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Preface

This work covers the various laws of quadratic reciprocity without delving into results that
involve class field theory.
Law of quadratic reciprocity answers whether, given a polynomial f with coefficients in Z, and
a prime p, whether f modulo p is a product of distinct linear factors. We will focus on the
classical laws of reciprocity, i.e. on monic polynomials of degree 2. That’s why, among all the
results that provide a solution to this problem, we will examine the quadratic reciprocity law of
Gauss and Legendre. Additionally, we will also explore Hilbert’s quadratic reciprocity law.
Before discussing the analysis and proofs of these results, we introduce a series of concepts
about fields, rings, abelian groups, congruences, and isomorphism theorems upon which the
results in the subsequent chapters are based.

= The first part, covered in Chapter 2, discusses the laws of quadratic reciprocity. The Le-
gendre symbol is introduced, which encodes the information of an interger being a qua-
dratic number residue modulo a natural number, and two of its properties are presented:
Euler’s criterion, which relates the Legendre symbol to the multiplicative structure of the
set residues modulo the number on which the question of being a quadratic residue is po-
sed, and secondly, Gauss’s criterion, which provides a combinatorial interpretation, which
will derive in a procedure of computation of the Legendre symbol. Finally, the Legendre
and Gauss reciprocity laws are stated and proved, shedding light on the origin of the term
reciprocity.

» In Chapter 3 we construct the field Q, of p-adic numbers. We begin with the ring of
quotients A, = Z/p"7Z and by taking its projective limit, we obtain the ring of p-adic
intergers Zp. Then, for x € Z,, we examine how the mapping x — px behaves. The next
step is to construct a field from Z,, so we need to find the invertible elements of Z,, which
turn out to be the elements that are not multiples of p. We also prove that Z C Z,,, is an
integral domain of zero characteristic, hence Z can be identified to the subring consisting
of the interger multiples of the unit element of Z,. Moreover, we explore properties of the
units, will help us establish that Zj, is a local ring and a principal ideal domain. Finally,
we take the field of fractions of Z, to obtain Q,,.

= In Chapter 4 , the goal is twofold. Firstly, we aim to characterize the squares in Q,. To
do this, we discuss the units of Z, once again, and express U = U(Z,) =U; x {x € U |
xPl = 1}, whereU; =1 +pZp.if p=2then Uy = £1 x U, and U, is isomorphic to Z,. If
p # 2 then Uj is isomorphic to Z,. This allows us to describe Q, ~Z x Z, x Z/(p—1)Z
for p #2and Q) ~Z x Zp x /27 for p = 2. With this, we can characterize the squares
in Q, and Q3. This characterization of squares reveals that Q}, forms a group of type
(2,2), while the squares in Q, constitute a group of type (2,2,2).
Additionally, in this section, we discuss p-adic equations. We explore how to relate poly-
nomials with m variables in A,, Z, and Q, and their roots in A,, Z, and Q,. We also
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state and prove the Chevalley-Warning theorem and its corollary, which tell us that if f is
a polynomial with m variables in F),, Z, or Q,,, if gr(f) < m and f has no constant term,
then, f(xp,...,X%,) = 0 has at least one non-trivial solution.

In Chapter 5 we define the Hilbert symbol, a number whose value is 1 if the quadratic
form z2 — ax®> — by> = 0 where a,b € Q » 0 R has no trivial zeros. To prove these results,
we need the previous chapter. We also examine several properties, among which the most
crucial are its bilinearity and non-degeneracy. Theorem 5.1 relates the Legendre and Hil-

—
bert symbols in the following way Z -7 Bu where u,v € U. we have that
B o
(a,b) = (—1)*Pe(®) (g) (%) it p#2

(a,b) _ (_l)s(u)s(v)Jr(xw(v)JrBw(u) ifp -9

This result will help us prove Hilbert’s reciprocity law whic is stated at the end of this
section.



Resumen

Este trabajo recorre distintas leyes de reciprocidad cuadratica sin entrar en aquellos resulta-
dos que entren en teoria de cuerpos de clases.
Una ley de reciprocidad cuadratica da respuesta a si dado un polinomio f con coeficientes en Z
y un un primo p si f médulo p es producto de distintos factores lineales. Nos centraremos en
las leyes cldsicas de reciprocidad, es decir, en polinomios ménicos de grado 2 y por eso entre
todos los resultados que dan solucién a este problema veremos la ley de reciprocidad cuadratica
de Gauss y Legendre. Ademas, también veremos la ley de reciprocidad cuadratica de Hilbert.
Antes de entrar a discutir el andlisis y las demostraciones de estos resultados introducimos una
serie de conceptos sobre cuerpos, anillos, grupos abelianos, congruencias y teoremas de iso-
morfia sobre los cuales se basan los resultados de los capitulos siguientes.

= La primera parte que abarca el capitulo 2 habla sobre las leyes de reciprocidad cuadratica,
se introduce el simbolo de legendre que codifica la informacién de un entero que es resi-
duo cuadratico médulo un ndmero natural y se presentan dos de sus propiedades. Por un
lado el criterio de Euler que relaciona el simbolo de Legendre con congruencias. Por otro
lado, el criterio de Gauss proporciona una interpretacion combinatoria que nos llevara a
un proceso de computacion del simbolo de Legendre. Por dltimo se enuncia y demuestra
la ley de reciprocidad de Legendre y Gauss donde se observa de donde viene el nombre
de reciprocidad.

» El capitulo 3 vamos construyendo el cuerpo QQ,, de nimeros p-adicos, empezamos por el
anillo de cocientes A, = Z/p"Z que tomando su limite proyectivo conseguimos el anillo
de enteros p-adicos Z,. Luego, si x € Z, vemos como se comporta la aplicacion que lleva
x — px. Lo siguiente es construir un cuerpo a partir de Z, asi que tenemos que encontrar
los elementos invertibles de Z,, que resultan ser los elementos que no son multiplos de p.
Ademads, vemos propiedades de las unidades ya que nos ayudardn a ver que es dominio de
integridad. Una vez, probado todo esto vemos que Z C Zj, es un dominio de integracion
de caracteristica cero, por lo tanto, Z puede identificarse con un subanillo que consiste
en los miiltiplos enteros del elemento unidad de Zj,, que es un anillo local y dominio de
ideales principales: Por dltimo, tomamos el cuerpo de fracciones de Z,, y obtenemos Q,,.

= El objetivo del capitulo 4 es doble primero queremos caracterizar los cuadrados en Q,, pa-
ra ello volvemos a hablar sobre las unidades de Z, y como podemos poner U = U (Z,) =
Uy x{xeU|x~! =1}, donde U = 14+ pZ,.Sipes2U ==+x1xU,y U, isomorfo a
Zs. Si p no es 2 Uj es isomorfo a Z,. Conesto Q, ¥ ZxZ, X ZL/(p—1)Zsip#2y
Qy >~ 7Z x Zy x Z/2Z. Con esto podremos caracterizar los cuadrados en Q), y los cuadra-
dos en Q3. Esta caracterizacion de los cuadrados nos dird que ), serdn un grupo de tipo
(2,2) si p # 2y los cuadrados en Q5 es un grupo de tipo (2,2,2).
Ademads, en esta seccion se habla sobre ecuaciones p-ddicas. Como podemos relacionar
polinomios de m variables en A, Z, y Q, y sus raices en A,, Z, y Q,. También, veremos
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y probaremos el teorema de Chevalley-Warning y su corolario que nos dice que sea f un
polinomio con m variables en F,,, Z, o Q, si gr(f) < my f no tiene término constante,
entonces, f(xy,...,x,) = 0 tiene al menos una solucién no trivial.

