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Summary

In a huge number of countries we live in representative democracies, which means that people do
not make decisions directly but they select political representatives that do it for them. This is done by
holding elections whose aim is to achieve a proportional representation of the citizens. The way these
representatives are elected is portrayed in the different electoral systems. It is very common to divide
the electorate into several electoral districts and then, people vote in each of them to decide who wins
the seats that are distributed.

The first idea that comes to mind in order to allocate the seats is that each party receives the number
of votes it has got divided by the sum of the votes of all the political parties and multiplied by the number
of seats to distribute. This value is known as a party quote i, which obviously does not have to be an
integer number. This is the main problem concerning the apportionment, the fact that when you try to
find an integer number of seats, the exact proportionality is lost. This is why we must be more flexible
concerning the properties required to an apportionment.

The first chapter deals with the problem of how to allocate the seats among the different parties that
stand for elections taking into account, as it could not be otherwise, the votes each party gets. In order
to be done, the concept of apportionment rule must be defined, which is a function that assigns one
or several vectors of seats ( vectors of natural numbers) whose components sum the house size £, to a
vector of any votes ( vector of positive numbers).

A list of basic properties that any apportionment rule must satisfy in order to be considered an
apportionment method is given. One of them is anonymity, which means that if the components of
the vote vector are permuted, the vector of seats you get is also permuted. This property along with
the completeness forces you to allocate more than one possible apportion for some vote vectors. Each
electoral system, logically, uses a process to choose a specific vector of seats.

However, these properties are not sufficient to reach a certain level of proportionality in order to
faithfully convey the voters’ preferences. The idea of proportionality is an intuitive one but, after thin-
king about it, has some difficulties. Thus, more properties related with proportionality that meet the
apportionment method are introduced. Precision refers to keeping the proportions when the house si-
ze is reduced. I present the concept of closeness. It means that parties cannot modify the number of
seats in more than one when the house size increases in one seat and I demonstrate the implications of
proportionality when the number of seats to be distributed tends to infinity.

Several types of monotonicity are named when the number of party votes varies. Moreover, one
monotonicity is referred to when the number of seats increases. Denying the last one is known as the
Alabama paradox.

We finish the first chapter presenting coherent methods and it is proved that they satisfy the mono-
tonicity of seats and the weak monotonicity in votes.

The Hamilton method is introduced in the second chapter. It is the oldest one as well as the easiest to
make. It is close and precise. It is proved that it minimizes the sum of the seats’ distances to the quotes,
which shows that somehow it is the most proportional. However, it is neither weak monotonous in votes
nor seat monotonous, which means that the Alabama paradox may occur. Therefore, it has been deleted
from many electoral systems.

In the third chapter jumppoint and signposts sequences are defined and a rounding rule from them is
made. Signposts sequences (k) satisfy that k,, € [n—1,n] and that an x € [n— 1,n] is rounded to n — 1 or
n depending on where it is placed before &, or afterwards. Rounding to a sequence that is not a signpost
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sequence is made in an analogous way, always allowing two different possibilities of rounding in cases
such as x = k.

Rounding rules induce a divisor rule. An apportionment using this type of rules is achieved dividing
the votes vector by a suitable divisor in a way that as we round according to the rounding rule, we get
the number of seats we want to distribute. The divisor rules are almost apportionment methods. The
only property that they may not satisfy is exactness. It is proved that two jumppoint sequences induce
the same divisor rule providing that they are proportional and that there is an apportionment method if
the divisor rule can be made from a signpost sequence.

The classical divisor the Jefferson, the Webster, the Adams, the Hill and the Dean methods are
introduced. The Webster method is described just as it appears in the Electoral German Law. A necessary
condition and a sufficient one is provided so that a divisor rule is precise and it is shown that the classical
divisor methods are precise.

The D’Hondt method used in Spain is not described in the Spanish electoral law as a divisor method.
In the fourth and last chapter an alternative definition of the divisor rules is given and it is proved that
they are equivalent.

An example of apportionment according to the D’Hondt method just as it appears in the Spanish
Electoral Law and according to Jefferson method are included and it is proved that they coincide. Anot-
her example of apportionment according to the Sainte-Lagu€ method is given and it is compared to the
D’Hondt method.

To conclude the fourth chapter, it is demonstrated that an apportionment method is coherent and
complete if and only if it is a divisor method.

The demonstration of this theorem does not appear until the second edition of [1]. However, we
have completed and clarified some steps of this demonstration. It can also be found in [2] but it is very
confusing and difficult to follow.



Resumen

En una gran cantidad de paises vivimos en democracias representativas. Eso significa que la po-
blacién general no toma las decisiones directamente sino que elige a unos representantes politicos para
que las tomen en su lugar. Esto se hace a través de elecciones en las que se pretende que haya una
representaciéon mas o menos proporcional de la poblacién. La manera de seleccionar a los representan-
tes se describe en los diferentes sistemas electorales. Lo mds habitual es dividir al electorado en varias
circunscripciones y después, en cada una de ellas, se vota para decidir quién consigue los escafios que
se reparten.

La primera idea que podemos tener para hacer un reparto es que a cada partido le corresponde el
nimero de votos que ha obtenido dividido por la suma total de votos a candidaturas y multiplicada
por el niimero de escafios a repartir. Este valor se conoce como cuota del partido iy, claramente, no
tiene por qué ser entero. Este es el problema fundamental de los repartos, que al buscar un nimero
entero de escafios perdemos una proporcionalidad exacta. Por ello tenemos que ser mas flexibles en las
propiedades que podemos exigir a un reparto.

En el primer capitulo se aborda el problema de como repartir los escafios entre los diferentes partidos
que se presentan a unas elecciones, teniendo en cuenta, como no puede ser de otra manera, los votos
que obtiene cada uno. Para ello definimos el concepto de regla de reparto, que es una funcién que asigna
uno o varios vectores de escafios (vectores de nimeros naturales), cuyas componentes sumen el tamafio
h de la circunscripcion, a un vector de votos cualquiera (vectores de niimeros positivos).

Damos una lista de propiedades minimas que deben cumplir cualquier regla de reparto para ser
considerada un método de reparto. Entre ellas estd el anonimato. El anonimato significa que si permu-
tamos las componentes del vector de votos, el vector de escaios que se obtiene, también se permuta.
Esta propiedad junto con la completitud obligan a asignar més de un posible reparto a algunos vectores
de votos. Logicamente, luego cada sistema electoral tiene un procedimiento para elegir un vector de
escafios concreto.

Sin embargo, estas propiedades no son suficientes para alcanzar un cierto grado de proporciona-
lidad, es decir, que refleje fielmente las preferencias de los votantes. La idea de proporcionalidad es
intuitiva pero resulta tener varias aristas cuando reflexionas sobre ella. Por eso se plantean mds propie-
dades relacionadas con la proporcionalidad que pueden cumplir los métodos de reparto y que parecen
razonables. La precision habla de mantener proporciones al reducir los escaifios a repartir. Introduzco el
concepto de cercania, en el que al aumentar en un escao el tamafio de la circunscripciéon ningtn partido
puede variar en més de uno su nimero de escafios, y demuestro que implica la proporcionalidad cuando
el nimero de escafos a repartir tiende a infinito.

Comentamos varios tipos de monotonia al variar el niimero de votos de los partidos. Y también una
monotonia al aumentar el nimero de escafios. La negacién de esta ultima se la conoce como paradoja
de Alabama.

Finalizamos el primer capitulo presentando los métodos coherentes y vemos que cumplen la mono-
tonia en escafios y la monotonia débil en votos.

En el segundo capitulo presentamos el método de Hamilton. Este es el mds antiguo y también el
mads facil de construir. Vemos que es cercano y preciso. Demostramos que minimiza la suma de las
distancias de los escafios a las cuotas y esto visualiza que, de algin modo es el mds proporcional. Pero
no es mondtono débil en votos ni mondtono en escaifios, es decir, se puede producir la paradoja de
Alabama y por tanto se ha eliminado de muchos sistemas electorales.
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VI Resumen

En el tercer capitulo definimos las sucesiones de pivotes y de guias y construimos una regla de
redondeo a partir de ellas. Las guias son sucesiones (k) tales que k, € [n— 1,n] yunx € [n— 1,n] se
redondea a n — 1 0 a n segin esté antes de k, o después. El redondeo con una sucesién que no sea guia
se hace de manera anédloga, siempre dejando dos posibilidades de redondeo para los casos de x = k.

Las reglas de redondeo inducen una regla de divisor. Un reparto con este tipo de reglas se obtiene
dividiendo el vector de votos por un divisor adecuado de tal forma que al redondear segin la regla
de redondeo obtenemos el nimero de escafios que queremos repartir. Las reglas de divisor son casi
métodos de reparto, solamente pueden no cumplir la exactitud. Se demuestra que dos sucesiones de
pivotes inducen la misma regla de divisor si son proporcionales y que tenemos un método de reparto si
la regla de divisor se puede construir a partir de una sucesion de guias.

Se presentan los métodos de divisor clasicos, que son: el de Jefferson, el de Webster, el de Adams,
el de Hill y el de Dean. Se describe el método de Webster tal y como aparece en la ley electoral alemana.
Damos una condicion necesaria y otra suficiente para que una regla de divisor sea precisa y se ve que
los métodos de divisor cldsicos son precisos.

