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Introducción

La Teoría de Grupos es una rama del álgebra abstracta que se encarga de estudiar la estructura de
los llamados grupos, conjuntos con una operación interna que satisface ciertas características. En este
trabajo vamos a centrarnos en los grupos nilpotentes, que son una generalización de los grupos abelianos,
y probaremos el Teorema de Mal’cev, un resultado muy importante relacionado con la extracción de
raíces en estos grupos.

Los grupos abelianos son aquellos en los que ”el orden de los factores no altera el producto”, es decir,
los elementos conmutan entre sí. Su nombre fue dado en honor al matemático noruego Niels Henrik Abel.
Los números enteros, con la operación de suma, o los reales no nulos, con la operación de producto, son
algunos de los ejemplos más tradicionales de este tipo de grupos. Sin embargo, no todos los grupos
satisfacen esta condición de conmutatividad. El concepto de grupos nilpotentes es una generalización
que conserva algunas de las buenas propiedades de los grupos abelianos. Estos grupos se caracterizan por
poseer una serie de subgrupos normales tales que los cocientes consecutivos son centrales, en particular,
abelianos. Por esta razón, intuitivamente, se dice que son grupos ”casi abelianos”.

El trabajo está dividido en dos partes:

El primer capítulo se utiliza para introducir las nociones y conceptos básicos sobre las que de-
sarrollaremos nuestro estudio, así como algunos resultados interesantes. Primero presentamos los
conceptos básicos de Teoría de Grupos como la definición formal de grupo, para después definir
los grupos resolubles y acabar con los grupos nilpotentes. Haremos un breve comentario sobre la
codición de maximalidad, ya que nos será de gran utilidad en el segundo capítulo.

Un grupo G es resoluble si contiene una serie abeliana, es decir, una serie de subgrupos

1 = G0 ◁G1 ◁ . . . ◁Gn = G,

tales que Gi/Gi−1 es abeliano. También definiremos el conmutador de dos elementos y los subgru-
pos conmutadores, los cuales nos permiten construir la serie derivada de G.

En la siguiente sección definimos los grupos nilpotentes, que son grupos con una serie central,
es decir, una serie abeliana donde cada cociente Gi/Gi−1 además está contenido en el centro de
G/Gi−1. Usando otra vez subgrupos conmutadores, podemos construir la serie central descendente
de G. Por otra parte, si hacemos que los cocientes Gi/Gi−1 sean exactamente iguales al centro de
G/Gi−1, obtenemos la serie central ascendente de G. Si nuestro grupo es nilpotente, estas dos series
deben terminar en el mismo número de pasos y su longitud es la llamada clase de nilpotencia de
G.

Para acabar la segunda sección, presentamos un ejemplo de grupo nilpotente: las matrices uni-
triangulares superiores de dimensión n. Nos centramos en el caso n = 3, el llamado grupo de
Heisenberg, y calculamos su serie central descendente.

En la última sección explicamos lo que significa que un grupo tenga la condición maximal (max).
Veremos que, si tenemos un subgrupo normal, nuestro grupo tiene max si y solo si el subgrupo
y el correspondiente cociente tienen max. Además, un grupo abeliano tiene max si y solo si es
finitamente generado.
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IV Introducción

El segundo capítulo profundiza en el problema de encontrar raíces de un elemento dentro de un
grupo. Enunciamos el Teorema de Mal’cev, que fue desarrollado por el matemático ruso Ana-
toly Mal’cev en la década de 1940. Este teorema, y su prueba, contribuyó significativamente al
entendimiento de la estructura de los grupos nilpotentes y su relación con la radicabilidad.

En la primera sección, introducimos nuevos conceptos más específicos para la comprensión del
teorema. Un grupo G es libre de torsión si no tiene elementos de orden finito, es decir, si dado
g ∈ G tal que gn = 1 para cierto n > 0, necesariamente g = 1. Con esta definicón, enunciamos un
resultado muy importante y conocido en Teoría de Grupos:

Teorema. Todo grupo abeliano finitamente generado y libre de torsión es isomorfo a un producto
directo de grupos cíclicos.

Por otra parte, nuestro grupo G es radicable si para todo g ∈ G y todo número entero positivo n
la ecuación xn = g tiene una solución x en G. Esta propiedad no es común para todos los grupos,
ni siquiera para todos los grupos nilpotentes, y esto es lo que motivó el enunciado del Teorema
de Mal’cev. Por último, demostramos que, si tenemos un grupo nilpotente y libre de torsión, la
extracción de raíces, si existe, es única.

En la segunda sección de este capítulo, enunciamos el Teorema de Mal’cev:

Teorema. Todo grupo nilpotente G libre de torsión es isomorfo a un subgrupo de otro grupo
nilpotente G∗ radicable de forma que cada elemento de G∗ tiene una potencia positiva en G.
Además, el grupo G∗ es único salvo isomorfismo.

Este grupo G∗ se dice complección de Mal’cev del grupo G.

El tercer capítulo está dedicado a la demostración del Teorema de Mal’cev. Seguiremos la prueba
realizada por el matemático británico Philip Hall en 1969, que se puede resumir como sigue, solo
en el caso finitamente generado.

En la primera parte, refinamos las serie central ascendente de G añadiendo más subgrupos hasta
obtener una serie central

1 = Gn ◁Gn−1 ◁ . . . ◁G0 = G,

donde cada cociente Gi−1/Gi es cíclico infinito, con generador uiGi. Con esto podemos deducir
que cada elemento a ∈ G puede ser expresado así a = uα1

1 . . .uαn
n = uα . Además, probamos que, si

b = uβ ∈ G y m es un número entero, existen polinomios γi en las variables α j,β j y ω
(m)
i en las

variables α j y m tales que

ab = uαuβ = uγ

am = uω .

Con estos polinomios, definimos GQ como el conjunto de todos los productos formales uα con
exponentes α1, . . . ,αn en Q. Claramente, este conjunto contiene a G. Solo tenemos que probar
que GQ es un grupo nilpotente y radicable como el del enunciado para probar la existencia de la
complección de Mal’cev.

La unicidad se prueba en la segunda parte definiendo un isomorfismo entre GQ y una complección
distinta de la encontrada.

En la última sección, ampliamos el ejemplo del primer capítulo para ver cómo es su complección.
También hablamos de los polinomios de Hall y su aplicación en criptografía.

Finalmente, me gustaría señalar que el problema detrás del Teorema de Mal’cev es básicamente
un problema de resolver ciertas ecuaciones. Una ecuación como nx = a, donde n > 0 y a son enteros,
solo tendrá solución x en Z si n divide a a. Sin embargo, ese no siempre es el caso, y así es como se
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introdujeron los números racionales. Análogamente, cuando tenemos una ecuación racional como x2 = 2,
tenemos que introducir los números reales, y cuando tenemos una ecuación real como x2 =−1, definimos
los números complejos. El problema de extraer raíces de un elemento ha interesado a los matemáticos
durante muchas décadas e incluso siglos (como, por ejemplo, el caso de los números imaginarios, que se
introdujeron por primera vez en el siglo XVI [4]). Con estas construcciones estamos extendiendo grupos
para poder trabajar mejor con ellos. Con esto, es fácil entender la importancia del resultado de Mal’cev,
incluso a día de hoy (el artículo [3] de 2017 se basa en la prueba de este teorema dada por P. Hall en
1969 para producir un algoritmo que permite operar de forma eficiente en grupos nilpotentes).
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Abstract

This project is included in the branch of Algebra called Group Theory, which focuses on groups
and their algebraic structure. In particular, we will consider nilpotent groups. More precisely, our central
focus will be Mal’cev’s Theorem on the extraction of roots in torsion-free nilpotent groups, and its proof,
which helps understand better the structure of these groups.

We first state the grounds from which we will build our a way to the proof. We introduce soluble
groups. From there we define nilpotent groups, which can be seen as extensions of abelian groups because
of their structure. Both these groups are defined using certain series and these two notions are strongly
related since nilpotent groups are also solvable. However the reverse is not true, and one of the reasons
that make nilpotent groups interesting is their closer proximity to abelian groups, whilst still maintaining
a more rich and complicated structure.

As stated before, nilpotent groups are defined in terms of series, that is why we make a big emphasis
on how the subgroups and quotients that form them are and on the properties that they have. We will
prove many results about these series, that will help us understand how nilpotent groups are, and also
how we can prove the theorem that concerns us.

Once we have our basis, we will change our focus to the extraction of roots in these groups. We will
define radicability and prove that in a torsion-free nilpotent group the extraction of roots, if it exists, is
unique. We will then present the main theorem of this thesis, Mal’cev’s Theorem, which states that a
torsion-free nilpotent group G can be embedded in a nilpotent group G∗, in which the extraction of roots
is unique, in such a way that every element of G∗ has a positive porwer in G. By proving this statement
for finitely generated groups, and with the help of some examples, we will learn about the structure of G
and how we can extend it so that we can find the roots of its elements.

Finally, I would like to point out that the problem behind Mal’cev’s Theorem is basically a problem
of solving certain equations. When we have an equation like nx = a where n > 0 and a are integers, then
we can only find a solution x in Z if n divides a. However that is not always the case, and that is how
the rational numbers where introduced. Similarly, when we have a rational equation like x2 = 2, we have
to introduce the real numbers, and when we have a real equation like x2 = −1, we define the complex
numbers. The problem of extracting the roots of an element has been interesting for mathematicians
for many decades and even centuries (take for example the case of imaginary numbers which were first
introduced in the 16th century [4]). These are all just extensions of groups, that give us a bit more space
to work with them. Seeing this, it is easy to understand the importance of Mal’cev’s result, and why it is
still studied to this date (the article [3] from 2017 is based on the proof of this theorem given by P. Hall
in 1969, which is used to produce an algorithm to compute in an effective way in these groups).
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Capítulo 1

Conceptos previos y Grupos Nilpotentes

Antes de empezar vamos a definir algunos conceptos previos que nos ayudarán a entender mejor los
resultados que se estudian en este trabajo. Empezamos con lo más básico:

Un grupo G = (G, ·) es un conjunto no vacío G con una operación interna:

· : G×G → G

(x,y) 7→ x · y

tal que:

es asociativa

tiene elemento neutro 1G

todo elemento g tiene inverso g−1, i.e. g ·g−1 = 1G

A partir de este punto obviaremos el símbolo · al referirnos a la operación interna de un grupo.
Dos elementos a y b conmutan si ab = ba y, si esto se cumple para todos los elementos de G, se dice

que el grupo es abeliano.
Este concepto será necesario durante el estudio del Teorema de Mal’cev, al igual que otras nociones

que damos por conocidas, como orden o grupo cíclico. También consideramos como básicos algunos
resultados primarios sobre la teoría de grupos, pero mencionamos algunos conceptos para situar el marco
teórico en el que desarrollamos el trabajo:

Sea G un grupo. Decimos que un subconjuto H de G es un subgrupo si es a su vez un grupo con la
restricción de la operación de G. Lo denotaremos H ⩽ G. En este caso, si x es un elemento cualquiera
de G, entonces xH = {xh : h ∈ H} es una clase lateral izquierda de H en G. Y, análogamente, Hx es una
clase lateral derecha de H en G. Un subgrupo N se dice normal si para todo x ∈ G tenemos xN = Nx,
es decir, nx ∈ N para todo n ∈ N. Lo denotaremos N ⊴ G. Sea N ⊴ G, entonces se puede definir una
estructura de grupo en el conjunto de todas las clases de N en G, el cual se llama grupo cociente G/N.

Sean G,H dos grupos. Una función f : G → H se dice homomorfismo de grupos si para todo x,y ∈ G
tenemos f (xy) = f (x) f (y). Es fácil probar que el núcleo de un homomorfismo, ker( f ), que consiste en
los elementos cuya imagen por f es 1, es un subgrupo normal de G.

El centro de un grupo G es Z(G) = {g ∈ G | xg = gx, ∀x ∈ G}.
Sea S un subconjunto (finito o infinito) de elementos de un grupo G. Si todo y ∈ G puede ser expre-

sado como un producto de un número finito de elementos de S y de sus inversos, entonces decimos que
S es un conjunto generador de G y lo denotamos así: G = ⟨S⟩. Si existe un conjunto generador S de G
finito, se dice que G es finitamente generado. Además, si el conjunto {x1, . . . ,xn} genera G de tal forma
que xr1

1 · · ·xrn
n = 1 implica que r1 = · · · = rn = 0, entonces se dice que x1, . . . ,xn forman una base de G.

