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Resumen

En el ámbito del análisis estadístico multivariante se encuentran los modelos gráficos probabilísticos,
que surgen como una poderosa herramienta para representar y comprender relaciones complejas entre
variables aleatorias. Entre estos se encuentran las redes Bayesianas, que son modelos gráficos dirigidos
que tienen como estructura un grafo acíclico dirigido. Estas redes ofrecen una representación gráfica
de las dependencias e independencias condicionales entre un conjunto de variables que intervienen en
un determinado problema. En la actualidad, se utilizan modelos probabilísticos muy complejos, lo que
hace de la inferencia probabilística un problema difícil de tratar. El objetivo de las redes Bayesianas
reside en aprovechar las relaciones de independencia reflejadas en su estructura, lo que permite reducir
la complejidad computacional de los problemas estudiados. En otras palabras, buscan minimizar la can-
tidad de parámetros necesarios para abordar un problema, lo que conduce a una mayor eficiencia de los
algoritmos de inferencia asociados.

Las redes Bayesianas destacan por su capacidad para modelar problemas complejos en numerosos
ámbitos de la actualidad, especialmente cuando la cantidad de datos aumenta exponencialmente. Algunas
de sus aplicaciones incluyen desde la inteligencia artificial, hasta ámbitos de medicina, ingeniería o
economía, demostrando su versatilidad en la resolución de problemas complejos en diversas áreas.

El objetivo de este trabajo es ofrecer una comprensión detallada de las redes Bayesianas, estudiando
los elementos básicos que intervienen en un modelo gráfico probabilístico, tanto dirigido como no diri-
gido y las relaciones de independencia condicional que cada uno de estos representa. Además, se llevará
a cabo un análisis de algunos algoritmos de inferencia exacta para problemas con variables discretas.
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Abstract

In the field of multivariate statistical analysis, probabilistic graphical models are emerging as po-
werful tools to represent and understand complex relationships between random variables. Among the-
se models are Bayesian networks, which are directed graphical models structured as directed acyclic
graphs. These networks provide a graphical representation of conditional dependencies and independen-
cies among a set of variables involved in a particular problem. Presently, highly complex probabilistic
models are used, making probabilistic inference a challenging issue. The objective of Bayesian net-
works lies in leveraging the independence relationships reflected in their structure, thereby reducing the
computational complexity of the studied problems. In other words, they aim to minimize the number of
parameters necessary to address a problem, leading to greater efficiency in associated inference algo-
rithms.

Bayesian networks stand out for their ability to model complex problems in numerous contempo-
rary fields, especially as the volume of data increases exponentially. Some of their applications range
from artificial intelligence to domains such as medicine, engineering, or economics, demonstrating their
versatility in solving complex problems across various areas.

The goal of this work is to provide a detailed understanding of Bayesian networks, studying the
basic elements involved in a probabilistic graphical model, both directed and undirected, and the condi-
tional independence relationships that each of these represents. Additionally, an analysis of some exact
inference algorithms for problems with discrete variables will be conducted.
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Capítulo 1

Grafos dirigidos y no dirigidos

1.1. Introducción

En este trabajo se estudian los modelos gráficos probabilísticos, conocidos como MGP. Estos mo-
delos están formados por un conjunto de nodos, que representan las variables aleatorias del problema a
estudiar, unas aristas que unen los nodos definiendo así las relaciones de dependencia que existen entre
las variables aleatorias y una función de probabilidad conjunta que caracteriza el modelo. Entre estos
modelos gráficos se encuentran las redes Bayesianas, que son el principal concepto que estudiaremos en
el trabajo, para luego ver algunos algoritmos de inferencia en redes Bayesianas.

Los MGP juegan un papel muy importante en el análisis estadístico multivariante ya que nos per-
miten simplificar el número de parámetros de la función de probabilidad conjunta que define el modelo
mediante las relaciones de independencia condicional que refleja su estructura de grafo.

Este trabajo se estructura de la siguiente forma: en este capítulo se definen los conceptos básicos
sobre grafos y se estudian algunas propiedades, también se introduce un ejemplo sencillo que se utilizará
a lo largo del trabajo. En el Capítulo 2 se estudiarán las relaciones de independencia condicional en
grafos dirigidos y no dirigidos y cómo factorizar las funciones de probabilidad conjunta según el tipo
de modelo gráfico que tengamos. En el Capítulo 3 se verán diferentes tipos de algoritmos de inferencia
exacta ilustrados con ejemplos, estos desempeñan un papel muy importante ya que permiten calcular
con precisión las probabilidades requeridas para resolver problemas específicos en el contexto de redes
Bayesianas. Finalmente, a lo largo de todo el trabajo, se han ido identificando las distintas funciones del
paquete bnlearn [9] que permiten trabajar con modelos gráficos. Estas se enumeran en el Anexo B, lo que
permite analizar y garantizar el buen funcionamiento de estos algoritmos de manera práctica, también
se incluyen en el Anexo, algunos conceptos y ejemplos que pueden servir de repaso o de ayuda para la
comprensión del trabajo.

Los conceptos teóricos se han extraído principalmente de [1], aunque también se han consultado
otras fuentes como [2], [3], [4, Cap. 1], [5], [6], [7] y todos los ejemplos son de elaboración propia.

1.2. Conceptos básicos de grafos

Definición 1 (Grafo). Un grafo es un par de conjuntos G = (X ,L), donde X = {X1, ...,Xn} es un conjun-
to finito de elementos (nodos) y L es un conjunto de aristas, es decir, un subconjunto de pares ordenados
de elementos distintos de X. Las aristas entre los nodos Xi→ X j y X j→ Xi se denotan Li j y L ji respecti-
vamente. Y L =

{
Li j|Xi conecta con X j, con Xi ̸= X j

}
es el conjunto de todas las aristas del grafo.

Definición 2 (Arista). Una arista Li j se dice dirigida si dado un grafo G = (X ,L) se tiene que Li j ∈ L,
pero L ji /∈ L y será no dirigida si Li j ∈ L y L ji ∈ L.
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2 Capítulo 1. Grafos dirigidos y no dirigidos

Aunque existe una definición más general de grafo, en este trabajo estamos interesados en aquellos
en los que no existe un arco de un nodo a sí mismo y entre dos nodos conectados existe una única arista.
Los grafos pueden ser dirigidos o no dirigidos. Serán dirigidos si todas sus aristas son dirigidas, y serán
no dirigidos si todas sus aristas son no dirigidas. Para ilustrar este y el resto de conceptos, se utilizarán
los grafos que se muestran en la Figura 1.1.

Figura 1.1: Un grafo dirigido (izquierda) y no dirigido (derecha).

Definición 3 (Conjunto adyacente). El conjunto adyacente de un nodo Xi dado un grafo G = (X ,L) es
el conjunto de nodos que son directamente alcanzables desde Xi, es decir, Ady(Xi) =

{
X j ∈ X |Li j ∈ L

}
.

Ejemplo 1 (Conjunto adyacente). En la Figura 1.2 se muestra que en el caso del grafo dirigido Ady(D)=
{F,G}, mientras que en el grafo no dirigido Ady(D) = {B,C,E,F,G}.

Figura 1.2: Conjunto adyacente del nodo D en un grafo dirigido (izquierda) y en un grafo no dirigido
(derecha). Se resaltan con líneas amarillas los arcos que lo determinan.

Se observa entonces, que para determinar el conjunto de nodos adyacentes en un grafo dirigido es
necesario tener en cuenta las direcciones de los arcos.

Definición 4 (Camino entre dos nodos). Un camino entre dos nodos Xi y X j es una sucesión de nodos
(Xi1 , ...,Xir), siendo Xi1 = Xi el nodo inicial y Xir = X j el nodo final, de forma que existe una arista del
nodo Xik al nodo Xik+1; con k = 1, ...,r−1, es decir, Xik+1 es Ady(Xik ).

Definición 5 (Camino cerrado, bucle y ciclo). Un camino (Xi1 , ...,Xir) es cerrado si el nodo inicial
coincide con el final, Xi1 = Xir . En grafos no dirigidos los caminos cerrados se denominan bucles, y en
dirigidos se denominan ciclos.

Para encontrar un camino entre dos nodos, como se ve en la Figura 1.3, hay que tener en cuenta la
direccionalidad del grafo, por lo que el camino tomado en el no dirigido no lo podríamos tomar en el
dirigido, pero al revés sí.

Ejemplo 2 (Caminos, ciclos y bucles). La Figura 1.3 muestra en el grafo dirigido (izquierda) el camino
A→ C→ E → D→ F → B→ D→ G, que contiene el subcamino cerrado (ciclo) D→ F → B→ D.
Eliminando este ciclo del camino, se obtiene un camino más corto entre los nodos: A→C→E→D→G.
Lo mismo sucede en el no dirigido (derecha) con el camino A−B−D−E−C−D−G, que contiene
el subcamino cerrado (bucle) D−E−C−D, que cuando se elimina, se obtiene un camino más corto:
A−B−D−G.
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Figura 1.3: Caminos entre A-G con subcaminos cerrados.

Definición 6 (Grafo completo). Se dice que un grafo es completo si contiene una arista entre cada par
de nodos. Además, un conjunto completo es un subconjunto de nodos S de un grafo G en el que existe
una arista para cada par de nodos de S.

Ejemplo 3 (Subconjuntos completos). En la Figura 1.4 (izquierda) se muestra que además de los
grafos de dos nodos unidos por una arista, como por ejemplo D1, tenemos los subconjuntos comple-
tos D3 = {C,D,E} y D4 = {B,D,F,G}. Dentro de D4 también se tienen los subconjuntos completos
D41 = {B,D,F} y D42 = {D,F,G}.

A lo largo de esta memoria usaremos, en general, grafos en los que existe al menos un camino (no
necesariamente dirigido) entre todo par de nodos, denominados grafos conexos. Además, en el caso de
grafos dirigidos solo estarán incluídos aquellos que no tengan ciclos, denominados DAG (directed acyclic
graphs), que son los que definen la estructura de una red Bayesiana.

1.3. Grafos no dirigidos

En este apartado se van a presentar algunos conceptos básicos sobre grafos no dirigidos.

Definición 7 (Clique). En un grafo no dirigido, un clique es un conjunto completo de nodos C que no
es subconjunto propio de otro conjunto completo, es decir, es maximal.

Figura 1.4: Conjuntos de cliques.

Ejemplo 4 (Clique). En la Figura 1.4 el grafo de la izquierda contiene los 4 cliques: D1 (rosa), D2
(verde), D3 (amarillo), D4 (azul). Pero si se añade por ejemplo la arista C−B, como se muestra en el
grafo de la derecha, D1 y D2 dejan de ser conjuntos maximales, por lo que se tienen los cliques C1, C2,
C3, C4 que se muestran en el grafo de la derecha.

Definición 8 (Conjunto de vecinos). El conjunto de nodos adyacentes a un nodo Xi en un grafo no
dirigido se denomina conjunto de vecinos de Xi, Vec(Xi) =

{
X j|X j ∈ Ady(Xi)

}
.

Un tipo muy importante de grafos son los grafos triangulados. Antes de ver cómo son estos grafos,
se introduce una definición previa.
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Definición 9 (Cuerda). Se denomina cuerda de un bucle a una arista que une dos nodos de un bucle y
que no pertenece al bucle.

Los bucles de longitud 3 son los únicos que no pueden poseer cuerdas, es decir, son los menores
elementos en los que puede descomponerse un bucle mediante la incorporación de cuerdas en el grafo.
Se denominan triángulos a estos bucles.

Definición 10 (Grafo triangulado o cordal). Un grafo triangulado (o cordal) es un grafo no dirigido
en el que cada bucle de longitud mayor o igual que 4 contiene al menos una cuerda.

Se puede convertir un grafo en triangulado mediante la triangulación, que consiste en añadir cuerdas.
Aunque hay varias formas de triangular un grafo, para preservar al máximo la topología original de un
grafo, la triangulación debe ser minimal, que consiste en añadir el mínimo número de aristas posibles.

