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Abstract

(El resumen en castellano se encuentra més abajo en la pdgina iii.)

The current work is a final project of the Mathematics undergrad course at the university of
Zaragoza. It introduces and explores the usage of fractional-order derivatives, in particular the
Caputo derivative, for the study of a fractional-order susceptible-infected (SI) epidemiology model
for the diffusion processes of a Protein Residue Network (PRN), as a recreation of the work of
Abadias et Al in reference [1]. We will be working with simple symmetric connected networks
to study perturbation spread, where each node i will be assigned a probability s;(¢) of still being
susceptible and another z;(t) of having been perturbed at time ¢ (this makes s;(t) + z;(t) = 1).

We will begin by introducing a few preliminary results such as scalar series derivation and the
scalar and matricial versions of the exponential function, and we will see that they are the solution
to a system of first-order linear differential equations. We will continue by introducing the two
Eulerian integrals: the Beta and Gamma functions, and prove a few properties they satisfy, namely
the Stirling formula’s extension to the real line and the relationship between the Beta and Gamma
functions, that will prove necessary for the remainder of the work.

After these preliminary results we will proceed with defining the Mittag-Leffler function of
parameter a > 0 and variable taking values in C as a generalisation of the exponential, to afterwards
extend it to its complex matricial analogue and prove its convergence on the whole complex plane
C. Thereafter we will focus the scope of the work back to the real line and define the Riemman-
Liouville fractional order integral and the Caputo fractional order derivative along once again with
a discussion of a few of their most basic properties necessary for the statements that will follow.

Once this framework has been established we will proceed with the definition of the classical SI
model and state its relationship with the PRNs that reference [1] studies, together with an intro-
duction of the adjacency matrix A we will be using to represent the network. Rather than solving
this model we provide two approximations to the solution through two different transformations
to the differential equation system, which we justify and discuss briefly. This will be followed by
the introduction of our fractional-order adaptation of the classical SI model as done in article [1]
and we will see that the two approximations done to the classic model will also give us analogous
approximations to the solution of the fractional order model; which will be necessary as we won’t be
able to solve the new model analytically. These two approximations are a linear one and the Lee-
Tenneti-Eun (LTE) transformation, named after the authors by whom it was first used, and both
rely heavily on the Mittag-Leffler functions. We will prove convergence for both approximations and
discuss their qualitative behaviour, mainly their limit when time is sufficiently large. Afterwards we
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will prove that the solution to the original (un-approximated) fractional order SI model is bounded
by the LTE solution and this is simultaneously always smaller than the linear approximation, and
how the former approximation represents an upper bound to the evolution of the dynamics of the
PRN.

In the final discussion we will find that the appearance of the Mittag-Leffler functions in the
solution due to the introduction of the fractional-order derivatives to the SI model will give us an
additional parameter o which will help us better model long-range processes and phenomena in
different timescales without needing to modify the model or its parameters. One of the biggest
fields of application for these results is the aid in the selection of drug candidates for the treatment

of illnesses; one of which is Covid as is discussed in reference [1].



Resumen en castellano

(Abstract in Spanish to meet university requirements.)

Este documento recoge el proyecto de fin de grado del grado de matematicas por la Universidad
de Zaragoza del autor. En él se presentardn las derivadas de orden fraccionario, en particular
la derivada de Caputo, y su utilizacién en la definicién del modelo epidemioldgico susceptible-
infectado (SI) de orden fraccionario para el estudio de los procesos de difusién que tienen lugar en
las redes de residuos de proteinas (Protein Residue Networks), que denotaremos mediante PRN,
como recreacién del articulo de Abadias et Al de la referencia [1]. Trabajaremos con redes conexas
simples y simétricas para estudiar la propagacién de perturbaciones, donde a cada nodo 7 se le
asignara una probabilidad s;(t) de seguir siendo susceptible y otra x;(t) para denotar la posibilidad
que ya haya sido perturbado a tiempo ¢, de manera que s;(t) + x;(t) = 1.

Comenzaremos el trabajo con una breve seccién de resultados preliminares como la derivada
de una serie escalar o la definicién de la funcién exponencial tanto escalar como matricial, y de-
mostraremos que la tltima de las cuales es solucion de un sistema de ecuaciones diferenciales lineales
de primer orden. A continuacién se proporcionaran las definiciones de las dos funciones integrales
Eulerianas: las funciones Gamma y Beta, y se discutiran propiedades conocidas como la extensién
de la formula de Stirling a ntimeros reales positivos mediante la funcién Gamma o el cociente que
relaciona la funcién Beta con la Gamma.

Una vez visto esto se definira la funciéon Mittag-Leffler de parametro o« > 0 como una general-
izacién de la exponencial, y cuya variable tomara valores en el plano complejo C, y se extendera
la definicién al caso matricial como la funcién del producto de una matriz compleja constante por
nuestra variable para probar su convergencia en la totalidad del plano. Tras ello disminuiremos
la extensién de los resultados a la recta real y definiremos la integral de orden fraccionario v > 0
como una generalizacion de la formula de Cauchy para la integracién repetida, y la derivada frac-
cionaria de Caputo junto a algunas de sus propiedades més elementales que serdn necesarias para
las demostraciones posteriores.

Una vez se hayan establecido estos resultados comenzaremos con la definicién del modelo SI
clésico junto con su relacién a los PRNs mencionados arriba que se estudian en el articulo [1], ademds
de comentar la matriz de adyacencia A que representard la red a estudiar. En lugar de buscar la
solucién para dicho modelo proporcionaremos dos aproximaciones a esta mediante transformaciones
al sistema de ecuaciones que se discutiran y explicaran brevemente. Esto dara paso a la introduccion
del modelo SI de orden fraccionario mediante la inclusién de la derivada de Caputo tal y como se

hace en nuestro articulo de referencia [1], y veremos que las dos transformaciones que se realizaron

iii
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en el caso clasico también nos daran aproximaciones analogas a la solucion del caso fraccionario;
que resultaran necesarias al no ser nuestro modelo fraccionario resoluble analiticamente. Dichas
aproximaciones incluyen una lineal, y la transformacién Lee-Tenneti-Eun (LTE), llamada asi en
honor a los autores que la usaron por primera vez. Veremos que ambas aproximaciones estaran
estrechamente relacionadas con la funcién Mittag-Leffler, y probaremos convergencia para ambas,
ademds de estudiar cualitativamente su comportamiento, principalmente en lo referido a tiempos
grandes. Tras esto realizaremos una comparativa de la solucién del problema fraccionario original
y las dos aproximaciones, y veremos que la aproximacién proporcionada por la transformacién LTE
representa una cota superior de la solucién original y por tanto puede entenderse como el caso de
difusién de perturbaciones més veloz en la PRN.

Finalmente comentaremos la interpretacién fisica de la apariciéon de la funcion Mittag-Leffler
como solucion al modelo como consecuencia de haber introducido la derivada fraccionaria de Caputo,
en especial en lo que refiere al pardmetro . Veremos que dicho parametro nos permitird modelar
comportamientos y fenémenos a distintas escalas de tiempo o efectos de distinto rango espacial sin
necesidad de adaptar los pardametros del modelo SI. Uno de los mayores campos de aplicacién de
dichos resultados (y por tanto de las derivadas fraccionaras en sistemas de ecuaciones diferenciales)
es el estudio de posibles drogas para el tratamiento de enfermedades, tal y como el Covid como se
discute en el articulo [1].
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Chapter 1

Preliminary Results

1.1 The exponential function

1.1.1 The complex exponential function

One way to define the exponential function would be to describe it as the function equal to its
derivative, or in slightly more general terms, given a € C, the solution to the following differential
equation. P
af(z):af(z), ze€C. (1.1)

We want to be able to write this function as a series, as many properties in analysis are consid-
erably more straightforward when one considers the series representation.