En el capitulo 5 se define el simbolo de Hilbert, un nimero cuyo valor es 1 si la forma cua-
drética z2> — ax* — by?> = 0 donde a,b € Q » 0 R para probar estos resultados necesitamos
el capitulo anterior. Ademads, se ven varias propiedades entre ellas las mds importantes
son su bilinealidad y que no es degenerado.

El teorema 5.1 nos relaciona el simbolo de Legendre y el de Hilbert de la siguiente manera

a=p%*u
{ p donde u,v € U. Tenemos que:

b=phy
(a,5) = (~1)Pe(0 (;)B (1) sins2

(a,b) = (_1)€(u)8(v)+aw(v)+ﬁa)(u) Sip=2

Este resultado nos ayudard a probar la ley de reciprocidad de Hilbert que se presenta al
final de esta seccidn.
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Capitulo 1

Resultados Previos

El contenido de este capitulo se puede ver en [4].

Sea K un cuerpo. La imagen de Z en K es un dominio de integridad, por lo tanto es isomorfo
aZ o aZ/pZ donde p es primo; su cuerpo de fracciones es isomorfo a Q o a Z/pZ = F), . En
el primer caso, se dice que K tiene caracteristica 0; en el segundo caso que tiene caracteristica
p.

La caracteristica de K se denota como char(K). Si char(K) = p # 0, entonces, p es el entero
mas pequeio tal que p-1=0.

Notacién. Z/pZ = F,, y no como Z/ pZ = 7, porque mds adelante usaré Z, para referirnos al
anillo de enteros p-adicos.

Si K es finito la caracteristica es distinta de 0.

Definicion. Un cuerpo L es una extension de K si K es subcuerpo de L. En este caso, L es
espacio vectorial sobre K y se denota como E /K.

Definicion.

Sea f € K[x] y E/K una extensién decimos que f se escinde en E si existen a,ay,...,a, € E
tales que f = a(x —ay) --- (x —a,). Ademds, si todos los g; son distintos entonces decimos
también que f es separable.

Teorema 1.1.

(a) Si K es finito tiene un subcuerpo que podemos identificar como F), y si dimension de K
como F), espacio vectorial es f, el niimero de elementos de K es q = pl. Luego K es una
extension de F),.

(b) Si f € K[x] entonces existe un cuerpo en el que se escinde f.

(c) Sea p un numero primoy q = p/(f > 1) una potencia de p. Existe un cuerpo  en el que
se escinde X1 — X, que tiene q elementos, tiene caracteristica p y que denotaremos por

F,.

q

Teorema 1.2. El grupo multiplicativo F; de un cuerpo finito Fy es ciclico de orden g — 1.

Proposicion 1.2.1. Si A es un grupo abeliano (un anillo) e / es un subgrupo (un ideal) la pro-
yeccién candnica es el homomorfismo de grupos (de anillos) ¢ : A — A/I tal que ¢(a) =a—+1.
Es suprayectiva y su nucleo es /.
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En lo que sigue denotaremos a los elementos de F), como cualquiera de sus representantes
en Z.

Teorema 1.3. Sea f : G — H un homomorfismo de grupos abelianos entonces f : G/ Kery —
Imf tal que f(a+ Kery) = f(a) con a € G es un isomorfismo.
Sea I < Kery, entonces, existe f* : G/1 — H homomorfismo tal que f*(a+1) = f(a) cona € G.

Teorema 1.4. Sea G un grupo abeliano 'y N 'y H subgrupos de G entonces HN /N es isomorfo
aH/(HNN).

Teorema 1.5. Sea G un grupo abeliano y N 'y H subgrupos de G tal que N C H entonces G/H
es isomorfo a (G/N)/(H/N).

Definicion. ¢ € Z es un residuo cuadratico de un nimero primo p si existe x € Z tal que x> = g
(méd p), es decir, x> =gqgen F).

Definiciéon. Una extension K de un cuerpo F que tiene dimensién finita como F' espacio vecto-
rial esta formada por nimeros algebraicos, esto quiere decir que para todo a € K existe p € F[x]
tal que p(a) =0. Si (p) es el nicleo del homomorfismo evaluacién F[x] — K dada por f — f(a)
a p se le llama polinomio minimo de a sobre F.

Teorema 1.6. Sea F = K(0) el menor cuerpo que contiene a K y a 0, siendo 0 un elemento
algebraico sobre K. Ademds, sea L un cuerpo donde se escinde p, el polinomio minimo de 0 so-
bre K. Si p tiene grado n 'y es separable, entonces, hay exactamente n distintos homomorfismos
0;: F — Ly los elementos 6;(0) = 6; son los distintos ceros de p.

Definicién. Dada una K-base de F = K(0), {ay, ..., 0, }. Se define el discriminante de la base
como:
Ao, ..., 0] = (det(0i(at)))?

Ademas, se define la norma de ¢ € F como:
n
NK(at) =[] oi(e)
i=1

El conjunto de normas forman un grupo multiplicativo.

Teorema 1.7 (Teorema chino de los restos). Supongamos que ny,n, ... n; son enteros posi-
tivos coprimos dos a dos y N = nj...ny. Entonces, se tiene un isomorfismo entre un anillo y la
suma directa de sus factores.

ZINZ=Z/mZ&... L/

Una formulacion mas cldsica, manteniendo las hipotesis ya planteadas.
Entonces para enteros dados ay,ay,...,a; existe un entero x que resuelve el sistema de con-
gruencias simultdneas.

x=a; (mdd ny)

x=a; (moéd ny)

Mds aiin, todas las soluciones x de este sistema son congruentes modulo el producto N.
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Lema 1.1. Sea p la caracteristica de un cuerpo, si x € y son elementos de ese cuerpo, entonces
(x+y)P =xP +yP.

Definicion. Si H es un subgrupo finito de G y x € G se llama coclase a izquierda a xH =
{xh|h € H}. Si k es el numero de coclases a izquierda de G mddulo un subgrupo H entonces
a k se le llama indice de H en G, se escribe |G : H| y por el teorema de lagrange tenemos que

G
G H| = .
Proposicion 1.7.1. Vn > 1y p primo p"Z es un ideal de Z, denotaremos estos ideales (p"),
los multiplos de p”. El anillo cociente Z/(p") tiene x + (p") como unidad si p no divide a x.
Denotamos como U (Z/(p")) al grupo multiplicativo de las unidades de Z/(p™) y se tiene que

U(Z/(p") =p" ' (p—1).

Proposicién 1.7.2. Sea G un grupo abeliano donde |G| = mn y m y n son coprimos, entonces
existen unicos subgrupos A,B de G talque G=ABconANB=1, |A|=my |B|=n.

Proposicion 1.7.3. El polinomio x" — 1 € F,[x] tiene n raices distintas en un cuerpo en el que
se escinda si y solo si p no divide a n. Esas raices forman un grupo ciclico llamado raices de la
unidad y a los generadores se les llama raices primitivas.

Teorema 1.8 (pequeiio teorema de Fermat). Si p es un niimero primo, entonces, para cada
numero natural a, con a > 0, coprimo con p, aP~l1=1 (méd p).

Definicion. Sea una sucesién de conjuntos (A4;) y una sucesion de aplicaciones suprayectivas
On:An— Ay
...... An_>An—l _>..._>A2_>A1

Se llama limite proyectivo al subconjunto de [],, A, formado por las sucesiones

tales que x, € A, y @n(xn) = xp—1.
Este limite verifica que la proyeccion en cada componente es una aplicacion suprayectiva.

Proposicion 1.8.1. Sea una sucesién de conjuntos (A;) que son grupos (o anillos) y una sucesién
de aplicaciones suprayectivas ¢, : A, — A,—1 que son homomorfismos de grupos (o de anillos).
Entonces el limite proyectivo es un subgrupo (o subanillo) de [],A, Ademds, en este caso, un
elemento del limite proyectivo tiene inverso en el limite proyectivo si y solo si lo tiene en [[,,A,

Demostracion. Sean
X = ( X Xn—1y 0 ,x2,X1>

Y="("YmYn—1s""",Y2,)1)

Veamos que si X,y estdn en el limite proyectivo, Xy también lo esta.

