P(G|D).

El bucle formado por los nodos A,B,C y D se puede romper considerando A como nodo evidencial, y
eliminando o la arista A — B o la arista A — C, aunque no es la tinica eleccion posible. Se dice que A
absorbe la evidencia A = a. Sin pérdida de generalidad, se elimina la arista A — C (ya que asi obtenemos
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Figura 3.3: Ejemplo de red Bayesiana multiplemente conexa. En este caso se toma como nodo evidencial
la variable A y se elimina la arista A — C.

el polidrbol sobre el que hemos aplicado el Algoritmo 1). Y se sustituye P(C|D,A = a) = P;(C|D).
Entonces, la funcion de probabilidad conjunta resultante es:

P(A,B,C,D,E,F,G|A = a) = P(A = a)P(B|A = a)P(E|B)P(D|B)P, (C|D)P(F|C)P(G|D).

Suponeniendo como en el apartado anterior que se conoce E, = {B = 1,C = 0}, la propagacion consiste
en calcular las probabilidades P(X;|A = a,B = 1,C = 0), para todos los posibles valores de A (0 y 1, en
este caso). Este cdlculo viene dado por:
1
P(X;B=1,C=0)= Z P(Xj|A=a,B=1,C=0)P(B=1,C=0/A=a)P(A=a),
a=0
donde el producto P(X;|A = a,B = 1,C = 0) se puede calcular aplicando el Algoritmo 1 considerando
la evidencia E, = {A =a,B=1,C =0}, P(A = a) se puede obtener directamente de la Figura 3.1, y
por ultimo el producto P(B=1,C = 0|A = a) al no ser una funcion de un solo nodo no puede obtenerse
directamente aplicando el Algoritmo 1, pero se puede descomponer mediante la regla de la cadena de la
forma:
P(B=1,C=0[A=a)=P(C=0B=1,A=a)P(B=1|A=a),

donde el primer producto se puede obtener aplicando el Algoritmo 1, para los dos posibles valores de A
y P(B = 1|A = a) se se obtiene directamente de la Figura 3.1.

El principal inconveniente de este método es que el ndmero de valores posibles que puede tomar
el conjunto de corte aumenta exponencialmente con el nimero de nodos que lo forman. Por esto es
importante seleccionar el menor conjunto de corte posible.

3.3. Métodos de agrupamiento

Estos métodos son los mds comunes de propagaciéon de evidencia en redes multiplemente conexas.
Ademés, a diferencia de los anteriores, son aplicables tanto a redes de Markov como a redes Bayesianas,
aunque para redes Bayesianas se necesitardn algunas transformaciones previas. Consisten en transformar
la estructura de la red para obtener un polidrbol. Para esta transformacién, el algoritmo se basa en la
construccion de cliques (Definicién 7) que mantienen las estructuras locales del MGP. El proceso de
propagacion calcula las probabilidades locales en los cliques (que dependen de un nimero reducido de
variables), evitando asi calcular las probabilidades globales (que dependen de todas las variables).

3.3.1. Métodos de agrupamiento en redes de Markov

Estos métodos se aplican sobre redes de Markov descomponibles (Definicion 25), ademds, en caso de
aplicarse a un grafo no triangulado (Definicién 10), este se puede triangular sin pérdida de generalidad,
ya que los cliques del grafo triangulado contendrdn a los del grafo inicial.
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El algoritmo consta de los siguientes pasos: en la primera etapa se obtiene una factorizacién del
modelo de la forma P(Xj,...,X,) = [T, P(Ri|S;) dada en la Definiciéon 25. En la segunda etapa, se
calculan las funciones de probabilidad conjunta P(R;,S;) asociadas a cada clique. Y en la dltima etapa
se calculan las probabilidades de cada nodo P(X;|E,) dada la evidencia. El método se aplica mediante el
Algoritmo 2.

Para la absorcién de evidencia en caso de conocerla, se modifican las funciones potenciales que
contengan nodos evidenciales. Es decir, para cada clique que contenga algtin nodo evidencial, se define
su funcién potencial como:

y 0, si algin valor de C; no es consistente con E,,.
v (C) = { ® ’ ‘ (3.2)

v;(C;), en otro caso.

Para los cliques tales que no se conoce evidencia de ninguno de sus nodos, no se hace ningin cambio. Por
lo tanto, la funcién de probabilidad conjunta dada la evidencia es equivalente a la siguiente expresion:

PX1, 0 XalEv) o< Wi (C1) -+~ W (Con).-

Este algoritmo se ilustrard con un ejemplo en el siguiente apartado.

3.3.2. Métodos de agrupamiento en redes Bayesianas

El algoritmo anterior a priori solamente es aplicable a redes de Markov, pero nos sirve de base para su
implementacién en redes Bayesianas, ya que en el caso de tratarse de modelos dirigidos, el procedimiento
es andlogo pero se requiere de algunas modificaciones previas.

Estas modificaciones consisten en transformar el grafo dirigido en un grafo no dirigido moraliza-
do (Definicién 18) y triangulado, ya que esto no altera la estructura de independencia de la red (pues
cada familia del grafo dirigido estard contenida en algin clique del grafo triangulado) y asociar a la fac-
torizacion de la red Bayesiana mediante funciones de probabilidad P(Xi,...,X,) = [T, P(Xi|I1;), una
factorizacion mediante funciones potenciales P(X1,...,X,) o< [T, wi(C;).

En resumen, los pasos a llevar a cabo para la transformacién de la red Bayesiana en una red de
Markov descomponible con representacion potencial y son:

1. Moralizar y triangular el grafo dirigido.
2. Obtener una cadena de cliques C = {Cy,...,C,, } que cumpla la propiedad de interseccién dindmica.

3. Asignar a cada nodo X; un tnico clique que contenga a sus familias. Sea A; el conjunto de nodos
asociados al clique C;.