Definición 11 (Triangulación minimal). Se dirá que la triangulación es minimal si contiene el mínimo
número de cuerdas por debajo del cual no es posible triangular el grafo original.

Ejemplo 5 (Grafo triangulado y triangulación minimal). La Figura 1.5 muestra un ejemplo de que la
triangulación no es única, ya que en el grafo del centro se ha añadido una cuerda entre B y C, pero
podría haberse añadido la cuerda A−D o incluso las dos, como en el grafo de la derecha. En este caso,
el grafo del centro tiene una triangulación minimal, mientras que el de la derecha no.

Figura 1.5: Grafo no dirigido no triangulado (izquierda) y grafos no dirigidos triangulados (centro y
derecha).

Una propiedad interesante de los grafos triangulados que utilizaremos más adelante en los modelos
gráficos no dirigidos es la propiedad de intersección dinámica.

Definición 12 (Propiedad de intersección dinámica). Se dice que un conjunto de cliques C1, ..,Cm

cumplen la propiedad de intersección dinámica si el conjunto Ci∩ (C1∪ ...∪Ci−1) está contenido en al
menos uno de los cliques {C1, ...,Ci−1} ,∀i = 1, ...,m.

Es decir, se pueden ordenar los cliques de un grafo de forma que cumplan esta propiedad, a esta
sucesión de cliques se le denomina cadena de cliques.

Ejemplo 6 (Propiedad de intersección dinámica). La Figura 1.4 (izquierda) muestra una sucesión de
cliques que no cumplen la propiedad de intersección dinámica, ya que D4 ∩ (D1 ∪ ...∪D3) = {B,D},
que no está contenido en ninguno de los cliques D1,D2 y D3. Pero el grafo de la derecha sí muestra una
sucesión que la cumple, pues se puede comprobar que:

C2∩C1 = {B,C} ⊂C1;

C3∩ (C1∪C2) = {C,D} ⊂C2;

C4∩ (C1∪C2∪C3) = {B,D} ⊂C2.

Es decir, {C1,C2,C3,C4} forman una cadena de cliques.

El siguiente teorema caracteriza el tipo de grafos que tienen asociados una cadena de cliques.

Teorema 1 (Cadena de cliques). Un grafo no dirigido tiene asociada una cadena de cliques si y solo si
es triangulado.
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1.4. Grafos dirigidos

Una vez visto qué son los grafos no dirigidos, vamos a estudiar los grafos dirigidos. En particular en
este trabajo nos interesan los grafos acíclicos dirigidos.

Definición 13 (Padres e hijos). Dados dos nodos Xi y X j, si existe una arista dirigida Xi→ X j, del nodo
Xi al nodo X j, entonces se dice que el nodo Xi es padre del nodo X j, y que el nodo X j es hijo del nodo Xi.

Definición 14 (Familia de un nodo.). Se denomina familia de un nodo al conjunto formado por un nodo
y sus padres.

Ejemplo 7 (Padres de un nodo). El conjunto de padres del grafo de la Figura 1.6 es: Padres(A) =
{ /0}, Padres(B) = {A,F}, Padres(C) = {A}, Padres(D) = {B,C}, Padres(E) = {C}, Padres(F) = { /0},
Padres(G) = {F}, Padres(H) = {D,G, I} .

En grafos dirigidos el conjunto de hijos de un nodo coincide con el conjunto de nodos adyacentes.

Ejemplo 8 (Familia de un nodo). En la Figura 1.6 la familia asociadas al nodo B es {A,B,F}.

Figura 1.6: Grafo dirigido

Definición 15 (Ascendientes y descendientes). Se dice que X j es ascendiente de un nodo Xi si existe un
camino de X j a Xi y se dice que X j es descendiente de Xi si existe un camino de Xi a X j.

Ejemplo 9 (Ascendientes y descendientes). En la Figura 1.6, A es ascendiente de {B,C,D,E,H} porque
todos estos nodos son alcanzables a través de un camino que comienza en el nodo A. Al igual que
C y D son algunos de los ascendientes del nodo H. Por otra parte, {B,C,D,E,H} es el conjunto de
descendientes del nodo A.

Definición 16 (Esqueleto o grafo asociado). Dado un grafo dirigido G, el grafo no dirigido obtenido al
reemplazar cada arista dirigida por la correspondiente arista no dirigida, se denomina grafo no dirigido
asociado a G o esqueleto de G.

Definición 17 (V-estructura). Una terna de nodos (X ,Z,Y ) se dice que es una v-estructura si las aristas
desde los nodos X e Y convergen al nodo Z y además, no existe ninguna arista entre los nodos X e Y .

Ejemplo 10 (V-estructura). En el grafo de la Figura 1.6 las v-estructuras son las ternas de nodos
(A,B,F), (C,D,B), (D,H,G), (G,H, I), (D,H, I).

Definición 18 (Grafo moral). El grafo moral de un grafo dirigido G es el grafo no dirigido asociado
que se obtiene al añadir una arista entre los nodos padre en una v-estructura en el grafo no dirigido.

Ejemplo 11 (Esqueleto y grafo moral). La Figura 1.7 muestra un grafo dirigido y su correspondiente
esqueleto y grafo moral.
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Figura 1.7: Grafo dirigido (izquierda), su esqueleto (centro) y su grafo moral (derecha).

Definición 19 (Árbol simple y poliárbol). Un grafo dirigido se denomina árbol si existe un único
camino (no necesariamente dirigido) entre cada par de nodos. Se dice que es un árbol simple si cada
nodo tiene como máximo un padre, y se dice que es un poliárbol en caso contrario.

Este tipo de grafos tendrán un papel relevante en los algoritmos de inferencia exacta del Capítulo 3.

Vamos a introducir un ejemplo sencillo de modelo gráfico dirigido o red Bayesiana que modela el
riesgo de que haya un incendio en el norte y en el sur de una región según ciertos factores que intervienen.
En este capítulo se definirán las variables aleatorias del problema y las relaciones existentes entre ellas,
mientras que en el Capítulo 2 se estudiarán las relaciones de independencia existentes entre las variables.
Finalmente, en el Capítulo 3 se utilizarán la inferencia probabilística para calcular la probabilidad de que
ocurra un incendio según ciertos factores dados.

Ejemplo 12 (Riesgo de incendio en una región). En la Figura 1.8 se muestra una red Bayesiana con
5 variables aleatorias binarias (nodos) y las aristas representan cómo están relacionadas estas. Se han
definido las variables con solo 2 posibles valores por simplicidad en la descripción del modelo: el nodo
V representa la estación del año, tomará el valor V = 1 para las estaciones verano/primavera, y el valor
V = 0 para invierno/otoño. El nodo N representa la situación en el mapa, tomará el valor N = 1 si se
trata del norte, y el valor N = 0 si se trata del sur. El nodo C representa si es un día caluroso, tomando el
valor C = 1 si hace calor, y el valor C = 0 si hace frío. El nodo L representa si es un día lluvioso, tomando
el valor L = 1 si llueve, y el valor L = 0 si no llueve. Finalmente, el nodo I representa la probabilidad de
que haya un incendio, tomando el valor I = 1 si hay incendio y el valor I = 0 si no lo hay.

Figura 1.8: Grafo dirigido que representa las relaciones entre las variables del problema.

En un grafo dirigido, las relaciones directas (que en determinadas ocasiones se pueden interpretar
como causas) entre las variables se indican mediante flechas entre estas. Por lo que este grafo representa
las siguientes relaciones mediante su estructura: que un día sea caluroso, depende de la estación del año
en la que nos encontremos y de la región del mapa que se está observando. Sin embargo, que un día sea
lluvioso se considera que solo depende de la región del mapa (aunque normalmente estaría influenciada
por más factores, se considera así en este caso por simplicidad). Por último, que haya un incendio
dependerá de la temperatura y las precipitaciones de ese día.



Capítulo 2

Independencias condicionales en grafos
En este capítulo se estudian los conceptos de separación en grafos tanto dirigidos como no dirigidos,

que nos permitirán determinar las relaciones de independencia condicional entre las variables del grafo.
Estas relaciones de independencia juegan un papel muy importante ya que son las que permiten factorizar
y simplificar la función de probabilidad conjunta que caracteriza un modelo gráfico probabilístico. La
siguiente definición se ha tomado de [6, pág. 28].

Definición 20 (Independencia condicional). Sean X, Y y Z variables aleatorias, se dice que X e Y son
condicionalmente independientes dado Z si se cumple que:

P(X = x,Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z), ∀z tal que P(Z = z)> 0, si las variables
son discretas; o bien

fX ,Y |Z(x,y|z) = fX |Z(x|z) fY |Z(y|z), si las variables admiten una función de densidad continua res-
pecto a una medida producto.

Dados X , Y y Z tres subconjuntos disjuntos de nodos de un grafo, se utilizará la notación I(X ,Y |Z),
para expresar la independencia condicional entre X e Y dado Z. En caso de que Z = /0, se dirá que la
independencia es marginal, y se denotará como I(X ,Y | /0); mientras que para indicar la dependencia, se
utiliza D(X ,Y |Z).

2.1. Separación en grafos no dirigidos. U-separación

Para representar la independencia condicional por medio de grafos no dirigidos se define el criterio de
separación gráfica U-separación, que permite obtener la lista de relaciones de independencia asociadas
a un grafo no dirigido.

Definición 21 (U-separación). Sean X, Y y Z conjuntos disjuntos de nodos en un grafo no dirigido G,
entonces Z separa X e Y ⇔ cada camino entre X e Y contiene algún nodo de Z.

Ejemplo 13 (U-separación). Para ilustrar este concepto la Figura 2.1 muestra mediante 4 ejemplos
algunas de las relaciones de dependencia e independencia condicional. Aunque las relaciones que nos
interesan realmente son las de independencia, se ven también las de dependencia para mayor claridad
del concepto.

1. A y G son condicionalmente independientes dado D, ya que cada camino entre A y G contiene al
nodo D.

2. Los subconjuntos {A,C} y {F,G} son condicionalmente independientes dado el subconjunto {B,D}
pues cada camino entre los dos subconjuntos contiene al menos un nodo del conjunto {B,D}.

7
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3. A y G son dependientes dado D, ya que existe al menos un camino A−B−F−G que no contiene
al nodo D.

4. Los subconjuntos {A,C} y {F,G} son dependientes dado el subconjunto {D,E}, pues el camino
A−B−F−G no pasa por ninguno de los nodos D, E.

Figura 2.1: Ejemplos de dependencia e independencia condicional en grafos no dirigidos: el grafo
1 representa I(A,G|D), el 2 representa I({A,C} ,{F,G}|{B,D}), el 3 D(A,G|D) y por último, el 4
D({A,C} ,{F,G}|{D,E}). Los colores azul y rosa corresponden a los nodos pertenecientes a los con-
juntos X e Y y el amarillo a los nodos del conjunto separador Z en la notación I(X ,Y |Z) y D(X ,Y |Z).

2.2. Separación en grafos dirigidos. D-separación

Para representar las relaciones de independencia en un grafo dirigido G, se define el criterio de
separación gráfica D-separación. Para definir este criterio necesitaremos recordar la Definición 17 de
v-estructura o nodo de aristas convergentes.

En ambos casos, los criterios de separación no solo sirven para representar las relaciones de indepen-
dencia, sino también son útiles para dado un grafo G, determinarlas.

Definición 22 (D-separación). Sean X, Y y Z conjuntos disjuntos de nodos en un grafo acíclico dirigido
G, entonces, se dice que Z D-separa X e Y ⇔ a lo largo de todo camino no dirigido entre cualquier nodo
de X y cualquier nodo de Y , existe un nodo intermedio A tal que:

1. A es nodo de aristas convergentes en el camino y ni A ni sus descendientes están en Z, o bien,

2. A no es nodo de aristas convergentes y A está en Z.

Entonces, si se puede encontrar un nodo en algún camino no dirigido que no cumpla ninguna de las
condiciones anteriores, se dirá que X e Y son dependientes dado Z.