On(xnyn) = On(xn) 0n (V) = Xn—1Yn—1 luego el producto estd en el limite. Andlogamente para +.
Sea ahora x en el limite proyectivo y tal que existe y € [[,A, tal que Xy = 1. Se tiene que
XnYn =1y xy—1yn—1 = 1. De la primera igualdad obtenemos ¢ (x,)¢(y,) =1y x,—10(yy) =1
luego el inverso de x,_; es exactamente y,_| = @(y,) y esto prueba que y estd en el limite
proyectivo. [






Capitulo 2

Leyes de reciprocidad cuadratica

Dado un polinomio f(x) con coeficientes en Z, una ley de reciprocidad determina, para un
primo p si f(x) médulo p es producto de distintos factores lineales, en ese caso decimos que se
separa.

2.1. Cuadrados en F;

En este capitulo g es un potencia de un primo p.
Teorema 2.1.
(a) Si p =2, entonces todos los elementos de F, son cuadrados.

(b) Si p # 2, entonces los cuadrados de F; forman un subgrupo de indice 2 en Fj; este

subgrupo es el kernel del homomorfismo x — x@=1/2 con valores en +1.

Demostracion. El caso (a) se sigue del hecho x — x? es un automorfismo en F, porque la ca-
racteristica del grupo es 2 y por lo tanto (x+ y)2 = x> 4y por el lema 1.1, con la multiplicacién
no hay problemas. Es inyectiva porque si x> = 0 entonces x = 0 y es obvio que es suprayectiva.
Luego es un automorfiso.

El caso (b), sea Q un cuerpo de escisién del polinomio y*> = x en Fy. Seay € Qyx € Fj tal
que y*> = x. Entonces como el homomorfismo x — x> tiene nicleo {#£1}y su imagen son los

cuadrados, los denotaremos (Fq*)z, entonces |F;|/2 = ](Fq*)2| como (Fq*)2 es subgrupo de F
entonces |F ||| (F;)2|, luego los cuadrados tienen indice 2. Como F, € un grupo ciclico de or-
den g — 1, entonces x¢~' = 1, luego x@=1/2 = 41, Luego (Fq*)Z es el kernel de la aplicacién

x> xla=D/2, 0

Euler, interesado por el trabajo de Fermat, empezé una correspondecia con Goldbach donde
intercambiaron ideas, entre otras cosas, sobre los divisores de los nimeos de Fermat (22n +1y
los ndmeros de Mersenne (27 — 1) lo que llevo a Euler a una ley de reciprocidad cuadratica. El
teorema anterior nos permite justificar el siguiente enunciado.

Proposicién 2.1.1 (Criterio de Euler). Para enteros a y primos impares p tal que p { a tenemos
que

pl +1 en F),, si a es un residuo cuadritico médulo p
a g
—1 en F),, si a no es un residuo cuadritico médulo p

5
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Definicion. Sea p # 2 primo y sea x € F,,;. El simbolo de Legendre de x se denota como (%) y
es +1 segin si x?"1/2 = +1en F,.
Conviene extender (%) a todo F, definiendo <%> =0.

Observacion.

(a) Six=x'en F), uno escribe (%) = (’i/>
o v () 5) - (3)

2.1.1. Foérmulas complementarias

Para calcular <§> parax = 1,—1,2, vamos a introducir las siguientes funciones.

Si n es un entero impar, sea €(n) y @(n) los elementos de Z /27 definidos de la siguiente manera

—1 in=1 5d 4
e(n)=" (méd 2) = {05 = (mod 4)
2 Isin=—-1 (médd 4)

Osin=+1 (mdd 8)
lsin=45 (mdd 8)

o(n) = 8‘ (méd 2):{

Notar que la funcion € es un homomorfismo de (Z/47)* en Z/27. De la misma manera ®
es un homomorfismo de (Z/8Z)* en Z/27.

Teorema 2.2.
o (1)1
() () = (=1
() (2) = (e

Demostracion. Demostremos (¢) ya que (a) y (b) son inmediatos. Si & denota una raiz primi-
tiva 8-ésima de la unidad en un cuerpo Q donde estén todas las raices 8-ésimas de la unidad, el

— 1 yar 2 _ 2 _ (0412 _ at+20%41 _ —1+1420°
elemento y = o+ o verifica que y~ =2 ya que y~ = (%= )" = F—5— = =75, esto
se debe a que a* = —1. Como estamos en un cuerpo de caracteristica p por 1.1 tenemos que

yP = a? + o~ P. Notar que si p = a+ 8 donde 8 son miltiplos de 8 tenemos que y” = o+ ot~ ¢,
en nuestro caso nos interesaa = 1 y a = 5 porque si a = 1 entonces y” = a + a = vy de este

modo (%) =yl =1,
Si a =5 tenemos que ¥ = o’ + a > = —(a+a~!) = —y y de esta manera (%) = yr~1 =
—1. O
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2.1.2. Ley de reciprocidad cuadratica de Legendre y Gauss

Usando el criterio de Euler podemos conseguir otros criterios para el simbolo de Legendre.
Vamos a escribir las unidades de F, de la siguiente manera U (F),) = {—(p—1)/2,...,-2,—-1,1,2,...,(p—
1)/2} =NUPdonde P={1,2,...,(p—1)/2} y podemos escribir N = —1P.

Proposicion 2.2.1 (Criterio de Gauss). Con la notacién usada anteriormente, si kP NN tiene v

elementos entonces (%) =(—=1)"

Demostracion. Si k es una unidad, los elementos kP son distintos por lo tanto |kP| = |P|, es
mas, si a,b son elementos distintos de P, podemos tomar 0 < a < b < (p—1)/2 y no puede
ocurrir que ka = r y kb = —r ya que esto implicaria que k(a+b) = 0 y como k es unidad
entonces implicaria que (a+ b) es divisible por p, contradiciendo que a,b < (p—1)/2. Ademds
los elementos de kP = {*1,...,+£(p —1)/2}, luego el nimero de elementos negativos es el
nimero de elementos de kP en N por lo tanto k-k2---k(p—1)/2=(£1)--- (£(p—1)/2) luego
k(P=1/2 = (~1)" donde v = [kP NN/, por lo tanto kP~1)/2 = (=1)" (méd p) y aplicando el

criterio de Euler obtenemos que % =(—-1)". O

Gracias a este criterio podemos calcular las formulas complementarias de otra forma.

Proposicion 2.2.2.

(a) <’71) = (—=1)(P=1/2 Juego —1 es residuo cuadratico médulo psiy solosi p=1 (méd 4)

(b) (%) = (- 1)(172_1)/8, luego 2 es residuo cuadratico médulo p siy solosi p=+1 (méd 8)

Demostracion. (a) —1P = N, entonces | —PNN|=p—1/2.