4. Para cada clique C; definir y;(C;) = [Ix,ca, P(Xi|T1;). Si A; = 0, definir y;(C;) = 1.

Y a la red resultante se le puede aplicar el Algoritmo 2.

Ejemplo 22 (Método de agrupamiento en redes Bayesianas). Consideramos la red Bayesiana definida
en el Ejemplo 17 y vamos a calcular el riesgo de incendio en el norte en verano, es decir, se tiene la
evidencia E, = {V = 1,N = 1}. La factorizacion de la funcion de probabilidad es:

P(V,N,C,L,I) = P(V)P(N)P(C|N,V)P(LIN)P(I|C,L).

Moralizando y triangulando el grafo dirigido se obtiene el grafo de la Figura 3.4, con los cliques C,C>
y C3, que cumplen la propiedad de interseccion dindmica. Por lo tanto, lo siguiente es obtener una
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Cliques Separadores Residuos
Ci={VINC} | S,={0} R,={V,N,C}
Co={N,CL} | S,;={CN} R,={L}
Cs={CLI} Ss={C,L} R;y={1}

Figura 3.4: Grafo no dirigido moralizado y triangulado asociado a la red Bayesiana del Ejemplo 17, con
los separadores y residuos asociados a cada clique.
representacion mediante funciones potenciales tal que:

P(V,N,C,L,I) = y1(C1) ¥2(C2) y3(C3) = P(R1[S1)P(R2[S2) P(R5]S3)
= P(V,N,C)P(L|C,N)P(I|C,L).

Las funciones potenciales en cada clique C; se obtienen de la siguietne forma:

vi1(C1) =P(V) P(N) P(CIN,V),
v, (C;) = P(L|IC,N) = P(L|C), yaque I(L,C|N) en el grafo dirigido original,
y3(C3) = P(1|C,L).

El cdlculo de estas funciones potenciales se muestra en la Figura 3.5.

N | v | c |[Ui(VNO C L I |Ws(C LD
0 0 0 0.09 0 0| o 0.8
0 0 1 0.21 N L |y,(N,L) 0 0 1 0.2
0 1 0 0.015 0 0 0.9 0 1] 0 0.9
0 1 1 0.285 0 1 0.1 0 1 1 0.1
1 0 0 0.18 1 0 0.3 1 0| o 0.7
1 0 1 0.02 1 1 0.7 1 0 1 0.3
1 1 0 0.15 1 1] 0 0.9
1 1 1 0.05 1 1 1 0.1

Figura 3.5: Valores de las funciones potenciales que definen la red de Markov de la Figura 3.4.

Y ya tenemos la red de Markov descomponible equivalente y las funciones potenciales que definen el
MGP donde llevar a cabo la inferencia aplicando el Algoritmo 2.

= Etapa de iniciacion

1. Absorcion de la evidencia E, = {V = 1,N = 1} como se indica en la ecuacion (3.2), por lo
tanto, la probabilidad conjunta dado que N =1y V =1, viene dada por:

P(V,N,C,L,I) o< y{(V,N,C)y; (N,L)y;3(C,L,I), 3.3)

y las funciones y; (C;) se muestran en la Figura 3.6.
2. Los cliques C1, Cy y C3 forman una cadena de cliques.

3. Se eligen vecinos para cada clique de manera que Cy es vecino de Cy y C; es vecino de Cs.
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N | v | c |¥i(VNC) C L I |w3(C LD
0| o] o0 0 g | @ | e 0.8
0| o 1 0 N L |ws(N,L) & | a 1 0.2
0 1| o0 0 0| o 0 0 1| o0 0.9
0 1 1 0 0 1 0 0 1 1 0.1
1 | oo 0 1| o0 0.3 i | @ | o 0.7
1| o0 1 0 1 1 0.7 1| o0 1 0.3
1 1| o0 0.15 1 1| o0 0.9
1 1 1 0.05 1 1 1 0.1

Figura 3.6: Valores de las funciones potenciales que definen la red dada la evidencia de la ecuacién (3.3).

= Etapa iterativa

Paso 1. Cdlculo de P(I|C,L), P(L|N), P(V,N,C).
a) Para el cdlculo de P(R3|S3) = P(I|C, L) se tiene por definicion, P(1|C,L) = y;(C,L,I).
b) Lo mismo sucede para P(R;|S>) = P(LIN) = y;(N,L).
¢) Para P(R,|S1) = P(V,N,C), también se tiene que P(V,N,C) = P(V)P(N|V)P(C|N,V) =
P(V)P(N)P(C|N,V) = y;(V,N,C).
Paso 2. Cdlculo de las distribuciones de probabilidad en cada clique C;.
a) En el clique C, ya se tiene P(C,) = P(V,N,C).
b) Para el cdlculo de P(C;) = P(C,N,L), calcular primero P(C,N) marginalizando sobre
la funcion P(V,N,C) tal que P(C,N) =Y, P(V,N,C), y se tiene:

P(0,0)=0, P(0,1)=0.15, P(1,0)=0, P(1,1)=0.05.

Entonces, P(Cy) = P(N,C,L) = P(L|N)P(C,N), y normalizando, el resultado, se mues-
tra en la Figura 3.7.

¢) Para el cdlculo de P(C3) = P(C,L,I), calcular primero P(C,L) marginalizando sobre
la funcion P(N,C,L) tal que P(C,L) =Y 5y P(N,C,L):
P(0,0)=0.225, P(0,1)=0.525, P(1,0)=0.075, P(1,1)=0.0175.

