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Abstract

(El resumen en castellano se encuentra más abajo en la página iii.)

The current work is a final project of the Mathematics undergrad course at the university of

Zaragoza. It introduces and explores the usage of fractional-order derivatives, in particular the

Caputo derivative, for the study of a fractional-order susceptible-infected (SI) epidemiology model

for the diffusion processes of a Protein Residue Network (PRN), as a recreation of the work of

Abad́ıas et Al in reference [1]. We will be working with simple symmetric connected networks

to study perturbation spread, where each node i will be assigned a probability si(t) of still being

susceptible and another xi(t) of having been perturbed at time t (this makes si(t) + xi(t) = 1).

We will begin by introducing a few preliminary results such as scalar series derivation and the

scalar and matricial versions of the exponential function, and we will see that they are the solution

to a system of first-order linear differential equations. We will continue by introducing the two

Eulerian integrals: the Beta and Gamma functions, and prove a few properties they satisfy, namely

the Stirling formula’s extension to the real line and the relationship between the Beta and Gamma

functions, that will prove necessary for the remainder of the work.

After these preliminary results we will proceed with defining the Mittag-Leffler function of

parameter α > 0 and variable taking values in C as a generalisation of the exponential, to afterwards

extend it to its complex matricial analogue and prove its convergence on the whole complex plane

C. Thereafter we will focus the scope of the work back to the real line and define the Riemman-

Liouville fractional order integral and the Caputo fractional order derivative along once again with

a discussion of a few of their most basic properties necessary for the statements that will follow.

Once this framework has been established we will proceed with the definition of the classical SI

model and state its relationship with the PRNs that reference [1] studies, together with an intro-

duction of the adjacency matrix A we will be using to represent the network. Rather than solving

this model we provide two approximations to the solution through two different transformations

to the differential equation system, which we justify and discuss briefly. This will be followed by

the introduction of our fractional-order adaptation of the classical SI model as done in article [1]

and we will see that the two approximations done to the classic model will also give us analogous

approximations to the solution of the fractional order model; which will be necessary as we won’t be

able to solve the new model analytically. These two approximations are a linear one and the Lee-

Tenneti-Eun (LTE) transformation, named after the authors by whom it was first used, and both

rely heavily on the Mittag-Leffler functions. We will prove convergence for both approximations and

discuss their qualitative behaviour, mainly their limit when time is sufficiently large. Afterwards we
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ii Abstract

will prove that the solution to the original (un-approximated) fractional order SI model is bounded

by the LTE solution and this is simultaneously always smaller than the linear approximation, and

how the former approximation represents an upper bound to the evolution of the dynamics of the

PRN.

In the final discussion we will find that the appearance of the Mittag-Leffler functions in the

solution due to the introduction of the fractional-order derivatives to the SI model will give us an

additional parameter α which will help us better model long-range processes and phenomena in

different timescales without needing to modify the model or its parameters. One of the biggest

fields of application for these results is the aid in the selection of drug candidates for the treatment

of illnesses; one of which is Covid as is discussed in reference [1].



Resumen en castellano

(Abstract in Spanish to meet university requirements.)

Este documento recoge el proyecto de fin de grado del grado de matemáticas por la Universidad

de Zaragoza del autor. En él se presentarán las derivadas de orden fraccionario, en particular

la derivada de Caputo, y su utilización en la definición del modelo epidemiológico susceptible-

infectado (SI) de orden fraccionario para el estudio de los procesos de difusión que tienen lugar en

las redes de residuos de protéınas (Protein Residue Networks), que denotaremos mediante PRN,

como recreación del art́ıculo de Abad́ıas et Al de la referencia [1]. Trabajaremos con redes conexas

simples y simétricas para estudiar la propagación de perturbaciones, donde a cada nodo i se le

asignará una probabilidad si(t) de seguir siendo susceptible y otra xi(t) para denotar la posibilidad

que ya haya sido perturbado a tiempo t, de manera que si(t) + xi(t) = 1.

Comenzaremos el trabajo con una breve sección de resultados preliminares como la derivada

de una serie escalar o la definición de la función exponencial tanto escalar como matricial, y de-

mostraremos que la última de las cuales es solución de un sistema de ecuaciones diferenciales lineales

de primer orden. A continuación se proporcionarán las definiciones de las dos funciones integrales

Eulerianas: las funciones Gamma y Beta, y se discutirán propiedades conocidas como la extensión

de la fórmula de Stirling a números reales positivos mediante la función Gamma o el cociente que

relaciona la función Beta con la Gamma.

Una vez visto esto se definirá la función Mittag-Leffler de parámetro α > 0 como una general-

ización de la exponencial, y cuya variable tomará valores en el plano complejo C, y se extenderá

la definición al caso matricial como la función del producto de una matriz compleja constante por

nuestra variable para probar su convergencia en la totalidad del plano. Tras ello disminuiremos

la extensión de los resultados a la recta real y definiremos la integral de orden fraccionario α > 0

como una generalización de la formula de Cauchy para la integración repetida, y la derivada frac-

cionaria de Caputo junto a algunas de sus propiedades más elementales que serán necesarias para

las demostraciones posteriores.

Una vez se hayan establecido estos resultados comenzaremos con la definición del modelo SI

clásico junto con su relación a los PRNs mencionados arriba que se estudian en el art́ıculo [1], además

de comentar la matriz de adyacencia A que representará la red a estudiar. En lugar de buscar la

solución para dicho modelo proporcionaremos dos aproximaciones a esta mediante transformaciones

al sistema de ecuaciones que se discutirán y explicarán brevemente. Esto dará paso a la introducción

del modelo SI de orden fraccionario mediante la inclusión de la derivada de Caputo tal y como se

hace en nuestro art́ıculo de referencia [1], y veremos que las dos transformaciones que se realizaron
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iv Resumen en castellano

en el caso clásico también nos darán aproximaciones análogas a la solución del caso fraccionario;

que resultarán necesarias al no ser nuestro modelo fraccionario resoluble anaĺıticamente. Dichas

aproximaciones incluyen una lineal, y la transformación Lee-Tenneti-Eun (LTE), llamada aśı en

honor a los autores que la usaron por primera vez. Veremos que ambas aproximaciones estarán

estrechamente relacionadas con la función Mittag-Leffler, y probaremos convergencia para ambas,

además de estudiar cualitativamente su comportamiento, principalmente en lo referido a tiempos

grandes. Tras esto realizaremos una comparativa de la solución del problema fraccionario original

y las dos aproximaciones, y veremos que la aproximación proporcionada por la transformación LTE

representa una cota superior de la solución original y por tanto puede entenderse como el caso de

difusión de perturbaciones más veloz en la PRN.

Finalmente comentaremos la interpretación f́ısica de la aparición de la función Mittag-Leffler

como solución al modelo como consecuencia de haber introducido la derivada fraccionaria de Caputo,

en especial en lo que refiere al parámetro α. Veremos que dicho parámetro nos permitirá modelar

comportamientos y fenómenos a distintas escalas de tiempo o efectos de distinto rango espacial sin

necesidad de adaptar los parámetros del modelo SI. Uno de los mayores campos de aplicación de

dichos resultados (y por tanto de las derivadas fraccionaras en sistemas de ecuaciones diferenciales)

es el estudio de posibles drogas para el tratamiento de enfermedades, tal y como el Covid como se

discute en el art́ıculo [1].
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Chapter 1

Preliminary Results

1.1 The exponential function

1.1.1 The complex exponential function

One way to define the exponential function would be to describe it as the function equal to its

derivative, or in slightly more general terms, given a ∈ C, the solution to the following differential

equation.
∂

∂z
f(z) = af(z) , z ∈ C . (1.1)

We want to be able to write this function as a series, as many properties in analysis are consid-

erably more straightforward when one considers the series representation.

Proposition 1.1. Let f : C → C be an analytic function with the series representation

f(z) =

∞∑
n=0

an(z − c)n , ∀z ∈ B(c,R) , (1.2)

where c ∈ C, R ∈ R and B(c,R) = {z ∈ C : |z − c| < R}. R is called the radius of convergence.

Then the derivative of f is given by the following series.

f ′(z) =

∞∑
n=0

(n+ 1)an+1(z − c)n , ∀z ∈ B(c,R) . (1.3)

Remark. The proposition doesn’t say anything about whether the result holds on the border of the

convergence disk, ∂B(c,R) = {z ∈ C : |z − c| = R}, but in this document we will be working with

series convergent on the whole plane (R = ∞), so these border effects won’t concern us.

Proposition 1.2. For any a ∈ C, the function eaz =
∑∞

k=0
(az)k

k! , z ∈ C, is the solution to equation

(1.1) with initial value f(0) = 1.

It is called the exponential function, and it converges for all z ∈ C.

Proof. We will simply compute the derivative of the series as per (1.1), knowing that R = ∞.

