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Summary

In a huge number of countries we live in representative democracies, which means that people do
not make decisions directly but they select political representatives that do it for them. This is done by
holding elections whose aim is to achieve a proportional representation of the citizens. The way these
representatives are elected is portrayed in the different electoral systems. It is very common to divide
the electorate into several electoral districts and then, people vote in each of them to decide who wins
the seats that are distributed.

The first idea that comes to mind in order to allocate the seats is that each party receives the number
of votes it has got divided by the sum of the votes of all the political parties and multiplied by the number
of seats to distribute. This value is known as a party quote i, which obviously does not have to be an
integer number. This is the main problem concerning the apportionment, the fact that when you try to
find an integer number of seats, the exact proportionality is lost. This is why we must be more flexible
concerning the properties required to an apportionment.

The first chapter deals with the problem of how to allocate the seats among the different parties that
stand for elections taking into account, as it could not be otherwise, the votes each party gets. In order
to be done, the concept of apportionment rule must be defined, which is a function that assigns one
or several vectors of seats ( vectors of natural numbers) whose components sum the house size h, to a
vector of any votes ( vector of positive numbers).

A list of basic properties that any apportionment rule must satisfy in order to be considered an
apportionment method is given. One of them is anonymity, which means that if the components of
the vote vector are permuted, the vector of seats you get is also permuted. This property along with
the completeness forces you to allocate more than one possible apportion for some vote vectors. Each
electoral system, logically, uses a process to choose a specific vector of seats.

However, these properties are not sufficient to reach a certain level of proportionality in order to
faithfully convey the voters’ preferences. The idea of proportionality is an intuitive one but, after thin-
king about it, has some difficulties. Thus, more properties related with proportionality that meet the
apportionment method are introduced. Precision refers to keeping the proportions when the house si-
ze is reduced. I present the concept of closeness. It means that parties cannot modify the number of
seats in more than one when the house size increases in one seat and I demonstrate the implications of
proportionality when the number of seats to be distributed tends to infinity.

Several types of monotonicity are named when the number of party votes varies. Moreover, one
monotonicity is referred to when the number of seats increases. Denying the last one is known as the
Alabama paradox.

We finish the first chapter presenting coherent methods and it is proved that they satisfy the mono-
tonicity of seats and the weak monotonicity in votes.

The Hamilton method is introduced in the second chapter. It is the oldest one as well as the easiest to
make. It is close and precise. It is proved that it minimizes the sum of the seats’ distances to the quotes,
which shows that somehow it is the most proportional. However, it is neither weak monotonous in votes
nor seat monotonous, which means that the Alabama paradox may occur. Therefore, it has been deleted
from many electoral systems.

In the third chapter jumppoint and signposts sequences are defined and a rounding rule from them is
made. Signposts sequences (kn) satisfy that kn ∈ [n−1,n] and that an x ∈ [n−1,n] is rounded to n−1 or
n depending on where it is placed before kn or afterwards. Rounding to a sequence that is not a signpost
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sequence is made in an analogous way, always allowing two different possibilities of rounding in cases
such as x = kn.

Rounding rules induce a divisor rule. An apportionment using this type of rules is achieved dividing
the votes vector by a suitable divisor in a way that as we round according to the rounding rule, we get
the number of seats we want to distribute. The divisor rules are almost apportionment methods. The
only property that they may not satisfy is exactness. It is proved that two jumppoint sequences induce
the same divisor rule providing that they are proportional and that there is an apportionment method if
the divisor rule can be made from a signpost sequence.

The classical divisor the Jefferson, the Webster, the Adams, the Hill and the Dean methods are
introduced. The Webster method is described just as it appears in the Electoral German Law. A necessary
condition and a sufficient one is provided so that a divisor rule is precise and it is shown that the classical
divisor methods are precise.

The D’Hondt method used in Spain is not described in the Spanish electoral law as a divisor method.
In the fourth and last chapter an alternative definition of the divisor rules is given and it is proved that
they are equivalent.

An example of apportionment according to the D’Hondt method just as it appears in the Spanish
Electoral Law and according to Jefferson method are included and it is proved that they coincide. Anot-
her example of apportionment according to the Sainte-Laguë method is given and it is compared to the
D’Hondt method.

To conclude the fourth chapter, it is demonstrated that an apportionment method is coherent and
complete if and only if it is a divisor method.

The demonstration of this theorem does not appear until the second edition of [1]. However, we
have completed and clarified some steps of this demonstration. It can also be found in [2] but it is very
confusing and difficult to follow.



Resumen

En una gran cantidad de países vivimos en democracias representativas. Eso significa que la po-
blación general no toma las decisiones directamente sino que elige a unos representantes políticos para
que las tomen en su lugar. Esto se hace a través de elecciones en las que se pretende que haya una
representación más o menos proporcional de la población. La manera de seleccionar a los representan-
tes se describe en los diferentes sistemas electorales. Lo más habitual es dividir al electorado en varias
circunscripciones y después, en cada una de ellas, se vota para decidir quién consigue los escaños que
se reparten.

La primera idea que podemos tener para hacer un reparto es que a cada partido le corresponde el
número de votos que ha obtenido dividido por la suma total de votos a candidaturas y multiplicada
por el número de escaños a repartir. Este valor se conoce como cuota del partido i y, claramente, no
tiene por qué ser entero. Este es el problema fundamental de los repartos, que al buscar un número
entero de escaños perdemos una proporcionalidad exacta. Por ello tenemos que ser más flexibles en las
propiedades que podemos exigir a un reparto.

En el primer capítulo se aborda el problema de cómo repartir los escaños entre los diferentes partidos
que se presentan a unas elecciones, teniendo en cuenta, como no puede ser de otra manera, los votos
que obtiene cada uno. Para ello definimos el concepto de regla de reparto, que es una función que asigna
uno o varios vectores de escaños (vectores de números naturales), cuyas componentes sumen el tamaño
h de la circunscripción, a un vector de votos cualquiera (vectores de números positivos).

Damos una lista de propiedades mínimas que deben cumplir cualquier regla de reparto para ser
considerada un método de reparto. Entre ellas está el anonimato. El anonimato significa que si permu-
tamos las componentes del vector de votos, el vector de escaños que se obtiene, también se permuta.
Esta propiedad junto con la completitud obligan a asignar más de un posible reparto a algunos vectores
de votos. Lógicamente, luego cada sistema electoral tiene un procedimiento para elegir un vector de
escaños concreto.

Sin embargo, estas propiedades no son suficientes para alcanzar un cierto grado de proporciona-
lidad, es decir, que refleje fielmente las preferencias de los votantes. La idea de proporcionalidad es
intuitiva pero resulta tener varias aristas cuando reflexionas sobre ella. Por eso se plantean más propie-
dades relacionadas con la proporcionalidad que pueden cumplir los métodos de reparto y que parecen
razonables. La precisión habla de mantener proporciones al reducir los escaños a repartir. Introduzco el
concepto de cercanía, en el que al aumentar en un escaño el tamaño de la circunscripción ningún partido
puede variar en más de uno su número de escaños, y demuestro que implica la proporcionalidad cuando
el número de escaños a repartir tiende a infinito.

Comentamos varios tipos de monotonía al variar el número de votos de los partidos. Y también una
monotonía al aumentar el número de escaños. La negación de esta última se la conoce como paradoja
de Alabama.

Finalizamos el primer capítulo presentando los métodos coherentes y vemos que cumplen la mono-
tonía en escaños y la monotonía débil en votos.

En el segundo capítulo presentamos el método de Hamilton. Este es el más antiguo y también el
más fácil de construir. Vemos que es cercano y preciso. Demostramos que minimiza la suma de las
distancias de los escaños a las cuotas y esto visualiza que, de algún modo es el más proporcional. Pero
no es monótono débil en votos ni monótono en escaños, es decir, se puede producir la paradoja de
Alabama y por tanto se ha eliminado de muchos sistemas electorales.
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VI Resumen

En el tercer capítulo definimos las sucesiones de pivotes y de guías y construimos una regla de
redondeo a partir de ellas. Las guías son sucesiones (kn) tales que kn ∈ [n− 1,n] y un x ∈ [n− 1,n] se
redondea a n−1 o a n según esté antes de kn o después. El redondeo con una sucesión que no sea guía
se hace de manera análoga, siempre dejando dos posibilidades de redondeo para los casos de x = kn.

Las reglas de redondeo inducen una regla de divisor. Un reparto con este tipo de reglas se obtiene
dividiendo el vector de votos por un divisor adecuado de tal forma que al redondear según la regla
de redondeo obtenemos el número de escaños que queremos repartir. Las reglas de divisor son casi
métodos de reparto, solamente pueden no cumplir la exactitud. Se demuestra que dos sucesiones de
pivotes inducen la misma regla de divisor si son proporcionales y que tenemos un método de reparto si
la regla de divisor se puede construir a partir de una sucesión de guías.

Se presentan los métodos de divisor clásicos, que son: el de Jefferson, el de Webster, el de Adams,
el de Hill y el de Dean. Se describe el método de Webster tal y como aparece en la ley electoral alemana.
Damos una condición necesaria y otra suficiente para que una regla de divisor sea precisa y se ve que
los métodos de divisor clásicos son precisos.

El método D’Hondt, usado en España, no se describe en la ley electoral española como método de
divisor. En el cuarto y último capítulo se da una definición alternativa de las reglas de divisor y se ve
que son equivalentes.

Se pone un ejemplo de reparto según el método D’Hondt, tal y como se describe en la ley electoral
española, y según el método de Jefferson y se ve que coinciden. Se pone otro ejemplo de reparto según
el método Sainte-Laguë y se compara con el método D’Hondt.

Finalizamos el cuarto capítulo demostrando que un método de reparto es coherente y completo si y
solo si es un método de divisor.