Entonces, P(C3) = P(C,L,I) = P(I|C,L)P(C,L), y normalizando, su resultado se mues-
tra en la Figura 3.7

N Vv Cc |P(N,V,Q) T N L | P(N,GCL) & L I | PCLI)
0 0 0 0 0 0 0 0 0 0 0 0.18

0 0 1 0 0 0 1 0 0 0 1 0.045
0 1 0 0 0 1 0 0.225 0 1 0 | 0.0675
0 1 1 0 0 1 1 0.525 0 1 1 | 0.0075
| 0 0 0 1 0 0 0 1 0 0 | 03675
1 0 1 0 1 0 1 0 1 0 1 | 0.1575
1 1 0 0.75 1 1 0 0.075 1 1 0 | 0.1575
1 1 1 0.25 1 1 1 0.175 1 1 1 | 0.0175

Figura 3.7: Funciones de probabilidad en cada clique.

Paso 3. Cdlculo de la funcion de probabilidad de cada nodo. Una vez tenemos las distribucio-
nes de cada clique, solo queda marginalizar las funciones en cada nodo y se obtienen las
funciones de probabilidad de la Figura 3.8
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\' P(V) N P(N) C P(C) L P(L) I P(1)
0 0 0 0.75 0 03 0 0.77
1 1 1 i 1 0.25 1 0.7 1 0.23

Figura 3.8: Funciones de probabilidad en cada nodo.

En conclusion, el riesgo de que haya un incendio en el norte en verano, es decir P(I = 1|V = 1,N = 1),
es del 23 %. Notar ademds que al tratarse de una red Bayesiana, se simplifican muchos de los cdlculos,
como los del Paso 1, lo que no ocurriria en una red de Markov. Aqui otro ejemplo de las ventajas de un
modelo dirigido frente a uno no dirigido.

Una modificacién de estos métodos de agrupamiento que mejora la eficacia de la inferencia son los
métodos de agrupamiento basados en drboles de union.

3.3.3. Propagacion en arboles de union

Este método de agrupamiento consiste en la transformacién de la estructura de la red para obtener una
estructura de arbol de unién donde llevar a cabo la inferencia de manera mas efectiva. La propagacion se
realiza mediante el envio de mensajes sobre el drbol obtenido.

Definicion 29 (Arbol de union o arbol de cliques). En un drbol de union o drbol de cliques, cada nodo
representa un clique del grafo sobre el que estd construido, y los nodos estdn unidos por un camino si
los cliques que representan tienen algiin nodo en comiin.

Para construir un drbol de unién se parte de un grafo no dirigido triangulado G, el primer paso es obtener
una cadena de cliques Cy, ...,C,, (Definicién 12). Después, para cada clique C;, se selecciona el clique Cy
con el mdximo nimero de nodos comunes a C; y se afiade la arista C; — Cy. En caso de que existan varios
cliques con el mismo nimero de nodos en comiin, la eleccidn se realiza de manera arbitraria.

La principal ventaja de utilizar un drbol de unién frente a un grafo de cliques, es que el arbol contiene
un menor nimero de aristas, por lo que el nimero de mensajes a calcular y propagar es menor, lo que
hace que el proceso de inferencia sea mas eficiente.

Aligual que los métodos de agrupamiento anterior, sirve tanto para redes de Markov como para redes
Bayesianas, y en el caso de tener una red Bayesiana, se deben hacer las mismas transformaciones previas
para obtener la estructura de grafo no dirigido triangulado y la representacion potencial y. Luego sin
pérdida de generalidad podemos suponer que se tiene un grafo no dirigido triangulado con representacién
potencial y = {y1,..., ¥, }. La propagacion se lleva a cabo en forma de mensajes y se propaga por el
arbol mediante el envio de estos entre los cliques vecinos. Este método se aplica mediante el Algoritmo
3 y los detalles de este algoritmo se encuentran en el Anexo A.3.

Ejemplo 23 (Propagacién mediante arboles de unién en RB). Consideramos la red del Ejemplo 17 para
contrastar este algoritmo con el anterior, ya que ambos son aplicables a redes con la misma estructura.
Para poder aplicar el Algoritmo 3, el primer paso es transformar la RB en un drbol de unién, elegimos
los mismos cliques que en la Figura 3.4, por lo que las funciones potenciales del drbol serdn las ya
calculadas en la Figura 3.5, y tomando la misma evidencia que antes, nos lleva a los valores de la Figura
3.6. Existe mds de un drbol de union asociado a esta red, pero vamos a utilizar el que se muestra en la
Figura 3.9. Por lo tanto ya tenemos el drbol de union de la red de Markov y sus funciones potenciales.

= Etapa de iniciacion

1. Se absorbe de nuevo la evidencia E, = {V = 1,N = 1} como se muestra en la Figura 3.6.
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2. Se obtiene el drbol de union de la Figura 3.9, que define una red de Markov con las funciones
potenciales ;' de la Figura 3.5.

= Etapa iterativa

Paso 1. Cdlculo de los mensajes M;;(S;;).
e Primera iteracion.
1) Ci solo tiene un vecino C, por lo que puede calcular y enviar el mensaje M12(S12) =
MIZ(ch) = ZV ‘I/ik(V7NaC) :
Mi2(0,0) =0, M;»(1,0)=0.15,
M3(0,1) =0, M(1,1)=0.05.
2) C, ha recibido mensaje del resto de nodos (en este caso solo Cy), excepto de Cs, por lo
tanto, puede calcular y enviar

My (C,L) =Y ¥ (Co) [[Mia(Sk2) = Y w5 (N,C,L)M5(N,C).
C\S23 k#3 N
M>3(0,0) = 0.025, Mp3(1,0) = 0.075,
M»3(0,1) = 0.525, Ma3(1,1) =0.175.
3) Cs solo tiene como vecino a Cy, luego puede calculary enviar M3 (C,L) =Y ; y5(I,C,L),
y se tiene:
M3(0,0) = M3,(0,1) = M3p(1,0) = M3p(1,1) = 1.
» Segunda iteracion.
1) El clique C ha recibido los mensajes de todos sus cliques vecinos, luego puede enviar
el tinico mensaje que falta, M (N,C) = Y1 w5 (N,C,L) M3 (C,L), y también se tiene:

M51(0,0) =0, My (1,0)=1,
M5 (0,1) =0, My (1,1)=1.
Paso 2. Cdlculo de la funcion de probabilidad de cada clique.
1) P(Ci)=P(V,N,C) = y;(V,N,C)M>(N,C).
2) P(Cz) = P(N,C,L) = W;(N,C,L)M]z(N,C)M32(C,L).
3) P(C3)=P(C,L,I) = w;(C’LaI)MZS(C>L)'

En el Paso 2 se obtienen las mismas funciones de probabilidad que se han calculado con el algoritmo de
agrupamiento y que se muestran en la Figura 3.7, por lo tanto, la distribucion de probabilidad de cada
nodo serd igual a la que se muestra en la Figura 3.8, y se llega a la misma solucion.