Proposition 1.1. Let f: C — C be an analytic function with the series representation
o
= Zan(z o), Vz € B(c,R) (1.2)

where c € C, R€ R and B(c,R) ={z € C: |z —¢| < R}. R is called the radius of convergence.
Then the derivative of f is given by the following series.

[e.e]

f(2)=> (n+Dapn(z—0)", Vz€B(,R). (1.3)
n=0
Remark. The proposition doesn’t say anything about whether the result holds on the border of the
convergence disk, 0B(¢, R) = {z € C : |z — ¢| = R}, but in this document we will be working with
series convergent on the whole plane (R = 00), so these border effects won’t concern us.

k
Proposition 1.2. For any a € C, the function e** =Y 7~ (a:!) , z € C, is the solution to equation

(1.1) with initial value f(0) = 1.
It is called the exponential function, and it converges for all z € C.

Proof. We will simply compute the derivative of the series as per (1.1), knowing that R = occ.

k+1

8 fo > > (az)k
(2) (923 k:' kg k—l—l :akg (k") =af(z), zeC,
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and f(0) = 1.
In regards to convergence of the series, we will see in the next chapter (Proposition 2.1) a
generalised result which will imply convergence on the whole plane. O

Remark. The solution to equation (1.1) with initial value f(zp) = fo is f(2) = foe®*=%0),

1.1.2 The matricial exponential function

Once we have seen the exponential function f : C — C we are going to define its matrix counterpart.

Definition (Matricial exponential function). Let A € C™*™ be a constant complex matrix of
dimension n by n, for some n € N. Then the matrix exponential is a function f: C — C™*" given
by

o > k
f(z):eZA:kZO(;:!) ,  zeC, (1.4)

which is convergent at all z € C.

Proof. Proof of the convergence will become apparent once we see a generalised result in chapter 2.
O

Proposition 1.3. Consider f : (0,00) — R™, with f(t) = (fi(t),..., fa(t)) such that f;: (0,00) —
R are derivable for alli=1,...,n, t > 0. Consider also a matrix A € C"*",

The multivariate linear initial-value problem

Dy f(t) = Af(t), t>0,
f(0) = v,

where we denote by Dy the derivative operator with respect to t, and v € R"™, has solution
f(t) = e, t>0.

Proof. Firstly, notice that each component of the solution f is given by f;(t) = e;—e“‘v, with e; the
i-th vector of the canonical basis of R”, and that the equation D,f(t) = Af(t) can be rewritten as

Dy fi(t) = Ai1 f1(t) + - - + Ainfu(t) fori=1,...,n, t>0.

Let us compute then both sides of the equality.
o0 o0
Ak AF) v
Dus (0= Dy (Te40) = Dy [ S04 ) — thk(k‘) s,
k=0 =0

where by (B); we denote the i-th row of a matrix B. Note that we now have a scalar series. To be

able to apply Proposition 1.1 we are going to see that it converges for all ¢t > 0.

(Ak)iv

> (AF)1
§mjax{‘(v)j‘} g tk(k')l’ t >0,
k=0 )
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where (v); denotes the j-th component of v and 1 is the 1s vector. The above sum converges with

the same radius of convergence as the exponential function. Hence

N k(A’““)iv @)
=0 =0

And the right-hand side:

ZAJf] ZA”<eJTetAv> ZAJZtk j
J=1

tkA Ak+1)

—Z = Zt

(Y

t>0.

The swap of sum and series in x is not problematic as we know that the series converges regardless
of the value of ¢ (the product by ejT and v will only make the result a scalar rather than a matrix,
but they won’t influence convergence, as they are constant).

Hence we obtain that in fact Dy fi(t) = 372, A;;fj(t) is true for every i = 1,...,n, and for
every t > 0. Checking f(0) = v is trivial (remember that the exponential of the 0 matrix is the
corresponding identity matrix), and therefore the proposition is proved. O

Remark. If the initial conditions were at an arbitrary time ty € R with the differential equation
true for every t > tg then the result and proof would be analogous working with ¢ — ¢y instead of t.

1.2 The Stirling formula

The Stirling Formula is a very well known formula that states that for n € N, as n — oo,

nl ~ 2wn<n>n. (1.5)

e

Definition (The Euler Gamma function). The Euler gamma function I' : (0,00) — R is most

commonly defined as follows
Imo:/ t"le7tdt, x>0. (1.6)
0

It is an extension of the factorial to the positive real numbers, and as such has been given a
broad array of equivalent definitions. Reference [2] collects many of them, as well as proving their

equivalence.

Proposition 1.4. Stirling’s formula can be extended to the I' function as follows,

x
lim I'(z 4+ 1) = V27z (x) , for any x >0 . (1.7)
e

T—r00
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Proof. We are going to follow reference [3] for a short proof. Let us begin with the integral definition

(1.6) and perform a change of variable ¢t = u?, which gives us

2

o0 (o)
I'(z) :/ t*letdt = 2/ u? e duy | x>0.
0 0

With this, consider now the quotient below and a second change of variable u = \/x + v in *.

T T 0o 2x—1 00 2x—1
(z)e"Va 9 i ( u > du 2/ o 20T (1 n ”) o~y
0 e _JE Ve

If we extend the above integration interval to the whole real line we can define the function

II*

x$

2z—1
_ —2vy/T v
pol0) =Xy (14 22) L as 0,

where x7(v) is the characteristic function of interval I, allowing us to write the integral as
P xT o0
Llw)etve = 2 cpz(v)e_”2dv , x>0. (1.8)
x® — 00

Let us study the function ¢, (v). Note that it is positive, continuous and derivable on (—+/z, 00),
and it is also easy to see that ¢ (v) — 0 when v — oo for any fixed . For x > 1/2, lim ¢, (v) when
v — —/z " exists and is 0, and thus ¢, (v) will be a bounded function. We see below that it reaches
its maximum at v = —(2,/z)"! for x > 1/2,

P (V) = @u(v) [—2\/:E+ (22 —1) <1+ \;’5>_1 <\}5)] = = p=-—— T> = .

s <—2;5> :e<1_21$>2x_1 <e=. (1.9)

Let us now study its behaviour with respect to x. For a fixed v € [—/z,00), when v << z (that

Said maximum is

is, as © — 00), we have that

5)-

:_2v\/5+(2x—1)[\/5—2m+... :—02+O<\/15>, x>0,

where we have used the plynomial approximation of log(1l+y) for y close to 0. This makes

log 0. (v) = —2vy/x + (22 — 1) log(l +

2 _y . .
V" as the characteristic function interval

limg 00 log oz (v) = —v? and thus lim, o . (v) = e~
will tend to the complete real line.

