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Preface

This work covers the various laws of quadratic reciprocity without delving into results that
involve class field theory.
Law of quadratic reciprocity answers whether, given a polynomial f with coefficients in Z, and
a prime p, whether f modulo p is a product of distinct linear factors. We will focus on the
classical laws of reciprocity, i.e. on monic polynomials of degree 2. That’s why, among all the
results that provide a solution to this problem, we will examine the quadratic reciprocity law of
Gauss and Legendre. Additionally, we will also explore Hilbert’s quadratic reciprocity law.
Before discussing the analysis and proofs of these results, we introduce a series of concepts
about fields, rings, abelian groups, congruences, and isomorphism theorems upon which the
results in the subsequent chapters are based.

The first part, covered in Chapter 2, discusses the laws of quadratic reciprocity. The Le-
gendre symbol is introduced, which encodes the information of an interger being a qua-
dratic number residue modulo a natural number, and two of its properties are presented:
Euler’s criterion, which relates the Legendre symbol to the multiplicative structure of the
set residues modulo the number on which the question of being a quadratic residue is po-
sed, and secondly, Gauss’s criterion, which provides a combinatorial interpretation, which
will derive in a procedure of computation of the Legendre symbol. Finally, the Legendre
and Gauss reciprocity laws are stated and proved, shedding light on the origin of the term
reciprocity.

In Chapter 3 we construct the field Qp of p-adic numbers. We begin with the ring of
quotients An = Z/pnZ and by taking its projective limit, we obtain the ring of p-adic
intergers Zp. Then, for x ∈ Zp, we examine how the mapping x → px behaves. The next
step is to construct a field from Zp, so we need to find the invertible elements of Zp, which
turn out to be the elements that are not multiples of p. We also prove that Z ⊆ Zp, is an
integral domain of zero characteristic, hence Z can be identified to the subring consisting
of the interger multiples of the unit element of Zp. Moreover, we explore properties of the
units, will help us establish that Zp is a local ring and a principal ideal domain. Finally,
we take the field of fractions of Zp to obtain Qp.

In Chapter 4 , the goal is twofold. Firstly, we aim to characterize the squares in Qp. To
do this, we discuss the units of Zp once again, and express U = U(Zp) = U1 ×{x ∈ U |
xp−1 = 1}, where U1 = 1+ pZp. if p= 2 then U1 =±1×U2 and U2 is isomorphic to Z2. If
p ̸= 2 then U1 is isomorphic to Zp. This allows us to describe Qp ≃ Z×Zp×Z/(p−1)Z
for p ̸= 2 and Q2 ≃ Z×Z2 ×Z/2Z for p = 2. With this, we can characterize the squares
in Q∗

p and Q∗
2. This characterization of squares reveals that Q∗

p forms a group of type
(2,2), while the squares in Q∗

p constitute a group of type (2,2,2).
Additionally, in this section, we discuss p-adic equations. We explore how to relate poly-
nomials with m variables in An, Zp and Qp and their roots in An, Zp and Qp. We also
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state and prove the Chevalley-Warning theorem and its corollary, which tell us that if f is
a polynomial with m variables in Fp, Zp or Qp, if gr( f )< m and f has no constant term,
then, f (x1, . . . ,xm) = 0 has at least one non-trivial solution.

In Chapter 5 we define the Hilbert symbol, a number whose value is 1 if the quadratic
form z2 −ax2 −by2 = 0 where a,b ∈Qp o R has no trivial zeros. To prove these results,
we need the previous chapter. We also examine several properties, among which the most
crucial are its bilinearity and non-degeneracy. Theorem 5.1 relates the Legendre and Hil-

bert symbols in the following way

{
a = pαu
b = pβ v

where u,v ∈U . we have that

(a,b) = (−1)αβε(p)
(

u
p

)β ( v
p

)α

if p ̸= 2

(a,b) = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2

This result will help us prove Hilbert’s reciprocity law whic is stated at the end of this
section.



Resumen

Este trabajo recorre distintas leyes de reciprocidad cuadrática sin entrar en aquellos resulta-
dos que entren en teoría de cuerpos de clases.
Una ley de reciprocidad cuadrática da respuesta a si dado un polinomio f con coeficientes en Z
y un un primo p si f módulo p es producto de distintos factores lineales. Nos centraremos en
las leyes clásicas de reciprocidad, es decir, en polinomios mónicos de grado 2 y por eso entre
todos los resultados que dan solución a este problema veremos la ley de reciprocidad cuadrática
de Gauss y Legendre. Además, también veremos la ley de reciprocidad cuadrática de Hilbert.
Antes de entrar a discutir el análisis y las demostraciones de estos resultados introducimos una
serie de conceptos sobre cuerpos, anillos, grupos abelianos, congruencias y teoremas de iso-
morfía sobre los cuales se basan los resultados de los capítulos siguientes.

La primera parte que abarca el capítulo 2 habla sobre las leyes de reciprocidad cuadrática,
se introduce el símbolo de legendre que codifica la información de un entero que es resi-
duo cuadrático módulo un número natural y se presentan dos de sus propiedades. Por un
lado el criterio de Euler que relaciona el símbolo de Legendre con congruencias. Por otro
lado, el criterio de Gauss proporciona una interpretación combinatoria que nos llevará a
un proceso de computación del símbolo de Legendre. Por último se enuncia y demuestra
la ley de reciprocidad de Legendre y Gauss donde se observa de donde viene el nombre
de reciprocidad.

El capítulo 3 vamos construyendo el cuerpo Qp de números p-ádicos, empezamos por el
anillo de cocientes An = Z/pnZ que tomando su límite proyectivo conseguimos el anillo
de enteros p-ádicos Zp. Luego, si x ∈Zp vemos como se comporta la aplicación que lleva
x → px. Lo siguiente es construir un cuerpo a partir de Zp así que tenemos que encontrar
los elementos invertibles de Zp, que resultan ser los elementos que no son múltiplos de p.
Además, vemos propiedades de las unidades ya que nos ayudarán a ver que es dominio de
integridad. Una vez, probado todo esto vemos que Z ⊆ Zp es un dominio de integración
de característica cero, por lo tanto, Z puede identificarse con un subanillo que consiste
en los múltiplos enteros del elemento unidad de Zp, que es un anillo local y dominio de
ideales principales: Por último, tomamos el cuerpo de fracciones de Zp y obtenemos Qp.

El objetivo del capítulo 4 es doble primero queremos caracterizar los cuadrados en Qp pa-
ra ello volvemos a hablar sobre las unidades de Zp y como podemos poner U =U(Zp) =
U1 ×{x ∈U | xp−1 = 1}, donde U1 = 1+ pZp. Si p es 2 U1 = ±1×U2 y U2 isomorfo a
Z2. Si p no es 2 U1 es isomorfo a Zp. Con esto Qp ≃ Z×Zp ×Z/(p− 1)Z si p ̸= 2 y
Q2 ≃ Z×Z2 ×Z/2Z. Con esto podremos caracterizar los cuadrados en Q∗

p y los cuadra-
dos en Q∗

2. Esta caracterización de los cuadrados nos dirá que Q∗
p serán un grupo de tipo

(2,2) si p ̸= 2 y los cuadrados en Q∗
2 es un grupo de tipo (2,2,2).

Además, en esta sección se habla sobre ecuaciones p-ádicas. Como podemos relacionar
polinomios de m variables en An, Zp y Qp y sus raices en An, Zp y Qp. También, veremos
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y probaremos el teorema de Chevalley-Warning y su corolario que nos dice que sea f un
polinomio con m variables en Fp, Zp o Qp si gr( f ) < m y f no tiene término constante,
entonces, f (x1, . . . ,xm) = 0 tiene al menos una solución no trivial.