La demostración de este teorema no aparece hasta la segunda edición de [1]. Aún así hemos com-
pletado y aclarado algunos pasos de la misma. También se puede encontrar en [2] pero es muy confusa
y difícil de seguir.
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Capítulo 1

Métodos de reparto y propiedades

En una gran cantidad de países vivimos en democracias representativas. Eso significa que la po-
blación general no toma las decisiones directamente sino que elige a unos representantes políticos para
que las tomen en su lugar. Esto se hace a través de elecciones en las que se pretende que haya una
representación más o menos proporcional de la población. La manera de seleccionar a los representan-
tes se describe en los diferentes sistemas electorales. Lo más habitual es dividir al electorado en varias
circunscripciones y después, en cada una de ellas, se vota para decidir quién consigue los escaños que
se reparten. En ambas situaciones se suelen usar métodos de reparto de diferentes tipos.

Para estudiar las propiedades y que no se produzcan situaciones indeseadas hay que afinar las nota-
ciones. En general la mayoría de las definiciones y propiedades estudiadas están en [1]. Hemos estudiado
la segunda edición que mejora y aclara conceptos que en la anterior edición quedaban confusos. Cuando
lo hemos considerado necesario, concretamos y simplificamos o clarificamos conceptos y propiedades
que nos conducen al objetivo de valorar los principales tipos de repartos usados en la actualidad. Sea
h el tamaño de la circunscripción (el número de escaños a repartir) y s el número de partidos, con
h,s ∈ N∗ := Nr {0}. Cada uno de estos partidos obtiene vi votos, con vi ∈ P := {x ∈ R | x > 0}1 tal
que v := (v1, . . . ,vs) ∈ Ps. A cada partido se le asigna un número de escaños que depende del número de
votos. El vector de escaños resultante será a = (a1, . . . ,as) ∈ Ns con a := ∑

s
i=1 ai = h.

Construyamos ahora una función con la que hacer el reparto. Su dominio tiene que tener en cuenta
el número de escaños a repartir h ∈ N∗ y un vector de votos v ∈ Ps sea cual sea el número de partidos
s ∈ N∗, por tanto consideramos la unión de los Ps

V :=
∞⋃

s=1

Ps.

Su recorrido debe tener como elementos conjuntos de vectores de Ns para permitir la opción de que
haya más de un reparto posible.

Denotamos Ns(h) := {(a1, . . . ,as) ∈ Ns | a = h} y Ms(h) := {C ⊂ Ns(h) |C 6= /0} (observemos que
C tiene un número finito de elementos) y ahora podemos definir el recorrido de la futura función:

G :=
∞⋃

s,h=1

Ms(h).

Definición 1.1. [1, pág. 74] Se llama regla de reparto a una aplicación A : N∗ ×V −→ G tal que si
v ∈ Ps y a ∈ A(h,v) entonces a ∈ Ns(h). Al vector a se le denota posible reparto de h escaños y v votos
(a vector de escaños).

Ejemplo 1. Sea A la regla de reparto tal que asigna todos los escaños al último partido de la lista.
Entonces A(h,(v1, . . . ,vs)) = {(0, . . . ,0︸ ︷︷ ︸

s−1

,h)} para todo h,s ∈ N∗ y todo (v1, . . . ,vs) ∈ Ps.

1En un principio podría parecer que basta considerar los naturales pero enseguida se verá la necesidad de usar los racionales
positivos y la completitud de R puede resultar de utilidad más adelante.
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2 Capítulo 1. Métodos de reparto y propiedades

Hay tres parámetros que afectan a un reparto: el número de escaños a repartir, el número de partidos
y el número de votos de cada partido. Vamos a estudiar varias condiciones que puede cumplir una regla
y maneras en las que puede afectar a un posible reparto variaciones de h y de v.

Definición 1.2. [1, págs. 75–77] Un método de reparto es una regla de reparto que cumple las siguientes
propiedades:

Anonimato. Cualquier permutación de un vector de votos se corresponde con la misma permu-
tación de sus vectores de escaños.

Equilibrio. Dos partidos igual de fuertes difieren como mucho en un escaño. Es decir, para
(a1, . . . ,as) ∈ A(h,(v1, . . . ,vs)) entonces se cumple:

vi = v j =⇒ |ai−a j|6 1 ∀ i, j = 1, . . . ,s.

Armonía. Un partido con más votos no puede tener menos escaños que un partido con menos
votos. Es decir, para (a1, . . . ,as) ∈ A(h,(v1, . . . ,vs)) entonces se cumple:

vi > v j =⇒ ai > a j ∀ i, j = 1, . . . ,s.

Decencia. Los posibles repartos de h escaños de los vectores de votos (pv1, . . . , pvs) son los
mismos para todo p > 0.

Exactitud. Cuando h coincide con el número de votos a los partidos entonces el único reparto
posible es que cada partido tenga tantos escaños como votos. Es decir, si v ∈Ns y v = h entonces
se cumple:

A(h,v) = {v}.

Hemos tomado una definición de exactitud más débil que la que aparece en [1, pág.76]. Esta incluye
una condición de completitud como se describe en 1.3 pero solo para los v con componentes enteras.
Estas propiedades dan una base sobre la que construir diferentes distribuciones de escaños pero no dan
una noción de proporcionalidad puesto que permiten repartos extremos.

Ejemplo 2. Construimos una regla de reparto A en la que todos los escaños vayan al partido más votado
salvo en situaciones que hay que tener en cuenta. Si nuestro vector de votos v es de tal forma que existe
un p tal que pv ∈ Ns y pv = h entonces A(h,v) = {pv}. Si no se da esta situación y hay k partidos
empatados a votos en la primera posición calculamos la división euclídea h = kn+ r y repartimos los
escaños de tal forma que r partidos tengan n+1 escaños y k−r tengan n escaños (todas las posibilidades
deben pertenecer a A(h,v)). En cualquier otra situación el partido más votado se lleva los h escaños. Un
reparto así cumple armonía y equilibrio, es anónimo y se cumple la exactitud y la decencia.

Un reparto proporcional perfecto sería aquel en el que para todo v ∈ V existe una constante p > 0
tal que pa = v con {a} = A(h,v). Sin embargo esto es claramente imposible por lo que la idea de
proporcionalidad debe ser menos restrictiva.

Definición 1.3. Propiedades adicionales que puede cumplir un método de reparto:

Precisión. [2, pág. 97] Conserva las proporciones en las distribuciones de escaños al reducir el
tamaño de la circunscripción. Es decir, sea v ∈ Ps, a ∈ A(h,v) si existe b ∈Ns y 1 < n ∈N tal que
a = nb entonces:

A(mb,v) = {mb} ∀m = 1, . . . ,n−1.

Cercanía. Sea (a1, . . . ,as) ∈ A(h,v) y sea (b1, . . . ,bs) ∈ A(h+1,v) entonces:

|ai−bi|6 1 ∀ i = 1, . . . ,s.
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Completitud. [1, pág. 161] [2, pág. 98] Sea v ∈ Ps y (wk)
∞
k=1 ⊆ Ps entonces:

lı́m
k→∞

wk = v y a ∈ A(h,wk) ∀k =⇒ a ∈ A(h,v).

El ejemplo anterior es preciso pero no cercano ni completo.

Ejemplo 3. Sea A un método de reparto preciso tal que para h = 30 y un vector de votos v tenemos que
a = (12 9 6 3) ∈ A(30,v). Como a = 3(4 3 2 1) podemos afirmar que A(10,v) = {(4 3 2 1)} y también
que A(20,v) = {(8 6 4 2)}.

En el capítulo 3 veremos que se pueden construir repartos que no son precisos. La siguiente propo-
sición nos da una idea de la cierta proporcionalidad que cumplen los repartos cercanos.

Proposición 1.4. Sea A un método de reparto cercano, sea v ∈Qs∩Ps y sea ah ∈ A(h,v) entonces:

lı́m
h→∞

ah,i

h
=

vi

v
.

Demostración. Sea w ∈ Qs ∩Ps entonces existe p ∈ N∗ tal que pw = v ∈ Ns con vi > 0. Por decencia
A(h,w) = A(h,v) para todo h ∈ N∗. Por exactitud y por decencia sabemos que A(qv,v) = {qv} para
todo q ∈ N∗. Por división euclídea tenemos que h = qv+ r con q,r ∈ N y 0 6 r < v. Podemos poner
ah,i = aqv+r,i y por exactitud aqv,i = qvi y por cercanía qvi− r 6 aqv+r,i 6 qvi + r. Deducimos que

qvi− v
qv+ v

6
qvi− r
qv+ r

6
aqv+r,i

qv+ r
=

ah,i

h
6

qvi + r
qv+ r

6
qvi + v

qv
.

Es decir, para todo h existe q de tal forma que qvi−v
qv+v 6 ah,i

h 6 qvi+v
qv y h tiende a infinito si q también lo

hace. Y puesto que

lı́m
q→∞

qvi− v
qv+ v

= lı́m
q→∞

qvi + v
qv

=
vi

v
por la regla del sándwich llegamos a

lı́m
h→∞

ah,i

h
=

vi

v
=

wi

w
.

Como estamos considerando solamente métodos de reparto, por tanto decentes, se tiene A(h,v) =
A
(
h, v

v

)
y podemos considerar solamente v ∈V tal que v = 1.

También es habitual considerar las llamadas cuotas [3, pág. 305]. Dados h y v al valor v
h se le

conoce como cuota de (h,v) y se interpreta como el número de votos que «debería» costar un escaño.
Al valor qi := hvi

v se le llama cuota del partido i y q es el vector de cuotas. También, por decencia,
A(h,v) = A(h,q).