As the bound @ is constant and our integral (1.8) is of ¢, (v)e™" with respect to v, where we
know that %" is integrable over R, by the Dominated Convergence Theorem we can swap the limit

with the integral sign when taking the limit of (1.8). Hence,

1—‘ x o0 o0 1
lim Llz)etv =2 lm g (v)e  dv = 2/ e 2 do | x>
—0o0

T—00 T o TTOO
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Now we only need to compute the value of the integral.
o) 02 00 902 0o \/i L
2/ e “"dv :4/ e " dv :4/ L2 emtdt = V20(12) = V2r .
—00 0 0
4
This gives us (1.7), knowing I'(z + 1) = zI'(x) for any = > 0. O

1.3 The Euler Beta function

Definition (The Euler Beta function). The Euler Beta function, otherwise known as the Eulerian

integral of first kind, is given by
1
B(z,y) = / "1 — )y tde for any x,y > 0 . (1.10)
0

Proposition 1.5. For all xz,y > 0, it follows that

I'()I'(y)

B(z,y) = Tty

Proof. By equation (1.6) we can write

I'(x)'(y) :/ tz_le_tdt/ Ty_le_TdT:/ / e T by dedr
0 0 t=0 J7=0
00 %) ( ) t z—1 T y—1
= t7)tyle T t+ 7)dtd 0.
| et (o) (F5) atndr, s

Once we have obtained the above double integral we perform a change of variables to u = (t + 7)

and v = t—i%r This makes the integration domain change to (i, ) € [0,00) x [0, 1], and as
1 1
\detJ! = r t = )
o7 Twr|| ttT

where J is the Jacobian of the change of variables function, we get
00 1
(2)0(y) =/ / prty ey (1 — )Y dpdy
pn=0 J~v=0
o0

1
=/ Ou”y_le_“du/ va‘l(l — ) dy
p= Y=

=T(z+y)B(z,y), 2,y>0.

From where we get the equality of the proposition. O
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Chapter 2

Fractional Calculus

When one is first introduced to the concept of calculus they are initially taught about limits and
how the derivative of a function is the limit of its rate of change when the interval over which it is
studied tends to length zero. Only when this concept is understood is the integral introduced as
the right inverse of the derivative (although it is oftentimes described as a way to recover a function
from its derivative, save a constant, which refers to composition on the left of the derivative).

We will follow a different approach to fractional calculus. Our main goal is to define a fractional
derivative consistent with the existing whole derivative so that it can be used to solve fractional
differential problems. To do so, we will first define the fractional integral and then use it to consider
a derivative of order a > 0 as the integral of order m — « of the m-th whole derivative, with m € N
such that m — 1 <a <m.

Before we get into that, however, we introduce below the Mittag-Leffler function, which will be
closely related to the solution to the fractional differential equations.

2.1 The Mittag-Leffler function

Definition (The classical Mittag-Leffler function, E,(z)). Given o > 0, the Mittag-Leffler function
(ML function for short) of order « is the function defined by the following power series,

oo Zk
E,(2) ::kzow, z€C. (2.1)

We will see shortly that it is in fact a well defined function on the whole complex plane, which
makes it an entire function. It is easy to see that F1(z) = e*, given that I'(k + 1) = k! for k € Ny.
This makes the ML function a generalisation of the exponential function.

Proposition 2.1. Given n € N and A € C"*", the matricial Mittag-Leffler function Ey(zA) with

a >0, z € C, whose power series representation s
e k
zA
E F() zeC, (2.2)

converges absolutely and uniformly for any z € C.

7
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Proof. A series of matricial terms will converge to a matrix of the same dimension if all the elements

converge. In our case that is if

2F(AF),

’.7 C
(Fal ’J — I'(ak +1 S

converges for all 3,5 =1,...,n.

Notice that if we try to prove the result by the quotient criterion,

. (AR, P (a k+1)+1)’ I (ak+1) ‘ (AkH)i,j
lim = lim |z ‘
Zk<Ak)i’j/F(ak+1)‘ k—oo ( (k+1)+ 1) ‘(Ak)

)
k—o0

»]

we run into the problem that (A’“)Z ; could be 0 for some combination of k, 4, j, but not necessarily

),

all of them, giving us trouble with the behaviour of the limit. We are therefore going to use
Cauchy-Hadamard’s theorem, which states that the radius of convergence of a power series is given

by

1
R =

lim supy._,. |ax]

where a;, are the coefficients of the series. The theorem also states that if the limit in the denominator
is oo then R = 0, and if it is 0 then R = co. Thus, to prove that the series converges on the whole
plane we need to see that the limit is 0.

In our case a = ag;,; = % , which makes the radius of convergence depend on i and j.
We then would have to choose the radius of convergence of the matricial series R to be the smallest
radius of convergence of the individual elements: min, ; {Ri,j}- However, we can see by induction
that for all 7,5 = 1,...,n we have that

’(A’“) g b (2.3)

< n* T max{|4,,
a,b

Trivially, for k =1,

Ai,j‘ < maxg p{|Aqp|} for all 4,j. Assuming that the property holds for k — 1:

n n n
= ZA“ (Ak_l)l’j < Z ‘Ai,l"(Ak_l)lJ‘ < ercllalu)x{‘z‘la,b‘} nk=2 rréaéx{]Aa,b‘}kil
=1 =1 =1 ’
n
nk—2 I%%X{|Aa,b|}k21 = pkl H;%X{’Amd}k

Thus we can provide an upper bound of ’(Ak)”‘ which will provide us with a lower bound to

R; ; for all 4, j. If this bound makes the limit of ‘ak,i,j‘l/ * tend to 0 we will have found R. Observe

1/k

Ak)z‘ j
lim sup |a = limsup | ———>— < limsu
k—)oop ‘ * Zjl k—)oop F(O&k’ + 1) N k—)oop F(Oék‘ + 1)1/k

k-1 maxg p {]A 7

In
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Note that as o > 0, we have that ak + 1 > 0 for all k£ € Ny, which allows us to apply Stirling’s
approximation as seen in Proposition 1.4, eq (1.7), giving us

TLLEI mawa { ‘Aa,b| }

. 1 .
lim sup ‘ak’@ﬂ /e < lim sup

k—o0 k—00 <m (ak>ak> 1k

e

= nmax {|Aa,b]} lim sup [(2#)*i(ak)_(a+i)ea] =0,
a,b k—o00

foralli,j =1,...,n.

Hence R = oo for all elements of the matrix and thus the series representation of the matricial
Mittag-Leffler function is valid on the whole complex plane. Further, the series will converge
absolutely and uniformly on any compact set contained in C, and thus effectively on the whole
plane. O

For a more complete practical consideration of the Mittag-Leffler function see [4, Appendix EJ.

2.2 The Riemann-Liouville fractional order integral

Now we are going to turn our attention to functions defined over time, that is, for variables taking
values in Ry := {t € R: ¢ > 0}. To keep consistency with the physical application of this work we
will call the independent variable .

We now introduce the concept of fractional integral as a generalisation of Cauchy’s formula of
repeated integration (this is known as the Riemmann-Liouville fractional integral), along some of
its properties.

Definition (Riemann-Liouville Fractional Integral of order a > 0). Given o > 0, the R-L fractional
integral of a function f: Ry — R is given by

IFf(t) = 1 /t(t — 1) f(n)dr = (ha * f) (1), t>0, (2.4)
I'(a) Jo
where * denotes the convolution product and h(t) = % fort € Ry is the Gel’fand-Shilov function.
For completion, we also define I} as the identity operator to extend the definition to allow o > 0.
This is consistent with (2.4) as ho(t) = 6(t), the Dirac delta distribution, which is a particular case
of [4, eq 1.31] proven in reference [5].
Note that this definition requires f to be locally integrable in R,. We will denote the set of
locally integrable functions over Ry as .2l (Ry)

Proposition 2.2. The R-L fractional integral definition is consistent with the usual integral in the
sense of the addition semi-group property, which is, given o, 3 > 0,

Ifo Il =17 wt>o0.

Proof. It will be easier to prove the result using the convolution product definition.
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Let f € .,?ﬁc (R4). Then note that, expressed as a convolution product, the composition applied
to f is as follows,

(Itao If)f(t)z <Itao(lfof>>(t):(ha*(hg*f)>(t), £>0.

