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Introduccion

La Teorfa de Grupos es una rama del dlgebra abstracta que se encarga de estudiar la estructura de
los llamados grupos, conjuntos con una operacion interna que satisface ciertas caracteristicas. En este
trabajo vamos a centrarnos en los grupos nilpotentes, que son una generalizacion de los grupos abelianos,
y probaremos el Teorema de Mal’cev, un resultado muy importante relacionado con la extraccién de
raices en estos grupos.

Los grupos abelianos son aquellos en los que el orden de los factores no altera el producto”, es decir,
los elementos conmutan entre si. Su nombre fue dado en honor al matematico noruego Niels Henrik Abel.
Los nimeros enteros, con la operacién de suma, o los reales no nulos, con la operacién de producto, son
algunos de los ejemplos mds tradicionales de este tipo de grupos. Sin embargo, no todos los grupos
satisfacen esta condicién de conmutatividad. El concepto de grupos nilpotentes es una generalizacion
que conserva algunas de las buenas propiedades de los grupos abelianos. Estos grupos se caracterizan por
poseer una serie de subgrupos normales tales que los cocientes consecutivos son centrales, en particular,
abelianos. Por esta razén, intuitivamente, se dice que son grupos “casi abelianos”.

El trabajo esta dividido en dos partes:

= El primer capitulo se utiliza para introducir las nociones y conceptos bdsicos sobre las que de-
sarrollaremos nuestro estudio, asi como algunos resultados interesantes. Primero presentamos los
conceptos bdsicos de Teoria de Grupos como la definicién formal de grupo, para después definir
los grupos resolubles y acabar con los grupos nilpotentes. Haremos un breve comentario sobre la
codicién de maximalidad, ya que nos serd de gran utilidad en el segundo capitulo.

Un grupo G es resoluble si contiene una serie abeliana, es decir, una serie de subgrupos
1=Gp<G1«...4G, =G,

tales que G;/G;_; es abeliano. También definiremos el conmutador de dos elementos y los subgru-
pos conmutadores, los cuales nos permiten construir la serie derivada de G.

En la siguiente seccidon definimos los grupos nilpotentes, que son grupos con una serie central,
es decir, una serie abeliana donde cada cociente G;/G;_; ademés estd contenido en el centro de
G/Gi_,. Usando otra vez subgrupos conmutadores, podemos construir la serie central descendente
de G. Por otra parte, si hacemos que los cocientes G;/G;_; sean exactamente iguales al centro de
G/G,_1, obtenemos la serie central ascendente de G. Si nuestro grupo es nilpotente, estas dos series
deben terminar en el mismo niimero de pasos y su longitud es la llamada clase de nilpotencia de
G.

Para acabar la segunda seccién, presentamos un ejemplo de grupo nilpotente: las matrices uni-
triangulares superiores de dimensién n. Nos centramos en el caso n = 3, el llamado grupo de
Heisenberg, y calculamos su serie central descendente.

En la dltima seccién explicamos lo que significa que un grupo tenga la condiciéon maximal (max).
Veremos que, si tenemos un subgrupo normal, nuestro grupo tiene max si y solo si el subgrupo
y el correspondiente cociente tienen max. Ademads, un grupo abeliano tiene max si y solo si es
finitamente generado.
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= Fl segundo capitulo profundiza en el problema de encontrar raices de un elemento dentro de un

grupo. Enunciamos el Teorema de Mal’cev, que fue desarrollado por el matematico ruso Ana-
toly Mal’cev en la década de 1940. Este teorema, y su prueba, contribuy6 significativamente al
entendimiento de la estructura de los grupos nilpotentes y su relacién con la radicabilidad.

En Ia primera seccién, introducimos nuevos conceptos mas especificos para la comprensiéon del
teorema. Un grupo G es libre de torsidn si no tiene elementos de orden finito, es decir, si dado
g € G tal que g" = 1 para cierto n > 0, necesariamente g = 1. Con esta definicén, enunciamos un
resultado muy importante y conocido en Teoria de Grupos:

Teorema. Todo grupo abeliano finitamente generado y libre de torsion es isomorfo a un producto
directo de grupos ciclicos.

Por otra parte, nuestro grupo G es radicable si para todo g € G y todo nimero entero positivo n
la ecuacion x"* = g tiene una solucién x en G. Esta propiedad no es comtn para todos los grupos,
ni siquiera para todos los grupos nilpotentes, y esto es lo que motivé el enunciado del Teorema
de Mal’cev. Por udltimo, demostramos que, si tenemos un grupo nilpotente y libre de torsion, la
extraccion de raices, si existe, es Gnica.

En la segunda seccién de este capitulo, enunciamos el Teorema de Mal’cev:

Teorema. Todo grupo nilpotente G libre de torsion es isomorfo a un subgrupo de otro grupo
nilpotente G* radicable de forma que cada elemento de G* tiene una potencia positiva en G.
Ademds, el grupo G* es iinico salvo isomorfismo.

Este grupo G* se dice compleccion de Mal’cev del grupo G.

El tercer capitulo estd dedicado a la demostracion del Teorema de Mal’cev. Seguiremos la prueba
realizada por el matemdtico britdnico Philip Hall en 1969, que se puede resumir como sigue, solo
en el caso finitamente generado.

En la primera parte, refinamos las serie central ascendente de G afiadiendo mds subgrupos hasta
obtener una serie central
1=6G,<G,_1<4...4Gy =G,

donde cada cociente G;_;/G; es ciclico infinito, con generador u;G;. Con esto podemos deducir
que cada elemento a € G puede ser expresado asi a = u‘f” .udm =u%. Ademads, probamos que, si
(m)

b =uP € G y m es un nimero entero, existen polinomios ¥, en las variables oj,Bjy " enlas
variables o/; y m tales que

ab = u®uP = u¥
a® =u®.
Con estos polinomios, definimos G2 como el conjunto de todos los productos formales u® con
exponentes Qf,...,0, en Q. Claramente, este conjunto contiene a G. Solo tenemos que probar
que GY es un grupo nilpotente y radicable como el del enunciado para probar la existencia de la
compleccién de Mal’cev.

La unicidad se prueba en la segunda parte definiendo un isomorfismo entre G y una compleccién
distinta de la encontrada.

En la dltima seccién, ampliamos el ejemplo del primer capitulo para ver como es su compleccion.
También hablamos de los polinomios de Hall y su aplicacién en criptografia.

Finalmente, me gustaria sefialar que el problema detrds del Teorema de Mal’cev es bdsicamente

un problema de resolver ciertas ecuaciones. Una ecuacién como nx = a, donde n > 0 y a son enteros,
solo tendra solucién x en Z si n divide a a. Sin embargo, ese no siempre es el caso, y asi es como se
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introdujeron los niimeros racionales. Andlogamente, cuando tenemos una ecuacién racional como x> =2,
tenemos que introducir los nimeros reales, y cuando tenemos una ecuacién real como x> = — 1, definimos
los nimeros complejos. El problema de extraer raices de un elemento ha interesado a los matematicos
durante muchas décadas e incluso siglos (como, por ejemplo, el caso de los nimeros imaginarios, que se
introdujeron por primera vez en el siglo XVI [4]). Con estas construcciones estamos extendiendo grupos
para poder trabajar mejor con ellos. Con esto, es facil entender la importancia del resultado de Mal’cev,
incluso a dia de hoy (el articulo [3] de 2017 se basa en la prueba de este teorema dada por P. Hall en

1969 para producir un algoritmo que permite operar de forma eficiente en grupos nilpotentes).
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Abstract

This project is included in the branch of Algebra called Group Theory, which focuses on groups
and their algebraic structure. In particular, we will consider nilpotent groups. More precisely, our central
focus will be Mal’cev’s Theorem on the extraction of roots in torsion-free nilpotent groups, and its proof,
which helps understand better the structure of these groups.

We first state the grounds from which we will build our a way to the proof. We introduce soluble
groups. From there we define nilpotent groups, which can be seen as extensions of abelian groups because
of their structure. Both these groups are defined using certain series and these two notions are strongly
related since nilpotent groups are also solvable. However the reverse is not true, and one of the reasons
that make nilpotent groups interesting is their closer proximity to abelian groups, whilst still maintaining
a more rich and complicated structure.

As stated before, nilpotent groups are defined in terms of series, that is why we make a big emphasis
on how the subgroups and quotients that form them are and on the properties that they have. We will
prove many results about these series, that will help us understand how nilpotent groups are, and also
how we can prove the theorem that concerns us.

Once we have our basis, we will change our focus to the extraction of roots in these groups. We will
define radicability and prove that in a torsion-free nilpotent group the extraction of roots, if it exists, is
unique. We will then present the main theorem of this thesis, Mal’cev’s Theorem, which states that a
torsion-free nilpotent group G can be embedded in a nilpotent group G*, in which the extraction of roots
is unique, in such a way that every element of G* has a positive porwer in G. By proving this statement
for finitely generated groups, and with the help of some examples, we will learn about the structure of G
and how we can extend it so that we can find the roots of its elements.

Finally, I would like to point out that the problem behind Mal’cev’s Theorem is basically a problem
of solving certain equations. When we have an equation like nx = a where n > 0 and « are integers, then
we can only find a solution x in Z if n divides a. However that is not always the case, and that is how
the rational numbers where introduced. Similarly, when we have a rational equation like x? =2, we have
to introduce the real numbers, and when we have a real equation like x> = —1, we define the complex
numbers. The problem of extracting the roots of an element has been interesting for mathematicians
for many decades and even centuries (take for example the case of imaginary numbers which were first
introduced in the 16th century [4]). These are all just extensions of groups, that give us a bit more space
to work with them. Seeing this, it is easy to understand the importance of Mal’cev’s result, and why it is
still studied to this date (the article [3] from 2017 is based on the proof of this theorem given by P. Hall
in 1969, which is used to produce an algorithm to compute in an effective way in these groups).
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Capitulo 1

Conceptos previos y Grupos Nilpotentes

Antes de empezar vamos a definir algunos conceptos previos que nos ayudaran a entender mejor los
resultados que se estudian en este trabajo. Empezamos con lo mds bésico:
Un grupo G = (G, ) es un conjunto no vacio G con una operacion interna:

:GxG—G
(x,y) > x-y
tal que:
= es asociativa
= tiene elemento neutro 1
» todo elemento g tiene inverso g~ ', ie. g-g7' = 1g

A partir de este punto obviaremos el simbolo - al referirnos a la operacién interna de un grupo.

Dos elementos a y b conmutan si ab = ba y, si esto se cumple para todos los elementos de G, se dice
que el grupo es abeliano.

Este concepto serd necesario durante el estudio del Teorema de Mal’ceyv, al igual que otras nociones
que damos por conocidas, como orden o grupo ciclico. También consideramos como bdsicos algunos
resultados primarios sobre la teoria de grupos, pero mencionamos algunos conceptos para situar el marco
tedrico en el que desarrollamos el trabajo:

Sea G un grupo. Decimos que un subconjuto H de G es un subgrupo si es a su vez un grupo con la
restriccion de la operacion de G. Lo denotaremos H < G. En este caso, si x es un elemento cualquiera
de G, entonces xH = {xh : h € H} es una clase lateral izquierda de H en G. Y, andlogamente, Hx es una
clase lateral derecha de H en G. Un subgrupo N se dice normal si para todo x € G tenemos xN = N,
es decir, n* € N para todo n € N. Lo denotaremos N < G. Sea N < G, entonces se puede definir una
estructura de grupo en el conjunto de todas las clases de N en G, el cual se llama grupo cociente G/N.