El método D’Hondt, usado en Espaiia, no se describe en la ley electoral espafiola como método de
divisor. En el cuarto y dltimo capitulo se da una definicion alternativa de las reglas de divisor y se ve
que son equivalentes.

Se pone un ejemplo de reparto segtin el método D’Hondet, tal y como se describe en la ley electoral
espafiola, y segtin el método de Jefferson y se ve que coinciden. Se pone otro ejemplo de reparto segin
el método Sainte-Lagué y se compara con el método D’Hondt.

Finalizamos el cuarto capitulo demostrando que un método de reparto es coherente y completo si y
solo si es un método de divisor.

La demostracién de este teorema no aparece hasta la segunda edicién de [1]. Adn asi hemos com-
pletado y aclarado algunos pasos de la misma. También se puede encontrar en [2] pero es muy confusa
y dificil de seguir.



Indice general

Summary

Resumen

1. Métodos de reparto y propiedades

2. El método de Hamilton

3. Métodos de divisor

4. Propiedades de los métodos de divisor

VII

111

13

19






Capitulo 1

Métodos de reparto y propiedades

En una gran cantidad de paises vivimos en democracias representativas. Eso significa que la po-
blacién general no toma las decisiones directamente sino que elige a unos representantes politicos para
que las tomen en su lugar. Esto se hace a través de elecciones en las que se pretende que haya una
representacién mds o menos proporcional de la poblacién. La manera de seleccionar a los representan-
tes se describe en los diferentes sistemas electorales. Lo mds habitual es dividir al electorado en varias
circunscripciones y después, en cada una de ellas, se vota para decidir quién consigue los escafios que
se reparten. En ambas situaciones se suelen usar métodos de reparto de diferentes tipos.

Para estudiar las propiedades y que no se produzcan situaciones indeseadas hay que afinar las nota-
ciones. En general la mayoria de las definiciones y propiedades estudiadas estdn en [1]. Hemos estudiado
la segunda edicién que mejora y aclara conceptos que en la anterior edicién quedaban confusos. Cuando
lo hemos considerado necesario, concretamos y simplificamos o clarificamos conceptos y propiedades
que nos conducen al objetivo de valorar los principales tipos de repartos usados en la actualidad. Sea
h el tamafio de la circunscripcién (el nimero de escafios a repartir) y s el nimero de partidos, con
h,s € N* := N~ {0}. Cada uno de estos partidos obtiene v; votos, con v; € P:= {x € R | x > 0}! tal
que v := (vy,...,vs) € P*. A cada partido se le asigna un nimero de escafios que depende del nimero de
votos. El vector de escafios resultante serd @ = (ay,...,a;) € N cona:=Y} ,a;=h.

Construyamos ahora una funcién con la que hacer el reparto. Su dominio tiene que tener en cuenta
el nimero de escafios a repartir # € N* y un vector de votos v € P* sea cual sea el niimero de partidos
s € N*, por tanto consideramos la unién de los P*

V= JP"
s=1

Su recorrido debe tener como elementos conjuntos de vectores de N* para permitir la opcidon de que
haya mds de un reparto posible.

Denotamos N*(h) := {(ai,...,a;) € N*|a=h} y M*(h) := {C C N*(h) | C # 0} (observemos que
C tiene un niimero finito de elementos) y ahora podemos definir el recorrido de la futura funcién:

G:= |J M (h).
s,h=1
Definicion 1.1. [1, pag. 74] Se llama regla de reparto a una aplicacion A : N* xV — G tal que si
veP yaeA(h,v) entonces a € N°(h). Al vector a se le denota posible reparto de h escaiios y v votos
(a vector de escarios).

Ejemplo 1. Sea A la regla de reparto tal que asigna todos los escafios al ultimo partido de la lista.
Entonces A(h, (vq,...,v5)) = {(0,...,0,h)} para todo h,s € N*y todo (vy,...,vs) € P°.
s—1

"En un principio podria parecer que basta considerar los naturales pero enseguida se verd la necesidad de usar los racionales
positivos y la completitud de R puede resultar de utilidad mds adelante.



2 Capitulo 1. Métodos de reparto y propiedades

Hay tres pardmetros que afectan a un reparto: el nimero de escafios a repartir, el nimero de partidos
y el nimero de votos de cada partido. Vamos a estudiar varias condiciones que puede cumplir una regla
y maneras en las que puede afectar a un posible reparto variaciones de 4 y de v.

Definicion 1.2. [ 1, pags. 75-77] Un método de reparto es una regla de reparto que cumple las siguientes
propiedades:

= Anonimato. Cualquier permutacion de un vector de votos se corresponde con la misma permu-
tacion de sus vectores de escaiios.

= Equilibrio. Dos partidos igual de fuertes difieren como mucho en un escaiio. Es decir, para
(ay,...,a5) € A(h,(v1,...,vs)) entonces se cumple:

Vi:Vj:>|Cli*aj| <1 Vi,jZI,...,S.

» Armonia. Un partido con mds votos no puede tener menos escaiios que un partido con menos
votos. Es decir, para (ay, ... as) € A(h,(vi,...,vs)) entonces se cumple:

vi>vi=a;>a; Vi,j=1,...,s.

» Decencia. Los posibles repartos de h escaiios de los vectores de votos (pvi,...,pvs) son los
mismos para todo p > 0.

= Exactitud. Cuando h coincide con el niimero de votos a los partidos entonces el tinico reparto
posible es que cada partido tenga tantos escaiios como votos. Es decir, siv € N° y v = h entonces
se cumple:

A(h,v) ={v}.

Hemos tomado una definicién de exactitud més débil que la que aparece en [ 1, pdg.76]. Esta incluye
una condicién de completitud como se describe en 1.3 pero solo para los v con componentes enteras.
Estas propiedades dan una base sobre la que construir diferentes distribuciones de escafios pero no dan
una nocién de proporcionalidad puesto que permiten repartos extremos.

Ejemplo 2. Construimos una regla de reparto A en la que todos los escafios vayan al partido més votado
salvo en situaciones que hay que tener en cuenta. Si nuestro vector de votos v es de tal forma que existe
un p tal que pv € N* y pv = h entonces A(h,v) = {pv}. Si no se da esta situacién y hay k partidos
empatados a votos en la primera posicién calculamos la division euclidea & = kn + r y repartimos los
escafos de tal forma que r partidos tengan n+ 1 escafios y k — r tengan n escafios (todas las posibilidades
deben pertenecer a A(h,v)). En cualquier otra situacion el partido mds votado se lleva los & escafios. Un
reparto asi cumple armonia y equilibrio, es anénimo y se cumple la exactitud y la decencia.

Un reparto proporcional perfecto seria aquel en el que para todo v € V existe una constante p > 0
tal que pa = v con {a} = A(h,v). Sin embargo esto es claramente imposible por lo que la idea de
proporcionalidad debe ser menos restrictiva.

Definicion 1.3. Propiedades adicionales que puede cumplir un método de reparto:

» Precision. [2, pag. 97] Conserva las proporciones en las distribuciones de escaiios al reducir el
tamaiio de la circunscripcion. Es decir, sea v € P*, a € A(h,V) si existe beNs y1<néeNtal que
@ = nb entonces:
A(mb,v) ={mb} VYm=1,....n—1.

» Cercania. Sea (ay,...,a5) € A(h,v) y sea (by,...,bs) € A(h+ 1,v) entonces:

|ai—bi] <1 Vi= 1,...,S.
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= Completitud. [1, pag. 161] [2, pag. 98] Sea v € P* y (wi)i_, C P* entonces:

limw,=v y acA(hw) Yk = acA(hy).
—»00

El ejemplo anterior es preciso pero no cercano ni completo.

Ejemplo 3. Sea A un método de reparto preciso tal que para 4 = 30 y un vector de votos v tenemos que
a=(12963) € A(30,v). Comoa=3(4321) podemos afirmar que A(10,v) = {(432 1)} y también
que A(20,v) ={(8642)}.

En el capitulo 3 veremos que se pueden construir repartos que no son precisos. La siguiente propo-
sicion nos da una idea de la cierta proporcionalidad que cumplen los repartos cercanos.

Proposicioén 1.4. Sea A un método de reparto cercano, seav € Q* NP*y sea a, € A(h,v) entonces:

lim <0 = V1

h—eo h v
Demostracion. Seaw € Q* NP* entonces existe p € N* tal que pw =V € N* con v; > 0. Por decencia
A(h,w) = A(h,v) para todo h € N*. Por exactitud y por decencia sabemos que A(gv,v) = {gv} para
todo g € N*. Por divisién euclidea tenemos que 7 = gv+r con g,r € Ny 0 < r < v. Podemos poner

api = Aqvyri Y POr exactitud ag,; = qv; y por cercania qv; — r < agy1r; < qv; +r. Deducimos que

qvi_vgqvi_r<aqv+r,i:%<qvi+r<qvi+v'
qv—+v qv+r qv+r h qv+r qv

Es decir, para todo & existe g de tal forma que ’gv’;vv <% %jv y h tiende a infinito si g también lo

hace. Y puesto que

fim LY gy YV
g qV+V g gV %
por la regla del sdndwich llegamos a
lim Hi Vi _ Wi

h—eo h Y w

O

Como estamos considerando solamente métodos de reparto, por tanto decentes, se tiene A(h,v) =
A (h, %) y podemos considerar solamente v € V tal que v = 1.