The convolution product is associative, so (ha x (hg * f)> (t) = <(ha x hg) * f) (t) and thus we
only need to prove that hq * hg = hoypg due to the local integrability of f. Note

R iop o A GO

. totp-1 /1 (1 B y)a,1 (y)ﬁfl dy Proposition 1.5 toath-1 F(a)l“(ﬂ)
L(@)I'(8) Jo L(e)I'(B) I'(a+B)
taJrﬁ*l
=—-==h t), t>0.
F(Oz + B) a—‘,—,B( )
where we have used the change of variable y = 7/t and the Eulerian integral of first kind. Thus this
result is valid for any «, 8 > 0. O
Remark. Note that the additive semigroup property I{* o If = I +h implies that the fractional

integral operator is commutative If* o Itﬁ = If o I on “good enough” functions (both the function
and its fractional order primitive have to be locally integrable), as we described in the proof. This
is also justified by the commutativity of the convolution product.

2.3 Fractional derivatives

Now that we have seen how we can define a fractional integral, let’s introduce the concept of a
fractional derivative. As we mentioned at the start of the chapter, the usual integral I is the right
inverse of the derivative D, as Do I =id but I o D gives us a collection of functions as solution, as
well as requiring different properties of the function we apply the operators to.

Following this train of thought the Riemann-Liouville fractional derivative of order o« > 0 is
introduced as gDy = D" o I]"™* where m € N such that m — 1 < a < m and where D}"
denotes the m-th time derivative operator (for m = 1 we will simply write D;). Alternatively we
can swap the derivative and the fractional integral to define the Caputo fractional derivative as
cDft = I %o D}, giving us a considerably different operator with different properties. For a short
comparison of the two see [4, section 1.2]. In this work we will consider exclusively the Caputo
derivative, so we will denote it by Dy".

2.3.1 The Caputo fractional order derivative

Definition (The Caputo fractional derivative of order @ > 0). Given o > 0 with m € N such that
m — 1 < a < m, the Caputo fractional derivative is defined as

Dyf(ty=1"""f™ ),  t>0.
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Notice that this definition requires the m-th derivative of f to be locally integrable. Then
Dy f(t) will be given by

1 A
if m-—1
F(m—a)/o (t—T)OH—l_de’ if m <a<m,

d”f
dgm

Dtozf(t): fort>0.

(t) , ifa=m,

To avoid making the language too dense we will shorten Caputo fractional derivative to simply
C-derivative. Also, for the remainder of the document we will work with values of 0 < a < 1, as
those are the ones we will consider when dealing with the SI model.

C-derivative of polynomials

Let us see now how the Caputo derivative acts on polynomials. Firstly note that
DY (f+9) () =L oDy (f+9)(t) =L, (f'+4¢) () = D} f(t) + Dig(t),  t>0,
and that, for K € R
Dy (Kf)(t) =1, "o Dy (Kf) () = KI;"* o Dy (f) (t) = KD f(t),  t>0.

So it’s enough to study the derivative’s effect on monomials. To generalise the result we will

consider any power vy € [0,00). Further, as we justified above, we are only interested in 0 < a < 1.

Proposition 2.3. For0 < a <1 and v >0,

(o7

D 2 (2 0
- >0,
! (F(’Hl)) T(y—a+1)

In the case of v = 0 then D (tY) = 0 for any a.

Proof. Let’s see first the case of v = 0. Trivially D (t) = I} o Dy(1) = I}7*(0) = 0.
Take now « > 0. Then

e} 7 _ 7l /ytw_l _ g ! T —oz,,_’y—l T
2 (55 ) = <r<v+1>> - T Toraa ¢

- r<{f$§1 - 2) /0 <1 - t> <t> 7

,Yt—a+’y

1
_ 1 — )(1=)=1 4-19
T(v+ L1 - a) /0 (1-y) y o

ot Tuarg) o o
Fy+1)M1l—a)T1—a+v) T(H—-a+l)’ '

Which is well defined as vy —a+1 >~ > 0. O

Remark. With a simple check one can see that this result is consistent with the whole derivative of

a monomial.
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A note on sign conservation

We state here this important proposition as we will be using it frequently during the next chapter.

Proposition 2.4. Let u: (0,00) — R be a derivable function. Then
Diu(t) >0, Vt>0 foranyone0<a<l = wu(t)>u(0), Vt>0.

Proof. Before we begin the proof remark that the convolution product of two positive functions is
necessarily positive, as all contributions to the integral are. Also, note that Dftu(t) > 0 can be
written as (hi—q * @) (¢t) > 0. With this in mind, we have

u(t) — u(0) :/0 W (7)dr = (hy ) (t) = (ha * hi_g xu') (t) >0, t>0,

where * is due to the property (hg * hy)(t) = hg~(t) we saw in the proof of Proposition 2.2. [

Note that the above does not prove that if the C-derivative of a function u is positive then u
is increasing, but rather that it is positive if it began at u(0) = 0. It is an important distinction,
as one could think that simply shifting the time origin and partitioning the time interval (0, ¢] into
many other sufficiently small ones ( {(0,t1], (t1,%2],..., (tn—1,t]} for 0 < t; < -+ < tp—1 < t)
we could prove monotonicity. This would be wrong, as the C-derivative, in particular due to the
RL-fractional integral, is not a local operator, but one that takes into account the whole interval
(0,].



Chapter 3

The fractional order SI model

Following the work in the article by Abadias et Al (reference [1]) we want to model the effect of an
inhibitor on a network of amino acids of a protein, which we will call a protein residue network, or
PRN in short. We know that said networks share information through a process called allostery,
which can communicate perturbations of the order of 1A up to a distance of 100A, and it has
been seen that these diffusion processes can be faithfully modelled after epidemiological contagion.
Hence, to study our PRNs we will use an adaptation of the Susceptible-Infected (SI) model which
will include the fractional order C-derivative we introduced in the previous chapter. We will see
the advantages of this inclusion in section 3.3. This choice of model is justified further in the

introduction of [1] and the references therein.

3.1 Classic SI model

To implement the model we will consider n amino acids, each of which can either be susceptible
to being perturbed or have already been perturbed by the inhibitor. These two values will be
represented by probabilities, which we will call s;(¢) and x;(t) respectively. Thus s;(t),z;(t) € [0,1]
and s;(t) + z;(t) = 1. An amino acid ¢ will become perturbed at rate 8 > 0 upon contact with an
already perturbed amino acid j to which it is connected. This dynamic is described by the following

equations

Dysi(t) = —psi(t)xi(t), t>0, s:(t)+ai(t)=1 Dys(t) = B (1 B :L‘Z(t)) wi(t), t>0.
Dyxi(t) = Bsi(t)x;(t) , t>0,
(3.1)
The PRN will be represented by an adjacency matrix A, which will be symmetric and whose
entries will be ones and zeroes to represent presence and lack of interaction between nodes. The
nodes represent the a-carbon of the amino acids of the modelled protein, and they will be considered
as interacting if the distance between them is smaller than a cut-off radius (in [1] it is taken as 7
A) It is important to remark that the matrix’s diagonal entries will all be null, as we will assume
that an amino acid cannot influence itself. Thus we can conclude that all eigenvalues of A will be
real and their sum will be 0. By construction A will not be the 0 matrix, so there will at least be

one non-zero positive eigenvalue; making A have a positive spectral radius. The creation of this

13
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matrix is more thoroughly detailed in [1, Sec. 2.1]. This allows to write the above formula as

Dyzi(t) = B (1 — ay(t ZAWJ;J . t>0. (3.2)

As we are going to be considering initial value problems (IVP from now on) we need to consider
initial conditions. We will choose all interactions to start at time ty5 = 0, and write zy to refer to
the state of the system at to. That is, o = x(0) € [0,1]”. This, in addition to writing (3.2) in

vector form, gives us our complete problem.