(b)2P=2,4,....,p—1,luego v=[2SN(-S)| = pT_l —rdonde r es el entero mds grande tal que

2r < pT*I Ahora la demostracion se divide en dos casos:

_ p—1 _p=1_ p-1 p—1 2\ _
= L~ por lo tanto, v = 55— — & = Z— de este modo (—) =
7P ’ 2 3 i »\p

Caso 1. pT_l es par y 2r
(_1)(p—1)/4

Caso 2. prl es impar y 2r = prl — 1, por lo tanto, v = prl — prl —1—% = pTH, de este modo,
(%) — (—1)p1/A

Podemos unir estos dos casos notando que en el primer caso (p — 1)/2 es par si y solo si
(p+1)/2 es impar y elevar (—1)" a una potencia impar no lo cambia. Luego tenemos para el
caso 1 que

(%) = [(_1)(p—1)/4](p+1)/2 — (_1)(172—1)/8
p

Para el caso 2. se sigue el mismo procedimiento pero elevando a una potencia impar (p —
1)/2. ]

Teorema 2.3 (Ley de reciprocidad cuadrética de Gauss y Legendre). Si p y [ son primos impares
distintos, entonces (é) = (&) (- 1)(p=Dl=1)/4

Demostracion. Gracias al criterio de Gauss 2.2.1 (%) = (—1)" donde v es el nimero elementos

1 <a < (p—1)/2 tal que existe un elemento b que satisface al = bp+r donde —p/2 < r < 0.
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Ademads tiene que haber por lo menos una b para cada a, luego podemos reescribir v como el
niimero de pares (a,b) que satisfacen (despejando r)

I<a<(p—1)/2

—p/2<al—bp <0

De estas dos expresiones podemos deducir que
bp<al+p/2<(p—1)/2+p/2<pl/2+p/2=p(I+1)/2

luego b < (I+1)/2 y de —p/2 < al —bp < 0 obtenemos que b > 1, y por lo tanto 1 < b <
(I—1)/2, como esta desigualdad es consecuencia de los requisitos de v podemos afiadirlo como
otro requisito y de esta manera podemos cambiar los lugares de a y b y obtener que (%) =(—1)H
donde u es el el nimero de pares (a,b) que satisface

1<a<(p—1)/2

1<b<(I-1)/2
—1/2 < bp — al < 0 que se puede escribir como 0 < ag—bp < 1/2

Como [/ y g son dos primos distintos de los dos primeros requisitos obtenemos que al —bp # 0
luego v+ p es el nimero de pares (a,b) que satisfacen

I<a<(p-1)/2

1<b<(i—-1)/)2
—p/2<al—bp<l1/2

Ahora (%) (%) = (—1)""H luego el problema se reduce a encontrar el valor de v+ ¢ médulo 2.

SeaR={(a,b) € Z*[1<a<(p—1)/2,1<b<(I—1)/2} porlotanto |R| = (p—1)(I—1)/4.
Partimos R en tres subconjuntos

Ri ={(a,b) € Rlal —bp > —p/2}

Ry, ={(a,b) eR|—p/2 <al—bp <1/2}
R3 ={(a,b) €R|l/2 < al —Dbp}
Notar que R; es el conjunto de soluciones que cumple los requisitos que queremos, luego |Ry| =
v+ u. Sea f : Z? — 7? la aplicacién dada por f(a,b) = ((p+1)/2—a,(l+1)/2 —b) luego
restringiéndola a f : R — R3 tenemos una biyeccidn, entonces, |R|| = |R3| y obtenemos que
|R| = |Ri|+|R2|+ |R3| = |R2| (mdd 2) y esto implicaque (p—1)(I—1)/4 =v+ u y obtenemos
que () (é) — (=1)e=DU-1/4, 0

Esta ley motiva la siguiente observacion.

Observacion (Origen del nombre de reciprocidad). Escribimos [Rp si [ es un cuadrado (méd p),
que es lo mismo que / sea un residuo cuadratico médulo p y de lo contrario [N p.
El teorema de Gauss quiere decir

IRp<= pRlsipol=1 (mdd 4)
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Que da el nombre de reciprocidad porque / sea un residuo cuadratico médulo p si y solo si
p sea un residuo cuadratico médulo /. Esta ley de reciprocidad cuadraitica fue formulada por
Legendre y Gauss, aunque hemos visto en la introduccién que su primera formulacion fue hecha
por Fermat, que es la mas conocida. Ademads, Gauss fue la primera persona en demostrar esta
ley.

IRp< pNlsipol=—1 (méd 4)

Si tenemos que calcular que un numero k es un residuo cuadratico médulo m:

(a) Factorizaremos en primos m, gracias al teorema chino de los restos 1.7 y tendremos que
ver si k es residuo cuadratico para cada primo de la factorizacion de m.

(b) Si alguno de los factores primos es 2, debemos mirar si 2¢ es la mayor potencia de 2 que
divide a m y tenemos tres casos:
= Sie =1 cualquier k es cuadrado.
= Sie=2debemos ver que k =1 (méd 4).
= Sie >3 debemos ver que k=1 (mdd 8).
(c) Para los factores primos impares aplicando las propiedades del simbolo de Legendre para

ir calculando simbolos de Legendre para primos més pequefios y en ultimo caso aplica-
mos los criterios de Euler y Gauss.






Capitulo 3
Cuerpos p-adicos

A partirde Z Vn > 1, sea A, = Z/p"Z el anillo cociente de Z de clases de enteros (mdd p”).
Los elementos de A, son de la siguiente forma x;, = x,, + (p") con x, € Zy (p") es ideal de los
multiplos de p".

Tenemos el siguiente diagrama conmutativo.

Z Y Z)p 7
A
Z/p"Z

Donde los morfismo que salen de Z son las proyecciones canénica y como p"Z C p" 7 =
Kery ya que p" es multiplo de p"~! entonces por 1.3 tenemos las ¢,. Recordemos que este
homomorfismo

On:Ap— Apy

lleva x+ (p") — x+ (p"~!) donde x € Z. Ademds, es suprayectivo y su kernel es p"~'A,,.

Definicion. Z, es el limite proyectivo del conjunto de (A;) con los homomorfismos ¢;. Recor-
demos que esto significa que X = (..., %,,Xy—1,...,%1) € Z, con X, € A, si y solo si ¢,(%,) =
Xpn—1 € Ap—1-

Es anillo por lo visto en 1.8.1.

Sea g, : Zy — A, la funcidn que asocia a un entero p-adico X su componente n-€sima X,

Proposicion 3.0.1. Z C Z,,

Demostracion. La aplicacién de Z en Z, dado por a — a tal que g,(a) = a+ (p)" es un ho-
momorfismo y si 0 < |a| < p" se tiene g,(a) # 0 luego a # 0 y por tanto la aplicacién es
inyectiva. 0

Hemos visto que @, lleva x + (p") — x+ (p"~!) también podemos escribirlo de la siguiente
manera x,, + (p") — x,_1 + (p"~ ') donde x,_ es el resto que queda de dividir x, entre (p"~ 1),
esto se llama representacion p-ddica. A continuacion, vamos a ver cuatro ejemplos de represen-
taciones p-adicas.

Ejemplo. (a) Escribamos 103 como entero 3-adico, primero tenemos que encontrar la po-
tencia de 3 inmediatamente inferior a 103. De esta manera, la potencia inmediatamente
superior a la que hemos tomado serd mayor que 103 y no necesitamos calcular el resto,

11
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esto también ocurrird para todas las potencias mds mayores. Para la potencia inmediata-
mente inferior en nuestro caso 3* = 81 calculamos el resto de 103 entre 81 que es 22,
vamos desciendendo potencias si el resto que hemos calculado es mayor que la siguiente
potencia mas pequeia aplicamos el algoritmo de la division para calcular el resto y, en el
caso que sea més pequefio se deja asi. Luego nos queda de la siguiente forma:

103 = (..., 1034 (3%),103 4 (3°),22+ (3%),22+(3%),4 + (3%),1+(3)).

(b) Escribamos p en Zp, que serd p=(...,p+ (p°),p+ (p°).p+ (p*).p+ (p*), p+ (p?),0).

(b) Escribamos 1 en Z, que serd 1 = (..., 1+ (p%), 14 (p°), 1+ (p*), 1+ (p?), 1 + (p?),1 +
(p))

(b) Escribamos 0 en Z, que serd 0 = (...,0+ (p®),0+ (p°),0+ (p*),0+ (p*),0+ (p?),0)

Proposicion 3.0.2. Sea x € Z,, la aplicacion que lleva x — px multiplicar por p coordenada a
coordenada es un homomorfismo inyectivo del grupo aditivo.