Ejemplo 14 (D-separación). Para ilustrar estos conceptos utilizamos el grafo de la Figura 1.8 del ejem-
plo 12, donde vamos a ver algunas de las relaciones de independencia que nos servirán más adelante
para simplificar la función de probabilidad. Al igual que para grafos no dirigidos, también veremos las
relaciones de dependencia.

1. El nodo L y el conjunto {C,V} son condicionalmente independientes dado N, ya que los caminos
entre L y {C,V} o bien contienen a N que no es de aristas convergentes y está contenido en N
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(cumple la condición 2); o bien contiene al nodo I que es de aristas convergentes y ni I ni sus
descendientes están contenidos en N (cumple la condición 1).

2. El nodo I es condiconalmente independiente del conjunto {V,N} dado los nodos {C,L} ya que
todo camino entre I y {V,N} contiene a los nodos C y L que no son de aristas convergentes y
pertenecen a {C,L} (cumple la condición 2).

3. Los nodos N e I son dependientes dado L ya que existe un camino N → C→ I que contiene al
nodo C que no es de aristas convergentes y no pertenece a L, luego no cumple ninguna de las
condiciones.

4. Los conjuntos {V,N} y {C,L} son dependientes dado I ya que existe un camino entre L y V ,
L→ I←C←V que contiene al nodo I que es de aristas convergentes y pertenece a I, por lo que
no cumple ninguna condición.

Figura 2.2: Ejemplos de dependencia e independencia condicional en grafos dirigidos: el grafo 1
representa I(L,{C,V}|N), el 2 representa I(I,{V,N}|{C,L}), el 3 D(N, I|L) y por último, el 4
D({V,N} ,{C,L}|I). Los colores azul y rosa corresponden a los nodos pertenecientes a los conjuntos
X e Y y el amarillo a los nodos del conjunto separador Z en la notación I(X ,Y |Z) y D(X ,Y |Z).

5. Por último, los nodos N y V son marginalmente independientes, es decir, I(N,V | /0) ya que todos
los caminos entre N y V contienen al nodo C que es un nodo de aristas convergentes y no está
contenido en /0.

Las independencias condicionales en un DAG también pueden leerse en su grafo moral asociado
(Definición 18) mediante el criterio de U-separación. Por lo que se introduce a continuación este resulta-
do como alternativa a la D-separación que es más fácil de aplicar en la práctica, para esto se introduce la
definición previa de conjunto ancestral, para la cual se recuerda también la Definición 15 de ascendien-
tes.

Definición 23 (Conjunto ancestral). Un conjunto de nodos S se denomina conjunto ancestral si con-
tiene los ascendientes de todos sus nodos.

Proposición 1. Sean X, Y y Z tres subconjuntos disjuntos de nodos en un grafo acíclico dirigido, en-
tonces: Z D-separa X e Y ⇔ Z separa X e Y en el grafo moral del menor subconjunto ancestral que
contenga a los nodos de X, Y y Z.

La demostración de esta proposición se encuentra en [6, pág. 48]. Para ilustrar este concepto se
utilizará el grafo y las relaciones condicionales del Ejemplo 14, y se comprobará que las cumple en el
Anexo A.1.

Una vez hemos visto cómo se obtienen las relaciones de independencia condicional en cada tipo de
grafo, vamos a ver cómo se factoriza la función de probabilidad conjunta asociada a cada uno de estos.
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2.3. Modelos gráficos no dirigidos o redes de Markov

Para construir la distribución de probabilidad conjunta asociada a un grafo no dirigido necesitamos
recordar el concepto de clique dado en la Definición 7.

Definición 24 (Modelo gráfico no dirigido o red de Markov). Una red de Markov o modelo gráfico no
dirigido es un par (G,ψ) donde G es un grafo no dirigido definido sobre un conjunto de variables aleato-
rias X = {X1, ..Xn} y ψ = {ψ1, ...,ψm} es un conjunto de funciones no negativas (denominadas funciones
potenciales) definidas en los cliques C1, ...,Cm de G que permiten definir una función de probabilidad
P(X1, ...,Xn) por medio de:

P(X1, ...,Xn) ∝

m

∏
i=1

ψi(Ci). (2.1)

Por lo tanto la ecuación (2.1) define una factorización de la función de probabilidad de una red de
Markov mediante el producto de factores potenciales. El problema de esta factorización es que las fun-
ciones potenciales no tienen por qué ser funciones de probabilidad y la asignación de valores numéricos
para la definición del modelo no es sencilla.

Ejemplo 15 (Factorización de un modelo no dirigido). El grafo de la Figura 2.3 es un ejemplo clásico
donde su distribución se puede factorizar mediante funciones potenciales pero no mediante funciones de
probabilidad. Su factorización mediante la ecuación (2.1) es:

P(A,B,C,D) ∝ ψ1(A,B)ψ2(B,C)ψ3(C,D)ψ4(D,A).

Figura 2.3: Grafo de 4 nodos

Este grafo muestra dos independencias condicionales: I(A,C|{B,D}) y I(B,D|{A,C}), si aplicamos la
regla de la cadena obtenemos una factorización donde solo se puede aplicar una de las independencias.
En caso de tener la factorización P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D) solo podríamos
utilizar I(A,C|{B,D}), por lo que la distribución quedaría de la forma:

P(A,B,C,D) = P(A|B,D)P(B|C,D)P(C|D)P(D),

es decir, la factorización mediante la regla de la cadena, en general, no es equivalente a la factorización
mediante funciones potenciales y por tanto estas no se pueden poner como distribuciones de probabili-
dad condicionada.

En cambio si el grafo es triangulado (Definición 10), podemos obtener una factorización como pro-
ducto de funciones de probabilidad condicionada y dan lugar a los modelos descomponibles. Para defi-
nirlos necesitamos utilizar la propiedad de intersección dinámica introducida en la Definición 12.

Definición 25 (Modelo gráfico descomponible). Sean {C1, ...,Cm} los cliques de un grafo no diri-
gido triangulado ordenados de forma que cumplen la propiedad de intersección dinámica. Sean Si =
Ci ∩ (C1 ∪ ...∪Ci−1), i = 2, ...,m los conjuntos separadores. Dado que Si ∈Ci se definen los conjuntos
residuales como Ri =Ci \Si. La factorización resultante es de la forma:

P(X1, ...,Xn) =
m

∏
i=1

P(Ri|Si). (2.2)
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Por lo tanto, en el caso de modelos descomponibles, las funciones potenciales pueden ser definidas
mediante funciones de probabiliad condicionada, ψi(Ci) = P(Ri|Si), i = 1, ...,m, donde m es el número
de cliques del grafo.

Ejemplo 16 (Factorización de un modelo no dirigido descomponible). Tomando el grafo de la Figura 2.3
y aplicando una triangulación minimal, obtenemos el grafo de la Figura 2.4. Este nuevo grafo mediante
la ecuación (2.1) admite la factorización:

P(A,B,C,D) ∝ ψ1(A,B,C)ψ2(B,C,D),

que dados los conjuntos separadores S1 = { /0} y S2 = {B,D} y los conjuntos residuales R1 = {A,B,D}
y R2 = {C} asociados a cada clique, se puede factorizar mediante la ecuación (2.2) tal que:

P(A,B,C) = P(A,B,C)P(C|B,D).

Figura 2.4: Grafo de 4 nodos con la triangulación minimal que se tiene mediante la arista B−D.

2.4. Modelos gráficos dirigidos o redes Bayesianas

Definición 26 (Modelo gráfico dirigido o red Bayesiana). Un modelo gráfico dirigido o red Bayesiana
es un par (G,P), donde G es un grafo acíclico dirigido definido sobre un conjunto de variables alea-
torias X = {X1, ...,Xn} y P = {P(X1|Π1), ...,P(Xn|Πn)} es un conjunto de n funciones de probabilidad
condicionada, una para cada variable, donde Πi representa el conjunto de padres del nodo Xi en G. El
conjunto P define una función de probabilidad asociada mediante la factorización

P(X1, ...,Xn) =
n

∏
i=1

P(Xi|Πi). (2.3)

Ejemplo 17 (Riesgo de incendio en una región, continuación). Volviendo al Ejemplo 12 del apartado
1.4, una factorización del modelo mediante la regla de la cadena o de la multiplicación sería:

P(V,N,C,L, I) = P(V )P(N|V )P(C|V,N)P(L|V,N,C)P(I|C,L,N,V ). (2.4)

Si las variables toman valores 0 y 1, para definir el modelo mediante esta factorización necesitaríamos
en general 2n− 1 parámetros, siendo n el número de nodos del grafo. En este caso, se necesitarían 31
parámetros. Si aplicamos las independencias condicionales que se pueden leer del grafo y que se han
obtenido ya en el Ejemplo 14 de D-separación, podemos simplificar la ecuación (2.4) de la forma:

1. Utilizando que I(N,V | /0), reemplazamos el factor P(N|V )≡ P(N).

2. Utilizando que I(L,{C,V}|N), reemplazamos el factor P(L|C,V,N)≡ P(L|N).

3. Por último, utilizando que I(I,{V,N}|{C,L}), reemplazamos el factor P(I|V,N,C,L)≡ P(I|C,L).

Obteniendo la factorización vista en la ecuación (2.5) que requiere tan solo 12 parámetros. Un ejemplo
de esto se muestra en la Figura 2.5.

P(V,N,C,L, I) = P(V )P(N)P(C|V,N)P(L|N)P(I|C,L). (2.5)
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Figura 2.5: Red Bayesiana con las tablas de probabilidad necesarias para definir el modelo completo: las
funciones de probabilidad marginal P(V ) y P(N) y las funciones de probabilidad condicional P(C|V,N),
P(L|N) y P(I|C,L).

Así, en caso de tener una red Bayesiana, la factorización de la función de probabilidad se obtiene
de manera directa a partir del grafo dirigido, teniendo en cuenta las distribuciones de probabilidad que
relacionan a cada nodo Xi con sus padres Πi. A diferencia de una red de Markov, que requiere algunos
pasos previos.

Para terminar este capítulo vamos a ver qué relación existe entre las estructuras gráficas y el conjunto
de relaciones de independencia condicional que representan.

2.5. Modelos gráficos equivalentes

Dos grafos no dirigidos diferentes siempre representan diferentes relaciones de independencia con-
dicional, mientras que dos grafos dirigidos distintos pueden estar asociados al mismo conjunto de inde-
pendencias condicionales, que determinaría una misma función de probabilidad.

Figura 2.6: Grafos dirigidos de 3 nodos y 2 arcos

Ejemplo 18. En los grafos 1, 2 y 3 tenemos que A y C son independientes dado B, I(A,C|B) por lo que
la factorización de la distribución de probabilidad será igual en los tres casos. Sin embargo, el caso del
grafo 4, representa un modelo en el que A y C son incondicionalmente independientes, I(A,C| /0).

Definición 27. Dos modelos gráficos se dicen equivalentes si los grafos correspondientes tienen asocia-
do el mismo conjunto de relaciones de independecia condicional.

¿Qué se tiene que cumplir para que 2 grafos dirigidos sean equivalentes? El siguiente teorema nos da
una solución a la pregunta.

Teorema 2. Dos grafos dirigidos son equivalentes si tienen asociados tanto el mismo esqueleto como
las mismas v-estructuras.

Ejemplo 19. Por lo tanto, en la Figura 2.6, los grafos 1, 2 y 3 representan modelos gráficos equivalentes.



Capítulo 3

Inferencia probabilística
Una de las tareas más importantes de los MGP es la de resolver los problemas de inferencia probabi-

lística. La inferencia probabilística, también conocida como propagación de evidencia, trata de calcular
la probabilidad de una serie de variables dado un conjunto de variables observadas, a las que llamamos
variables evidenciales. Lo que se utiliza para obtener conclusiones y predicciones basadas en una serie
de datos conocidos, denominados evidencia.

Definición 28 (Evidencia). La evidencia en un modelo gráfico es un conjunto de nodos Ev ⊂ X cuyos
valores son conocidos, es decir, Ev = ev en una situación dada.