En el capítulo 5 se define el símbolo de Hilbert, un número cuyo valor es 1 si la forma cua-
drática z2 −ax2 −by2 = 0 donde a,b ∈Qp o R para probar estos resultados necesitamos
el capítulo anterior. Además, se ven varias propiedades entre ellas las más importantes
son su bilinealidad y que no es degenerado.
El teorema 5.1 nos relaciona el símbolo de Legendre y el de Hilbert de la siguiente manera{

a = pαu
b = pβ v

donde u,v ∈U . Tenemos que:

(a,b) = (−1)αβε(p)
(

u
p

)β ( v
p

)α

si p ̸= 2

(a,b) = (−1)ε(u)ε(v)+αω(v)+βω(u) si p = 2

Este resultado nos ayudará a probar la ley de reciprocidad de Hilbert que se presenta al
final de esta sección.
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Capítulo 1

Resultados Previos

El contenido de este capitulo se puede ver en [4].
Sea K un cuerpo. La imagen de Z en K es un dominio de integridad, por lo tanto es isomorfo

a Z o a Z/pZ donde p es primo; su cuerpo de fracciones es isomorfo a Q o a Z/pZ = Fp . En
el primer caso, se dice que K tiene característica 0; en el segundo caso que tiene característica
p.
La característica de K se denota como char(K). Si char(K) = p ̸= 0, entonces, p es el entero
más pequeño tal que p ·1 = 0.

Notación. Z/pZ= Fp y no como Z/pZ= Zp porque más adelante usaré Zp para referirnos al
anillo de enteros p-ádicos.

Si K es finito la característica es distinta de 0.

Definición. Un cuerpo L es una extensión de K si K es subcuerpo de L. En este caso, L es
espacio vectorial sobre K y se denota como E/K.

Definición.

Sea f ∈ K[x] y E/K una extensión decimos que f se escinde en E si existen a,a1, . . . ,an ∈ E
tales que f = a(x− a1) · · · (x− an). Además, si todos los ai son distintos entonces decimos
también que f es separable.

Teorema 1.1.

(a) Si K es finito tiene un subcuerpo que podemos identificar como Fp y si dimensión de K
como Fp espacio vectorial es f , el número de elementos de K es q = p f . Luego K es una
extensión de Fp.

(b) Si f ∈ K[x] entonces existe un cuerpo en el que se escinde f .

(c) Sea p un numero primo y q = p f ( f ≥ 1) una potencia de p. Existe un cuerpo Ω en el que
se escinde Xq −X, que tiene q elementos, tiene característica p y que denotaremos por
Fq.

Teorema 1.2. El grupo multiplicativo F∗
q de un cuerpo finito Fq es cíclico de orden q−1.

Proposición 1.2.1. Si A es un grupo abeliano (un anillo) e I es un subgrupo (un ideal) la pro-
yección canónica es el homomorfismo de grupos (de anillos) ϕ : A → A/I tal que ϕ(a) = a+ I.
Es suprayectiva y su núcleo es I.

1



2 Capítulo 1. Resultados Previos

En lo que sigue denotaremos a los elementos de Fp como cualquiera de sus representantes
en Z.

Teorema 1.3. Sea f : G → H un homomorfismo de grupos abelianos entonces f̄ : G/Ker f →
Im f tal que f̄ (a+Ker f ) = f (a) con a ∈ G es un isomorfismo.
Sea I ≤ Ker f , entonces, existe f ∗ : G/I → H homomorfismo tal que f ∗(a+ I) = f (a) con a ∈ G.

Teorema 1.4. Sea G un grupo abeliano y N y H subgrupos de G entonces HN/N es isomorfo
a H/(H ∩N).

Teorema 1.5. Sea G un grupo abeliano y N y H subgrupos de G tal que N ⊆ H entonces G/H
es isomorfo a (G/N)/(H/N).

Definición. q ∈ Z es un residuo cuadrático de un número primo p si existe x ∈ Z tal que x2 ≡ q
(mód p), es decir, x2 = q en Fp.

Definición. Una extensión K de un cuerpo F que tiene dimensión finita como F espacio vecto-
rial esta formada por números algebraicos, esto quiere decir que para todo a ∈ K existe p ∈ F [x]
tal que p(a) = 0. Si (p) es el núcleo del homomorfismo evaluación F [x]→K dada por f → f (a)
a p se le llama polinomio mínimo de a sobre F .

Teorema 1.6. Sea F = K(θ) el menor cuerpo que contiene a K y a θ , siendo θ un elemento
algebraico sobre K. Además, sea L un cuerpo donde se escinde p, el polinomio mínimo de θ so-
bre K. Si p tiene grado n y es separable, entonces, hay exactamente n distintos homomorfismos
σi : F 7−→ L y los elementos σi(θ) = θi son los distintos ceros de p.

Definición. Dada una K-base de F = K(θ), {α1, ...,αn}. Se define el discriminante de la base
como:

∆[α1, ...,αn] = (det(σi(α j)))
2

Además, se define la norma de α ∈ F como:

NK(α) =
n

∏
i=1

σi(α)

El conjunto de normas forman un grupo multiplicativo.

Teorema 1.7 (Teorema chino de los restos). Supongamos que n1,n2, . . . ,nk son enteros posi-
tivos coprimos dos a dos y N = n1...nk. Entonces, se tiene un isomorfismo entre un anillo y la
suma directa de sus factores.

Z/NZ∼= Z/n1Z⊕ ...⊕Z/nkZ

Una formulación más clásica, manteniendo las hipótesis ya planteadas.
Entonces para enteros dados a1,a1, ...,ak existe un entero x que resuelve el sistema de con-
gruencias simultáneas. 

x ≡ a1 (mód n1)
...
x ≡ ak (mód nk)

Más aún, todas las soluciones x de este sistema son congruentes módulo el producto N.
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Lema 1.1. Sea p la característica de un cuerpo, si x e y son elementos de ese cuerpo, entonces
(x+ y)p = xp + yp.

Definición. Si H es un subgrupo finito de G y x ∈ G se llama coclase a izquierda a xH =
{xh|h ∈ H}. Si k es el numero de coclases a izquierda de G módulo un subgrupo H entonces
a k se le llama índice de H en G, se escribe |G : H| y por el teorema de lagrange tenemos que
|G : H|= |G|

|H| .

Proposición 1.7.1. ∀n ≥ 1 y p primo pnZ es un ideal de Z, denotaremos estos ideales (pn),
los múltiplos de pn. El anillo cociente Z/(pn) tiene x+(pn) como unidad si p no divide a x.
Denotamos como U(Z/(pn)) al grupo multiplicativo de las unidades de Z/(pn) y se tiene que
|U(Z/(pn))|= pn−1(p−1).

Proposición 1.7.2. Sea G un grupo abeliano donde |G| = mn y m y n son coprimos, entonces
existen únicos subgrupos A,B de G tal que G = AB con A∩B = 1, |A|= m y |B|= n.

Proposición 1.7.3. El polinomio xn − 1 ∈ Fp[x] tiene n raices distintas en un cuerpo en el que
se escinda si y solo si p no divide a n. Esas raíces forman un grupo cíclico llamado raíces de la
unidad y a los generadores se les llama raíces primitivas.

Teorema 1.8 (pequeño teorema de Fermat). Si p es un número primo, entonces, para cada
número natural a, con a > 0 , coprimo con p , ap−1 ≡ 1 (mód p).

Definición. Sea una sucesión de conjuntos (Ai) y una sucesión de aplicaciones suprayectivas
φn : An → An−1

· · · · · ·An → An−1 → ·· · → A2 → A1

Se llama límite proyectivo al subconjunto de ∏n An formado por las sucesiones

x = (· · · · · · ,xn,xn−1, · · · · · · ,x2,x1)

tales que xn ∈ An y φn(xn) = xn−1.
Este límite verifica que la proyección en cada componente es una aplicación suprayectiva.

Proposición 1.8.1. Sea una sucesión de conjuntos (Ai) que son grupos (o anillos) y una sucesión
de aplicaciones suprayectivas φn : An → An−1 que son homomorfismos de grupos (o de anillos).
Entonces el límite proyectivo es un subgrupo (o subanillo) de ∏n An Además, en este caso, un
elemento del límite proyectivo tiene inverso en el límite proyectivo sí y solo si lo tiene en ∏n An

Demostración. Sean
x = (· · · ,xn,xn−1, · · · ,x2,x1)

y = (· · · ,yn,yn−1, · · · ,y2,y1)

Veamos que si x,y están en el límite proyectivo, xy también lo está.
φn(xnyn) = φn(xn)φn(yn) = xn−1yn−1 luego el producto está en el límite. Análogamente para +.
Sea ahora x en el límite proyectivo y tal que existe y ∈ ∏n An tal que xy = 1. Se tiene que
xnyn = 1 y xn−1yn−1 = 1. De la primera igualdad obtenemos φ(xn)φ(yn) = 1 y xn−1φ(yn) = 1
luego el inverso de xn−1 es exactamente yn−1 = φ(yn) y esto prueba que y está en el límite
proyectivo.