Así, según nos interese, podremos considerar solo los v tal que v = 1 o tal que v = h. Un primer
intento para definir la proporcionalidad pasa por considerar que cada a∈ A(h,v) debe cumplir el criterio
de las cuotas [5, pág. 108], que |ai−qi|< 1 o equivalentemente

bqic6 ai 6 dqie ∀ i = 1, . . . ,s. (1.1)

b·c y d·e son la función suelo, parte entera hacia abajo, y la función techo, parte entera hacia arriba. Aquí
aparece el método de Hamilton o de restos mayores en la que su forma de realizar el reparto garantiza
que se cumpla (1.1). Estudiaremos este método en detalle en el capítulo 2.

Fijémonos que en el criterio de las cuotas estamos teniendo en cuenta el número total de votos v, así
que podemos relajarlo si permitimos variar libremente al divisor.

Definición 1.5. Se dice que un método de reparto A cumple el criterio de proporcionalidad si para todo
h ∈ N∗, v ∈V existe un d > 0 tal que para todo a ∈ A(h,v) se cumple⌊vi

d

⌋
6 ai 6

⌈vi

d

⌉
∀ i = 1, . . . ,s. (1.2)
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Cualquier método de reparto debe cumplir el criterio de proporcionalidad para ser considerado pro-
porcional. El criterio de proporcionalidad transmite claramente que la manera de repartir escaños de-
pende de dos factores: de cómo se escoja el divisor d y de la forma de redondear. Es más, formas muy
elegantes de elegir d y el criterio de redondeo nos llevan a los métodos de reparto más comunes en los
que casi todas las definiciones que estamos viendo se cumplen y que veremos en el capítulo 3. Dicho
esto, es fundamental tener en cuenta las demás propiedades para dotar de una estructura a las reglas de
reparto, sobre todo si intentamos plantear métodos alternativos para repartir los escaños.

Proposición 1.6. Sea A un método de reparto que cumpla el criterio de proporcionalidad, sea v ∈ Ps y
sea ah ∈ A(h,v) entonces:

lı́m
h→∞

ah,i

h
=

vi

v
.

Demostración. Observemos que para cada h tendremos un d distinto. Primero cambiemos nuestra ca-
dena de desigualdades: ⌊

vi

dh

⌋
6 ah,i 6

⌈
vi

dh

⌉
=⇒ ah,i−1 <

vi

dh
< ah,i +1.

Al sumar ahora todas las componentes ∑(ah,i−1)< ∑
vi
dh

< ∑(ah,i +1) tenemos:

h− s <
v
dh

< h+ s.

Tenemos que v
h+s < dh <

v
h−s −→ 0 cuando h→ ∞. Y ahora podemos volver a la primera desigualdad,

dividiendo por v y multiplicando por dh, y añadir dos más:

ah,i−1
h+ s

<
dh(ah,i−1)

v
<

vi

v
<

dh(ah,i +1)
v

<
ah,i +1
h− s

.

Restando ah,i
h (que es menor que 1) llegamos a

−sah,i

h(h+ s)
− 1

h+ s
<

vi

v
−

ah,i

h
<

sah,i

h(h− s)
+

1
h− s

.

Tanto el lado izquierdo como el derecho de las desigualdades tienden a 0 cuando h→ +∞. Un límite
tiende a 0 si y solo si su valor absoluto tiende a 0.∣∣∣∣ −sah,i

h(h+ s)
− 1

h+ s

∣∣∣∣= sah,i

h(h+ s)
+

1
h+ s

6
s

h+ s
+

1
h+ s

−→ 0 si h→+∞.

Con el lado derecho de la desigualdad el razonamiento es análogo.
Así concluimos finalmente que

lı́m
h→∞

ah,i

h
=

vi

v
.

Como hemos comentado al principio, el número de escaños, el número de partidos y los votos de
cada partido afectan a un reparto. Veamos como puede afectar a este una variación de dichos parámetros.

Definición 1.7. [2, pág. 106] Una regla de reparto A es semimonótona en votos si para todo v,w ∈ Ps

vi < wi y v j = w j ∀ j 6= i =⇒ ai 6 bi con a ∈ A(h,v) y b ∈ A(h,w).

La semimonotonía en votos parece poco relevante en la práctica ya que este tipo comparaciones son
poco probables en la vida real pero es algo básico que se debe cumplir.

Una definición a primera vista más atractiva puesto que tiene en cuenta dos vectores de votos cua-
lesquiera es la siguiente.
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Definición 1.8. [2, pág. 106] Sea v,w ∈ Ps con v = w = 1 y sea a ∈ A(h,v) y b ∈ A(h,w). Un método de
reparto se dice que es fuertemente monótono en votos si:

vi < wi =⇒ ai 6 bi.

Proposición 1.9. [2, pág. 107] Ningún método de reparto es fuertemente monótono en votos.

Demostración. Sea s > 3, si h = 1 tenemos que (1,0, . . . ,0) es un reparto de v = (1/s,1/s, . . . ,1/s). Sea
ε > 0, w = (1+ε

s , 1+2ε

s , 1−3ε

s , 1
s , . . . ,

1
s ) entonces (0,1,0, . . . ,0) es un reparto de w. Así pues tenemos que

v = w = 1 y vi < wi ; ai 6 bi.

Definición 1.10. [2, págs. 108, 117] Sea A un método de reparto, sean v,w ∈ Rs y sean a ∈ A(h,v) y
b ∈ A(h,w). A se dice monótono en votos si para todo i < j

wi

w j
6

vi

v j
=⇒


bi 6 ai o a j 6 b j

o
wi

w j
=

vi

v j
y (b1, . . . ,bi−1,ai,bi+1, . . . ,b j−1,a j,b j+1, . . . ,bs) ∈ A(h,w)

En el caso en el que se cumpla la condición solamente para una desigualdad estricta diremos que es
monótono débil en votos [1, pág. 166].

Definimos el concepto de región para una mayor comprensión del concepto de reparto.

Definición 1.11. [2, pág. 109] Sea a ∈ Ns(h) llamaremos región del reparto a al conjunto

P(a) := {v ∈ Ps | a ∈ A(h,v)}.

Un método de reparto A se dice convexo si P(a) es convexo para todo a ∈ Ns(h), h,s ∈ N.

Fijémonos que si s y h están fijos hay un número finito de regiones y a cada vector v ∈ Ps le corres-
ponde al menos una región.

Proposición 1.12. [2, pág. 110] Si A es un método de reparto monótono en votos entonces es convexo.

Demostración. Sea A un método de reparto que no es convexo. Es decir, existe a ∈ Ns(h) y v,w ∈ P(a)
tal que u := λv+(1−λ )w /∈ P(a) para algún 0 < λ < 1. Sea b = A(h,u) tal que la diferencia con a sea
lo menor posible. Como a 6= b existen i, j = 1, . . . ,s tal que ai < bi y a j > b j. Por construcción de u
tenemos que sucede sin pérdida de generalidad una de las siguientes relaciones.

vi

v j
<

ui

u j
<

wi

w j
o

vi

v j
=

ui

u j
=

wi

w j
.

En el primer caso
ui

u j
<

wi

w j
y ai < bi y a j > b j implican que A no es monótono en votos. Para el

segundo caso no podemos intercambiar bi, b j por ai, a j porque si fuera posible sería más cercano a a
que b contradiciendo la minimalidad de la distancia de b a a y por tanto A tampoco es monótono en este
caso.

Definición 1.13. [1, pág. 163] Un método de reparto se dice monótono en escaños cuando para todo h
y todo vector de votos v ∈ Pn se cumple:

∀ a ∈ A(h,v) existe b ∈ A(h+1,v) tal que a 6 b

∀ b ∈ A(h+1,v) existe a ∈ A(h,v) tal que a 6 b.

Para el caso s = 2 y si nuestro método es cercano, se deduce que si (a1,a2) ∈ A(h,v) implica que
(a1 + 1,a2) o (a1,a2 + 1) pertenecen a A(h+ 1,v), además (a1 + 2,a2− 1) y (a1− 1,a2 + 2) no son
repartos válidos. Es decir, concluimos que si a ∈ A(h,v) y b ∈ A(h+1,v) entonces a 6 b.
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Definición 1.14. [1, pág. 162] Un método de reparto A se dice coherente si para todo s ∈N∗, para todo
0 < m < s, para todo v ∈ Ps y a ∈ A(h,v) cumple las dos siguientes propiedades:

Coherencia al restringir: (ai)i6m ∈ A( ∑
i6m

ai,(vi)i6m).

Coherencia al concatenar: Si b ∈ A( ∑
i6m

ai,(vi)i6m) y c ∈ A( ∑
m<i6s

ai,(vi)m<i6s) entonces

(b,c) ∈ A(h,v).

Nota: por anonimato son equivalentes las diferentes elecciones de conjuntos de subíndices cuales-
quiera.

Teorema 1.15. [1, págs. 163–165] Todo método coherente es monótono en escaños.

Demostración. Primero lo demostraremos para dos partidos y circunscripciones con tamaño h y h+1.
Sea un vector de votos v = (v1,v2) tal que t = v1/v2, por decencia el vector (t,1) tendrá los mismos

repartos. Sean a ∈ A(h,(t,1)) y b ∈ A(h+1,(t,1)), necesitamos ver que

a 6 b.

Para ello consideramos el reparto de 2h+1 escaños entre cuatro partidos con el vector de votos (t,1, t,1).
Veamos que para todo vector de escaños c ∈ A(2h+1,(t,1, t,1)) las dos primeras componentes suman
h o h+1. Como A es equilibrado tenemos que

c1−1 6 c3 6 c1 +1 y c2−1 6 c4 6 c2 +1.

Si las dos primeras componentes suman h−1 entonces

c 6 (h−1)+(c1 +1)+(c2 +1)6 2(h−1)+2 = 2h.

Si c1 + c2 = h+2 entonces

c > (h+2)+(c1−1)+(c2−1)> 2(h+2)−2 = 2h+2.

Por tanto, c1 + c2 = h o c1 + c2 = h+1. Las dos opciones son posibles por anonimato.
Supongamos sin pérdida de generalidad c1+c2 = h. Por coherencia al restringir (c1,c2)∈A(h,(t,1))

de la misma forma que lo hace a. Así que por coherencia al concatenar

(a1,a2,c3,c4) ∈ A(2h+1,(t,1, t,1)).