∂

∂z
f(z) =

∂

∂z

∞∑
k=0

(az)k

k!
=

∞∑
k=0

(k + 1)
ak+1

(k + 1)!
zk = a

∞∑
k=0

(az)k

k!
= af(z) , z ∈ C ,

1



2 Chapter 1. Preliminary Results

and f(0) = 1.

In regards to convergence of the series, we will see in the next chapter (Proposition 2.1) a

generalised result which will imply convergence on the whole plane.

Remark. The solution to equation (1.1) with initial value f(z0) = f0 is f(z) = f0e
a(z−z0).

1.1.2 The matricial exponential function

Once we have seen the exponential function f : C → C we are going to define its matrix counterpart.

Definition (Matricial exponential function). Let A ∈ Cn×n be a constant complex matrix of

dimension n by n, for some n ∈ N. Then the matrix exponential is a function f : C → Cn×n given

by

f(z) = ezA =
∞∑
k=0

(zA)k

k!
, z ∈ C , (1.4)

which is convergent at all z ∈ C.

Proof. Proof of the convergence will become apparent once we see a generalised result in chapter 2.

Proposition 1.3. Consider f : (0,∞) → Rn, with f(t) =
(
f1(t), . . . , fn(t)

)
such that fi : (0,∞) →

R are derivable for all i = 1, . . . , n, t > 0. Consider also a matrix A ∈ Cn×n.

The multivariate linear initial-value problem{
Dtf(t) = Af(t) , t > 0 ,

f(0) = v ,

where we denote by Dt the derivative operator with respect to t, and v ∈ Rn, has solution

f(t) = etAv , t > 0 .

Proof. Firstly, notice that each component of the solution f is given by fi(t) = e⊤i e
tAv, with ei the

i-th vector of the canonical basis of Rn, and that the equation Dtf(t) = Af(t) can be rewritten as

Dtfi(t) = Ai,1f1(t) + · · ·+Ai,nfn(t) for i = 1, . . . , n , t > 0.

Let us compute then both sides of the equality.

Dtfi (t) = Dt

(
e⊤i e

tAv
)
= Dt

e⊤i

∞∑
k=0

tk
Ak

k!
v

 = Dt

 ∞∑
k=0

tk
(
Ak
)
i
v

k!

 , t > 0 ,

where by (B)i we denote the i-th row of a matrix B. Note that we now have a scalar series. To be

able to apply Proposition 1.1 we are going to see that it converges for all t > 0.

∞∑
k=0

tk
(
Ak
)
i
v

k!
≤ max

j

{∣∣(v)j∣∣} ∞∑
k=0

tk
(
Ak
)
i
1

k!
, t > 0,
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where (v)j denotes the j-th component of v and 1 is the 1s vector. The above sum converges with

the same radius of convergence as the exponential function. Hence

Dtfi(t) =

∞∑
k=0

(k + 1)tk
(
Ak+1

)
i
v

(k + 1)!
=

∞∑
k=0

tk
(
Ak+1

)
i
v

k!
, t > 0 .

And the right-hand side:

n∑
j=1

Ai,jfj(t) =
n∑

j=1

Ai,j

(
ej

⊤etAv
)
=

n∑
j=1

Ai,j

∞∑
k=0

tk

(
Ak
)
j
v

k!
=

⋆
=

∞∑
k=0

∑n
j=1 t

kAi,j

(
Ak
)
j
v

k!
=

∞∑
k=0

tk
(
Ak+1

)
i
v

k!
, t > 0 .

The swap of sum and series in ⋆ is not problematic as we know that the series converges regardless

of the value of t (the product by ej
⊤ and v will only make the result a scalar rather than a matrix,

but they won’t influence convergence, as they are constant).

Hence we obtain that in fact Dtfi(t) =
∑∞

j=1Ai,jfj(t) is true for every i = 1, . . . , n, and for

every t > 0. Checking f(0) = v is trivial (remember that the exponential of the 0 matrix is the

corresponding identity matrix), and therefore the proposition is proved.

Remark. If the initial conditions were at an arbitrary time t0 ∈ R with the differential equation

true for every t > t0 then the result and proof would be analogous working with t− t0 instead of t.

1.2 The Stirling formula

The Stirling Formula is a very well known formula that states that for n ∈ N, as n → ∞,

n! ∼
√
2πn

(
n

e

)n

. (1.5)

Definition (The Euler Gamma function). The Euler gamma function Γ : (0,∞) → R is most

commonly defined as follows

Γ(x) =

∫ ∞

0
tx−1e−tdt , x > 0 . (1.6)

It is an extension of the factorial to the positive real numbers, and as such has been given a

broad array of equivalent definitions. Reference [2] collects many of them, as well as proving their

equivalence.

Proposition 1.4. Stirling’s formula can be extended to the Γ function as follows,

lim
x→∞

Γ(x+ 1) =
√
2πx

(
x

e

)x

, for any x > 0 . (1.7)
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Proof. We are going to follow reference [3] for a short proof. Let us begin with the integral definition

(1.6) and perform a change of variable t = u2, which gives us

Γ(x) =

∫ ∞

0
tx−1e−tdt = 2

∫ ∞

0
u2x−1e−u2

du , x > 0 .

With this, consider now the quotient below and a second change of variable u =
√
x+ v in ⋆.

Γ(x)ex
√
x

xx
= 2

∫ ∞

0
ex−u2

(
u√
x

)2x−1

du
⋆
= 2

∫ ∞

−
√
x
e−2v

√
x

(
1 +

v√
x

)2x−1

e−v2dv .

If we extend the above integration interval to the whole real line we can define the function

φx(v) = χ(−
√
x,∞)(v)e

−2v
√
x

(
1 +

v√
x

)2x−1

, x > 0 ,

where χI(v) is the characteristic function of interval I, allowing us to write the integral as

Γ(x)ex
√
x

xx
= 2

∫ ∞

−∞
φx(v)e

−v2dv , x > 0 . (1.8)

Let us study the function φx(v). Note that it is positive, continuous and derivable on (−
√
x,∞),

and it is also easy to see that φx(v) → 0 when v → ∞ for any fixed x. For x > 1/2, limφx(v) when

v → −
√
x
+
exists and is 0, and thus φx(v) will be a bounded function. We see below that it reaches

its maximum at v = −(2
√
x)−1 for x > 1/2,

φ′
x(v) = φx(v)

[
−2

√
x+ (2x− 1)

(
1 +

v√
x

)−1( 1√
x

)]
= 0 ⇐⇒ v = − 1

2
√
x

, x >
1

2
.

Said maximum is

φx

(
− 1

2
√
x

)
= e

(
1− 1

2x

)2x−1

< e = Φ . (1.9)

Let us now study its behaviour with respect to x. For a fixed v ∈ [−
√
x,∞), when v << x (that

is, as x → ∞), we have that

logφx(v) = −2v
√
x+ (2x− 1) log

(
1 +

v√
x

)
=

= −2v
√
x+ (2x− 1)

[
v√
x
− v2

2x
+ . . .

]
= −v2 +O

(
1√
x

)
, x > 0 ,

where we have used the plynomial approximation of log(1 + y) for y close to 0. This makes

limx→∞ logφx(v) = −v2 and thus limx→∞ φx(v) = e−v2 as the characteristic function interval

will tend to the complete real line.

As the bound Φ is constant and our integral (1.8) is of φx(v)e
−v2 with respect to v, where we

know that e−v2 is integrable over R, by the Dominated Convergence Theorem we can swap the limit

with the integral sign when taking the limit of (1.8). Hence,

lim
x→∞

Γ(x)ex
√
x

xx
= 2

∫ ∞

−∞
lim
x→∞

φx(v)e
−v2dv = 2

∫ ∞

−∞
e−2v2dv , x >

1

2
.
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Now we only need to compute the value of the integral.

2

∫ ∞

−∞
e−2v2dv = 4

∫ ∞

0
e−2v2dv = 4

∫ ∞

0

√
2

4
t
1/2e−tdt =

√
2Γ(1/2) =

√
2π .

This gives us (1.7), knowing Γ(x+ 1) = xΓ(x) for any x > 0.

1.3 The Euler Beta function

Definition (The Euler Beta function). The Euler Beta function, otherwise known as the Eulerian

integral of first kind, is given by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt , for any x, y > 0 . (1.10)

Proposition 1.5. For all x, y > 0, it follows that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Proof. By equation (1.6) we can write

Γ(x)Γ(y) =

∫ ∞

0
tx−1e−tdt

∫ ∞

0
τy−1e−τdτ =

∫ ∞

t=0

∫ ∞

τ=0
e−t−τ tx−1τy−1dtdτ

=

∫ ∞

t=0

∫ ∞

τ=0
(t+ τ)x+y−1e−(t+τ)

(
t

t+ τ

)x−1( τ

t+ τ

)y−1

(t+ τ)dtdτ , x, y > 0 .