Capítulo 2

Leyes de reciprocidad cuadrática

Dado un polinomio f (x) con coeficientes en Z, una ley de reciprocidad determina, para un
primo p si f (x) módulo p es producto de distintos factores lineales, en ese caso decimos que se
separa.

2.1. Cuadrados en Fq

En este capítulo q es un potencia de un primo p.

Teorema 2.1.

(a) Si p = 2, entonces todos los elementos de Fq son cuadrados.

(b) Si p ̸= 2, entonces los cuadrados de F∗
q forman un subgrupo de índice 2 en F∗

q ; este
subgrupo es el kernel del homomorfismo x 7−→ x(q−1)/2 con valores en ±1.

Demostración. El caso (a) se sigue del hecho x 7−→ x2 es un automorfismo en Fq porque la ca-
racterística del grupo es 2 y por lo tanto (x+y)2 = x2+y2 por el lema 1.1, con la multiplicación
no hay problemas. Es inyectiva porque si x2 = 0 entonces x = 0 y es obvio que es suprayectiva.
Luego es un automorfiso.
El caso (b), sea Ω un cuerpo de escisión del polinomio y2 = x en Fq. Sea y ∈ Ω y x ∈ F∗

q tal
que y2 = x. Entonces como el homomorfismo x → x2 tiene núcleo {±1}y su imagen son los
cuadrados, los denotaremos (F∗

q )
2, entonces |F∗

q |/2 = |(F∗
q )

2| como (F∗
q )

2 es subgrupo de F∗
q

entonces |F∗
q |||(F∗

q )
2|, luego los cuadrados tienen índice 2. Como F∗

q e un grupo cíclico de or-
den q− 1, entonces xq−1 = 1, luego x(q−1)/2 = ±1. Luego (F∗

q )2 es el kernel de la aplicación
x 7−→ x(q−1)/2.

Euler, interesado por el trabajo de Fermat, empezó una correspondecia con Goldbach donde
intercambiaron ideas, entre otras cosas, sobre los divisores de los númeos de Fermat (22n

+1) y
los números de Mersenne (2q −1) lo que llevo a Euler a una ley de reciprocidad cuadrática. El
teorema anterior nos permite justificar el siguiente enunciado.

Proposición 2.1.1 (Criterio de Euler). Para enteros a y primos impares p tal que p ∤ a tenemos
que

a
p−1

2 =

{
+1 en Fp, si a es un residuo cuadrático módulo p
−1 en Fp, si a no es un residuo cuadrático módulo p

5



6 Capítulo 2. Leyes de reciprocidad cuadrática

Definición. Sea p ̸= 2 primo y sea x ∈ F∗
p . El símbolo de Legendre de x se denota como

(
x
p

)
y

es ±1 según si x(p−1)/2 =±1 en Fp.

Conviene extender
(

x
p

)
a todo Fp definiendo

(
0
p

)
= 0.

Observación.

(a) Si x = x′ en Fp, uno escribe
(

x
p

)
=
(

x′
p

)
.

(b) ∀x,y ∈ Z,
(

x
p

)(
y
p

)
=
(

xy
p

)
.

2.1.1. Fórmulas complementarias

Para calcular
(

x
p

)
para x = 1,−1,2, vamos a introducir las siguientes funciones.

Si n es un entero impar, sea ε(n) y ω(n) los elementos de Z/2Z definidos de la siguiente manera

ε(n)≡ n−1
2

(mód 2) =

{
0 si n ≡ 1 (mód 4)
1 si n ≡−1 (mód 4)

ω(n)≡ n2 −1
8

(mód 2) =

{
0 si n ≡±1 (mód 8)
1 si n ≡±5 (mód 8)

Notar que la funcion ε es un homomorfismo de (Z/4Z)∗ en Z/2Z. De la misma manera ω

es un homomorfismo de (Z/8Z)∗ en Z/2Z.

Teorema 2.2.

(a)
(

1
p

)
= 1

(b)
(
−1
p

)
= (−1)ε(p)

(c)
(

2
p

)
= (−1)ω(p)

Demostración. Demostremos (c) ya que (a) y (b) son inmediatos. Si α denota una raíz primi-
tiva 8-ésima de la unidad en un cuerpo Ω donde estén todas las raíces 8-ésimas de la unidad, el
elemento y = α +α−1 verifica que y2 = 2 ya que y2 = (α2+1

α
)2 = α4+2α2+1

α2 = −1+1+2α2

α2 , esto
se debe a que α4 = −1. Como estamos en un cuerpo de característica p por 1.1 tenemos que
yp = α p+α−p. Notar que si p = a+ 8̄ donde 8̄ son múltiplos de 8 tenemos que yp = αa+α−a,
en nuestro caso nos interesa a = 1 y a = 5 porque si a = 1 entonces yp = α +α−1 = y y de este
modo

(
2
p

)
= yp−1 = 1.

Si a = 5 tenemos que yp = α5 +α−5 = −(α +α−1) = −y y de esta manera
(

2
p

)
= yp−1 =

−1.
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2.1.2. Ley de reciprocidad cuadrática de Legendre y Gauss
Usando el criterio de Euler podemos conseguir otros criterios para el símbolo de Legendre.

Vamos a escribir las unidades de Fp de la siguiente manera U(Fp)= {−(p−1)/2, . . . ,−2,−1,1,2, . . . ,(p−
1)/2}= N ∪P donde P = {1,2, . . . ,(p−1)/2} y podemos escribir N =−1P.

Proposición 2.2.1 (Criterio de Gauss). Con la notación usada anteriormente, si kP∩N tiene v
elementos entonces

(
k
p

)
= (−1)v.

Demostración. Si k es una unidad, los elementos kP son distintos por lo tanto |kP| = |P|, es
mas, si a,b son elementos distintos de P, podemos tomar 0 < a < b < (p− 1)/2 y no puede
ocurrir que ka = r y kb = −r ya que esto implicaria que k(a+ b) = 0 y como k es unidad
entonces implicaría que (a+b) es divisible por p, contradiciendo que a,b < (p−1)/2. Además
los elementos de kP = {±1, . . . ,±(p− 1)/2}, luego el número de elementos negativos es el
número de elementos de kP en N por lo tanto k ·k2 · · ·k(p−1)/2 = (±1) · · ·(±(p−1)/2) luego
k(p−1)/2 = (−1)v donde v = |kP∩N|, por lo tanto k(p−1)/2 ≡ (−1)v (mód p) y aplicando el
criterio de Euler obtenemos que

(
k
p

)
= (−1)v.

Gracias a este criterio podemos calcular las formulas complementarias de otra forma.

Proposición 2.2.2.

(a)
(
−1
p

)
=(−1)(p−1)/2, luego −1 es residuo cuadrático módulo p si y solo si p≡ 1 (mód 4)

(b)
(

2
p

)
= (−1)(p2−1)/8, luego 2 es residuo cuadrático módulo p si y solo si p≡±1 (mód 8)

Demostración. (a) −1P = N, entonces |−P∩N|= p−1/2.
(b) 2P = 2,4, ..., p−1, luego ν = |2S∩(−S)|= p−1

2 −r donde r es el entero más grande tal que
2r ≤ p−1

2 . Ahora la demostración se divide en dos casos:

Caso 1. p−1
2 es par y 2r = p−1

2 , por lo tanto, ν = p−1
2 − p−1

4 = p−1
4 , de este modo,

(
2
p

)
=

(−1)(p−1)/4

Caso 2. p−1
2 es impar y 2r = p−1

2 − 1, por lo tanto, ν = p−1
2 − p−1

4 + 1
2 = p+1

4 , de este modo,(
2
p

)
= (−1)(p+1)/4

Podemos unir estos dos casos notando que en el primer caso (p − 1)/2 es par si y solo si
(p+ 1)/2 es impar y elevar (−1)n a una potencia impar no lo cambia. Luego tenemos para el
caso 1 que (

2
p

)
= [(−1)(p−1)/4](p+1)/2 = (−1)(p2−1)/8

Para el caso 2. se sigue el mismo procedimiento pero elevando a una potencia impar (p −
1)/2.