No todos los grupos finitamente generados poseen una base.

Lema 1.1. Sea G un grupo finitamente generado y N un subgrupo normal de G. Entonces G/N es
finitamente generado

1



2 Capítulo 1. Conceptos previos y Grupos Nilpotentes

Demostración. Es evidente, ya que, si x1, . . . ,xk generan G, x1N, . . . ,xkN generan G/N.

Por último, vamos a dar un resultado muy básico de Teoría de Grupos, cuya demostración, aunque
elemental, obviamos por ser demasiado larga:

Lema 1.2. Todo subgrupo de un grupo abeliano y finitamente generado es finitamente generado.

1.1. Grupos resolubles

Definición 1.1. Una serie de subgrupos de un grupo G,

1 = G0 ◁G1 ◁ ... ◁Gn−1 ◁Gn = G,

se dice abeliana si cada cociente Gi+1/Gi es abeliano.

Definición 1.2. Un grupo G se dice resoluble o soluble si tiene una serie abeliana, 1 = G0 ◁G1 ◁ ... ◁
Gn−1 ◁Gn = G.

Claramente, si G es abeliano, G es resoluble con serie abeliana 1 ◁G. Así resolubilidad es una ge-
neralización de la conmutatividad. El ejemplo más pequeño de grupo resoluble no abeliano es el grupo
simétrico S3, cuya serie abeliana es 1◁ ⟨(123)⟩◁S3.

Definición 1.3. La longitud de la serie abeliana más corta de un grupo resoluble G se dice longitud
derivada de G.

Por tanto, los grupos de longitud derivada 1 son los grupos abelianos.

Definición 1.4. Sea G un grupo cualquiera y sean x1,x2 elementos arbitrarios de G. El conmutador de
x1 y x2 es [x1,x2] = x−1

1 x−1
2 x1x2 = x−1

1 xx2
1 donde xx2

1 = x−1
2 x1x2.

Entonces G es abeliano si y solo si todos los conmutadores de elementos de G son iguales a la
identidad. Ampliamos este concepto para más de dos elementos. Definimos un conmutador simple de
peso n ≥ 2 de forma recursiva

[x1,x2, ...,xn] = [[x1, ...,xn−1],xn],

donde [x1] = x1 por convención.
Vamos a introducir algunas propiedades básicas de los conmutadores para poder trabajar con ellos.

Lema 1.3. Supongamos que x,y,z son elementos de un grupo. Entonces:

i) [x,y] = [y,x]−1

ii) [xy,z] = [x,z]y[y,z], [x,yz] = [x,z][x,y]z

iii) [x,y−1] =
(
[x,y]y

−1
)−1

, [x−1,y] =
(
[x,y]x

−1
)−1

iv) [x,y−1,z]y[y,z−1,x]z[z,x−1,y]x = 1 (la identidad de Hall-Witt).

Demostración. Aplicando la definición de conmutador se puede demostrar i), ii), iii) fácilmente. Para
probar iv), definimos u = xzx−1yx, v = yxy−1zy y w = zyz−1xz. Podemos computar [x,y−1,z]y = u−1v,
[y,z−1,x]z = v−1w y [z,x−1,y]x = w−1u. Y entonces obtenemos:

[x,y−1,z]y[y,z−1,x]z[z,x−1,y]x = u−1vv−1ww−1u = 1.
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Definición 1.5. Sean X1,X2 subconjuntos no vacíos de un grupo G. Definimos el subgrupo conmutador
de X1 y X2 así:

[X1,X2] = ⟨[x1,x2] | x1 ∈ X1, x2 ∈ X2⟩ .

Es decir, es el subgrupo generado por todos los conmutadores de elementos de X1 y X2.

Observemos que, por el lema 1.3 (i), el conmutador de dos subconjuntos es simétrico: [X1,X2] =
[X2,X1]. Además, si X1,X2 son subgrupos normales, el lema 1.3 (iii) implica que [X1,X2] también lo es.

Para n ≥ 2 definimos recursivamente:

[X1,X2, ...,Xn] = [[X1,X2, ...,Xn−1],Xn],

donde [X1] = ⟨X1⟩.

Lema 1.4. Si X1,X2,X3 son subgrupos normales en G, entonces [X1,X2X3] = [X1,X2][X1,X3] y [X1X2,X3] =
[X1,X3][X2,X3]

Demostración. [X1,X2X3] esta generado por los conmutadores [x1,x2x3] con x1 ∈ X1, x2 ∈ X2 y x3 ∈ X3.
El resultado sigue de usar el apartado ii) del lema 1.3. Análogamente, se demuestra la otra igualdad.

Una vez aclarado el concepto de conmutador, podemos construir series abelianas canónicas para los
grupos resolubles.

Definición 1.6. Sea G un grupo. Definimos el subgrupo derivado o conmutador de G como G′ = [G,G].
Formando subgrupos derivados repetidamente, obtenemos una secuencia descendente de subgrupos de
G:

G = G(0) ≥ G(1) ≥ G(2) ≥ ...≥ G(n) ≥ ...

donde G(n+1) =
(
G(n)

)′
. La llamaremos serie derivada de G.

Teniendo en cuenta la observación realizada tras la definición 1.5, el subgrupo derivado G′ es normal
en G y, además, G/G′ es abeliano, de hecho es el mayor cociente abeliano de G. Vamos a ver esto
último. Sea H ≤ G. Tomamos [x1,x2] con x1,x2 ∈ G, ya que estos elementos generan el grupo G′. Si
el cociente G/H es abeliano, [x1,x2]H = 1. Por tanto, [x1,x2] ∈ H, es decir, G′ ≤ H. Habitualmente se
denota Gab = G/G′ y se llama abelianización de G. Por inducción, es claro que G(n) es un subgrupo
normal de G para cada n y cada uno de los cocientes G(n)/G(n+1) en la serie es abeliano.

1.2. Grupos nilpotentes

Definición 1.7. Un grupo G se dice nilpotente si tiene una serie central, es decir, una serie normal
1 = G0 ≤ G1 ≤ ...≤ Gn = G tal que Gi+1/Gi está contenido en el centro de G/Gi para i = 0,1, ...,n−1.
La longitud de la serie central más corta de G se dice clase de nilpotencia de G.

Claramente, si el cociente Gi+1/Gi está contenido en el centro de G/Gi, en particular es abeliano y,
por tanto, una serie central es también una serie abeliana y, en consecuencia, los grupos nilpotentes son
resolubles. Sin embargo, no toda serie abeliana es central: la serie 1 ◁ ⟨(123)⟩ ◁ S3 no es central, puesto
que ⟨(123)⟩/1 = ⟨(123)⟩ no está contenido en Z(S3/1) = 1. De hecho, es fácil ver que esta es la única
serie abeliana de S3, luego S3 no es nilpotente. Por tanto, no todo grupo resoluble es nilpotente.

Un grupo nilpotente de clase 0 tiene orden 1 y los grupos nilpotentes de clase 1 son precisamente los
grupos abelianos.

Observación. Una serie 1 = G0 ◁G1 ◁ . . . ◁Gn = G es central si y solo si [Gi+1,G]≤ Gi. Es fácil demos-
trarlo. La serie es central si y solo si Gi+1/Gi ⊆ Z(G/Gi). Esto es equivalente a que hgGi = ghGi para
todo h ∈ Gi+1 y todo g ∈ G, es decir, [h,g] ∈ Gi para todo h ∈ Gi+1 y todo g ∈ G. Por tanto, equivalente
a [Gi+1,G]≤ Gi.
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En el caso de la resolubilidad hemos definido una serie canónica. Para la nilpotencia vamos a de-
finir dos. La primera serie, al igual que la serie derivada, es una secuencia descendente de subgrupos
conmutadores.

Definición 1.8. Sea G un grupo y definimos γ1(G) = G y γn+1(G) = [γn(G),G], para n ≥ 1. La serie
G = γ1(G)≥ γ2(G)≥ ...≥ γn(G)≥ ... se llama la serie central descendente de G.

Es claro que la serie es central, basta usar la observación anterior. Al igual que la serie derivada, la
serie central descendente no siempre alcanza 1 o termina.

El siguiente resultado nos será de gran utilidad en la prueba de nuestro teorema (3).

Proposición 1.5. Sea G un grupo nilpotente. Si Gab = G/G′ es finitamente generado, entonces, para
todo i = 1, ...,n, γi(G)/γi+1(G) también lo es.

Demostración. Supongamos que X es una familia finita que genera Gab. Observemos que G′ = γ2(G),
por tanto, el primer cociente de la serie central descendente es finitamente generado. Vamos a ver que
entonces γ2(G)/γ3(G) es generado por los elementos de la forma [x,y]γ3(G) con xγ2(G),yγ2(G) ∈ X , por
tanto, tiene un número finito de generadores.

Sabemos que γ2(G)/γ3(G) está generado por [g,h]γ3(G) con g,h ∈ G, luego basta con probar que,
para todo g,h ∈ G, [g,h]γ3(G) se puede expresar como producto de elementos de la forma [x,y]γ3(G) con
xγ2(G),yγ2(G) ∈ X . Como X genera Gab, tenemos:

gγ2(G) = x1 · · ·xtγ2(G)

hγ2(G) = y1 · · ·ysγ2(G)

con xiγ2(G),y jγ2(G) ∈ X para todo i = 1, . . . , t y todo j = 1, . . . ,s.
Vamos a probar el resultado por inducción sobre t + s. Sea t + s = 0, entonces g,h ∈ γ2(G), luego

[g,h]γ2(G) = γ2(G). Sea ahora t + s > 0 y asumimos que el resultado se cumple para i < t + s. Como t,s
son enteros positivos, uno de ellos es mayor que cero, sin pérdida de generalidad podemos suponer t > 0.
Ahora podemos poner gγ2(G) = g1xtγ2(G) con g1γ2(G) = x1 . . .xt−1γ2(G). Por la hipótesis de inducción,
[g1,h]γ3(G) es producto de elementos de la forma [x,y]γ3(G) con xγ2(G),yγ2(G) ∈ X . Y lo mismo es
cierto para [xt ,h]γ3(G). Además:

[g,h]γ3(G) = [g1xt ,h]γ3(G) = [g1,h]xt γ3(G)[xt ,h]γ3(G) = [g1,h]γ3(G)[xt ,h]γ3(G),

donde primero utilizamos el lema 1.3 y después el siguiente hecho:

[g1,h]xt γ3(G) = [g1,h][g1,h]−1[g1,h]xt γ3(G) = [g1,h][[g1,h],xt ]γ3(G) = [g1,h]γ3(G).

Por tanto, [g,h]γ3(G) también es producto de elementos de la forma [x,y]γ3(G) con xγ2(G),yγ2(G)
en X . Como X es finito, las combinaciones de x,y para formar los conmutadores también lo son y
γ2(G)/γ3(G) es finitamente generado.

Podemos repetir este proceso con los siguientes cocientes γi(G)/γi+1(G): si γi−1(G)/γi(G) está fini-
tamente generado por una familia Y , entonces los elementos de la forma [x,y]γi+1(G) con xγ2(G) ∈ X e
yγi(G) ∈ Y generan γi(G)/γi+1(G). Como X e Y son finitos, sus combinaciones para formar los conmu-
tadores también. Luego, para todo i = 1, . . . ,n, el cociente γi(G)/γi+1(G) es finitamente generado.

Definición 1.9. La segunda serie canónica asociada a la nilpotencia es la serie central ascendente

1 = Z0(G)≤ Z1(G)≤ ...≤ Zn(G)≤ ...

definida por Zn+1(G)/Zn(G) = Z(G/Zn(G)). En particular, Z1(G) = Z(G).

En general, la serie central ascendente puede no alcanzar G o siquiera terminar finitamente. Por
ejemplo, si Z1(G) = 1 como en el caso de S3, la serie no crece en absoluto. Si la serie termina, entonces
el subgrupo en el que termina se dice hipercentro de G.
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Proposición 1.6. Sea 1 = G0 ◁G1 ◁ ... ◁Gn = G una serie central de un grupo nilpotente G. Entonces:

i) γi(G)≤ Gn−i+1, para 0 < i ≤ n+1, luego γn+1(G) = 1

ii) Gi ≤ Zi(G), para 0 ≤ i ≤ n, luego Zn(G) = G

iii) las series centrales descente y ascendente tienen la misma longitud y este valor común es la clase
de nilpotencia de G.