Existen varios tipos de algoritmos de propagación, en este capítulo nos centraremos en los de propa-
gación exacta y se verán las ventajas e inconvenientes de cada uno de ellos. También existen los algorit-
mos de propagación aproximada, que se utilizan cuando los exactos no son aplicables o son computacio-
nalmente muy costosos, aunque no los trataremos en este trabajo.

Los problemas de propagación de evidencia requieren resolver algunos problemas como el cálcu-
lo de la distribución marginal de un conjunto particular de nodos o la distribución condicional, como
por ejemplo cuando se tiene cierta evidencia y se quiere calcular la probabilidad de un nodo dado el
conocimiento de esa información, P(Xi = xi|Ev = ev).

Es decir, se quiere propagar la evidencia en un conjunto de variables aleatorias X = {X1, ...,Xn} (en
este trabajo se considera además que son discretas), del cual se puede tener evidencia Ev, o no.

Si no se dispone de evidencia, el proceso de propagación consiste en calcular las probabilidades
marginales P(Xi = xi) para todos los valores posibles de Xi,

P(Xi = xi) = ∑
X\Xi

P(X1, ...,Xi = xi, ...,Xn).

Si se dispone de evidencia Ev ⊂ X , entonces la inferencia consiste en calcular las funciones de
probabilidad condicionada P(Xi = xi|Ev = ev) para cada valor de la variable Xi y para toda variable
Xi de la que no se tenga evidencia, es decir Xi /∈ Ev,

P(Xi = xi|Ev = ev) =
P(Xi = xi,Ev = ev)

P(Ev = ev)
∝ P(Xi = xi,Ev = ev),

donde siendo k = 1
P(Ev=ev)

una constante de normalización, se tiene que P(Xi = xi,Ev = ev),

P(Xi = xi,Ev = ev) = k ∑
X\Xi,Ev

PEv(X1, ...,Xi = xi, ...,Xn).

PEv(X1, ...,Xi = xi, ...,Xn) es la función de probabilidad conjunta P(X1, ...,Xn) en la que se han
sustituido las variables con evidencia por sus valores correspondientes.

13
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A continuación se estudian algunos algoritmos de inferencia exacta que tienen en cuenta la estructura
de independencia de un grafo. Algunos de estos métodos son aplicables tanto a redes de Markov co-
mo a redes Bayesianas, mientras que otros solo se podrán aplicar a redes Bayesianas, ya que también
aprovechan la estructura de los grafos dirigidos.

Primero se estudiará el algoritmo de propagación en árboles y poliárboles, su principal inconveniente
es que solo sirve cuando las redes tienen esta estructura, por lo que es necesario definir otros tipos de
algoritmos como el de condicionamiento, el de agrupamiento o el de agrupamiento en árboles de unión.

3.1. Propagación exacta en poliárboles

La propagación exacta en poliárboles es muy útil cuando se tiene una red Bayesiana con estructura
de árbol o poliárbol, ya que permite calcular las distribuciones de manera eficiente y exacta.

En un poliárbol todos los nodos están unidos por un único camino (no necesariamente dirigido), por
lo que cada nodo divide el grafo en dos poliárboles inconexos: uno que contiene a los padres y a los
nodos a los que está conectado pasando por los padres, y otro que contiene a los hijos y a los nodos
que está conectado pasando por los hijos. En el grafo de la Figura 3.1, el nodo D separa el conjunto
de los ancestros de D, {A,B,E} del de los descendientes de D, {C,F,G}. El proceso de propagación
que se define a continuación combina información procedente de ambos subgrafos mediante el envío de
mensajes. Por esta razón el algoritmo también se llama de paso de mensajes (message-passing).

Suponer que se tiene un poliárbol formado por los nodos X = {X1, ...,Xn} y que se conoce la evi-
dencia Ev. La propagación de evidencia consiste en calcular las probabilidades P(Xi|Ev) para todas las
variables Xi de las que no se tiene evidencia, es decir, Xi /∈ Ev. Para facilitar el cálculo se descompone el
conjunto Ev en dos subconjuntos disjuntos separados por la variable Xi: el subconjunto E+

vi que incluye
los padres de Xi y los nodos accesibles a través de sus padres y E−vi que incluye los hijos de Xi y los nodos
accesibles a través de sus hijos. Por el Teorema de Bayes y considerando que Xi separa E+

vi y E−vi se puede
calcular P(Xi|Ev) como:

P(Xi|Ev) = P(Xi|E+
vi ,E

−
vi ) = k P(Xi)P(E+

vi ,E
−
vi |Xi) = k P(Xi)P(E+

vi |Xi)P(E−vi |Xi)

= k P(Xi,E+
vi )P(E

−
vi |Xi).

Definiendo las funciones λi(Xi) = P(E−vi |Xi) y ρi(Xi) = P(Xi,E+
vi ), donde λi(Xi) son los mensajes que

tienen en cuenta la evidencia procedente de los hijos de Xi y ρi(Xi) son los mensajes que tienen en cuenta
la evidencia procedente de los padres de Xi, se obtiene la siguiente expresión:

P(Xi|Ev) = k λi(Xi) ρi(Xi). (3.1)

La inferencia se realiza mediante un mecanismo de paso de mensajes, en donde cada nodo envía los
mensajes correspondientes a sus padres y a sus hijos. Al final de la inferencia, cada nodo tiene asociado
un vector λ y un vector ρ , y se obtiene la probabilidad de cada nodo aplicando la ecuación (3.1).

Para calcular los mensajes λi(Xi) y ρi(Xi), consideramos la situación genérica donde se tiene un
poliárbol en el que un nodo arbitrario Xi tiene p padres U = {U1, ...,Up} y c hijos Y = {Y1, ...,Yc}. Gracias
a la estructura de poliárbol del grafo, los conjuntos de evidencia E+

vi y E−vi pueden descomponerse en p y
c subconjuntos disjuntos respectivamente:

E+
vi =

{
E+

U1Xi
, ...,E+

UpXi

}
, E−vi =

{
E−XiY1

, ...,E−XiYc

}
,

donde E+
U jXi

es el subconjunto de E+
vi contenido en el subgrafo asociado al nodo U j cuando se elimina la

arista U j → Xi y E−XiY j
es el subconjunto de E−vi contenido en el subgrafo asociado al nodo Yj cuando se

elimina la arista Xi→ Yj. Y de nuevo se utilizará la estructura de poliárbol que hace que los conjuntos
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U j,E+

U jXi

}
y
{

Uk,E+
UkXi

}
sean condicionalmente independientes para k ̸= j. Los detalles del cálculo de

las funciones ρi y λi se encuentran en el Anexo A.2.

La descripción completa de la propagación en poliárboles viene dada en el Algoritmo 1, se incluye a
continuación un ejemplo aplicado a la red Bayesiana de la Figura 3.1, las soluciones de los cálculos de
este ejemplo se inlcuyen en la Figura 3.2.

Figura 3.1: Red Bayesiana sobre la que se aplica el algoritmo de propagación en poliárboles.

Ejemplo 20 (Propagación en poliárboles). Consideramos la red Bayesiana de la Figura 3.1, en la que
se conoce la evidencia Ev = {B = 1,C = 0}. Si no se dispone de evidencia, se omite la primera fase de
la etapa inicial y se continua con el algoritmo.

Etapa de iniciación

1. Definir las funciones λ y ρ para los nodos evidenciales:

ρB(B = 0) = 0, λB(B = 0) = 0, ρC(B = 0) = 1, λC(B = 0) = 1,
ρB(B = 1) = 1, λB(B = 1) = 1, ρC(B = 1) = 0, λC(B = 1) = 0.

2. Asignar a los nodos sin padres la función ρXi(Xi) = P(Xi):

ρA(A = 0) = P(A = 0) = 0.6,
ρA(A = 1) = P(A = 1) = 0.4.

3. Asignar a todos los nodos sin hijos la función λi(Xi) = 1:

λE(E = 0) = 1, λF(F = 0) = 1, λG(G = 0) = 1,
λE(E = 1) = 1, λF(F = 1) = 1, λG(G = 1) = 1.

Etapa iterativa

Paso 1 (Iteraciones).

• Primera iteración.

Nodo A. Se ha calculado la función ρA(A) y B es el único hijo de A, por lo que se puede
enviar el mensaje ρAB(A) = ρA(A).

Nodo B. Se tiene λB(B) y dado que A es su único padre, se puede enviar el mesaje λAB(A)
tal que λAB(A) = ∑B λB(B)P(B|A): λAB(A = 0) = 0.3 y λAB(A = 1) = 0.5.

Nodo C. Se tiene λE(E) y su único padre es B, por lo que puede enviar los mensajes λEB(B)
tal que λEB(B) = ∑E λE(E)P(E|B): λEB(B = 0) = 1 y λEB(B = 1) = 1.

Nodo D. En el nodo D ni se ha recibido ni se han calculado las funciones λ o ρ , por lo que
no se puede efectuar ninguna operación en esta iteración.



16 Capítulo 3. Inferencia probabilística

Nodo C. Se ha calculado λC(C) y su único padre es D por lo que de manera análoga a los
nodos B y E se pueden calcular los mensajes λCD(D = 0) = 0.8 y λCD(D = 1) = 0.5.
Además, para este nodo también se ha calculado la función ρC(C), y su único hijo
es F, por lo que se pueden enviar los mensajes ρCF(C) = ρC(C): ρCF(C = 0) = 1 y
ρCF(C = 1) = 0.

Nodos G y F. Para los nodos G y F se tienen las funciones λ y ambos tienen un único padre,
luego de forma análoga a los casos anteriores se pueden calcular: λGD(D = 0) = 1,
λGD(D = 1) = 1, λFC(C = 0) = 1, y λFC(C = 1) = 1.

Nodo F. Además, F ha recibido los mensajes ρ de todos sus padres, luego se puede calcular
ρF(F) tal que ρF(F) = ∑C P(F |C)ρCF(C), entonces: ρF(F = 0) = 0.3 y ρF(F = 1) =
0.7.

• Segunda iteración.

Nodo A. El nodo A ha recibido los mensajes λ de todos sus hijos, por lo que se puede
calcular λA(A) = λBA(A), entonces: λA(A = 0) = 0.3 y λA(A = 1) = 0.5.

Nodo B. Se tiene ρB(B) y B ha recibido el mensaje λEB de su hijo E, por lo que puede
enviar a su otro hijo D el mensaje ρBD(B) tal que ρBD(B) = ρB(B)λEB(B), es decir:
ρBD(B = 0) = 0 y ρBD(B = 1) = 1.

Nodo D. El nodo D ha recibido el mensaje ρBD de su único padre, por lo que se puede
calcular su función ρD(D) = ∑B P(D|B)ρBD(B), y se tiene: ρD(D = 0) = 0.9 y ρD(D =
1) = 0.1.
Análogamente se calculan también en este paso los mensajes ρDC(D), ρDG(D), λDB(B)
y la función λD(D).

• Tercera iteración.

Nodo B. Se ha calculado la función ρB(B) y B ha recibido λDB de su hijo D, luego pue-
de enviar el mensaje ρBE a su otro hijo D tal que ρBE(B) = ρB(B)λDB(B), y se tiene:
ρBE(B = 0) = 0 y ρBE(B = 1) = 0.77.

Nodo E. Para terminar esta iteración solo queda calcular las funciones ρE(E) y ρG(G), de
forma que ρE(E) = ∑

1
b=0 P(E|B)ρBE(B), y se tiene: ρE(E = 0) = 0.5005 y ρE(E = 1) =

0.2695.
Nodo G. Análogamente para el nodo G se tienen: ρG(G = 0) = 0.632 y ρG(G = 1) = 0.138.

Por lo que ya tenemos las funciones necesarias para calcular las probabilidades asociadas a cada nodo,
lo siguiente es pasar a los Pasos 2 y 3, multiplicando λi(Xi) ·ρi(Xi), ∀Xi /∈ Ev y normalizando el resultado
para obtener P(Xi|Ev). Estos resultados se muestran en la Figura 3.2.