Por otra parte, por coherencia al restringir tenemos (c3,c4) ∈ A(h + 1,(t,1)), así como, b ∈ A(h +
1,(t,1)). y de nuevo por coherencia al concatenar

(a1,a2,b1,b2) ∈ A(2h+1,(t,1, t,1)).

Si b2 = a2−1 entonces
b1 +b2 6 (a1 +1)+(a2−1) = h 6= h+1.

Si b1 = a1−1 entonces
b1 +b2 6 (a1−1)+(a2 +1) = h 6= h+1.

Por tanto a1 6 b1 y a2 6 b2.
Ahora lo demostraremos para más partidos utilizando inducción completa sobre el número de par-

tidos. Sea a ∈ A(h,v) y b ∈ A(h+1,v), entonces pueden ocurrir dos cosas, o bien a 6 b o bien existe un
indice i tal que bi < ai.

En el primer caso hemos acabado. En el segundo , tenemos que ver que existen c ∈ A(h,v) y d ∈
A(h+1,v) tal que

a 6 d y c 6 b.
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Supongamos sin pérdida de generalidad que a1 > b1 y que a2 < b2 (podemos hacerlo por anonimato).
Por coherencia al restringir se tiene (a1,a2) ∈ A(a1+a2,(v1,v2)) y (b1,b2) ∈ A(b1+b2,(v1,v2)). Como
A es monótono para 2 escaños por la primera parte de la demostración y

(a1,a2)
 (b1,b2) y (a1,a2)� (b1,b2)

tenemos que
a1 +a2 = b1 +b2.

Sea n = h− (a1 +a2), por coherencia al restringir,

(a3, . . . ,as) ∈ A(n,(v3, . . . ,vs)) y (b3, . . . ,bs) ∈ A(n+1,(v3, . . . ,vs)).

Por hipótesis de inducción completa, existe (d3, . . . ,ds) ∈ A(n+1,(v3, . . . ,vs)) tal que

(a3, . . . ,as)6 (d3, . . . ,ds)

y por coherencia al concatenar, d = (a1,a2,d3, . . . ,ds) ∈ A(h+1,v) cumple

a 6 d.

Con un razonamiento similar, podemos formar un vector c = (b1,b2,c1, . . . ,cs) ∈ A(h,v) con

c 6 b.

Teorema 1.16. [1, págs. 166, 167] Todo método coherente es monótono débil en votos.

Demostración. Comenzamos la demostración para dos partidos. Sean (a1,a2) ∈ A(h,v) y (b1,b2) ∈
A(h,w). Veamos que

v1

v2
<

w1

w2
implica a1 6 b1 o a2 > b2.

Sea r =
v1

v2
y t =

w1

w2
, por decencia b ∈ A(h,(t,1)) y a ∈ A(h,(r,1)). Sea c ∈ A(2h,(t,1,r,1)), por

anonimato podemos suponer que c2 6 c4, veamos que

c1 + c2 > h.

La afirmación se demuestra estableciendo la desigualdad c1 + c2 > c3 + c4. Como t > r, por armonía,
c1 > c3. Si c2 = c4 la desigualdad se cumple. En otro caso, como por equilibrio, |c2− c4| 6 1 se tiene
que

c2 = c4−1,

y también que c2 + c4 = 2c2 + 1 es impar y c1 + c3 también lo es. Se sigue que c1 > c3 y c1 > c3 + 1.
Resumiendo, c1 + c2 > (c3 +1)+(c4−1) = c3 + c4. Es decir,

c1 + c2 > h ∀ c ∈ A(2h,(t,1,r,1)).

Supongamos que c1 + c2 = c3 + c4 = h, como c1 > c3 tememos que c2 6 c4. Por coherencia al
restringir (c1,c2) ∈ A(h,(t,1)) y (c3,c4) ∈ A(h,(r,1)) y por coherencia al concatenar
(b1,b2,a1,a2) ∈ A(2h,(t,1,r,1)) y por armonía,

b1 > a1.

Para el caso c1 +c2 > h, por coherencia, por un lado (c1,c2) ∈ A(c1 +c2,(t,1)) y por monotonía en
escaños, c2 > b2. Por otro lado, (c3,c4) ∈ A(c3 + c4,(r,1)) con c3 + c4 < h. Por monotonía en escaños,
c4 6 a2, ahora podemos concatenar las desigualdades

b2 6 c2 6 c4 6 a2,
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por lo que la primera parte de la prueba está completada.
Para repartos con s > 3, el argumento es por reducción al absurdo. Supongamos que un reparto

coherente no es monótono débil en votos, entonces, existen vectores de escaños a∈ A(h,v) y b∈ A(h,w)
tal que dos partidos con indices (i,k) (supongamos i = 1,k = 2 sin perdida de generalidad) satisfacen
v1

v2
<

w1

w2
y también

a1 > b1 y a2 < b2.

Con r =
v1

v2
y t =

w1

w2
, la decencia y la coherencia al restringir nos dice que (a1,a2) ∈ A(a1 +a2,(r,1))

y (b1,b2) ∈ A(b1 +b2,(t,1)).
En el caso que a1 + a2 = b1 + b2 tenemos contradicción con la monotonía en votos para el caso

s = 2.
En caso de que a1 +a2 < b1 +b2 consideramos (c1,c2) ∈ A(b1 +b2,(r,1)). Por monotonía en esca-

ños,
a1 6 c1 y a2 6 c2.

Como (b1,b2) ∈ A(b1 +b2,(t,1)) la monotonía en el caso s = 2 nos dice que

c1 6 b1 o c2 > b2.

Por tanto si c1 > b1 tenemos que c1 + c2 > b1 +b2 que no puede ser. Así que

c1 6 b1 y a1 6 c1 6 b1

contradiciendo nuestra hipótesis.
El caso a1 +a2 > b1 +b2 se realiza de forma análoga.



Capítulo 2

El método de Hamilton

El método de Hamilton surge en 1792 cuando en Estados Unidos se plantean el problema de cuántos
representantes deben asignarse a cada estado en el Congreso. Es el más antiguo de todos junto con el
método de Jefferson y es muy útil e intuitivo. Dada su sencillez se usa en varios sistemas electorales.
Por ejemplo, es el que se usa para repartir 248 escaños entre todas las provincias de España [6, artículo,
162]. También se utiliza en la elección de representantes al claustro en la Universidad de Zaragoza [7,
artículos 10 y 17].

Definición 2.1. [2, pág. 17] [1, pág. 96] El método de Hamilton o de restos mayores se realiza en dos
partes:

Primero se asigna a cada partido la parte entera de sus cuotas.
Segundo se asignan los escaños restantes añadiendo 1 escaño a aquellos partidos con mayor parte

decimal.
a∈H(h,v) si y solo si |ai−qi|< 1 para todo i y además si qk = ak+ fk con 0 6 fk < 1 y q j = a j−g j

con 0 < g j < 1 tenemos que fk 6 1−g j.

Ejemplo 4. Supongamos que tenemos 4 partidos que se reparten 12 escaños con un vector de votos
(23 18 13 6). El vector de cuotas es (4,6 3,6 2,6 1,2). La parte entera de las cuotas es (4 3 2 1) por lo
que quedan dos escaños por repartir. Como hay tres partidos con la misma parte decimal, es decir, hay
empates, hay varios repartos posibles:

A(12,(23 18 13 6)) = {(5 4 2 1),(4 4 3 1),(5 3 3 1)}.

Claramente el método de Hamilton es anónimo, equilibrado, armónico, decente y exacto, por lo que
efectivamente es un método de reparto.

Por construcción garantiza que se cumpla (1.1), además minimiza la diferencia entre los escaños de
cada partido y sus cuotas.

Proposición 2.2. [1, págs. 195–197] El método de Hamilton es el que minimiza la función

f (b) =
s

∑
i=1
|bi−qi| .

Es decir, a ∈ H(h,q), (q = h) si y solo si f (a)6 f (b) para todo b ∈ Ns(h).

Demostración. Sea b ∈ Ns(h), si bi < bqic para algún i entonces

bi +∑
j 6=i
bq jc< h.

Por lo que para algún j se tiene que b j > bq jc+1. Sea ci = bi +1, c j = b j−1 y ck = bk si k 6= i, k 6= j
entonces

s

∑
k=1
|ck−qk|<

s

∑
k=1
|bk−qk|.

9
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Así pues, si a minimiza la función ai > bqic ∀i y con un razonamiento análogo ai 6 dqie.
Sea a un posible reparto de Hamilton y sea b tal que |bi− qi| < 1 para todo i. Se tiene que ai = bi

o que |ai− bi| = 1. Si existe i tal que ai = bi + 1, existe j tal que a j = b j− 1. La proposición quedará
probada si

|ai−qi|+ |a j−q j|6 |bi−qi|+ |b j−q j|.

Por ser ai = bqic+1 y a j = bqic tenemos que la parte decimal de qi es mayor o igual que la parte decimal
de q j, es decir, |bi−qi|> |a j−q j| y por tanto

|ai−qi|+ |a j−q j|= 1− (qi−bi)+ |a j−q j|6 1

|bi−qi|+ |b j−q j|= qi−bi +b j−q j > q j−a j +1− (q j−a j) = 1

Veamos ahora que es preciso y cercano.

Proposición 2.3. El método de Hamilton es cercano.

Demostración. Sea v = (v1, . . . ,vs) con v = 1, sea a un vector de reparto de h escaños y sea b un vector
de reparto de h+1 escaños. Entonces bhvic6 ai,bi 6 d(h+1)vie para todo i = 1, . . . ,s.

Si s = 1 todo es trivial y si s > 2 entonces vi < 1 y dhvie > b(h+1)vic y d(h+1)vie− bhvic 6 2.
Así se tiene que |ai−bi|6 2.