Demostración. Probamos i) por inducción. Para i = 1, es claro γ1(G) = G = Gn. Supongamos que se
cumple hasta i−1: γi−1(G)≤ Gn−i+2. Entonces

γi(G) = [G,γi−1(G)]≤ [G,Gn−i+2]

ya que la formación de subgrupos conmutadores respeta inclusiones. Como la serie de los G j es central,
[G,Gn−i+2]≤ Gn−i+1 y tenemos que γi(G)≤ Gn−i+1.

También probaremos ii) por inducción. El paso i = 0 es claro. Supongamos que se cumple hasta i−1:
Gi−1 ≤ Zi−1(G). Ahora, tomamos g ∈ Gi y h ∈ G. Entonces

[g,h] ∈ [Gi,G]≤ Gi−1 ≤ Zi−1(G).

Por tanto, ghZi−1(G) = hgZi−1(G), es decir,

gZi−1(G) ∈ Z(G/Zi−1(G)) = Zi(G)/Zi−1(G).

Concluimos que g ∈ Zi(G), luego Gi ≤ Zi(G).
La última parte es una consecuencia directa de i) y ii).

De aquí podemos concluir que un grupo es nilpotente si y solo si su serie central descendente termina
en el grupo trivial, es decir, si y solo si γn(G) = 1 para algún n. Equivalentemente, su serie central
ascendente termina en el grupo original. Esto tiene como consecuencia que, si G es nilpotente y H ≤ G,
entonces H es nilpotente. Para probarlo solo hay que tomar la serie H ∩ γi(G) que claramente es central
y termina en 1.

Proposición 1.7. Sea G un grupo nilpotente y N un subgrupo normal de G. Entonces G/N es nilpotente.

Demostración. Suponemos que 1 = G0 ⊴ G1 ⊴ . . . ⊴ Gn = G es una serie central de G. Entonces
podemos tomar los subgrupos GiN/N ≤ G/N, que claramente son normales en G/N. Ahora toma-
mos gN en G/N y hN en Gi+1N/N, con g ∈ G, h ∈ Gi+1. Como los Gi forman una serie central,
[h,g] ∈ [Gi+1,G] ≤ Gi. Por tanto, [hN,gN] = [h,g]N ∈ GiN/N, es decir, [Gi+1N/N,G/N] ≤ GiN/N y
queda probado el resultado.

Lema 1.8. Sean H,K,L subgrupos de un grupo G. Si dos subgrupos cualquiera entre [H,K,L], [K,L,H],
[L,H,K] están contenidos en un subgrupo normal de G, entonces el tercero también lo está.

Demostración. Asumimos [K,L,H], [L,H,K] ≤ N, donde N es un subgrupo normal de G. Utilizando
la identidad de Hall-Witt (1.3) tenemos que [x,y−1,z]y[y,z−1,x]z[z,x−1,y]x = 1 para cualesquiera x ∈ H,
y∈K, z∈ L. Llamaremos a= [x,y−1,z]y ∈ [H,K,L], b= [y,z−1,x]z ∈ [K,L,H] y c= [z,x−1,y]x ∈ [L,H,K].
Podemos despejar a de la ecuación de arriba:

a = c−1b−1 ∈ [K,L,H][L,H,K]≤ N.

Como los elementos de la forma de a generan [H,K,L], tenemos que [H,K,L]≤ N.

Proposición 1.9. Sea G un grupo e i, j números enteros positivos. Entonces [γi(G),γ j(G)]≤ γi+ j(G).
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Demostración. Vamos a probarlo por inducción sobre i. Primero, observamos que para i = 1:

[γ1(G),γ j(G)] = [G,γ j(G)] = γ j+1(G), ∀ j > 0

Supongamos que se cumple hasta i, queremos ver que [γi+1(G),γ j(G)] ≤ γi+1+ j(G) para todo j. Por
definición de γi+1(G), tenemos que [γi+1(G),γ j(G)] = [[G,γi(G)],γ j(G)]. Por el lema anterior 1.8, si pro-
bamos que los dos subgrupos [γi(G),γ j(G),G] y [γ j(G),G,γi(G)] están en γi+ j+1(G) (subgrupo normal
de G), tendríamos que el tercero también lo está, es decir:

[γi+1(G),γ j(G)]≤ γi+1+ j(G).

El enunciado se cumple para i, luego:

[γi(G),γ j(G),G] = [[γi(G),γ j(G)],G]≤ [γi+ j(G),G] = γi+ j+1(G).

Además, la hipótesis de inducción es cierta para todo j y por tanto:

[γ j(G),G,γi(G)] = [γ j+1(G),γi(G)]≤ γi+ j+1(G).

Para tener una idea más clara de cómo se comportan los grupos nilpotentes y poder entender mejor
el Teorema de Mal’cev, que introduciremos en el capítulo 2, vamos a trabajar con este ejemplo.

Ejemplo 1.10. Sea R un anillo conmutativo con identidad (podemos pensarlo como Z, Q o R). Definimos
el grupo G de todas las matrices n×n unitriangulares superiores sobre R, es decir, las matrices con unos
en la diagonal y ceros debajo de ella. La operación interna es la multiplicación habitual entre matrices.
Podemos asegurar que G es un grupo debido a que el producto de matrices triangulares superiores es otra
matriz triangular superior cuyos elementos diagonales son el producto de los correspondientes elementos
diagonales de las dos matrices. Se puede ver que este grupo es nilpotente de clase n−1.

Vamos a centrarnos en el caso n = 3. Este es el llamado grupo de Heisenberg:

G = {

1 a b
0 1 c
0 0 1

 | a,b,c ∈ R}.

Sean dos matrices en G:

A =

1 a b
0 1 c
0 0 1

 y B =

1 a′ b′

0 1 c′

0 0 1

 .

Se puede comprobar que su producto será:

AB =

1 a+a′ b+b′+ac′

0 1 c+ c′

0 0 1

 (1.1)

y, por tanto, el inverso de A será:

A−1 =

1 −a −b+ac
0 1 −c
0 0 1


Definimos el subgrupo de G:

G2 = {

1 0 b
0 1 0
0 0 1

 | b ∈ R}.
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Además, para todo M ∈ G y todo T ∈ G2, (1.1) implica que MT = T M. Es decir, G2 es un subgrupo
abeliano y G2 ≤ Z(G).

Por otra parte, en el caso en el que R = Z, las matrices:

u1 =

1 1 0
0 1 0
0 0 1

 , u2 =

1 0 0
0 1 1
0 0 1

 , u3 =

1 0 1
0 1 0
0 0 1


claramente generan el grupo G (y en particular u3 genera el subgrupo G2) y sus matrices inversas son:

u−1
1 =

1 −1 0
0 1 0
0 0 1

 , u−1
2 =

1 0 0
0 1 −1
0 0 1

 , u−1
3 =

1 0 −1
0 1 0
0 0 1


Vamos a calcular los conmutadores de estas matrices generadoras:

[u1,u2] =

1 −1 1
0 1 −1
0 0 1

1 1 0
0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

=

1 0 1
0 1 −1
0 0 1

1 0 0
0 1 1
0 0 1

=

1 0 1
0 1 0
0 0 1

= u3

[u2,u3] =

1 0 −1
0 1 −1
0 0 1

1 0 0
0 1 1
0 0 1

1 0 1
0 1 0
0 0 1

=

1 0 −1
0 1 0
0 0 1

1 0 1
0 1 0
0 0 1

=

1 0 0
0 1 0
0 0 1

= 1

[u1,u3] =

1 −1 −1
0 1 0
0 0 1

1 1 0
0 1 0
0 0 1

1 0 1
0 1 0
0 0 1

=

1 0 −1
0 1 0
0 0 1

1 0 1
0 1 0
0 0 1

=

1 0 0
0 1 0
0 0 1

= 1

Sabiendo esto, se puede deducir que γ2(G) = [G,G] = G2 aplicando la definición de subgrupo con-
mutador. Entonces γ3(G) = [G,γ2(G)] = [G,G2] = 1 ya que [u1,u3] = [u2,u3] = [u3,u3] = 1 y, como u1,u2
no conmutan, G2 = Z(G).

Luego tenemos la serie central descendente de G:

γ1(G) = G▷ γ2(G) = G2 ▷ γ3(G) = 1

que termina en un número finito de pasos, es decir, hemos probado que G es nilpotente de clase 2.
Se puede construir un homomorfismo de grupos:

J : G/G2 → R⊕R

MG2 7−→ (a,c)

donde M =

1 a b
0 1 c
0 0 1

 es un represante de la clase en G/G2. J está bien definido, puesto que:

MG2 =

1 a 0
0 1 c
0 0 1

G2, debido a

1 a b
0 1 c
0 0 1

1 −a 0
0 1 −c
0 0 1

=

1 0 b−ac
0 1 0
0 0 1

 ∈ G2

para cualesquiera a,b,c ∈ R.

Para ver que es un homomorfismo, tomamos M =

1 a 0
0 1 b
0 0 1

, N =

1 a′ 0
0 1 b′

0 0 1

 en G. Entonces

MN =

1 a+a′ ab′

0 1 b+b′

0 0 1


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y, aplicando la definición de la operación interna del producto directo, tenemos:

J((MN)G2) = (a+a′,b+b′) = (a,b)+(a′,b′) = J(MG2)+ J(NG2).

Por otra parte, J(MG2)= J(NG2) si y solo si a= a′ y b= b′ y, en tal caso, es fácil ver que MN−1 ∈G2,
luego MG2 = NG2 y J es inyectiva. Y claramente es suprayectiva, por tanto, J es un isomorfismo de
grupos y

Gab = G/G2 ∼= R⊕R.

1.3. La condición maximal

Vamos a introducir la condición maximal así como algunos resultados relacionados que utilizaremos
en la prueba del Teorema de Mal’cev (3).

Definición 1.10. Se dice que un grupo G tiene max si una de las siguientes condiciones se cumple:

i) toda familia de subgrupos de G tiene algún elemento maximal;

ii) toda serie estrictamente ascendente de subgrupos de G es finita;

iii) todo subgrupo de G es finitamente generado.

Se puede probar que las tres condiciones son equivalentes usando el lema de Zorn. Claramente, si un
grupo es finito, tiene max.

Proposición 1.11. Sea G un grupo y N un subgrupo normal de G. Entonces G tiene max si y solo si
tanto N como G/N tienen max.

Demostración. Los subgrupos de N son en particular subgrupos de G, luego, si G tiene max, N también.
Ahora, si tenemos una serie estrictamente ascendente de subgrupos de G/N

1 = G0/N < G1/N < .. . < Gn/N < .. . ,

en particular, tenemos una serie estrictamente ascendente de subgrupos de G

1 = G0 < G1 < .. . < Gn < .. .

Esta serie es finita: existe n tal que Gn = Gm para todo m ≥ n. Por tanto, Gn/N = Gm/N para todo m ≥ n
y G/N tiene max.

Para el reverso, tomamos una serie de subgrupos de G: H1 < H2 < .. . < Hn < .. . . De aquí podemos
obtener una serie de las mismas características de N y de G/N:

H1 ∩N ≤ H2 ∩N . . .≤ Hn ∩N ≤ . . .

H1N ≤ H2N ≤ . . .≤ HnN ≤ . . .

Como N tiene max, existe i tal que Hi ∩N = Hn ∩N para todo n ≥ i. De forma similar, existe j tal que
H jN = HnN para todo n ≥ j. Entonces, si tomamos k = max(i, j), Hn ∩N = Hk ∩N y HnN = HkN para
todo n ≥ k. Recordemos la ley modular de Dedekind: Si A,B,C son subgrupos de un grupo G con A ⊂ B,
entonces A(B∩C) = B∩AC. Tomemos n ≥ k, como Hn ≥ Hk, podemos usar esta ley y deducimos:

Hn = Hn ∩ (HnN) = Hn ∩ (HkN) = Hk(Hn ∩N) = Hk(Hk ∩N) = Hk.