También es habitual considerar las llamadas cuotas [3, pag. 305]. Dados h y v al valor ; se le
conoce como cuota de (h,V) y se interpreta como el nimero de votos que «deberia» costar un escafio.
Al valor ¢; := ’% se le llama cuota del partido i y g es el vector de cuotas. También, por decencia,
A(h,v) =A(h,q).

Asfi, segtin nos interese, podremos considerar solo los v tal que v =1 o tal que v = h. Un primer
intento para definir la proporcionalidad pasa por considerar que cada @ € A(h,v) debe cumplir el criterio

de las cuotas [5, pdg. 108], que |a; — g;| < 1 o equivalentemente

lgi] <ai<[qi] Vi=1,...,s. (1.1)

|| y [-] son la funcién suelo, parte entera hacia abajo, y la funcién techo, parte entera hacia arriba. Aqui
aparece el método de Hamilton o de restos mayores en la que su forma de realizar el reparto garantiza
que se cumpla (1.1). Estudiaremos este método en detalle en el capitulo 2.

Fijémonos que en el criterio de las cuotas estamos teniendo en cuenta el nimero total de votos v, asi
que podemos relajarlo si permitimos variar libremente al divisor.

Definicion 1.5. Se dice que un método de reparto A cumple el criterio de proporcionalidad si para todo
h € N*, v €V existe un d > 0 tal que para todo a € A(h,v) se cumple

H <ai< [Vﬂ Vi=1,...,s. (12)
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Cualquier método de reparto debe cumplir el criterio de proporcionalidad para ser considerado pro-
porcional. El criterio de proporcionalidad transmite claramente que la manera de repartir escafios de-
pende de dos factores: de como se escoja el divisor d y de la forma de redondear. Es més, formas muy
elegantes de elegir d y el criterio de redondeo nos llevan a los métodos de reparto mas comunes en los
que casi todas las definiciones que estamos viendo se cumplen y que veremos en el capitulo 3. Dicho
esto, es fundamental tener en cuenta las demads propiedades para dotar de una estructura a las reglas de
reparto, sobre todo si intentamos plantear métodos alternativos para repartir los escafios.

Proposicion 1.6. Sea A un método de reparto que cumpla el criterio de proporcionalidad, seav € P* y

sea ay € A(h,v) entonces:
. Qpi Vi
lim =—.
h—oo h v

Demostracion. Observemos que para cada h tendremos un d distinto. Primero cambiemos nuestra ca-
dena de desigualdades:

Vi i Vi
{J gah,,- < ’V—‘ :>ah7,-—1 < di <(1h7,'+1.
h

Al sumar ahora todas las componentes Y.(a; — 1) < ¥zt < Y.(an;+ 1) tenemos:

v
h—s<— <h+s.
s d, +s
Tenemos que ;7 < dj, < 3 — 0 cuando i — 0. Y ahora podemos volver a la primera desigualdad,
dividiendo por v y multiplicando por dj,, y afiadir dos mas:
ap;—1 < dp(ap;—1) Vi dp(ani+1) < hi +1

h+s y v v h—s

Restando % (que es menor que 1) llegamos a

—sap.i 1 <v,~ ap say ; n 1
h(h+s) h+s v h  h(h—s) h—s

Tanto el lado izquierdo como el derecho de las desigualdades tienden a 0 cuando /7 — +oo. Un limite
tiende a 0 si y solo si su valor absoluto tiende a 0.
say ; 1 s 1

— < 0 si h— +oo.
h(h—l—s)+h—|—s hts hgs ST

—Sap; 1
h(h+s) h+s

Con el lado derecho de la desigualdad el razonamiento es andlogo.
Asi concluimos finalmente que
lim <0 = T

h—e h v

O]

Como hemos comentado al principio, el nimero de escafios, el nimero de partidos y los votos de
cada partido afectan a un reparto. Veamos como puede afectar a este una variacion de dichos pardmetros.

Definicion 1.7. [2, pag. 106] Una regla de reparto A es semimondtona en votos si para todo v,w € P*
vi<w; yvi=w; Vj#i = a;<b; con a€A(h,v)y beA(hWw).

La semimonotonia en votos parece poco relevante en la practica ya que este tipo comparaciones son
poco probables en la vida real pero es algo bdsico que se debe cumplir.

Una definicién a primera vista mds atractiva puesto que tiene en cuenta dos vectores de votos cua-
lesquiera es la siguiente.
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Definicién 1.8. [2, pag. 106] Sea v,w € P conv=w =1y seaa € A(h,v) y b € A(h,w). Un método de
reparto se dice que es fuertemente mondétono en votos si:

vi<w; = a; < b;.
Proposicion 1.9. [2, pag. 107] Ningiin método de reparto es fuertemente monotono en votos.

Demostracion. Seas >3, si h=1tenemos que (1,0,...,0) esunrepartodev= (1/s,1/s,...,1/s). Sea
e>0,w= (HTS, 1+S28, 1}38, %, el %) entonces (0,1,0,...,0) es un reparto de w. Asi pues tenemos que

v=w=1yv;<w; % a; < b;. ]

Definicién 1.10. [2, pags. 108, 117] Sea A un método de reparto, sean v,w € R® y sean a € A(h,v) y
b € A(h,w). A se dice monétono en votos si para todo i < j

bi < a; o aj < bj
- g 7 £ n Vi o
. . i J—
wj Vj —=—y (bl,...,bi,l,ai,biﬂ,...,bj,l,aj,bjﬂ,...,bs)EA(h,w)
Wi Vj
En el caso en el que se cumpla la condicion solamente para una desigualdad estricta diremos que es
mondtono débil en votos [ 1, pag. 166].

Definimos el concepto de region para una mayor comprension del concepto de reparto.

Definicion 1.11. [2, pdg. 109] Sea a € N*(h) llamaremos region del reparto @ al conjunto
P(a):={veP’ |acA(hV)}.
Un método de reparto A se dice convexo si P(a) es convexo para todo a € N*(h), h,s € N.

Fijémonos que si s y & estdn fijos hay un nimero finito de regiones y a cada vector v € P* le corres-
ponde al menos una region.

Proposicion 1.12. [2, pag. 110] Si A es un método de reparto mondtono en votos entonces es convexo.

Demostracion. Sea A un método de reparto que no es convexo. Es decir, existe a € N*(h) y v,w € P(a)
tal que % := Av+ (1 — A)w ¢ P(a) para algiin 0 < A < 1. Sea b = A(h, %) tal que la diferencia con @ sea
lo menor posible. Como @ # b existen i, j = 1,...,s tal que a; < b; y aj > b;. Por construccion de u
tenemos que sucede sin pérdida de generalidad una de las siguientes relaciones.

Vi Ui Wi Vi Ui Wi

L A A L R

vio ujpoowjoo v Uuj W

) up Wi N .
En el primer caso — < — y a; <b; y a j > bj implican que A no es mondtono en votos. Para el
uj  wj
j J
segundo caso no podemos intercambiar b;, b; por a;, a; porque si fuera posible seria mds cercano a a
que b contradiciendo la minimalidad de la distancia de b a @ y por tanto A tampoco es mon4tono en este

caso. O]

Definicion 1.13. [1, pag. 163] Un método de reparto se dice mondtono en escafios cuando para todo h
y todo vector de votos v € P" se cumple:

VaeA(h,v) existe b€ A(h+1,9) tal que a<b
VbeA(h+1,7) existe ac A(h,v) tal que a<b.

Para el caso s = 2 y si nuestro método es cercano, se deduce que si (aj,az) € A(h,v) implica que
(a1 +1,a2) o (ar,a2 + 1) pertenecen a A(h+ 1,9), ademds (a; +2,a2 —1) y (a1 — 1,42 +2) no son
repartos validos. Es decir, concluimos que sia € A(h,v) y b € A(h+ 1,7) entonces a < b.
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Definicion 1.14. [1, pag. 162] Un método de reparto A se dice coherente si para todo s € N*, para todo
0 <m <s, paratodov € P* ya € A(h,v) cumple las dos siguientes propiedades:

» Coherencia al restringir: (a;)i<m € A('Y @i, (Vi)i<m)-
i<m

= Coherencia al concatenar: Si b € A('Y, a;, (vi)i<cm) ye €EA( ¥ ai, (Vi) m<i<s) entonces
i<m m<i<s

(b,C) € A(h,).

Nota: por anonimato son equivalentes las diferentes elecciones de conjuntos de subindices cuales-
quiera.

Teorema 1.15. [1, pags. 163-165] Todo método coherente es monotono en escafnios.

Demostracion. Primero lo demostraremos para dos partidos y circunscripciones con tamafo hy h+ 1.
Sea un vector de votos v = (vq,v;) tal que r = vy /v, por decencia el vector (¢, 1) tendrd los mismos
repartos. Seana € A(h,(t,1)) y b € A(h+1,(¢,1)), necesitamos ver que

a<b.