Sean G, H dos grupos. Una funcién f : G — H se dice homomorfismo de grupos si para todo x,y € G
tenemos f(xy) = f(x)f(y). Es facil probar que el nicleo de un homomorfismo, ker(f), que consiste en
los elementos cuya imagen por f es 1, es un subgrupo normal de G.

El centro de un grupo G es Z(G) = {g € G | xg = gx, Vx € G}.

Sea S un subconjunto (finito o infinito) de elementos de un grupo G. Si todo y € G puede ser expre-
sado como un producto de un niimero finito de elementos de S y de sus inversos, entonces decimos que
S es un conjunto generador de Gy lo denotamos asi: G = (S). Si existe un conjunto generador S de G

finito, se dice que G es finitamente generado. Ademas, si el conjunto {xi,...,x,} genera G de tal forma
que x? ---x;» = 1 implica que r; = --- = r, = 0, entonces se dice que xi,...,x, forman una base de G.

No todos los grupos finitamente generados poseen una base.

Lema 1.1. Sea G un grupo finitamente generado y N un subgrupo normal de G. Entonces G/N es
finitamente generado
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Demostracion. Es evidente, ya que, si x1,...,x; generan G, x| N, ... ,x;N generan G/N. O

Por tltimo, vamos a dar un resultado muy basico de Teoria de Grupos, cuya demostracion, aunque
elemental, obviamos por ser demasiado larga:

Lema 1.2. Todo subgrupo de un grupo abeliano y finitamente generado es finitamente generado.

1.1. Grupos resolubles

Definicion 1.1. Una serie de subgrupos de un grupo G,
1=Gy<G1<...4G,_1 <G, =G,

se dice abeliana si cada cociente G;;1/G; es abeliano.

Definicion 1.2. Un grupo G se dice resoluble o soluble si tiene una serie abeliana, 1 = Gp <G <...<
G, 149G, =0G.

Claramente, si G es abeliano, G es resoluble con serie abeliana 1< G. Asf resolubilidad es una ge-
neralizacién de la conmutatividad. El ejemplo més pequefio de grupo resoluble no abeliano es el grupo
simétrico S3, cuya serie abeliana es 1< ((123)) <S3.

Definicion 1.3. La longitud de la serie abeliana mds corta de un grupo resoluble G se dice longitud
derivada de G.

Por tanto, los grupos de longitud derivada 1 son los grupos abelianos.

Definicion 1.4. Sea G un grupo cualquiera y sean xj,x, elementos arbitrarios de G. El conmutador de

X1y X es [x1,x] = xflxglxlxz = xflx)fz donde x}? :xglxlxz.

Entonces G es abeliano si y solo si todos los conmutadores de elementos de G son iguales a la
identidad. Ampliamos este concepto para mas de dos elementos. Definimos un conmutador simple de
peso n > 2 de forma recursiva

[xl7x27 "'axn] = Hxla"'?xnfl}axn]v

donde [x{] = x| por convencion.
Vamos a introducir algunas propiedades basicas de los conmutadores para poder trabajar con ellos.

Lema 1.3. Supongamos que x,y,z son elementos de un grupo. Entonces:
) ey = [pa] !
ii) [xy,2) =[x, 2Pz, Peye] = [l

iii) [x,y~1] = ([x?y]y’l)_l, 1y = ([x,y]x*')

) e,y 2Py, 2 L xF [z, x 7y = 1 (la identidad de Hall-Witt).

-1

Demostracion. Aplicando la definicién de conmutador se puede demostrar i), ii), iii) ficilmente. Para

probar iv), definimos u = xzx~'yx, v = yxy~'zy y w = zyz~'xz. Podemos computar [x,y"!, 7}’ = u~lv,

v,z Lxf =vlwy [z,x7 1,y = wlu. Y entonces obtenemos:

by bzl = T T =1
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Definicion 1.5. Sean X, X, subconjuntos no vacios de un grupo G. Definimos el subgrupo conmutador
de X y X, asf:
[X1,X0] = ([x1,x2] | x1 € X1, x2 € X2).

Es decir, es el subgrupo generado por todos los conmutadores de elementos de X; y Xj.

Observemos que, por el lema 1.3 (i), el conmutador de dos subconjuntos es simétrico: [X;,Xz] =
[X2,X;]. Ademads, si X1, X, son subgrupos normales, el lema 1.3 (iii) implica que [X;,X] también lo es.
Para n > 2 definimos recursivamente:

[XlaXZa”')Xn] - [[X17X27"'5Xn*1]aXn]v
donde [X;] = (X1).

Lema 1.4. Si X1, X2, X3 son subgrupos normales en G, entonces [X1,X,X3] = [X1,X2][X1,X3] y [X1 X2, X3] =
[X1,X3][X2, X3]

Demostracion. [X;,X»X3] esta generado por los conmutadores [x1,x,x3] con x; € X1, x, € X, y x3 € X3.
El resultado sigue de usar el apartado ii) del lema 1.3. Andlogamente, se demuestra la otra igualdad. [J

Una vez aclarado el concepto de conmutador, podemos construir series abelianas candnicas para los
grupos resolubles.

Definicion 1.6. Sea G un grupo. Definimos el subgrupo derivado o conmutador de G como G' = [G,G].
Formando subgrupos derivados repetidamente, obtenemos una secuencia descendente de subgrupos de
G:

G=G">6V>6%>..>6"> .

donde G"t1) = (G(”)),. La llamaremos serie derivada de G.

Teniendo en cuenta la observacion realizada tras la definicion 1.5, el subgrupo derivado G’ es normal
en Gy, ademds, G/G’ es abeliano, de hecho es el mayor cociente abeliano de G. Vamos a ver esto
dltimo. Sea H < G. Tomamos [x;,x;]| con x1,x; € G, ya que estos elementos generan el grupo G'. Si
el cociente G/H es abeliano, [x;,x;]H = 1. Por tanto, [x,x;] € H, es decir, G’ < H. Habitualmente se
denota G, = G/G’ y se llama abelianizacion de G. Por induccidn, es claro que G™ es un subgrupo
normal de G para cada n y cada uno de los cocientes G /G("*+1) en la serie es abeliano.

1.2. Grupos nilpotentes

Definicion 1.7. Un grupo G se dice nilpotente si tiene una serie central, es decir, una serie normal
1 =Gy <Gy <... <G, =G tal que Gy /G, esta contenido en el centro de G/G; parai =0,1,....n— 1.
La longitud de la serie central mas corta de G se dice clase de nilpotencia de G.

Claramente, si el cociente G;1/G; estd contenido en el centro de G/G;, en particular es abeliano y,
por tanto, una serie central es también una serie abeliana y, en consecuencia, los grupos nilpotentes son
resolubles. Sin embargo, no toda serie abeliana es central: la serie 1< ((123)) <S5 no es central, puesto
que ((123)) /1 = ((123)) no estd contenido en Z(S3/1) = 1. De hecho, es ficil ver que esta es la tinica
serie abeliana de 3, luego S3 no es nilpotente. Por tanto, no todo grupo resoluble es nilpotente.

Un grupo nilpotente de clase O tiene orden 1y los grupos nilpotentes de clase 1 son precisamente los
grupos abelianos.

Observacion. Una serie | = Go<G<...<G, = G es central si y solo si [Giy1,G] < G;. Es facil demos-
trarlo. La serie es central si y solo si Gi11/G; C Z(G/G;). Esto es equivalente a que hgG; = ghG; para
todo h € G+ y todo g € G, es decir, [h,g| € G; paratodo h € G y todo g € G. Por tanto, equivalente
a [G,‘.;,.],G] < G,‘.
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En el caso de la resolubilidad hemos definido una serie candénica. Para la nilpotencia vamos a de-
finir dos. La primera serie, al igual que la serie derivada, es una secuencia descendente de subgrupos
conmutadores.

Definicién 1.8. Sea G un grupo y definimos 71 (G) = G y ¥+1(G) = [%(G),G], para n > 1. La serie
G=%(G) > %(G) > ... > 7(G) > ... se llama la serie central descendente de G.

Es claro que la serie es central, basta usar la observacion anterior. Al igual que la serie derivada, la
serie central descendente no siempre alcanza 1 o termina.
El siguiente resultado nos serd de gran utilidad en la prueba de nuestro teorema (3).

Proposicion 1.5. Sea G un grupo nilpotente. Si Gy, = G/G' es finitamente generado, entonces, para
todoi=1,...,n, %(G)/Yi+1(G) también lo es.

Demostracion. Supongamos que X es una familia finita que genera G,;. Observemos que G' = % (G),
por tanto, el primer cociente de la serie central descendente es finitamente generado. Vamos a ver que
entonces 12(G)/v3(G) es generado por los elementos de la forma [x,y]y3(G) con xp»(G),yy.(G) € X, por
tanto, tiene un nimero finito de generadores.

Sabemos que %(G)/73(G) estd generado por [g,h]y3(G) con g,h € G, luego basta con probar que,
para todo g, € G, [g,h]y3(G) se puede expresar como producto de elementos de la forma [x,y]y3(G) con
x%2(G),yy(G) € X. Como X genera G, tenemos:

gr(G) =x1---x%(G)
hy(G) =y1---y:%(G)

con x;%(G),y;¥>(G) € X paratodoi=1,...,t ytodo j=1,...,s.

Vamos a probar el resultado por induccién sobre 7 +s. Sea t +s = 0, entonces g,h € 1»(G), luego
[g,h]72(G) = %(G). Sea ahora t +s > 0 y asumimos que el resultado se cumple para i < 7 +s. Como 7,s
son enteros positivos, uno de ellos es mayor que cero, sin pérdida de generalidad podemos suponer ¢ > 0.
Ahora podemos poner g7 (G) = g1x:%(G) con g112(G) = x1 ...x—112(G). Por la hipétesis de induccion,
[g1,h]13(G) es producto de elementos de la forma [x,y]13(G) con x%2(G),yy2(G) € X. Y lo mismo es
cierto para [x;, h]y3(G). Ademads:

8,1 %5(G) = [g1x:, A 13 (G) = [g1, A" 13(G) [x2, W] 13(G) = [g1, W] 13(G) [, B 13(G),

donde primero utilizamos el lema 1.3 y después el siguiente hecho:

(g1, A" 13(G) = [g1,hl[g1, k] [g1, A" 15(G) = [g1, h][[g1, ], %] 13(G) = [g1, W] 15 (G).

Por tanto, [g,h]y3(G) también es producto de elementos de la forma [x,y]y3(G) con x%2(G),yy2(G)
en X. Como X es finito, las combinaciones de x,y para formar los conmutadores también lo son y
12(G)/73(G) es finitamente generado.