Proposición 1.12. Sea G un grupo abeliano. Entonces G tiene max si y solo si es finitamente generado.
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Demostración. Suponemos primero que G tiene max. Si G es cíclico, es finitamente generado. En otro
caso, sea a1 ∈ G tal que ⟨a1⟩ ̸= G. Entonces ⟨a1⟩ es un subgrupo de G, y elegimos a2 ∈ G \ ⟨a1⟩. Si
G = ⟨a1,a2⟩, ya lo tenemos. Si no, seguimos el proceso y obtenemos una serie estrictamente ascendente
de subgrupos de G:

1 < ⟨a1⟩< ⟨a1,a2⟩< .. .

Si G tiene max, la serie es finita, luego existe n tal que G = ⟨a1,a2, . . . ,an⟩. El converso es consecuencia
del hecho de que los subgrupos de un grupo abeliano y finitamente generado son finitamente generados.

De aquí se deduce que otro ejemplo de grupos que tienen max son los grupos cíclicos.





Capítulo 2

El Teorema de Mal’cev

2.1. Extracción de raíces en grupos nilpotentes

En la próxima sección (2.2) enunciaremos el Teorema de Mal’cev, que demostraremos posteriormen-
te en el capítulo 3. Antes debemos introducir algunos conceptos sobre grupos radicables y extracción de
raíces.

Definición 2.1. Se dice que un grupo G es libre de torsión si no tiene elementos de orden finito, es decir,
si dado g ∈ G tal que gn = 1 para cierta n > 0, entonces g = 1.

El siguiente resultado es un teorema muy importante de Teoría de Grupos y que nos será de gran
ayuda más adelante.

Teorema 2.1. Todo grupo abeliano finitamente generado y libre de torsión es isomorfo a un producto
directo de grupos cíclicos.

Demostración. Sea G un grupo abeliano, finitamente generado y libre de torsión. Entonces existen
x1, . . . ,xr tales que G = ⟨x1, . . . ,xr⟩. Veamos que podemos tomar los xi de manera que formen una base,
es decir, xn1

1 xn2
2 · · ·xnr

r = 1 con ni ∈ Z para i = 1, . . . ,r si y solo si ni = 0 para cada i.
Claramente, podemos elegir x1, . . . ,xr tales que sean una familia generadora minimal, es decir, que

ninguno de ellos se pueda expresar en términos de los demás. Supongamos que existen n1, . . . ,nr no
todos cero de forma que xn1

1 xn2
2 · · ·xnr

r = 1. Además, podemos elegir los ni de forma que |n1|+ . . .+ |nr|
sea lo menor posible entre todas las familias generadoras minimales.

Si todos los ni excepto uno fueran cero, tendríamos xn j
j = 1 con n j ̸= 0, lo que es imposible ya que G

es libre de torsión. Por tanto, al menos dos exponentes son distintos de cero. Reordenando si es necesario,
podemos suponer que |n1| ≥ |n2|> 0 y, pasando al inverso si es necesario, podemos suponer n1 > 0.

Ahora, si n2 > 0, podemos escribir x′2 = x2x1. Entonces x2 = x′2x−1
1 y, teniendo en cuenta que G es

abeliano, llegamos a:
1 = xn1

1 xn2
2 · · ·xnr

r = xn1−n2
1 (x′2)

n2 · · ·xnr
r .

La familia {x1,x′2,x3, . . . ,xr} es también generadora minimal y, además:

|n1 −n2|+ |n2|+ . . .+ |nr|< |n1|+ |n2|+ . . .+ |nr|,

lo que contradice nuestra hipótesis. Para n2 < 0 se prueba igual pero con x′2 = x2x−1
1 .

De aquí se deduce que x1, . . . ,xr ha de ser base de G. Con este resultado se puede probar que la
función obvia entre G y ⟨x1⟩×⟨x2⟩× · · ·×⟨xr⟩ es un isomorfismo.

Además, todo grupo cíclico infinito es isomorfo a Z. En conclusión, también se puede decir que G
es isomorfo a Zr, con r el tamaño de la base de G.

Con la definición anterior, podemos introducir la siguiente proposición que relaciona la torsión de un
grupo nilpotente con la torsión de los subgrupos de su serie central ascendente.

11
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Proposición 2.2. Sea G un grupo nilpotente de clase k. Los siguientes enunciados son equivalentes:

i) G es libre de torsión

ii) Z(G) es libre de torsión

iii) Zi(G)/Zi−1(G) es libre de torsión para todo i = 1, ...,k

Demostración. i)⇒ ii) Es trivial, ya que el centro de un grupo es un subgrupo del mismo.
ii) ⇒ iii) Para demostrar esto, primero vamos a probar que, si existe un elemento de torsión en

Zi+1(G)/Zi(G), también existirá un elemento de torsión en Zi(G)/Zi−1(G). Si denotamos como Fi al
cociente Zi(G)/Zi−1(G), entonces para cada i = 1, . . . ,k−1 existe un homomorfismo injectivo:

θ : Fi+1 → Hom(Gab,Fi)

donde la imagen de cada zZi(G) es un homomorfismo

fz := θ(zZi(G)) : Gab → Fi

tal que fz(gG′) = [z,g]Zi−1(G), donde z ∈ Zi+1(G), g ∈ G.
Dado un cierto i, probemos que θ es realmente un homomorfismo inyectivo. Primero, deberíamos

probar que fz está bien definida para todo z ∈ Zi+1(G) y que es un homomorfismo. Lo primero es claro
ya que zZi(G) ∈ Zi+1(G)/Zi(G) = Z(G/Zi(G)), luego [z,g] ∈ Zi(G) para todo g ∈ G y, por tanto, fz(gG′)
está en Fi. Veamos que es homomorfismo:

fz(ghG′) = [z,gh]Zi−1(G) = [z,h][z,g]hZi−1(G) = [z,g]Zi−1(G)[z,h]Zi−1(G) = fz(gG′) fz(hG′),

donde primero usamos el lema 1.3 y después que [z,g]Zi−1(G), [z,h]Zi−1(G) ∈ Zi(G)/Zi−1(G) luego
conmutan con todo elemento de G/Zi−1(G).

Veamos ahora que θ está bien definido. Si z1Zi(G) = z2Zi(G), entonces z1z−1
2 ∈ Zi(G). Queremos

ver que fz1 = fz2 . Sea g ∈ G, entonces fz1(gG′) = fz2(gG′) implica que [z1,g][z2,g]−1 ∈ Zi−1(G). Como
estamos trabajando con la serie central ascendente, tenemos que:

[z1,g][g,z2]Zi−1(G) = z−1
1 g−1z1z−1

2 gz2Zi−1(G) = z−1
1 z1z−1

2 g−1gz2Zi−1(G) = 1,

con lo que queda probado lo que queríamos.
Para ver que θ es homomorfismo tomamos z1,z2 ∈ Zi+1(G) y tenemos que ver θ(z1Zi(G) ·z2Zi(G)) =

θ(z1Zi(G)) ·θ(z2Zi(G)). Esto equivale a probar que fz1z2 = fz1 fz2 , es decir:

fz1z2(gG′) = fz1(gG′) fz2(gG′)

para todo gG′ ∈ Gab. Usando otra vez las propiedades de los conmutadores vistas en el lema 1.3, obtene-
mos:

fz1z2(gG′) = [z1z2,g]Zi−1(G) = [z1,g]z2 [z2,g]Zi−1(G) = [z1,g][z2,g]Zi−1(G) = fz1(gG′) fz2(gG′),

donde en la penúltima igualdad hemos considerado que [z1,g]Zi−1(G) ∈ Fi y conmuta con los elementos
de G/Zi−1(G).

Nos queda ver que θ es inyectivo. Sea zZi(G) ∈ Zi+1(G)/Zi(G) tal que fz = 1, es decir, fz(gG′) =
1 = Zi−1(G) para todo g ∈ G. Entonces, por la definición de fz, para todo g ∈ G, tenemos:

Zi−1(G) = [z,g]Zi−1(G)⇔ zgZi−1(G) = gzZi−1(G).

Esto implica que zZi−1(G) ∈ Z(G/Zi−1(G)) = Fi, luego z ∈ Zi(G), es decir, zZi(G) = 1.
Por tanto, si zZi(G) ̸= 1 y znZi(G) = 1 para cierto n > 0 y z ∈ Zi+1(G), entonces [zn,g]Zi−1(G) = 1

para todo g ∈ G, es decir, [z,g]nZi−1(G) = 1, aplicando las propiedades de los conmutadores y que la
serie es central. Sin embargo, como θ es inyectivo, fz ̸= 1, es decir, existe g ∈ G tal que [z,g]Zi−1(G) ̸= 1.
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Hemos probado que, si existe algún elemento de torsión en Fi+1 = Zi+1(G)/Zi(G), entonces existe algún
elemento de torsión en Fi = Zi(G)/Zi−1(G). Luego, si para algún i = 2, . . . ,k, existe un elemento de
torsión en Zi(G)/Zi−1(G), reiterando llegamos a que existe un elemento de torsión en Z1(G)/Z0(G) =
Z(G). Esto contradice ii).

iii)⇒ i) Lo probamos por reducción al absurdo. Sea g ∈ G, tal que g ̸= 1 y gn = 1. En otras palabras,
g ∈ G = Zk(G) y g /∈ Z0(G). Por tanto, existe algún valor i ≤ k tal que g ∈ Zi(G), pero g /∈ Zi−1(G). Esto
implica que gZi−1(G) ̸= 1 y, sin embargo:

(gZi−1(G))n = gnZi−1(G) = 1.

Esto contradice que los cocientes de la serie sean libres de torsión.

Corolario 2.3. Sea G un grupo nilpotente. Si G es libre de torsión, entonces G/Z(G) también lo es.

Demostración. Usando la equivalencia i)⇒ iii) de la proposición anterior (2.2), tenemos que el cociente
Zi(G)/Zi−1(G) es libre de torsión para todo i = 1, ...,k. Supongamos que G/Z(G) no es libre de torsión.
Entonces existe g ∈ G con gZ(G) ̸= 1, tal que (gZ(G))n = 1. Es decir, gnZ(G) = 1 o, equivalentemente,
gn ∈ Z(G). Si g /∈ Zk−1(G), como Z(G)⊂ Zk−1(G), (gZk−1(G))n = gnZk−1(G) = 1. Pero esto quiere decir
que tenemos un elemento de torsión en Zk(G)/Zk−1(G), lo cual contradice que G sea libre de torsión.
Por tanto, g ∈ Zk−1(G) y podemos repetir el argumento con el siguiente cociente hasta llegar a g ∈ Z(G).
Lo cual contradice nuestra suposición.

Antes de enunciar el teorema principal de este trabajo, necesitamos introducir algunos conceptos
nuevos y probar un último resultado.

Definición 2.2. Sea π un conjunto no vacío de primos. Entonces un grupo G se dice π-radicable (o
simplemente radicable si π es el conjunto de todos los primos) si para todo g ∈ G y todo π-número
positivo n, la ecuación xn = g tiene una solución x en G. Esto significa que cada elemento de G debe
tener una raíz enésima en G para todos los π-números positivos n. Si esta solución es única, se dice que
la extracción de raíces es única.

En este contexto, un π-número es un número tal que todos sus divisores están en π .

Definición 2.3. Sea n un entero positivo. Decimos que G es n-libre de torsión si gn = 1 implica g = 1
para todo g ∈ G.

Definición 2.4. Sea π un conjunto de primos. Se dice que un grupo G es π-libre de torsión si es p-libre
de torsión para cada primo p en π o, equivalentemente, es n-libre de torsión para cada π-número n.

Si un grupo tiene extracción única de π-raíces, entonces es claramente π-libre de torsión (para la
ecuación xn = 1, x = 1 es una solución, luego es la única solución). Por tanto, los grupos radicables en
los que la extracción de raíces es única son aquellos que son libres de torsión.

Observación. La extracción de raíces no siempre es posible en un grupo libre de torsión. Ese es el caso
de los grupos cíclicos infinitos. Por ejemplo, en el grupo G = ⟨2⟩, la ecuación xn = 2m solo tiene solución
en G si n divide a m. Sin embargo, todo grupo cíclico infinito es isomorfo a un subgrupo de un grupo
radicable libre de torsión, por ejemplo, del grupo multiplicativo de los números racionales Q. Este hecho,
que veremos con más detalle en la sección 2.2, se puede generalizar a todos los grupos nilpotentes libres
de torsión, dando lugar al Teorema de Mal’cev.

Observamos que, si existe, la extracción de raíces siempre es única en un grupo nilpotente y libre de
torsión. Esto es una consecuencia directa de la siguiente proposición.