Para ello consideramos el reparto de 2+ 1 escafios entre cuatro partidos con el vector de votos (7, 1,¢,1).
Veamos que para todo vector de escafios ¢ € A(2h+1,(¢,1,¢,1)) las dos primeras componentes suman
hoh-+1.Como A es equilibrado tenemos que

ci—1<a<a+l y oo-1<a<a+l.
Si las dos primeras componentes suman 2 — 1 entonces
c<(h=1)+(c1+1)+(c2+1)<2(h—1)+2=2h.
Si c1 +c¢p = h+ 2 entonces
cz(h+2)+(c1—1)+(ca—1)=22(h+2)—2=2h+2.

Por tanto, ¢ +c¢y; = h o ¢y + ¢y = h+ 1. Las dos opciones son posibles por anonimato.
Supongamos sin pérdida de generalidad c; 4¢3 = h. Por coherencia al restringir (¢1,c2) € A(h, (t,1))
de la misma forma que lo hace a. Asi que por coherencia al concatenar

(Cll,a276‘3,C4) GA(2h+ 15 (tu 1)t7 1))

Por otra parte, por coherencia al restringir tenemos (c3,c4) € A(h+1,(¢,1)), asi como, b € A(h+
1,(z,1)). y de nuevo por coherencia al concatenar

(alua%blabZ) GA(2h+17(t717t71))'

Si b, = ap — 1 entonces
b1+ by < (al—i—l)—i—(az—l):h;éh—i—l.

Si by = a; — 1 entonces
b1 +by < (al—l)—l—(az—l—l):h;éh—i—l.

Por tanto a; < by y ay < by.

Ahora lo demostraremos para mas partidos utilizando induccién completa sobre el nimero de par-
tidos. Seaa € A(h,v) y b € A(h+ 1,7), entonces pueden ocurrir dos cosas, o bien @ < b o bien existe un
indice i tal que b; < a;.

En el primer caso hemos acabado. En el segundo , tenemos que ver que existen ¢ € A(h,v) y d €
A(h+1,7) tal que

a<d y c¢<b.
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Supongamos sin pérdida de generalidad que a; > b y que a; < by (podemos hacerlo por anonimato).
Por coherencia al restringir se tiene (a1,az) € A(a; +az, (vi,v2)) y (b1,b2) € A(b1 + b2, (v1,v2)). Como
A es mondtono para 2 escafios por la primera parte de la demostracion y

(a,a2) & (b1,b2) 'y (ar,a2) % (b1,b2)

tenemos que
ay+a; =by+bs.

Sean =h— (a; +ay), por coherencia al restringir,
(az,...,as) €A(n,(va,...,v5)) y (b3,...,b5) €EA(n+1,(v3,...,v)).

Por hipétesis de induccién completa, existe (d3,...,d;) € A(n+1,(vs,...,vy)) tal que

(a3,...,a5) < (ds,...,ds)
y por coherencia al concatenar, d = (ay,ay,ds, . ..,ds) € A(h+1,7) cumple
a<d.
Con un razonamiento similar, podemos formar un vector ¢ = (by,bs,cy,...,cs) € A(h,v) con
c<b.

Teorema 1.16. [1, pags. 166, 167] Todo método coherente es monotono débil en votos.

Demostracion. Comenzamos la demostracion para dos partidos. Sean (aj,az) € A(h,v) y (b1,b) €
Vi oWy,

A(h,w). Veamos que 1A implica a; < by 0 a; > by.
V2 )
w1

Sear =1 yt = —, por decencia b € A(h, (t,1)) y a € A(h,(r,1)). Sea ¢ € A(2h,(t,1,1,1)), por
V2 %)
anonimato podemos suponer que ¢ < ¢4, veamos que

ci+c2h

La afirmacién se demuestra estableciendo la desigualdad c¢; + ¢» > ¢3 + ¢4. Como ¢ > r, por armonia,
c1 = ¢3. Si ¢3 = ¢4 la desigualdad se cumple. En otro caso, como por equilibrio, |c; — c4] < 1 se tiene
que

cr=c4—1,

y también que ¢y +c4 = 2cy + 1 es impar y ¢ + ¢3 también lo es. Se sigue que ¢y >c3ycy =2 c3+ 1.
Resumiendo, ¢; +¢; > (¢34 1) + (¢4 — 1) = ¢3 + c4. Es decir,

ci+ca=h YeeA(2h (t,1,n1)).

Supongamos que c¢; + ¢y = ¢3+ ¢4 = h, como ¢ = ¢3 tememos que ¢y < ¢4. Por coherencia al
restringir (c1,¢2) € A(h,(t,1)) y (¢3,¢4) € A(h,(r,1)) y por coherencia al concatenar
(b1,by,a1,a3) € A(2h,(t,1,r,1)) y por armonia,

b1>a1.

Para el caso ¢; + ¢, > h, por coherencia, por un lado (¢, c2) € A(cy +¢2,(t,1)) y por monotonia en
escafios, ¢, > by. Por otro lado, (¢3,c4) € A(c3 + ca,(r, 1)) con ¢3 + ¢4 < h. Por monotonia en escaiios,
¢4 < ap, ahora podemos concatenar las desigualdades

by <cr <y <ay,
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por lo que la primera parte de la prueba estd completada.

Para repartos con s > 3, el argumento es por reduccién al absurdo. Supongamos que un reparto
coherente no es mondtono débil en votos, entonces, existen vectores de escaios a € A(h,v) y b € A(h,w)
tal que dos partidos con indices (i,k) (supongamos i = 1,k = 2 sin perdida de generalidad) satisfacen
v w .

P y también
V2 wo
ap>by y a<bs.

v w . . o .
Con r= — yt= - ladecencia y la coherencia al restringir nos dice que (ar,a2) € A(a; +az, (1))
v w

2 2
y (b] ,bz) S A(b] + by, (l, 1))
En el caso que a; + ay = by + b, tenemos contradiccién con la monotonia en votos para el caso
s =2.
En caso de que a; +a < by + by consideramos (c1,¢;) € A(by + by, (r,1)). Por monotonia en esca-
fos,
apscr y ax<o.

Como (by,by) € A(b1 + b2, (t,1)) la monotonia en el caso s = 2 nos dice que

Por tanto si ¢; > b tenemos que c; + ¢ > by + by que no puede ser. Asi que
ca<b y ar<c <b

contradiciendo nuestra hipétesis.
El caso a; +ap > by + b, se realiza de forma andloga. ]



Capitulo 2

El método de Hamilton

El método de Hamilton surge en 1792 cuando en Estados Unidos se plantean el problema de cuédntos
representantes deben asignarse a cada estado en el Congreso. Es el mds antiguo de todos junto con el
método de Jefferson y es muy ttil e intuitivo. Dada su sencillez se usa en varios sistemas electorales.
Por ejemplo, es el que se usa para repartir 248 escaiios entre todas las provincias de Espaiia [0, articulo,
162]. También se utiliza en la eleccion de representantes al claustro en la Universidad de Zaragoza [7,
articulos 10y 17].

Definicion 2.1. [2, pag. 17] [1, pag. 96] El método de Hamilton o de restos mayores se realiza en dos
partes:

Primero se asigna a cada partido la parte entera de sus cuotas.

Segundo se asignan los escarios restantes afiadiendo 1 escafio a aquellos partidos con mayor parte
decimal.

a € H(h,v) siysolo si|a;—q;| < 1 para todo i y ademds si qx = ax+ fr con0< fy <1lygj=a;j—g;
con 0 < g; < 1tenemos que fr <1—g;.

Ejemplo 4. Supongamos que tenemos 4 partidos que se reparten 12 escafios con un vector de votos
(23 18 13 6). El vector de cuotas es (4,6 3,6 2,6 1,2). La parte entera de las cuotas es (4 3 2 1) por lo
que quedan dos escafios por repartir. Como hay tres partidos con la misma parte decimal, es decir, hay
empates, hay varios repartos posibles:

A(12,(2318136)) ={(5421),(4431),(533 1)}.

Claramente el método de Hamilton es anénimo, equilibrado, arménico, decente y exacto, por lo que
efectivamente es un método de reparto.

Por construccién garantiza que se cumpla (1.1), ademds minimiza la diferencia entre los escafios de
cada partido y sus cuotas.

Proposicion 2.2. [1, pags. 195-197] El método de Hamilton es el que minimiza la funcion
S
f(b) =Y Ibi—ail.
i=1

Es decir, @ € H(h,q), (q = h) si y solo si f(a) < f(b) para todo b € N*(h).

Demostracién. Sea b € N*(h), si b; < | q;] para algtin i entonces

bi+) lgj] <h
J#

Por lo que para algiin j se tiene que b; > |gj|+1.Seaci=bi+1,c;j=bj—1yci=bysik#i,k#j
entonces

S S
Y la—al < Y, e —aul-
=1 =1

9
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Asi pues, si @ minimiza la funcién a; > |¢;| Vi y con un razonamiento andlogo a; < [g;].
Sea a un posible reparto de Hamilton y sea b tal que |b; — ¢;| < 1 para todo i. Se tiene que a; = b;
o que |a; —b;| = 1. Si existe i tal que a; = b; + 1, existe j tal que a; = b; — 1. La proposicién quedard
probada si
|ai — qil +la; — q;| < |bi—qil 4 |bj — q;l.