Dyx(t) = 8 (]In — diag (a:(t))) Az(t), t>0.

o (3.3)
xr =9 -

This IVP has been proved to be sufficiently well behaved in that the solution z will not exit
the [0, 1]™ set if it starts within it, which is consistent with the fact that it describes a collection of
probabilities. It is also known that its two steady points are the Os and 1s vector, representing lack
of and full contagion respectively, and that any node 7 that begins with perturbation probability 1
will remain there. Also, the solution is monotonically increasing as long as it is non trivial, and will
tend asymptotically to full contagion. The proofs for these statements are referenced in [1], but the
reader can convince themselves of their veracity quite easily looking at equation (3.1).

3.1.1 Approximating the solution

IVP (3.3) is a non-linear system of differential equations without an (apparent) analytic solution,
and thus we are looking to approximate it. To do so we return to the individual equations and

rewrite them as

1
thiL‘l BZAZ]x] — D, ( log(l — x;(t ) BZAU@ , t>0,
where we have noticed that the left-hand side is the derivative of the minus logarithm of 1 — z;(t).
This allows for a change of variable y;(t) = g (z;(t)) = —log(1 — z;(t)) for ¢ € Ry, which makes
the above

Dtyz BZA’Ljf y] ) ) t>07
7j=1
where f(y) = 1 — e is the inverse of g. Notice that this change of variable limits our choice of

initial conditions to the set [0,1)", but as we have discussed x;(0) = 1 is a stationary point anyways.

These can be written in vector form, giving us two equivalent statements

Dyg (x(t)) = BAx(2) , t>0, (3.4)
Dyy(t) = BAf(y(8)) ,  t>0. (3.5)

Remark. Here g and f have been extended to be functions from [0, 1)™ to [0, 00)™ and from [0, c0)™ to
[0, 1)™ respectively, rather than their original one-dimensional definition. Thus g(z) = —log(1 — x),
where the logarithm is applied element-wise, and f(z) = 1 —exp(—y), where the exponential is also

applied element-wise. 1 denotes the ones vector.
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Firstly we are going to consider a linear approximation to the solution by taking the first order
Taylor Polynomial of g centred at x. = 0 on equation (3.4). This is, it will be an approximation of
the solution for a wholly susceptible PRN with a small chance of proteins becoming perturbed. As

1
1— 2.

Again the inverse and square of a vector denotes the vector of operations taken element-wise.

g(z) = —log(1 — =) we have
T+ O(x2) 220

x.=0

Ty(z) = —log(1 — )

+ diag <

xe.=0

We arrive at a linear approximation which, together with the initial condition, gives us the

fOHOWing IVP.
D ./i} t — /31417 t 5 t > 0 3

which by Proposition 1.3 has solution
i) =€y,  t>0. (3.7)

We know that this solution diverges for at least some xy as A has a positive spectral radius,
which makes this approximation acceptable only in the earliest stages of the dynamics.

Let us see an improvement on this approximation, studying instead equation (3.5). We will
work with function f’s first order Taylor polynomial centred at y.. Note that our new variable
y € [0,00)", and we will allow any y,. from said set. As f'(y;) = e ¥ we have

Tt(y) = f(ye) + Df(ye)(y — ye) + O(y*) = 1 — exp(—yc) +H‘e—jfg<(yc))’ (Y —ve) -
Te n —dalag(Te

If we choose to centre the polynomial on y. = yp = g(z¢) we can approximate (3.5) to
Dyj(t) = BAxo + BA (§(t) —yo) = BAG + BAby, , >0,

where A = A (I, — diag (z0)) and by, = z¢ + (I, — diag (zo)) log(1 — z0).
This approximation, therefore, gives us the following IVP

Dyij(t) = BAG + BAby, ,  t>0,

N (3.8)
9(0) = yo = g(zo) -
Proposition 3.1. The solution to (3.8) is given by
Sy BtA - (/Bﬂk/ik—lAb S
g(t) = e g(x0) + 3 e,  £>0. (3.9)
k=1

Proof. Equation (3.8) is a first order linear differential system of equations and thus will have a
unique analytical solution. The expresion of () can be deduced using the variation of constants

method for ODEs, which is a fairly well known result and thus we won’t get into it here. O

The approximation to the solution to (3.3) will be easily recovered as & = f(3). We can see that
7 is positive for all positive values of ¢, and that it diverges, at least for some values of xg, when ¢
tends to infinity, which implies that & remains within the [0,1)" set and tends to 1 when ¢ goes to
infinity. This is an important improvement on (3.7).



16 Chapter 3. The fractional order SI model

3.2 Inclusion of the fractional derivative

Once we have seen the results of the classical model we want to expand them using fractional
derivatives. One could think that such extension of (3.1) would simply give us

Dai(t) = B (1 — (1)) z(t) t>0,

where the o exponent of 8 has been added to keep the equation dimensionally correct. This equation,
however, is rather uninteresting analytically as there isn’t too much we can do with it. Instead, we
will work with the following adaptation:

t #(7)
hi—olt —T)—2"2 dr = B%:.(t), t>0. 3.10
[ et =2 ar = )t (310)
This, together with the adjacency matrix and in vector form gives us the Fractional order SI
model.
Do (— log(1 — x(t))) = Deg (a(t)) = BAx(t), t>0, (3.11)
where we have used g(z) = —log(1 — x) as defined in the previous section. Alternatively, calling

y = g(z) and having f with f(y) = 1 — exp(—y) = x be the inverse of g again we can rewrite the
equation (3.11) as
Diy(t) = p*Af(y(®) , >0, (3.12)
which in reality is nothing but the fractional order derivative equivalent of equation (3.5).
We will take the same initial conditions as with the classic case, tg = 0 and z(0) = z¢ € [0, 1],
which will allow us to write the fractional order IVP that describes the dynamic in our PRN as
{ D2g (x(t)) = p*Ax(t), t>0,

2(0) = 20 (3.13)

We will also call y(0) = g(z¢) = yo € [0,00)™ as initial conditions when working with variable y.

Behaviour of the solution

Let us invest some time to talk about the behaviour of the solution z(¢) to (3.13).

Firstly notice that the right-hand side of (3.11) will be non-negative as long as all components of
x(t) are non-negative, which will be the case as we are looking for solutions representing probabilities
as we have discussed. Thus, by Proposition 2.4, —log(1 — z(t)) = 0, giving us that z(¢) = z(0) for
all ¢ > 0. Thus there exists ¢ > 0 for which x;(s) is non-decreasing for 0 < s < e. Now assume that

z;(0) =1 for some i € {1,...,n}. If z; increases then 1fé(j()s) < 0 for said s > 0. By (3.10) we have

that 126(?7) > 0 for s > 0 sufficiently close to 0, so we conclude that z}(¢) = 0, which will hold for
all £ > 0 and hence z} = 1 is an equilibrium point for x;(t). By the same argument with s;(¢) (see

(3.1)) ¥ = 0 is also an equilibrium point. It can be seen that z; won’t have 0 derivative for any
other value in (0,1), so 1 and 0 are the only equilibrium points.