La ventaja de este algoritmo es que el número de operaciones aumenta linealmente con el tamaño de
la red, y su principal inconveniente es que no se aplica a redes múltiplemente conectadas ya que carece
de generalidad, para este tipo de estructura de redes se presentan a continuación otros algoritmos. Dos
de los métodos más importantes son los métodos de condicionamiento y los métodos de agrupamiento.

3.2. Métodos de condicionamiento

A diferencia de los poliárboles, las redes múltiplemente conexas se caracterizan por tener más de
un camino entre dos o más nodos, es decir, de la existencia de bucles (Definición 5) en el grafo no
dirigido asociado (Definición 16). La idea principal de los métodos de condicionamiento es cortar los
múltiples caminos existentes entre dos nodos mediante la asignación de valores a un conjunto de variables
contenidas en los bucles, este conjunto de variables se denomina conjunto de corte, C = {C1, ...,Cm}. Es
decir, se puede cortar un bucle considerando como nodo evidencial a un nodo o un conjunto de nodos
contenidos en él, y así transformar el grafo en un poliárbol donde aplicar el Algoritmo 1.
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Figura 3.2: Funciones y mensajes obtenidos aplicando el algoritmo de propagación de evidencia en
poliárboles (Algoritmo 1) a la red Bayesiana definida por la Figura 3.1.

Si por ejemplo consideramos Xi como nodo evidencial, se pueden eliminar del grafo todas las aristas
de la forma Xi → X j, y para que la red Bayesiana resultante sea equivalente a la inicial, se sustituye
la función de probabilidad condicionada del nodo X j por una función definida sobre un conjunto más
reducido de variables (donde se excluyen las variables que hemos considerado evidenciales):

P1(X j|Π j \Xi) = P(X j|Π j \Xi,Xi = xi).

La función de probabilidad P(Xi|Ev), se obtiene promediando las probabilidades ponderadas obteni-
das para cada valor posible de las variables del conjunto de corte:

P(Xi|Ev) = ∑
C1,...,Cm

P(Xi|Ev,C1, ...,Cm)P(C1, ...,Cm|Ev)

= k ∑
C1,...,Cm

P(Xi|Ev,C1, ...,Cm)P(Ev|C1, ...,Cm)P(C1, ...,Cm),

siendo k = 1
P(Ev)

la constante de normalización, y donde los dos primeros productos se pueden calcular
mediante el Algoritmo 1 y el tercero asignando valores secuencialmente a los nodos de forma que solo
sea necesaria una parte del grafo que tenga estructura de poliárbol para calcularlo.

Ejemplo 21. La función de probabilidad conjunta de la red Bayesiana de la Figura 3.3 es:

P(A,B,C,D,E,F,G) = P(A)P(B|A)P(E|B)P(D|B)P(C|A,D)P(F |C)P(G|D).

El bucle formado por los nodos A,B,C y D se puede romper considerando A como nodo evidencial, y
eliminando o la arista A→ B o la arista A→C, aunque no es la única elección posible. Se dice que A
absorbe la evidencia A= a. Sin pérdida de generalidad, se elimina la arista A→C (ya que así obtenemos
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Figura 3.3: Ejemplo de red Bayesiana múltiplemente conexa. En este caso se toma como nodo evidencial
la variable A y se elimina la arista A→C.

el poliárbol sobre el que hemos aplicado el Algoritmo 1). Y se sustituye P(C|D,A = a) = P1(C|D).
Entonces, la función de probabilidad conjunta resultante es:

P(A,B,C,D,E,F,G|A = a) = P(A = a)P(B|A = a)P(E|B)P(D|B)P1(C|D)P(F |C)P(G|D).

Suponeniendo como en el apartado anterior que se conoce Ev = {B = 1,C = 0}, la propagación consiste
en calcular las probabilidades P(Xi|A = a,B = 1,C = 0), para todos los posibles valores de A (0 y 1, en
este caso). Este cálculo viene dado por:

P(Xi|B = 1,C = 0) =
1

∑
a=0

P(Xi|A = a,B = 1,C = 0)P(B = 1,C = 0|A = a)P(A = a),

donde el producto P(Xi|A = a,B = 1,C = 0) se puede calcular aplicando el Algoritmo 1 considerando
la evidencia Ev = {A = a,B = 1,C = 0}, P(A = a) se puede obtener directamente de la Figura 3.1, y
por último el producto P(B = 1,C = 0|A = a) al no ser una función de un solo nodo no puede obtenerse
directamente aplicando el Algoritmo 1, pero se puede descomponer mediante la regla de la cadena de la
forma:

P(B = 1,C = 0|A = a) = P(C = 0|B = 1,A = a)P(B = 1|A = a),

donde el primer producto se puede obtener aplicando el Algoritmo 1, para los dos posibles valores de A
y P(B = 1|A = a) se se obtiene directamente de la Figura 3.1.

El principal inconveniente de este método es que el número de valores posibles que puede tomar
el conjunto de corte aumenta exponencialmente con el número de nodos que lo forman. Por esto es
importante seleccionar el menor conjunto de corte posible.

3.3. Métodos de agrupamiento

Estos métodos son los más comunes de propagación de evidencia en redes múltiplemente conexas.
Además, a diferencia de los anteriores, son aplicables tanto a redes de Markov como a redes Bayesianas,
aunque para redes Bayesianas se necesitarán algunas transformaciones previas. Consisten en transformar
la estructura de la red para obtener un poliárbol. Para esta transformación, el algoritmo se basa en la
construcción de cliques (Definición 7) que mantienen las estructuras locales del MGP. El proceso de
propagación calcula las probabilidades locales en los cliques (que dependen de un número reducido de
variables), evitando así calcular las probabilidades globales (que dependen de todas las variables).

3.3.1. Métodos de agrupamiento en redes de Markov

Estos métodos se aplican sobre redes de Markov descomponibles (Definición 25), además, en caso de
aplicarse a un grafo no triangulado (Definición 10), este se puede triangular sin pérdida de generalidad,
ya que los cliques del grafo triangulado contendrán a los del grafo inicial.
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El algoritmo consta de los siguientes pasos: en la primera etapa se obtiene una factorización del
modelo de la forma P(X1, ...,Xn) = ∏

m
i=1 P(Ri|Si) dada en la Definición 25. En la segunda etapa, se

calculan las funciones de probabilidad conjunta P(Ri,Si) asociadas a cada clique. Y en la última etapa
se calculan las probabilidades de cada nodo P(Xi|Ev) dada la evidencia. El método se aplica mediante el
Algoritmo 2.

Para la absorción de evidencia en caso de conocerla, se modifican las funciones potenciales que
contengan nodos evidenciales. Es decir, para cada clique que contenga algún nodo evidencial, se define
su función potencial como:

ψ
∗
i (Ci) =

{
0, si algún valor de Ci no es consistente con Ev.
ψi(Ci), en otro caso.

(3.2)

Para los cliques tales que no se conoce evidencia de ninguno de sus nodos, no se hace ningún cambio. Por
lo tanto, la función de probabilidad conjunta dada la evidencia es equivalente a la siguiente expresión:

P(X1, ...,Xn|Ev) ∝ ψ
∗
1 (C1) · · ·ψ∗m(Cm).

Este algoritmo se ilustrará con un ejemplo en el siguiente apartado.

3.3.2. Métodos de agrupamiento en redes Bayesianas

El algoritmo anterior a priori solamente es aplicable a redes de Markov, pero nos sirve de base para su
implementación en redes Bayesianas, ya que en el caso de tratarse de modelos dirigidos, el procedimiento
es análogo pero se requiere de algunas modificaciones previas.

Estas modificaciones consisten en transformar el grafo dirigido en un grafo no dirigido moraliza-
do (Definición 18) y triangulado, ya que esto no altera la estructura de independencia de la red (pues
cada familia del grafo dirigido estará contenida en algún clique del grafo triangulado) y asociar a la fac-
torización de la red Bayesiana mediante funciones de probabilidad P(X1, ...,Xn) = ∏

n
i=1 P(Xi|Πi), una

factorización mediante funciones potenciales P(X1, ...,Xn) ∝ ∏
m
i=1 ψi(Ci).

En resumen, los pasos a llevar a cabo para la transformación de la red Bayesiana en una red de
Markov descomponible con representación potencial ψ son:

1. Moralizar y triangular el grafo dirigido.

2. Obtener una cadena de cliques C = {C1, ...,Cm} que cumpla la propiedad de intersección dinámica.

3. Asignar a cada nodo Xi un único clique que contenga a sus familias. Sea Ai el conjunto de nodos
asociados al clique Ci.

4. Para cada clique Ci definir ψi(Ci) = ∏Xi∈Ai P(Xi|Πi). Si Ai = /0, definir ψi(Ci) = 1.

Y a la red resultante se le puede aplicar el Algoritmo 2.

Ejemplo 22 (Método de agrupamiento en redes Bayesianas). Consideramos la red Bayesiana definida
en el Ejemplo 17 y vamos a calcular el riesgo de incendio en el norte en verano, es decir, se tiene la
evidencia Ev = {V = 1,N = 1}. La factorización de la función de probabilidad es:

P(V,N,C,L, I) = P(V )P(N)P(C|N,V )P(L|N)P(I|C,L).

Moralizando y triangulando el grafo dirigido se obtiene el grafo de la Figura 3.4, con los cliques C1,C2
y C3, que cumplen la propiedad de intersección dinámica. Por lo tanto, lo siguiente es obtener una
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Figura 3.4: Grafo no dirigido moralizado y triangulado asociado a la red Bayesiana del Ejemplo 17, con
los separadores y residuos asociados a cada clique.

representación mediante funciones potenciales tal que:

P(V,N,C,L, I) = ψ1(C1) ψ2(C2) ψ3(C3) = P(R1|S1)P(R2|S2)P(R3|S3)

= P(V,N,C)P(L|C,N)P(I|C,L).

Las funciones potenciales en cada clique Ci se obtienen de la siguietne forma:

ψ1(C1) = P(V ) P(N) P(C|N,V ),

ψ2(C2) = P(L|C,N)≡ P(L|C), ya que I(L,C|N) en el grafo dirigido original,

ψ3(C3) = P(I|C,L).

El cálculo de estas funciones potenciales se muestra en la Figura 3.5.

Figura 3.5: Valores de las funciones potenciales que definen la red de Markov de la Figura 3.4.

Y ya tenemos la red de Markov descomponible equivalente y las funciones potenciales que definen el
MGP donde llevar a cabo la inferencia aplicando el Algoritmo 2.

Etapa de iniciación

1. Absorción de la evidencia Ev = {V = 1,N = 1} como se indica en la ecuación (3.2), por lo
tanto, la probabilidad conjunta dado que N = 1 y V = 1, viene dada por:

P(V,N,C,L, I) ∝ ψ
∗
1 (V,N,C)ψ∗2 (N,L)ψ∗3 (C,L, I), (3.3)

y las funciones ψ∗i (Ci) se muestran en la Figura 3.6.

2. Los cliques C1, C2 y C3 forman una cadena de cliques.

3. Se eligen vecinos para cada clique de manera que C1 es vecino de C2 y C2 es vecino de C3.
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Figura 3.6: Valores de las funciones potenciales que definen la red dada la evidencia de la ecuación (3.3).

Etapa iterativa

Paso 1. Cálculo de P(I|C,L), P(L|N), P(V,N,C).

a) Para el cálculo de P(R3|S3) = P(I|C,L) se tiene por definición, P(I|C,L) = ψ∗3 (C,L, I).
b) Lo mismo sucede para P(R2|S2) = P(L|N) = ψ∗2 (N,L).
c) Para P(R1|S1)=P(V,N,C), también se tiene que P(V,N,C)=P(V )P(N|V )P(C|N,V )≡

P(V )P(N)P(C|N,V ) = ψ∗1 (V,N,C).