Once we have obtained the above double integral we perform a change of variables to µ = (t+ τ)

and γ = t
t+τ . This makes the integration domain change to (µ, γ) ∈ [0,∞)× [0, 1], and as

|detJ | =

∣∣∣∣∣∣
∣∣∣∣∣ 1 1

τ
(t+τ)2

− t
(t+τ)2

∣∣∣∣∣
∣∣∣∣∣∣ = 1

t+ τ
,

where J is the Jacobian of the change of variables function, we get

Γ(x)Γ(y) =

∫ ∞

µ=0

∫ 1

γ=0
µx+y−1e−µγx−1 (1− γ)y−1 dµdγ

=

∫ ∞

µ=0
µx+y−1e−µdµ

∫ 1

γ=0
γx−1 (1− γ)y−1 dγ

= Γ(x+ y)B(x, y) , x, y > 0 .

From where we get the equality of the proposition.
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Chapter 2

Fractional Calculus

When one is first introduced to the concept of calculus they are initially taught about limits and

how the derivative of a function is the limit of its rate of change when the interval over which it is

studied tends to length zero. Only when this concept is understood is the integral introduced as

the right inverse of the derivative (although it is oftentimes described as a way to recover a function

from its derivative, save a constant, which refers to composition on the left of the derivative).

We will follow a different approach to fractional calculus. Our main goal is to define a fractional

derivative consistent with the existing whole derivative so that it can be used to solve fractional

differential problems. To do so, we will first define the fractional integral and then use it to consider

a derivative of order α > 0 as the integral of order m−α of the m-th whole derivative, with m ∈ N
such that m− 1 < α ≤ m.

Before we get into that, however, we introduce below the Mittag-Leffler function, which will be

closely related to the solution to the fractional differential equations.

2.1 The Mittag-Leffler function

Definition (The classical Mittag-Leffler function, Eα(z)). Given α > 0, the Mittag-Leffler function

(ML function for short) of order α is the function defined by the following power series,

Eα(z) :=

∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C . (2.1)

We will see shortly that it is in fact a well defined function on the whole complex plane, which

makes it an entire function. It is easy to see that E1(z) = ez, given that Γ(k + 1) = k! for k ∈ N0.

This makes the ML function a generalisation of the exponential function.

Proposition 2.1. Given n ∈ N and A ∈ Cn×n, the matricial Mittag-Leffler function Eα(zA) with

α > 0, z ∈ C, whose power series representation is

∞∑
k=0

(zA)k

Γ(αk + 1)
, z ∈ C , (2.2)

converges absolutely and uniformly for any z ∈ C.

7



8 Chapter 2. Fractional Calculus

Proof. A series of matricial terms will converge to a matrix of the same dimension if all the elements

converge. In our case that is if

(
Eα(Az)

)
i,j

=
∞∑
k=0

zk
(
Ak
)
i,j

Γ(αk + 1)
, z ∈ C ,

converges for all i, j = 1, . . . , n.

Notice that if we try to prove the result by the quotient criterion,

lim
k→∞

∣∣∣zk+1(Ak+1)
i,j/Γ(α(k+1)+1)

∣∣∣∣∣∣zk(Ak)
i,j/Γ(αk+1)

∣∣∣ = lim
k→∞

|z| Γ (αk + 1)

Γ
(
α(k + 1) + 1

)
∣∣∣(Ak+1

)
i,j

∣∣∣∣∣∣(Ak
)
i,j

∣∣∣ ,

we run into the problem that
(
Ak
)
i,j

could be 0 for some combination of k, i, j, but not necessarily

all of them, giving us trouble with the behaviour of the limit. We are therefore going to use

Cauchy-Hadamard’s theorem, which states that the radius of convergence of a power series is given

by

R =
1

lim supk→∞ |ak|
1/k

,

where ak are the coefficients of the series. The theorem also states that if the limit in the denominator

is ∞ then R = 0, and if it is 0 then R = ∞. Thus, to prove that the series converges on the whole

plane we need to see that the limit is 0.

In our case ak ≡ ak,i,j =
(Ak)i,j
Γ(αk+1) , which makes the radius of convergence depend on i and j.

We then would have to choose the radius of convergence of the matricial series R to be the smallest

radius of convergence of the individual elements: mini,j
{
Ri,j

}
. However, we can see by induction

that for all i, j = 1, . . . , n we have that∣∣∣(Ak
)
i,j

∣∣∣ ≤ nk−1max
a,b

{|Aa,b|}k . (2.3)

Trivially, for k = 1,
∣∣Ai,j

∣∣ ≤ maxa,b{|Aa,b|} for all i, j. Assuming that the property holds for k − 1:

∣∣∣(Ak
)
i,j

∣∣∣ =
∣∣∣∣∣∣

n∑
l=1

Ai,l

(
Ak−1

)
l,j

∣∣∣∣∣∣ ≤
n∑

l=1

∣∣Ai,l

∣∣∣∣∣(Ak−1
)
l,j

∣∣∣ ≤ n∑
l=1

max
a,b

{∣∣Aa,b

∣∣}nk−2max
a,b

{
|Aa,b|

}k−1

≤ nk−2max
a,b

{
|Aa,b|

}k n∑
l=1

1 = nk−1max
a,b

{
|Aa,b|

}k
.

Thus we can provide an upper bound of
∣∣∣(Ak

)
i,j

∣∣∣ which will provide us with a lower bound to

Ri,j for all i, j. If this bound makes the limit of
∣∣ak,i,j∣∣1/k tend to 0 we will have found R. Observe

lim sup
k→∞

∣∣ak,i,j∣∣1/k = lim sup
k→∞

∣∣∣∣∣∣
(
Ak
)
i,j

Γ(αk + 1)

∣∣∣∣∣∣
1/k

≤ lim sup
k→∞

∣∣∣nk−1maxa,b
{
|Aa,b|

}k∣∣∣1/k
Γ(αk + 1)1/k

.
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Note that as α > 0, we have that αk + 1 > 0 for all k ∈ N0, which allows us to apply Stirling’s

approximation as seen in Proposition 1.4, eq (1.7), giving us

lim sup
k→∞

∣∣ak,i,j∣∣1/k ≤ lim sup
k→∞

n
k−1
k maxa,b

{
|Aa,b|

}(√
2παk

(
αk
e

)αk)1/k

= nmax
a,b

{
|Aa,b|

}
lim sup
k→∞

[
(2π)−

1
2k (αk)−(α+

1
2k )eα

]
= 0 ,

for all i, j = 1, . . . , n.

Hence R = ∞ for all elements of the matrix and thus the series representation of the matricial

Mittag-Leffler function is valid on the whole complex plane. Further, the series will converge

absolutely and uniformly on any compact set contained in C, and thus effectively on the whole

plane.

For a more complete practical consideration of the Mittag-Leffler function see [4, Appendix E].

2.2 The Riemann-Liouville fractional order integral

Now we are going to turn our attention to functions defined over time, that is, for variables taking

values in R+ := {t ∈ R : t > 0}. To keep consistency with the physical application of this work we

will call the independent variable t.

We now introduce the concept of fractional integral as a generalisation of Cauchy’s formula of

repeated integration (this is known as the Riemmann-Liouville fractional integral), along some of

its properties.

Definition (Riemann-Liouville Fractional Integral of order α > 0). Given α > 0, the R-L fractional

integral of a function f : R+ → R is given by

Iαt f(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ = (hα ∗ f) (t) , t > 0 , (2.4)

where ∗ denotes the convolution product and hα(t) =
tα−1

Γ(α) for t ∈ R+ is theGel’fand-Shilov function.

For completion, we also define I0t as the identity operator to extend the definition to allow α ≥ 0.

This is consistent with (2.4) as h0(t) = δ(t), the Dirac delta distribution, which is a particular case

of [4, eq 1.31] proven in reference [5].

Note that this definition requires f to be locally integrable in R+. We will denote the set of

locally integrable functions over R+ as L 1
loc (R+)

Proposition 2.2. The R-L fractional integral definition is consistent with the usual integral in the

sense of the addition semi-group property, which is, given α, β ≥ 0,

Iαt ◦ Iβt = Iα+β
t , ∀t > 0 .

Proof. It will be easier to prove the result using the convolution product definition.
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Let f ∈ L 1
loc (R+). Then note that, expressed as a convolution product, the composition applied

to f is as follows,(
Iαt ◦ Iβt

)
f(t) =

(
Iαt ◦

(
Iβt ◦ f

))
(t) =

(
hα ∗

(
hβ ∗ f

))
(t) , t > 0 .