With this, we can easily justify that for o € (0,1)" then x(¢) € (0,1)™ for all £ > 0: the solution
remains bounded and consistent with probabilities. Similarly, as z;(t) > z;(0) for all ¢ > 0, if
z;(0) € (0,1) then z;(¢) will necessarily tend to 1 as it’s the only accessible equilibrium point. This
makes z(t) — 1 asymptotically as t — oo.
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3.2.1 Linear approximation

As with the procedure we followed to approximate the solution in the classic case, we will first provide
a linear approximation to the solution of the fractional order SI model working with equation (3.11).
By the first order Taylor polynomial approximation of g we obtain the equation

DYE(t) = BYAE(t), t>0.

Proposition 3.2. For 0 < a < 1, the nitial value problem given by the equation above with the

same initial conditions as the original problem

Dyz(t) = BYAx(t) , t>0, (3.14)
i‘(O) = X9 , '
has solution -
5 N = (Bt)* A
i(t) = Eq (Bt)*A) x Z ak Ty t>0. (3.15)

k:O

Proof. Firstly note that for any a > 0, E, ((8t)*A) }t _o = I and thus #(0) = x, so the initial
condition is satisfied.

Recall that by Proposition 2.1 the series for E, ((Bt)aA) converges absolutely and uniformly on
the whole complex plane, and thus in particular for all ¢ > 0. Now let us take the C-derivative of
(3.15) to see that it is in fact a solution to (3.14):

~ i~ (ﬁt)o‘kAk Y > (IBt)akAk
k=0 k=0

Let us consider each element of the matrix individually, as both the derivative and integral of a
matrix are taken element-wise. That is

< (gpear) & (B0 (eF ake)) & pok (eFabe;)
Sl DI eyl KT D vy D D+ oy wa’” 20

k=0 k=0 k=0

which is an absolutely and uniformly convergent scalar series on s = t¢ € [0,00) C C for all
t > 0. If we take its derivative by Proposition 1.1 we can swap it with the summation, giving us
another convergent scalar series for all ¢ > 0. In particular, this new series will be analytic and thus
continuous. Therefore we know that the R-L integral of order 1 — « of this series will converge as
it is the convolution product of two continuous functions. That is,

o0 1 t ()
l1—a (k) — - ak—=1/y -«
I; kZ_ODt (b”k(t ) ) T —a) /0 wakakr (t—7) dr , t>0.

k=1

By Fubini’s theorem, to prove that we can swap the integral with the series it is enough to see

that
bz" ak t —
Z (1114}) (/0 Fok 1(t -7) Oéd7> < 00, forallt > 0. (3.17)
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Let’s work step by step. Firstly note that on account of the proof of Proposition 2.2 we have that
the integral above is equal to I'(ak)I'(1 — a)hq—1)41(t). This makes the series of (3.17) become

3 D(ak .
;‘bijkak’F(Oék ak— 1)+1 Z‘buk| T(a(h = 1 l)t (k—1) _

=2

=0

(k + 1) 1)tak

t .
i (k+1) ’ Mok + 1) 3 >0

Let’s study now the coefficients to find an upper bound to prove convergence. Notice that,
calling A = max,, {}Aa,b‘} we have

el AMle;| < el Ake,|
thanks to which we can write our bound:
b \P(a(’fﬂ) L1y BVl AR <3 O el — BnA|bis]
DT Tlak+1)  T(ak+1) = Tlak+1) okl
Implementing this into our original summation
[e.o] o o
alk+1)+1

D bigkan) ‘ (@k +) 3 Vi < 37 B byt = A S bt < oo, forall £ 0.
k=0 k=0 k=0

This proves the convergence of the series of (3.17) and thus we can apply Fubini’s theorem
individually on every matrix element of (3.16).

In the light of this result we can write the following,

Bt akAk > (5t>akAk
DO[ DO[ — DOC —
~ T(ak+1) | kzzo ‘\Tk+1))™

e toak
ak Ak Ha
= ADY | ————— t .
D8 t (F(ak+1)>$0’ >0

k=0
By Proposition 2.3, that is equal to

i Bk Ak tottD Ty = mAi (pr)orar z0 = BYAE, ((Bt)*A) zo = B*AZ(t)
P I(a(k—1)+1) T (ak +1) @ ’

which holds for every ¢ > 0 and is what we set out to prove. ]
Proposition 3.3. z(t) diverges for some xo € [0,1]™.

Proof. When we introduced the matrix A that describes the PRN we deduced that its spectral
radius was positive. Let us call A; that eigevalue and v; the eigenvector corresponding to A;. Then
we can consider the contribution of zy to vy as the standard scalar product (v, zg) = 2?21 V1,5 T0,j
and thus

0 t akAk 0 )k \k
Eq ((Bt)*A) (v1,z0)v1 = Z Bak 1) (v1, mo)v1 = Z I%(m,xo)m ; t>0.
=0 k=0
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We know that v; cannot be the trivial vector, and it will have at least one positive component
(if all are non-positive —v; will also be an eigenvector of eigenvalue A1). With v; we can also build
initial conditions xg € [0, 1] such that (vi,z¢) > 0: taking zp as v; with any negative components
made 0 (we could write xg; = max{v1;,0} ). If under these conditions we take the limit of the above
expression when ¢ tends to oo we get

— (Bt)FAY

lim #;(t) = lim )<U1,$0>U1,i =00,

t—o00 t—00 — F(ak +1
and thus the solution diverges. O

Proposition 3.4. Let B € [0,00)™*™ be a non-trivial symmetric matriz with all elements in its
diagonal 0. Then w(t) = Eq ((8t)*B) wo diverges when t tends to co for every wg € [0, 00)™ \ 0.

Proof. As B is symmetric all its eigenvalues Aq,...,\, are real, and given that its trace is 0,
>~ Ai = 0. Now, they cannot be all 0 as B is not the zero matrix, so there must be at least one
positive and at least one negative eigenvalue.

Let A\ be a negative eigenvalue of B and v its corresponding eigenvector. Then we can see that
E, (tB)v tends to 0 when ¢ tends to oo:

(Bt)ak:Bk: i t ak:)\k o0

Mg

E, (tB)v = »0v=0.
— I(ak + 1 Pt I(ak+1
Let now 0 > A, <--- < A, be all the negative eigenvalues of B, and v, ..., v, their correspond-
ing eigenvectors, with 2 < p < n. Then any non-trivial linear combination of them v = > _p QU

with o; € R must have at least one positive component and one negative component, that is, neither
v nor —v are in [0,00)" \ 0.

Let us see so by assuming without loss of generality that v € [0,00)™ \ 0 and reaching a contra-
diction. Then the k-th component of Bv is (Bv), = 2?21 Byjv; > 0 as all components of B are

positive. This means that
n

(Bu,v) = 3 (Bu);(v); 2 0.

=1

However, as B is symmetric its eigenvectors are orthogonal, which means that

(Bu,v) <BZO‘ZU’“ZO‘”}1> <z”: Oéi/\ivi7ialvl> = iiai&‘az@um = i)\iaf <0,
i=p l=p i=p

i=p l=p

which cannot be 0 as all A; < 0 and Z?:p a? > 0 or v would be the 0 vector. This clashes with our
previous result and we arrive at a contradiction.

We conclude then that any non-trivial linear combination of negative-eigenvector eigenvalues
will fall outside [0, 00)™*", implying that any wp € [0,00)™ \ 0 must have a contribution from a
positive-eigenvalue eigenvector, which will make w(t) diverge when t tends to infinity as we have
seen in Proposition 3.3.

For completion, if wy = 0 then w(t) = 0 for all ¢ > 0 and thus the solution will not diverge. [
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Corollary 3.5. Z(t) diverges for all xg € [0,1]™\ O.