Teorema 2.3 (Ley de reciprocidad cuadrática de Gauss y Legendre). Si p y l son primos impares
distintos, entonces

(
l
p

)
=
( p

l

)
(−1)(p−1)(l−1)/4

Demostración. Gracias al criterio de Gauss 2.2.1
(

l
p

)
= (−1)v donde v es el número elementos

1 ≤ a ≤ (p−1)/2 tal que existe un elemento b que satisface al = bp+ r donde −p/2 < r < 0.
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Además tiene que haber por lo menos una b para cada a, luego podemos reescribir v como el
número de pares (a,b) que satisfacen (despejando r)

1 ≤ a ≤ (p−1)/2

−p/2 < al −bp < 0

De estas dos expresiones podemos deducir que

bp < al + p/2 ≤ (p−1)l/2+ p/2 < pl/2+ p/2 = p(l +1)/2

luego b < (l + 1)/2 y de −p/2 < al − bp < 0 obtenemos que b ≥ 1, y por lo tanto 1 ≤ b ≤
(l−1)/2, como esta desigualdad es consecuencia de los requisitos de v podemos añadirlo como
otro requisito y de esta manera podemos cambiar los lugares de a y b y obtener que

( p
l

)
=(−1)µ

donde µ es el el número de pares (a,b) que satisface

1 ≤ a ≤ (p−1)/2

1 ≤ b ≤ (l −1)/2

−l/2 < bp−al < 0 que se puede escribir como 0 < aq−bp < l/2

Como l y q son dos primos distintos de los dos primeros requisitos obtenemos que al −bp ̸= 0
luego v+µ es el número de pares (a,b) que satisfacen

1 ≤ a ≤ (p−1)/2

1 ≤ b ≤ (l −1)/2

−p/2 < al −bp < l/2

Ahora
( p

l

)( l
p

)
= (−1)v+µ luego el problema se reduce a encontrar el valor de v+µ módulo 2.

Sea R = {(a,b) ∈ Z2|1 ≤ a ≤ (p−1)/2,1 ≤ b ≤ (l−1)/2} por lo tanto |R|= (p−1)(l−1)/4.
Partimos R en tres subconjuntos

R1 = {(a,b) ∈ R|al −bp ≥−p/2}

R2 = {(a,b) ∈ R|− p/2 < al −bp < l/2}

R3 = {(a,b) ∈ R|l/2 < al −bp}

Notar que R2 es el conjunto de soluciones que cumple los requisitos que queremos, luego |R2|=
v+ µ . Sea f : Z2 → Z2 la aplicación dada por f (a,b) = ((p+ 1)/2− a,(l + 1)/2− b) luego
restringiéndola a f : R1 → R3 tenemos una biyección, entonces, |R1| = |R3| y obtenemos que
|R|= |R1|+ |R2|+ |R3| ≡ |R2| (mód 2) y esto implica que (p−1)(l−1)/4= v+µ y obtenemos
que

( p
l

)( l
p

)
= (−1)(p−1)(l−1)/4.

Esta ley motiva la siguiente observación.

Observación (Origen del nombre de reciprocidad). Escribimos lRp si l es un cuadrado (mód p),
que es lo mismo que l sea un residuo cuadrático módulo p y de lo contrario lN p.
El teorema de Gauss quiere decir

lRp ⇔ pRl si p o l ≡ 1 (mód 4)



Leyes de Reciprocidad cuadrática 9

Que da el nombre de reciprocidad porque l sea un residuo cuadrático módulo p si y solo si
p sea un residuo cuadrático módulo l. Esta ley de reciprocidad cuadrática fue formulada por
Legendre y Gauss, aunque hemos visto en la introducción que su primera formulacion fue hecha
por Fermat, que es la más conocida. Además, Gauss fue la primera persona en demostrar esta
ley.

lRp ⇔ pNl si p o l ≡−1 (mód 4)

Si tenemos que calcular que un numero k es un residuo cuadrático módulo m:

(a) Factorizaremos en primos m, gracias al teorema chino de los restos 1.7 y tendremos que
ver si k es residuo cuadrático para cada primo de la factorización de m.

(b) Si alguno de los factores primos es 2, debemos mirar si 2e es la mayor potencia de 2 que
divide a m y tenemos tres casos:

Si e = 1 cualquier k es cuadrado.

Si e = 2 debemos ver que k ≡ 1 (mód 4).

Si e ≥ 3 debemos ver que k ≡ 1 (mód 8).

(c) Para los factores primos impares aplicando las propiedades del símbolo de Legendre para
ir calculando símbolos de Legendre para primos más pequeños y en ultimo caso aplica-
mos los criterios de Euler y Gauss.





Capítulo 3

Cuerpos p-ádicos

A partir de Z ∀n≥ 1, sea An =Z/pnZ el anillo cociente de Z de clases de enteros (mód pn).
Los elementos de An son de la siguiente forma x̄n = xn +(pn) con xn ∈ Z y (pn) es ideal de los
múltiplos de pn.
Tenemos el siguiente diagrama conmutativo.

Z Z/pn−1Z

Z/pnZ

ϕ

φn

Donde los morfismo que salen de Z son las proyecciones canónica y como pnZ ⊂ pn−1Z =
Kerϕ ya que pn es múltiplo de pn−1 entonces por 1.3 tenemos las φn. Recordemos que este
homomorfismo

φn : An 7−→ An−1

lleva x+(pn)→ x+(pn−1) donde x ∈ Z. Además, es suprayectivo y su kernel es pn−1An.

Definición. Zp es el límite proyectivo del conjunto de (Ai) con los homomorfismos φi. Recor-
demos que esto significa que x = (. . . , x̄n, x̄n−1, . . . , x̄1) ∈ Zp con x̄n ∈ An si y solo si φn(x̄n) =
x̄n−1 ∈ An−1.
Es anillo por lo visto en 1.8.1.
Sea εn : Zp 7−→ An la función que asocia a un entero p-ádico x su componente n-ésima x̄n

Proposición 3.0.1. Z⊆ Zp

Demostración. La aplicación de Z en Zp dado por a → a tal que εn(a) = a+(p)n es un ho-
momorfismo y si 0 < |a| < pn se tiene εn(a) ̸= 0 luego a ̸= 0 y por tanto la aplicación es
inyectiva.

Hemos visto que φn lleva x+(pn)→ x+(pn−1) también podemos escribirlo de la siguiente
manera xn +(pn)→ xn−1 +(pn−1) donde xn−1 es el resto que queda de dividir xn entre (pn−1),
esto se llama representación p-ádica. A continuación, vamos a ver cuatro ejemplos de represen-
taciones p-ádicas.

Ejemplo. (a) Escribamos 103 como entero 3-ádico, primero tenemos que encontrar la po-
tencia de 3 inmediatamente inferior a 103. De esta manera, la potencia inmediatamente
superior a la que hemos tomado será mayor que 103 y no necesitamos calcular el resto,

11
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esto también ocurrirá para todas las potencias más mayores. Para la potencia inmediata-
mente inferior en nuestro caso 34 = 81 calculamos el resto de 103 entre 81 que es 22,
vamos desciendendo potencias si el resto que hemos calculado es mayor que la siguiente
potencia más pequeña aplicamos el algoritmo de la división para calcular el resto y, en el
caso que sea más pequeño se deja así. Luego nos queda de la siguiente forma:
103 = (. . . ,103+(36),103+(35),22+(34),22+(33),4+(32),1+(3)).

(b) Escribamos p en Zp que será p = (. . . , p+(p6), p+(p5), p+(p4), p+(p3), p+(p2),0).

(b) Escribamos 1 en Zp que será 1 = (. . . ,1+(p6),1+(p5),1+(p4),1+(p3),1+(p2),1+
(p))

(b) Escribamos 0 en Zp que será 0 = (. . . ,0+(p6),0+(p5),0+(p4),0+(p3),0+(p2),0)

Proposición 3.0.2. Sea x ∈ Zp la aplicación que lleva x → px multiplicar por p coordenada a
coordenada es un homomorfismo inyectivo del grupo aditivo.

Demostración. Como podemos poner p como entero p-ádico y la multiplicacion es coordenada
a coordenada, vemos que p(x+ y) = px+ py por lo tanto homomorfismo. Podemos usar la
notación de p-ádico como la de entero indistintamente porque la multiplicación es coordenada
a coordenada. Veamos que es inyectiva, sea x ∈Zp tal que px = 0, y veamos que x = 0; es decir,
que x̄n = 0 ∀n.
Sabemos que 0 = px̄n+1 = pxn+1+(pn+1), es decir, pn|xn+1, así que x̄n = φn+1(x̄n+1) = xn+1+
(pn) = 0 y como era un n cualquiera por lo tanto son todos 0.