Demostracion. Como podemos poner p como entero p-adico y la multiplicacion es coordenada
a coordenada, vemos que p(x+y) = px+ py por lo tanto homomorfismo. Podemos usar la
notacion de p-ddico como la de entero indistintamente porque la multiplicacion es coordenada
a coordenada. Veamos que es inyectiva, sea X € Zj, tal que px = 0, y veamos que x = 0; es decir,
que X, = 0 Vn.

Sabemos que 0 = pXp+1 = pxpi1+ (pn—i—l ), es decir, p"|x,+1, asi que %, = Ppi1 (Xny1) = X1 +
(p") =0y como era un n cualquiera por lo tanto son todos 0. 0

Veamos como son las unidades de Z -
Proposicion 3.0.3. x € Z, no es unidad < Jy € Z, tal que x = py.

Demostracion. (<) Inmediato porque si X = py tiene por lo menos un cero ya que X; = py; y
%1 = py1 + (p) = 0 es miiltiplo de p y entonces no puede ser unidad.

(=)Las unidades de A, son los elementos coprimos con p, luego si %, € A, no es una unidad,
entonces 3y, € A, tal que X, = py,. Si esto ocurre para un n se cumple para los siguientes.
Para un n+ 1 se tiene %, = X, 1 + (p"1) tal que ¢,(Xui1) = X0p1 + (") = pyu + (") y
Xp41 — pyn €s multiplo de p" luego x,4; es miultiplo de p y por induccién lo tenemos para
cualquier m, entonces X = py. O

Veamos que es un dominio de integridad, es decir, que no hay divisores de cero.

Proposicion 3.0.4. Si U denota el grupo de elementos invertibles de Z,, todo elemento no nulo
de Z, puede escribirse de manera unica de la forma p"u donde u € U (Un elemento de U se
llama unidad p-ddica) y n > 0.

Demostracion. Por lo visto en 1.8.1 para que Z, tenga una unidad es suficiente tenerla en
HnZ] An

Tenemos dos casos que ya sea una unidad y en ese cason =0 o que no. Seax €U y x # 0,
entonces, existe un n lo mas grande posible tal que &,(x) =%, =0y &,11(X) = X,+1 # 0 es
decir, x,, es multiplo de p” y todos los demds también lo serdn, luego x = p"u donde u no es
divisible por p luego es una unidad. ]

Como para todo elemento no nulo x € Z, X = p"u, si tomase otro elemento de Z, y lo
multiplicase no podria ser 0 porque la multiplicacion de dos unidades no puede ser O.
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Observacion. Si / es un ideal propio de en Z,, contiene elementos de la forma p"u para algin
n € N. Sea n € N lo mds pequeio posible tal que existe p"u € I, entonces, p" €[y siy el
y = p™u se tendrd que m > n, luego y € (p") y se tiene la igualdad. Luego los ideales de Z, son
de la forma (p") y por lo tanto todos los ideales son principales y Z, es un dominio de ideales
principales. Ademads, para cualquier n € N (p") C (p) luego este es el dnico ideal maximal y
Z,, es un anillo local.

Esta proposicién motiva la siguiente definicion.

Definicién. Sea x un elemento no nulo de Zj,, escribimos x en la forma p"u donde u € U. El
entero n se llama valoracion p-adica de x y se denota como v, (x), es decir, cual es la primera
posicion que es 0 en la secuencia Extendemos la definicién al cero v,(0) = 4o y tenemos las
siguientes propiedades

vp(xy) =vp(x) +v,(y)
vp(x+y) > inf(vp(x),vp(y))

Definicion. El cuerpo de nimeros p-ddicos, se denota por Q,, es el cuerpo de fracciones del
anillo Z,,, es decir, el cuerpo mas pequefio que contiene al dominio de integridad Z,,.

Ahora nos encontramos en el mejor caso posible, tenemos conmutatividad, asociatividad, ele-
mentos neutros y todos los elementos tienen inverso para la suma y la multiplicacion y distribu-
cidn respecto de la suma.

Todo elemento x € Q; puede ser escrito de forma tnica como p"udonden € Zyuc Uy
n € Z que es una evaluacion p-adica. Por lo tanto v, (x) > 0 siy solo si x € Z,,.






Capitulo 4

El grupo multiplicativo (Q, y Ecuaciones
p-adicas

4.1. Grupo multiplicativo de Q,

€, :U — U(A,) es un homomorfismo suprayectivo de grupos multiplicativos. Si llamamos
U, al nicleo del homomorfismo, es decir, es de la forma U, = 1+ p"Z,, se tiene que U JUy ~
U(A,) luego para todo n, |U /U,| = p"~!(p—1) ver 1.7.1. En particular

\U/Ui|=(p—1)
Para cada n se tiene que U;/U, es un subgrupo de U /U, luego es finito y aplicando 1.5
U/Un n=1(p—1 ) -
‘UI//UH‘ =|U/Ui|=p—1luego W = p— 1y se tiene que |U; /U,| = p"~ .

Observacion. En U; no hay elementos distintos de 1 de orden divisor de p — 1. Supongamos
que existe 1 £ x € U; de orden divisor de p — 1. Por ser distinto de 1, existe n tal que x ¢ U,, y
el orden de xU, en U; /U, es a la vez divisor de p — 1 y potencia de p, luego no puede ser.

Proposicién 4.0.1. U =V x U; donde V = {x € U | x’~! = 1} es el tnico subgrupo de U
isomorfo a F);

Demostracion. Para cada n, como U(A,) tiene orden p"~!(p — 1) por la proposicién 1.1.(a)
hay un tnico subgrupo V,, de orden p — 1 y que contiene a todos los elementos de orden divisor
de p—1.

Las correspondientes restricciones de ¢, son homorfismos V,, — V,,_; suprayectivos . El limite
proyectivo es un subgrupo V de U cuyos elementos tienen orden divisor de p — 1 y tiene al
menos p — 1 elementos.

Por la observacion anterior VN U; = 1y se tiene por 1.4 que

U xV
U,

V ~

<U/U 4.1)

y por los érdenes se tiene la igualdad U = U x V. [
Corolario 4.0.1. El cuerpo Q, contiene a las (p — 1) raices de la unidad.
Observacion. El grupo V se llama el el grupo multiplicativo de representantes de los elementos

de F;'

15
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Lemad.1. Seaxc U, — U, 1donden>1sip#2yn>2sip=2entonces x’ € U, 1 —Uy,is.

Demostracion. Por hipétesis x = 1 + kp™ con k % 0 (mod p) y por el binomio de Newton sera
xP = 1+kp" T 4. kP p™ y sus exponentes en los términos que nos hemos escrito son > 2n+ 1,
por lo tanto también > n+ 2. Ademads, np > n+2, yaque n > 2 si p = 2. Esto nos muestra que
xP = 1+kp"t! (méd p"*?) por lo tanto xP € U,y — Upa.

[

Proposicion 4.0.2.
(a) Si p # 2, entonces U es isomorfo a Z,,.
(b) Sip=2,U; ={£1} x U,y U, es isomorfo a Z,.

Demostracion. Consideramos primero el caso p # 2. Elegimos un elemento o € U; — Uy, to-
mamos & = 1+ p. Por el lema 4.1, tenemos que o’ € U, — Us, luego elevando sucesivamente
a p tenemos que o € Upy1 — Upys.

Queremos ver que U; /U, es un grupo ciclico, ya sabemos que su orden es p"~!

, sea oy, la ima-
gen de o en Uy /Uy, es decir, o, = oU,, entonces, (ozn)l’"f2 ceU, 1—U,y (ocn)l’"f1 ceU,— U1,
luego (Ocn)l”"_2 #lenU, /U,y (Ocn)l”n_I = 1 en U, /U,. Luego U, /U, es ciclico y generado por
&, Ahora denotamos por 6, el isomorfismo z — & de Z/p"~'Z en Uy /U, como U} /Uy, es ci-
clico la isomorfia es inmediata . El siguiente diagrama es conmutativo, donde y;,, es multiplicar
por p.