Proposición 2.4. Sea G un grupo nilpotente y libre de torsión con elementos a,b ∈ G tales que an = bn

para algún n > 0. Entonces a = b.



14 Capítulo 2. El Teorema de Mal’cev

Demostración. Lo probamos por inducción en la clase de nilpotencia k de G. Sea G abeliano (k = 1).
Entonces:

an = bn ⇔ an(bn)−1 = 1 ⇔ 1 = an(b−1)n = (ab−1)n

donde en la última igualdad hemos aplicado que G es abeliano. Como G es libre de torsión y ab−1 ∈ G,
ab−1 = 1, es decir, a = b.

Supongamos ahora que la proposición se cumple para clases de nilpotencia menores que k. Sea G un
grupo libre de torsión con clase de nilpotencia k. Entonces G/Z(G) tiene clase de nilpotencia k−1 (esto
es fácil verlo utilizando la serie central ascendente de G). Además, es libre de torsión por el corolario
2.3. Ahora sean a,b ∈ G con an = bn. En G/Z(G) tenemos

(aZ(G))n = (bZ(G))n

y, por la hipótesis de inducción, aZ(G) = bZ(G). Es decir, existe z ∈ Z(G) tal que a = bz. Teniendo en
cuenta que z está en el centro de G:

an = (bz)n = bzbz · · ·bz = bnzn.

Por otra parte, teníamos que an = bn, luego podemos concluir que bn = bnzn y, por tanto, zn = 1. Como
G es libre de torsión, z = 1 y entonces a = bz = b.

2.2. El teorema de Mal’cev

Una vez que hemos presentado los conceptos y los resultados necesarios para entender el teorema de
Mal’cev, podemos finalmente enunciarlo, aunque la demostración la realizaremos en el próximo capítulo.

Teorema (Teorema de Mal’cev). Todo grupo nilpotente G libre de torsión es isomorfo a un subgrupo
de un grupo nilpotente G∗ en el cual la extracción de raíces es única de forma que cada elemento de G∗

tiene una potencia positiva en G. Además, el grupo G∗ es único salvo isomorfismos.

Un grupo con las propiedades de G∗ se dice complección de Mal’cev o cubierta radicable del grupo
G.

Si reemplazamos en el enunciado del teorema ”libre de torsión” por ”π-libre de torsión”, con π un
conjunto cualquiera de primos, obtenemos que G puede ser incluido en un grupo nilpotente y π-radicable
G∗

π .
Ahora siguiendo la observación que hicimos en la sección anterior (2.1), vamos a probar el teorema

de Mal’cev cuando nuestro grupo es abeliano y finitamente generado. Si trabajamos con notación aditiva,
hemos visto en el teorema 2.1 que G ∼= Zr para algún r y basta poner G∗ = Qr. Vamos a hacer la
demostración en detalle pero con notación multiplicativa, ya que nos ayudará a entender el caso general.

Proposición 2.5. Sea G un grupo abeliano, libre de torsión y finitamente generado. Entonces existe un
grupo abeliano H tal que G ⩽ H y tal que:

i) para todo n y todo x ∈ H, existe un único elemento y ∈ H con yn = x (H es radicable)

ii) para todo x ∈ H existe m > 0 con xm ∈ G (cada elemento de H tiene una potencia positiva en G).

Demostración. Como G es abeliano y finitamente generado, aplicando el teorema 2.1, tenemos que es
isomorfo a G1 ×·· ·×Gr, donde r es el orden de G y Gi = ⟨ai⟩ para todo i. Los elementos de G son de la
forma aα1

1 · · ·aαr
r , con αi ∈ Z.

Llamamos H al conjunto de los productos formales aβ1
1 · · ·aβr

r donde βi ∈Q. Definimos una operación
interna en H:

(aβ1
1 · · ·aβr

r ) · (aγ1
1 · · ·aγr

r ) := aβ1+γ1
1 · · ·aβr+γr

r .

Primero debemos probar que (H, ·) es un grupo y que G ⩽ H.
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La operación es claramente asociativa, por la asociatividad de la suma en Q.

Existe un elemento identidad 1 := a0
1 · · ·a0

r : 1 · (aβ1
1 · · ·aβr

r ) = a0+β1
1 · · ·a0+βr

r = aβ1
1 · · ·aβr

r .

Para todo elemento, aβ1
1 · · ·aβr

r , de H existe un inverso en H: a−β1
1 · · ·a−βr

r .

Sea aα1
1 · · ·aαr

r ∈ G, αi ∈ Z⊂Q. Es claro que aα1
1 · · ·aαr

r ∈ H. Además, la operación de G se define
de la misma forma por ser abeliano. Luego G ⩽ H.

Ahora veremos que se cumplen las condiciones del teorema.

H es un grupo abeliano, luego nilpotente.

Para todo n > 0 y todo x = aβ1
1 · · ·aβr

r ∈ H, el elemento y = a
β1
n

1 · · ·a
βr
n

r ∈ H es la única solución de
la ecuación yn = x.

Sea x = aβ1
1 · · ·aβr

r ∈ H. Como βi ∈ Q, existen ni,mi ∈ Z tales que βi =
ni
mi

para cada i. Llamando

m := m1 · · ·mr, entonces xm = (aβ1
1 · · ·aβr

r )m ∈ G.
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Capítulo 3

Demostración del Teorema de Mal’cev

Nos disponemos a probar el Teorema de Mal’cev para grupos nilpotentes libres de torsión y finita-
mente generados. El caso general (no necesariamente finitamente generado) queda fuera de los objetivos
de este trabajo. Seguiremos los métodos de P. Hall (1969).

Teorema (Teorema de Mal’cev). Todo grupo nilpotente G libre de torsión es isomorfo a un subgrupo
de un grupo nilpotente G∗ en el cual la extracción de raíces es única de forma que cada elemento de G∗

tiene una potencia positiva en G. Además, el grupo G∗ es único salvo isomorfismos.

3.1. Existencia de la complección

Sea G un grupo nilpotente libre de torsión y finitamente generado. Asumimos que tiene clase de
nilpotencia m.

Recordemos que todo grupo abeliano tiene max si y solo si es finitamente generado y que, si N es
normal en G, G/N y N tienen max si y solo si G tiene max (lo vimos en la sección 1.3). Por otra parte,
por la proposición 1.5 sabemos que γi(G)/γi+1(G) es finitamente generado para todo i = 1, . . .n. Como
además los cocientes de una serie central son abelianos por definición, los γi(G)/γi+1(G) tienen max. En
particular, para i = m, γm(G)/γm+1(G) = γm(G) tiene max. Por tanto, γm−1(G) tiene max. Y de forma
recursiva, concluimos que G tiene max. Ahora nos fijamos en la serie central ascendente. Como Zi(G) es
normal en G, para todo i = 0,1 . . . ,m, tanto los subgrupos de la serie como los cocientes Zi(G)/Zi−1(G)
tienen max. Y en consecuencia, como también son abelianos, Zi(G)/Zi−1(G) son finitamente generados.

Lema 3.1. Sea A un grupo abeliano, finitamente generado y libre de torsión. Entonces A ∼= Zn. Además,
existe una serie 1 = T0 ⊴ T1 ⊴ . . .⊴ Tn−1 ⊴ Tn = A tal que Ti/Ti−1 ∼= Z.

Demostración. La primera parte ya la vimos en el capítulo anterior (teorema 2.1). Como hicimos enton-
ces, suponemos A = ⟨x1, . . . ,xn⟩, donde {x1, . . . ,xn} es una base de A. Definimos Tn−1 := ⟨x1, . . . ,xn−1⟩,
que es un subgrupo de A y, por ser A abeliano, es normal. Por otra parte, definimos:

φ :Tn/Tn−1 → Z
gTn−1 7→ rn

donde g = xr1
1 . . .xrn−1

n−1xrn
n . Primero, observamos que gTn−1 = hTn−1 si y solo si sus exponentes en xn

coinciden. Por tanto, la función está bien definida. A partir de ahora, nos centramos en los elementos
de la forma g = xr

n. Claramente, φ es homomorfismo de grupos, suprayectiva e inyectiva, puesto que
tomamos una base de A. Por tanto, φ es un isomorfismo y concluimos que Tn/Tn−1 ∼= Z. Por inducción
en i se deduce el resultado.

Ahora consideramos la serie central acendente de G:

1 = Z0(G)◁Z1(G) = Z(G)◁ . . . ◁Zm−1(G)◁Zm(G) = G,

17
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cuyos cocientes son abelianos y finitamente generados, como acabamos de ver, y libres de torsión (apli-
cando la proposición 2.2). Aplicando el lema anterior sobre Z(G) (abeliano, finitamente generado y libre
de torsión), obtenemos que existe una serie

1 = T (1)
0 ◁T (1)

1 ◁ . . . ◁T (1)
k1

= Z(G)

con T (1)
i+1/T (1)

i
∼= Z. Hemos refinado la serie entre 1 y Z(G) añadiendo más subgrupos cuyos cocientes

son isomorfos a Z.
Podemos repetir este proceso en cada cociente. Sea i = 1,2, . . . ,m, existe una serie:

1 = T (i)
0 /Zi−1(G)◁T (i)

1 /Zi−1(G)◁ . . . ◁T (i)
ki

/Zi−1(G) = Zi(G)/Zi−1(G)

con (T (i)
j+1/Zi−1(G))⧸

(T (i)
j /Zi−1(G))

∼= Z. Aplicando el Tercer Teorema de Isomorfía:

(T (i)
j+1/Zi−1(G))⧸

(T (i)
j /Zi−1(G))

∼= T (i)
j+1/T (i)

j .

Se puede ver que:

Zi−1(G) = T (i)
0 ◁T (i)

1 ◁ . . . ◁T (i)
ki

= Zi(G).

Por tanto, uniendo todas estas series, se puede refinar la serie central ascendente a otra serie (que
también es central)

1 = Gn ◁Gn−1 ◁ . . . ◁G0 = G,

donde cada cociente Gi−1/Gi ∼= Z, es decir, es cíclico infinito, digamos con generador uiGi. Este número
n solo depende de G y se llama longitud de Hirsch [3].

Vamos a ver que cada elemento a de G tiene una única expresión a = uα1
1 uα2

2 · · ·uαn
n con αi entero

para todo i.
Supongamos que a ∈ Gn−1/Gn = Gn−1 = ⟨un⟩, entonces es claro que a = uαn

n , y esta expresión
es única. Si aGn−1 ∈ Gn−2/Gn−1 = ⟨un−1Gn−1⟩, entonces aGn−1 = uαn−1

n−1 Gn−1. Luego a = uαn−1
n−1 g, con

g ∈ Gn−1. Por tanto, a = uαn−1
n−1 uαn

n y esta expresión es única. Supongamos que esto se cumple hasta cierto
i. Sea ahora a ∈ Gi−1, en particular, aGi ∈ Gi−1/Gi = ⟨uiGi⟩, entonces aGi = uαi

i Gi y, en consecuencia,
a = uαi

i g con g ∈ Gi. Apicando la hipótesis de inducción, g = uαi+1
i+1 · · ·uαn

n y, por tanto, a = uαi
i uαi+1

i+1 . . .uαn
n .

Con esto queda demostrado lo que queríamos. Además también hemos probado que Gi = ⟨ui+1, . . . ,un⟩,
para todo i = 1, . . . ,n y, en consecuencia, G/Gi = ⟨u1Gi, . . . ,uiGi⟩.

Siguiendo el ejemplo 1.10 del capítulo anterior, veamos cómo son estos exponentes al hacer el pro-
ducto de dos elementos del grupo o calcular una potencia de otro.

Ejemplo 3.2. De nuevo, n = 3 y escogemos R = Z. Entonces nuestro grupo es:

G = {

1 a b
0 1 c
0 0 1

 | a,b,c ∈ Z},

que ya vimos que es nilpotente. Como el elemento u3 del ejemplo 1.10 es de orden infinito, tenemos que
Z(G) = G2 = ⟨u3⟩ es libre de torsión y, en consecuencia, G es libre de torsión aplicando la proposición
2.2. Estamos en las condiciones del Teorema de Mal’cev.