Veamos como son las unidades de Zp.

Proposición 3.0.3. x ∈ Zp no es unidad ⇔ ∃y ∈ Zp tal que x = py.

Demostración. (⇐) Inmediato porque si x = py tiene por lo menos un cero ya que x̄1 = pȳ1 y
x̄1 = py1 +(p) = 0 es múltiplo de p y entonces no puede ser unidad.
(⇒)Las unidades de An son los elementos coprimos con p, luego si x̄n ∈ An no es una unidad,
entonces ∃ȳn ∈ An tal que x̄n = pȳn. Si esto ocurre para un n se cumple para los siguientes.
Para un n+ 1 se tiene x̄n+1 = xn+1 + (pn+1) tal que φn(x̄n+1) = xn+1 + (pn) = pyn + (pn) y
xn+1 − pyn es múltiplo de pn luego xn+1 es múltiplo de p y por inducción lo tenemos para
cualquier m, entonces x = py.

Veamos que es un dominio de integridad, es decir, que no hay divisores de cero.

Proposición 3.0.4. Si U denota el grupo de elementos invertibles de Zp todo elemento no nulo
de Zp puede escribirse de manera única de la forma pnu donde u ∈ U (Un elemento de U se
llama unidad p-ádica) y n ≥ 0.

Demostración. Por lo visto en 1.8.1 para que Zp tenga una unidad es suficiente tenerla en
∏n≥1 An.
Tenemos dos casos que ya sea una unidad y en ese caso n = 0 o que no. Sea x ̸∈ U y x ̸= 0,
entonces, existe un n lo más grande posible tal que εn(x) = x̄n = 0 y εn+1(x) = x̄n+1 ̸= 0 es
decir, x̄n es múltiplo de pn y todos los demás también lo serán, luego x = pnu donde u no es
divisible por p luego es una unidad.

Como para todo elemento no nulo x ∈ Zp x = pnu, si tomase otro elemento de Zp y lo
multiplicase no podría ser 0 porque la multiplicación de dos unidades no puede ser 0.
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Observación. Si I es un ideal propio de en Zp contiene elementos de la forma pnu para algún
n ∈ N. Sea n ∈ N lo más pequeño posible tal que existe pnu ∈ I, entonces, pn ∈ I y si y ∈ I
y = pmu se tendrá que m ≥ n, luego y ∈ (pn) y se tiene la igualdad. Luego los ideales de Zp son
de la forma (pn) y por lo tanto todos los ideales son principales y Zp es un dominio de ideales
principales. Además, para cualquier n ∈ N (pn) ⊆ (p) luego este es el único ideal maximal y
Zp es un anillo local.

Esta proposición motiva la siguiente definición.

Definición. Sea x un elemento no nulo de Zp, escribimos x en la forma pnu donde u ∈ U . El
entero n se llama valoración p-ádica de x y se denota como vp(x), es decir, cual es la primera
posición que es 0 en la secuencia Extendemos la definición al cero vp(0) = +∞ y tenemos las
siguientes propiedades

vp(xy) = vp(x)+ vp(y)

vp(x+ y)≥ in f (vp(x),vp(y))

Definición. El cuerpo de números p-ádicos, se denota por Qp, es el cuerpo de fracciones del
anillo Zp, es decir, el cuerpo más pequeño que contiene al dominio de integridad Zp.
Ahora nos encontramos en el mejor caso posible, tenemos conmutatividad, asociatividad, ele-
mentos neutros y todos los elementos tienen inverso para la suma y la multiplicación y distribu-
ción respecto de la suma.

Todo elemento x ∈ Q∗
p puede ser escrito de forma única como pnu donde n ∈ Z y u ∈ U y

n ∈ Z que es una evaluación p-ádica. Por lo tanto vp(x)≥ 0 si y solo si x ∈ Zp.





Capítulo 4

El grupo multiplicativo Qp y Ecuaciones
p-ádicas

4.1. Grupo multiplicativo de Qp

εn : U →U(An) es un homomorfismo suprayectivo de grupos multiplicativos. Si llamamos
Un al núcleo del homomorfismo, es decir, es de la forma Un = 1+ pnZp, se tiene que U/Un ≃
U(An) luego para todo n, |U/Un|= pn−1(p−1) ver 1.7.1. En particular

|U/U1|= (p−1)

Para cada n se tiene que U1/Un es un subgrupo de U/Un luego es finito y aplicando 1.5
| U/Un
U1/Un

|= |U/U1|= p−1 luego pn−1(p−1)
|U1/Un| = p−1 y se tiene que |U1/Un|= pn−1.

Observación. En U1 no hay elementos distintos de 1 de orden divisor de p− 1. Supongamos
que existe 1 ̸= x ∈U1 de orden divisor de p−1. Por ser distinto de 1, existe n tal que x ̸∈Un y
el orden de xUn en U1/Un es a la vez divisor de p−1 y potencia de p, luego no puede ser.

Proposición 4.0.1. U = V ×U1 donde V = {x ∈ U | xp−1 = 1} es el único subgrupo de U
isomorfo a F∗

p

Demostración. Para cada n, como U(An) tiene orden pn−1(p− 1) por la proposición 1.1.(a)
hay un único subgrupo Vn de orden p−1 y que contiene a todos los elementos de orden divisor
de p−1.
Las correspondientes restricciones de φn son homorfismos Vn →Vn−1 suprayectivos . El límite
proyectivo es un subgrupo V de U cuyos elementos tienen orden divisor de p− 1 y tiene al
menos p−1 elementos.
Por la observación anterior V ∩U1 = 1 y se tiene por 1.4 que

V ≃ U1 ×V
U1

≤U/U1 (4.1)

y por los órdenes se tiene la igualdad U =U1 ×V .

Corolario 4.0.1. El cuerpo Qp contiene a las (p−1) raices de la unidad.

Observación. El grupo V se llama el el grupo multiplicativo de representantes de los elementos
de F∗

p .

15
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Lema 4.1. Sea x ∈Un−Un+1 donde n ≥ 1 si p ̸= 2 y n ≥ 2 si p = 2 entonces xp ∈Un+1−Un+2.

Demostración. Por hipótesis x = 1+ kpn con k ̸≡ 0 (mod p) y por el binomio de Newton será
xp = 1+kpn+1+ . . .kp pnp y sus exponentes en los términos que nos hemos escrito son ≥ 2n+1,
por lo tanto también ≥ n+2. Además, np ≥ n+2, ya que n ≥ 2 si p = 2. Esto nos muestra que
xp ≡ 1+ kpn+1 (mód pn+2) por lo tanto xp ∈Un+1 −Un+2.

Proposición 4.0.2.

(a) Si p ̸= 2, entonces U1 es isomorfo a Zp.

(b) Si p = 2, U1 = {±1}×U2 y U2 es isomorfo a Z2.

Demostración. Consideramos primero el caso p ̸= 2. Elegimos un elemento α ∈ U1 −U2, to-
mamos α = 1+ p. Por el lema 4.1, tenemos que α p ∈U2 −U3, luego elevando sucesivamente
a p tenemos que α pi ∈Ui+1 −Ui+2.
Queremos ver que U1/Un es un grupo cíclico, ya sabemos que su orden es pn−1, sea αn la ima-
gen de α en U1/Un, es decir, αn =αUn, entonces, (αn)

pn−2 ∈Un−1−Un y (αn)
pn−1 ∈Un−Un+1,

luego (αn)
pn−2 ̸= 1 en U1/Un y (αn)

pn−1
= 1 en U1/Un. Luego U1/Un es cíclico y generado por

αn Ahora denotamos por θn,α el isomorfismo z → αz
n de Z/pn−1Z en U1/Un como U1/Un es cí-

clico la isomorfía es inmediata . El siguiente diagrama es conmutativo, donde ψn es multiplicar
por p.