Porsera; = |gi|+ 1y aj = | ¢;] tenemos que la parte decimal de ¢; es mayor o igual que la parte decimal
de g, es decir, |b; — qi| > |a; —q,| y por tanto

lai —qi| +1aj—qj| =1—(qi—bi) +]aj—q;| <1

[bi— il +1bj—qjl = qi=bi+bj—q;>qj—aj+1-(qj—a;) =1

O
Veamos ahora que es preciso y cercano.
Proposicion 2.3. El método de Hamilton es cercano.
Demostracion. Seav = (vy,...,vs) conv = 1, sea a un vector de reparto de & escafios y sea b un vector

de reparto de 1+ 1 escafios. Entonces |hv;| < a;,b; < [(h+ 1)v;] paratodoi=1,...,s.

Si s =1 todo es trivial y si s > 2 entonces v; < 1y [hv;] > [(h+1)v;| y [(h+1)v;| — |hvi] < 2.
Asi se tiene que |a; — b;| < 2.

Supongamos que existe i para el que se tiene la igualdad. En este caso se tiene:

th,’J =a; < Uzvi] = L(h—i— 1)Vl'J < ((h—l— l)vi] = b;.
Pero para este i tenemos que
hv; — thiJ = hv; — (L(h+ l)v,-J — 1) =hv;+1— L(h-i- l)vl-J > (h+ I)V,' — L(h-f— I)V[J .

Por otra parte, para que el partido i gane dos escafios, algtn partido j debe perder uno (con lo
anterior es claro que ningtin partido puede perder mas de un escafio). Para que esto suceda debemos
tener que

hvi — U’LV,‘J < ]’LVJ' — LthJ s

es decir, debe tener mayor parte decimal que i para asignarle antes un escafio adicional cuando se
reparten h escafios. Ademads debe cumplir que th jJ = L(h—i— 1)v jJ ya que de otra forma j no podria
perder un escafio. En tal caso hv; — |hv;| < (h+1)v;— | (h+ 1)v;] y, por tanto,

(h+1)vi—[(h+1)vi] < (h+1)vj— |[(h+1)v;].

Es decir, cuando se reparten 2+ 1 escafios, el partido j tiene mayor resto que el i y se le asignaria antes
un escafio adicional. Asia; > b;—1y
‘Cl,‘ - b,| < 1.

Proposiciéon 2.4. El método de Hamilton es preciso.

Demostracion. Sean v € P* y @ € A(h,v) tal que existe un b € N° y 1 < n € N con @ = nb, debemos
comprobar que mb es el Unico reparto de mb escafios y v votos.

Veamos que |mb; —mbu;| < 1. Claramente “'a = mb € N* para todo m = 1,...,n — 1. Asf tenemos
que

|mb; — mbu;| = m lai —hu;| < |a;i—hu| <1 Yi=1,...,s.
n
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Sihuj=a;+ficon0< f;<1lyhuj=a;j—gjcon0<g;<1(osic€lsonlos partidos que
se redondean hacia abajo y los j € J los que se redondean hacia arriba) tenemos que f; < 1—g;. Si
cambiamos el tamafio de la circunscripcion tenemos 7 hu; = mb; + 7 fi y “huj =mb;— " g;. Como

S
Y mbe="hy Zf<1-"g vielVjel
= n n n

entonces A (Th,v) = {mb}. O
n

Sabemos que los escafios asignados a un partido difieren con el valor tedricamente proporcional en
un nimero menor que 1. Pero consideremos el siguiente caso.

Ejemplo 5. Sea un vector de votos v = (60 10 10 10 10 10 10). Si se reparten 6 escafios su vector de
cuotas serd ¢ = 6u = (3 0,5 0,5 0,5 0,5 0,5 0,5). Si A es un método de reparto que cumple el criterio
de la cuota tenemos que (311100 0) € A(6,7). Este reparto tiene sentido desde el punto de vista que
al partido mds votado tiene exactamente la proporcion de escafios del total que le corresponden segin
su cuota. Pero también hay tres partidos a los que le estds dando el doble de representacion de la que se
merecen segin su cuota.

De este ejemplo podemos sacar la conclusion de que hacer los repartos teniendo en cuenta solo las
cuotas no tiene por qué ser deseable si nuestro propdsito es no perjudicar a los grandes partidos. Pero
su principal critica es que no es mondtono en escafios ni tampoco es monétono en votos.

Cuando se da la situacién en la que un partido perderia un representante al aumentar el tamafio de
la circunscripcidn se dice que ocurre la paradoja de Alabama.

Ejemplo 6. Supongamos que tenemos una circunscripcién en la que se reparten 10 escafios con el
vector de votos (521 238 140 101). Entonces el vector de cuotas serd (5,21 2,38 1,40 1,01) y el
vector de escanos (5 2 2 1). Sin embargo si se reparten 11 escafios entonces el vector de cuotas es
(5,73 2,62 1,54 1,11) y por tanto el vector de votos es (6 3 1 1) donde el tercer partido ha perdido un
escafio al aumentar la representacion.

Veamos ahora que el método de Hamilton no es monétono en votos

Ejemplo 7. Supongamos que tenemos una circunscripcion en la que se reparten 9 escafios. El vector de
votos w = (49 28 17) tiene como vector de cuotas (4,69 2,68 1,63) y, por tanto el vector de escafios es
b= (531). El vector de votos v = (65 29 17) tiene como vector de cuotas (5,27 2,35 1,38) y, por tanto
el vector de escafios es @ = (5 2 2).

Se da la situacion de que
wo 28 29 1%}
e — ==
w3 17 17 V3
y, sin embargo,
by=3>2=a y a=2>1=b.

Por este tipo de situaciones en muchas leyes electorales no se usa el método de Hamilton sino que
se prefieren los métodos de divisor. Estos se estudiaran en los siguientes capitulos.






Capitulo 3

Métodos de divisor

Los métodos de divisor son muy comunes en los sistemas electorales por su sencillez pero sobre todo
por su buen comportamiento. A la hora de hacer un reparto una funcién de los niimeros reales positivos
a los naturales puede ser ttil. Una vez se tiene una tal funcién f, dado un tamafio de circunscripcion A
y un vector de votos v se puede usar f para hacer un reparto de / escafios si existe un ¢ > 0 tal que

f(tvi) =h.

M-

1

Sin embargo no siempre existe un ¢ asi como vemos en el siguiente ejemplo.

Ejemplo 8. Seas=2yv; =v;,y sea f una funcién de los positivos a los naturales. Tenemos entonces
que para todo t > 0 f(¢v;)+ f(¢v2) es par y por tanto no existe un reparto posible cuando % es impar.

Este problema se soluciona permitiendo redondear hacia arriba o hacia abajo en los puntos de dis-
continuidad.

Definicion 3.1. [1, pags. 65, 66] Una regla de redondeo es una funcion [[-] : [0,+e) — @(N) cons-
truida a partir de una sucesion de pivotes ko =0 < k| < ky < ..., ki € R tal que

{0} si x=0,
[x] = {n} si x € (kn,kn+t1),
{n—1,n} si x=k,>0.

Si en una regla de redondeo ki = 0 el tinico niimero real que se redondea a 0 es el 0.
Serdn especialmente interesantes las reglas de redondeo construidas a partir de sucesiones de guias.
Estas son sucesiones de pivotes que cumplen estas dos propiedades adicionales.

= Localizacion. Todas la guias siguientes pertenecen a intervalos consecutivos con extremos ente-
ros,
kp€n—1,n Vn=>1.

= Repulsién de extremos. Si existe alguna guia en el extremo izquierdo de su intervalo de localiza-
cion entonces no existe ninguna guia situada en el extremo derecho y viceversa.

dm>1 tal que kyy=m—1 — k,<n Vn>1,
dm>1 tal que kyy=m = k,>n—1Vn>1.
Ejemplo 9. Sea r € [0,1], se define una sucesion de guias fijas con k, := 0 y que para todo n > 1

kl=n—1+4r.
Tres de las guias clésicas que se usan son de este tipo.

13
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= Con r =1 el redondeo es hacia abajo.

0,1,2,3, ...
= Con r = 0,5 el redondeo es el estandar.
0,0,5, 15,25, ...
= Con r = 0 el redondeo es hacia arriba.
0,0,1,2, ...

Ejemplo 10. Otros dos redondeos clésicos con sucesiones de guias que no son fijas son:
Con la media geométrica

0,0, V2, V6, ..., ky=+/n(n—1), ...

Con la media armoénica
12 b - 2n(n—1)
5=

La ley alemana para las elecciones al Bundestag, traducida al espafiol en [4], describe el método de
Webster basicamente de la siguiente forma: El niimero de escafios atribuidos a cada lista se determina
dividiendo el total de votos emitidos a la lista por un divisor adecuado de manera que la suma de los
cocientes obtenidos, una vez redondeados de la forma estandar, coincide con el nimero de escafios a
repartir.

Ademas en dicho parrafo se incluye un procedimiento por aproximaciones sucesivas para encontrar
un divisor adecuado, a saber:

= Se divide el nimero total de votos por el nimero de escafios. Se obtiene asi un primer divisor.

= Se dividen los nimeros de votos de cada partido por ese primer divisor. Los nimeros resultantes
se redondean al nimero entero mds cercano de la forma estdndar; los nimeros con parte decimal
igual a 0,5 se redondeardn hacia arriba o hacia abajo segtin convenga. Si la suma de todos ellos
coincide con el nimero de escafios a repartir, esos nimeros son los escafios de cada partido.