9n+l,a
(Z/p"Z,+) —— U1/Upss

o | v

(Z)p"'7,+) 9—’ Ui /Uy

n,o

De este modo tomando el subconjunto del anillo de producto directo [],>; A, tal que six, € A,,
entonces ¢, (X,) = (¥,—1, que sabemos que dicho conjunto es Z,. Por otro lado, tomando el
subconjunto del grupo producto [,,~; U1 /U, tal que si x € U; /U, entonces W, (x) = 0,1 o(x) €
U /U,_1, este subconjunto serd subgrupo y sera Uy, luego los 6, o define un isomorfismo 6 de
Z, en U} y tenemos probada la primera parte.

Suponemos ahora que p = 2, elegimos a € Uy — Us, esto es @ =5 (mdd 8). Definimos los
siguientes isomorfismos

6no:2/2" 27 — Uy /U,

Por lo tanto el isomorfismo 60y, : Z; — U,. Por otro lado, el homomorfismo U; — U /Uy =7./27
induce un isomorfismo de {£1} en Z/27Z y de aqui obtenemos que U; = {£1} x U, O

Teorema 4.1. El grupo Q) es isomorfo a Z X Zp x ZL/(p — 1)Z si p # 2. Si p = 2 es isomorfo
al X Ty x7]27.

Demostracion. Todo elemento de Q, puede escribirse de forma dnica como x = p"u donde

n€Zyué€U.Porlo tanto, Q), = (Z,4+) x U, es mas, por la proposicién 4.0.1 prueba que U =
V x Uy, donde V es ciclicade orden p—1 y la estructura de U; nos la da la proposicion 4.0.2. [
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4.2. Cuadrados en Q,

Teorema 4.2. Suponemos p # 2y x = p"u un elemento de Q,, donde n € Zy u € U. x es un
cuadrado si'y solo si esan es pary la imagen de ii de u en Fy =U /U, es un cuadrado.

Demostracion. Descomponemos u de la forma u = vuy donde v € V' y u; € U; juntando el
teorema 4.1 y la proposicion 4.0.1 tenemos que Q), = Z x V x U, y al elemento x le corresponde
(n,v,ur). x es un cuadrado si y solo si n es par y v y u; son cuadrados. pero U es isomorfo a
(Z,,+) para saber si u; es cuadrado tenemos en cuenta que el isomorfismo transforma u? — 2a
y 2 es invertible en Z,, entonces todos los elementos de U; son cuadrados. como V' es isomorfo
a FI;‘ se sigue el teorema. [
Observacion. La condiciéon que dice que la imagen de & de u en F; = U /U es un cuadrado
significa que <1%> =1.

A partir de ahora nos referiremos a (%) también como (%) .

Corolario 4.2.1. Si p # 2 el grupo Q,/ Q;k,z es un grupo de tipo (2,2) que tiene como represen-
tantes {1, p,u, pu} donde u € U tal que (%) =—1.

Teorema 4.3. x = p"u de Q} es un cuadrado siy solo sin es paryu=1 (moéd 8).

Demostracion. La descomposicion U = {41} x U, nos dice que u es un cuadrado si y solo si
u € Uy y es un cuadrado en U,. Ahora el isomorfismo 6 : Z; — U, construido en la demos-
tracion de la proposicion 4.0.2 lleva 2"Z, a U, 4,. Tomando n = 1 vemos que el conjunto de
cuadrados de U, es igual a Us, por lo tanto un elemento u € U es un cuadrado si y solo si es
congruente a 1 médulo 8. ]

Corolario 4.3.1. El grupo Q3/ Q;z es un grupo de tipo (2,2,2) que tiene como representantes
{+1,45,+2,+10}

Observacion. Para p =2 definimos €, @ : U /U3 — Z /27 esto nos lleva a las formulas

1 in=1 od 4
(mod 2) — Os%n (mod 4)
2 Isin=—-1 (méd 4)

n®—
o(n) = !

Osin=+1 6d 8
(mod2) =14 " (m6d 8)
lsin=45 (mdd 8)

€ define un isomorfismo de U /U, en Z/27 y ® define un isomorfismo de U,/Us en Z /2.
Por lo tanto el par (€, ) forman un isomorfismo de U /U3 en Z /27 x Z/2Z. En particular una
unidad 2-ddica es un cuadrado si y solo si €(z) = o(z) = 0.

4.3. Ecuaciones p-adicas

Vamos a introducir la siguiente notacion.
Si f € Zp[X1,..., X es un polinomio suyos coeficientes en Zj, y si n es un entero > 1, denota-
mos como fj, el polinomio con coeficientes en A, se deduce de f por reduccién (méd p").

Proposicion 4.3.1. Sea () ¢ Zp(X1,...,Xm) polinomios con coeficientes enteros p-adicos. Los
siguientes resultados son equivalentes:
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(a) Los fU) tiene un cero comtn en (Z,)".

(b) Vn > 1 los polinomios f,gi) tiene un cero comun en (A,)".

Demostracion. La aplicacion €, : Z, — Ap. Sea f € Zp[x1,...,xm) si f(X1,...,Xm) =0, enton-
ces,0=¢&,(f(X1,---,Xm)) = &(f)(&n(X1),---, € (Xm)) = fu(€:(X1),...,€(Xm)). Luego, los f;

tienen un cero comdn en (A,)™.

Reciprocamente llamamos D,, el conjuntos de ceros comunes de f,gi), D, C (Ap)™ Aplxy,. .. xm) —
Ay—1lx1,. .., x| dado por f, — ¢,(fn) = fu—1. Si fn(xy,...,%,) = 0, entonces:
Foc1 = 0u(f2)(0n(x1),. .., 0n(%m)) = O0luego ¢, : D, — D, sead, € D,,d, = (d},...,d™). To-

mamos el subanillo del producto directo de anillos [];»| D; donde ¢, (d,) =dy—1 = (d} 4,...,d™ )
y lo llamamos D que es el conjunto de ceros comunes en (Z,)™. D es no vacié porque los D;
son finitos. 0

Definiciéon. Un punto x = (x,...,x,,) de (Z,)™ se llama primitivo si uno de los x; es invertible,
es decir que no sea divisible por p. Uno define de manera similar los elementos primitivos de
(An)"™.

Proposicién 4.3.2. Sea f\) € Z »X1,...,Xn] polinomios homogéneos. Los siguientes resultados
son equivalentes:

(a) Los f) tiene un cero comtn no trivial en (Q,)".
(b) Los f) tiene un cero comtin primitivo en (Zp)™.

(c) Vn > 1 los polinomios f,gi) tiene un cero comdn primitivo en (A,)™.

Demostracion. Notar que solo hay que probar la equivalencia de (a) y (b) porque la de (b) y (c)
esta probada por la proposicién anterior.

(b) = (a) es trivial por la definicion de primitivo.

(a) = (b) six = (x1,...,x,) es un cero comin de £, ponemos

h=inf(vp(x1),....vp(xa)) y y = p
Esta claro que y es un elemento primitivo de (Z,)™. O

Teorema 4.4 (Chevalley-Warning). Sea g una potencia de un primo p, y sean fi(xi,...,xy) €
Fy[X1,...,Xum| polinomios cumpliendo que Y gr(f;) < m. Sea D el conjunto de ceros comunes
de los fi en F}, entonces [D| =0 (mdd p).

Demostracion. Pongamos P(xy,...,xy,) = [1(1 — fiqfl). Notamos que Va € F, a4~ ! =1, se
tiene
0si(x1,...,xn) €D

Isi(xg,...,xn) €D

P(xl,...,xm)z{

es decir P es la funcién caracteristica de D.
Pongamos para i € Fy[xy,...,x;], s(h) = ¥ cpih(x), como P es la funcién caracteristica de
q

D,entonces, s(P) serd la cantidad de elementos de F; que hay en D, entonces, se tiene que

|D| = s(P), con lo que basta ver que s(P) = 0.