Podemos repetir este proceso con los siguientes cocientes %;(G)/%i+1(G): si %i—-1(G)/ 7 (G) esta fini-
tamente generado por una familia Y, entonces los elementos de la forma [x,y]%i+1(G) con xp(G) € X e
v%(G) € Y generan %(G)/%+1(G). Como X e Y son finitos, sus combinaciones para formar los conmu-
tadores también. Luego, para todo i = 1,...,n, el cociente %;(G)/%+1(G) es finitamente generado. [

Definicion 1.9. La segunda serie candnica asociada a la nilpotencia es la serie central ascendente
1=2)(G)<Z(G)<...<Z,(G) < ...
definida por Z,+1(G)/Z,(G) = Z(G/Z,(G)). En particular, Z; (G) = Z(G).

En general, la serie central ascendente puede no alcanzar G o siquiera terminar finitamente. Por
ejemplo, si Z;(G) = 1 como en el caso de S3, la serie no crece en absoluto. Si la serie termina, entonces
el subgrupo en el que termina se dice hipercentro de G.
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Proposicion 1.6. Sea 1 = Gy <G <...<4G,, = G una serie central de un grupo nilpotente G. Entonces:
i) %(G) <Gy_it1, para 0 <i<n+1, luego ¥,4+1(G) =1
ii) Gi <Zi(G), para 0 <i<n, luego Z,(G) = G

iii) las series centrales descente y ascendente tienen la misma longitud y este valor comiin es la clase
de nilpotencia de G.

Demostracion. Probamos i) por induccién. Para i = 1, es claro % (G) = G = G,,. Supongamos que se
cumple hasta i — 1: %_1(G) < G,_;4>. Entonces

%(G) = [G7 %—I(G)] < [Gv Gn—i+2]

ya que la formacion de subgrupos conmutadores respeta inclusiones. Como la serie de los G; es central,
[G,Gy—it2] < Gp_it1y tenemos que %(G) < Gy_iy1.

También probaremos ii) por induccién. El paso i = 0 es claro. Supongamos que se cumple hasta i — 1:
Gi—1 <Z;_1(G). Ahora, tomamos g € G; y h € G. Entonces

(g,h] € [Gi,G] < Gi—1 <Zi_1(G).
Por tanto, ghZ;_(G) = hgZ;_1(G), es decir,
8Zi-1(G) € Z(G/Zi-1(G)) = Zi(G) /Zi-1(G).

Concluimos que g € Z;(G), luego G; < Z;(G).
La tdltima parte es una consecuencia directa de i) y ii). O

De aqui podemos concluir que un grupo es nilpotente si y solo si su serie central descendente termina
en el grupo trivial, es decir, si y solo si ¥,(G) = 1 para algiin n. Equivalentemente, su serie central
ascendente termina en el grupo original. Esto tiene como consecuencia que, si G es nilpotente y H < G,
entonces H es nilpotente. Para probarlo solo hay que tomar la serie H N ¥;(G) que claramente es central
y termina en 1.

Proposicion 1.7. Sea G un grupo nilpotente y N un subgrupo normal de G. Entonces G /N es nilpotente.

Demostracion. Suponemos que 1 = Gop < G; < ... < G, = G es una serie central de G. Entonces
podemos tomar los subgrupos G;N/N < G/N, que claramente son normales en G/N. Ahora toma-
mos gN en G/N y hN en Gy |N/N, con g € G, h € Giy1. Como los G; forman una serie central,
[h,g] € [Git1,G] < Gi. Por tanto, [hN,gN] = [h,g|N € G;N/N, es decir, [Gi1N/N,G/N| < GiN/N 'y
queda probado el resultado. O

Lema 1.8. Sean H,K,L subgrupos de un grupo G. Si dos subgrupos cualquiera entre [H,K L], [K,L,H]|,
[L,H,K] estdn contenidos en un subgrupo normal de G, entonces el tercero también lo estd.

Demostracion. Asumimos [K,L,H|,[L,H,K| < N, donde N es un subgrupo normal de G. Utilizando
la identidad de Hall-Witt (1.3) tenemos que [x,y~',z]’[y,z~ !, x]*[z,x~!,y]* = 1 para cualesquiera x € H,
y€K,z€ L. Llamaremos a =[x,y ',z € [H,K,L],b=[y,z” ' ,x]* € [K,L,H] y c = [z,x"',y]* € [L,H,K].
Podemos despejar a de la ecuacién de arriba:

a=c'b' € [K,LH|LHK] <N.

Como los elementos de la forma de a generan [H, K, L], tenemos que [H,K,L] < N. O

Proposicion 1.9. Sea G un grupo e i, j niimeros enteros positivos. Entonces [¥(G), Y;(G)] < ¥i+,(G).
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Demostracion. Vamos a probarlo por induccidn sobre i. Primero, observamos que para i = 1:

(1(G),7i(G)] =[G, %(G)] = ¥+1(G), ¥j >0

Supongamos que se cumple hasta i, queremos ver que [%+1(G),7;(G)] < %+14;(G) para todo j. Por
definicién de ¥;4+1(G), tenemos que [¥i+1(G), ¥;(G)| = [[G,%(G)], ¥;(G)]. Por el lema anterior 1.8, si pro-
bamos que los dos subgrupos [%i(G),7;(G),G] y [vj(G),G,%(G)] estan en ¥4 j41(G) (subgrupo normal
de G), tendriamos que el tercero también lo estd, es decir:

[%:+1(G), 11(G)] < ¥i+14(G).

El enunciado se cumple para i, luego:

[1:(6),%(G), Gl = [[%(G), %(G)], Gl < [%+(G), Gl = ¥t j+1(G)-

Ademés, la hipétesis de induccion es cierta para todo j y por tanto:

[7i(G), G, %(G)] = [1j41(G), ¥%(G)] < iy j11(G).
O

Para tener una idea mds clara de cémo se comportan los grupos nilpotentes y poder entender mejor
el Teorema de Mal’cev, que introduciremos en el capitulo 2, vamos a trabajar con este ejemplo.

Ejemplo 1.10. Sea R un anillo conmutativo con identidad (podemos pensarlo como Z, Q o R). Definimos
el grupo G de todas las matrices n X n unitriangulares superiores sobre R, es decir, las matrices con unos
en la diagonal y ceros debajo de ella. La operacién interna es la multiplicacién habitual entre matrices.
Podemos asegurar que G es un grupo debido a que el producto de matrices triangulares superiores es otra
matriz triangular superior cuyos elementos diagonales son el producto de los correspondientes elementos
diagonales de las dos matrices. Se puede ver que este grupo es nilpotente de clase n — 1.

Vamos a centrarnos en el caso n = 3. Este es el llamado grupo de Heisenberg:

1 a b
G={|0 1 c||ab,ceR}.
0 01
Sean dos matrices en G:
1 a b 1 d b
A=|[0 1 c¢|yB=|0 1 ¢
0 0 1 0 0 1
Se puede comprobar que su producto serd:
1 a+d b+b+ad
AB=10 1 c+dc (1.1
0 0 1
y, por tanto, el inverso de A sera:
1 —a —b+ac
Al=(0 1 —c
0 O 1

Definimos el subgrupo de G:

| b eR}.

Q

(3]

Il

~

()
S = O
- o o
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Ademas, paratodo M € Gy todo T € Ga, (1.1) implica que MT = TM. Es decir, G, es un subgrupo
abeliano y G, < Z(G).
Por otra parte, en el caso en el que R = Z, las matrices:

1 10 1 00 1 01
u=(0 1 0], =01 1},u3=(0 1 O
0 01 0 01 0 01
claramente generan el grupo G (y en particular u3 genera el subgrupo G») y sus matrices inversas son:
1 -1 0 1 0 0 1 0 —1
u'=10 1 o, i, =(0 1 —1],u3'={0 1 0
0 0 1 0 0 1 00 1
Vamos a calcular los conmutadores de estas matrices generadoras:
1 -1 1 1 10 1 00 1 0 1 1 00 1 01
[up, ] =0 1 -1 010 01 1])]=(0 1 -1 01 1)]=({01 0] =us
0 1 0 01 0 0 1 0 0 1 0 01 0 01
1 0 —1 1 00 1 01 1 0 —1 1 01 1 00
[up,u3]=(0 1 —1 01 1 01 0]=(01 O 01 0]=(0 1 0]=1
00 1 0 01 0 01 00 1 0 01 0 01
I -1 -1 1 10 1 01 1 0 —1 1 01 1 00
[up,u3] =0 1 0O 010 01 0]J]=(0 1 O 01 0)=(0 1 0]=1
0 1 0 01 0 01 00 1 0 01 0 01

Sabiendo esto, se puede deducir que 7»(G) = [G,G] = G, aplicando la definicién de subgrupo con-
mutador. Entonces y3(G) =[G, 2(G)] = [G,G2] = 1 yaque [u;,u3] = [uz,u3] = [u3,u3] = 1y, como uy,up
no conmutan, G, = Z(G).

Luego tenemos la serie central descendente de G:

N(G) =G p(G) =G p(G) =1

que termina en un nimero finito de pasos, es decir, hemos probado que G es nilpotente de clase 2.
Se puede construir un homomorfismo de grupos:

J:G/Gy — R®R

MGy — (a,c)
1 a b
donde M = |0 1 c | esunrepresante de la clase en G/G,. J estd bien definido, puesto que:
0 01
1 a O 1 a b\ /1 —a O 1 0 b—ac
MGy=|0 1 c |Gy, debidoa |0 1 ¢ 0 1 —c]=101 0 € Gy
0 01 0 0 1 0 0 1 0 0 1
para cualesquiera a,b,c € R.
1l a 0 1 d 0
Para ver que es un homomorfismo, tomamos M = |0 1 b|,N= |0 1 & | enG.Entonces
0 01 0 0 1
1 at+d ab
MN=10 1 b+b
0 0 1
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y, aplicando la definicién de la operacién interna del producto directo, tenemos:
J((MN)Gy) = (a+d',b+b") = (a,b)+ (d',b') = J(MG2) + J(NG>).

Por otra parte, J(MG,) = J(NG,) siy solosia=a’ y b=b'y, ental caso, es ficil ver que MN~! € G,,
luego MG, = NG, y J es inyectiva. Y claramente es suprayectiva, por tanto, J es un isomorfismo de

grupos y
G =G/G,=ZRDR.

1.3. La condicion maximal

Vamos a introducir la condicién maximal asi como algunos resultados relacionados que utilizaremos
en la prueba del Teorema de Mal’cev (3).

Definicion 1.10. Se dice que un grupo G tiene max si una de las siguientes condiciones se cumple:
i) toda familia de subgrupos de G tiene algin elemento maximal;
ii) toda serie estrictamente ascendente de subgrupos de G es finita;
iii) todo subgrupo de G es finitamente generado.

Se puede probar que las tres condiciones son equivalentes usando el lema de Zorn. Claramente, si un
grupo es finito, tiene max.

Proposicion 1.11. Sea G un grupo y N un subgrupo normal de G. Entonces G tiene max si y solo si
tanto N como G/N tienen max.