= Si en el paso 2 no se da la coincidencia citada, se vuelve a repetir ese paso pero con un divisor
mayor o menor, seglin corresponda, hasta que la suma de los cocientes redondeados coincida con
el de escafios a repartir.

Definicion 3.2. [1, pag. 77] Una regla de divisor A inducida por una regla de redondeo [-] , o equiva-
lentemente por una sucesion de pivotes (k,), se define del siguiente modo: para un tamaiio de circuns-
cripcion h € N* y un vector de votos v € P*

A(h,v) = {a € N*(h) ’ a; € [[&ﬂ ye..,dg € [[b]] paraun D > 0}.
D D
Un tal D se denomina divisor adecuado.

Lema 3.3. [1, pags. 80, 81] Si para una regla de redondeo construida con la sucesion de pivotes

(k) se tiene que A(h,v) # 0, entonces D es divisor adecuado si'y solo si verifica: D € [dy,d;] siendo
Vi i

Py . Vi . Vi
d; = max vy dy = min — (entendiendo que — = o).
1<i<skg; 11 1<i<skg, 0
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.., . . . Vi
Demostracion. Por definicién de regla de redondeo % € [kq; ka;+1] para todo i. Ademds k,, < B’ < ka1

siy solo si

Vi Vi
<D< —
kai-i-l kai

(observemos que si A(h,v) # 0, se tiene forzosamente que k., 7 0) Asi D es divisor adecuado si y
solo si D € [d},d,]. En el caso que d; = dy = D tenemos que hay mds de un reparto posible puesto que

existen i, j tales que o _ Y _p y, por tanto [[&}] ={ai+1,a;} y [{ﬁ}] ={aj,a;—1}. Ysele
ka1 ka; D D
puede dar a i un escafio mds quitdndoselo al j. O

Proposicion 3.4. [1, pags. 78-80] Cualquier regla de redondeo con ki # O proporciona una regla de
divisor. En el caso de ky = 0 tendremos reparto para cuando h > s (3.2 estd bien definida).

Demostracion. Vamos a probarlo por induccién sobre /4, comenzamos conk; >0y h=1o0conk; =0
ys=h. En el primer caso D = méx k’ es un divisor adecuado. Tenemos que D > i+ - para todo i y por

tanto 0 < B < ki. Asi, por la regla de redondeo, los partidos recibirdn 0 escaiios si VB € (ko,k1) y06
1 escafio si % = k1. Un posible reparto para 2 = 1 serd aquel en el que se dé 1 escafio a algin partido
j tal que VD = k; y 0 escafios al resto de partidos y, por tanto, D es un divisor adecuado. Si k; =0y

s = h tomamos D = max - ~» para este D tenemos que 0=k < B < ky y por la regla de redondeo todos

reciben 1 escafio.

Supongamos que existe un posible reparto @ para h, es decir, a € A(h,7); veamos que existe un
posible reparto para 1+ 1. Por el lema anterior, D € [d,d;]. Sea j un partido para el que v;/ky; 11 = dj.
Su cociente v; /di = kaj+1 puede ser redondeado aa; y aa;+ 1. Como queremos aumentar el nimero de
escafios de 71 a h+ 1 el vector b con componentes b; =a;+ 1 y b; = a; para i # j es un posible reparto
de A(h+ 1,7v) con divisor adecuado d y la prueba para k; > 0 queda completa. O

Proposicion 3.5. Dos reglas de redondeo construidas con las sucesiones (k,) y (k) inducen la misma
regla de divisor si y solo si, existe o € P tal que atk, = k|, para todo n.

Demostracién. Sea otk, = k], para todo n. Sea@ € A(h,v), y D un divisor adecuado. Sea D' = 2. Como
se tiene

Vi
ka,- < Bl < ka,-+la
multiplicando por o
k’ D’ < k;,

y como a = h se tiene que D’ es un divisor adecuado y @ € A’(h, V).
Reciprocamente, sean (k,) y (k},) tales que proporcionan el mismo reparto con k; > 0 entonces

A(n, (k1,ky)) ={(0,n),(1,n—1)} = A'(n, (ky,ky,)).

Por tanto existe un tnico D tal que

o= [4] yio-1m- 5]

De aqui se deduce que k; /D = k| y que k,/D = kj,. Ademas, el D es el mismo para todo n, asi con
a = 1/D tenemos que k, = atk,. Si k; = 0 entonces debe darse que k| = 0 para que haya reparto en los
mismos casos. Hacemos un razonamiento andlogo tomando &, en vez de k.

O

Teorema 3.6. [1, pags. 78-80] Una regla de divisor A es andnima, equilibrada, armonica, decente y
completa.
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Demostracion. Es claro que intercambiar los votos de dos partidos hace que los escafios también se
intercambien sin afectar al reparto de los demads partidos, por tanto es anénima.
Por construccion de una regla de redondeo se tiene que si v; = v;, D > 0 entonces
Vi Vj
— == € |ky,k
D D [ nsy n+1)
. Vi Vj Vi Vj
ara algun ». Por tanto, H—H [[—]] Ci{n—1,n},ycomoa; € H—H a; € [[—H entonces
para alg ol lpl &{n—1Lnky i€ lpl YU E|p

jai—aj|l < 1.
Con un razonamiento similar, si v; <v;, D > 0 entonces
Vv; Vi v
Bl € [krlvkn-‘rl) y BJ € [kmakm-‘rl) O BJ € (kn7kl’l+1)
Vi Vi .
con n < m. Por lo que [[Blﬂ C{n—1,n}y [[Bj]] C {n,m—1,m}, es decir,

a; < aj.

. Vi .
Seaa € A(h,v) entonces existe D > 0 tal que q; € |[51]] paratodoi=1,...,s. Es claro entonces que

para pv con p > 0 se tiene que a € A(h, pv) pues se puede usar D/p como divisor para tener el mismo
reparto.
Para demostrar la completitud, sea (V")

oo

una sucesion de vectores V' € P® tal que limv*' =vy tal

n=1 rares)
’.’ A
que a € A(h,V") para todo n. Sea dj,, = max —— y dp, = min -
1<i<s kg, +1 1<i<sky,

Notemos que dy, < da, para todo n. Estas dos sucesiones convergen y
lim dy, < lim dpy,.
n—soo n—soo

Por ser max y min funciones continuas de R® podemos intercambiar limites y entonces

71 . . 1
. . Vi . Vi . 1. i
max lim max — = min lim .
Ii<snotoo kg1 1<isskgq1  I<i<s kg, I<i<sn—eo kg,

Vi . . Vi Vi Vi
Sea D € | max , min —L | setiene para todo i que L <D<, luego k,, < =< kg+1. O sea
1<j<ska 41 1<j<s kg, a1 ka; D
Vv i Vi ) _ _
B’ € [kg;ka,+1], dicho de otra manera, a; € [{Bl]] parai=1,...,sy portanto a € A(h,v). O

Proposicion 3.7. Una regla de divisor inducida por una regla de redondeo es un método de reparto
(método de divisor) si y solo si la regla de redondeo se puede construir a partir de una sucesion de
guias.

Demostracion. Por el teorema 3.6 es suficiente probar la exactitud. Sea A una regla de divisor exacta

v=(1,2,...,s) entonces por exactitud A(v,v) = {V}, es decir, para todo s existe D tal que 7 € (kn,k,—1)
. . L n
con n=1,...,s. Por el lema 3.3 verifican lo anterior los D € [dyy,dps] = I; con djy = mdx — y
1<n<s k41

n
drs = min —. Claramente, /| C I; y por tanto
1<n<s Ky,

I::ﬁls#ﬂ.

s=1

Sea D € I, tenemos L <DL kﬁ para todo n € N*, es decir, n < Dk, 1 y Dk, < n. Por tanto
n+1 n
Dk, € [n—1,n] y la sucesién (Dk,) cumple la propiedad de localizacién y proporciona el mismo reparto
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que la sucesién (k,) por la proposicién 3.5. Para concluir veamos que si Dk, = n— 1y Dk,, = m para
algin n > 1 y algin m > 0 entonces A no es exacta puesto que

Aln+m—1,(n—1,m))={(n—1,m),(n,m—1)}.

Reciprocamente, sea A una regla de reparto inducida por una sucesién de guias (k,), sea v € P*
con v; € N para todo i = 1,...,s. Por localizacion tenemos que k,, < v; < k4| paratodoi=1,...,s.
Ademds, por repulsién de extremos

kv,-<"i<kv,~+1 6 kv,~<"i<kvi+l Vi=1,...,s.

Para el primer caso existe 0 < D < 1 tal que ;—l € (ki,ki+1). Para el segundo, ;—’ € (ki,ki+1) con algin
2

D5 > 1. En cualquiera de las dos situaciones A(v,v) = {v}. O

Ejemplo 11. Las sucesiones de guias de los ejemplos 9 y 10 proporcionan los cinco métodos de divisor
clésicos:

» El redondeo hacia abajo se corresponde con el método de Jefferson.
= El redondeo estdndar se corresponde con el método de Webster.
= FEl redondeo hacia arriba se corresponde con el método de Adams.

= El redondeo segin la media geométrica se corresponde con el método de Hill.
Unxtalquen—1 < x<nredondeaan—1 o0 an seglin

n—1<x<y(n—1n 6 /(n—n<x<n

» El redondeo segtin la media arménica se corresponde con el método de Dean.
Proposicion 3.8. Dos sucesiones de guias distintas inducen metodos de divisor distintos.