Paso 2. Cálculo de las distribuciones de probabilidad en cada clique Ci.

a) En el clique C1 ya se tiene P(C1) = P(V,N,C).
b) Para el cálculo de P(C2) = P(C,N,L), calcular primero P(C,N) marginalizando sobre

la función P(V,N,C) tal que P(C,N) = ∑V P(V,N,C), y se tiene:

P(0,0) = 0, P(0,1) = 0.15, P(1,0) = 0, P(1,1) = 0.05.

Entonces, P(C2) = P(N,C,L) = P(L|N)P(C,N), y normalizando, el resultado, se mues-
tra en la Figura 3.7.

c) Para el cálculo de P(C3) = P(C,L, I), calcular primero P(C,L) marginalizando sobre
la función P(N,C,L) tal que P(C,L) = ∑N P(N,C,L):

P(0,0) = 0.225, P(0,1) = 0.525, P(1,0) = 0.075, P(1,1) = 0.0175.

Entonces, P(C3) = P(C,L, I) = P(I|C,L)P(C,L), y normalizando, su resultado se mues-
tra en la Figura 3.7

Figura 3.7: Funciones de probabilidad en cada clique.

Paso 3. Cálculo de la función de probabilidad de cada nodo. Una vez tenemos las distribucio-
nes de cada clique, solo queda marginalizar las funciones en cada nodo y se obtienen las
funciones de probabilidad de la Figura 3.8
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Figura 3.8: Funciones de probabilidad en cada nodo.

En conclusión, el riesgo de que haya un incendio en el norte en verano, es decir P(I = 1|V = 1,N = 1),
es del 23%. Notar además que al tratarse de una red Bayesiana, se simplifican muchos de los cálculos,
como los del Paso 1, lo que no ocurriría en una red de Markov. Aquí otro ejemplo de las ventajas de un
modelo dirigido frente a uno no dirigido.

Una modificación de estos métodos de agrupamiento que mejora la eficacia de la inferencia son los
métodos de agrupamiento basados en árboles de unión.

3.3.3. Propagación en árboles de unión

Este método de agrupamiento consiste en la transformación de la estructura de la red para obtener una
estructura de árbol de unión donde llevar a cabo la inferencia de manera más efectiva. La propagación se
realiza mediante el envío de mensajes sobre el árbol obtenido.

Definición 29 (Árbol de unión o árbol de cliques). En un árbol de unión o árbol de cliques, cada nodo
representa un clique del grafo sobre el que está construido, y los nodos están unidos por un camino si
los cliques que representan tienen algún nodo en común.

Para construir un árbol de unión se parte de un grafo no dirigido triangulado G, el primer paso es obtener
una cadena de cliques C1, ...,Cm (Definición 12). Después, para cada clique Ci, se selecciona el clique Ck
con el máximo número de nodos comunes a Ci y se añade la arista Ci−Ck. En caso de que existan varios
cliques con el mismo número de nodos en común, la elección se realiza de manera arbitraria.

La principal ventaja de utilizar un árbol de unión frente a un grafo de cliques, es que el árbol contiene
un menor número de aristas, por lo que el número de mensajes a calcular y propagar es menor, lo que
hace que el proceso de inferencia sea más eficiente.

Al igual que los métodos de agrupamiento anterior, sirve tanto para redes de Markov como para redes
Bayesianas, y en el caso de tener una red Bayesiana, se deben hacer las mismas transformaciones previas
para obtener la estructura de grafo no dirigido triangulado y la representación potencial ψ . Luego sin
pérdida de generalidad podemos suponer que se tiene un grafo no dirigido triangulado con representación
potencial ψ = {ψ1, ...,ψm}. La propagación se lleva a cabo en forma de mensajes y se propaga por el
árbol mediante el envío de estos entre los cliques vecinos. Este método se aplica mediante el Algoritmo
3 y los detalles de este algoritmo se encuentran en el Anexo A.3.

Ejemplo 23 (Propagación mediante árboles de unión en RB). Consideramos la red del Ejemplo 17 para
contrastar este algoritmo con el anterior, ya que ambos son aplicables a redes con la misma estructura.
Para poder aplicar el Algoritmo 3, el primer paso es transformar la RB en un árbol de unión, elegimos
los mismos cliques que en la Figura 3.4, por lo que las funciones potenciales del árbol serán las ya
calculadas en la Figura 3.5, y tomando la misma evidencia que antes, nos lleva a los valores de la Figura
3.6. Existe más de un árbol de unión asociado a esta red, pero vamos a utilizar el que se muestra en la
Figura 3.9. Por lo tanto ya tenemos el árbol de unión de la red de Markov y sus funciones potenciales.

Etapa de iniciación

1. Se absorbe de nuevo la evidencia Ev = {V = 1,N = 1} como se muestra en la Figura 3.6.
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2. Se obtiene el árbol de unión de la Figura 3.9, que define una red de Markov con las funciones
potenciales ψ∗i de la Figura 3.5.

Etapa iterativa

Paso 1. Cálculo de los mensajes Mi j(Si j).

• Primera iteración.
1) C1 solo tiene un vecino C2, por lo que puede calcular y enviar el mensaje M12(S12) =

M12(N,C) = ∑V ψ∗1 (V,N,C) :

M12(0,0) = 0, M12(1,0) = 0.15,
M12(0,1) = 0, M12(1,1) = 0.05.

2) C2 ha recibido mensaje del resto de nodos (en este caso solo C1), excepto de C3, por lo
tanto, puede calcular y enviar

M23(C,L) = ∑
C2\S23

ψ
∗
2 (C2)∏

k ̸=3
Mk2(Sk2) = ∑

N
ψ
∗
2 (N,C,L)M12(N,C).

M23(0,0) = 0.025, M23(1,0) = 0.075,
M23(0,1) = 0.525, M23(1,1) = 0.175.

3) C3 solo tiene como vecino a C2, luego puede calcular y enviar M32(C,L)=∑I ψ∗3 (I,C,L),
y se tiene:

M32(0,0) = M32(0,1) = M32(1,0) = M32(1,1) = 1.

• Segunda iteración.
1) El clique C2 ha recibido los mensajes de todos sus cliques vecinos, luego puede enviar

el único mensaje que falta, M21(N,C) = ∑L ψ∗2 (N,C,L) M32(C,L), y también se tiene:

M21(0,0) = 0, M21(1,0) = 1,
M21(0,1) = 0, M21(1,1) = 1.

Paso 2. Cálculo de la función de probabilidad de cada clique.
1) P(C1) = P(V,N,C) = ψ∗1 (V,N,C)M21(N,C).
2) P(C2) = P(N,C,L) = ψ∗2 (N,C,L)M12(N,C)M32(C,L).
3) P(C3) = P(C,L, I) = ψ∗3 (C,L, I)M23(C,L).

En el Paso 2 se obtienen las mismas funciones de probabilidad que se han calculado con el algoritmo de
agrupamiento y que se muestran en la Figura 3.7, por lo tanto, la distribución de probabilidad de cada
nodo será igual a la que se muestra en la Figura 3.8, y se llega a la misma solución.

Figura 3.9: Árbol de unión y los mensajes enviados.



Algoritmo 1: Propagación en poliárboles

Etapa de iniciación:

1. Asignar a todos los nodos evidenciales las funciones:

• ρi(Xi) = 1 si xi = ei y ρi(Xi) = 0 si xi ̸= ei.
• λi(Xi) = 1 si xi = ei y λi(Xi) = 0 si xi ̸= ei.

2. Asignar a todos los nodos Xi /∈ Ev que no tengan padres la función ρi(Xi) = P(Xi).

3. Asignar a todos los nodos Xi /∈ Ev que no tengan hijos la función λi(Xi) = 1, para todos
los valores posibles de Xi.

Etapa iterativa

Paso 1 (Iteraciones). Para cada nodo Xi /∈ Ev:

a) Si Xi ha recibido los mensajes ρU jXi(U j) de todos sus padres, calcular ρi(Xi):

ρi(Xi) = ∑
U

P(Xi |U ∪E+
vi )

p

∏
j=1

ρU jXi(U j).

b) Si Xi ha recibido los mensajes λY jXi(Xi) de todos sus hijos, calcular λi(Xi):

λi(Xi) =
c

∏
j=1

λY jXi(Xi).

c) Si ya se ha calculado ρi(Xi), entonces, para cada hijo Yj de Xi tal que Xi haya
recibido los mensajes λ del resto de sus hijos, calcular y enviar ρXiYj(Xi):

ρXiY j(Xi) ∝ ρi(Xi)∏
k ̸= j

λYkXi(Xi).

Entonces, si Xi ha recibido los mensajes λ de todos sus hijos, puede enviar todos
los mensajes ρ correspondientes.

d) Si ya se ha calculado λi(Xi), entonces, para cada padre U j de Xi tal que Xi haya
recibido los mensajes ρ del resto de sus padres, calcular y enviar λXiU j(Ui):

λY jXi(Xi) = ∑
Y j

λYj(Yj) ∑
S1,...,Sq

P(Yj|Si)
q

∏
k=1

ρSkY j(Sk).

Entonces, si Xi ha recibido los mensajes ρ de todos sus padres, ya puede enviar
todos los mensajes λ correspondientes.

Paso 2. Repetir el paso 1 hasta que se calculen las funciones ρ y λ de todos los nodos no
evidenciales.

Paso 3. Para cada nodo Xi /∈ Ev, calcular P(Xi|Ev) mediante la ecuación (3.1) donde
k = 1

∑Xi λi(Xi)ρi(Xi)
.



Algoritmo 2: Algoritmo de agrupamiento en redes de Markov

Etapa de iniciación

1. Absorber la evidencia Ev = ev en las funciones potenciales.

2. Obtener una cadena de cliques C1, ...,Cm que cumpla la propiedad de intersección
dinámica.

3. Para cada clique Ci elegir como vecino cualquier otro clique C j, con j < i, tal que
Si ⊂C j.

Etapa iterativa

Paso 1. Para i = m hasta 1:

a) Calcular mi(Si) = ∑ri ψi(Ci).

b) Asignar P(Ri|Si) =
ψi(Ci)
mi(Si)

.

c) Reemplazar la función ψ j(C j), con C j vecino de Ci por: ψ j(C j)← ψ j(C j)mi(Si).

Paso 2. Asignar P(C1) = P(R1|S1) = P(R1), y para i = 2 hasta m hacer:

a) Calcular P(Si) marginalizando P(C j) del clique C j, vecino de Ci.
b) Asignar P(Ci) = P(Ri|Si) = P(Ri).

Paso 3. Para i = 1 hasta n hacer:

a) Elegir el clique de menor tamaño C j que contenga al nodo Xi.
b) Calcular las probabilidades de cada nodo marginalizando P(Xi|Ev) ∝ ∑C j\Xi P(C j).

c) Normalizar los valores obtenidos en b).

Algoritmo 3: Propagación mediante árboles de unión en redes de Markov

Etapa de iniciación

1. Absorber la evidencia Ev = ev en las funciones potenciales ψ como en (3.2).

2. Obtener un árbol de unión de la red de Markov.

Etapa iterativa

Paso 1 (Iteraciones). Para i = 1, ...,m hacer: Para cada vecino B j de Ci, si Ci ha recibido los
mensajes del resto de sus vecinos, calcular y enviar el mensaje Mi j(Si j) a B j:

Mi j(Si j) = ∑
Ci\Si j

ψi(Ci)∏
k ̸= j

Mki(Ski).

Y repetir este paso hasta que no se obtenga ningún nuevo mensaje.

Paso 2. Calcular la función de probabilidad de cada clique Ci:

P(Ci) = ψi(Ci)
q

∏
j=1

Mki(Ski).

Paso 3. Calcular P(Xi|Ev) de cada nodo marginalizando la función de probabiliad del menor
clique Ck que contenga el nodo Xi.