The convolution product is associative, so
(
hα ∗

(
hβ ∗ f

))
(t) =

((
hα ∗ hβ

)
∗ f
)
(t) and thus we

only need to prove that hα ∗ hβ = hα+β due to the local integrability of f . Note

(hα ∗ hβ)(t) =
∫ t

0

(t− τ)α−1

Γ(α)

τβ−1

Γ(β)
dτ =

tα+β−2

Γ(α)Γ(β)

∫ t

0

(
1− τ

t

)α−1(τ

t

)β−1

dτ

=
tα+β−1

Γ(α)Γ(β)

∫ 1

0
(1− y)α−1 (y)β−1 dy

Proposition 1.5
=

tα+β−1

Γ(α)Γ(β)

Γ(α)Γ(β)

Γ(α+ β)

=
tα+β−1

Γ(α+ β)
= hα+β(t) , t > 0 .

where we have used the change of variable y = τ/t and the Eulerian integral of first kind. Thus this

result is valid for any α, β > 0.

Remark. Note that the additive semigroup property Iαt ◦ Iβt = Iα+β
t implies that the fractional

integral operator is commutative Iαt ◦ Iβt = Iβt ◦ Iαt on “good enough” functions (both the function

and its fractional order primitive have to be locally integrable), as we described in the proof. This

is also justified by the commutativity of the convolution product.

2.3 Fractional derivatives

Now that we have seen how we can define a fractional integral, let’s introduce the concept of a

fractional derivative. As we mentioned at the start of the chapter, the usual integral I is the right

inverse of the derivative D, as D ◦ I = id but I ◦D gives us a collection of functions as solution, as

well as requiring different properties of the function we apply the operators to.

Following this train of thought the Riemann-Liouville fractional derivative of order α > 0 is

introduced as RLD
α
t = Dm

t ◦ Im−α
t where m ∈ N such that m − 1 < α ≤ m and where Dm

t

denotes the m-th time derivative operator (for m = 1 we will simply write Dt). Alternatively we

can swap the derivative and the fractional integral to define the Caputo fractional derivative as

CD
α
t = Im−α

t ◦Dm
t , giving us a considerably different operator with different properties. For a short

comparison of the two see [4, section 1.2]. In this work we will consider exclusively the Caputo

derivative, so we will denote it by Dα
t .

2.3.1 The Caputo fractional order derivative

Definition (The Caputo fractional derivative of order α > 0). Given α > 0 with m ∈ N such that

m− 1 < α ≤ m, the Caputo fractional derivative is defined as

Dα
t f(t) = Im−α

t f (m)(t) , t > 0 .
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Notice that this definition requires the m-th derivative of f to be locally integrable. Then

Dα
t f(t) will be given by

Dα
t f(t) =


1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ , if m− 1 < α < m ,

dmf

dtm
(t) , if α = m ,

for t > 0 .

To avoid making the language too dense we will shorten Caputo fractional derivative to simply

C-derivative. Also, for the remainder of the document we will work with values of 0 < α < 1, as

those are the ones we will consider when dealing with the SI model.

C-derivative of polynomials

Let us see now how the Caputo derivative acts on polynomials. Firstly note that

Dα
t (f + g) (t) = I1−α

t ◦Dt (f + g) (t) = I1−α
t

(
f ′ + g′

)
(t) = Dα

t f(t) +Dα
t g(t) , t > 0 ,

and that, for K ∈ R

Dα
t (Kf) (t) = I1−α

t ◦Dt (Kf) (t) = KI1−α
t ◦Dt (f) (t) = KDα

t f(t) , t > 0 .

So it’s enough to study the derivative’s effect on monomials. To generalise the result we will

consider any power γ ∈ [0,∞). Further, as we justified above, we are only interested in 0 < α < 1.

Proposition 2.3. For 0 < α < 1 and γ > 0,

Dα
t

(
tγ

Γ(γ + 1)

)
=

tγ−α

Γ(γ − α+ 1)
, t > 0 .

In the case of γ = 0 then Dα
t (t

0) = 0 for any α.

Proof. Let’s see first the case of γ = 0. Trivially Dα
t (t

0) = I1−α
t ◦Dt(1) = I1−α

t (0) = 0.

Take now γ > 0. Then

Dα
t

(
tγ

Γ(γ + 1)

)
= I1−α

t

(
γtγ−1

Γ(γ + 1)

)
=

γ

Γ(γ + 1)Γ(1− α)

∫ t

0
(t− τ)−ατγ−1dτ

=
γt−α+γ−1

Γ(γ + 1)Γ(1− α)

∫ t

0

(
1− τ

t

)−α(τ

t

)γ−1

dτ

=
γt−α+γ

Γ(γ + 1)Γ(1− α)

∫ 1

0
(1− y)(1−α)−1 yγ−1dy

=
γt−α+γ

Γ(γ + 1)Γ(1− α)

Γ(1− α)Γ(γ)

Γ(1− α+ γ)
=

tγ−α

Γ(γ − α+ 1)
, t > 0 .

Which is well defined as γ − α+ 1 > γ > 0.

Remark. With a simple check one can see that this result is consistent with the whole derivative of

a monomial.
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A note on sign conservation

We state here this important proposition as we will be using it frequently during the next chapter.

Proposition 2.4. Let u : (0,∞) → R be a derivable function. Then

Dα
t u(t) ≥ 0 , ∀t > 0 for any one 0 < α < 1 =⇒ u(t) ≥ u(0) , ∀t > 0 .

Proof. Before we begin the proof remark that the convolution product of two positive functions is

necessarily positive, as all contributions to the integral are. Also, note that Dα
t u(t) ≥ 0 can be

written as
(
h1−α ∗ u′

)
(t) ≥ 0. With this in mind, we have

u(t)− u(0) =

∫ t

0
u′(τ)dτ =

(
h1 ∗ u′

)
(t)

⋆
=
(
hα ∗ h1−α ∗ u′

)
(t) ≥ 0 , t > 0 ,

where ⋆ is due to the property (hβ ∗ hγ)(t) = hβ+γ(t) we saw in the proof of Proposition 2.2.

Note that the above does not prove that if the C-derivative of a function u is positive then u

is increasing, but rather that it is positive if it began at u(0) = 0. It is an important distinction,

as one could think that simply shifting the time origin and partitioning the time interval (0, t] into

many other sufficiently small ones ( {(0, t1], (t1, t2], . . . , (tn−1, t]} for 0 < t1 < · · · < tn−1 < t )

we could prove monotonicity. This would be wrong, as the C-derivative, in particular due to the

RL-fractional integral, is not a local operator, but one that takes into account the whole interval

(0, t].



Chapter 3

The fractional order SI model

Following the work in the article by Abadias et Al (reference [1]) we want to model the effect of an

inhibitor on a network of amino acids of a protein, which we will call a protein residue network, or

PRN in short. We know that said networks share information through a process called allostery,

which can communicate perturbations of the order of 1Å up to a distance of 100Å, and it has

been seen that these diffusion processes can be faithfully modelled after epidemiological contagion.

Hence, to study our PRNs we will use an adaptation of the Susceptible-Infected (SI) model which

will include the fractional order C-derivative we introduced in the previous chapter. We will see

the advantages of this inclusion in section 3.3. This choice of model is justified further in the

introduction of [1] and the references therein.

3.1 Classic SI model

To implement the model we will consider n amino acids, each of which can either be susceptible

to being perturbed or have already been perturbed by the inhibitor. These two values will be

represented by probabilities, which we will call si(t) and xi(t) respectively. Thus si(t), xi(t) ∈ [0, 1]

and si(t) + xi(t) = 1. An amino acid i will become perturbed at rate β > 0 upon contact with an

already perturbed amino acid j to which it is connected. This dynamic is described by the following

equations Dtsi(t) = −βsi(t)xj(t) , t > 0 ,

Dtxi(t) = βsi(t)xj(t) , t > 0 ,

si(t)+xi(t)=1
=========⇒ Dtxi(t) = β

(
1− xi(t)

)
xj(t) , t > 0 .

(3.1)

The PRN will be represented by an adjacency matrix A, which will be symmetric and whose

entries will be ones and zeroes to represent presence and lack of interaction between nodes. The

nodes represent the α-carbon of the amino acids of the modelled protein, and they will be considered

as interacting if the distance between them is smaller than a cut-off radius (in [1] it is taken as 7

Å). It is important to remark that the matrix’s diagonal entries will all be null, as we will assume

that an amino acid cannot influence itself. Thus we can conclude that all eigenvalues of A will be

real and their sum will be 0. By construction A will not be the 0 matrix, so there will at least be

one non-zero positive eigenvalue; making A have a positive spectral radius. The creation of this

13
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matrix is more thoroughly detailed in [1, Sec. 2.1]. This allows to write the above formula as

Dtxi(t) = β
(
1− xi(t)

) n∑
j=1

Aijxj(t) , t > 0 . (3.2)

As we are going to be considering initial value problems (IVP from now on) we need to consider

initial conditions. We will choose all interactions to start at time t0 = 0, and write x0 to refer to

the state of the system at t0. That is, x0 = x(0) ∈ [0, 1]n. This, in addition to writing (3.2) in

vector form, gives us our complete problem. Dtx(t) = β
(
In − diag

(
x(t)

))
Ax(t) , t > 0 .

x(0) = x0 .
(3.3)

This IVP has been proved to be sufficiently well behaved in that the solution x will not exit

the [0, 1]n set if it starts within it, which is consistent with the fact that it describes a collection of

probabilities. It is also known that its two steady points are the 0s and 1s vector, representing lack

of and full contagion respectively, and that any node i that begins with perturbation probability 1

will remain there. Also, the solution is monotonically increasing as long as it is non trivial, and will

tend asymptotically to full contagion. The proofs for these statements are referenced in [1], but the

reader can convince themselves of their veracity quite easily looking at equation (3.1).