Demostracion. Sea (k,) una sucesion de guias. Por la proposicién 3.5 basta con ver que (atk,) no es
sucesion de gufas cuando @ # 1.
Si (ks) y (aky) son sucesiones de gufas entonces n— 1 <k, <nyn—1< ak, < n. Se tiene

n—1 _ ok, n
< <

Y por tanto, & debe ser igual a 1 y por lo que las sucesiones de guias son la misma. O

n+1

Proposicion 3.9. Si regla de divisor es precisa entonces ( kki ) es mondtona estrictamente creciente.

Demostracion. SeaVv = (k,,kn+1) se tiene que (n,n) € A(2n,V). Por precision, A(2m,v) = {(m,m)} para

k, k
todom=1,...,n— 1.Para el caso n— 1 existe D tal que 3 € (k,—1,k,). Es decir, k,_1 < B", 'gl < k,.
Por tanto,
k1 < 1 < L )
ki "D ki
O

Proposicion 3.10. Si existe r > 0 tal que (ﬁ—'}) mondtona no decreciente y (%—T‘) mondtona no cre-

ciente, siendo una de las dos monotonia estricta entonces A es precisa.
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Demostracion. seaV € P, @ € A(h,v) tal que existe b € N°y 1 < n € N tal que @ = nb queremos ver

A(mb,v) = {mb} Vm=1,...,n—1.

Sabemos que existe r > 0 tal que para todo n (:”_’1‘), < % y (nf”l), > fast (Si la desigualdad estricta fuera

nr
la segunda todo seria andlogo). Es decir

(n_ l)r‘ [ k1] S (k1 K]

n

Tenemos que existe D tal que 3 € [ky;,kq,11] y a; > mb; € N. Reiterando lo anterior se tiene

mb,- " a,'—2 r ai—l rVi
<mbi+ 1) (al-— 1) < a; ) D S ( mb; » mb,+1]

.
Simplificando llegamos a (ma—b’) A= (%)r% € (kmp,,kmp,+1] para todo i = 1,...,s. Tomamos ahora
D =D (%)r, se tiene que Ky, < 77 < Kpp,+1. Entonces D' < 7. para todo i y podemos tomar un D’

tal que D' < D" < 7~ Asi se cumple kyup, < 77 < 7 < ki, +1 para todo i y D” es un divisor adecuado

mbj

del tnico reparto A(mb,v) = {mb}. O

Ejemplo 12. Veamos que los métodos de divisor clasicos son precisos. Para ello podemos tomar r = 1
En el método de Webster las sucesiones a comprobar son

((2,1—’11)/2) , ((271—21)/2)7

1 1
que se pueden reescribir como (1 — 2) y <1 + 2) y apreciamos que la primera es estrictamente
n n

creciente y la segunda estrictamente decreciente.
En el método de Jefferson las sucesiones a comprobar son

( n ) n+1

n n )’

la primera es constante, por tanto, mondtona no decreciente, y la segunda es estrictamente decreciente.
En el método de Adams las sucesiones a comprobar son

(=) v (&)

la primera es estrictamente creciente y la segunda es constante, por tanto, monétona no creciente.
En el método de Hill las sucesiones a comprobar son

( n(Z—l)> y < (nr—li—l)n>‘

Estas se pueden reescribir como ( ”n;l) y ( %) Estrictamente creciente y decreciente respecti-
vamente.
En el método de Dean debemos comprobar las sucesiones

Gan) + Genn)

1
Y éstas se pueden reescribir como (1 — > y <1 +

1
, estrictamente creciente y decreciente
2n—1 2n+ 1 > Y

respectivamente.



Capitulo 4

Propiedades de los métodos de divisor

El método D’Hondt es bien conocido en Espaiia por ser el procedimiento de reparto proporcional
que se utiliza para transformar votos en escafios en las elecciones generales, autondmicas y municipales.
Este método, tal y como se describe en la Ley del Régimen Electoral General [0, articulo 163], consiste
en «dividir el nimero de votos obtenidos por cada candidatura por 1, 2, 3, etcétera, hasta un nimero
igual al de escafios correspondientes a la circunscripcion; los escafios se atribuyen a las candidaturas que
obtengan los cocientes mayores, atendiendo a un orden decreciente. Cuando en la relacidn de cocientes
coincidan dos correspondientes a distintas candidaturas, el escaflo se atribuird a la que mayor ndimero
total de votos hubiese obtenido. Si hubiera dos candidaturas con igual nimero total de votos, el primer
empate se resolverd por sorteo y los sucesivos de forma alternativa.»

El método de Webster se define de un modo similar dividiendo por los nimeros impares 1, 3, 5...
Con este algoritmo se le conoce como método Sainte-Lagué. En general tenemos los siguientes repartos.

Definicion 4.1. [3, pag. 311] Sea (k;) una sucesion de pivotes, seav € P* y h € N*y sea

S:{I‘; | i:l,,,,,syjzl,...,h}.

Sea T un subconjunto de S con h elementos de tal forma que t > t' paratodot € T ytodot € S\T (T
puede no ser tinico). Se tiene la siguiente regla de reparto: a € A(h,v) si'y solo sia; = |{j | vi/kj € T}|.

Proposicion 4.2. [3, pag. 312] En el caso en el que ky > 0 o h > s el reparto anterior coincide con la
regla de divisor inducida por la misma sucesion de pivotes.

Demostracion. Para cada i (v;/k;) es una sucesion decreciente en j. Si @ es un reparto de divisor de vy

h, por el lema 3.3 se tiene que
Vi Vj

Vi,j=1,...,s.
i kaj+l

T_{Vl Vi Vi Vi }
Ry R S

verifica las condiciones de la definicién anterior y @ es un reparto.
Reciprocamente, sea a un reparto segin la definicién anterior, para cada i tenemos que a; es el

Y, por tanto, se tiene que

maximo tal que - € T por tanto, para todo i, j ¢ V"H < 7~ luego méx ¢ v"ﬂ < min ¢-. Tomando D tal que
ai H" aj (ll‘ HI'
max kv"ﬂ < D < min ¢~ tenemos que kvil <D< - Vi=1,...,5. Y con este divisor D se tiene que @
a; aj aj a;
es un reparto de la regla de divisor inducida por los (k;). O

Nota. Para un reparto con la sucesion de pivotes (k;), @ € A(h,v) siysolosia=hy
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Ejemplo 13. Vamos a realizar el reparto de escafios en la provincia de Albacete en las elecciones gene-
rales de 2023. El escrutinio definitivo todavia no esta disponible por lo que he utilizado los resultados
provisionales que se encuentran en [8]. Tenemos que usar el método D’Hondt y por tanto tenemos que
dividir los votos de cada partido por 1, 2, 3 y 4 (Albacete reparte 4 escafios) y asignar los escafios a las
candidaturas con los cocientes mds altos hasta repartir 4.

Partido ‘ vi/l vi/2 vi/3 vi/4 ‘ Escafios
PP 88 144 44072,00 29381,33 22 036,00 2
PSOE 75969 37984,50 25323,00 18992,25 2
VOX 36698 18349,00 12232,67 9174,50 0
SUMAR | 15677  7838,50 5225,67 391925 0

Vemos que tanto el PP como el PSOE consiguen dos escafios mientras que VOX y SUMAR no
obtienen representacion. Si realizamos el reparto por el método Sainte-Lagué los divisores en este caso
son: 1, 3,5y 7. Y realizamos el siguiente cuadro:

Partido ‘ vi/l vi/3 vi/5 vi/T ‘ Escafios
PP 88 144 29381,33 17628,80 12592,00 2
PSOE 75969 25323,00 15193,80 1085271 1
VOX 36698 12232,67 7339,60 524257 1
SUMAR | 15677 5225,67 313540 223957 0

En este caso el PP consigue dos escafios mientras que el PSOE y VOX se quedan con uno y SUMAR
sigue sin representacion. Comparando ambos métodos el PSOE pierde un escaiio en favor de VOX. El
método D’Hondt tiene un sesgo a favor de los grandes partidos mientras que el método Sainte-Lagué
no.

Aunque el estudio de los sesgos no se ha tratado en este trabajo, también estd estudiado matemati-
camente y se puede encontrar una introduccién al problema en [2, pags, 71-78]. En [2, pags, 118-128]
se comparan los cinco métodos de divisor cldsicos, y en [1, pags, 127-157] se estudian los sesgos de los
métodos de reparto con mayor profundidad.

Ejemplo 14. Veamos ahora que tanto el método D’Hondt como el método de Jefferson realizan el
mismo reparto. Tomamos los datos, en [8], de la provincia de Zaragoza para las elecciones generales de
2023. En esta circunscripcion se reparten 7 escafios, por lo que realizamos la tabla correspondiente.

Partido ‘ vi/l vi/2 vi/3 vi/4 vi/5 vi/6 vi/7 ‘ Escarios
PP 185613 928006,5 61871,0 46403,3 37122,6 309355 26516,1 3
PSOE 158 517 792585 52839,0 39629,3 31703,4 26419,5 226453 2
VOX 78915 394575 263050 197288 15783,0 13152,5 11273,6 1
SUMAR | 69239 34619,5 23079,7 17309,8 13847,8 11539,8 98913 1

En este caso el PP consigue tres escaifios, el PSOE dos y VOX y SUMAR un escafio cada uno. Para
realizar el reparto segin el método de Jefferson tenemos que encontrar un divisor adecuado. Este se
busca por prueba y error.