Supongamos que existe i para el que se tiene la igualdad. En este caso se tiene:

bhvic= ai < dhvie= b(h+1)vic< d(h+1)vie= bi.

Pero para este i tenemos que

hvi−bhvic= hvi− (b(h+1)vic−1) = hvi +1−b(h+1)vic> (h+1)vi−b(h+1)vic .

Por otra parte, para que el partido i gane dos escaños, algún partido j debe perder uno (con lo
anterior es claro que ningún partido puede perder más de un escaño). Para que esto suceda debemos
tener que

hvi−bhvic6 hv j−
⌊
hv j
⌋
,

es decir, debe tener mayor parte decimal que i para asignarle antes un escaño adicional cuando se
reparten h escaños. Además debe cumplir que

⌊
hv j
⌋
=
⌊
(h+1)v j

⌋
ya que de otra forma j no podría

perder un escaño. En tal caso hv j−
⌊
hv j
⌋
< (h+1)v j−

⌊
(h+1)v j

⌋
y, por tanto,

(h+1)vi−b(h+1)vic< (h+1)v j−
⌊
(h+1)v j

⌋
.

Es decir, cuando se reparten h+1 escaños, el partido j tiene mayor resto que el i y se le asignaría antes
un escaño adicional. Así ai > bi−1 y

|ai−bi|6 1.

Proposición 2.4. El método de Hamilton es preciso.

Demostración. Sean v ∈ Ps y a ∈ A(h,v) tal que existe un b ∈ Ns y 1 < n ∈ N con a = nb, debemos
comprobar que mb es el único reparto de mb escaños y v votos.

Veamos que |mbi−mbui| < 1. Claramente m
n a = mb ∈ Ns para todo m = 1, . . . ,n−1. Así tenemos

que
|mbi−mbui|=

m
n
|ai−hui|< |ai−hui|< 1 ∀i = 1, . . . ,s.
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Si hui = ai + fi con 0 6 fi < 1 y hu j = a j − g j con 0 < g j < 1 (los i ∈ I son los partidos que
se redondean hacia abajo y los j ∈ J los que se redondean hacia arriba) tenemos que fi 6 1− g j. Si
cambiamos el tamaño de la circunscripción tenemos m

n hui = mbi +
m
n fi y m

n hu j = mb j− m
n g j. Como

s

∑
k=1

mbk =
m
n

h y
m
n

fi < 1− m
n

g j ∀i ∈ I,∀ j ∈ J

entonces A
(m

n
h,v
)
= {mb}.

Sabemos que los escaños asignados a un partido difieren con el valor teóricamente proporcional en
un número menor que 1. Pero consideremos el siguiente caso.

Ejemplo 5. Sea un vector de votos v = (60 10 10 10 10 10 10). Si se reparten 6 escaños su vector de
cuotas será q = 6u = (3 0,5 0,5 0,5 0,5 0,5 0,5). Si A es un método de reparto que cumple el criterio
de la cuota tenemos que (3 1 1 1 0 0 0) ∈ A(6,v). Este reparto tiene sentido desde el punto de vista que
al partido más votado tiene exactamente la proporción de escaños del total que le corresponden según
su cuota. Pero también hay tres partidos a los que le estás dando el doble de representación de la que se
merecen según su cuota.

De este ejemplo podemos sacar la conclusión de que hacer los repartos teniendo en cuenta solo las
cuotas no tiene por qué ser deseable si nuestro propósito es no perjudicar a los grandes partidos. Pero
su principal crítica es que no es monótono en escaños ni tampoco es monótono en votos.

Cuando se da la situación en la que un partido perdería un representante al aumentar el tamaño de
la circunscripción se dice que ocurre la paradoja de Alabama.

Ejemplo 6. Supongamos que tenemos una circunscripción en la que se reparten 10 escaños con el
vector de votos (521 238 140 101). Entonces el vector de cuotas será (5,21 2,38 1,40 1,01) y el
vector de escaños (5 2 2 1). Sin embargo si se reparten 11 escaños entonces el vector de cuotas es
(5,73 2,62 1,54 1,11) y por tanto el vector de votos es (6 3 1 1) donde el tercer partido ha perdido un
escaño al aumentar la representación.

Veamos ahora que el método de Hamilton no es monótono en votos

Ejemplo 7. Supongamos que tenemos una circunscripción en la que se reparten 9 escaños. El vector de
votos w = (49 28 17) tiene como vector de cuotas (4,69 2,68 1,63) y, por tanto el vector de escaños es
b = (5 3 1). El vector de votos v = (65 29 17) tiene como vector de cuotas (5,27 2,35 1,38) y, por tanto
el vector de escaños es a = (5 2 2).

Se da la situación de que
w2

w3
=

28
17

<
29
17

=
v2

v3

y, sin embargo,
b2 = 3 > 2 = a2 y a2 = 2 > 1 = b1.

Por este tipo de situaciones en muchas leyes electorales no se usa el método de Hamilton sino que
se prefieren los métodos de divisor. Éstos se estudiarán en los siguientes capítulos.





Capítulo 3

Métodos de divisor

Los métodos de divisor son muy comunes en los sistemas electorales por su sencillez pero sobre todo
por su buen comportamiento. A la hora de hacer un reparto una función de los números reales positivos
a los naturales puede ser útil. Una vez se tiene una tal función f , dado un tamaño de circunscripción h
y un vector de votos v se puede usar f para hacer un reparto de h escaños si existe un t > 0 tal que

s

∑
i=1

f (tvi) = h.

Sin embargo no siempre existe un t así como vemos en el siguiente ejemplo.

Ejemplo 8. Sea s = 2 y v1 = v2, y sea f una función de los positivos a los naturales. Tenemos entonces
que para todo t > 0 f (tv1)+ f (tv2) es par y por tanto no existe un reparto posible cuando h es impar.

Este problema se soluciona permitiendo redondear hacia arriba o hacia abajo en los puntos de dis-
continuidad.

Definición 3.1. [1, págs. 65, 66] Una regla de redondeo es una función J·K : [0,+∞) −→℘(N) cons-
truida a partir de una sucesión de pivotes k0 = 0 6 k1 < k2 < .. ., ki ∈ R tal que

JxK=

{0} si x = 0,
{n} si x ∈ (kn,kn+1),
{n−1,n} si x = kn > 0.

Si en una regla de redondeo k1 = 0 el único número real que se redondea a 0 es el 0.
Serán especialmente interesantes las reglas de redondeo construidas a partir de sucesiones de guías.

Estas son sucesiones de pivotes que cumplen estas dos propiedades adicionales.

Localización. Todas la guías siguientes pertenecen a intervalos consecutivos con extremos ente-
ros,

kn ∈ [n−1,n] ∀ n > 1.

Repulsión de extremos. Si existe alguna guía en el extremo izquierdo de su intervalo de localiza-
ción entonces no existe ninguna guía situada en el extremo derecho y viceversa.

∃m > 1 tal que km = m−1 =⇒ kn < n ∀n > 1,

∃m > 1 tal que km = m =⇒ kn > n−1 ∀n > 1.

Ejemplo 9. Sea r ∈ [0,1], se define una sucesión de guías fijas con kr
0 := 0 y que para todo n > 1

kr
n := n−1+ r.

Tres de las guías clásicas que se usan son de este tipo.

13
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Con r = 1 el redondeo es hacia abajo.

0, 1, 2, 3, . . .

Con r = 0,5 el redondeo es el estándar.

0, 0,5, 1,5, 2,5, . . .

Con r = 0 el redondeo es hacia arriba.

0, 0, 1, 2, . . .

Ejemplo 10. Otros dos redondeos clásicos con sucesiones de guías que no son fijas son:
Con la media geométrica

0, 0,
√

2,
√

6, . . . , kn =
√

n(n−1), . . .

Con la media armónica

0, 0,
4
3
,

12
5
, . . . , kn =

2n(n−1)
2n−1

, . . .

La ley alemana para las elecciones al Bundestag, traducida al español en [4], describe el método de
Webster básicamente de la siguiente forma: El número de escaños atribuidos a cada lista se determina
dividiendo el total de votos emitidos a la lista por un divisor adecuado de manera que la suma de los
cocientes obtenidos, una vez redondeados de la forma estándar, coincide con el número de escaños a
repartir.

Además en dicho párrafo se incluye un procedimiento por aproximaciones sucesivas para encontrar
un divisor adecuado, a saber:

Se divide el número total de votos por el número de escaños. Se obtiene así un primer divisor.

Se dividen los números de votos de cada partido por ese primer divisor. Los números resultantes
se redondean al número entero más cercano de la forma estándar; los números con parte decimal
igual a 0,5 se redondearán hacia arriba o hacia abajo según convenga. Si la suma de todos ellos
coincide con el número de escaños a repartir, esos números son los escaños de cada partido.

Si en el paso 2 no se da la coincidencia citada, se vuelve a repetir ese paso pero con un divisor
mayor o menor, según corresponda, hasta que la suma de los cocientes redondeados coincida con
el de escaños a repartir.

Definición 3.2. [1, pág. 77] Una regla de divisor A inducida por una regla de redondeo J·K , o equiva-
lentemente por una sucesión de pivotes (kn), se define del siguiente modo: para un tamaño de circuns-
cripción h ∈ N∗ y un vector de votos v ∈ Ps

A(h,v) :=
{

a ∈ Ns(h)
∣∣∣ a1 ∈

rvi

D

z
, . . . ,as ∈

rvs

D

z
para un D > 0

}
.

Un tal D se denomina divisor adecuado.