Demostracion. Los subgrupos de N son en particular subgrupos de G, luego, si G tiene max, N también.
Abhora, si tenemos una serie estrictamente ascendente de subgrupos de G/N

1=Gy/N<G|/N<...<Gyp/N<...,
en particular, tenemos una serie estrictamente ascendente de subgrupos de G
1=Gp <G <...<G, < ...

Esta serie es finita: existe n tal que G, = G,, para todo m > n. Por tanto, G,,/N = G,,/N para todom > n
y G/N tiene max.

Para el reverso, tomamos una serie de subgrupos de G: H; < Hy < ... < H, < .... De aqui podemos
obtener una serie de las mismas caracteristicas de N y de G/N:

HNN<H,NN..<H,NN<...
HN<HIN<..<HNZ<Z...

Como N tiene max, existe i tal que H; N = H, NN para todo n > i. De forma similar, existe j tal que
H;N = H,N para todo n > j. Entonces, si tomamos k = max(i, j), H,\N = H NN y H,N = HN para
todo n > k. Recordemos la ley modular de Dedekind: Si A, B,C son subgrupos de un grupo G conA C B,
entonces A(BNC) = BNAC. Tomemos n > k, como H, > H;, podemos usar esta ley y deducimos:

H, = H,N(H,N) = H,N (HN) = Hi(H,\N) = Hy(H,NN) = H;.
O

Proposicion 1.12. Sea G un grupo abeliano. Entonces G tiene max si y solo si es finitamente generado.
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Demostracion. Suponemos primero que G tiene max. Si G es ciclico, es finitamente generado. En otro
caso, sea a; € G tal que (a;) # G. Entonces (a;) es un subgrupo de G, y elegimos a; € G\ (a;). Si
G = (aj,ay), ya lo tenemos. Si no, seguimos el proceso y obtenemos una serie estrictamente ascendente
de subgrupos de G:

1 <{a1) <{ai,ar) <...

Si G tiene max, la serie es finita, luego existe n tal que G = (ay,ay, ..., a,). El converso es consecuencia
del hecho de que los subgrupos de un grupo abeliano y finitamente generado son finitamente generados.
O

De aqui se deduce que otro ejemplo de grupos que tienen max son los grupos ciclicos.






Capitulo 2

El Teorema de Mal’cev

2.1. Extraccion de raices en grupos nilpotentes

En la préxima seccidn (2.2) enunciaremos el Teorema de Mal’cev, que demostraremos posteriormen-
te en el capitulo 3. Antes debemos introducir algunos conceptos sobre grupos radicables y extraccion de
raices.

Definicion 2.1. Se dice que un grupo G es libre de torsion si no tiene elementos de orden finito, es decir,
si dado g € G tal que g" = 1 para cierta n > 0, entonces g = 1.

El siguiente resultado es un teorema muy importante de Teoria de Grupos y que nos serd de gran
ayuda mds adelante.

Teorema 2.1. Todo grupo abeliano finitamente generado y libre de torsion es isomorfo a un producto
directo de grupos ciclicos.

Demostracion. Sea G un grupo abeliano, finitamente generado y libre de torsidon. Entonces existen
X1,...,X tales que G = (xj,...,x,). Veamos que podemos tomar los x; de manera que formen una base,
es decir, x{'x3? - -xfr =1 conn; € Zparai=1,...,rsiy solosin; =0 para cada i.

Claramente, podemos elegir xi,...,x, tales que sean una familia generadora minimal, es decir, que
ninguno de ellos se pueda expresar en términos de los demds. Supongamos que existen ny,...,n, no
todos cero de forma que x}'x5*---x = 1. Ademds, podemos elegir los n; de forma que |n;|+ ...+ |n,|
sea lo menor posible entre todas las familias generadoras minimales.

Si todos los n; excepto uno fueran cero, tendriamos xjj = 1conn; # 0, lo que es imposible ya que G
es libre de torsién. Por tanto, al menos dos exponentes son distintos de cero. Reordenando si es necesario,
podemos suponer que |n1| > |n2| > 0y, pasando al inverso si es necesario, podemos suponer n; > 0.

Ahora, si ny > 0, podemos escribir x’2 = xpx1. Entonces x, = x’le’l y, teniendo en cuenta que G es
abeliano, llegamos a:

_ny np _ . Jm—ny/_/\n n
I=xp'xg?-xr =yt ()"

La familia {x; ,x’z,xg, ..., X, } es también generadora minimal y, ademads:
|I’l1 —n2]—|—|n2|+...+\n,\ < ]n1]+|n2|+...+\n,],

lo que contradice nuestra hipétesis. Para np < 0 se prueba igual pero con x, = xle’l.
De aqui se deduce que xi,...,x, ha de ser base de G. Con este resultado se puede probar que la
funcién obvia entre Gy (x1) X (x3) X --- X (x,) es un isomorfismo. O

Ademais, todo grupo ciclico infinito es isomorfo a Z. En conclusién, también se puede decir que G
es isomorfo a Z", con r el tamafio de la base de G.

Con la definicion anterior, podemos introducir la siguiente proposicién que relaciona la torsién de un
grupo nilpotente con la torsién de los subgrupos de su serie central ascendente.

11
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Proposicion 2.2. Sea G un grupo nilpotente de clase k. Los siguientes enunciados son equivalentes:
i) G es libre de torsion
ii) Z(G) es libre de torsion
iit) Zi(G)/Zi—1(G) es libre de torsion para todo i = 1,...,k

Demostracion. i) = ii) Es trivial, ya que el centro de un grupo es un subgrupo del mismo.

ii) = iii) Para demostrar esto, primero vamos a probar que, si existe un elemento de torsién en
Zi+1(G)/Z;(G), también existird un elemento de torsién en Z;(G)/Z;—1(G). Si denotamos como F; al
cociente Z;(G)/Z;—1(G), entonces para cadai = 1,...,k— 1 existe un homomorfismo injectivo:

0 : Fi1 — Hom(Gup, Fr)
donde la imagen de cada zZ;(G) es un homomorfismo
fz = G(ZZ,'(G)) Gy — F

tal que f;(¢G') = [z,8]Zi—1(G), donde z € Z;11(G), g € G.

Dado un cierto i, probemos que 0 es realmente un homomorfismo inyectivo. Primero, deberiamos
probar que f; estd bien definida para todo z € Z;1(G) y que es un homomorfismo. Lo primero es claro
yaque zZ;(G) € Zi+1(G)/Zi(G) = Z(G/Zi(G)), luego [z, 8] € Z;(G) para todo g € Gy, por tanto, f;(gG’)
estd en F;. Veamos que es homomorfismo:

f-(ghG") = [z,8MZi1(G) = [2,h][z,8)"Zi-1(G) = [z,8]Zi-1(G) [z, h] Zi-1(G) = [.(3G') f2(hG),

donde primero usamos el lema 1.3 y después que [z,8|Z;i—1(G),[z,h|Zi—1(G) € Zi(G)/Zi—1(G) luego
conmutan con todo elemento de G/Z;_(G).

Veamos ahora que 6 estd bien definido. Si 71Zi(G) = z2Zi(G), entonces z1z, ' € Z;(G). Queremos
ver que f,, = f,,. Sea g € G, entonces f;, (gG') = f,,(gG’) implica que [z1,g][z2,&] ! € Zi—1(G). Como
estamos trabajando con la serie central ascendente, tenemos que:

1

[21,8][8,22)Zi-1(G) = 27 ¢ ' 212, '822Zi1(G) = 77 '2125 ' ¢ ' 82221 (G) = 1,

con lo que queda probado lo que queriamos.
Para ver que 6 es homomorfismo tomamos 71,2, € Z;+1(G) y tenemos que ver 0(z1Z;(G) -22Zi(G)) =
0(21Zi(G)) - 0(22Zi(G)). Esto equivale a probar que f,,, = f, fz,, es decir:

Jauz (gG,) = fz (gG,)fzz (gG,)

para todo gG’ € G;,. Usando otra vez las propiedades de los conmutadores vistas en el lema 1.3, obtene-
mos:

[ (8G) = [2122,8)Zi-1(G) = 21,8 [22,8]1Zi-1(G) = [21,8][z2,8]Zi-1(G) = f,,(8G") f,(8G),

donde en la pendltima igualdad hemos considerado que [z1,¢]Z;—1(G) € F; y conmuta con los elementos
de G/Z;—1(G).

Nos queda ver que 0 es inyectivo. Sea zZ;(G) € Z;+1(G)/Z;i(G) tal que f, = 1, es decir, f;(gG') =
1 =Z;_1(G) para todo g € G. Entonces, por la definicién de f;, para todo g € G, tenemos:

Zifl(G) = [z,g]Z,-,l(G) 4 ngi,l(G) = gZZl',l(G).

Esto implica que zZ;_1(G) € Z(G/Z;—1(G)) = F;, luego z € Z;(G), es decir, zZ;(G) = 1.

Por tanto, si zZ;(G) # 1 y 2"Z;(G) = 1 para cierton > 0y z € Z;11(G), entonces [z",g|Z;_1(G) =1
para todo g € G, es decir, [z,¢]"Z;—1(G) = 1, aplicando las propiedades de los conmutadores y que la
serie es central. Sin embargo, como 6 es inyectivo, f; # 1, es decir, existe g € G tal que [z,¢]Z;—1(G) # 1.
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Hemos probado que, si existe algtin elemento de torsién en Fi11 = Z;11(G)/Z;i(G), entonces existe algtin
elemento de torsion en F; = Z;(G)/Z;—1(G). Luego, si para algin i = 2,... k, existe un elemento de
torsion en Z;(G)/Z;_1(G), reiterando llegamos a que existe un elemento de torsién en Z;(G)/Zy(G) =
Z(G). Esto contradice ii).

iii) = i) Lo probamos por reduccién al absurdo. Sea g € G, tal que g # 1 y g"” = 1. En otras palabras,
g€ G=2(G)yg¢ Zy(G). Por tanto, existe algtin valor i < k tal que g € Z;(G), pero g ¢ Z;_1(G). Esto
implica que gZ;_1(G) # 1 y, sin embargo:

(8Zi-1(G))" =g"Zi-1(G) = 1.
Esto contradice que los cocientes de la serie sean libres de torsion. O

Corolario 2.3. Sea G un grupo nilpotente. Si G es libre de torsion, entonces G/Z(G) también lo es.

Demostracion. Usando la equivalencia i) = iii) de la proposicién anterior (2.2), tenemos que el cociente
Zi(G)/Zi—1(G) es libre de torsion para todo i = 1,..., k. Supongamos que G/Z(G) no es libre de torsion.
Entonces existe g € G con gZ(G) # 1, tal que (¢Z(G))" = 1. Es decir, g"Z(G) = 1 o, equivalentemente,
¢"€Z(G).Sigé¢ Z_1(G), como Z(G) C Zx—1(G), (8Zk—1(G))" = g"Zr—1(G) = 1. Pero esto quiere decir
que tenemos un elemento de torsién en Z;(G)/Z;—1(G), lo cual contradice que G sea libre de torsion.
Por tanto, g € Z;_1(G) y podemos repetir el argumento con el siguiente cociente hasta llegar a g € Z(G).
Lo cual contradice nuestra suposicion. O

Antes de enunciar el teorema principal de este trabajo, necesitamos introducir algunos conceptos
nuevos y probar un dltimo resultado.