Partido votos | cociente 1 reparto | cociente 2 reparto
PP 185613 2,64 2 3,09 3
PSOE 158 517 2,25 2 2,64 2
VOX 78 915 1,12 1 1,32 1
SUMAR | 69239 0,98 0 1,15 1
total 492 284 5 7
divisor 70 326 60 000

Vemos que 60 000 es un divisor adecuado para el reparto (32 1 1) y que esta distribucion de escafos
coincide, como no puede ser de otra manera, con el método D’Hondt.
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Teorema 4.3. [1, pdg. 161] Los métodos de divisor son coherentes y completos.

Demostracion. La completitud esta probada en la proposicién 3.7.

Sea a € A(h,v) un reparto del método de divisor A. Entonces la coherencia al restringir se cumple
puesto que un divisor apropiado D para a también lo serd para (a;);c; puesto que las desigualdades son
las mismas.

De la misma manera, D también es un divisor apropiado para (b;);c; y para (c;) jes. Por tanto lo serd
para la yuxtaposicién de ambos. 0

Teorema 4.4. [1, pags. 168—172] Todo método coherente y completo es un método del divisor.

Demostracion. Dividiremos la demostracion en cinco partes.

NS

}.

S]]

Si h es impar, por anonimato y equilibrio tenemos que A (h,7v) = { (L, A1) (A1 h%)

i) Sea = (v;,12) con v; = v,. Si & es par, por exactitud y equilibrio, tenemos que A(h,v) = {£,
1
2 }-

2 2

ii) Seav = (r,1). Paratodo n > 1 definimos

T,:={t>0]| (n,1) €A(n+1,(z,1))}.

La exactitud implica que n € 7,. Veamos que 7, es un intervalo. Sea fr; < x <1, con (n,1) € A(n+
L, (t1,1) y (n,1) € A(n+ 1,(t2,1). Sea (aj,az) € A(n+1,(x,1) se tiene que a; +a; =n—+ 1y por
monotonia débila; <noay > 1ya; >2noa; <1dedondesededuce quea; =nya =1y

{(n,1)} =A(n+1,(x,1)).

En particular x €< T;.

Sea t(n) el infino de 7, con #(n) € [0,n]. Vamos a ver que se tiene que 7(2) = 1. Es claro que
(2,1) € A(3,(1,1)) ={(2,1),(1,2) } (por anonimato y equilibrio). Ademds si# < 1 por armonia (2,1) ¢
A(3,(z,1)). Por tanto £(2) = 1.

Veamos qué ocurre para n > 3. Por decencia y exactitud A(n+ 1, (%51, 1)) =A(n+1,(n—1,2)) =
{(n—1,2)} luego “5* ¢ T, y por ser T, un intervalo que contiene a n se tiene que

n—1
2

t(n) >

y, por tanto, #(n) # 0 para todo n # 1,0.

Veamos que si ¢ > #(n) h cualquieray a € A(h, (t,1)) entonces se tiene que a; > n o bien a; < 1.

Partimos de (n,1) € (n+1,(t(n),1) y (ai,az) € A(h,(t,1)). Usamos un (by,by) € A(n+1,(¢,1)).
Por monotonia débil en votos se tiene que b > n o bien by < 1 pero como n+ 1 = b + b,, cualquiera de
las dos opciones implica la otra y por tanto se cumplen las dos. Por 1.15 se tiene monotonia en escafios
yparaelcasos=2sih>n—+1,a; 2 by ya = by. Asique a; > by > n. Si h <n+ 1, otra vez por
monotonia en escafos, ay < by < 1. Por tanto, para todo % y todo vector de escafos a € A(h, (t,1)) se
tiene

t>tln)=a;=2n o ay<1 4.1)

para 0 < r <t(n)y a € A(h,(r,1)). Con un razonamiento andlogo al anterior y usando que r ¢ T, se
prueba

r<tin)=—a<n—1 o a=>2. 4.2)
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iii) En este apartado vamos a probar lo siguiente: Sean (v1,v;) cualesquiera 'y n, m > 1 tal que

(por ejemplo la media). Sea (f,r) = (pvi, pv2)), se tiene que t(n) <ty r < t(m). Por decencia se tiene
que a € A(h,(t,r)) y ahora consideramos de manera auxiliar

beA(m+m,(t,r1)).

Vamos a probar que by > ny by < m— 1. Supongamos que bz > 2, por coherencia al restringir
tenemos que

(b1,b3) € A(by + b3, (1,1)),

y por el apartado anterior se tiene
b] 2 n o b3 < 1.

Por la hipétesis no puedes ser lo segundo, luego tenemos tenemos b; > n. Y, ademads,
by=n+m—-by—bs<n+m—n—-2=m-—2.
Supongamos que b3 < 1, por coherencia al restringir, tenemos que
(ba,b3) € A(by + b3, (1, 1)),

y por el apartado anterior se tiene
bzgm—l (6] b3>2.

Por la hipétesis no puede ser lo segundo, luego tenemos tenemos by <m—1y
by=n+m—by—bs=n+m—(m—1)—1=n

Por lo que concluimos que (by,by) € A(by + by, (t,7)).
Volvemos a nuestro a@ € A(h, (t,r)). Si h = by + by por coherencia al concatenar

(Cll,a2,b3) 6A(”+m’ (t’rv 1)))
asiquea; 2nyay <m—1.

Si h > by 4 by por monotonia en escafios a; > by > n.
Si h < by 4 b> también por monotonia en escafios a, < by <m— 1.

iv) En este apartado comprobaremos la desigualdad paratodon > 1y m > 1,

n t(n)
m—1" t(m)
Supongamos que existe n,m tales que
n < t(n)

m—1 " t(m)
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La primera observacion es que ¢(n) > 0 y por tanto tenemos

m—1 _ t(m)

n ~ t(n)’

Consideramos (vq,v2) = (m— 1+ ¢€,n) y se tiene que

ﬂ>m—l 2t( )
V2 n t(n)

Y por el apartado iii) sia € A(h, (vi,v2)),
ag=2m o a)<n—1.

Sea h=m-+n—1 entonces {(m—1,n)} =A(m—1+n,(m— 1,n)). Por monotonia en votos a; >
m—1.Sia; =m— 1 entonces a, = n 'y no se cumple la condicidn, luego a; > m.

Si denotamos v = (m — 1+ %,n) con k € N* y a, € A(h,v) ax,) > m para todo k'y ax; > a1,
entonces existe un kg tal que a1 = b > m para todo k > k.

Asi, (bym—1+n—>b) € A(m— 1+ n,vy) para todo k > ko. Como v, converge a (m — 1,n), por ser
A completa, se tiene que

(bym—14n—b)cA(m—1+n,(m—1,n)) ={(m—1,n)}

y b =m — 1 llegando a una contradiccién.

v) Consideramos B la regla de divisor construida con los pivotes #(n), veremos que A = B. Primero
vemos que podemos tener una sucesioén de guias para B.

Por el apartado anterior, para todo n > 1 se tiene que t(n+ 1) > ¢(n). En efecto, tomando m = n+ 1
eniv),

y con £(0) := 0 se tiene que
0=1(0) <1(1) <1(2),...

Ya tenemos una sucesion de pivotes y una regla de redondeo. Ahora veamos que podemos tener una
sucesion de guias para inducir B. Por el apartado iv),

1m0 s 1, a1
m—1 n

t(n)

t
(m) y el sup—=, existe 0 </ € R tal que
m— n=1

Considerando el inf
m>1

~
—
3
~—
~
—~
~—

>1>—2L VYm>1, VYn>1.

Sea
t(n)
[
por las desigualdades anteriores con m = n tenemos que n — 1 < k, < n paratodon > 1 (paran =1
tener en cuenta que % <I<1lyque0<(1) <)
Sea h 'y v cualesquiera. Sea ahora a € A(h,V), veamos que a € B(h,v). Por el apartado iii) tenemos
que sia; <nya;>m— 1entonces

ky =
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Tomando n =a;+1y m=a;y llegamos a

Vi < Vj
tai+1) = t(ay)

Vi,j=1,...,s.

Es decir, a € B(h,v).
Para el reciproco tenemos que ver que

beB(h,v) = becA(hV).

Seaa € A(h,v) C B(h,v). Si B(h,v) solo tiene un elemento entonces @ = b. En otro caso tomamos
d un divisor adecuado para B(h,V). Tenemos que #(b;) < v;/d <t(bj+1) y t(bj) <v;/d <t(bj+1),
luego concluimos que
vio (b

v i (b i+ 1)'
Ademds, por tener A(h,v) mds de un elemento, para algdn i, tenemos la igualdad. Con pequefas

variaciones de v podemos construir una sucesién de vectores v, tales que para todo i con limv, =7V se
n—yoeo

dé que
t(b;) <vi/d <t(bj+1).

Asi B(h,v,) = {b} y, por tanto, A(h,v,) = {b}. Ademds, por ser A completo, concluimos que b € A(h,V),
completando la demostracién de que A = B. O
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