Lema 3.3. [1, págs. 80, 81] Si para una regla de redondeo construida con la sucesión de pivotes
(kn) se tiene que A(h,v) 6= /0, entonces D es divisor adecuado si y solo si verifica: D ∈ [d1,d2] siendo
d1 = máx

16i6s

vi

kai+1
y d2 = mı́n

16i6s

vi

kai

(entendiendo que
vi

0
= ∞).
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Demostración. Por definición de regla de redondeo vi
D ∈ [kai ,kai+1] para todo i. Además kai 6

vi

D
6 kai+1

si y solo si
vi

kai+1
6 D 6

vi

kai

(observemos que si A(h,v) 6= /0, se tiene forzosamente que kai+1 6= 0) Así D es divisor adecuado si y
solo si D ∈ [d1,d2]. En el caso que d1 = d2 = D tenemos que hay más de un reparto posible puesto que
existen i, j tales que

vi

kai+1
=

v j

ka j

= D y, por tanto
rvi

D

z
= {ai + 1,ai} y

rv j

D

z
= {a j,a j− 1}. Y se le

puede dar a i un escaño más quitándoselo al j.

Proposición 3.4. [1, págs. 78–80] Cualquier regla de redondeo con k1 6= 0 proporciona una regla de
divisor. En el caso de k1 = 0 tendremos reparto para cuando h > s (3.2 está bien definida).

Demostración. Vamos a probarlo por inducción sobre h, comenzamos con k1 > 0 y h = 1 o con k1 = 0
y s = h. En el primer caso D = máx vi

k1
es un divisor adecuado. Tenemos que D > vi

k1
para todo i y por

tanto 0 <
vi

D
6 k1. Así, por la regla de redondeo, los partidos recibirán 0 escaños si

vi

D
∈ (k0,k1) y 0 ó

1 escaño si
vi

D
= k1. Un posible reparto para h = 1 será aquel en el que se dé 1 escaño a algún partido

j tal que
v j

D
= k1 y 0 escaños al resto de partidos y, por tanto, D es un divisor adecuado. Si k1 = 0 y

s = h tomamos D = máx vi
k2

, para este D tenemos que 0 = k1 <
vi

D
6 k2 y por la regla de redondeo todos

reciben 1 escaño.
Supongamos que existe un posible reparto a para h, es decir, a ∈ A(h,v); veamos que existe un

posible reparto para h+1. Por el lema anterior, D ∈ [d1,d2]. Sea j un partido para el que v j/ka j+1 = d1.
Su cociente v j/d1 = ka j+1 puede ser redondeado a a j y a a j +1. Como queremos aumentar el número de
escaños de h a h+1 el vector b con componentes b j = a j +1 y bi = ai para i 6= j es un posible reparto
de A(h+1,v) con divisor adecuado d y la prueba para k1 > 0 queda completa.

Proposición 3.5. Dos reglas de redondeo construidas con las sucesiones (kn) y (k′n) inducen la misma
regla de divisor si y solo si, existe α ∈ P tal que αkn = k′n para todo n.

Demostración. Sea αkn = k′n para todo n. Sea a ∈ A(h,v), y D un divisor adecuado. Sea D′ = D
α

. Como
se tiene

kai 6
vi

D
6 kai+1,

multiplicando por α

k′ai
6

vi

D′
6 k′ai+1

y como a = h se tiene que D′ es un divisor adecuado y a ∈ A′(h,v).
Recíprocamente, sean (kn) y (k′n) tales que proporcionan el mismo reparto con k1 > 0 entonces

A(n,(k1,kn)) = {(0,n),(1,n−1)}= A′(n,(k1,kn)).

Por tanto existe un único D tal que

{0,1}=
s

k1

D

{′
y {n−1,n}=

s
kn

D

{′
.

De aquí se deduce que k1/D = k′1 y que kn/D = k′n. Además, el D es el mismo para todo n, así con
α = 1/D tenemos que k′n = αkn. Si k1 = 0 entonces debe darse que k′1 = 0 para que haya reparto en los
mismos casos. Hacemos un razonamiento análogo tomando k2 en vez de k1.

Teorema 3.6. [1, págs. 78–80] Una regla de divisor A es anónima, equilibrada, armónica, decente y
completa.
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Demostración. Es claro que intercambiar los votos de dos partidos hace que los escaños también se
intercambien sin afectar al reparto de los demás partidos, por tanto es anónima.

Por construcción de una regla de redondeo se tiene que si vi = v j, D > 0 entonces

vi

D
=

v j

D
∈ [kn,kn+1)

para algún n. Por tanto,
rvi

D

z
,
rv j

D

z
⊆ {n−1,n}, y como ai ∈

rvi

D

z
y a j ∈

rv j

D

z
entonces

|ai−a j|6 1.

Con un razonamiento similar, si vi < v j, D > 0 entonces

vi

D
∈ [kn,kn+1) y

v j

D
∈ [km,km+1) ó

v j

D
∈ (kn,kn+1)

con n < m. Por lo que
rvi

D

z
⊆ {n−1,n} y

rv j

D

z
⊆ {n,m−1,m}, es decir,

ai 6 a j.

Sea a ∈ A(h,v) entonces existe D > 0 tal que ai ∈
rvi

D

z
para todo i = 1, . . . ,s. Es claro entonces que

para pv con p > 0 se tiene que a ∈ A(h, pv) pues se puede usar D/p como divisor para tener el mismo
reparto.

Para demostrar la completitud, sea (vn)∞
n=1 una sucesión de vectores vn ∈ Ps tal que lı́m

n→∞
vn = v y tal

que a ∈ A(h,vn) para todo n. Sea d1n = máx
16i6s

vn
i

kai+1
y d2n = mı́n

16i6s

vn
i

kai
Notemos que d1n 6 d2n para todo n. Estas dos sucesiones convergen y

lı́m
n→∞

d1n 6 lı́m
n→∞

d2n.

Por ser máx y mı́n funciones continuas de Rs podemos intercambiar límites y entonces

máx
16i6s

lı́m
n→+∞

vn
i

kai+1
= máx

16i6s

vi

kai+1
6 mı́n

16i6s

vi

kai

= mı́n
16i6s

lı́m
n→∞

vn
i

kai

.

Sea D ∈
[

máx
16 j6s

v j

ka j+1
, mı́n

16 j6s

v j

ka j

]
, se tiene para todo i que

vi

kai+1
6 D 6

vi

kai

, luego kai 6
vi

D
6 kai+1. O sea

vi

D
∈ [kai ,kai+1], dicho de otra manera, ai ∈

rvi

D

z
para i = 1, . . . ,s y por tanto a ∈ A(h,v).

Proposición 3.7. Una regla de divisor inducida por una regla de redondeo es un método de reparto
(método de divisor) si y solo si la regla de redondeo se puede construir a partir de una sucesión de
guías.

Demostración. Por el teorema 3.6 es suficiente probar la exactitud. Sea A una regla de divisor exacta
v = (1,2, . . . ,s) entonces por exactitud A(v,v) = {v}, es decir, para todo s existe D tal que n

D ∈ (kn,kn−1)

con n = 1, . . . ,s. Por el lema 3.3 verifican lo anterior los D ∈ [d1s,d2s] = Is con d1s = máx
16n6s

n
kn+1

y

d2s = mı́n
16n6s

n
kn

. Claramente, Is+1 ⊆ Is y por tanto

I :=
∞⋂

s=1

Is 6= /0.

Sea D ∈ I, tenemos
n

kn+1
6 D 6

n
kn

para todo n ∈ N∗, es decir, n 6 Dkn+1 y Dkn 6 n. Por tanto

Dkn ∈ [n−1,n] y la sucesión (Dkn) cumple la propiedad de localización y proporciona el mismo reparto



Propiedades de distintas distribuciones de escaños en sistemas electorales - Daniel Mur Castro 17

que la sucesión (kn) por la proposición 3.5. Para concluir veamos que si Dkn = n− 1 y Dkm = m para
algún n > 1 y algún m > 0 entonces A no es exacta puesto que

A(n+m−1,(n−1,m)) = {(n−1,m),(n,m−1)}.

Recíprocamente, sea A una regla de reparto inducida por una sucesión de guías (kn), sea v ∈ Ps

con vi ∈ N para todo i = 1, . . . ,s. Por localización tenemos que kvi 6 vi 6 kvi+1 para todo i = 1, . . . ,s.
Además, por repulsión de extremos

kvi 6 vi < kvi+1 ó kvi < vi 6 kvi+1 ∀ i = 1, . . . ,s.

Para el primer caso existe 0 < D1 < 1 tal que
vi

D1
∈ (ki,ki+1). Para el segundo,

vi

D2
∈ (ki,ki+1) con algún

D2 > 1. En cualquiera de las dos situaciones A(v,v) = {v}.

Ejemplo 11. Las sucesiones de guías de los ejemplos 9 y 10 proporcionan los cinco métodos de divisor
clásicos:

El redondeo hacia abajo se corresponde con el método de Jefferson.

El redondeo estándar se corresponde con el método de Webster.

El redondeo hacia arriba se corresponde con el método de Adams.

El redondeo según la media geométrica se corresponde con el método de Hill.
Un x tal que n−1 6 x 6 n redondea a n−1 o a n según

n−1 6 x 6
√

(n−1)n ó
√
(n−1)n 6 x 6 n.

El redondeo según la media armónica se corresponde con el método de Dean.

Proposición 3.8. Dos sucesiones de guías distintas inducen metodos de divisor distintos.

Demostración. Sea (kn) una sucesión de guías. Por la proposición 3.5 basta con ver que (αkn) no es
sucesión de guías cuando α 6= 1.

Si (kn) y (αkn) son sucesiones de guías entonces n−1 6 kn 6 n y n−1 6 αkn 6 n. Se tiene

n−1
n

6
αkn

kn
6

n
n−1

∀n.

Y por tanto, α debe ser igual a 1 y por lo que las sucesiones de guías son la misma.

Proposición 3.9. Si regla de divisor es precisa entonces
(

kn
kn+1

)
es monótona estrictamente creciente.