3.1.1 Approximating the solution

IVP (3.3) is a non-linear system of differential equations without an (apparent) analytic solution,

and thus we are looking to approximate it. To do so we return to the individual equations and

rewrite them as

1

1− xi(t)
Dtxi(t) = β

n∑
j=1

Aijxj(t) =⇒ Dt

(
− log

(
1− xi(t)

))
= β

n∑
j=1

Aijxj(t) , t > 0 ,

where we have noticed that the left-hand side is the derivative of the minus logarithm of 1− xi(t).

This allows for a change of variable yi(t) = g
(
xi(t)

)
= − log

(
1− xi(t)

)
for t ∈ R+, which makes

the above
Dtyi(t) = β

n∑
j=1

Aijf(yj(t)) , t > 0 ,

where f(y) = 1 − e−y is the inverse of g. Notice that this change of variable limits our choice of

initial conditions to the set [0, 1)n, but as we have discussed xi(0) = 1 is a stationary point anyways.

These can be written in vector form, giving us two equivalent statements

Dtg
(
x(t)

)
= βAx(t) , t > 0 , (3.4)

Dty(t) = βAf(y(t)) , t > 0 . (3.5)

Remark. Here g and f have been extended to be functions from [0, 1)n to [0,∞)n and from [0,∞)n to

[0, 1)n respectively, rather than their original one-dimensional definition. Thus g(x) = − log(1− x),

where the logarithm is applied element-wise, and f(x) = 1− exp(−y), where the exponential is also

applied element-wise. 1 denotes the ones vector.
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Firstly we are going to consider a linear approximation to the solution by taking the first order

Taylor Polynomial of g centred at xc = 0 on equation (3.4). This is, it will be an approximation of

the solution for a wholly susceptible PRN with a small chance of proteins becoming perturbed. As

g(x) = − log(1− x) we have

Tg(x) = − log(1− xc)

∣∣∣∣
xc=0

+ diag

(
1

1− xc

) ∣∣∣∣
xc=0

x+O
(
x2
) x→0−−−→ x .

Again the inverse and square of a vector denotes the vector of operations taken element-wise.

We arrive at a linear approximation which, together with the initial condition, gives us the

following IVP.  Dtx̃(t) = βAx̃(t) , t > 0 ,

x̃(0) = x0 ,
(3.6)

which by Proposition 1.3 has solution

x̃(t) = eβtAx0 , t ≥ 0 . (3.7)

We know that this solution diverges for at least some x0 as A has a positive spectral radius,

which makes this approximation acceptable only in the earliest stages of the dynamics.

Let us see an improvement on this approximation, studying instead equation (3.5). We will

work with function f ’s first order Taylor polynomial centred at yc. Note that our new variable

y ∈ [0,∞)n, and we will allow any yc from said set. As f ′(yi) = e−yi we have

Tf (y) = f(yc) +Df(yc)(y − yc) +O(y2) ≈ 1− exp(−yc)︸ ︷︷ ︸
xc

+ e−diag(yc)︸ ︷︷ ︸
In−diag(xc)

(y − yc) .

If we choose to centre the polynomial on yc = y0 = g(x0) we can approximate (3.5) to

Dtŷ(t) = βAx0 + βÂ
(
ŷ(t)− y0

)
= βÂŷ + βAbx0 , t > 0 ,

where Â = A
(
In − diag (x0)

)
and bx0 = x0 +

(
In − diag (x0)

)
log(1− x0).

This approximation, therefore, gives us the following IVP Dtŷ(t) = βÂŷ + βAbx0 , t > 0 ,

ŷ(0) = y0 = g(x0) .
(3.8)

Proposition 3.1. The solution to (3.8) is given by

ŷ(t) = eβtÂg(x0) +

∞∑
k=1

(βt)k

k!
Âk−1Abx0 , t ≥ 0 . (3.9)

Proof. Equation (3.8) is a first order linear differential system of equations and thus will have a

unique analytical solution. The expresion of ŷ(t) can be deduced using the variation of constants

method for ODEs, which is a fairly well known result and thus we won’t get into it here.

The approximation to the solution to (3.3) will be easily recovered as x̂ = f(ŷ). We can see that

ŷ is positive for all positive values of t, and that it diverges, at least for some values of x0, when t

tends to infinity, which implies that x̂ remains within the [0, 1)n set and tends to 1 when t goes to

infinity. This is an important improvement on (3.7).
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3.2 Inclusion of the fractional derivative

Once we have seen the results of the classical model we want to expand them using fractional

derivatives. One could think that such extension of (3.1) would simply give us

Dα
t xi(t)

∗
= βα

(
1− xi(t)

)
xj(t) , t > 0 ,

where the α exponent of β has been added to keep the equation dimensionally correct. This equation,

however, is rather uninteresting analytically as there isn’t too much we can do with it. Instead, we

will work with the following adaptation:∫ t

0
h1−α(t− τ)

x′i(τ)

1− xi(τ)
dτ = βαxj(t) , t > 0 . (3.10)

This, together with the adjacency matrix and in vector form gives us the Fractional order SI

model.

Dα
t

(
− log

(
1− x(t)

))
= Dα

t g
(
x(t)

)
= βαAx(t) , t > 0 , (3.11)

where we have used g(x) = − log(1− x) as defined in the previous section. Alternatively, calling

y = g(x) and having f with f(y) = 1 − exp(−y) = x be the inverse of g again we can rewrite the

equation (3.11) as

Dα
t y(t) = βαAf(y(t)) , t > 0 , (3.12)

which in reality is nothing but the fractional order derivative equivalent of equation (3.5).

We will take the same initial conditions as with the classic case, t0 = 0 and x(0) = x0 ∈ [0, 1]n,

which will allow us to write the fractional order IVP that describes the dynamic in our PRN as{
Dα

t g
(
x(t)

)
= βαAx(t) , t > 0 ,

x(0) = x0 .
(3.13)

We will also call y(0) = g(x0) = y0 ∈ [0,∞)n as initial conditions when working with variable y.

Behaviour of the solution

Let us invest some time to talk about the behaviour of the solution x(t) to (3.13).

Firstly notice that the right-hand side of (3.11) will be non-negative as long as all components of

x(t) are non-negative, which will be the case as we are looking for solutions representing probabilities

as we have discussed. Thus, by Proposition 2.4, − log
(
1− x(t)

)
⪰ 0, giving us that x(t) ⪰ x(0) for

all t ≥ 0. Thus there exists ε > 0 for which xi(s) is non-decreasing for 0 < s < ε. Now assume that

xi(0) = 1 for some i ∈ {1, . . . , n}. If xi increases then
x′
i(s)

1−xi(s)
< 0 for said s > 0. By (3.10) we have

that
x′
i(τ)

1−xi(τ)
≥ 0 for s > 0 sufficiently close to 0, so we conclude that x′i(t) = 0, which will hold for

all t > 0 and hence x∗i = 1 is an equilibrium point for xi(t). By the same argument with si(t) (see

(3.1)) x∗i = 0 is also an equilibrium point. It can be seen that xi won’t have 0 derivative for any

other value in (0, 1), so 1 and 0 are the only equilibrium points.

With this, we can easily justify that for x0 ∈ (0, 1)n then x(t) ∈ (0, 1)n for all t > 0: the solution

remains bounded and consistent with probabilities. Similarly, as xi(t) ≥ xi(0) for all t > 0, if

xi(0) ∈ (0, 1) then xi(t) will necessarily tend to 1 as it’s the only accessible equilibrium point. This

makes x(t) → 1 asymptotically as t → ∞.
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3.2.1 Linear approximation

As with the procedure we followed to approximate the solution in the classic case, we will first provide

a linear approximation to the solution of the fractional order SI model working with equation (3.11).

By the first order Taylor polynomial approximation of g we obtain the equation

Dα
t x̃(t) = βαAx̃(t) , t > 0 .