Ahora P es combinacién lineal de monomios x{, ..., x% con @ + -+ 4, < gr(P) < (L gr(f}))(q—
1) < m(g—1). Por lo tanto basta ver que s(x{",...,x%") =0 si @ + -+ &, < m(q—1)

luego basta ver que s(x{',...,x%) =0 si o; < ¢ — 1 para algin i. Pero, s(x{",...,x%") =
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s(xpr) e (x%n) y basta ver que s(x') =0 si I < g— 1. Ahora, sea H = {x'|x € F/}, H es
subgrupo de F y s(x') = ¥y x. Por otro lado, como [ < ¢ — 1, H # 1 luego 3y € H distinto
de 1y s(x!) = Yyenx = Yoeyyx = ys(x') luego (1 —y)s(x') = 0y como (1 —y) # 0, entonces
s(x') =0. O

Notar que gracias a 4.3.2 el resultado es equivalente en (Z,)" y (Q,)".

Corolario 4.4.1. Sea f un polinomio con m variables en F},, Z, 0 Q,, si gr(f) <m'y f no tiene
término constante entonces, f(xi,...,X,) = 0 tiene al menos una solucién no trivial para cada
primo p.






Capitulo 5

Simbolo de Hilbert

En este capitulo nos vamos a referir como K tanto a Q, como a R.

5.1. Definicion y primeras propiedades

Definicién (simbolo de Hilbert). Sea a,b € K*, entonces, (a,b) = 1 si z> — ax? — by* = 0 tiene
una solucién no trivial en K3 en otro caso (a,b) = —1.

Al niimero (a,b) = £1 se le llama simbolo de Hilbert de a y b relativo a K.

Esa claro que (a,b) no cambia cuando a y b son multiplicados por cuadrados. Por lo tanto el
simbolo de Hilbert define una aplicacién K*/K*? x K* /K*? — {£1}

Proposicion 5.0.1. Sea a,b € K*, B laraiz cuadradade by K, = K(B). (a,b) = 1 siy solosia
pertenece al grupo NK;, de norma de los elementos de K.

Demostracion. Si b es un cuadrado de un elemento ¢, la ecuacién z2 — ax? — by2 = 0 tiene

(¢,0,1) como solucién por lo tanto (a,b) = 1 y la proposicién es clara en es sentido como Kj, =
K y NK; = K*. Por otra parte, K}, es cuadritico sobre K, todo elemento & € K}, puede escribirse
como & = z+ By donde y,z € K y la norma N(&) de & es igual a z> — by? ya que tendriamos
los ismorfismos identidad y 6(B) = —B y entonces N(&) = (z+ By)(z — By) = 2> — by>. Si
a € NK;, entonces Jy,z € K tal que a = z> — by? por lo tanto la forma cuadritica z2 — ax® — by?
tiene un cero en (z,1,y) y tenemos (a,b) = 1. Reciprocamente si (a,b) = 1, esta forma tiene un
cero no trivial . x £ 0 ya que de lo contrario b seria un cuadrado. De aqui obtenemos que a es la
norma de £+ 2. O

Proposicion 5.0.2. El simbolo de Hilbert satisface las siguientes propiedades:

a,b) = (b,a) y (a,c*) = 1.

Demostracion. (a) Cambiar los papeles de a y b no cambian que tenga solucion no trivial. Si
b = ¢? entonces tiene un cero en (1,0,1/c).

(b) Si b = —a entonces tiene un cero en (0,1,1) ysib=1—alo tiene en (1,1, 1), por lo tanto
ambos simbolos de Hilbert son 1.
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(c¢) Usamos 5.0.1 para probarlo. Sabemos que la norma del producto de dos elementos es el pro-
ducto de sus normas luego NK/(aa') = NK,(a)NK,(d'), esto nos lleva a la siguiente ecuacion

(a,d") =1 NKy(a)NKy(d') =1 < NKy(a)NKy(d') = NKy(d') ™!

Esto nos dice que (ad’,b) = (a,b)(d’,D) y si (a,b) = 1 entonces (ad’,b) = (d’,b).
(d) Se sigue de las tres anteriores. [l

Teorema 5.1.

(a) Si K =R, tenemos que (a,b) =1siaobes >0y (a,b)=—1sia,b<0

[N 0 4
(b) Si K = Q) y si escribimos {Z N pﬁu donde u,v € U. Tenemos que:
B o
(@) = (-0 (4)7 (L) i p 22
p p

(a,b) _ (_1>€(u)£(v)+aw(v)+ﬁw(u) si p= o)

Para demostrar este teorema tendremos que introducir antes una serie de resultados que nos
ayudaran en la demostracion.

Teorema 5.2. El simbolo de Hilbert es una forma bilineal no degenerada en el F>-ev K* /K *2,

Demostracion. Notar que la bilinealidad viene de que (ad’,b) = (d’,b)(a,b) y que (a+b,c) =
(a,c)+ (b,c) esto se sigue de que la suma de las ecuaciones 7> —ax?> —by> =0y (7)> —a(¥')? —
b(y')? = 0 tiene solucién notrivial si las originales la tenfan, el que sea no degenerada quiere
decir que si b € K* tal que (a,b) = 1 Va € K* uno tiene b € K*2. O

Corolario 5.2.1. Si b no es un cuadrado, el grupo NK; definido en la proposicién 5.0.1 es un
subgrupo de indice 2 en K* .

Demostracion. El homomorfismo ¢, : K* —— {£1} definido por ¢,(a) = (a,b) tiene como
niicleo NK;; por la proposicién 5.0.1. Es mds ¢y, es suprayectiva porque (a,b) es no degenerada.

Por lo tanto por el primer teorema de isomorfia ¢, define un isomorfismo K* /NK;; — {£1}.
O

Lema 5.1. Seav € U. Si la ecuacién z2 —ax* — by*> = 0 tiene solucién no trivial en Q,,, entonces

tiene una solucion (z,x,y) tal que z,y € U y x € Z,,.

Demostracion. Por la proposicion 4.3.2 la ecuacién dada tiene una solucién primitiva (z,x,y).
Veamos que esra solucioén tiene la propiedad deseada.

Reduccion al absurdo: Suponemos que no tiene dicha propiedad, entonces tendriamos y = 0
(méd p)oz=0 (méd p),comoz’—vy>=0 (méd p)yv#0 (méd p), tendremos tanto y = 0
(méd p) y z=0 (méd p). Por lo tanto, px> =0 (méd p?) que significa que x =0 (méd p)
que es contrario al cardcter primitivo de (z,x,y). [

Demostracion Teorema 5.1. El caso K = R es trivial. Notar que K* /K*? es un campo vectorial
de dimension 1 sobre el cuerpo F; con {£1} como representantes.