Ahora definimos los subgrupos de G:

G1 = {

1 0 b
0 1 c
0 0 1

 | b,c ∈ Z} y G2 = {

1 0 b
0 1 0
0 0 1

 | b ∈ Z}.
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G2 es el mismo subgrupo del ejemplo 1.10. Usando las fórmulas del producto, se puede ver fácilmente
que son subgrupos de G. Además, G1 ◁G:1 0 b

0 1 c
0 0 1

1 a′ b′

0 1 c′

0 0 1

=

1 a′ b+b′

0 1 c+ c′

0 0 1

=

1 a′ b′

0 1 c+ c′

0 0 1

1 0 b
0 1 0
0 0 1


y G2 ◁G1, ya que G2 = Z(G). Tenemos una serie de subgrupos normales de G: 1 = G3 ◁G2 ◁G1 ◁G0 = G.
Además, consideramos otra vez las matrices:

u1 =

1 1 0
0 1 0
0 0 1

 , u2 =

1 0 0
0 1 1
0 0 1

 y u3 =

1 0 1
0 1 0
0 0 1

 ,

y podemos probar que G/G1 = ⟨u1G1⟩, G1/G2 = ⟨u2G2⟩ y G2/G3 = G2 = ⟨u3⟩. Empezamos tomando
una matriz

g =

1 a b
0 1 c
0 0 1


en G. Entonces:

gG1 = um
1 G1 ⇔ um

1 g−1 ∈ G1 ⇔ a−m ·1 = 0,

por tanto, gG1 = ua
1G1. Análogamente, sea

g1 =

1 0 b
0 1 c
0 0 1


en G1, entonces:

g1G2 = um
2 G2 ⇔ um

2 g−1
1 ∈ G2 ⇔ c−m ·1 = 0,

luego g1G2 = uc
2G2. Y, por último, sea

g2 =

1 0 b
0 1 0
0 0 1


en G2, entonces g2 = um

3 ⇔ b−m ·1 = 0, luego g2 = ub
3.

Por tanto, la serie 1 = G3 ◁G2 ◁G1 ◁G0 = G es central con cocientes consecutivos cíclicos infinitos,
y la longitud de Hirsch de G es 3. Observemos que este valor no coincide con la clase de nilpotencia de
G, que ya vimos en el primer capítulo que es 2.

De hecho, sea g ∈ G como antes, podemos escribir: g = ua
1uc

2ub
3. Lo comprobamos directamente:

ua
1uc

2ub
3 =

1 a 0
0 1 0
0 0 1

1 0 0
0 1 c
0 0 1

1 0 b
0 1 0
0 0 1

=

1 a 0
0 1 c
0 0 1

1 0 b
0 1 0
0 0 1

=

1 a b
0 1 c
0 0 1

 .

En el ejemplo 1.10, vimos que los conmutadores de estas matrices son: [u1,u2] = u3, [u2,u3] = 1 y
[u1,u3] = 1. Por tanto, obtenemos las siguientes identidades:

u1u2 = u2u1u3 u2u3 = u3u2 u1u3 = u3u1

Tomamos ahora dos matrices g= uα1
1 uα2

2 uα3
3 y h= uβ1

1 uβ2
2 uβ3

3 en G y, usando las identidades anteriores,
calculamos su producto:

gh = uα1
1 uα2

2 uα3
3 uβ1

1 uβ2
2 uβ3

3 = uα1
1 uα2

2 uβ1
1 uα3

3 uβ2
2 uβ3

3

= uα1
1 uβ1

1 uα2
2 u−α2β1

3 uα3
3 uβ2

2 uβ3
3 = uα1+β1

1 uα2
2 uβ2

2 u−α2β1+α3
3 uβ3

3

= uα1+β1
1 uα2+β2

2 uα3+β3−α2β1
3
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En la tercera igualdad, para cada u2 hacemos tantos intercambios como u′1s haya, luego α2β1 intercam-
bios en total. Análogamente obtendríamos:

(uα1
1 uα2

2 uα3
3 )−1 = u−α3

3 u−α2
2 u−α1

1 = u−α1
1 u−α2

2 u−α3−α1α2
3 .

De aquí se deduce que los exponentes del producto o la exponenciación de elementos de G son poli-
niomios en los exponentes de esos elementos. Este resultado se va a probar de manera general en los
siguientes párrafos.

Pasando al caso general, por conveniencia, escribimos a = uα para referirnos a uα1
1 uα2

2 · · ·uαn
n . Llama-

remos a los αi parámetros canónicos de a con respecto a la base {u1,u2 . . . ,un} de G. Ahora, sea b ∈ G,
con b = uβ , el producto de a y b dará otro elemento en G, digamos ab = c = uγ . Aquí los parámetros γi

son funciones de las 2n variables enteras α j,β j. De forma similar, si m es un entero, am = uω , donde los
ωi son funciones de m y las n variables enteras α j.

Sea F un cuerpo de característica 0 y sea GF el conjunto de todos los productos formales uα con
exponentes α1, . . . ,αn en F . Vimos que todo elemento de G se puede ver como uα con exponentes
enteros. La idea ahora es definir una multiplicación y una exponenciación en GF usando las funciones γi

y ωi mencionadas para G, de la forma obvia, y después probar que GF es un grupo nilpotente radicable
en el cual G se incluye como un subgrupo. Primero hay que demostrar que GF es un grupo. Para ello,
primero necesitamos el siguiente resultado:

Lema 3.3. Las funciones γi son polinomios en las variables α j,β j. A su vez, las funciones ωi son poli-
nomios en m y en las variables α j. Habitualmente, estos polinomios son conocidos como los polinomios
de Hall.

Demostración. Es claro que los exponentes γi dependen de α1, . . . ,αn,β1, . . . ,βn. Tenemos que probar
que existen polinomios fi(x,y) en los 2n argumentos x1, . . . ,xn,y1, . . . ,yn tales que fi(α,β ) = γi. Y algo
similar se debe cumplir para ωm

i . Como un polinomio está determinado unívocamente por el valor que
toma en cada argumento, identificamos la función γi con el polinomio fi.

Sabemos que Gi ◁G, luego podemos considerar su cociente G/Gi = ⟨u1, . . . ,ui⟩ y observamos:

abGi = uα1
1 · · ·uαi

i uβ1
1 · · ·uβi

i Gi

cGi = uγ1
1 · · ·uγi

i Gi,

como abGi = cGi, podemos concluir que γi depende únicamente de α1, . . . ,αi,β1, . . . ,βi. Análogamente,
ωm

i depende únicamente de α1, . . . ,αi y m.
Sea ahora n = 1, entonces G es cíclico infinito y tenemos γ1(α1,β1) = α1 +β1, ωm

1 (α1) = mα1. Sea
n > 1 vamos a proceder por inducción sobre n. Llamamos Γn a la hipótesis que dice que, para cualquier
grupo nilpotente finitamente generado con una serie de factores cíclicos de longitud menor o igual que n
y subconjunto generador asociado {u1, . . . ,un}, los exponentes γi tales que

uα1
1 · · ·uαn

n uβ1
1 · · ·uβn

n = uγ1
1 · · ·uγn

n

vienen dados por polinomios en α1, . . . ,αi,β1, . . . ,βi. Análogamente, consideramos la hipótesis Ωn que
afirma que en las condiciones anteriores los ωm

i son polinomios en m y α1, . . . ,αi.
Asumimos que Γi y Ωi se cumplen para i < n y vamos a probar que Γn también se cumple. Obser-

vamos primero que cG1 = uγ1
1 G1 = abG1 = uα1uβ1G1 = uα1+β1G1, por tanto, γ1 = α1 +β1. En nuestra

expresión del producto ab queremos que uα1
1 y uβ1

1 aparezcan juntos. Para ello usamos

uαi
i uαi+1

i+1 = uαi
i uβ1

1 u−β1
1 uαi+1

i+1

para cada i = 1, . . . ,n−1 y llegamos a:

c = ab = uαuβ = uα1
1 uβ1

1 u−β1
1 uα2

2 · · ·uβ1
1 u−β1

1 uαn
n uβ1

1 uβ2
2 · · ·uβn

n

= uα1+β1
1

n

∏
i=2

(u−β1
1 u−αi

i uβ1
1 )−1uβ2

2 · · ·uβn
n = uα1+β1

1

n

∏
i=2

(u−β1
1 u−1

i uβ1
1 )−αiuβ2

2 · · ·uβn
n ,

(3.1)
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donde en la última igualdad utilizamos que u−β1
1 u−αi

i uβ1
1 = (u−β1

1 u−1
i uβ1

1 )αi para cada i.
Ahora, separamos los u1 de la expresión u−β1

1 u−1
i uβ1

1 así:

u−β1
1 u−1

i uβ1
1 = u−β1

1 u−1
i u1(uiu−1

i )u1(uiu−1
i ) · · ·u1(uiu−1

i ) = u−β1
1 (u−1

i u1ui)
β1u−1

i . (3.2)

Una vez tenemos estos cálculos hechos , vamos a considerar el grupo Hi ≤G generado por u1,ui+1, . . . ,un.
Este grupo tiene una serie central:

1 = Gn ◁Gn−1 ◁ · · ·◁Gi+1 ◁Gi ◁Hi.

Para demostrarlo solo tenenemos que probar que el último cociente es cíclico infinito. Pero esto es trivial
ya que, para todo g ∈ Hi, tenemos: gGi = uα1

1 uαi+1
i+1 · · ·uαn

n Gi = uα1
1 Gi.

Por tanto, Hi es un grupo nilpotente cuya longitud de la serie es igual a n− i+1. Si i > 1, podemos
suponer que se cumple Ωn−i+1 para Hi. Como [u1,ui] ∈ [G,Gi−1]≤ Gi < Hi, [u1,ui] = u−1

1 u−1
i u1ui ∈ Hi.

Pero además, u1 ∈ Hi, luego u−1
i u1ui ∈ Hi. En consecuencia, podemos usar Ωn−i+1 para deducir:

(u−1
i u1ui)

β1 = uβ1
1 uφi,1

i+1 · · ·u
φi,n−i
n , donde φi, j son polinomios en β1. (3.3)

El exponente de u1 se deduce tomando módulo Gi:

(u−1
i u1ui)

β1Gi = u−1
i uβ1

1 uiGi = uβ1
1 Gi,

donde en la primera igualdad deshacemos lo que hicimos en 3.2 y para la segunda solo hay que notar
que [uβ1

1 ,ui] ∈ Gi.
También se cumple Γn−i+1 para Gi−1, luego usando esta propiedad y lo que acabamos de ver en 3.2,

tenemos:

u−β1
1 u−1

i uβ1
1 = u−β1

1 (u−1
i u1ui)

β1u−1
i = u−β1

1 uβ1
1 uφi,1

i+1 · · ·u
φi,n−i
n u−1

i

= u−1
i uψi,1

i+1 · · ·u
ψi,n−i
n , con ψi, j polinomios en los φi,k luego en β1

De nuevo, el exponente de ui se deduce tomando módulo Gi: u−β1
1 u−1

i uβ1
1 Gi = u−1

i [u−1
i ,uβ1

1 ]Gi = u−1
i Gi.

Ahora, volvemos a aplicar Ωn−i+1 en el grupo Gi−1:

(u−β1
1 u−1

i uβ1
1 )−αi = uαi

i uθi,1
i+1 · · ·u

θi,n−i
n , donde θi, j son polinomios en β1 y αi.

El exponente de ui se deduce como las otras veces tomando módulo Gi.
Para finalizar, volvemos a la expresión 3.1:

c = ab = uα1+β1
1

n

∏
i=2

(u−β1
1 u−1

i uβ1
1 )−αiuβ2

2 · · ·uβn
n = uα1+β1

1

n

∏
i=2

(uαi
i uθi,1

i+1 · · ·u
θi,n−i
n )uβ2

2 · · ·uβn
n

= uα1+β1
1 uγ2

2 · · ·uγn
n , con γi polinomios en α2, · · · ,αn,β1,β2, · · · ,βn

En la última igualdad hemos usado Γn−1 ya que cada factor de ∏
n
i=2(u

α2
i uθi,1

i+1 · · ·u
θi,n−i
n )uβ2

2 · · ·uβn
n está en

G1, que es nilpotente con longitud de la serie igual a n−1. Queda probado Γn.
Nos queda por probar Ωn: (uα1

1 · · ·uαn
n )m = uωm

1
1 · · ·uωm

n
n , donde los exponentes ωm

i son polinomios en
α1, · · · ,αn y m. Para ello, inspirándonos en la idea del artículo [3] (p.205), demostramos el siguiente
resultado:

Lema 3.4. Sea f : N0 →Q una función tal que existe un polinomio g con coeficientes en F que cumple
que f (m) = f (m−1)+g(m−1) para todo m ≥ 1. Entonces f también es un polinomio con coeficientes
en F.