Demostración. Sea v= (kn,kn+1) se tiene que (n,n)∈A(2n,v). Por precisión, A(2m,v) = {(m,m)} para

todo m = 1, . . . ,n−1.Para el caso n−1 existe D tal que vi
D ∈ (kn−1,kn). Es decir, kn−1 6

kn

D
,
kn+1

D
6 kn.

Por tanto,
kn−1

kn
<

1
D

<
kn

kn+1
.

Proposición 3.10. Si existe r > 0 tal que
(

kn
nr

)
monótona no decreciente y

(
kn+1
nr

)
monótona no cre-

ciente, siendo una de las dos monotonía estricta entonces A es precisa.
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Demostración. sea v ∈ Ps, a ∈ A(h,v) tal que existe b ∈ Ns y 1 < n ∈ N tal que a = nb queremos ver

A(mb,v) = {mb} ∀m = 1, . . . ,n−1.

Sabemos que existe r > 0 tal que para todo n kn−1
(n−1)r <

kn
nr y kn

(n−1)r >
kn+1
nr (Si la desigualdad estricta fuera

la segunda todo sería análogo). Es decir(
n−1

n

)r

· [kn,kn+1]⊆ (kn−1,kn].

Tenemos que existe D tal que vi
D ∈ [kai ,kai+1] y ai > mbi ∈ N. Reiterando lo anterior se tiene(

mbi

mbi +1

)r

· · ·
(

ai−2
ai−1

)r(ai−1
ai

)r vi

D
∈ (kmbi ,kmbi+1].

Simplificando llegamos a
(

mbi
ai

)r
vi
D =

(m
n

)r vi
D ∈ (kmbi ,kmbi+1] para todo i = 1, . . . ,s. Tomamos ahora

D′ = D
( n

m

)r, se tiene que kmbi <
vi
D′ 6 kmbi+1. Entonces D′ < vi

kmbi
para todo i y podemos tomar un D′′

tal que D′ < D′′ < vi
kmbi

. Así se cumple kmbi <
vi
D′′ <

vi
D′ 6 kmbi+1 para todo i y D′′ es un divisor adecuado

del único reparto A(mb,v) = {mb}.

Ejemplo 12. Veamos que los métodos de divisor clásicos son precisos. Para ello podemos tomar r = 1
En el método de Webster las sucesiones a comprobar son(

(2n−1)/2
n

)
y

(
(2n+1)/2

n

)
,

que se pueden reescribir como
(

1− 1
2n

)
y
(

1+
1
2n

)
y apreciamos que la primera es estrictamente

creciente y la segunda estrictamente decreciente.
En el método de Jefferson las sucesiones a comprobar son(n

n

)
y

(
n+1

n

)
,

la primera es constante, por tanto, monótona no decreciente, y la segunda es estrictamente decreciente.
En el método de Adams las sucesiones a comprobar son(

n−1
n

)
y

(n
n

)
,

la primera es estrictamente creciente y la segunda es constante, por tanto, monótona no creciente.
En el método de Hill las sucesiones a comprobar son(√

n(n−1)
n

)
y

(√
(n+1)n

n

)
.

Estas se pueden reescribir como
(√

n−1
n

)
y
(√

n+1
n

)
. Estrictamente creciente y decreciente respecti-

vamente.
En el método de Dean debemos comprobar las sucesiones(

2n(n−1)
n(2n−1)

)
y

(
2(n+1)n
n(2n+1)

)
.

Y éstas se pueden reescribir como
(

1− 1
2n−1

)
y
(

1+
1

2n+1

)
, estrictamente creciente y decreciente

respectivamente.



Capítulo 4

Propiedades de los métodos de divisor

El método D’Hondt es bien conocido en España por ser el procedimiento de reparto proporcional
que se utiliza para transformar votos en escaños en las elecciones generales, autonómicas y municipales.
Este método, tal y como se describe en la Ley del Régimen Electoral General [6, artículo 163], consiste
en «dividir el número de votos obtenidos por cada candidatura por 1, 2, 3, etcétera, hasta un número
igual al de escaños correspondientes a la circunscripción; los escaños se atribuyen a las candidaturas que
obtengan los cocientes mayores, atendiendo a un orden decreciente. Cuando en la relación de cocientes
coincidan dos correspondientes a distintas candidaturas, el escaño se atribuirá a la que mayor número
total de votos hubiese obtenido. Si hubiera dos candidaturas con igual número total de votos, el primer
empate se resolverá por sorteo y los sucesivos de forma alternativa.»

El método de Webster se define de un modo similar dividiendo por los números impares 1, 3, 5...
Con este algoritmo se le conoce como método Sainte-Laguë. En general tenemos los siguientes repartos.

Definición 4.1. [3, pág. 311] Sea (ki) una sucesión de pivotes, sea v ∈ Ps y h ∈ N∗y sea

S =

{
vi

k j
| i = 1, . . . ,s y j = 1, . . . ,h

}
.

Sea T un subconjunto de S con h elementos de tal forma que t > t ′ para todo t ∈ T y todo t ′ ∈ SrT (T
puede no ser único). Se tiene la siguiente regla de reparto: a ∈ A(h,v) si y solo si ai = |{ j | vi/k j ∈ T}|.

Proposición 4.2. [3, pág. 312] En el caso en el que k1 > 0 o h > s el reparto anterior coincide con la
regla de divisor inducida por la misma sucesión de pivotes.

Demostración. Para cada i (vi/k j) es una sucesión decreciente en j. Si a es un reparto de divisor de v y
h, por el lema 3.3 se tiene que

vi

kai

>
v j

ka j+1
∀i, j = 1, . . . ,s.

Y, por tanto, se tiene que

T =

{
v1

k1
, . . . ,

v1

ka1

, . . . ,
vi

k1
, . . . ,

vi

kai

, . . .

}
verifica las condiciones de la definición anterior y a es un reparto.

Recíprocamente, sea a un reparto según la definición anterior, para cada i tenemos que ai es el
máximo tal que vi

kai
∈ T por tanto, para todo i, j vi

kai+1
6 v j

ka j
luego máx vi

kai+1
6 mı́n vi

kai
. Tomando D tal que

máx vi
kai+1

6 D 6 mı́n vi
kai

tenemos que vi
kai+1

6 D 6 vi
kai
∀i = 1, . . . ,s. Y con este divisor D se tiene que a

es un reparto de la regla de divisor inducida por los (ki).

Nota. Para un reparto con la sucesión de pivotes (ki), a ∈ A(h,v) si y solo si a = h y

máx
16i6s

vi

kai+1
6 mı́n

16i6s

vi

kai

.
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Ejemplo 13. Vamos a realizar el reparto de escaños en la provincia de Albacete en las elecciones gene-
rales de 2023. El escrutinio definitivo todavía no está disponible por lo que he utilizado los resultados
provisionales que se encuentran en [8]. Tenemos que usar el método D’Hondt y por tanto tenemos que
dividir los votos de cada partido por 1, 2, 3 y 4 (Albacete reparte 4 escaños) y asignar los escaños a las
candidaturas con los cocientes más altos hasta repartir 4.

Partido vi/1 vi/2 vi/3 vi/4 Escaños
PP 88 144 44 072,00 29 381,33 22 036,00 2
PSOE 75 969 37 984,50 25 323,00 18 992,25 2
VOX 36 698 18 349,00 12 232,67 9 174,50 0
SUMAR 15 677 7 838,50 5 225,67 3 919,25 0

Vemos que tanto el PP como el PSOE consiguen dos escaños mientras que VOX y SUMAR no
obtienen representación. Si realizamos el reparto por el método Sainte-Laguë los divisores en este caso
son: 1, 3, 5 y 7. Y realizamos el siguiente cuadro:

Partido vi/1 vi/3 vi/5 vi/7 Escaños
PP 88 144 29 381,33 17 628,80 12 592,00 2
PSOE 75 969 25 323,00 15 193,80 10 852,71 1
VOX 36 698 12 232,67 7 339,60 5 242,57 1
SUMAR 15 677 5 225,67 3 135,40 2 239,57 0

En este caso el PP consigue dos escaños mientras que el PSOE y VOX se quedan con uno y SUMAR
sigue sin representación. Comparando ambos métodos el PSOE pierde un escaño en favor de VOX. El
método D’Hondt tiene un sesgo a favor de los grandes partidos mientras que el método Sainte-Laguë
no.

Aunque el estudio de los sesgos no se ha tratado en este trabajo, también está estudiado matemáti-
camente y se puede encontrar una introduccíón al problema en [2, págs, 71–78]. En [2, págs, 118–128]
se comparan los cinco métodos de divisor clásicos, y en [1, págs, 127–157] se estudian los sesgos de los
métodos de reparto con mayor profundidad.

Ejemplo 14. Veamos ahora que tanto el método D’Hondt como el método de Jefferson realizan el
mismo reparto. Tomamos los datos, en [8], de la provincia de Zaragoza para las elecciones generales de
2023. En esta circunscripción se reparten 7 escaños, por lo que realizamos la tabla correspondiente.

Partido vi/1 vi/2 vi/3 vi/4 vi/5 vi/6 vi/7 Escaños
PP 185 613 92 806,5 61 871,0 46 403,3 37 122,6 30 935,5 26 516,1 3
PSOE 158 517 79 258,5 52 839,0 39 629,3 31 703,4 26 419,5 22 645,3 2
VOX 78 915 39 457,5 26 305,0 19 728,8 15 783,0 13 152,5 11 273,6 1
SUMAR 69 239 34 619,5 23 079,7 17 309,8 13 847,8 11 539,8 9 891,3 1

En este caso el PP consigue tres escaños, el PSOE dos y VOX y SUMAR un escaño cada uno. Para
realizar el reparto según el método de Jefferson tenemos que encontrar un divisor adecuado. Este se
busca por prueba y error.