(Z/pnZ,+) U1/Un+1

U1/Un(Z/pn−1Z,+)

θn+1,α

ψn

θn,α

φn

De este modo tomando el subconjunto del anillo de producto directo ∏n≥1 An tal que si x̄n ∈ An,
entonces φn(x̄n) = (x̄n−1, que sabemos que dicho conjunto es Zp. Por otro lado, tomando el
subconjunto del grupo producto ∏n≥1U1/Un tal que si x ∈U1/Un entonces ψn(x) = θn−1,α(x)∈
U1/Un−1, este subconjunto será subgrupo y sera U1, luego los θn,α define un isomorfismo θ de
Zp en U1 y tenemos probada la primera parte.
Suponemos ahora que p = 2, elegimos α ∈ U2 −U3, esto es α ≡ 5 (mód 8). Definimos los
siguientes isomorfismos

θn,α : Z/2n−2Z→U2/Un

Por lo tanto el isomorfismo θα :Z2 →U2. Por otro lado, el homomorfismo U1 →U1/U2 ≡Z/2Z
induce un isomorfismo de {±1} en Z/2Z y de aquí obtenemos que U1 = {±1}×U2

Teorema 4.1. El grupo Q∗
p es isomorfo a Z×Zp ×Z/(p−1)Z si p ̸= 2. Si p = 2 es isomorfo

a Z×Z2 ×Z/2Z.

Demostración. Todo elemento de Q∗
p puede escribirse de forma única como x = pnu donde

n ∈ Z y u ∈U . Por lo tanto, Q∗
p
∼= (Z,+)×U , es más, por la proposición 4.0.1 prueba que U =

V ×U1, donde V es cíclica de orden p−1 y la estructura de U1 nos la da la proposicion 4.0.2.
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4.2. Cuadrados en Q∗
p

Teorema 4.2. Suponemos p ̸= 2 y x = pnu un elemento de Q∗
p donde n ∈ Z y u ∈ U. x es un

cuadrado si y solo si esa n es par y la imagen de ū de u en F∗
p =U/U1 es un cuadrado.

Demostración. Descomponemos u de la forma u = vu1 donde v ∈ V y u1 ∈ U1 juntando el
teorema 4.1 y la proposición 4.0.1 tenemos que Q∗

p
∼= Z×V ×U1 y al elemento x le corresponde

(n,v,u1). x es un cuadrado si y solo si n es par y v y u1 son cuadrados. pero U1 es isomorfo a
(Zp,+) para saber si u1 es cuadrado tenemos en cuenta que el isomorfismo transforma u2

1 → 2a
y 2 es invertible en Zp, entonces todos los elementos de U1 son cuadrados. como V es isomorfo
a F∗

p se sigue el teorema.

Observación. La condición que dice que la imagen de ū de u en F∗
p = U/U1 es un cuadrado

significa que
(

ū
p

)
= 1.

A partir de ahora nos referiremos a
(

ū
p

)
también como

(
u
p

)
.

Corolario 4.2.1. Si p ̸= 2 el grupo Q∗
p/Q∗2

p es un grupo de tipo (2,2) que tiene como represen-

tantes {1, p,u, pu} donde u ∈U tal que
(

u
p

)
=−1.

Teorema 4.3. x = pnu de Q∗
2 es un cuadrado si y solo si n es par y u ≡ 1 (mód 8).

Demostración. La descomposición U = {±1}×U2 nos dice que u es un cuadrado si y solo si
u ∈ U2 y es un cuadrado en U2. Ahora el isomorfismo θ : Z2 7−→ U2 construido en la demos-
tración de la proposición 4.0.2 lleva 2nZ2 a Un+2. Tomando n = 1 vemos que el conjunto de
cuadrados de U2 es igual a U3, por lo tanto un elemento u ∈ U es un cuadrado si y solo si es
congruente a 1 módulo 8.

Corolario 4.3.1. El grupo Q∗
2/Q∗2

2 es un grupo de tipo (2,2,2) que tiene como representantes
{±1,±5,±2,±10}

Observación. Para p = 2 definimos ε,ω : U/U3 7−→ Z/2Z esto nos lleva a las formulas

ε(n)≡ n−1
2

(mód 2) =

{
0 si n ≡ 1 (mód 4)
1 si n ≡−1 (mód 4)

ω(n)≡ n2 −1
2

(mód 2) =

{
0 si n ≡±1 (mód 8)
1 si n ≡±5 (mód 8)

ε define un isomorfismo de U/U2 en Z/2Z y ω define un isomorfismo de U2/U3 en Z/2Z.
Por lo tanto el par (ε,ω) forman un isomorfismo de U/U3 en Z/2Z×Z/2Z. En particular una
unidad 2-ádica es un cuadrado si y solo si ε(z) = ω(z) = 0.

4.3. Ecuaciones p-ádicas
Vamos a introducir la siguiente notación.

Si f ∈ Zp[X1, ...,Xm] es un polinomio suyos coeficientes en Zp y si n es un entero ≥ 1, denota-
mos como fn el polinomio con coeficientes en An se deduce de f por reducción (mód pn).

Proposición 4.3.1. Sea f (i) ∈ Zp[X1, ...,Xm] polinomios con coeficientes enteros p-ádicos. Los
siguientes resultados son equivalentes:
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(a) Los f (i) tiene un cero común en (Zp)
m.

(b) ∀n > 1 los polinomios f (i)n tiene un cero común en (An)
m.

Demostración. La aplicación εn : Zp → An. Sea f ∈ Zp[x1, . . . ,xm] si f (x1, . . . ,xm) = 0, enton-
ces, 0 = εn( f (x1, . . . ,xm)) = εn( f )(εn(x1), . . . ,εn(xm)) = fn(εn(x1), . . . ,εn(xm)). Luego, los f i

n
tienen un cero común en (An)

m.
Reciprocamente llamamos Dn el conjuntos de ceros comunes de f (i)n , Dn ⊂ (An)

m An[x1, . . . ,xm]→
An−1[x1, . . . ,xm] dado por fn → φn( fn) = fn−1. Si f n(x̄1, . . . , x̄m) = 0, entonces:
fn−1 = φn( fn)(φn(x̄1), . . . ,φn(x̄m)) = 0 luego φn : Dn →Dn−1 sea dn ∈Dn, dn = (d1

n , . . . ,d
m
n ). To-

mamos el subanillo del producto directo de anillos ∏i≥1 Di donde φn(dn)= dn−1 =(d1
n−1, . . . ,d

m
n−1)

y lo llamamos D que es el conjunto de ceros comunes en (Zp)
m. D es no vació porque los Di

son finitos.

Definición. Un punto x = (x1, ...,xm) de (Zp)
m se llama primitivo si uno de los xi es invertible,

es decir que no sea divisible por p. Uno define de manera similar los elementos primitivos de
(An)

m.

Proposición 4.3.2. Sea f (i) ∈Zp[X1, ...,Xm] polinomios homogéneos. Los siguientes resultados
son equivalentes:

(a) Los f (i) tiene un cero común no trivial en (Qp)
m.

(b) Los f (i) tiene un cero común primitivo en (Zp)
m.

(c) ∀n > 1 los polinomios f (i)n tiene un cero común primitivo en (An)
m.

Demostración. Notar que solo hay que probar la equivalencia de (a) y (b) porque la de (b) y (c)
esta probada por la proposición anterior.
(b)⇒ (a) es trivial por la definición de primitivo.
(a)⇒ (b) si x = (x1, ...,xn) es un cero común de f (i), ponemos

h = in f (vp(x1), ...,vp(xn)) y y = p−hx.

Esta claro que y es un elemento primitivo de (Zp)
m.

Teorema 4.4 (Chevalley-Warning). Sea q una potencia de un primo p, y sean fi(x1, . . . ,xm) ∈
Fq[X1, . . . ,Xm] polinomios cumpliendo que ∑gr( fi) < m. Sea D el conjunto de ceros comunes
de los fi en Fm

q , entonces |D| ≡ 0 (mód p).

Demostración. Pongamos P(x1, ...,xm) = ∏(1− f q−1
i ). Notamos que ∀a ∈ F∗

q , aq−1 = 1, se
tiene

P(x1, . . . ,xm) =

{
0 si (x1, . . . ,xm) ̸∈ D
1 si (x1, . . . ,xm) ∈ D

es decir P es la función característica de D.
Pongamos para h ∈ Fq[x1, . . . ,xl], s(h) = ∑x∈F l

q
h(x), como P es la función característica de

D,entonces, s(P) será la cantidad de elementos de Fq que hay en D, entonces, se tiene que
|D|= s(P), con lo que basta ver que s(P) = 0.
Ahora P es combinación lineal de monomios xα1

1 , . . . ,xαm
m con α1+· · ·+αm ≤ gr(P)≤ (∑gr( fi))(q−

1) < m(q − 1). Por lo tanto basta ver que s(xα1
1 , . . . ,xαm

m ) = 0 si α1 + · · ·+ αm < m(q − 1)
luego basta ver que s(xα1

1 , . . . ,xαm
m ) = 0 si αi < q − 1 para algún i. Pero, s(xα1

1 , . . . ,xαm
m ) =
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s(xα1
1 ) · · · · ·(xαm

m ) y basta ver que s(xl) = 0 si l < q− 1. Ahora, sea H = {xl|x ∈ F∗
q }, H es

subgrupo de F∗
q y s(xl) = ∑x∈H x. Por otro lado, como l < q− 1, H ̸= 1 luego ∃y ∈ H distinto

de 1 y s(xl) = ∑x∈H x = ∑x∈H yx = ys(xl) luego (1− y)s(xl) = 0 y como (1− y) ̸= 0, entonces
s(xl) = 0.