22 Capítulo 3. Demostración del Teorema de Mal’cev

Demostración. Los valores f (m), para m ≥ 0, están totalmente determinados por f (0) y el polinomio g.
Por tanto, basta probar que existe un polinomio p tal que p(0) = f (0) y p(m) = p(m− 1)+ g(m− 1)
para cada m ≥ 1.

Sea g(x) = c0 + c1x+ · · ·+ clxl ∈ F [x]. Consideramos los números de Bernoulli {Bk | k ∈ N0}, una
sucesión infinita de números racionales: B0 = 1,B1 =−1

2 ,B2 =
1
6 , . . . . Estos números satisfacen:

x−1

∑
i=1

it =
1

t +1

m

∑
k=0

Bk

(
t +1

k

)
xt−k+1, ∀x, t ∈ N (3.4)

Para todo t > 0 definimos:

ft =
l+1−t

∑
k=0

ct+k−1

t + k
Bk

(
t + k

k

)
∈ F

y fijamos f0 = f (0). Entonces, si ponemos el polinomio p(x) = f0+ f1x+ . . .+ fl+1xl+1 ∈ F [x], tenemos
que p(0) = f0 = f (0) y además se puede probar que p(x) = p(x−1)+g(x−1) para todo x ∈ N0. Para
verlo, primero, observamos que:

p(x) = f0 +
l+1

∑
t=1

ftxt = f0 +
l+1

∑
t=1

l+1−t

∑
k=0

ct+k−1

t + k
Bk

(
t + k

k

)
xt

= f0 +
l

∑
j=0

j

∑
k=0

c j

j+1
Bk

(
j+1

k

)
x j−k+1, donde j = t + k−1

= f0 +
l

∑
j=0

c j

(
1

j+1

j

∑
k=0

Bk

(
j+1

k

)
x j−k+1

)
= f0 +

l

∑
j=0

c j

x−1

∑
i=1

i j, aquí usamos 3.4

= f0 +
x−1

∑
i=1

l

∑
j=0

c ji j = f0 +
x−1

∑
i=1

g(i)

En consecuencia, p(x−1) = f0 +∑
x−2
i=1 g(i) y entonces p(x)− p(x−1) = g(x−1).

Ahora, ya podemos probar Ωn para m≥ 0. La propiedad claramente se cumple en G/G1. Supongamos
que se cumple para G/Gn−1 y probémoslo para G. Teniendo en cuenta que Gn−1 ≤ Z(G), es decir, que
un es central, los ωm

i de

(uα1
1 · · ·uαn

n )m = uωm
1

1 · · ·uωm
n−1

n−1 uωm
n

n

son los mismos que aparecen en G/Gn−1, para 1 ≤ i ≤ n − 1. Por tanto, podemos suponer que son
polinomios en m y en los α1, . . . ,αn−1 y solo nos queda verlo para ωm

n .
Por otra parte, podemos expresar la exponenciación así:

(uα1
1 · · ·uαn

n )m = (uα1
1 · · ·uαn

n )m−1uα1
1 · · ·uαn

n

= uω
m−1
1

1 · · ·uωm−1
n

n uα1
1 · · ·uαn

n = uγ1
1 · · ·uγn

n ,

donde los γi son polinomios en las variables ω
m−1
j y α j. Así que ωm

n = γn(ω
m−1,α), que es un polinomio

en las variables α j y ω
m−1
j , y, por inducción en m, los ω

m−1
i son polinomios en m−1 y α j.

Teniendo en cuenta de nuevo que un es central, se deduce:

ω
m
n = γn(ω

m−1,α) = ω
m−1
n−1 +h(ωm−1,α)

Como γn y ωm−1
n son polinomios en los αi y en m, h también lo es. Si consideramos los αi como cons-

tantes, la expresión anterior queda así:

ω
m
n = ω

m−1
n +h(m−1)
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y, aplicando el lema que acabamos de probar, ωm
n también es un polinomio en m. Y, volviendo a consi-

derar los αi como variables, ωm
n es un polinomio en αi y m.

Por otra parte, si llamamos a1 = uα2
2 · · ·uαn

n , a1 está en G1, que es un grupo nilpotente de longitud
n− 1, y podemos aplicar Ωn−1 para obtener a−1

1 = uν2
2 · · ·uνn

n , con νi polinomios en α2, . . . ,αn. Ahora,
usando Γn:

a−1 = a−1
1 u−α1

1 = uδ1
1 · · ·uδn

n , donde δi son polinomios en α1, · · · ,αn.

Con esto podemos probar Ωn para m < 0:

am = (a−1)−m = (uδ1
1 · · ·uδn

n )−m = uω1
1 · · ·uωn

n , donde hemos usado Ωn para −m > 0.

Observemos que los coeficientes de estos polinomios deben estar en Q y, como F tiene característica
cero, Q ⊆ F , luego en particular los coeficientes están en F . Que GF sea el grupo de los productos
formales uα quiere decir que el producto y la exponenciación se definen con los mismos polinomios que
en G.

Antes de pasar a la prueba de que GF es grupo, introducimos el siguiente lema:

Lema 3.5. Sean p,q dos polinomios en k variables y coeficientes en F. Si p(u) = q(u) para todo u ∈ Zk,
entonces p y q son el mismo polinomio.

Demostración. Si k = 1, esto es obvio porque estaríamos diciendo que p − q, un polinomio en una
variable, tiene infinitas soluciones. Ahora supongamos que es cierto para i < k. Podemos escribir los
polinomios p y q así:

p = xr
khr + xr−1

k hr−1 + · · ·+ xkh1 +h0

q = xs
kgs + xs−1

k gs−1 + · · ·+ xkg1 +g0,

donde hi,g j son polinomios en las n− 1 variables x1, . . . ,xk−1. Para cualquier combinación de n− 1
enteros a1, . . . ,ak−1, se cumple que p(a1, . . . ,ak−1,xk) = q(a1, . . . ,ak−1,xk) para todo xk ∈ Z. Es decir,
fijando esas n− 1 variables tenemos p = q, viéndolo como dos polinomios en una sola variable. Luego
r = s y hi = gi cuando se evaluan en Zk−1. Por la hipótesis de inducción, los polinomios hi y gi son el
mismo para todo i = 0, . . . ,r y, por tanto, p = q.

Con estos dos lemas podemos ver que GF es de hecho un grupo. La ley asociativa se cumple en G,
es decir, (uαuβ )uε = (ab)c = a(bc) = uα(uβ uε). Entonces, usando el lema 3.3, para todo i se cumple:

γi(γ1(α1,β1), . . . ,γi(α1, . . . ,αi,β1, . . . ,βi),ε1, . . . ,εi)= γi(α1, . . . ,αi,γ1(β1,ε1), . . . ,γi(β1, . . . ,βi,ε1, . . . ,εi)),

donde α j,β j,ε j ∈ Z. Estas identidades polinómicas se cumplen para todo conjunto de variables enteras,
luego se cumplen en F (lema 3.5), lo que prueba la asociatividad en GF . El elemento identidad de
G, 1 = u0, también lo es en GF aplicando un razonamiento parecido al anterior. De hecho, para todo
a = uα ∈ GF , m ∈ F y todo i, se cumple:

γi(α1, . . . ,αi,0, . . . ,0) = γi(0, . . . ,0,α1, . . . ,αi) = αi, ω
(m)
i (0, . . . ,0) = 0. (3.5)

Por último, para todo a = uα ∈ GF , su inverso es a−1 = u−αn
n · · ·u−αn

1 y claramente está en GF . Los
exponentes satisfacen:

γi(α1, . . . ,αi,ε1, . . . ,εi) = 0. (3.6)

Además, para cada i = 0,1, . . . ,n, definimos:

GF
i = {uα |α1 = α2 = · · ·= αi = 0}.



24 Capítulo 3. Demostración del Teorema de Mal’cev

Claramente, GF
i es un subgrupo de GF : contiene la identidad y, si uα está en GF

i , su inverso u−α también
(usando la expresión 3.5 y 3.6, obtenemos ε j = 0 para todo j ≤ i). Obtenemos una serie de GF :

GF = GF
0 > GF

1 > · · ·> GF
n = 1.

Probemos que esta serie es central. Veamos que GF
i /GF

i+1 está en el centro de GF/GF
i+1, es decir, que

[uα ,uβ ] ∈ GF
i+1 para todo uα ∈ GF

i y todo uβ ∈ GF . Tenemos que probar que u−αu−β uαuβ ∈ GF
i+1. Para

exponentes enteros, esto se cumple porque Gi/Gi+1 está en el centro de G/Gi+1. Así que podemos aplicar
de nuevo el lema 3.5 y concluir que esto se cumple también en GF . Esto implica que GF

i ◁GF . Por tanto,
el grupo GF es nilpotente.

Ahora, para cada i= 1, . . . ,n, vamos a definir una función entre el cociente Gi−1/Gi y el grupo aditivo
de F :

φi : GF
i−1/GF

i → F

uαGF
i 7→ αi,

donde uα = uα1
1 · · ·uαn

n ∈ GF
i−1, por tanto, α1 = α2 = · · ·= αi−1 = 0. Como hemos tomado representantes

en GF
i−1/GF

i , tenemos que ver que la función esté bien definida:

uαi
i GF

i = uαGF
i = uβ GF

i = uβi
i GF

i ⇔ u−βi
i uαi

i ∈ GF
i ⇔ αi = βi.

Y es obvio que φi es un isomorfismo, luego GF
i−1/GF

i
∼= F , para cada i = 1, . . . ,n.

Veamos que, además, GF tiene la misma clase de nilpotencia, m, que G. Llamemos m′ a la clase de
nilpotencia de GF . Tenemos que G ≤ GF y entonces m ≤ m′. Para probar la otra desigualdad, vamos a
ver que si consideramos la complección de Mal’cev de la serie central ascendente de G, obtenemos una
serie central de GF . Tenemos 1= Z0(G)◁Z1(G) = Z(G)◁ · · ·◁Zm(G) =G y sabemos que son finitamente
generados porque G lo es. En particular, teniendo en cuenta cómo refinamos esta serie para obtener la
serie central con cocientes cíclicos 1 = Gn ◁Gn−1 ◁ · · · ◁G0 = G, cada Zi(G) es finitamente generado
por un subconjunto de {u1, . . . ,un}. Para no complicar la notación, decimos que Zi(G) es finitamente
generado por {ai,1, . . . ,ai,ni} y definimos

Zi(G)F := {aα
i = aα1

i,1 · · ·a
αn,i
i,ni

| αi ∈ F}.

Claramente, Zn(G)F = GF . Queremos ver que Zi(G)F/Zi−1(G)F es central en GF/Zi−1(G)F , es decir,
que

[aα
i ,u

β ] ∈ Zi−1(G)F para todo aα
i ∈ Zi(G)F y todo uβ ∈ GF .

Pero esta relación se cumple para exponentes enteros y, como cada ai, j denota uno de los generadores
uk de G, esto implica que los polinomios de Hall satisfacen ciertas identidades cuando se evalúan en
variables enteras. Por tanto, siempre satisfacen esas identidades y se cumple lo que queremos. La serie
1 = Z0(G)F ◁Z1(G)F ◁ . . . ◁Zm(G)F = GF es central y, en consecuencia, la clase de nilpotencia de GF

debe ser menor o igual que m.
Por último, vamos a considerar el caso en el que F = Q y vamos a probar que GQ cumple las

condiciones del Teorema de Mal’cev.
Empezamos probando que todo elemento a∈GQ tiene una potencia entera positiva en G. Si a∈GQ

n−1,
existe αn ∈Q tal que a = uαn

n , luego existe un entero k > 0 tal que kαn ∈ Z. Por tanto, ak = ukαn
n está en

Gn−1, luego en G. Suponemos ahora que esto es cierto para i < n y sea a ∈ GQ, entonces aGQ
n−1 está en

GQ/GQ
n−1, que es nilpotente (proposición 1.7) y de longitud menor que n. Por inducción, existe k1 ∈ Z>0

tal que ak1GQ
n−1 ∈ G/GQ

n−1. Por tanto, ak1 = buα
n para cierto α ∈Q y b ∈ G. Además, existe k2 > 0 entero

tal que αk2 ∈ Z. Por tanto:
ak1k2 = (buα

n )
k2 = bk2uαk2

n ,

donde en la última igualdad aplicamos que GQ
n−1 es central en GQ. Por tanto, para k = k1k2 > 0 tenemos

que ak ∈ G.
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Veamos ahora que GQ es radicable, es decir, para todo b ∈ GQ y todo k, existe a ∈ GQ tal que ak = b.