Apéndice A

Material complementario

A.1. Ejemplo de la definición alternativa a la D-separación

Ejemplo 24 (Separación en grafos dirigidos). En la Figura A.1 se incluye el grafo dirigido del que
queremos estudiar las relaciones de independencia y su grafo moral. Y a continuación, en la Figura A.2
se incluyen los grafos resultantes de eliminar en cada uno de ellos los nodos que no forman parte del
menor subconjunto ancestral que contenga los nodos X, Y y Z, que son los grafos en los que se aplica el
criterio de U-separación.

Figura A.1: Grafo dirigido(izquierda) y grafo moral (derecha).

Figura A.2: Comprobación mediante los grafos moralizados resultantes de eliminar los nodos que no
forman parte del conjunto ancestral. Los colores azul y rosa corresponden a los nodos pertenecientes a los
conjuntos X e Y y el amarillo a los nodos del conjunto separador Z en la notación I(X ,Y |Z) y D(X ,Y |Z).
Se necesita comprobar la U-separación en estos grafos para verificar las independencias condicionales.

En los grafos de la Figura A.2 se muestran las siguientes relaciones:
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1. Como el menor subgrafo que contiene al conjunto ancestral está formado por los nodos V , N, C
y L el grafo moral donde se aplica la U-separación en este caso es el que se muestra en 1, por lo
que I(L,{C,V}|N), ya que L y {C,V} están U-separados por N, porque no existe un camino entre
ellos que no esté cortado por C.

2. Se verifica I(I,{V,N}|{C,L}), ya que todos los caminos entre el nodo I y los nodos {V,N} están
cortados o por el nodo C o por el nodo L.

3. Se comprueba que D(N, I|I), ya que existe un camino entre N e I, (N−C− I) que no contiene al
nodo L.

4. Vemos que D({V,N} ,{C,L}|I), ya que los caminos entre {V,N} y {C,L} no pasan por el nodo I.

Por último, los nodos N y V son marginalmente independientes, ya que el menor subgrafo que los
contiene es el grafo sin aristas formado por los nodos N y V , que evidentemente están U-separados.

A.2. Propagación en poliárboles. Cálculo de λi y ρi

Para calcular las funciones ρi(Xi) se tiene que:

ρi(Xi) = P(Xi, E+
vi ) = ∑

U
P(Xi, U ∪E+

vi ) = ∑
U

P(Xi |U ∪E+
vi ) P(U ∪E+

vi )

= ∑
U

P(Xi |U ∪E+
vi ) P(U ∪E+

U1Xi
∪ . . .∪E+

UpXi
).

Como se trata de un poliárbol, los conjuntos
{

U j,E+
U jXi

}
y
{

Uk,E+
UkXi

}
son condicionalmente indepen-

dientes para k ̸= j, entonces se puede descomponer la ecuación en factores asociados al padre U j:

ρi(Xi) = ∑
U

P(Xi |U ∪E+
vi )

p

∏
j=1

P(U j, E+
U jXi

) = ∑
U

P(Xi |U ∪E+
vi )

p

∏
j=1

ρU jXi(U j), (A.1)

donde P(U j,E+
U jXi

) son los mensajes que envía un nodo padre U j a su hijo Xi y se denotan por ρU jXi(U j).

Análogamente para el cálculo de las funciones λi(Xi) se descompone el subconjunto de evidencia
E−vi , donde EXiYj y EXiYk son condicionalmente independientes para k ̸= j, por lo que se tiene:

λi(Xi) = P(E−vi |Xi) = P(E−XiY1
∪ ...∪E−XiYc

|Xi) =
c

∏
j=1

P(E−XiY j
|Xi) =

c

∏
j=1

λY jXi(Xi), (A.2)

donde P(E−XiYj
|Xi) son los mensajes que un nodo Yj envía a su padre Xi y se denotan por λY jXi(Xi).

Para calcular λ y ρ es necesario conocer el valor de los mensajes ρXiYj(Xi) y λYjXi(Xi).

Para el cálculo de ρXiYj(Xi) partimos de la expresión E+
XiYj

= E+
vi
⋃

k ̸= j E−XiYk
y se tiene:

ρXiY j(Xi) = P(Xi,E+
XiYj

) = P(Xi,E+
vi

⋃
k ̸= j

E−XiYk
) = P(E+

vi |Xi
⋃
k ̸= j

E−XiYk
)P(Xi

⋃
k ̸= j

E−XiYk
)

= P(E+
vi |Xi)P(

⋃
k ̸= j

E−XiYk
|Xi)P(Xi) ∝ P(Xi|E+

i )∏
k ̸= j

E−XiYk
|Xi)P(Xi)

∝ ρi(Xi)∏
k ̸= j

λYkXi(Xi). (A.3)
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Para el cálculo de λY jXi(Xi) se considera que Xi es el padre de Yj y este a su vez tiene un conjunto
de q padres más S =

{
S1, ...,Sq

}
, por lo tanto se obtiene la expresión de la evidencia dada los

hijos de Xi de la forma E−XiYj
= E−Yj

∪E+
SYj

, donde E−Yj
representa la evidencia a través del hijo Yj y

E+
SYj

representa la evidencia obtenida a través de los padres S =
{

S1, ...,Sq
}

de Yj. Luego se puede
calcular:

λYjXi(Xi) = P(E−XiY j
|Xi) = ∑

Yj,S
P(Yj,S,E−XiYj

|Xi) = ∑
Yj,S

P(Yj,S,E−Y j
∪E+

SYj
|Xi)

= ∑
Yj,S

P(E−Yj
|Yj,S,E+

SYj
,Xi)P(Yj|S,E+

SYj
,Xi)P(S,E+

SYj
|Xi)

= ∑
Yj

P(E−Yj
|Yj)∑

S
P(Yj|S,Xi)P(S,E+

SYj
),

donde la penúltima igualdad se ha obtenido mediante la regla de la cadena y la última teniendo en
cuenta las relaciones de independencia condicional entre las variables. Y se tiene:

λYjXi(Xi) = ∑
Y j

λYj(Yj) ∑
S1,...,Sq

P(Yj|Si)
q

∏
k=1

ρSkYj(Sk). (A.4)

De las ecuaciones (A.1), (A.2), (A.3) y (A.4), se deduce la forma en la que se envían los mensajes
λYjXi(Xi) y ρU jXi(U j), así como cómo se calculan las funciones λi(Xi) y ρi(Xi).

1. La función λi(Xi) se puede calcular en cuanto Xi haya recibido los mensajes λY jXi(Xi) de todos sus
hijos Yj. Además, una vez calculado λi(Xi), Xi puede enviar el mensaje λXiU j(U j) a su padre U j

cuando haya recibido los mensajes ρUkXi(Uk), con k ̸= p, del resto de sus padres.

2. La función ρi(Xi) se puede calcular en cuanto Xi haya recibido los mensajes ρU jXi(U j) de todos
sus padres U j. Además, una vez calculado ρi(Xi), Xi puede enviar el mensaje ρXiY j(Xi) a su hijo Yj

cuando haya recibido los mensajes λYkXi(Xi), con k ̸= p, del resto de sus hijos.

Figura A.3: El poliárbol de la izquierda representa el punto 1, y el de la derecha el punto 2. Se muestra
con líneas discontinuas los mensajes que se pueden enviar a partir de los que han sido recibidos (línea
continua).

Ejemplo 25. La Figura A.3 ilustra los cálculos y mensajes que se pueden enviar en ambos grafos. En
el grafo de la izquierda, se tiene que el nodo D ha recibido los mensajes λ de todos sus hijos E y F
por lo que se puede calcular λD(D), y además, como ha recibido los mensajes de sus padres A y B,
puede enviarle el mensaje λDC a su padre restante C. En el de la derecha se tiene que D ha recibido los
mensajes ρ de todos sus padres, por lo que se puede calcular ρD(D). Además, puede enviar el mensaje
ρDE a su hijo E ya que ha recibido el mensaje λ del resto de sus hijos (en este caso solo tiene un hijo
más, que es F).
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A.3. Algoritmo de propagación mediante árboles de unión. Detalles

Partiendo de la estructura de un árbol de cliques, suponer que se tiene un clique Ci arbitrario que tiene
q cliques vecinos

{
B1, ...,Bq

}
. Sean Ci j el conjunto de cliques y Xi j el conjunto de nodos contenidos en

el subárbol correspondiente al clique Ci cuando se elimina la arista Ci−B j. Análogamente los cliques
y los nodos asociados al subárbol correspondiente a B j son C ji y X ji, respectivamente. Por lo que X =
Ci j ∪C ji = Xi j ∪X ji.

Los separadores Si j correspondientes a la cadena de cliques se pueden representar mediante la in-
tersección de cliques vecinos, es decir, Ci ∩C j = Si j. Para calcular la distribución de probabilidad del
conjunto separador Si j primero se descompone:

X \Si j = (Xi j ∪X ji)\Si j = (Xi j \Si j)∪ (X ji \Si j) = Ri j ∪R ji,

donde Ri j = Xi j \ Si j es el conjunto de nodos contenidos en el subárbol asociado a Ci pero no en el
asociado a B j, procedentes de eliminar Ci−B j.

Por la definición de árbol de unión, todo nodo contenido en dos cliques distintos tiene que estar
también contenido en todos los cliques que pasan por el camino que los une. Luego los únicos nodos
comunes a Xi j y X ji estarán contenidos en su conjunto separador Si j. Por lo tanto Ri j y R ji son disjuntos.
Y se puede calcular la función de probabilidad de Si j de la forma:

P(Si j)= ∑
X\Si j

m

∏
k=1

ψk(Ck)= ∑
Ri j∪R ji

m

∏
k=1

ψk(Ck)=

(
∑
Ri j

∏
Ck∈Ci j

ψk(Ck)

)(
∑
R ji

∏
Ck∈Ci j

ψk(Ck)

)
=Mi j(Si j)M ji(S ji).

Siendo
Mi j(Si j) = ∑

Ri j

∏
Ck∈Ci j

ψk(Ck) (A.5)

el mensaje que el clique Ci envía al clique vecino B j. Es decir, la función de probabilidad del conjunto
separador Si j, es el producto de los mensajes Mi j y M ji.

Para calcular la función de probabilidad de un clique Ci, se descompone el conjunto X \Ci:

X \Ci =

(
q⋃

k=1

Xki

)
\Ci =

q⋃
k=1

(Xki \Ci) =
q⋃

k=1

Rki.

La última igualdad se obtiene de que debido a la estructura de árbol de clique, cada nodo contenido en Xki
y Ci estará también contenido en el separador Ski, por lo que: Xki \Ci = Xki \Ski = Rki. Luego la función
de probabilidad del clique Ci se calcula mediante:

P(Ci) = ∑
X\Ci

m

∏
j=1

ψ j(C j) = ψi(Ci) ∑
X\Ci

∏
j ̸=i

ψ j(C j) = ψi(Ci) ∑
R1i∪...∪qi

∏
j ̸=i

ψ j(C j)

= ψi(Ci)

(
∑
R1i

∏
Ck∈C1i

ψk(Ck)

)
· · ·

(
∑
Rqi

∏
Ck∈Cqi

ψk(Ck)

)
= ψi(Ci)

q

∏
j=1

Mki(Ski). (A.6)

Para calcular los mensajes Mi j(Si j), consideramos: Ri j = Xi j \Si j = (Ci \Si j)∪
(⋃

k ̸= j Xki \Ski
)
, y se

puede sustituir Ri j en la ecuación anterior (A.5).

Mi j(Si j) = ∑
Ci\Si j

∑
Xki\Ski; j ̸=k

∏
Cs∈Ci j

ψs(Cs) = ∑
Ci\Si j

ψi(Ci)∏
k ̸= j

∑
Xki\Ski

∏
Cs∈Ci j

ψs(Cs)

= ∑
Ci\Si j

ψi(Ci)∏
k ̸= j

Mki(Ski). (A.7)
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Con esto ya tenemos cómo se calculan los mensajes entre cliques y por lo tanto, cómo se calculan
las funciones de probabilidad P(Ci), para calcular las probabilidades de cada nodo P(Xi) basta con mar-
ginalizar la función en el menor clique que lo contenga. Para el cálculo de los mensajes Mi j(Si j) pueden
darse las siguientes situaciones:

1. Si Ci ha recibido los mensajes de todos sus vecinos, entonces Ci puede calcular y enviar los men-
sajes a todos sus vecinos.