Proposition 3.2. For 0 < α < 1, the initial value problem given by the equation above with the

same initial conditions as the original problem{
Dα

t x̃(t) = βαAx̃(t) , t > 0 ,

x̃(0) = x0 ,
(3.14)

has solution

x̃(t) = Eα

(
(βt)αA

)
x0 =

∞∑
k=0

(βt)αkAk

Γ(αk + 1)
x0 , t ≥ 0 . (3.15)

Proof. Firstly note that for any α > 0, Eα

(
(βt)αA

) ∣∣
t=0

= In and thus x̃(0) = x0, so the initial

condition is satisfied.

Recall that by Proposition 2.1 the series for Eα

(
(βt)αA

)
converges absolutely and uniformly on

the whole complex plane, and thus in particular for all t ≥ 0. Now let us take the C-derivative of

(3.15) to see that it is in fact a solution to (3.14):

Dα
t x̃(t) = Dα

t

 ∞∑
k=0

(βt)αkAk

Γ(αk + 1)
x0

 = I1−α
t ◦Dt

 ∞∑
k=0

(βt)αkAk

Γ(αk + 1)

x0 , t > 0 . (3.16)

Let us consider each element of the matrix individually, as both the derivative and integral of a

matrix are taken element-wise. That is

eTi

 ∞∑
k=0

(βt)αkAk

Γ(αk + 1)

 ej =
∞∑
k=0

(βt)αk
(
eTi A

kej

)
Γ(αk + 1)

=
∞∑
k=0

βαk
(
eTi A

kej

)
Γ(αk + 1)

(tα)k ≡
∞∑
k=0

bijks
k , t ≥ 0 ,

which is an absolutely and uniformly convergent scalar series on s = tα ∈ [0,∞) ⊂ C for all

t ≥ 0. If we take its derivative by Proposition 1.1 we can swap it with the summation, giving us

another convergent scalar series for all t ≥ 0. In particular, this new series will be analytic and thus

continuous. Therefore we know that the R-L integral of order 1 − α of this series will converge as

it is the convolution product of two continuous functions. That is,

I1−α
t

∞∑
k=0

Dt

(
bijk(t

α)k
)
=

1

Γ(1− α)

∫ t

0

 ∞∑
k=1

bijkαkτ
αk−1(t− τ)−α

 dτ , t > 0 .

By Fubini’s theorem, to prove that we can swap the integral with the series it is enough to see

that
∞∑
k=1

∣∣bijkαk∣∣
Γ(1− α)

(∫ t

0
ταk−1(t− τ)−αdτ

)
< ∞ , for all t > 0 . (3.17)
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Let’s work step by step. Firstly note that on account of the proof of Proposition 2.2 we have that

the integral above is equal to Γ(αk)Γ(1− α)hα(k−1)+1(t). This makes the series of (3.17) become

∞∑
k=1

∣∣bijkαk∣∣Γ(αk)hα(k−1)+1(t) =
∞∑
k=1

∣∣bijk∣∣ Γ(αk + 1)

Γ(α(k − 1) + 1)
tα(k−1) =

=
∞∑
k=0

∣∣∣bij(k+1)

∣∣∣Γ(α(k + 1) + 1)

Γ(αk + 1)
tαk , t > 0 .

Let’s study now the coefficients to find an upper bound to prove convergence. Notice that,

calling Λ = maxa,b
{∣∣Aa,b

∣∣} we have∣∣∣eTi Ak+1ej

∣∣∣ ≤ nΛ
∣∣∣eTi Akej

∣∣∣ ,
thanks to which we can write our bound:

∣∣∣bij(k+1)

∣∣∣Γ(α(k + 1) + 1)

Γ(αk + 1)
=

βα(k+1)
∣∣∣eTi Ak+1ej

∣∣∣
Γ(αk + 1)

≤ βnΛ
βαk

∣∣∣eTi Akej

∣∣∣
Γ(αk + 1)

= βnΛ
∣∣bijk∣∣ .

Implementing this into our original summation

∞∑
k=0

∣∣∣bij(k+1)

∣∣∣Γ(α(k + 1) + 1)

Γ(αk + 1)
tαk ≤

∞∑
k=0

βnΛ
∣∣bijk∣∣tαk = βnΛ

∞∑
k=0

∣∣bijk∣∣tαk < ∞ , for all t > 0 .

This proves the convergence of the series of (3.17) and thus we can apply Fubini’s theorem

individually on every matrix element of (3.16).

In the light of this result we can write the following,

Dα
t x̃(t) = Dα

t

 ∞∑
k=0

(βt)αkAk

Γ(αk + 1)

x0 =

∞∑
k=0

Dα
t

(
(βt)αkAk

Γ(αk + 1)

)
x0 =

=
∞∑
k=0

βαkAkDα
t

(
tαk

Γ(αk + 1)

)
x0 , t > 0 .

By Proposition 2.3, that is equal to

∞∑
k=1

βαkAk tα(k−1)

Γ
(
α(k − 1) + 1

) x0 = βαA

∞∑
k=0

(βt)αkAk

Γ (αk + 1)
x0 = βαAEα

(
(βt)αA

)
x0 = βαAx̃(t) ,

which holds for every t > 0 and is what we set out to prove.

Proposition 3.3. x̃(t) diverges for some x0 ∈ [0, 1]n.

Proof. When we introduced the matrix A that describes the PRN we deduced that its spectral

radius was positive. Let us call λ1 that eigevalue and v1 the eigenvector corresponding to λ1. Then

we can consider the contribution of x0 to v1 as the standard scalar product ⟨v1, x0⟩ =
∑n

j=1 v1,jx0,j

and thus

Eα

(
(βt)αA

)
⟨v1, x0⟩v1 =

∞∑
k=0

(βt)αkAk

Γ(αk + 1)
⟨v1, x0⟩v1 =

∞∑
k=0

(βt)αkλk
1

Γ(αk + 1)
⟨v1, x0⟩v1 , t ≥ 0 .
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We know that v1 cannot be the trivial vector, and it will have at least one positive component

(if all are non-positive −v1 will also be an eigenvector of eigenvalue λ1). With v1 we can also build

initial conditions x0 ∈ [0, 1]n such that ⟨v1, x0⟩ > 0: taking x0 as v1 with any negative components

made 0 (we could write x0i = max{v1i, 0} ). If under these conditions we take the limit of the above

expression when t tends to ∞ we get

lim
t→∞

x̃i(t) = lim
t→∞

∞∑
k=0

(βt)αkλk
1

Γ(αk + 1)
⟨v1, x0⟩v1,i = ∞ ,

and thus the solution diverges.

Proposition 3.4. Let B ∈ [0,∞)n×n be a non-trivial symmetric matrix with all elements in its

diagonal 0. Then w(t) = Eα

(
(βt)αB

)
w0 diverges when t tends to ∞ for every w0 ∈ [0,∞)n \ 0.

Proof. As B is symmetric all its eigenvalues λ1, . . . , λn are real, and given that its trace is 0,∑
λi = 0. Now, they cannot be all 0 as B is not the zero matrix, so there must be at least one

positive and at least one negative eigenvalue.

Let λ be a negative eigenvalue of B and v its corresponding eigenvector. Then we can see that

Eα (tB) v tends to 0 when t tends to ∞:

Eα (tB) v =
∞∑
k=0

(βt)αkBk

Γ(αk + 1)
v =

∞∑
k=0

(βt)αkλk

Γ(αk + 1)
v

t→∞−−−→ 0v = 0 .

Let now 0 > λp ≤ · · · ≤ λn be all the negative eigenvalues of B, and vp, . . . , vn their correspond-

ing eigenvectors, with 2 ≤ p ≤ n. Then any non-trivial linear combination of them v =
∑n

i=p αivi

with αi ∈ R must have at least one positive component and one negative component, that is, neither

v nor −v are in [0,∞)n \ 0.
Let us see so by assuming without loss of generality that v ∈ [0,∞)n \ 0 and reaching a contra-

diction. Then the k-th component of Bv is (Bv)k =
∑n

j=1Bkjvj ≥ 0 as all components of B are

positive. This means that

⟨Bv, v⟩ =
n∑

j=1

(Bv)j(v)j ≥ 0 .

However, as B is symmetric its eigenvectors are orthogonal, which means that

⟨Bv, v⟩ =

〈
B

n∑
i=p

αivi,
n∑

l=p

αlvl

〉
=

〈
n∑

i=p

αiλivi,
n∑

l=p

αlvl

〉
=

n∑
i=p

n∑
l=p

αiλiαl⟨vi, vl⟩ =
n∑

i=p

λiα
2
i < 0 ,

which cannot be 0 as all λi < 0 and
∑n

i=p α
2
i > 0 or v would be the 0 vector. This clashes with our

previous result and we arrive at a contradiction.

We conclude then that any non-trivial linear combination of negative-eigenvector eigenvalues

will fall outside [0,∞)n×n, implying that any w0 ∈ [0,∞)n \ 0 must have a contribution from a

positive-eigenvalue eigenvector, which will make w(t) diverge when t tends to infinity as we have

seen in Proposition 3.3.