Definicion 2.2. Sea 7 un conjunto no vacio de primos. Entonces un grupo G se dice w-radicable (o
simplemente radicable si & es el conjunto de todos los primos) si para todo g € G y todo w-nimero
positivo n, la ecuacién x" = g tiene una solucién x en G. Esto significa que cada elemento de G debe
tener una raiz enésima en G para todos los -niimeros positivos n. Si esta solucién es tnica, se dice que
la extraccion de raices es Unica.

En este contexto, un w-nimero es un nimero tal que todos sus divisores estin en 7.

Definicion 2.3. Sea n un entero positivo. Decimos que G es n-libre de torsion si g" = 1 implica g = 1
para todo g € G.

Definicion 2.4. Sea 7 un conjunto de primos. Se dice que un grupo G es 7-libre de torsion si es p-libre
de torsién para cada primo p en 7 o, equivalentemente, es n-libre de torsion para cada m-ndmero n.

Si un grupo tiene extraccién Unica de 7m-raices, entonces es claramente 7-libre de torsion (para la
ecuacion x" = 1, x = 1 es una solucién, luego es la tnica solucién). Por tanto, los grupos radicables en
los que la extraccién de raices es tinica son aquellos que son libres de torsion.

Observacion. La extraccion de raices no siempre es posible en un grupo libre de torsién. Ese es el caso
de los grupos ciclicos infinitos. Por ejemplo, en el grupo G = (2), la ecuacién x" = 2" solo tiene solucion
en G si n divide a m. Sin embargo, todo grupo ciclico infinito es isomorfo a un subgrupo de un grupo
radicable libre de torsién, por ejemplo, del grupo multiplicativo de los nimeros racionales Q. Este hecho,
que veremos con mds detalle en la seccidn 2.2, se puede generalizar a todos los grupos nilpotentes libres
de torsidn, dando lugar al Teorema de Mal’cev.

Observamos que, si existe, la extraccién de raices siempre es Gnica en un grupo nilpotente y libre de
torsién. Esto es una consecuencia directa de la siguiente proposicion.

Proposicion 2.4. Sea G un grupo nilpotente y libre de torsion con elementos a,b € G tales que a" = b"

para algiin n > 0. Entonces a = b.
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Demostracion. Lo probamos por induccién en la clase de nilpotencia k de G. Sea G abeliano (k = 1).
Entonces:
A= esdbV) ' =lel=d"(b"" =@ )"

donde en la dltima igualdad hemos aplicado que G es abeliano. Como G es libre de torsién y ab~! € G,
ab~! =1, es decir, a = b.

Supongamos ahora que la proposicién se cumple para clases de nilpotencia menores que k. Sea G un
grupo libre de torsion con clase de nilpotencia k. Entonces G/Z(G) tiene clase de nilpotencia k — 1 (esto
es fécil verlo utilizando la serie central ascendente de G). Ademads, es libre de torsion por el corolario
2.3. Ahora sean a,b € G con a" = b". En G/Z(G) tenemos

(aZ(G))" = (bZ(G))"

y, por la hipétesis de induccion, aZ(G) = bZ(G). Es decir, existe z € Z(G) tal que a = bz. Teniendo en
cuenta que z estd en el centro de G:

a" = (bz)" = bzbz---bz = b"7".

Por otra parte, tenfamos que a” = b", luego podemos concluir que b" = b"7" y, por tanto, 7" = 1. Como
G es libre de torsion, z = 1 y entonces a = bz = b. O

2.2. El teorema de Mal’cev

Una vez que hemos presentado los conceptos y los resultados necesarios para entender el teorema de
Mal’cev, podemos finalmente enunciarlo, aunque la demostracion la realizaremos en el préximo capitulo.

Teorema (Teorema de Mal’cev). Todo grupo nilpotente G libre de torsion es isomorfo a un subgrupo
de un grupo nilpotente G* en el cual la extraccion de raices es iinica de forma que cada elemento de G*
tiene una potencia positiva en G. Ademds, el grupo G* es tinico salvo isomorfismos.

Un grupo con las propiedades de G* se dice compleccion de Mal’cev o cubierta radicable del grupo
G.

Si reemplazamos en el enunciado del teorema “libre de torsién” por “7-libre de torsién”, con 7 un
conjunto cualquiera de primos, obtenemos que G puede ser incluido en un grupo nilpotente y -radicable
G;.

Ahora siguiendo la observacién que hicimos en la seccién anterior (2.1), vamos a probar el teorema
de Mal’cev cuando nuestro grupo es abeliano y finitamente generado. Si trabajamos con notacién aditiva,
hemos visto en el teorema 2.1 que G = Z" para algin r y basta poner G* = QQ". Vamos a hacer la
demostracién en detalle pero con notacién multiplicativa, ya que nos ayudard a entender el caso general.

Proposicion 2.5. Sea G un grupo abeliano, libre de torsion y finitamente generado. Entonces existe un
grupo abeliano H tal que G < H y tal que:

i) para todo n'y todo x € H, existe un tinico elemento 'y € H con y" = x (H es radicable)
ii) para todo x € H existe m > 0 con x™ € G (cada elemento de H tiene una potencia positiva en G).

Demostracion. Como G es abeliano y finitamente generado, aplicando el teorema 2.1, tenemos que es
isomorfo a Gy x --- X G,, donde r es el orden de G y G; = (q;) para todo i. Los elementos de G son de la
forma a}" ---a%, con o; € Z.

Llamamos H al conjunto de los productos formales a7 - - -aﬁ " donde f3; € Q. Definimos una operacion

interna en H:
(@ a) (@l a) =gy

Primero debemos probar que (H,-) es un grupo y que G < H.
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= La operacién es claramente asociativa, por la asociatividad de la suma en Q.
. S 0 0
= Existe un elemento identidad 1 :=a{---a%: 1 -(alf] dPry = a1+B‘ ceadPr = alfl cedP.

Br

= Para todo elemento, a;' ---a;', de H existe un inverso en H: al_ﬁ1 cea P

ar

» Seaal'---a% € G, oy € Z C Q. Es claro que a}" - --a% € H. Ademds, la operacioén de G se define
de la misma forma por ser abeliano. Luego G < H.

Ahora veremos que se cumplen las condiciones del teorema.

= H es un grupo abeliano, luego nilpotente.

B Br

= Paratodon >0y todo x = all .- -aE’ € H, el elemento y = af ---a," € H es la tnica solucién de
la ecuacién y" = x.

» Seax=aj .-aP" € H. Como Bi € Q, existen n;,m; € Z tales que f3; = ;- para cada i. Llamando

m:=my ---m,, entonces x" = (Cllf1 "'agr)m €G.

O
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Capitulo 3

Demostracion del Teorema de Mal’cev

Nos disponemos a probar el Teorema de Mal’cev para grupos nilpotentes libres de torsion y finita-
mente generados. El caso general (no necesariamente finitamente generado) queda fuera de los objetivos
de este trabajo. Seguiremos los métodos de P. Hall (1969).

Teorema (Teorema de Mal’cev). Todo grupo nilpotente G libre de torsion es isomorfo a un subgrupo
de un grupo nilpotente G* en el cual la extraccion de raices es tinica de forma que cada elemento de G*
tiene una potencia positiva en G. Ademds, el grupo G* es tinico salvo isomorfismos.

3.1. Existencia de la compleccion

Sea G un grupo nilpotente libre de torsidn y finitamente generado. Asumimos que tiene clase de
nilpotencia m.

Recordemos que todo grupo abeliano tiene max si y solo si es finitamente generado y que, si N es
normal en G, G/N y N tienen max si y solo si G tiene max (lo vimos en la seccién 1.3). Por otra parte,
por la proposicién 1.5 sabemos que %(G)/¥+1(G) es finitamente generado para todo i = 1,...n. Como
ademds los cocientes de una serie central son abelianos por definicion, los %(G)/¥:+1(G) tienen max. En
particular, para i = m, ¥ (G)/Ym+1(G) = Yu(G) tiene max. Por tanto, %,—1(G) tiene max. Y de forma
recursiva, concluimos que G tiene max. Ahora nos fijamos en la serie central ascendente. Como Z;(G) es
normal en G, para todo i =0, 1...,m, tanto los subgrupos de la serie como los cocientes Z;(G)/Z;_1(G)
tienen max. Y en consecuencia, como también son abelianos, Z;(G)/Z;—1(G) son finitamente generados.

Lema 3.1. Sea A un grupo abeliano, finitamente generado y libre de torsion. Entonces A = 7". Ademds,
existe una serie | =Tp <T) <... AT, T, =Atal que T; | T;— = 7.

Demostracion. La primera parte ya la vimos en el capitulo anterior (teorema 2.1). Como hicimos enton-
ces, suponemos A = (xi,...,x,), donde {xi,...,x,} es una base de A. Definimos T,,_; := (x1,...,X,—1),
que es un subgrupo de A y, por ser A abeliano, es normal. Por otra parte, definimos:

(P 2Tn/Tn_1 — 7
ng—l =y
donde g = x!' ...x;”_’{x;". Primero, observamos que g7,,—1 = hT,_1 si y solo si sus exponentes en X

coinciden. Por tanto, la funcién estd bien definida. A partir de ahora, nos centramos en los elementos
de la forma g = x},. Claramente, ¢ es homomorfismo de grupos, suprayectiva e inyectiva, puesto que
tomamos una base de A. Por tanto, ¢ es un isomorfismo y concluimos que 7,/7,—; = Z. Por induccién
en i se deduce el resultado. O

Ahora consideramos la serie central acendente de G:

1 =20(G)<Zi(G) =Z(G)<...<9Zy-1(G)<Z,(G) =G,

17
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cuyos cocientes son abelianos y finitamente generados, como acabamos de ver, y libres de torsion (apli-
cando la proposicion 2.2). Aplicando el lema anterior sobre Z(G) (abeliano, finitamente generado y libre
de torsién), obtenemos que existe una serie

1=1" a1V a...a1V = Z(G)

1 1 . o . .
con Tlgf / Ti( ) > 7, Hemos refinado la serie entre 1 y Z(G) afiadiendo mds subgrupos cuyos cocientes
son isomorfos a Z.

Podemos repetir este proceso en cada cociente. Seai = 1,2,...,m, existe una serie:

1=1,"/2;1(G)<T\" /Zi1(G)4...aT," /Zi1(G) = Zi(G) /Zi-1(G)

con <Tj(-?1 /Zi—l(G))/

(T_(i) 1Zi1(G)) = Z. Aplicando el Tercer Teorema de Isomorfia:
i -

W 7. (G i i
(TJ+1/Z171( ))/(Tj(l)/zl_l(G)) >~ T](Jr)l/TJ( )

Se puede ver que:
Z1(G) =1 a1 <. "<'Tk(ii) = Z(G).

Por tanto, uniendo todas estas series, se puede refinar la serie central ascendente a otra serie (que
también es central)
1=G,<G,-1<...4Gy =G,

donde cada cociente G;_1/G; = Z, es decir, es ciclico infinito, digamos con generador u;G;. Este niimero
n solo depende de G y se llama longitud de Hirsch [3].