2. Si Ci ha recibido los mensajes de todos sus vecinos excepto de B j, entonces Ci solo puede calcular
y enviar el mensaje Mi j(Si j) al clique B j.

3. Si Ci no ha recibido los mensajes de dos o más vecinos, entonces no se puede calcular ningún
mensaje.





Apéndice B

Bnlearn
Bnlearn es una librería de [8] especializada en el manejo de redes Bayesianas. Proporciona gran va-

riedad de funciones para el aprendizaje de la estructura gráfica de estas redes, su manipulación y análisis,
así como para la representación visual de la red y sus propiedades. Además, permite la estimación de
parámetros y distribuciones de probabilidad asociadas a las redes Bayesianas. En este capítulo, se utiliza
esta librería para la comprobación de los conceptos y resultados mostrados a lo largo de este trabajo.
Como no ofrece los algoritmos de inferencia exacta utilizados en el Capítulo 3, se han estimado las
distribuciones de probabilidad de los ejemplos mediante algoritmos de inferencia aproximada.

B.1. Construcción y análisis de una red Bayesiana

En este apartado se muestran algunas funciones básicas para la creación, representación y análisis
de una red Bayesiana, así como la manipulación de esta y su transformación en otras estructuras útiles
como los grafos esqueletos o los grafos morales. Para esto se utiliza el grafo del Ejemplo 12 con el que
se ha trabajado durante el trabajo.

Creación y representación del grafo dirigido

# Creación del grafo dirigido
Gdir <- model2network("[V][N][C|V:N][L|N][I|C:L]")
plot(Gdir)

Nodos y arcos del grafo

nodes(Gdir)
## [1] "C" "I" "L" "N" "V"
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arcs(Gdir)
## from to
## [1,] "V" "C"
## [2,] "N" "C"
## [3,] "N" "L"
## [4,] "C" "I"
## [5,] "L" "I"

Comprobación que el grafo es acíclico y dirigido

acyclic(Gdir, directed = FALSE, debug = FALSE)
## [1] TRUE
directed(Gdir)
## [1] TRUE

Padres, hijos y vecinos de un nodo

parents(Gdir, "C")
## [1] "N" "V"
children(Gdir,node="C")
## [1] "I"
nbr(Gdir,node="C")
## [1] "I" "N" "V"

Caminos entre nodos

¿Existe un camino dirigido de I a C? ¿Y no dirigido?

path.exists(Gdir, from = "I", to = "C", direct = TRUE, underlying.graph =
FALSE, debug = FALSE)
## [1] FALSE
path.exists(Gdir, from = "I", to = "C", direct = TRUE, underlying.graph =
TRUE, debug = FALSE)
## [1] TRUE

Construcción del esqueleto

skeleton(Gdir)
plot(skeleton(Gdir))
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V-estructuras del grafo

vstructs(Gdir)
## X Z Y
## [1,] "N" "C" "V"
## [2,] "C" "I" "L"

Grafo moral asociado

moral<-moral(Gdir)
plot(moral)

B.2. Comprobación de las independencias condicionales

Comprobamos el concepto de D-separación aplicado en el Ejemplo 14.

# 1. I({V,C},L|N)
if (!dsep(Gdir, "C", "L", "N") &

!dsep(Gdir, "V", "L", "N")) {
print(FALSE)

} else {
print(TRUE)}

## [1] TRUE

# 2. I({V,N},I|{C,L})
dsep(Gdir, "V", "I", c("C","L"))
## [1] TRUE

# 3. D(I,N|L)
dsep(Gdir, "I", "N", "L")
## [1] FALSE

# 4. D({C,L},{V,N}|I)
if (!dsep(Gdir, "C", "V", "I") &

!dsep(Gdir, "C", "N", "I") &
!dsep(Gdir, "L", "V", "I") &
!dsep(Gdir, "L", "N", "I")) {

print(FALSE)
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} else {
print(TRUE)}

## [1] FALSE

B.3. Ejemplo de propagación en poliárboles

Para la comprobación del Ejemplo 20 de propagación en poliárboles utilizaremos algoritmos de
inferencia aproximada.

Descripción de las relaciones entre los nodos de la red Bayesiana y asignación las probabilidades asocia-
das a cada uno de ellos.

#Descripción de la red Bayesiana
Gpoliarbol= model2network("[A][B|A][E|B][D|B][C|D][F|C][G|D]")

#Asignación de probabilidades a cada nodo
pA=matrix(c(0.6,0.4),ncol=2,dimnames=list(NULL,c("P(A=0)","P(A=1)")))
pB.A=matrix(c(0.7,0.3,0.5,0.5),ncol=2,nrow=2,dimnames=list("B"=c("P(B=0)",
"P(B=1)"),"A"=c("P(A=0)","P(A=1)")))
pE.B=matrix(c(0.2,0.8,0.65,0.35),ncol=2,nrow=2,dimnames=list("E"=c("P(E=0)",
"P(E=1)"),"B"=c("P(B=0)","P(B=1)")))
pD.B=matrix(c(0.45,0.55,0.9,0.1),ncol=2,nrow=2,dimnames=list("D"=c("P(D=0)",
"P(D=1)"),"B"=c("P(B=0)","P(B=1)")))
pC.D=matrix(c(0.8,0.2,0.5,0.5),ncol=2,nrow=2,dimnames=list("C"=c("P(C=0)",
"P(C=1)"),"D"=c("P(D=0)","P(D=1)")))
pF.C=matrix(c(0.3,0.7,0.1,0.9),ncol=2,nrow=2,dimnames=list("F"=c("P(F=0)",
"P(F=1)"),"C"=c("P(C=0)","P(C=1)")))
pG.D=matrix(c(0.85,0.15,0.4,0.6),ncol=2,nrow=2,dimnames=list("G"=c("P(G=0)",
"P(G=1)"),"D"=c("P(D=0)","P(D=1)")))

#Tabla de probabilidades
tprob1=custom.fit(Gpoliarbol, dist=list("A"=pA, "B"=pB.A, "C"=pC.D, "D"=pD.B,
"E"=pE.B, "F"=pF.C, "G"=pG.D))

Comprobación mediante inferencia aproximada de los resultados de la Figura 3.2.

t.countsA = table(cpdist(tprob1, nodes="A", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsA)
##
## P(A=0) P(A=1)
## 0.4990177 0.5009823
t.countsB = table(cpdist(tprob1, nodes="B", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsB)
##
## P(B=0) P(B=1)
## 0 1
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t.countsC = table(cpdist(tprob1, nodes="C", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsC)
##
## P(C=0) P(C=1)
## 1 0
t.countsD = table(cpdist(tprob1, nodes="D", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsD)
##
## P(D=0) P(D=1)
## 0.94348725 0.05651275
t.countsE = table(cpdist(tprob1, nodes="E", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsE)
##
## P(E=0) P(E=1)
## 0.66577 0.33423
t.countsF = table(cpdist(tprob1, nodes="F", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsF)
##
## P(F=0) P(F=1)
## 0.2927702 0.7072298
t.countsG = table(cpdist(tprob1, nodes="G", evidence=((B == "P(B=1)")&
(C == "P(C=0)")), method = "ls"))
prop.table(t.countsG)
##
## P(G=0) P(G=1)
## 0.8174825 0.1825175

B.4. Ejemplo de métodos de agrupamiento

Por último, comprobamos los resultados procedentes de la inferencia en la red Bayesiana que modela
el riesgo de incendios, para la que se ha tomado la evidencia de estar en el norte, N = 1, en la estación
de primavera/verano, V = 1. A continuación, se asignan las probabilidades que definen el modelo.

#probabilidades marginales
pV=matrix(c(0.5,0.5),ncol=2,dimnames=list(NULL,c("P(V=0)","P(V=1)")))
pN=matrix(c(0.6,0.4),ncol=2,dimnames=list(NULL,c("P(N=0)","P(N=1)")))

#probabilidades condicionadas
#prob C dado V, N
pC.VN=c(0.3,0.7,0.05,0.95,0.9,0.1,0.75,0.25)
dim(pC.VN)=c(2,2,2)
dimnames(pC.VN)=list("C"=c("P(C=0)","P(C=1)"),"V"=c("P(V=0)","P(V=1)"),
"N"=c("P(N=0)","P(N=1)"))
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#prob I dado C,L
pI.CL=c(0.8,0.2,0.9,0.1,0.7,0.3,0.9,0.1)
dim(pI.CL)=c(2,2,2)
dimnames(pI.CL)=list("I"=c("P(I=0)","P(I=1)"),"C"=c("P(C=0)","P(C=1)"),
"L"=c("P(L=0)","P(L=1)"))

#prob L dado N
pL.N=matrix(c(0.9,0.1,0.3,0.7),ncol=2,nrow=2,dimnames=list("L"=c("P(L=0)",
"P(L=1)"),"N"=c("P(N=0)","P(N=1)")))

#tabla de probabilidades
tprob=custom.fit(Gdir, dist=list("V"=pV, "N"=pN, "C"=pC.VN,"L"=pL.N, "I"=pI.CL))

Cálculo de la probabilidades en los cliques (estos resultados se muestran en la Figura 3.5):

(a) P(N,V,C)

set.seed(123)
t.counts = table(cpdist(tprob, nodes=c("N", "V","C"), evidence=((V == "P(V=1)")
&(N == "P(N=1)")), method = "ls"))
prop.table(t.counts)
## , , C = P(C=0)
##
## V
## N P(V=0) P(V=1)
## P(N=0) 0.0000000 0.0000000
## P(N=1) 0.0000000 0.7512291
##
## , , C = P(C=1)
##
## V
## N P(V=0) P(V=1)
## P(N=0) 0.0000000 0.0000000
## P(N=1) 0.0000000 0.2487709

(b) P(N,C,L):

set.seed(123)
t.counts = table(cpdist(tprob, nodes=c("N", "C","L"), evidence=((V == "P(V=1)")
&(N == "P(N=1)")), method = "ls"))
prop.table(t.counts)
## , , L = P(L=0)
##
## C
## N P(C=0) P(C=1)
## P(N=0) 0.00000000 0.00000000
## P(N=1) 0.22025565 0.07669617
##
## , , L = P(L=1)
##
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## C
## N P(C=0) P(C=1)
## P(N=0) 0.00000000 0.00000000
## P(N=1) 0.53097345 0.17207473

(c) P(C,L, I)

set.seed(123)
t.counts = table(cpdist(tprob, nodes=c("C", "L","I"), evidence=((V == "P(V=1)")
&(N == "P(N=1)")), method = "ls"))
prop.table(t.counts)
## , , I = P(I=0)
##
## L
## C P(L=0) P(L=1)
## P(C=0) 0.174041298 0.363815143
## P(C=1) 0.067846608 0.151425762
##
## , , I = P(I=1)
##
## L
## C P(L=0) P(L=1)
## P(C=0) 0.048180924 0.168141593
## P(C=1) 0.005899705 0.020648968

Cálculo de las probabilidades marginales:

(a) La probabilidad de que haga calor, P(C) es:

t.counts = table(cpdist(tprob, nodes="C", evidence=((V ==
"P(V=1)")&(N == "P(N=1)")), method = "ls"))
prop.table(t.counts)
##
## P(C=0) P(C=1)
## 0.7634298 0.2365702

(b) La probabilidad de tener un día lluvioso, P(L):

t.counts = table(cpdist(tprob, nodes="L", evidence=((V ==
"P(V=1)")&(N == "P(N=1)")), method = "ls"))
prop.table(t.counts)
##
## P(L=0) P(L=1)
## 0.3021654 0.6978346

(c) La probabilidad de incendio, P(I = 1) es:

cpquery(tprob, event = (I == "P(I=1)"), evidence = ((V ==
"P(V=1)")&(N == "P(N=1)")), method = "ls")
## [1] 0.2412371
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