N | c [M(NO) N | ¢ M;(NO
0 0 0 VCN 0 0 0
0 1 0 0 al 0
o) et 0]
NCL
c | L |Myp(CL) Mzgl cL TMBZ c | L |Ms(CL)
0 0 0.025 0 0 1
0 1 0.525 cL 0 1 1
i 0 0.075 1 0 1l
i & ig 0.175 1 1 1

Figura 3.9: Arbol de unién y los mensajes enviados.



Algoritmo 1: Propagacion en polidrboles

= Etapa de iniciacion:

1. Asignar a todos los nodos evidenciales las funciones:
. pi(X,') =1sixi=¢; y pi(Xi) =0six; 75 é;.
* l,'(Xl') =1si Xi=¢€;y li(Xi) =0si Xi 7& e;.
2. Asignar a todos los nodos X; ¢ E, que no tengan padres la funcién p;(X;) = P(X;).
3. Asignar a todos los nodos X; ¢ E, que no tengan hijos la funcién A;(X;) = 1, para todos
los valores posibles de X;.

= Etapa iterativa

Paso 1 (Iteraciones). Para cada nodo X; ¢ E,:

a) Si X; ha recibido los mensajes py,x;(U;) de todos sus padres, calcular p;(X;):

14
pi(Xi) = ;P(Xi |UUE) _IPU,-Xi(Uj)-

J

b) Si X; ha recibido los mensajes Ay,x,(X;) de todos sus hijos, calcular A;(X;):

Ai(Xi) = ISIAYJXI' (Xi)-
=1

c) Siya se ha calculado p;(X;), entonces, para cada hijo Y; de X; tal que X; haya
recibido los mensajes A del resto de sus hijos, calcular y enviar pxy, (X;):

pxy; (X) o< pi(Xi) [ [ Awx, (X0).-
k#j

Entonces, si X; ha recibido los mensajes A de todos sus hijos, puede enviar todos
los mensajes p correspondientes.

d) Siya se ha calculado A;(X;), entonces, para cada padre U; de X; tal que X; haya
recibido los mensajes p del resto de sus padres, calcular y enviar Ay, (U;):

q
Mrxi (X)) =Y A, (Y;) Y P(YIS) [ T pser; (Sb)-
Y, Sy k=1

Entonces, si X; ha recibido los mensajes p de todos sus padres, ya puede enviar
todos los mensajes A correspondientes.

Paso 2. Repetir el paso 1 hasta que se calculen las funciones p y A de todos los nodos no
evidenciales.

Paso 3. Para cada nodo X; ¢ E,, calcular P(X;|E,) mediante la ecuacién (3.1) donde

_ 1
k= Y, Ai(Xi)pi(Xi)*




Algoritmo 2: Algoritmo de agrupamiento en redes de Markov

= Etapa de iniciacion

1. Absorber la evidencia E, = e, en las funciones potenciales.

2. Obtener una cadena de cliques Cy, ...,C,, que cumpla la propiedad de interseccién
dindmica.

3. Para cada clique C; elegir como vecino cualquier otro clique C;, con j < i, tal que
S; C Cj.

= Etapa iterativa

Paso 1. Para i = m hasta 1:
a) Calcular m;(S;) = Y, yi(C;).
b) Asignar P(R;|S;) = nlgl,((g,’g
c¢) Reemplazar la funcién y;(C;), con C; vecino de C; por: y;(C;) < y;(Cj)m;(S;).

Paso 2. Asignar P(C1) = P(R1|S1) = P(R;), y para i = 2 hasta m hacer:

a) Calcular P(S;) marginalizando P(C;) del clique Cj, vecino de C;.
b) Asignar P(C;) = P(R;|Si) = P(R;).
Paso 3. Para i = 1 hasta n hacer:

a) Elegir el clique de menor tamafio C; que contenga al nodo X;.
b) Calcular las probabilidades de cada nodo marginalizando P(X;|E,) < Y.c,\x, P(C)).
¢) Normalizar los valores obtenidos en b).

Algoritmo 3: Propagacion mediante arboles de unién en redes de Markov

= Etapa de iniciacion
1. Absorber la evidencia E, = e, en las funciones potenciales ¥ como en (3.2).
2. Obtener un arbol de unién de la red de Markov.

= Etapa iterativa

Paso 1 (Iteraciones). Parai=1,...,m hacer: Para cada vecino B; de C;, si C; ha recibido los
mensajes del resto de sus vecinos, calcular y enviar el mensaje M;;(S;;) a Bj:

M;j(Sij) =Y, wi(C) [ [ Mui(Sw)-
Ci\Sij k#j
Y repetir este paso hasta que no se obtenga ninglin nuevo mensaje.

Paso 2. Calcular la funcién de probabilidad de cada clique C;:
q
P(C) = wi(Ci) [ [ Mi(Swi)-
j=1

Paso 3. Calcular P(X;|E,) de cada nodo marginalizando la funcién de probabiliad del menor
clique Cy que contenga el nodo X;.