Vamos a ver que cada elemento a de G tiene una tnica expresion a = u}" ug‘z ---ul con oy entero
para todo i.

Supongamos que a € G,—1/G, = G,—1 = (uy,), entonces es claro que a = ul, y esta expresion
es tnica. Si aG,—1 € G,—2/Gp—1 = (up—1G,—1), entonces aG,_| = u:ffll G,_1. Luego a = u,?’fl‘g, con
g € G,_1. Por tanto, a = us‘fl‘ u?" y esta expresion es tinica. Supongamos que esto se cumple hasta cierto
i. Sea ahora a € G;_, en particular, aG; € G;_/G; = (u;G;), entonces aG; = ul‘.x" G; y, en consecuencia,
a=ug con g € G;. Apicando la hip6tesis de induccién, g = u; ' - u% y, por tanto, a = uu; ' ... u%
Con esto queda demostrado lo que queriamos. Ademds también hemos probado que G; = (w41, ..., Uy),
paratodoi=1,...,ny, en consecuencia, G/G; = (u1G,...,u;G;).

Siguiendo el ejemplo 1.10 del capitulo anterior, veamos cémo son estos exponentes al hacer el pro-

ducto de dos elementos del grupo o calcular una potencia de otro.

Ejemplo 3.2. De nuevo, n = 3 y escogemos R = Z. Entonces nuestro grupo es:

b
G:{ C ’a,b,CGZ},
1

oS O =
O = Q

que ya vimos que es nilpotente. Como el elemento u3 del ejemplo 1.10 es de orden infinito, tenemos que
Z(G) = G, = (u3) es libre de torsién y, en consecuencia, G es libre de torsién aplicando la proposicion
2.2. Estamos en las condiciones del Teorema de Mal’cev.

Ahora definimos los subgrupos de G:

1 0
G ={ |b,c€Z}yG,={|0 1 |beZ}.
00

SO =
-_ o &

0
1
0

-0 &
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G, es el mismo subgrupo del ejemplo 1.10. Usando las férmulas del producto, se puede ver facilmente
que son subgrupos de G. Ademads, G| <G:

1 0 b 1 d b 1 d b+b 1 a b 1 0 b
01 ¢ 01 ]=101 c+d | =101 c+ 010
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

y G2<G1, yaque Gy = Z(G). Tenemos una serie de subgrupos normales de G: 1 = G3<1G, <G <Gy = G.
Ademas, consideramos otra vez las matrices:

1 10 1 00 1 01
up=({0 1 0, uu=10 1 1| yus={(0 1 0]},
0 0 1 0 01 0 0 1

y podemos probar que G/G| = (u1G1), G1/Gr = (u2G2) y G2/G3 = G, = (u3). Empezamos tomando
una matriz

1 a b
g=10 1 ¢
0 01

en G. Entonces:
gGl—ulGM:)ug eGiesa—m-1=0,

por tanto, gG1 = u{G1. Andlogamente, sea

81 =

S O =
O = O
—_a &

en G, entonces:
glezuZleﬁuZigfl €EGysc—m-1=0,

luego g1G2 = u5G». Y, por tltimo, sea

S = O
-_ o

1
&2=10
0
en G, entonces g, = uy < b—m-1=0, luego g» = ué’
Por tanto, la serie 1 = G3<1G,2 <G <Gy = G es central con cocientes consecutivos ciclicos infinitos,
y la longitud de Hirsch de G es 3. Observemos que este valor no coincide con la clase de nilpotencia de

G, que ya vimos en el primer capitulo que es 2.
De hecho, sea g € G como antes, podemos escribir: g = ufu$ ué’. Lo comprobamos directamente:

1 a 0\ /1 00\ /1 0b 1 a 0\ /1 0 b 1 a b
s =0 1 0){o 1 ¢|lo 1 of=[0o1 c]f0o1 0]=[01¢
00 1/\0 o0 1/\o o1 00 1/\o o1 00 1

En el ejemplo 1.10, vimos que los conmutadores de estas matrices son: [uj,up| = us, [uz,u3] =1y
[u1,u3] = 1. Por tanto, obtenemos las siguientes identidades:

Uz = Uuzu1u3 UpUz = U3U2 uuz = uzig

Tomamos ahora dos matrices g = u}' u5u3’ y h= ulf : u§2 uI333 en Gy, usando las identidades anteriores,

calculamos su producto:

o, 03 P B [33 a Bioos B B
gh=u{"us’uuy uy uy’ = i us”uy w3 uy uy
_ o B —pi o5 B ﬁ% a1 +B Otz 132 062131+063 ﬁa
=u;' uy u2 Uy Uy Uy Uy = Uy

051+I31 sz+l32 a3+B3— Olzﬁl
u Uy Uz
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En la tercera igualdad, para cada u, hacemos tantos intercambios como u/s haya, luego o, f3; intercam-
bios en total. Andlogamente obtendriamos:

1 1_ -0z -0 —0 _ —0 *0!%*061052
(i usus®) ™ = uy By Py ™ =y My g
De aqui se deduce que los exponentes del producto o la exponenciacién de elementos de G son poli-
niomios en los exponentes de esos elementos. Este resultado se va a probar de manera general en los
siguientes pdrrafos.

Pasando al caso general, por conveniencia, escribimos a = u® para referirnos a u{" u5? - --u$". Llama-
remos a los o; pardmetros candnicos de a con respecto a la base {uj,us...,u,} de G. Ahora, sea b € G,
con b = uP, el producto de a y b dari otro elemento en G, digamos ab = ¢ = u?. Aqui los pardmetros ;
son funciones de las 2n variables enteras «;, ﬁ, De forma similar, si m es un entero, ™ = u®, donde los
o; son funciones de m y las n variables enteras o;;.

Sea F un cuerpo de caracteristica 0 y sea G el conjunto de todos los productos formales u* con
exponentes o,...,0, en F. Vimos que todo elemento de G se puede ver como u® con exponentes
enteros. La idea ahora es definir una multiplicacién y una exponenciacién en G/ usando las funciones 7;
y ®; mencionadas para G, de la forma obvia, y después probar que G' es un grupo nilpotente radicable
en el cual G se incluye como un subgrupo. Primero hay que demostrar que G’ es un grupo. Para ello,
primero necesitamos el siguiente resultado:

Lema 3.3. Las funciones 7; son polinomios en las variables aj, Bj. A su vez, las funciones @; son poli-
nomios en my en las variables o;. Habitualmente, estos polinomios son conocidos como los polinomios
de Hall.

Demostracion. Es claro que los exponentes ¥; dependen de ..., Q,,B1,. .., By. Tenemos que probar
que existen polinomios f;(x,y) en los 2n argumentos xi,...,X,,y1,--.,V, tales que fi(a,B) = %. Y algo
similar se debe cumplir para @". Como un polinomio estd determinado univocamente por el valor que
toma en cada argumento, identificamos la funcién 7; con el polinomio f;.

Sabemos que G; <G, luego podemos considerar su cociente G/G; = (uy,...,u;) y observamos:

abG-:u‘f‘l ua’ufl -‘ulﬁ"G

cG; = “1 . -uly"G,-,
como abG; = ¢G;, podemos concluir que ¥; depende dnicamente de ¢, ..., 0;, B, ..., Bi. Andlogamente,
;" depende tnicamente de o, ..., 04y m.

Sea ahora n = 1, entonces G es ciclico infinito y tenemos y; (a1, B1) = a; + Bi, 0" (o) = ma;. Sea
n > 1 vamos a proceder por induccién sobre n. Llamamos I, a la hipétesis que dice que, para cualquier
grupo nilpotente finitamente generado con una serie de factores ciclicos de longitud menor o igual que n

y subconjunto generador asociado {uy,...,u,}, los exponentes 7; tales que

ui - ua"u?' . B” = ”1 el
vienen dados por polinomios en «q,..., o, B1,. .., B;. Andlogamente, consideramos la hipétesis €, que
afirma que en las condiciones anteriores los @;" son polinomiosenmy Qp,..., .

Asumimos que I'; y Q; se cumplen para i < n'y vamos a probar que I', también se cumple. Obser-
vamos primero que ¢Gy = u}"Gl =abG| = u*uP G, = un P Gy, por tanto, ¥; = o + B;. En nuestra

expresion del producto ab queremos que ul y ullg " aparezcan juntos. Para ello usamos

o Oyl o ﬁl Bl a1+l
Wpilhipy =Wy iy Uy
paracadai=1,...,n— 1y llegamos a:
c=ab=u uﬁ—l,t‘])“u?'ulﬁ1 u?lul B‘u“"u?lugz -~uf”

n 3.1
:u(lxl-i-ﬁl H( /31 Oq ﬁl) lugz---uf":u?'+ﬁl H(”lﬁ” lulf])—aiugz“'uﬁ,,’ ( )

n
=2 i=2
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donde en la tltima igualdad utilizamos que ufﬁ ;% ulf b= (uy P ! uP' )% para cada i.
Ahora, separamos los u; de la expresion u, P u; lulf " asf:
-1 P —p1, —1 —1 —1 —1 P, —1 -1
u, P u; ulf =u, p up g (g Yy (wuey ) -+ (win; ) = u, P ()P (3.2)
Una vez tenemos estos calculos hechos , vamos a considerar el grupo H; < G generado por uy, i1, ..., U,.

Este grupo tiene una serie central:
1=G;,<1Gy_1<---4Gi+1 <G < H;.

Para demostrarlo solo tenenemos que probar que el dltimo cociente es ciclico infinito. Pero esto es trivial
ya que, para todo g € H;, tenemos: gG; = u}'u;"' - u$ G; = uf' G;.

Por tanto, H; es un grupo nilpotente cuya longitud de la serie es igual an—i+ 1. Sii > 1, podemos
suponer que se cumple Q,, ;.| para H;. Como [u;,u;] € [G,Gi—1] < G; < H;, [u1,u;] = ufluflului € H;.
Pero ademads, u; € H;, luego u;lul u; € H;. En consecuencia, podemos usar Q,,_; para deducir:

ﬁl ¢1

(uflulu,-)ﬁl =y ~u?m donde ¢;.j son polinomios en f3;. (3.3)

El exponente de u; se deduce tomando médulo G;:
(ui_lulu,')ﬁlG =u; ]ulf'u,G, = ulflGi,

donde en la primera igualdad deshacemos lo que hicimos en 3.2 y para la segunda solo hay que notar
que [u] b ,u;] € Gi.
También se cumple I';,_;11 para G;_1, luego usando esta propiedad y lo que acabamos de ver en 3.2,
tenemos:
ulﬁu lulf‘—ulﬁl(u ulu)ﬁ' ﬁ' ‘?1 z+1 u¢’"’u_1

1, Vil Vin—i
=u; ul+] -up "', con ; ; polinomios en los ¢; x luego en fB;

De nuevo, el exponente de ; se deduce tomando médulo G;: u;ﬁ 'u; lulf 'Gi=u; u !, ulf 'Gi = u; ' G:.
Ahora, volvemos a aplicar Q,,_;; en el grupo G;_;:

Bi -1 B 6; 1 0in—i . .
(u P )T = u ul+1 -u, """, donde 6; ; son polinomios en B y ;.