Notar que gracias a 4.3.2 el resultado es equivalente en (Zp)
m y (Qp)

m.

Corolario 4.4.1. Sea f un polinomio con m variables en Fp, Zp o Qp si gr( f )< m y f no tiene
término constante entonces, f (x1, . . . ,xm) = 0 tiene al menos una solución no trivial para cada
primo p.





Capítulo 5

Símbolo de Hilbert

En este capítulo nos vamos a referir como K tanto a Qp como a R.

5.1. Definición y primeras propiedades
Definición (símbolo de Hilbert). Sea a,b ∈ K∗, entonces, (a,b) = 1 si z2 −ax2 −by2 = 0 tiene
una solución no trivial en K3 en otro caso (a,b) =−1.
Al número (a,b) =±1 se le llama símbolo de Hilbert de a y b relativo a K.
Esa claro que (a,b) no cambia cuando a y b son multiplicados por cuadrados. Por lo tanto el
símbolo de Hilbert define una aplicación K∗/K∗2 ×K∗/K∗2 7−→ {±1}

Proposición 5.0.1. Sea a,b ∈ K∗, β la raiz cuadrada de b y Kb = K(β ). (a,b) = 1 si y solo si a
pertenece al grupo NK∗

b de norma de los elementos de K∗
b .

Demostración. Si b es un cuadrado de un elemento c, la ecuación z2 − ax2 − by2 = 0 tiene
(c,0,1) como solución por lo tanto (a,b) = 1 y la proposición es clara en es sentido como Kb =
K y NK∗

b = K∗. Por otra parte, Kb es cuadrático sobre K, todo elemento ξ ∈ Kb puede escribirse
como ξ = z+βy donde y,z ∈ K y la norma N(ξ ) de ξ es igual a z2 − by2 ya que tendríamos
los ismorfismos identidad y σ(β ) = −β y entonces N(ξ ) = (z+ βy)(z− βy) = z2 − by2. Si
a ∈ NK∗

b , entonces ∃y,z ∈ K tal que a = z2 −by2 por lo tanto la forma cuadrática z2 −ax2 −by2

tiene un cero en (z,1,y) y tenemos (a,b) = 1. Recíprocamente si (a,b) = 1, esta forma tiene un
cero no trivial . x ̸= 0 ya que de lo contrario b sería un cuadrado. De aquí obtenemos que a es la
norma de z

x +
y
x .

Proposición 5.0.2. El símbolo de Hilbert satisface las siguientes propiedades:

(a) (a,b) = (b,a) y (a,c2) = 1.

(b) (a,−a) = 1 y (a,1−a) = 1.

(c) (a,b) = 1, entonces, (aa′,b) = (a′,b).

(d) (a,b) = (a,−ab) = (a,(1−a)b).

Demostración. (a) Cambiar los papeles de a y b no cambian que tenga solución no trivial. Si
b = c2 entonces tiene un cero en (1,0,1/c).
(b) Si b =−a entonces tiene un cero en (0,1,1) y si b = 1−a lo tiene en (1,1,1), por lo tanto
ambos símbolos de Hilbert son 1.

21
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(c) Usamos 5.0.1 para probarlo. Sabemos que la norma del producto de dos elementos es el pro-
ducto de sus normas luego NKa′(aa′) = NKa′(a)NKa′(a′), esto nos lleva a la siguiente ecuación

(a,a′) = 1 ⇔ NKa′(a)NKa′(a
′) = 1 ⇔ NKa′(a)NKa′(a

′) = NKa′(a
′)−1

Esto nos dice que (aa′,b) = (a,b)(a′,b) y si (a,b) = 1 entonces (aa′,b) = (a′,b).
(d) Se sigue de las tres anteriores.

Teorema 5.1.

(a) Si K = R, tenemos que (a,b) = 1 si a o b es > 0 y (a,b) =−1 si a,b < 0

(b) Si K =Qp y si escribimos

{
a = pαu
b = pβ v

donde u,v ∈U. Tenemos que:

(a,b) = (−1)αβε(p)
(

u
p

)β ( v
p

)α

si p ̸= 2

(a,b) = (−1)ε(u)ε(v)+αω(v)+βω(u) si p = 2

Para demostrar este teorema tendremos que introducir antes una serie de resultados que nos
ayudaran en la demostración.

Teorema 5.2. El símbolo de Hilbert es una forma bilineal no degenerada en el F2-ev K∗/K∗2.

Demostración. Notar que la bilinealidad viene de que (aa′,b) = (a′,b)(a,b) y que (a+b,c) =
(a,c)+(b,c) esto se sigue de que la suma de las ecuaciones z2−ax2−by2 = 0 y (z′)2−a(x′)2−
b(y′)2 = 0 tiene solución notrivial si las originales la tenían, el que sea no degenerada quiere
decir que si b ∈ K∗ tal que (a,b) = 1 ∀a ∈ K∗ uno tiene b ∈ K∗2.

Corolario 5.2.1. Si b no es un cuadrado, el grupo NK∗
b definido en la proposición 5.0.1 es un

subgrupo de índice 2 en K∗ .

Demostración. El homomorfismo φb : K∗ 7−→ {±1} definido por φb(a) = (a,b) tiene como
núcleo NK∗

b por la proposición 5.0.1. Es más φb es suprayectiva porque (a,b) es no degenerada.
Por lo tanto por el primer teorema de isomorfía φb define un isomorfismo K∗/NK∗

b 7−→ {±1}.

Lema 5.1. Sea v ∈U . Si la ecuación z2−ax2−by2 = 0 tiene solución no trivial en Qp, entonces
tiene una solución (z,x,y) tal que z,y ∈U y x ∈ Zp.

Demostración. Por la proposición 4.3.2 la ecuación dada tiene una solución primitiva (z,x,y).
Veamos que esra solución tiene la propiedad deseada.
Reduccion al absurdo: Suponemos que no tiene dicha propiedad, entonces tendríamos y ≡ 0
(mód p) o z≡ 0 (mód p), como z2−vy2 ≡ 0 (mód p) y v ̸≡ 0 (mód p), tendremos tanto y≡ 0
(mód p) y z ≡ 0 (mód p). Por lo tanto, px2 ≡ 0 (mód p2) que significa que x ≡ 0 (mód p)
que es contrario al carácter primitivo de (z,x,y).

Demostración Teorema 5.1. El caso K =R es trivial. Notar que K∗/K∗2 es un campo vectorial
de dimensión 1 sobre el cuerpo F2 con {±1} como representantes.
Primero suponemos que p ̸= 2. Esta claro que los exponentes α y β vienen solo por su residuo
módulo 2, luego α,β ∈ {0,1}; Por la simetría del símbolo de Hilbert, solo hay tres casos que
considerar:
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1) α = 0, β = 0. Debemos comprobar que (u,v) = 1. Ahora la ecuación:

z2 −ux2 − vy2 = 0

Tiene solución no trivial módulo p por 4.4.1. Por lo tanto (u,v) = 1.

2) α = 1, β = 0. Debemos comprobar que (pu,v) =
(

v
p

)
. Como (u,v) = 1 tenemos por la

propiedad (c) que (pu,v) = (p,v), esto es suficiente para comprobar que (p,v) =
(

v
p

)
ya

que si v es un cuadrado, los dos términos iguales a 1.
En caso contrario

(
v
p

)
= −1. Por lo tanto por el lema 5.1 z2 − ux2 − vy2 = 0 no tiene

solución no trivial,entonces, (p,v) =−1.