For completion, if w0 = 0 then w(t) = 0 for all t ≥ 0 and thus the solution will not diverge.
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Corollary 3.5. x̃(t) diverges for all x0 ∈ [0, 1]n \ 0.

Proof. A satisfies all conditions asked on B in the previous proposition, so we have that x̃(t) =

Eα

(
(βt)αA

)
x0 will diverge for all x0 ∈ [0,∞)n \ 0, and in particular for all x0 ∈ [0, 1]n \ 0.

This implies that the solution to the linear approximation does not hold the property of con-

sistency with probabilities (x(t) ∈ [0, 1]n for any x0 ∈ [0, 1]n), as we know it must. Thus, this

approximation will only really work in the earliest stages of the dynamic of an almost-uninfected

PRN (recall that the Taylor approximation of g was made around the 0 vector). We will provide a

better approximation in the next subsection.

3.2.2 LTE approximation

Let us again provide a more adequate approximation. Following the example of the classic model,

we will now work with (3.12) and use the first order Taylor polynomial of f . This transformation

is referred to as Lee-Tenneti-Eun (LTE) in reference [1], due to the authors by whom it was first

used.

Proposition 3.6. For 0 < α < 1, the LTE transformation, together with the initial conditions

y0 = g(x0), where x0 ∈ [0, 1)n, gives us the following initial value problem Dα
t ŷ(t) = βαÂŷ(t) + βαAbx0 , t > 0 ,

ŷ(0) = y0 = g(x0) ,
(3.18)

where, if we call Ω =
(
In − diag(x0)

)
, we define Â = AΩ and bx0 = x0 + Ω log(1− x0) with the

logarithm taken element-wise, similar to what we defined for the classic case.

Its solution is

ŷ(t) = Eα

(
(βt)αÂ

)
g(x0) +

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)bx0 , t ≥ 0 . (3.19)

Proof. Let’s first prove that ŷ(t), in particular the second series term, converges. We will consider

the matricial sum (before multiplying by bx0). We have

∞∑
k=0

∣∣∣∣∣ (βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)∣∣∣∣∣ =
∞∑
k=0

(βt)α(k+1)
∣∣∣Âk
∣∣∣|A|

Γ
(
α(k + 1) + 1

) A∈{0,1}n×n

=
∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

) , t ≥ 0 ,

where the absolute value denotes the operation element-wise.

As Ω =
(
In − diag(x0)

)
is a diagonal matrix whose entries are given by a number between 0 and

1, Ωk will also be diagonal and all diagonal entries of Ωk will be bound by 1. Thus we can write

Ωk ⪯ In (that is, the bound ≤ holds element-wise) and we can therefore bound the series by

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

) ⪯
∞∑
k=0

(βt)α(k+1)Ak+1

Γ
(
α(k + 1) + 1

) =

∞∑
k=1

(βt)αkAk

Γ (αk + 1)
= Eα

(
(βt)αA

)
− In , t ≥ 0 ,

which we know converges absolutely and uniformly for all t ≥ 0.
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Having seen this we check that the initial condition is satisfied. Note that the second term of

(3.19) will be null for t = 0, so we only have the contribution of the first. Again, the Mittag-Leffler

function at t = 0 corresponds with the identity matrix, and tα
∣∣
t=0

will be well defined as α > 0.

Hence ŷ(0) = Ing(x0) + 0 = g(x0).

Let’s see now that ŷ(t) satisfies the differential equation of (3.18). We know that the C-derivative

of a sum is the sum of C-derivatives (see the considerations prior to Proposition 2.3), and by the

proof of Proposition 3.2 we know that Dα
t Eα

(
(βt)αÂ

)
= βαÂEα

(
(βt)αÂ

)
. Thus it is enough to

compute the C-derivative of the second term of (3.19).

Knowing that the series converges absolutely and uniformly one can prove that the C-derivative

can be swapped with the summation following a similar procedure to that of the proof of Proposi-

tion 3.2 . Hence

Dα
t

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)bx0 =

∞∑
k=0

βα(k+1)Dα
t

(
tα(k+1)

Γ
(
α(k + 1) + 1

)) ÂkAbx0 , t > 0 ,

and by Proposition 2.3 once again the above is equal to

∞∑
k=0

βα(k+1)

(
tαk

Γ (αk + 1)

)
ÂkAbx0 = βαAbx0 + βÂ

∞∑
k=1

(
(βt)αkÂk−1A

Γ (αk + 1)

)
bx0 , t > 0 ,

which finally gives us that

Dα
t

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)bx0 = βÂ
∞∑
k=0

(
(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)) bx0 + βαAbx0 , t > 0 .

Therefore the C-derivative of the whole expression for ŷ(t) in (3.19) is

Dα
t

Eα

(
(βt)αÂ

)
g(x0) +

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)bx0

 =

= βαÂ

Eα

(
(βt)αÂ

)
g(x0) +

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)bx0

+ βαAbx0 , t > 0 .

From where we conclude that (3.19) satisfies (3.18) and thus it is its solution.

The approximation to the solution of the original problem (3.11) can be recovered as x̂ = f(ŷ).

We will study its behaviour in subsection 3.2.3.

Proposition 3.7. If one considers a PRN where there is certainty that no protein has been perturbed

(that is, where x0 ∈ [0, 1)n) the solution ŷ(t) to (3.18) can be rewritten in a more illustrative way:

ŷ(t)

∣∣∣∣
x0∈[0,1)n

= g(x0) +

[
Eα,1

(
(βt)αÂ

)
− In

]
Ω−1x0 , t ≥ 0 . (3.20)

Proof. Remember that Ω = In−diag(x0), which means that Ω−1 will exist only for x0 ∈ [0, 1)n and

will be given by a diagonal matrix with elements
(
Ω−1

)
i,i

= (1 − x0i)
−1. Under these conditions
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one can write (3.19) as

ŷ(t)

∣∣∣∣
x0∈[0,1)n

= Eα

(
(βt)αÂ

)
g(x0) +

∞∑
k=0

(βt)α(k+1)Âk+1

Γ
(
α(k + 1) + 1

)Ω−1bx0

= Eα

(
(βt)αÂ

)
g(x0) +

∞∑
k=1

(βt)αkÂk

Γ (αk + 1)
Ω−1bx0

= Eα

(
(βt)αÂ

) [
g(x0) + Ω−1bx0

]
− Ω−1bx0 , t ≥ 0 .

Taking into account Ω−1bx0 = Ω−1
[
x0 +Ω log(1− x0)

]
= Ω−1x0 − g(x0) we arrive at equation

(3.20).

Note that both g(x0) and Ω−1x0 are vectors positive in all components, in addition to Â having

a positive spectral radius. By the same arguments as Proposition 3.3 we can expect ŷ(t) to diverge

when t tends to ∞ for some values of x0, meaning that x̂(t) = f
(
ŷ(t)

)
will tend to 1. This

is exactly the dynamic we expected from the classic system, so this approximation represents a

consistent result. We will see in the next section that ŷ(t) will diverge for every x0 ∈ [0, 1)n, as we

did for x̃(t), and that x̂(t) will represent the fastest-perturbation-spread scenario: x(t) ⪯ x̂(t) for

any x0 ∈ [0, 1]n.

3.2.3 Comparison of the solutions

Theorem 3.8. Let 0 < α < 1, and let us denote by x(t) the solution to our original unapproximated

initial value problem (3.13) and an initial condition x0 ∈ [0, 1]n.

Let also x̃(t) and x̂(t) = f
(
ŷ(t)

)
be the solutions to the linear approximation (IVP 3.14) and

the LTE transformation (IVP 3.18) respectively, all with the same initial conditions x0.

Then

x(t) ⪯ x̂(t) ⪯ x̃(t) , t ≥ 0 . (3.21)

Proof. Let us begin with the first inequality. Let g and f be given as they have been throughout

the document (see between eq (3.11) and eq (3.12)), and define u : [0,∞) → Rn as u(t) = g
(
x̂(t)

)
−

g
(
x(t)

)
= ŷ(t)− y(t). As both the IVPs have the same initial conditions, u(0) = 0. We want to see

that Dα
t u(t) ⪰ 0 for all t ∈ R+, so that by Proposition 2.4 applied individually on each component

we will have ŷ(t) ⪰ y(t) and therefore, as f(y) = 1− exp(−y) is a monotonously increasing function

in every variable, that x̂(t) ⪰ x(t) for all t > 0.