El exponente de u; se deduce como las otras veces tomando médulo G;.
Para finalizar, volvemos a la expresion 3.1:

n n
) .6 0 n—i
c—ab— u1111+[31 [ ](ul Bi u; lu?l) (xlugz ”.u’ljn _ u<111+51 [ ](uq’u.”] oy i ’)ugz'--uﬁ"
i=2 i=2

OC1+I31 . .
u, ---ul", con 7y polinomios en @, , &, B1, B2, , Bn

En la dltima igualdad hemos usado I',—; ya que cada factor de [T/, (u/?u ?+1 9’ " i)ugz : ﬁ " estd en
G1, que es nilpotente con longitud de la serie igual a n — 1. Queda probado I'},.

Nos queda por probar ,: (u‘lx' eyl )M = u(f)Tn Uy 4 , donde los exponentes @;" son polinomios en
ay,- -+, 0, y m. Para ello, inspirdndonos en la idea del articulo [3] (p.205), demostramos el siguiente
resultado:

Lema 3.4. Sea f: Ng — Q una funcion tal que existe un polinomio g con coeficientes en F que cumple
que f(m) = f(m—1)+g(m—1) para todo m > 1. Entonces f también es un polinomio con coeficientes
enF.
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Demostracion. Los valores f(m), para m > 0, estdn totalmente determinados por f(0) y el polinomio g.
Por tanto, basta probar que existe un polinomio p tal que p(0) = f(0) y p(m) = p(m—1)+g(m—1)
para cadam > 1.

Sea g(x) = co+c1x+---+cxl € Fx]. Consideramos los mimeros de Bernoulli {By | k € Np}, una
sucesion infinita de nimeros racionales: By = 1,B; = Bz = g . Estos nimeros satisfacen:

_ " 1
Z r+1 k<t: )x’_k+],Vx,t6N (34)
=1

Para todo ¢t > 0 definimos:

I+1-1
Crik—1, (T+k
= B F
f k; t+k k< k )6

y fijamos fo = f(0). Entonces, si ponemos el polinomio p(x) = fo+ fix+...+ fi 12t € F[x], tenemos
que p(0) = fo = f(0) y ademds se puede probar que p(x) = p(x— 1)+ g(x— 1) para todo x € Ny. Para
verlo, primero, observamos que:

[+1 [+1 [+1—t¢
t+k
—fot Lhd =fot+ B Yy ekt ( )
= t+k k

N .
(]+ )xjk“,dondej:t—kk—l

J=0k=
1 ¢ T+ ik L Ax_l i .
_f0+ch< +IZBk( r )x )—fo+;)cjiziz,aqu1usamos3.4
=1 1 x-1
_fo+212c,ﬂ fo+;g(i)
i=1j i=
En consecuencia, p(x — 1) = fo+ Y -7 g(i) y entonces p(x) — p(x— 1) = g(x— 1). O

Ahora, ya podemos probar Q,, param > 0. La propiedad claramente se cumple en G/G;. Supongamos
que se cumple para G/G,_ y probémoslo para G. Teniendo en cuenta que G,—; < Z(G), es decir, que
u, es central, los @" de

71
@

ol "
1
J— ul n

Oy \m
”) ..u 1 un

[24]

(ul Uy
son los mismos que aparecen en G/G,_;, para 1 <i < n— 1. Por tanto, podemos suponer que son
polinomios en m y en los ¢, ..., 0,—1 y solo nos queda verlo para "

Por otra parte, podemos expresar la exponenciacion asi:

(u‘lxl e Ml"txn)m = (Mlal e ug’l)milu(lxl e M}(’an

! ot o o "
=u, Up" gt =y ul
donde los 7; son polinomios en las variables w}?’_l y o;. Asique @' = %.(@™ !, o), que es un polinomio
en las variables a; y a);"_l, y, por induccién en m, los a)lf”_l son polinomios enm— 1y «;.
Teniendo en cuenta de nuevo que u, es central, se deduce:

o' = (0™ o) = 0" +h(e0™ ! a)

Como %, y @™ son polinomios en los ¢; y en m, h también lo es. Si consideramos los ¢; como cons-
tantes, la expresion anterior queda asi:

" =" 4 him—1)

n n
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y, aplicando el lema que acabamos de probar, @] también es un polinomio en m. Y, volviendo a consi-
derar los ; como variables, @) es un polinomio en ¢; y m.
Por otra parte, si llamamos a; = ugz ---ul", aj estd en Gy, que es un grupo nilpotente de longitud

n—1, y podemos aplicar Q, | para obtener al_l = ué’z ---uyr, con V; polinomios en o, ..., 0. Ahora,
usando I';;:
al= aflufal = u‘f‘ ---u,‘z”, donde §; son polinomios en o, , 0.

Con esto podemos probar ,, para m < 0:

a"=(a" )" = (u‘l31 ceud) ™M =y ® ... y® donde hemos usado Q,, para —m > 0.

O]

Observemos que los coeficientes de estos polinomios deben estar en Q y, como F' tiene caracteristica
cero, Q C F, luego en particular los coeficientes estin en F. Que G sea el grupo de los productos
formales u® quiere decir que el producto y la exponenciacién se definen con los mismos polinomios que
en G.

Antes de pasar a la prueba de que G es grupo, introducimos el siguiente lema:

Lema 3.5. Sean p,q dos polinomios en k variables y coeficientes en F. Si p(u) = q(u) para todo u € 7,
entonces p 'y q son el mismo polinomio.

Demostracion. Si k = 1, esto es obvio porque estarfamos diciendo que p — ¢, un polinomio en una
variable, tiene infinitas soluciones. Ahora supongamos que es cierto para i < k. Podemos escribir los
polinomios p y g asi:

p :x,’ch,—i—xlr:lhr_l 4 4 xih + ho
q=x}gs+x g1+ +xg1 + Lo,

donde h;,g; son polinomios en las n — 1 variables xi,...,x;_1. Para cualquier combinacién de n — 1
enteros aj,...,ax_1, se cuample que p(ay,...,ar—1,x) = q(ai,...,ar—1,x) para todo x; € Z. Es decir,
fijando esas n — 1 variables tenemos p = ¢, viéndolo como dos polinomios en una sola variable. Luego
r=sy h; = g; cuando se evaluan en Z*~!. Por la hipétesis de induccién, los polinomios #; y g; son el
mismo paratodoi=0,...,rYy, por tanto, p = q. O

Con estos dos lemas podemos ver que G' es de hecho un grupo. La ley asociativa se cumple en G,
es decir, (u®uP)uf = (ab)c = a(bc) = u®(uPuf). Entonces, usando el lema 3.3, para todo i se cumple:

%(yl(alaﬁl)a"'7%(“17"'aaiaﬁla'"7ﬁi)?81""78i):%(alv"'7aiayl(ﬁlﬂgl)a"'7’)/1'(B17'"aﬁiaslv"'?gi))a

donde «;,B;,€; € Z. Estas identidades polinémicas se cumplen para todo conjunto de variables enteras,
luego se cumplen en F (lema 3.5), lo que prueba la asociatividad en G'. El elemento identidad de
G, 1 = u°, también lo es en G' aplicando un razonamiento parecido al anterior. De hecho, para todo
a=u*¢cG", meF ytodo i, se cumple:

¥(ou,...,0,0,...,0) = 5(0,....0,a4,...,0) = &, ©"(0,...,0) =0. (3.5)
Por dltimo, para todo a = u® € G', su inverso es a=! = u, % '-ufa” y claramente estd en G'. Los
exponentes satisfacen:
Yi(ou,...,04,€,...,&)=0. (3.6)
Ademads, paracadai=0,1,...,n, definimos:

GF ={u*loy=p=---=0; =0}.
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Claramente, G! es un subgrupo de G*: contiene la identidad y, si u® estd en Gf, su inverso =% también
(usando la expresion 3.5 y 3.6, obtenemos €; = 0 para todo j < i). Obtenemos una serie de G-

G'=Gi>G{ > >G =1
F
i+1°
[u®,uP] € G, para todo u® € GI' y todo uP € GF. Tenemos que probar que u~*u=Pu®uP € G . Para
exponentes enteros, esto se cumple porque G; /G estd en el centro de G/Gj . Asi que podemos aplicar
de nuevo el lema 3.5 y concluir que esto se cumple también en G Esto implica que G <G”". Por tanto,
el grupo G es nilpotente.

Ahora, paracadai=1,...,n, vamos a definir una funcién entre el cociente G;_; /G, y el grupo aditivo
de F:

Probemos que esta serie es central. Veamos que G!'/ Gﬂl estd en el centro de GF /G|, es decir, que

i : Gil/Gf —F

u*GH — o,

donde u% = u‘f‘l ceuln € Gf_ |» por tanto, a; = 0 = --- = o1 = 0. Como hemos tomado representantes
en Gfi W/ G, tenemos que ver que la funcién esté bien definida:

u®GF =u*GF =uP Gt = u?’Gf & ui_ﬁ"ul‘.x" €Gl o= B
Y es obvio que ¢; es un isomorfismo, luego Gf_l /GF = F, paracadai=1,...,n.

Veamos que, ademds, G’ tiene la misma clase de nilpotencia, m, que G. Llamemos m’ a la clase de
nilpotencia de G*'. Tenemos que G < G' y entonces m < m’. Para probar la otra desigualdad, vamos a
ver que si consideramos la compleccion de Mal’cev de la serie central ascendente de G, obtenemos una
serie central de G''. Tenemos 1 = Zy(G)<Z,(G) = Z(G)<---<Z,(G) = G y sabemos que son finitamente
generados porque G lo es. En particular, teniendo en cuenta cémo refinamos esta serie para obtener la
serie central con cocientes ciclicos 1 = G, <G,—1<+--<1Gy = G, cada Z;(G) es finitamente generado
por un subconjunto de {uy,...,u,}. Para no complicar la notacién, decimos que Z;(G) es finitamente
generado por {a; 1,...,a;,} y definimos

Z(G) == {a¥ = ai -"ag,';;" |o; € F}.
Claramente, Z,(G) = GF. Queremos ver que Z;(G)" /Z;_1(G)F es central en G /Z; {(G)F, es decir,
que

[a%,uP] € Z; 1 (G)F para todo a* € Z;(G)F y todo uP € GF.

Pero esta relacién se cumple para exponentes enteros y, como cada a; ; denota uno de los generadores
u de G, esto implica que los polinomios de Hall satisfacen ciertas identidades cuando se evalian en
variables enteras. Por tanto, siempre satisfacen esas identidades y se cumple lo que queremos. La serie
1 =270(G)F <«Z1(G)F «...<Z,(G)F = G* es central y, en consecuencia, la clase de nilpotencia de G*
debe ser menor o igual que m.

Por dltimo, vamos a considerar el caso en el que F = Q y vamos a probar que G cumple las
condiciones del Teorema de Mal’cev.