Proof. A satisfies all conditions asked on B in the previous proposition, so we have that Z(t) =
E, ((Bt)*A) zo will diverge for all zg € [0,00)" \ 0, and in particular for all o € [0,1]™ \ 0. O

This implies that the solution to the linear approximation does not hold the property of con-
sistency with probabilities (z(t) € [0,1]" for any xg € [0,1]"), as we know it must. Thus, this
approximation will only really work in the earliest stages of the dynamic of an almost-uninfected
PRN (recall that the Taylor approximation of g was made around the 0 vector). We will provide a
better approximation in the next subsection.

3.2.2 LTE approximation

Let us again provide a more adequate approximation. Following the example of the classic model,
we will now work with (3.12) and use the first order Taylor polynomial of f. This transformation
is referred to as Lee-Tenneti-Eun (LTE) in reference [1], due to the authors by whom it was first
used.

Proposition 3.6. For 0 < a < 1, the LTE transformation, together with the initial conditions
yo = g(zg), where xg € [0,1)", gives us the following initial value problem

YAG(t) + B Aby, ,  t>0,
Yo = g(wo) ,

Dig(t)

20 (3.18)

where, if we call Q = (Hn — diag(:z:g)), we define A = AQ and byy = xo + Qlog(1 — zg) with the
logarithm taken element-wise, similar to what we defined for the classic case.

Its solution is

R a o (t k+1)AkA
>0 . .
gt) = <(Bt A) +kZ:0F Ny +1)b$0, t>0 (3.19)

Proof. Let’s first prove that g(t¢), in particular the second series term, converges. We will consider
the matricial sum (before multiplying by b,,). We have

[e.9]

2

=0

< (pt)* kYA
I (a(k+1)+1)

(,Bt a(k+1)AkA
T(a(k+1)+1)|

Ae{o,1)nxn Z (Bt)> 1) 4k A .
B [(ak+1)+1)’ -

k=0 k=0

where the absolute value denotes the operation element-wise.

AsQ = (]In — diag(wo)) is a diagonal matrix whose entries are given by a number between 0 and
1, QF will also be diagonal and all diagonal entries of Q¥ will be bound by 1. Thus we can write
QOF <1, (that is, the bound < holds element-wise) and we can therefore bound the series by

%0 o(k+1) Ak 4 ©o a(k+1) gk+1 > ak Ak
Z(t Z Bt . BOTA_p aea) 1, >0,
=0

I(a(k+1)+1) (a(k+1)+1) £=T(ak+1)

0 k=1

which we know converges absolutely and uniformly for all ¢ > 0.
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Having seen this we check that the initial condition is satisfied. Note that the second term of
(3.19) will be null for ¢ = 0, so we only have the contribution of the first. Again, the Mittag-Leffler
function at t = 0 corresponds with the identity matrix, and t“ will be well defined as a > 0.
Hence 9(0) = I,g(z0) + 0 = g(xo).

Let’s see now that y(¢) satisfies the differential equation of (3.18). We know that the C-derivative
of a sum is the sum of C-derivatives (see the considerations prior to Proposition 2.3), and by the
proof of Proposition 3.2 we know that D E, ((ﬂt)‘Vi) — B*AE, ((Bt)afl) Thus it is enough to
compute the C-derivative of the second term of (3.19).

=0

Knowing that the series converges absolutely and uniformly one can prove that the C-derivative
can be swapped with the summation following a similar procedure to that of the proof of Proposi-

tion 3.2 . Hence

o(k+1) AkA po(k+1)

ﬁt T pa(h 1) ik
D by = » BF DR AFAb,, , >0,
tz ak+1)+1) " kZO’B AT (alk+1)+1) °

and by Proposition 2.3 once again the above is equal to

tak

a(k+1) ik o : — (5t)akflk_lA
Zﬁ ( k+1)>AAbx°_ﬁAbx°+ﬁAZ< T (ak+ 1) b, 120,

which finally gives us that

- )
(Bt)h+1) Ak A alk+1) ik 4
Dy 0 bs *Abg, , t>0.
tkzzor(a(k+1)+1 =p4 Z k:+1)+1) o + 57 Abag

Therefore the C-derivative of the whole expression for g(¢) in (3.19) is

a aj o (BetVARA )
D¢ | B, ((Bt) A) 9(wo) + kz_o I(a(k+1)+1) )

(5t) k—i—l)Ak:A
prd I (a(k+1)+1)

—3*A | B, ((m)a/i) (o) Ly buy | +B8%Aby, . t>0.

From where we conclude that (3.19) satisfies (3.18) and thus it is its solution. O

The approximation to the solution of the original problem (3.11) can be recovered as & = f(9).
We will study its behaviour in subsection 3.2.3.

Proposition 3.7. If one considers a PRN where there is certainty that no protein has been perturbed
(that is, where xo € [0,1)") the solution y(t) to (3.18) can be rewritten in a more illustrative way:

0 — g(z0) + [EQJ (0" 4) - Hn] Olag . £>0. (3.20)
zo€[0,1)"

Proof. Remember that 2 = I, — diag(z), which means that Q! will exist only for ¢ € [0,1)" and
will be given by a diagonal matrix with elements (Q_l)“ = (1 — z0;)~'. Under these conditions
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one can write (3.19) as

X 0 (ﬁt) k+1)Ak+1 B
t - Ea, t A + Q o)
o ((Bt)4) g(o) Y kT 1)
akAk
= Ea ((80)*4) a(ao) + Z Fﬁik Ty e
~ E, (Bt)o‘/l) [g(;ro) n Q_lbxo] - Q_lbzo . 1>0.

Taking into account Q@ 'by, = Q7! [zg + Qlog(1 — zo)] = @ 'zg — g(xo) we arrive at equation
(3.20). 0

Note that both g(zg) and 21z are vectors positive in all components, in addition to A having
a positive spectral radius. By the same arguments as Proposition 3.3 we can expect g(t) to diverge
when ¢ tends to co for some values of zg, meaning that &(t) = f (9(¢)) will tend to 1. This
is exactly the dynamic we expected from the classic system, so this approximation represents a
consistent result. We will see in the next section that g(¢) will diverge for every zy € [0,1)", as we
did for Z(t), and that &(t) will represent the fastest-perturbation-spread scenario: x(t) < &(t) for
any xo € [0,1]™.

3.2.3 Comparison of the solutions

Theorem 3.8. Let 0 < a < 1, and let us denote by z(t) the solution to our original unapproximated
initial value problem (3.13) and an initial condition xq € [0,1]™.

Let also Z(t) and &(t) = f (4(t)) be the solutions to the linear approzimation (IVP 3.14) and
the LTE transformation (IVP 3.18) respectively, all with the same initial conditions x.

Then

o(t) < &) < @(t), t>0. (3.21)

Proof. Let us begin with the first inequality. Let g and f be given as they have been throughout
the document (see between eq (3.11) and eq (3.12)), and define u : [0, 00) — R™ as u(t) = g (&(t)) —
g (z(t)) = 4(t) — y(t). As both the IVPs have the same initial conditions, u(0) = 0. We want to see
that Du(t) = 0 for all ¢ € Ry, so that by Proposition 2.4 applied individually on each component
we will have §(t) = y(t) and therefore, as f(y) = 1 —exp(—y) is a monotonously increasing function
in every variable, that z(t) > z(¢) for all ¢ > 0.