Apéndice A

Material complementario

A.1. Ejemplo de la definicion alternativa a la D-separacion

Ejemplo 24 (Separacion en grafos dirigidos). En la Figura A.1 se incluye el grafo dirigido del que
queremos estudiar las relaciones de independencia y su grafo moral. Y a continuacion, en la Figura A.2
se incluyen los grafos resultantes de eliminar en cada uno de ellos los nodos que no forman parte del
menor subconjunto ancestral que contenga los nodos X, Y y Z, que son los grafos en los que se aplica el
criterio de U-separacion.

Figura A.2: Comprobacion mediante los grafos moralizados resultantes de eliminar los nodos que no
forman parte del conjunto ancestral. Los colores azul y rosa corresponden a los nodos pertenecientes a los
conjuntos X e Y y el amarillo a los nodos del conjunto separador Z en la notacién I(X,Y|Z) y D(X,Y|Z).
Se necesita comprobar la U-separacion en estos grafos para verificar las independencias condicionales.

En los grafos de la Figura A.2 se muestran las siguientes relaciones:
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1. Como el menor subgrafo que contiene al conjunto ancestral estd formado por los nodos V, N, C
y L el grafo moral donde se aplica la U-separacion en este caso es el que se muestra en 1, por lo
que I(L,{C,V}|N), ya que L'y {C,V } estdn U-separados por N, porque no existe un camino entre
ellos que no esté cortado por C.

2. Severifica I(I,{V,N}|{C,L}), ya que todos los caminos entre el nodo I y los nodos {V,N} estdn
cortados o por el nodo C o por el nodo L.

3. Se comprueba que D(N,I|I), ya que existe un camino entre N e I, (N —C — I) que no contiene al
nodo L.

4. Vemos que D({V,N},{C,L} |I), ya que los caminos entre {V,N} y {C,L} no pasan por el nodo I.

Por dltimo, los nodos N y V son marginalmente independientes, ya que el menor subgrafo que los
contiene es el grafo sin aristas formado por los nodos N y V, que evidentemente estdn U-separados.

A.2. Propagacion en poliarboles. Calculo de A; y p;

Para calcular las funciones p;(X;) se tiene que:

pi(X;) = P(X;, Ef) ZPX UUE}) =) P(X;|UUES) P(UUE))
U

=Y P(Xi|UU W.) P(UUE yU...UE] x).
U

Como se trata de un poliarbol, los conjuntos {U j,E(Jjj X}} y {Uk,E(Z X}} son condicionalmente indepen-
dientes para k # j, entonces se puede descomponer la ecuacién en factores asociados al padre U;:

p p
pi(X;) =Y P(X; |UVES) [TPW;, Efx) =Y. PXi |[UVE) [ ] puxi (U)), (A1)
U =1 U j=1
donde P(U j,Ele/Xi) son los mensajes que envia un nodo padre U; a su hijo X; y se denotan por pyx;(U;).

Anélogamente para el cdlculo de las funciones A;(X;) se descompone el subconjunto de evidencia
,i» donde Exy; y Exyy, son condicionalmente independientes para k # j, por lo que se tiene:

Xi(X;) = P(Ey;|X;) = P(Exy, U... UEyy [X;) = [ [ P(Exy, 1X:) = [T Avx (X0), (A.2)
i=1 i=1

donde P(Egi Y, |X;) son los mensajes que un nodo ¥; envia a su padre X; y se denotan por Ay,x, (X;).

Para calcular A y p es necesario conocer el valor de los mensajes px,y; (Xi) y Av;x; (Xi).

= Para el cdlculo de px,y,(X;) partimos de la expresién Ex. y, = E; Uy, Exy, ¥ se tiene:

pxv;(Xi) = P(Xi,Exy ) = P(Xi,E} | J Exy,) = P(Ey;|X; | Exy ) P(Xi | Exy,)

vy oy g
= P(ES %) P( By X0 P(6) o= POGIES ) ] Exy, 1% P(X)
k#j k#j
o pi(X, HlYkX (A.3)

k#j
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» Para el célculo de Ayx,(X;) se considera que X; es el padre de Y; y este a su vez tiene un conjunto
de g padres mas S = {Sl,...,Sq}, por lo tanto se obtiene la expresion de la evidencia dada los
hijos de X; de la forma Ey. Y, = E;j UE ;Y] , donde E;j representa la evidencia a través del hijo Y; y
E;YJ representa la evidencia obtenida a través de los padres § = {S Lyeees Sq} de Y;. Luego se puede
calcular:

Ayx,(Xi) = P(Exy |X;) = ) P(Y;.S, Exy [X;) = } P(Y},S,Ey, UEg, |X;)
Yj,S vas

(E;j’YﬁS7ESJ‘;’]-7Xl')P(Y]"S7E5J‘;’j7Xi)P(S7E.S‘+Yj‘Xi)

— Z P
Y;.S

=Y P(E; |Y) Y P(Y;[S. X)P(S.Egy),
Y; S

donde la pentltima igualdad se ha obtenido mediante la regla de la cadena y la dltima teniendo en
cuenta las relaciones de independencia condicional entre las variables. Y se tiene:

q
Mxi(Xi) =Y A, (Y;) Y P(Y1S) [ T pser; (Sb)- (A.4)
Y; s k=1

Sl7"‘7 q

De las ecuaciones (A.1), (A.2), (A.3) y (A.4), se deduce la forma en la que se envian los mensajes
Ay;x;(Xi) ¥ pu;x;(U;), asi como cémo se calculan las funciones 4;(X;) y p;i(X;).

1. La funcién A;(X;) se puede calcular en cuanto X; haya recibido los mensajes 7Ly_,.xl. (X;) de todos sus
hijos ¥;. Ademds, una vez calculado A;(X;), X; puede enviar el mensaje Ax,y,(U;) a su padre U;
cuando haya recibido los mensajes py,x, (Ux), con k # p, del resto de sus padres.