Empezamos probando que todo elemento a € G tiene una potencia entera positivaen G. Sia € G%p
existe o, € Q tal que a = u%, luego existe un entero k > 0 tal que ko, € Z. Por tanto, a* = uf% estd en
G,—_1, luego en G. Suponemos ahora que esto es cierto para i < n'y sea a € G2, entonces aG,” | estien

GQ/ G?,l, que es nilpotente (proposicion 1.7) y de longitud menor que n. Por induccidn, existe k; € Z~¢
tal que ak G?_] €G/ G?_l. Por tanto, a* = bu? para cierto o € Q y b € G. Ademds, existe k» > 0 entero
tal que atky € Z. Por tanto:

ak — (bu,‘i‘)k2 = bkzuf,‘kz,

donde en la dltima igualdad aplicamos que G;Qfl es central en GY. Por tanto, para k = kik, > 0 tenemos
k
que a* € G.
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Veamos ahora que GY es radicable, es decir, para todo b € G2 y todo , existe a € G tal que a* = b.
Sibe G%l, entonces b = ug . Si tomamos a = u,% , tenemos que af = b. Ahora, suponemos que esto se
cumple para todo i < n. Sea b € G¥. Como hicimos antes, bGilQ_] estd en G / G?_l y podemos aplicar la
hipétesis de induccién: existe cG2_ | € G2/G2 | tal que bGL | = (cG2 )k = *G2 . Por tanto, b = ckuf

para cierto 8 € Q. Si tomamos a = cuY con o = % podemos ver que:
d" = (cu®* = Fu®* = FuP = b,

donde de nuevo usamos que Gj%l es central en G2,
Veamos que, ademds, la extraccién de raices en G es dnica, equivalentemente, G es libre de tor-
[a¥)

si6on. Como vimos antes G;%l >~ Q, luego es libre de torsién. De igual forma lo es ng / GS{I. Por

induccién, suponemos entonces que G2/ G%I es libre de torsién. Luego, si (u® )k = 1 para u® € Gy kno
nulo, tenemos que (u“Gn_l)" =1y, por la hipétesis, u*G,_; = 1. Es decir, u* € G,_; y, en consecuencia,
u®=1.

Queda demostrado que G es una compleccién de Mal’cev del grupo G vy, en consecuencia, la exis-
tencia de tal grupo.

3.2. Unicidad de la compleccion

En esta seccion probaremos que esta compleccion es tnica salvo isomorfismo.
Sea 0 : G — H otra inclusién de G en un grupo H que es nilpotente, libre de torsién y radicable.
Definimos la funcién 6* : GY — H tal que, si u* = u‘f“ —uln, a; € Q, entonces:

(MOC)G — (M(-))Oc _ (u?)oq .”(ug)an.

Como H es radicable y libre de torsién, si tenemos un elemento 2 € H y % € Q, existe un unico g € H

con g? = h. Por tanto, tiene sentido poner 2¢ = gP. Esto implica que 6™ esta bien definida.
Para probar que 8* es homomorfismo, necesitamos el siguiente resultado.

Lema 3.6. Sea H un grupo radicable, nilpotente y libre de torsion. Sean a,b € H con [a,b] = 1. Entonces
para todo o, B € Q se tiene [a®,bP] = 1.

1 . L.
Demostracion. Sea o0 = g (p,q € Z) y ay = a1, es decir, a; es el tnico elemento de H tal que a’f =a.

Que [a,b] = 1 equivale a que a” = a. Entonces:
(@) = @) =" =a

y, por unicidad, aﬁ’ = a,. Si elevamos a p, tenemos:

Luego, [a%,b] = 1.
El mismo razonamiento aplicado a b, 8 implica que [aa,bﬁ |=1. O

Ahora sea L el subgrupo de H generado por
{(u?)af loj € Q,conl<j<n}
y ponemos también L; para el subgrupo generado por
{(u?)“f | oj € Q, coni < j<n}.

Como u, es central en G y 6 es homorfismo, [u?, uf] =1 para todo 1 < j < n. Esto junto con el lema

3.6 implica que L,,_; es central en L, en particular, es normal. Razonando por induccién, suponemos que
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L;+1 < L. Entonces como G;/Gi es central en G/Gjy1, el lema 3.6 implica que L;/L;;; es central en
L/L;y 'y, en particular, L; < L.
Tenemos entonces una serie central

1=L,<aL,_1<---<ALjy1<L;j<---Lg=L

conL;_ /L ={u¥L; | a € Q} y en estas condiciones se puede repetir la demostracién del lema 3.3. Esto
no se podia asegurar para H, pero solo nos interesan los elementos de L.

Por tanto, en el subgrupo L también hay unos polinomios, llamémosles 6;, que determinan cémo es
el producto en términos de los u?. Como 6 es un homomorfismo de grupos, estos polinomios coinciden
con los correspondientes polinomios de G cuando las entradas son enteros:

(u)? = (®)*(@®)P = (u*)°(WP)® = (u*uP)® = (u")?,

es decir, &(ou,...,a;,B1,...,Bi) = vi(a,...,04,PB1,...,Bi) paratodo aj, B; € Z.
Ahora, para probar que 8* es homomorfismo, queremos ver que:

*

W) (P)? = (P = (u")?", es decir,

()% Ca ) (e )P )P = () ()
donde todos los exponentes son racionales y los polinomios % son los mismos que los que definen el pro-
ducto en G. Hemos visto que estos polinomios satisfacen esta identidad para exponentes enteros, luego,
aplicando el lema 3.5, la satisfacen también para exponentes racionales. Por tanto, 8* es homomorfismo
de grupos.

Notemos que 6 y 6* coinciden en G. Como 6 es una inclusion, ker(6*) NG = 1. Ahora, tomamos
x € ker(0*) < G, existe k € Z tal que x** € G. Entonces x* € ker(6*) por ser * un homomorfismo.
Pero entonces x* = 1 y, como G es libre de torsién, x = 1. Por tanto, 60* es inyectivo.

Para terminar, vamos a probar que, si H tiene la propiedad de que todo elemento tiene una potencia
entera positiva en G?, entonces 6 es suprayectivo. Ahora sea h € H, entonces ¥ € G® para algtin k > 0.
Por tanto, #* € (G?)9" y existe g’ € G tal que i* = ¢’%". Como GY es radicable, existe g € G tal que
g =gy, en consecuencia:

hk — gl@* — (gk)G* — (ge*)k
ya que 6* es homomorfismo. Por lo tanto, la unicidad de la extraccién de raices implica 2 = g®" . Entonces
h e (G®)% y concluimos que H = (G?)?".

Hemos probado que 6* es un isomorfismo entre H y G2. Con esto queda probada la unicidad de la

compleccién de Mal’cev y en consecuencia el teorema.

3.3. Comentarios finales

Vamos a ver como el Teorema de Mal’cev se aplica en nuestro ejemplo de las matrices unitriangulares
superiores.

Ejemplo 3.7. Si tenemos una matriz en el grupo G de Heisenberg:

/ b/

/ /]
c|,cond b ez,
1

Q

B—=

S O =
O =

las férmulas del ejemplo 1.10 implican que su potencia m-ésima (m € Z) es:

1 md mb +mdc
B"=10 1 mc’
0 0 1
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Por tanto, si tenemos A € G una matriz de la forma

A=

SO =
S = Q

b
c
1

y m entero, la ecuacién A = B™ no tendrd una solucién B € G si m no divide a a. Por tanto, G no es
radicable.

Sin embargo, G cumple las condiciones del Teorema de Mal’cev (3), es un grupo nilpotente y libre
de torsidn, luego tiene una cubierta radicable o compleccién. Definimos:

b
H=/{ c| la,b,ceQ}.
1

o O =
O = Q

Como vimos en (1.10), H es nilpotente de clase 2 y contiene a G. Si consideramos las matrices u, uy, u3
definidas en (1.10), vemos que para todo a,b,c € Q:

b

1
0 = ufusu;
0

S = Q
_o o

De aqui, se deduce que H es la complecciéon de Mal’cev de G.

Para concluir este trabajo hacemos un pequeflo comentario sobre cdmo este ejemplo puede ser gen-
ralizado.

Ejemplo 3.8. Vimos en el primer capitulo (1.10) que el grupo de Heisenberg estaba generado por tres ma-
trices uy, uy, u3 tales que los conmutadores entre ellas satisfacian: [uy,us] = u3, [up,usz] =1y [uy,u3] = 1.
Sea t entero, podemos ahora considerar otro grupo G(¢) generado también por tres elementos {u,uz,u3}
de orden infinito, que satisfacen: [uy,us| = u5, [us,u3] = 1y [ur,u3] = 1. Como hicimos para G, podemos
encontrar una serie central de G(¢):

1<1<u3><1<u3,u2><1G(t),

donde los cocientes son ciclicos infinitos.
(Coémo seran los polinomios de Hall en este grupo? Podemos calcularlos, como hicimos en G, usando
las relaciones

ujuy = uzulug urusz = UzUy ujus = uszug.

Entonces:

)

o, 03 BB B3 oo BioBroas By outPi oo+Pr oz+Bi—tonp
Up Uy Uz Uy Uy Uz = Uy Uy Uy Uy Uz U™ = Uy u, Uy

con o, Bj € Z 'y donde en la tltima igualdad estamos aplicando:

ug‘zullgl:u2...u2u1...ul:uz...uzuluzu;tul...ul:uz...uzuluzul...ulu;t
S—_——— = TN~ = S——

o B -1 Bi—1 =1 Bi—1
y esto se repite B; veces con cada uy, es decir, un total de o, 31 veces.

Y, andlogamente, obtenemos:

o, 0 03\—1 _ —op —0p —03—100p
(uy uy?uz) ™ =y "y Cug :

Usando estos polinomios, como hicimos en la prueba del Teorema de Mal’cev (3.3), definiriamos la
compleccién de Mal’cev de G(t), G(t)<.
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Esto se puede generalizar aun més. Sean >0enteroyt = (f; jx | 1 <i<j<k<n) e 2(3). Usando
este valor podemos definir un grupo, al que llamamos G(t), con n generadores, uj, ..., u,, que satisfacen:

tijj+1 tijn

(i, uj] = iy

Este grupo serd nilpotente con una serie central de longitud n:
G(I) =G| I>G2D---I>Gn+1 =1

con cocientes consecutivos ciclicos infinitos. De hecho, la longitud de esta serie es exactamente la longi-
tud de Hirsch de G(¢).

Se puede encontrar mds informacién sobre estos grupos en el articulo citado en la bibliografia [3],
donde ademds construyen un algoritmo para calcular los polinomios de Hall en funcién de los #'s ante-
riores y este ha sido implementado en GAP (sistema de célculo simbdlico en grupos).

El interés de los polinomios de Hall es que proporcionan un algoritmo eficiente para multiplicar en
grupos nilpotentes libres de torsién. Saber cdmo se comporta la multiplicacién en un grupo nilpotente
tiene una gran utilidad en criptografia, ya que estos grupos se han propuesto como plataforma de diversos
protocolos criptograficos (como se ve en el articulo [5]) y para implementarlos es ttil tener un algoritmo
eficiente para multiplicar.
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