Thus we have to see whether Dα
t y(t) ⪯ Dα

t ŷ(t). By (3.12) and (3.18) we have that

Dα
t y(t) = βαAf(y(t)) , and Dα

t ŷ(t) = βαÂŷ(t) + βαAbx0 , both for t > 0 ,

respectively, where (3.18) is the LTE approximation of (3.12) which we got by taking the first

order Taylor Polynomial of f centred at y0. We can then simply study the hessian of f , which by

the definition of f will either be definite positive, definite negative, or the zero matrix (recall that

our vectorial f was the extension of a scalar f acting separately on every variable). The second
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derivative of scalar f(t) = 1− e−y is f ′′(y) = −e−y < 0 for all y ∈ [0,∞), making the hessian of our

vectorial f definite negative, and thus f a concave function. This means that

βαAf
(
y(t)

)
⪯ βαÂy(t) + βαAbx0 , for all t ≥ 0 ,

giving us the sought after inequality: Dα
t y(t) ⪯ Dα

t ŷ(t) and thus x(t) ⪯ x̂(t) for any t > 0.

Let us see the second inequality now. Firstly, we know that

Dα
t x̂(t) = Dα

t f(ŷ(t)) =
(
h1−α ∗ e−diag(ŷ)Dtŷ

)
(t) ⪯ (h1−α ∗Dtŷ) (t) = Dα

t ŷ(t) , t > 0 ,

where by Dtŷ we denote the component-wise whole derivative vector of ŷ, which we know by (3.19)

exists and is non-negative for all t ∈ R+. Thus the inequality e−diag(ŷ)Dtŷ ⪯ Dtŷ.

Let us work then with Dα
t ŷ(t), which by (3.18) and (3.19) is

Dα
t ŷ(t) = βαÂŷ(t) + βαAbx0 = βαÂ

Eα

(
(βt)αÂ

)
g(x0) +

∞∑
k=0

(βt)α(k+1)ÂkA

Γ
(
α(k + 1) + 1

)bx0

+ βαAbx0

= βαÂEα

(
(βt)αÂ

)
g(x0) + βα

∞∑
k=0

(βt)α(k+1)Âk+1

Γ
(
α(k + 1) + 1

)Abx0 + βαAbx0

= βαÂEα

(
(βt)αÂ

)
g(x0) + βα

[
Eα

(
(βt)αÂ

)
− In

]
Abx0 + βαAbx0

= βαEα

(
(βt)αÂ

)
A
[
Ωg(x0) + bx0

]
= βαEα

(
(βt)αÂ

)
Ax0 , t > 0 .

On the other hand, by (3.14) and (3.15) we know that Dα
t x̃(t) = βαAEα

(
(βt)αA

)
x0 for t ≥ 0.

Recall that we defined Ω = diag(1− x0), so 0 ⪯ Ω ⪯ In and thus 0 ⪯ Â ⪯ A and 0 ⪯ Âk ⪯ Ak for

k ∈ N0. Hence

(βt)αkÂk

Γ(αk + 1)
⪯ (βt)αkAk

Γ(αk + 1)
∀k ∈ N0 =⇒

∞∑
k=0

(βt)αkÂk

Γ(αk + 1)
⪯

∞∑
k=0

(βt)αkAk

Γ(αk + 1)
, t ≥ 0 .

and thus

Eα

(
(βt)αÂ

)
⪯ Eα

(
(βt)αA

)
, t ≥ 0 .

From where we conclude that Dα
t x̂(t) ⪯ Dα

t ŷ(t) ⪯ Dα
t x̃(t) with t > 0. Once again by Proposi-

tion 2.4 component-wisely, taking u(t) = x̃(t)− x̂(t), we can write x̂(t) ⪯ x̃(t), which completes the

proof for x(t) ⪯ x̂(t) ⪯ x̃(t) for t > 0. The case for t = 0 holds trivially, hence giving us equation

(3.21).

Let us see now that x̂(t) will not tend to 0 for any x0 ∈ [0, 1]n.

Proposition 3.9. ŷ(t) diverges for all x0 ∈ [0, 1)n \ 0.

Proof. Let us define Â = ΩÂ = ΩAΩ. This makes Â a symmetric matrix in [0, 1]n×n ⊂ [0,∞)n×n

with its diagonal elements 0, making Â satisfy the hypothesis on B of Proposition 3.4. Notice that

Â ⪯ Â ⪯ A aswell.
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Having seen this, we define x̂(t) as the solution to the linear ivp given below.{
Dα

t x̂(t) = βαÂx̂(t) , t > 0 ,

x̂(0) = x0 ,

which by Proposition 3.2 is

x̂(t) = Eα

(
(βt)αÂ

)
x0 , t ≥ 0 .

By the above, and as we have seen in the proof of the previous theorem we have

Dα
t x̂(t) = βαEα

(
(βt)αÂ

)
Âx0 , t > 0 ,

Dα
t ŷ(t) = βαEα

(
(βt)αÂ

)
Ax0 , t > 0 ,

meaning that we can provide a lower found to the C-derivative of ŷ(t): Dα
t x̂(t) ⪯ Dα

t ŷ(t) for t > 0,

as Â ⪯ Â ⪯ A. By Theorem 2.4 this implies that x̂(t) ⪯ ŷ(t) for all t ≥ 0, and by Theorem 3.4 we

know that x̂(t) diverges for all x0 ∈ [0,∞)n \ 0. Hence ŷ(t) also will for any x0 ∈ [0, 1)n \ 0.

For completeness, in the case xi(0) = (x0)i = 1 we would have
(
ŷ(0)

)
i
= ∞.

Corollary 3.10.
∥∥x̃(t)− x(t)

∥∥ t→ ∞ and
∥∥x̂(t)− x(t)

∥∥ t→ 0 for all initial conditions x0 ∈ [0, 1]n.

Proof. We have seen in Corollary 3.5 and Proposition 3.9 that both x̃(t) and ŷ(t) diverge for all

initial conditions, which means that x̂(t) tends to 1. We also saw in page 16 that the solution x(t)

to our original PRN problem converges monotonically to 1 when t is sufficiently large. Hence the

limits above.

These results imply that x̂ will behave in all the ways that we managed to characterise the

solution to our original problem (3.13), and thus it can be interpreted as a fastest-spread-case

scenario of the perturbation in our PRN rather than an approximation of its solution. Thus we will

be able to work with it instead of the solution to the original IVP, which we haven’t been able to

find analytically.

3.3 Why fractional derivatives?

Why is there a need to include fractional derivatives? What benefit do we get from working with

them? Let us discuss now how this work improves the solution to the classic SI model.

When one considers a connected network given by an adjacency matrix A ∈ {0, 1}n×n, Aij can

be seen as the amount of paths of length one that allow getting from node i to node j. Similarly,

it is known that if we take the k-th power of matrix A then the element
(
Ak
)
ij

will instead be

the number of paths of length k from node i to j. Given this interpretation, one could consider

the matricial exponential function eνA as a weighted sum of all possible paths of any length, where

paths of length k are weighted by wk = νk/k! = νk/Γ(k+1). This heavily penalises long paths due to

how rapidly the factorial increases, being the weight 0.5ν2 for length 2 but 0.04ν4 for length 4 or

even 0.0014ν6 for length 6, an effect which becomes even stronger if ν < 1.
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Further, comparing the above with the approximations to the classic SI-model (eq (3.7) or

(3.9)), one can see that ν = βt is proportional to the time, so the solution will be useful only within

a certain timescale. It would be necessary to change parameters of the dynamics (namely β) to

describe processes spanning different times.

These two properties clash with the biological diffusion phenomena that PRNs undergo. Without

getting here into details, we would find useful to be able to model effects taking place in different

timescales or with different spatial reaches.

The appearance of the Mittag-Leffler functions in the solution of the model through the usage

of the C-derivative introduces the parameter 0 < α < 1 in the solution, allowing us to adjust its

value to accommodate for both these effects without having to change the model parameters. Say,

as

Eα

(
(βt)αA

)
=

∞∑
k=0

(βt)αkAk

Γ(αk + 1)
, t ≥ 0 ,

we can tweak the value of α to change the weights given to each path length, which will become

wk = ναk/Γ(αk+1). As an example, with an α value of 0.5 the weights become ν, 0.5ν2 and 0.16ν3

for lengths 2, 4 and 6 respectively. Notice that not only the individual penalisation for length

has reduced, but the ratio of penalisation as well, allowing us to model further-reaching effects.

Similarly with the contribution of time through ν.

Despite our found solutions to the approximations, and the upper bound proved for the original

IVP describing the PRN, not being exactly the Mittag-Leffler function above, we have seen that

it plays a crucial part in the expressions of x̃(t) and more importantly x̂(t) = f
(
ŷ(t)

)
. Therefore

these effects will directly influence the behaviour of our descriptions even if not exactly as described

here, and now we can understand the meaning of ŷ(t) as written in Proposition 3.7 more deeply

and venture what the implications on x̂(t) are.

In all, the introduction of a fractional order model and with it the Mittag-Leffler function allows

us to have a finer control on the spatial reach and the timescale of the phenomena we would wish

to study thanks to the additional parameter it introduces to the solution of the classical model.
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