2. La funcién p;(X;) se puede calcular en cuanto X; haya recibido los mensajes py;x,(U;) de todos
sus padres U;. Ademds, una vez calculado p;(X;), X; puede enviar el mensaje pyx,y;(X;) a su hijo Y;
cuando haya recibido los mensajes Ay,x, (X;), con k # p, del resto de sus hijos.

Figura A.3: El poliarbol de la izquierda representa el punto 1, y el de la derecha el punto 2. Se muestra
con lineas discontinuas los mensajes que se pueden enviar a partir de los que han sido recibidos (linea
continua).

Ejemplo 25. La Figura A.3 ilustra los cdlculos y mensajes que se pueden enviar en ambos grafos. En
el grafo de la izquierda, se tiene que el nodo D ha recibido los mensajes A de todos sus hijos E y F
por lo que se puede calcular Ap(D), y ademds, como ha recibido los mensajes de sus padres A y B,
puede enviarle el mensaje Apc a su padre restante C. En el de la derecha se tiene que D ha recibido los
mensajes p de todos sus padres, por lo que se puede calcular pp(D). Ademds, puede enviar el mensaje
PpE a su hijo E ya que ha recibido el mensaje A del resto de sus hijos (en este caso solo tiene un hijo
mds, que es F).
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A.3. Algoritmo de propagacion mediante arboles de union. Detalles

Partiendo de la estructura de un arbol de cliques, suponer que se tiene un clique C; arbitrario que tiene
q cliques vecinos {Bl, ...,Bq}. Sean C;; el conjunto de cliques y X;; el conjunto de nodos contenidos en
el subdrbol correspondiente al clique C; cuando se elimina la arista C; — B;. Andlogamente los cliques
y los nodos asociados al subérbol correspondiente a B; son Cj; y Xj;, respectivamente. Por lo que X =
C,'J'UCJ',' :XijUXﬁ.

Los separadores S;; correspondientes a la cadena de cliques se pueden representar mediante la in-

terseccion de cliques vecinos, es decir, ;N C; = §;;. Para calcular la distribucién de probabilidad del
conjunto separador S;; primero se descompone:

X\S,‘j = (XijUin)\Sij = (Xij\S,‘j)U(in\Sij) :R,‘jUle‘,

donde R;; = X;; \ Si; es el conjunto de nodos contenidos en el subdrbol asociado a C; pero no en el
asociado a Bj, procedentes de eliminar C; — B;.

Por la definicién de drbol de unién, todo nodo contenido en dos cliques distintos tiene que estar
también contenido en todos los cliques que pasan por el camino que los une. Luego los tinicos nodos
comunes a X;; y Xj; estardn contenidos en su conjunto separador S;;. Por lo tanto R;; y R;; son disjuntos.
Y se puede calcular la funcién de probabilidad de S;; de la forma:

m

P(Sij) =Y, ﬁWk(Ck): Y

X\Si_/ k=1 R,‘_,‘UR/,‘ k=

Wi(Ci) = (Z I Wk(ck)> (Z I1 ‘lfk(ck)> = M;;(Sij)M;i(Sji)-

Rij Gy eCij Rji Gy eCij

Siendo
Mi(Si) =Y [T w(G) (A.5)
Rl‘j CkGC,‘j
el mensaje que el clique C; envia al clique vecino B;. Es decir, la funcién de probabilidad del conjunto
separador S;;, es el producto de los mensajes M;; y M ;.

Para calcular la funcién de probabilidad de un clique C;, se descompone el conjunto X \ C;:

X\Ci = ( in) \Gi = J X\ C) = | Rui-
k=1 k=1 k=1

La ultima igualdad se obtiene de que debido a la estructura de arbol de clique, cada nodo contenido en Xj;
y C; estard también contenido en el separador S;, por lo que: X; \ C; = Xy, \ Sxi = Ry;. Luego la funcién
de probabilidad del clique C; se calcula mediante:

PC) =Y, ﬁ‘l’j(cj) =vi(C) Y. [[wiC)=w(C) Y []w(C)

X\C;j=1 X\Ci j#i RiiU..Ugi j#i

= yi(Ci) (Z IT ‘l’k(Ck)> (Z I1 ‘Vk(Ck)> = Wi(Ci)leki(Ski)- (A.6)

Ry CeC; Ryi CreCyi

Para calcular los mensajes M;;(S;;), consideramos: R;; = X;; \ Si; = (C; \ Sij) U (Uk#ij,-\Ski), y se
puede sustituir R;; en la ecuacion anterior (A.5).

Mi'(Sij): Z Z H WS(CS): Z l//l'(Ci)IT Z H Ws(cs)
Ci\Sij Xii\Skisj#k Cs€Cij Ci\Sij k#j Xii\Sxi Cs€Cij

= Z vi(C) [ T M (Ski)- (A.7)

Ci\Sij k#j
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Con esto ya tenemos como se calculan los mensajes entre cliques y por lo tanto, cémo se calculan
las funciones de probabilidad P(C;), para calcular las probabilidades de cada nodo P(X;) basta con mar-
ginalizar la funcién en el menor clique que lo contenga. Para el cédlculo de los mensajes M;;(S;;) pueden
darse las siguientes situaciones:

1. Si G; ha recibido los mensajes de todos sus vecinos, entonces C; puede calcular y enviar los men-
sajes a todos sus vecinos.

2. Si C; ha recibido los mensajes de todos sus vecinos excepto de B}, entonces C; solo puede calcular
y enviar el mensaje M;;(S;;) al clique B;.