Thus we have to see whether D{'y(t) < D¢y(t). By (3.12) and (3.18) we have that

Dy(t) = BAf(y(t)) , and Dg(t) = BYAg(t) + f*Aby, ,  both for t >0,

respectively, where (3.18) is the LTE approximation of (3.12) which we got by taking the first
order Taylor Polynomial of f centred at yy. We can then simply study the hessian of f, which by
the definition of f will either be definite positive, definite negative, or the zero matrix (recall that
our vectorial f was the extension of a scalar f acting separately on every variable). The second
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derivative of scalar f(t) =1—e ¥ is f’(y) = —e~¥ < 0 for all y € [0, 00), making the hessian of our
vectorial f definite negative, and thus f a concave function. This means that

BEAS (y(t)) = BAy(t) + B*Aby, , forallt>0,

giving us the sought after inequality: Dy (t) < D9(t) and thus z(t) < #(t) for any ¢ > 0.
Let us see the second inequality now. Firstly, we know that

Dpa(t) = DY F(H®) = (hia * 5D D) (1) 2 (haoax Di) (1) = DLy, >0,

where by D,y we denote the component-wise whole derivative vector of g, which we know by (3.19)
exists and is non-negative for all ¢ € R4.. Thus the inequality e~9128) D,g < D,3.
Let us work then with Df*gy(t), which by (3.18) and (3.19) is

o aAn o a A a = (t k+1)AkA o
DPjt) = BAQ(®) + B by = 574 | Ba ((86)°A) g(e0) + 1 £ oy Tyt | 0 A
k=0

(Bt) o(k+1) Ak—H
U (a(k+1)+1)

= 8"AE, ((8t)"A) g(wo) + B Z

k=0
— B“AE, ((ﬂt)"‘/l) glzo) + B* [Ea ((Bt)a/i> _ Hn} Abg, + 5% Aby,

o ((m)%) A [Qg(0) + bay| = B Ea ((ﬁt)%i) Az, t>0.

Abg, + % Aby,

On the other hand, by (3.14) and (3.15) we know that D{@(t) = B*AE, ((8t)*A) zg for ¢t > 0.
Recall that we defined Q = diag(1 — zg), so 0 < Q <[, and thus 0 < A=< Aand 0= AF < AF for
k € Np. Hence

(ﬁt)akAk ( )akAk 515 akAk o akAk
< >0.
Dlak+ 1) = D(akt1) "m0 = ZFak—i—l ];0 T(ak + 1 t=0
and thus
E, ((ﬁt)“/l) < E, ((B)°A) , t>0.

From where we conclude that D{z(t) < Dfg(t) < D¢z (t) with ¢ > 0. Once again by Proposi-
tion 2.4 component-wisely, taking u(t) = Z(t) — &(t), we can write &(t) < Z(t), which completes the
proof for x(t) < z(t) = &(t) for t > 0. The case for ¢ = 0 holds trivially, hence giving us equation
(3.21). O

Let us see now that Z(t) will not tend to 0 for any zg € [0, 1]".
Proposition 3.9. §(t) diverges for all z¢ € [0,1)™\ O.

Proof. Let us define A = QA = QAQ. This makes A a symmetric matrix in [0, 1]"*™ C [0, co)™*"
with its diagonal elements 0, making A satisfy the hypothesis on B of Proposition 3.4. Notice that
A < A < A aswell.
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Having seen this, we define Z(t) as the solution to the linear ivp given below.

DOE(t) = BAZ(t), t>0,
Z(0) = z0 ,

which by Proposition 3.2 is
2(t) = Eq ((m)aﬁ) zo, t>0.

By the above, and as we have seen in the proof of the previous theorem we have
DO (t) = BE, ((m)%@) Azg, t>0,
DYi(t) = B°Ea (B A) Azo,  ¢>0,

meaning that we can provide a lower found to the C-derivative of y(t): Df@(t) < Dy(t) for t > 0,
as A <= A < A. By Theorem 2.4 this implies that Z(t) < §(t) for all ¢ > 0, and by Theorem 3.4 we
know that Z(t) diverges for all xy € [0,00)™ \ 0. Hence ¢(t) also will for any z¢ € [0,1)™\ 0. O

For completeness, in the case z;(0) = (z0); = 1 we would have (Q(O))l = 00.
Corollary 3.10. H:E(t) - 1:(75)” 4 50 and Hi(t) - x(t)” 40 for all initial conditions zo € [0, 1]™.

Proof. We have seen in Corollary 3.5 and Proposition 3.9 that both Z(¢) and y(t) diverge for all
initial conditions, which means that #(t) tends to 1. We also saw in page 16 that the solution x(t)
to our original PRN problem converges monotonically to 1 when ¢ is sufficiently large. Hence the
limits above. O

These results imply that & will behave in all the ways that we managed to characterise the
solution to our original problem (3.13), and thus it can be interpreted as a fastest-spread-case
scenario of the perturbation in our PRN rather than an approximation of its solution. Thus we will
be able to work with it instead of the solution to the original IVP, which we haven’t been able to
find analytically.

3.3 Why fractional derivatives?

Why is there a need to include fractional derivatives? What benefit do we get from working with
them? Let us discuss now how this work improves the solution to the classic SI model.

When one considers a connected network given by an adjacency matrix A € {0,1}"*", A;; can
be seen as the amount of paths of length one that allow getting from node ¢ to node j. Similarly,
it is known that if we take the k-th power of matrix A then the element (Ak)l.j will instead be
the number of paths of length k£ from node ¢ to j. Given this interpretation, one could consider

4 as a weighted sum of all possible paths of any length, where

the matricial exponential function e”
paths of length k are weighted by wy = »*/k! = v*/r(k+1). This heavily penalises long paths due to
how rapidly the factorial increases, being the weight 0.502 for length 2 but 0.044 for length 4 or

even 0.0014° for length 6, an effect which becomes even stronger if v < 1.



Fractional Matricial Calculus for SI models - Jorge Paz-Penuelas Olivan 25

Further, comparing the above with the approximations to the classic SI-model (eq (3.7) or
(3.9)), one can see that v = St is proportional to the time, so the solution will be useful only within
a certain timescale. It would be necessary to change parameters of the dynamics (namely ) to
describe processes spanning different times.

These two properties clash with the biological diffusion phenomena that PRNs undergo. Without
getting here into details, we would find useful to be able to model effects taking place in different
timescales or with different spatial reaches.

The appearance of the Mittag-Lefller functions in the solution of the model through the usage
of the C-derivative introduces the parameter 0 < a < 1 in the solution, allowing us to adjust its
value to accommodate for both these effects without having to change the model parameters. Say,
a o ﬁ k Ak

Ot t “
((6)°4) z; I(ak +1) t20,
we can tweak the value of a to change the weights given to each path length, which will become
wy, = v**/I(ak+1). As an example, with an a value of 0.5 the weights become v, 0.50% and 0.1613
for lengths 2, 4 and 6 respectively. Notice that not only the individual penalisation for length
has reduced, but the ratio of penalisation as well, allowing us to model further-reaching effects.
Similarly with the contribution of time through v.

Despite our found solutions to the approximations, and the upper bound proved for the original
IVP describing the PRN, not being exactly the Mittag-Leffler function above, we have seen that
it plays a crucial part in the expressions of Z(¢) and more importantly Z(¢) = f (Q(t)) Therefore
these effects will directly influence the behaviour of our descriptions even if not exactly as described
here, and now we can understand the meaning of () as written in Proposition 3.7 more deeply
and venture what the implications on Z(t) are.

In all, the introduction of a fractional order model and with it the Mittag-Leffler function allows
us to have a finer control on the spatial reach and the timescale of the phenomena we would wish

to study thanks to the additional parameter it introduces to the solution of the classical model.
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