Primero suponemos que p # 2. Esta claro que los exponentes & y 8 vienen solo por su residuo
médulo 2, luego o, B € {0,1}; Por la simetria del simbolo de Hilbert, solo hay tres casos que
considerar:
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1)

2)

3)

o =0, B = 0. Debemos comprobar que (u,v) = 1. Ahora la ecuacion:

zz—uxz—vyZ:O

Tiene solucién no trivial médulo p por 4.4.1. Por lo tanto (u,v) = 1.

o =1, B = 0. Debemos comprobar que (pu,v) = (;‘;) Como (u,v) = 1 tenemos por la

propiedad (c) que (pu,v) = (p,v), esto es suficiente para comprobar que (p,v) = (f}) ya

que si v es un cuadrado, los dos términos iguales a 1.

v 2

En caso contrario <;) = —1. Por lo tanto por el lema 5.1 z2 — ux?> — vy?> = 0 no tiene

solucion no trivial,entonces, (p,v) = —1.

o =1, B = 1. Debemos comprobar que (pu, pv) = (—1)~1)/2 (%) <I—‘;> En base a las
propiedades (a) y (c) del simbolo de Hilbert:

(pu, pv) = (pu, —pu)(pu, pv) = (pu, —p*uv) = (pu,—p*)(pu, pv) = (pu, —uv)

Por lo que acabamosde ver que (pu, pv) = (’7'”) , por lo que el resultado se sigue ya que

<*?1> - (_1)(p—1)/2

Ahora suponemos que p = 2, por lo mismo expuesto anteriormente solo hay tres casos:

1)

2)

o =0, B = 0. Debemos comprobar que (#,v) = 1 si u 0 v es congruente a 1 médulo 4 y
(u,v) = —1 en otro caso. Suponemos primero que u = 1 (méd 4).

Entonces u =1 (méd 8) o u =5 (mdd 8). En el primer caso u es un cuadrado por el
teorema 4.3 y por lo tanto tenemos que (u,v) = 1. En el segundo caso tenemos que
u+4v=1 (méd 8) por lo tanto Iw € U tal que w? = u+4v, la forma z> — ux’> — vy tiene
por lo tanto (w, 1,2) es un cero y tenemos que (u,v) = 1.

Supongamos ahora que u = v = —1 (mdd 4); si (z,x,y) es una solucién primitiva de
72 — ux?> —vy? =, entonces 7> + x> 4+y?> =0 (méd 4); pero los cuadrados Z/47Z son 0 y
1, esta congruencia implica sque x,y,z =0 (mdd 2), lo que contradice la hipétesis de
primitividad. Por lo tanto, (u,v) = —1.

o =1, B = 0. Debemos comprobar que (2u,v) = (—1)&WEM)+00) Primero veamos que
(2,v) = (—=1)°0) es decir, que (2,v) = 1 es equivalente a v=+1 (méd 8). Por el lema
5.1si (2,v) = 1, entonces 3x,y,z € Z, tal que z> —2x* —vy>* =0y y,2#0 (mdd 8). Pero
los tnicos cuadrados médulo 8 son 0, 1 y 4. De aqui obtenemos que v=+1 (méd 8). En
cambio, si v=1 (méd 8), v es u cuadradoy (2,v) =1;siv=—1 (mdd 8), la ecuacion
72 —2x*> —vy? = 0 tiene (1,1, 1) es una solucién médulo 8 y por el teorema chino de los
restos 1.7 y por la proposicion 4.3.2 tiene también solucién en Qz . Por lo tanto, tenemos
que (2,v) = 1.

Ahora veremos que (2u,v) = (2,v)(u,v), por las propiedades del simbolo de Hilbert,

esto es cierto si (2,v) =1 o (u,v) = 1. El caso que queda es (2,v) = (u,v) = —1, esto
quiere decir que,v=3 (mdéd 8) yu=3 0 —1 (mdd 8); despues de multiplicar u y v por
cuadrados, podemos suponer que u = —1, v =3 o u = 3,v = —5; ahora las ecuaciones

2422 -3y =0y2—6x>+5y>=0

tienen por solucién (1,1,1), por lo tanto tenemos que (2u,v) = 1
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3) a =1, B = 1. Debemos comprobar que (2u,2v) = (—1)EEM)+o)+o() porJas propie-
dades (a) y (b) del simbolo de Hilbert y su binealidad tenemos:

(2u,2v) = (2u,2v)(2u, —2u) = (2u, —4uv) = 2u, —uv)(2u,4) = (2u, —uv)

pero acabamos de ver que (2u,2v) = (—1)EWew)+O-w) v que g(—1) =1, w(—1) =0
y €(u)(1+¢€(u)) =0, el exponente €(u)e(—uv) + o(—uv) = €(u)e(v) + ®(u)+ ®(v). Lo
que prueba el teorema. La bilinealidad de (a,b) se sigue de la férmula dada por este
simbolo, ya que € y @ son homomorfismos. Que sea no degenerado se comprueba por

los representantes {u,2u} donde u = 1,5,—1. De hecho, tenemos que (5,2u) = —1y
(—1,—1) = (=1,-5) = —1.

]

5.2. Propiedades globales

El cuerpo Q es el cuerpo primo, interseccién de todos los subcuerpos, de cada subcuerpo
en cada uno de los cuerpos Q, y R. Si a,b € Q*, (a,b),(respectivamente (a,b)..) denota lo
simbolos de Hilbert de sus imédgenes en Q,, (respectivamente R). Definimos V como el conjunto
de primos junto con el simbolo e y tomamos la convencion de que Q.. = R.

Teorema 5.3 (Ley de reciprocidad de Hilbert). Si a,b € Q*, tenemos que (a,b), = 1 para casi

todosveVy
(a,b), =1

Demostracion. Ya que los simbolos de Hilbert son bilineales, es suficiente para probar el teo-
rema que cuando a o b son iguales a —1 o a un numero primo. En cada caso, el teorema 5.1
nos da el valor de (a,b),.

Da=-1,b=—-1.(-1,-1)e=(-1,-1)y=—1y (—1,—-1), = 1 si p # 2,00. Luego, el
producto es igual a 1.

2) a=—1,b=1donde [ es primo. Si / = 2 entonces (—1,2), =1 Vv e V.
Sil#2entonces (—1,0), =1siv#2,1y (—=1,0)2 = (=1,1); = (—=1)¢")_ El producto es
igual a 1.

3) a=1,b=1 donde [ y !’ son primos, Si [ = I’ entonces por las propiedades del simbolo
de Hilbert tenemos que (/,1), = (—1,1), ¥v € V y estamos en el caso ya estudiado.
Sil#1'ysil’=2,uno tiene que (1,2), =1 parav #2,1y

(1,2), = (—1)°D, (1,2), = <%) = (—1)°" Por el teorema 2.2

Sil#1'#2,entonces, (I,I'), =1parav 211"y
!/

(1,12 = (=1)eDE@) (1 1y, = (17) y (L1 = (%) Por el teorema ??(Gauss)

Entonces (%) (%) = (—1)eWel) Por Io tanto, el producto es igual a 1.
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Observacion. El interés de esta ley de reciprocidad cuadratica viene del hecho de que lo ex-
tiende a todos los cuerpos de nimeros algebraicos.

Teorema 5.4. Los siguientes resultados son equivalentes

(a) Para enteros, coprimos e impares a,b > 0, tenemos que:

(g) _ (g) (—1)a-Do-1)/4

(b) Para enteros impares a,a’,b,b’' > 0, tenemos que:

(()-G) (&)
Cuando a=d (méd 4), b=0b' (méd 4) y (a,b) = (d',b') =1

(c) Ya,b € Q, tenemos que:

H(a,b)p =1

p

Demostracion.

(a) = (b) Es claro ya que (£) (2) = (—1)le=D®=D/*y el segundo miembro depende de que a sea

a
modulo 4 y b sea médulo 4.

(b) = (a) Sia=1 (méd 4), entonces nos dice que (%) (g) = (%) () =1sia=b=3 (méd 4),
= () () =1

entonces, (£) (2) =
(a) < (c¢) Yalo hemos probado en la ley de Reciprocidad de Hilbert.

a

Observacion. El segundo resultado se llama ley de reciprocidad de Eisenstein.

Hay mas leyes de reciprocidad cuadréticas como la de Artin que se generaliza en la llamada
teoria de cuerpos de clases. Por ejemplo el noveno problema de Hilbert que solicita encontrar la
ley de reciprocidad mds general para los residuos de la norma del k-ésimo orden en un cuerpo
de nimeros algebraicos general, donde k es una potencia prima. Para saber méas ver [4] [6].
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