Si b ∈ GQ
n−1, entonces b = uβ

n . Si tomamos a = u
β

k
n , tenemos que ak = b. Ahora, suponemos que esto se

cumple para todo i < n. Sea b ∈ GQ. Como hicimos antes, bGQ
n−1 está en GQ/GQ

n−1 y podemos aplicar la

hipótesis de inducción: existe cGQ
n−1 ∈GQ/GQ

n−1 tal que bGQ
n−1 =(cGQ

n−1)
k = ckGQ

n−1. Por tanto, b= ckuβ
n

para cierto β ∈Q. Si tomamos a = cuα
n con α = β

k , podemos ver que:

ak = (cuα
n )

k = ckuαk
n = ckuβ

n = b,

donde de nuevo usamos que GQ
n−1 es central en GQ.

Veamos que, además, la extracción de raíces en GQ es única, equivalentemente, GQ es libre de tor-
sión. Como vimos antes GQ

n−1
∼= Q, luego es libre de torsión. De igual forma lo es GQ

n−2/GQ
n−1. Por

inducción, suponemos entonces que GQ/GQ
n−1 es libre de torsión. Luego, si (uα)k = 1 para uα ∈ G y k no

nulo, tenemos que (uαGn−1)
k = 1 y, por la hipótesis, uαGn−1 = 1. Es decir, uα ∈Gn−1 y, en consecuencia,

uα = 1.
Queda demostrado que GQ es una complección de Mal’cev del grupo G y, en consecuencia, la exis-

tencia de tal grupo.

3.2. Unicidad de la complección

En esta sección probaremos que esta complección es única salvo isomorfismo.
Sea θ : G → H otra inclusión de G en un grupo H que es nilpotente, libre de torsión y radicable.

Definimos la función θ ∗ : GQ → H tal que, si uα = uα1
1 · · ·uαn

n , αi ∈Q, entonces:

(uα)θ ∗
= (uθ )α = (uθ

1 )
α1 · · ·(uθ

n )
αn .

Como H es radicable y libre de torsión, si tenemos un elemento h ∈ H y p
q ∈ Q, existe un único g ∈ H

con gq = h. Por tanto, tiene sentido poner h
p
q = gp. Esto implica que θ ∗ está bien definida.

Para probar que θ ∗ es homomorfismo, necesitamos el siguiente resultado.

Lema 3.6. Sea H un grupo radicable, nilpotente y libre de torsión. Sean a,b∈H con [a,b] = 1. Entonces
para todo α,β ∈Q se tiene [aα ,bβ ] = 1.

Demostración. Sea α = p
q (p,q ∈ Z) y a1 = a

1
q , es decir, a1 es el único elemento de H tal que aq

1 = a.
Que [a,b] = 1 equivale a que ab = a. Entonces:

(ab
1)

q = (aq
1)

b = ab = a

y, por unicidad, ab
1 = a1. Si elevamos a p, tenemos:

(aα)b = (ap
1)

b = (ab
1)

p = ap
1 = aα .

Luego, [aα ,b] = 1.
El mismo razonamiento aplicado a b,β implica que [aα ,bβ ] = 1.

Ahora sea L el subgrupo de H generado por

{(uθ
j )

α j | α j ∈Q, con 1 ≤ j ≤ n}

y ponemos también Li para el subgrupo generado por

{(uθ
j )

α j | α j ∈Q, con i < j ≤ n}.

Como un es central en G y θ es homorfismo, [uθ
n ,u

θ
j ] = 1 para todo 1 ≤ j ≤ n. Esto junto con el lema

3.6 implica que Ln−1 es central en L, en particular, es normal. Razonando por inducción, suponemos que
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Li+1 ⊴ L. Entonces como Gi/Gi+1 es central en G/Gi+1, el lema 3.6 implica que Li/Li+1 es central en
L/Li+1 y, en particular, Li ⊴ L.

Tenemos entonces una serie central

1 = Ln ◁Ln−1 ◁ · · ·◁Li+1 ◁Li ◁ · · ·L0 = L

con Li−1/Li = {uα
i Li | α ∈Q} y en estas condiciones se puede repetir la demostración del lema 3.3. Esto

no se podía asegurar para H, pero solo nos interesan los elementos de L.
Por tanto, en el subgrupo L también hay unos polinomios, llamémosles δi, que determinan cómo es

el producto en términos de los uθ
i . Como θ es un homomorfismo de grupos, estos polinomios coinciden

con los correspondientes polinomios de G cuando las entradas son enteros:

(uθ )δ = (uθ )α(uθ )β = (uα)θ (uβ )θ = (uαuβ )θ = (uγ)θ ,

es decir, δi(α1, . . . ,αi,β1, . . . ,βi) = γi(α1, . . . ,αi,β1, . . . ,βi) para todo α j,β j ∈ Z.
Ahora, para probar que θ ∗ es homomorfismo, queremos ver que:

(uα)θ ∗
(uβ )θ ∗

= (uαuβ )θ ∗
= (uγ)θ ∗

, es decir,

(uθ
1 )

α1 · · ·(uθ
n )

αn(uθ
1 )

β1 · · ·(uθ
n )

βn = (uθ
1 )

γ1 · · ·(uθ
n )

γn

donde todos los exponentes son racionales y los polinomios γi son los mismos que los que definen el pro-
ducto en G. Hemos visto que estos polinomios satisfacen esta identidad para exponentes enteros, luego,
aplicando el lema 3.5, la satisfacen también para exponentes racionales. Por tanto, θ ∗ es homomorfismo
de grupos.

Notemos que θ y θ ∗ coinciden en G. Como θ es una inclusión, ker(θ ∗)∩G = 1. Ahora, tomamos
x ∈ ker(θ ∗) ≤ GQ, existe k ∈ Z>0 tal que xk ∈ G. Entonces xk ∈ ker(θ ∗) por ser θ ∗ un homomorfismo.
Pero entonces xk = 1 y, como G es libre de torsión, x = 1. Por tanto, θ ∗ es inyectivo.

Para terminar, vamos a probar que, si H tiene la propiedad de que todo elemento tiene una potencia
entera positiva en Gθ , entonces θ ∗ es suprayectivo. Ahora sea h ∈ H, entonces hk ∈ Gθ para algún k > 0.
Por tanto, hk ∈ (GQ)θ ∗

y existe g′ ∈ GQ tal que hk = g′θ
∗
. Como GQ es radicable, existe g ∈ GQ tal que

gk = g′ y, en consecuencia:
hk = g′θ

∗
= (gk)θ ∗

= (gθ ∗
)k

ya que θ ∗ es homomorfismo. Por lo tanto, la unicidad de la extracción de raíces implica h= gθ ∗
. Entonces

h ∈ (GQ)θ ∗
y concluimos que H = (GQ)θ ∗

.
Hemos probado que θ ∗ es un isomorfismo entre H y GQ. Con esto queda probada la unicidad de la

complección de Mal’cev y en consecuencia el teorema.

3.3. Comentarios finales

Vamos a ver cómo el Teorema de Mal’cev se aplica en nuestro ejemplo de las matrices unitriangulares
superiores.

Ejemplo 3.7. Si tenemos una matriz en el grupo G de Heisenberg:

B =

1 a′ b′

0 1 c′

0 0 1

 , con a′,b′,c′ ∈ Z,

las fórmulas del ejemplo 1.10 implican que su potencia m-ésima (m ∈ Z) es:

Bm =

1 ma′ mb′+ma′c′

0 1 mc′

0 0 1

 .
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Por tanto, si tenemos A ∈ G una matriz de la forma

A =

1 a b
0 1 c
0 0 1


y m entero, la ecuación A = Bm no tendrá una solución B ∈ G si m no divide a a. Por tanto, G no es
radicable.

Sin embargo, G cumple las condiciones del Teorema de Mal’cev (3), es un grupo nilpotente y libre
de torsión, luego tiene una cubierta radicable o complección. Definimos:

H = {

1 a b
0 1 c
0 0 1

 | a,b,c ∈Q}.

Como vimos en (1.10), H es nilpotente de clase 2 y contiene a G. Si consideramos las matrices u1,u2,u3
definidas en (1.10), vemos que para todo a,b,c ∈Q:1 a b

0 1 c
0 0 1

= ua
1uc

2ub
3

De aquí, se deduce que H es la complección de Mal’cev de G.

Para concluir este trabajo hacemos un pequeño comentario sobre cómo este ejemplo puede ser gen-
ralizado.

Ejemplo 3.8. Vimos en el primer capítulo (1.10) que el grupo de Heisenberg estaba generado por tres ma-
trices u1,u2,u3 tales que los conmutadores entre ellas satisfacían: [u1,u2] = u3, [u2,u3] = 1 y [u1,u3] = 1.
Sea t entero, podemos ahora considerar otro grupo G(t) generado también por tres elementos {u1,u2,u3}
de orden infinito, que satisfacen: [u1,u2] = ut

3, [u2,u3] = 1 y [u1,u3] = 1. Como hicimos para G, podemos
encontrar una serie central de G(t):

1◁ ⟨u3⟩◁ ⟨u3,u2⟩◁G(t),

donde los cocientes son cíclicos infinitos.
¿Cómo serán los polinomios de Hall en este grupo? Podemos calcularlos, como hicimos en G, usando

las relaciones

u1u2 = u2u1ut
3 u2u3 = u3u2 u1u3 = u3u1.

Entonces:
uα1

1 uα2
2 uα3

3 uβ1
1 uβ2

2 uβ3
3 = uα1

1 uα2
2 uβ1

1 uβ2
2 uα3

3 uβ3
3 = uα1+β1

1 uα2+β2
2 uα3+β3−tα2β1

3 ,

con α j,β j ∈ Z y donde en la última igualdad estamos aplicando:

uα2
2 uβ1

1 = u2 · · ·u2︸ ︷︷ ︸
α2

u1 · · ·u1︸ ︷︷ ︸
β1

= u2 · · ·u2︸ ︷︷ ︸
α2−1

u1u2u−t
3 u1 · · ·u1︸ ︷︷ ︸

β1−1

= u2 · · ·u2︸ ︷︷ ︸
α2−1

u1u2 u1 · · ·u1︸ ︷︷ ︸
β1−1

u−t
3

y esto se repite β1 veces con cada u2, es decir, un total de α2β1 veces.
Y, análogamente, obtenemos:

(uα1
1 uα2

2 uα3
3 )−1 = u−α1

1 u−α2
2 u−α3−tα1α2

3 .

Usando estos polinomios, como hicimos en la prueba del Teorema de Mal’cev (3.3), definiríamos la
complección de Mal’cev de G(t), G(t)Q.
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Esto se puede generalizar aun más. Sea n > 0 entero y t = (ti, j,k | 1 ≤ i < j < k ≤ n) ∈ Z(
n
3). Usando

este valor podemos definir un grupo, al que llamamos G(t), con n generadores, u1, . . . ,un, que satisfacen:

[ui,u j] = uti, j, j+1
j+1 · · ·uti, j,n

n .

Este grupo será nilpotente con una serie central de longitud n:

G(t) = G1 ▷G2 ▷ · · ·▷Gn+1 = 1

con cocientes consecutivos cíclicos infinitos. De hecho, la longitud de esta serie es exactamente la longi-
tud de Hirsch de G(t).

Se puede encontrar más información sobre estos grupos en el artículo citado en la bibliografía [3],
donde además construyen un algoritmo para calcular los polinomios de Hall en función de los t ′s ante-
riores y este ha sido implementado en GAP (sistema de cálculo simbólico en grupos).

El interés de los polinomios de Hall es que proporcionan un algoritmo eficiente para multiplicar en
grupos nilpotentes libres de torsión. Saber cómo se comporta la multiplicación en un grupo nilpotente
tiene una gran utilidad en criptografía, ya que estos grupos se han propuesto como plataforma de diversos
protocolos criptográficos (como se ve en el artículo [5]) y para implementarlos es útil tener un algoritmo
eficiente para multiplicar.
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