Partido votos cociente 1 reparto cociente 2 reparto
PP 185 613 2,64 2 3,09 3
PSOE 158 517 2,25 2 2,64 2
VOX 78 915 1,12 1 1,32 1
SUMAR 69 239 0,98 0 1,15 1
total 492 284 5 7
divisor 70 326 60 000

Vemos que 60 000 es un divisor adecuado para el reparto (3 2 1 1) y que esta distribución de escaños
coincide, como no puede ser de otra manera, con el método D’Hondt.
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Teorema 4.3. [1, pág. 161] Los métodos de divisor son coherentes y completos.

Demostración. La completitud esta probada en la proposición 3.7.
Sea a ∈ A(h,v) un reparto del método de divisor A. Entonces la coherencia al restringir se cumple

puesto que un divisor apropiado D para a también lo será para (ai)i∈I puesto que las desigualdades son
las mismas.

De la misma manera, D también es un divisor apropiado para (bi)i∈I y para (c j) j∈J . Por tanto lo será
para la yuxtaposición de ambos.

Teorema 4.4. [1, págs. 168–172] Todo método coherente y completo es un método del divisor.

Demostración. Dividiremos la demostración en cinco partes.

i) Sea v = (v1,v2) con v1 = v2. Si h es par, por exactitud y equilibrio, tenemos que A(h,v) = {h
2 ,

h
2}.

Si h es impar, por anonimato y equilibrio tenemos que A(h,v) = {(h+1
2 , h−1

2 ),(h−1
2 , h+1

2 )}.

ii) Sea v = (t,1). Para todo n > 1 definimos

Tn := {t > 0 | (n,1) ∈ A(n+1,(t,1))}.

La exactitud implica que n ∈ Tn. Veamos que Tn es un intervalo. Sea t1 < x < t2 con (n,1) ∈ A(n+
1,(t1,1) y (n,1) ∈ A(n + 1,(t2,1). Sea (a1,a2) ∈ A(n + 1,(x,1) se tiene que a1 + a2 = n + 1 y por
monotonía débil a1 6 n o a2 > 1 y a1 > n o a2 6 1 de donde se deduce que a1 = n y a2 = 1 y

{(n,1)}= A(n+1,(x,1)).

En particular x ∈< T1.
Sea t(n) el ínfino de Tn con t(n) ∈ [0,n]. Vamos a ver que se tiene que t(2) = 1. Es claro que

(2,1)∈ A(3,(1,1)) = {(2,1),(1,2)} (por anonimato y equilibrio). Además si t < 1 por armonia (2,1) 6∈
A(3,(t,1)). Por tanto t(2) = 1.

Veamos qué ocurre para n > 3. Por decencia y exactitud A(n+1,(n−1
2 ,1)) = A(n+1,(n−1,2)) =

{(n−1,2)} luego n−1
2 /∈ Tn y por ser Tn un intervalo que contiene a n se tiene que

t(n)>
n−1

2

y, por tanto, t(n) 6= 0 para todo n 6= 1,0.
Veamos que si t > t(n) h cualquiera y a ∈ A(h,(t,1)) entonces se tiene que a1 ≥ n o bien a2 ≤ 1.
Partimos de (n,1) ∈ (n+ 1,(t(n),1) y (a1,a2) ∈ A(h,(t,1)). Usamos un (b1,b2) ∈ A(n+ 1,(t,1)).

Por monotonía débil en votos se tiene que b1 > n o bien b2 6 1 pero como n+1 = b1+b2, cualquiera de
las dos opciones implica la otra y por tanto se cumplen las dos. Por 1.15 se tiene monotonía en escaños
y para el caso s = 2 si h > n+ 1, a1 > b1 y a2 > b2. Así que a1 > b1 > n. Si h < n+ 1, otra vez por
monotonía en escaños, a2 6 b2 6 1. Por tanto, para todo h y todo vector de escaños a ∈ A(h,(t,1)) se
tiene

t > t(n) =⇒ a1 > n o a2 6 1 (4.1)

para 0 < r < t(n) y a ∈ A(h,(r,1)). Con un razonamiento análogo al anterior y usando que r /∈ Tn se
prueba

r < t(n) =⇒ a1 6 n−1 o a2 > 2. (4.2)
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iii) En este apartado vamos a probar lo siguiente: Sean (v1,v2) cualesquiera y n, m > 1 tal que

t(n)
v1

<
t(m)

v2
,

entonces para todo h y todo a ∈ A(h,v) se tiene

a1 > n o a2 6 m−1.

Para demostrarlo tomamos p tal que

t(n)
v1

< p <
t(m)

v2

(por ejemplo la media). Sea (t,r) = (pv1, pv2)), se tiene que t(n)< t y r < t(m). Por decencia se tiene
que a ∈ A(h,(t,r)) y ahora consideramos de manera auxiliar

b ∈ A(n+m,(t,r,1)).

Vamos a probar que b1 > n y b2 6 m− 1. Supongamos que b3 > 2, por coherencia al restringir
tenemos que

(b1,b3) ∈ A(b1 +b3,(t,1)),

y por el apartado anterior se tiene
b1 > n o b3 6 1.

Por la hipótesis no puedes ser lo segundo, luego tenemos tenemos b1 > n. Y, además,

b2 = n+m−b1−b3 6 n+m−n−2 = m−2.

Supongamos que b3 6 1, por coherencia al restringir, tenemos que

(b2,b3) ∈ A(b2 +b3,(r,1)),

y por el apartado anterior se tiene
b2 6 m−1 o b3 > 2.

Por la hipótesis no puede ser lo segundo, luego tenemos tenemos b2 6 m−1 y

b1 = n+m−b2−b3 > n+m− (m−1)−1 = n

Por lo que concluimos que (b1,b2) ∈ A(b1 +b2,(t,r)).
Volvemos a nuestro a ∈ A(h,(t,r)). Si h = b1 +b2 por coherencia al concatenar

(a1,a2,b3) ∈ A(n+m,(t,r,1)),

así que a1 > n y a2 6 m−1.
Si h > b1 +b2 por monotonía en escaños a1 > b1 > n.
Si h < b1 +b2 también por monotonía en escaños a2 6 b2 6 m−1.

iv) En este apartado comprobaremos la desigualdad para todo n > 1 y m > 1,

n
m−1

>
t(n)
t(m)

.

Supongamos que existe n,m tales que

n
m−1

6
t(n)
t(m)

.
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La primera observación es que t(n)> 0 y por tanto tenemos

m−1
n

>
t(m)

t(n)
.

Consideramos (v1,v2) = (m−1+ ε,n) y se tiene que

v1

v2
>

m−1
n

>
t(m)

t(n)
.

Y por el apartado iii) si a ∈ A(h,(v1,v2)),

a1 > m o a2 6 n−1.

Sea h = m+ n− 1 entonces {(m− 1,n)} = A(m− 1+ n,(m− 1,n)). Por monotonía en votos a1 >
m−1. Si a1 = m−1 entonces a2 = n y no se cumple la condición, luego a1 > m.

Si denotamos vk = (m− 1+ 1
k ,n) con k ∈ N∗ y ak ∈ A(h,vk) ak,1 > m para todo k y ak,1 > ak+1,1

entonces existe un k0 tal que ak+1,1 = b > m para todo k > k0.
Así, (b,m−1+n−b) ∈ A(m−1+n,vk) para todo k > k0. Como vk converge a (m−1,n), por ser

A completa, se tiene que

(b,m−1+n−b) ∈ A(m−1+n,(m−1,n)) = {(m−1,n)}

y b = m−1 llegando a una contradicción.

v) Consideramos B la regla de divisor construida con los pivotes t(n), veremos que A = B. Primero
vemos que podemos tener una sucesión de guías para B.

Por el apartado anterior, para todo n > 1 se tiene que t(n+1)> t(n). En efecto, tomando m = n+1
en iv),

n
n
>

t(n)
t(n+1)

,

y con t(0) := 0 se tiene que
0 = t(0)6 t(1)< t(2), . . .

Ya tenemos una sucesión de pivotes y una regla de redondeo. Ahora veamos que podemos tener una
sucesión de guías para inducir B. Por el apartado iv),

t(m)

m−1
>

t(m)

n
∀m > 1, ∀n > 1.

Considerando el ı́nf
m>1

t(m)

m−1
y el sup

n>1

t(n)
n

, existe 0 < l ∈ R tal que

t(m)

m−1
> l >

t(m)

n
∀m > 1, ∀n > 1.

Sea

kn =
t(n)

l
por las desigualdades anteriores con m = n tenemos que n− 1 6 kn 6 n para todo n > 1 (para n = 1
tener en cuenta que 1

2 6 l 6 1 y que 0 6 t(1)6 1).
Sea h y v cualesquiera. Sea ahora a ∈ A(h,v), veamos que a ∈ B(h,v). Por el apartado iii) tenemos

que si ai < n y a j > m−1 entonces
t(n)
vi

>
t(m)

v j
.
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Tomando n = ai +1 y m = a j y llegamos a

vi

t(ai +1)
6

v j

t(a j)
∀i, j = 1, . . . ,s.

Es decir, a ∈ B(h,v).
Para el reciproco tenemos que ver que

b ∈ B(h,v) =⇒ b ∈ A(h,v).

Sea a ∈ A(h,v) ⊆ B(h,v). Si B(h,v) solo tiene un elemento entonces a = b. En otro caso tomamos
d un divisor adecuado para B(h,v). Tenemos que t(bi) 6 vi/d 6 t(bi + 1) y t(b j) 6 v j/d 6 t(b j + 1),
luego concluimos que

vi

v j
>

(bi)

t(b j +1)
.

Además, por tener A(h,v) más de un elemento, para algún i, j tenemos la igualdad. Con pequeñas
variaciones de v podemos construir una sucesión de vectores vn tales que para todo i con lı́m

n→∞
vn = v se

dé que
t(bi)< vi/d < t(bi +1).

Así B(h,vn) = {b} y, por tanto, A(h,vn) = {b}. Además, por ser A completo, concluimos que b∈A(h,v),
completando la demostración de que A = B.
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