3) α = 1, β = 1. Debemos comprobar que (pu, pv) = (−1)(p−1)/2
(

u
p

)(
v
p

)
. En base a las

propiedades (a) y (c) del símbolo de Hilbert:

(pu, pv) = (pu,−pu)(pu, pv) = (pu,−p2uv) = (pu,−p2)(pu, pv) = (pu,−uv)

Por lo que acabamosde ver que (pu, pv) =
(
−uv

p

)
, por lo que el resultado se sigue ya que(

−1
p

)
= (−1)(p−1)/2

Ahora suponemos que p = 2, por lo mismo expuesto anteriormente solo hay tres casos:

1) α = 0, β = 0. Debemos comprobar que (u,v) = 1 si u o v es congruente a 1 módulo 4 y
(u,v) =−1 en otro caso. Suponemos primero que u ≡ 1 (mód 4).
Entonces u ≡ 1 (mód 8) o u ≡ 5 (mód 8). En el primer caso u es un cuadrado por el
teorema 4.3 y por lo tanto tenemos que (u,v) = 1. En el segundo caso tenemos que
u+4v ≡ 1 (mód 8) por lo tanto ∃w ∈U tal que w2 = u+4v, la forma z2−ux2−vy2 tiene
por lo tanto (w,1,2) es un cero y tenemos que (u,v) = 1.
Supongamos ahora que u ≡ v ≡ −1 (mód 4); si (z,x,y) es una solución primitiva de
z2 − ux2 − vy2 =, entonces z2 + x2 + y2 ≡ 0 (mód 4); pero los cuadrados Z/4Z son 0 y
1, esta congruencia implica sque x,y,z ≡ 0 (mód 2), lo que contradice la hipótesis de
primitividad. Por lo tanto, (u,v) =−1.

2) α = 1, β = 0. Debemos comprobar que (2u,v) = (−1)ε(u)ε(v)+ω(v). Primero veamos que
(2,v) = (−1)ω(v), es decir, que (2,v) = 1 es equivalente a v ≡ ±1 (mód 8). Por el lema
5.1 si (2,v) = 1, entonces ∃x,y,z ∈ Z2 tal que z2−2x2−vy2 = 0 y y,z ̸≡ 0 (mód 8). Pero
los únicos cuadrados módulo 8 son 0,1 y 4. De aquí obtenemos que v ≡±1 (mód 8). En
cambio, si v ≡ 1 (mód 8), v es u cuadrado y (2,v) = 1; si v ≡ −1 (mód 8), la ecuación
z2 −2x2 − vy2 = 0 tiene (1,1,1) es una solución módulo 8 y por el teorema chino de los
restos 1.7 y por la proposición 4.3.2 tiene también solución en Q3

p . Por lo tanto, tenemos
que (2,v) = 1.
Ahora veremos que (2u,v) = (2,v)(u,v), por las propiedades del símbolo de Hilbert,
esto es cierto si (2,v) = 1 o (u,v) = 1. El caso que queda es (2,v) = (u,v) = −1, esto
quiere decir que, v ≡ 3 (mód 8) y u ≡ 3 o −1 (mód 8); despues de multiplicar u y v por
cuadrados, podemos suponer que u =−1, v = 3 o u = 3,v =−5; ahora las ecuaciones

z2 +2x2 −3y2 = 0 y z2 −6x2 +5y2 = 0

tienen por solución (1,1,1), por lo tanto tenemos que (2u,v) = 1
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3) α = 1, β = 1. Debemos comprobar que (2u,2v) = (−1)ε(u)ε(v)+ω(u)+ω(v). Por las propie-
dades (a) y (b) del símbolo de Hilbert y su binealidad tenemos:

(2u,2v) = (2u,2v)(2u,−2u) = (2u,−4uv) = (2u,−uv)(2u,4) = (2u,−uv)

pero acabamos de ver que (2u,2v) = (−1)ε(u)ε(−uv)+ω(−uv) ya que ε(−1) = 1, ω(−1) = 0
y ε(u)(1+ε(u)) = 0, el exponente ε(u)ε(−uv)+ω(−uv) = ε(u)ε(v)+ω(u)+ω(v). Lo
que prueba el teorema. La bilinealidad de (a,b) se sigue de la fórmula dada por este
símbolo, ya que ε y ω son homomorfismos. Que sea no degenerado se comprueba por
los representantes {u,2u} donde u = 1,5,−1. De hecho, tenemos que (5,2u) = −1 y
(−1,−1) = (−1,−5) =−1.

5.2. Propiedades globales
El cuerpo Q es el cuerpo primo, intersección de todos los subcuerpos, de cada subcuerpo

en cada uno de los cuerpos Qp y R. Si a,b ∈ Q∗, (a,b)p(respectivamente (a,b)∞) denota lo
símbolos de Hilbert de sus imágenes en Qp (respectivamente R). Definimos V como el conjunto
de primos junto con el símbolo ∞ y tomamos la convención de que Q∞ = R.

Teorema 5.3 (Ley de reciprocidad de Hilbert). Si a,b ∈Q∗, tenemos que (a,b)p = 1 para casi
todos v ∈V y

∏
v∈V

(a,b)v = 1

Demostración. Ya que los símbolos de Hilbert son bilineales, es suficiente para probar el teo-
rema que cuando a o b son iguales a −1 o a un numero primo. En cada caso, el teorema 5.1
nos da el valor de (a,b)v.

1) a = −1, b = −1. (−1,−1)∞ = (−1,−1)2 = −1 y (−1,−1)p = 1 si p ̸= 2,∞. Luego, el
producto es igual a 1.

2) a =−1, b = l donde l es primo. Si l = 2 entonces (−1,2)v = 1 ∀v ∈V .
Si l ̸= 2 entonces (−1, l)v = 1 si v ̸= 2, l y (−1, l)2 = (−1, l)l = (−1)ε(l). El producto es
igual a 1.

3) a = l, b = l′ donde l y l′ son primos, Si l = l′ entonces por las propiedades del símbolo
de Hilbert tenemos que (l, l)v = (−1, l)v ∀v ∈V y estamos en el caso ya estudiado.
Si l ̸= l′ y si l′ = 2, uno tiene que (l,2)v = 1 para v ̸= 2, l y

(l,2)2 = (−1)ω(l), (l,2)l =

(
2
l

)
= (−1)ω(l) Por el teorema 2.2

Si l ̸= l′ ̸= 2, entonces, (l, l′)v = 1 para v ̸= 2, l, l′ y

(l, l′)2 = (−1)ε(l)ε(l′), (l, l′)l =

(
l′

l

)
y (l, l′)′l =

(
l
l′

)
Por el teorema ??(Gauss)

Entonces
(

l′
l

)( l
l′
)
= (−1)ε(l)ε(l′). Por lo tanto, el producto es igual a 1.
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Observación. El interés de esta ley de reciprocidad cuadrática viene del hecho de que lo ex-
tiende a todos los cuerpos de números algebraicos.

Teorema 5.4. Los siguientes resultados son equivalentes

(a) Para enteros, coprimos e impares a,b > 0, tenemos que:(a
b

)
=

(
b
a

)
(−1)(a−1)(b−1)/4

(b) Para enteros impares a,a′,b,b′ > 0, tenemos que:(a
b

)(b
a

)
=

(
a′

b′

)(
b′

a′

)
Cuando a ≡ a′ (mód 4), b ≡ b′ (mód 4) y (a,b) = (a′,b′) = 1

(c) ∀a,b ∈Q∗, tenemos que:
∏

p
(a,b)p = 1

Demostración.

(a)⇒ (b) Es claro ya que
(a

b

)(b
a

)
= (−1)(a−1)(b−1)/4 y el segundo miembro depende de que a sea

módulo 4 y b sea módulo 4.

(b)⇒ (a) Si a ≡ 1 (mód 4), entonces nos dice que
(a

b

)(b
a

)
=

(1
b

)(b
1

)
= 1 si a ≡ b ≡ 3 (mód 4),

entonces,
(a

b

)(b
a

)
=
(3

7

)(7
3

)
=−1.

(a)⇔ (c) Ya lo hemos probado en la ley de Reciprocidad de Hilbert.

Observación. El segundo resultado se llama ley de reciprocidad de Eisenstein.

Hay mas leyes de reciprocidad cuadráticas como la de Artin que se generaliza en la llamada
teoría de cuerpos de clases. Por ejemplo el noveno problema de Hilbert que solicita encontrar la
ley de reciprocidad más general para los residuos de la norma del k-ésimo orden en un cuerpo
de números algebraicos general, donde k es una potencia prima. Para saber más ver [4] [6].
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