3. Si C; no ha recibido los mensajes de dos o mds vecinos, entonces no se puede calcular ningtin
mensaje.






Apéndice B

Bnlearn

Bnlearn es una libreria de [8] especializada en el manejo de redes Bayesianas. Proporciona gran va-
riedad de funciones para el aprendizaje de la estructura grafica de estas redes, su manipulacién y andlisis,
asi como para la representacion visual de la red y sus propiedades. Ademds, permite la estimacion de
pardmetros y distribuciones de probabilidad asociadas a las redes Bayesianas. En este capitulo, se utiliza
esta libreria para la comprobacién de los conceptos y resultados mostrados a lo largo de este trabajo.
Como no ofrece los algoritmos de inferencia exacta utilizados en el Capitulo 3, se han estimado las
distribuciones de probabilidad de los ejemplos mediante algoritmos de inferencia aproximada.

B.1. Construccion y analisis de una red Bayesiana

En este apartado se muestran algunas funciones bésicas para la creacidn, representacion y andlisis
de una red Bayesiana, asi como la manipulacion de esta y su transformacién en otras estructuras ttiles
como los grafos esqueletos o los grafos morales. Para esto se utiliza el grafo del Ejemplo 12 con el que
se ha trabajado durante el trabajo.

Creacion y representacion del grafo dirigido
# Creacion del grafo dirigido

Gdir <- model2network("[V][N][C|V:N][LIN][I|C:L]1")
plot (Gdir)

Nodos y arcos del grafo

nodes (Gdir)
## [1] IICII IIIII IIL n II]VH HV”
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arcs(Gdir)

## from to
## [1,] "v" rC”
## [2,] "N" "
## [3,] "N" "L"
## [4,] "c" rIv
## [5,] "L" "I"

Comprobacion que el grafo es aciclico y dirigido

acyclic(Gdir, directed = FALSE, debug = FALSE)
## [1] TRUE

directed(Gdir)

## [1] TRUE

Padres, hijos y vecinos de un nodo

parents(Gdir, "C")

#t [1] "N" "V
children(Gdir,node="C")
## [1] "I"

nbr (Gdir,node="C")

## [1] "1" "ny"onyr

Caminos entre nodos

(Existe un camino dirigido de I a C? ;Y no dirigido?

path.exists(Gdir, from = "I", to = "C", direct = TRUE, underlying.graph =
FALSE, debug = FALSE)
## [1] FALSE

path.exists(Gdir, from = "I", to = "C", direct = TRUE, underlying.graph =
TRUE, debug = FALSE)
## [1] TRUE

Construccion del esqueleto

skeleton(Gdir)
plot(skeleton(Gdir))




V-estructuras del grafo

vstructs(Gdir)

## X Z Y
## [1’] nynongn nyn
#H# [2’] non o ngn onpn

Grafo moral asociado

moral<-moral (Gdir)
plot (moral)

B.2. Comprobacion de las independencias condicionales

Comprobamos el concepto de D-separacion aplicado en el Ejemplo 14.

# 1. I({V,C},LIN)
if (!dsep(Gdir, "C", "L", "N") &
ldsep(Gdir, "v", "L", "N")) {
print (FALSE)
} else {
print (TRUE) }
## [1] TRUE

# 2. I({V,N},I/{C,L})
dsep(Gdir, Dyo - OF0 C("C","L"))
## [1] TRUE

# 3. D(I,N/L)
dsep(Gdir, "I", "N", IILII)
## [1] FALSE

# 4. D({C,L},{V,N}|I)
if (!dsep(Gdir, "C", "V", "I") &
ldsep(Gdir, "C", "N", "I") &
ldsep(Gdir, "L", "vV", "I") &
!dsep(Gdir, "L", "N", "I")) {
print (FALSE)
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} else {
print (TRUE) }
## [1] FALSE

B.3. Ejemplo de propagacion en poliarboles

Para la comprobacion del Ejemplo 20 de propagaciéon en polidrboles utilizaremos algoritmos de
inferencia aproximada.

Descripcién de las relaciones entre los nodos de la red Bayesiana y asignacién las probabilidades asocia-
das a cada uno de ellos.

#Descripcion de la red Bayestiana
Gpoliarbol= model2network(" [A] [B|A][EIB][D|B][C|D][FIC][GID]")

#4signacion de probabilidades a cada nodo

pA=matrix(c(0.6,0.4) ,ncol=2,dimnames=1ist (NULL,c("P(A=0)","P(A=1)")))
pB.A=matrix(c(0.7,0.3,0.5,0.5) ,ncol=2,nrow=2,dimnames=1ist ("B"=c("P(B=0)",
"P(B=1)"),"A"=c("P(A=0)","P(A=1)")))

PE.B=matrix(c(0.2,0.8,0.65,0.35) ,ncol=2,nrow=2,dimnames=1ist ("E"=c("P(E=0)",
"P(E=1)"),"B"=c("P(B=0)","P(B=1)")))

pD.B=matrix(c(0.45,0.55,0.9,0.1) ,ncol=2,nrow=2,dimnames=1ist ("D"=c("P(D=0)",
"P(D=1)"),"B"=c("P(B=0)","P(B=1)")))
pC.D=matrix(c(0.8,0.2,0.5,0.5),ncol=2,nrow=2,dimnames=1ist ("C"=c("P(C=0)",
"P(C=1)"),"D"=c("P(D=0)","P(D=1)")))
pF.C=matrix(c(0.3,0.7,0.1,0.9),ncol=2,nrow=2,dimnames=1ist ("F"=c("P(F=0)",
"P(F=1)"),"C"=c("P(C=0)","P(C=1)")))

pG.D=matrix(c(0.85,0.15,0.4,0.6) ,ncol=2,nrow=2,dimnames=1ist ("G"=c("P(G=0)",
"P(G=1)"),"D"=c("P(D=0)","P(D=1)")))

#Tabla de probabilidades

tprobl=custom.fit(Gpoliarbol, dist=1list("A"=pA, "B"=pB.A, "C"=pC.D, "D"=pD.B,
“E“:pE.B, "F":pF.C, "G":PG‘D))

Comprobacién mediante inferencia aproximada de los resultados de la Figura 3.2.

t.countsA = table(cpdist(tprobl, nodes="A", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsA)

##

## P(4=0) P(4=1)
## 0.4990177 0.5009823

t.countsB = table(cpdist(tprobl, nodes="B", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsB)

##

## P(B=0) P(B=1)
## 0 1
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t.countsC = table(cpdist(tprobl, nodes="C", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsC)

##

## P(C=0) P(C=1)

## 1 0

t.countsD = table(cpdist(tprobl, nodes="D", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsD)

##

## P(D=0) P(D=1)

## 0.94348725 0.05651275

t.countsE = table(cpdist(tprobl, nodes="E", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsE)

##

## P(E=0) P(E=1)

## 0.66577 0.33423

t.countsF = table(cpdist(tprobl, nodes="F", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsF)

##

## P(F=0) P(F=1)
## 0.2927702 0.7072298

t.countsG = table(cpdist(tprobl, nodes="G", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "1s"))

prop.table(t.countsG)

##

## P(G=0) P(G=1)
## 0.8174825 0.1825175

B.4. Ejemplo de métodos de agrupamiento

Por dltimo, comprobamos los resultados procedentes de la inferencia en la red Bayesiana que modela
el riesgo de incendios, para la que se ha tomado la evidencia de estar en el norte, N = 1, en la estacién
de primavera/verano, V = 1. A continuacion, se asignan las probabilidades que definen el modelo.

#probabilidades marginales
pV=matrix(c(0.5,0.5),ncol=2,dimnames=1ist (NULL,c ("P(V=0)","P(V=1)")))
pN=matrix(c(0.6,0.4) ,ncol=2,dimnames=1ist (NULL,c("P(N=0)","P(N=1)")))

#probabilidades condicionadas

#prob C dado V, N

pC.VN=c(0.3,0.7,0.05,0.95,0.9,0.1,0.75,0.25)

dim(pC.VN)=c(2,2,2)

dimnames (pC.VN)=1ist ("C"=c("P(C=0)","P(C=1)"),"V"=c("P(V=0)","P(V=1)"),
"N"=c("P(N=0)","P(N=1)"))
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#prob I dado C,L

pI.CL=c(0.8,0.2,0.9,0.1,0.7,0.3,0.9,0.1)

dim(pI.CL)=c(2,2,2)

dimnames (pI.CL)=1ist("I"=c("P(I=0)","P(I=1)"),"C"=c("P(C=0)","P(C=1)"),
"L"=c("P(L=0)","P(L=1)"))

#prob L dado N
pL.N=matrix(c(0.9,0.1,0.3,0.7),ncol=2,nrow=2,dimnames=1ist ("L"=c("P(L=0)",
IIP(L=1)II),IINH:C(IIP(N:O)II’IIP(N=1)H)))

#tabla de probabilidades
tprob=custom.fit(Gdir, dist=list("V"=pV, "N"=pN, "C"=pC.VN,"L"=pL.N, "I"=pI.CL))

Célculo de la probabilidades en los cliques (estos resultados se muestran en la Figura 3.5):

(a) P(N,V,C)

set.seed(123)

t.counts = table(cpdist(tprob, nodes=c("N", "V","C"), evidence=((V == "P(V=1)")
&(N == "P(N=1)")), method = "1s"))

prop.table(t.counts)

## , , C = P(C=0)

##

## /4

## N P(V=0) P(V=1)

## P(N=0) 0.0000000 0.0000000

## P(N=1) 0.0000000 0.7512291

##

## , , C = P(C=1)

##

## 4

## N P(V=0) P(V=1)

##  P(N=0) 0.0000000 0.0000000
##  P(N=1) 0.0000000 0.2487709

(b) P(N,C,L):
set.seed(123)
t.counts = table(cpdist(tprob, nodes=c("N", "C","L"), evidence=((V == "P(V=1)")
&(N == "P(N=1)")), method = "1s"))

prop.table(t.counts)

## , , L = P(L=0)

##

## c

## N P(C=0) P(C=1)
##  P(N=0) 0.00000000 0.00000000
##  P(N=1) 0.22025565 0.07669617
##

## , , L = P(L=1)

##



## c

## N P(C=0) P(Cc=1)
##  P(N=0) 0.00000000 0.00000000
##  P(N=1) 0.53097345 0.17207473
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(c) P(C,L,1)
set.seed(123)
t.counts = table(cpdist(tprob, nodes=c("C", "L","I"), evidence=((V == "P(V=1)")
&(N == "P(N=1)")), method = "1s"))

prop.table(t.counts)

## , , I = P(I=0)

##

## L

## C P(L=0) P(L=1)
##  P(C=0) 0.174041298 0.363815143
##  P(C=1) 0.067846608 0.151425762

##

## , , I = P(I=1)

##

## L

## C P(L=0) P(L=1)

##  P(C=0) 0.048180924 0.168141593
##  P(C=1) 0.005899705 0.020648968

Calculo de las probabilidades marginales:

(a) La probabilidad de que haga calor, P(C) es:

t.counts = table(cpdist(tprob, nodes="C", evidence=((V ==

"P(V=1)")&(N == "P(N=1)")), method = "1s"))
prop.table(t.counts)
##

## P(C=0) P(Cc=1)
## 0.7634298 0.2365702

(b) La probabilidad de tener un dia lluvioso, P(L):

t.counts = table(cpdist(tprob, nodes="L", evidence=((V ==

"P(V=1)")&(N == "P(N=1)")), method = "1s"))
prop.table(t.counts)
##

## P(L=0) P(L=1)
## 0.3021654 0.6978346

(c) La probabilidad de incendio, P(I = 1) es:

cpquery(tprob, event = (I == "P(I=1)"), evidence = ((V ==

"P(V=1)")&(N == "P(N=1)")), method = "ls")
## [1] 0.2412371
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