
Mathematics Bachelor

Bachelor Thesis

Recurrent Neural Networks for time series

forecasting in complex dynamical systems

and their applications

Arturo Fredes Cáceres

supervised by

Dr. Sergio Gutiérrez Rodrigo

César Arbiol Herrera

2022-2023

CONTENTS Arturo Fredes Cáceres

Contents

1 Introduction 2

2 Objectives and methodology 2

3 Neural Networks 2

3.1 Artificial Neurons . 2

3.2 Multilayer Neural Networks . 4

4 Working with Time Series 5

4.1 Recurrent Neural Networks . 5

4.2 Long Short Term Memory Cells . 6

4.3 Gated Recurrent Unit (GRU) . 7

5 Toy Model 8

5.1 Data . 8

5.2 Models . 8

5.3 Predicting Several Time Steps . 10

5.3.1 Iteration . 11

5.3.2 Sequence to Vector . 11

5.3.3 Sequence to sequence . 11

6 Working with chaotic systems 14

6.1 The Lorenz System . 15

6.2 Data . 15

6.3 Models . 15

6.4 Predicting Several Time Steps . 16

7 Forecasting demand with business data 19

7.1 Data . 19

7.2 MC Dropout . 21

7.3 Model . 21

8 Conclusions 23

9 Annex I: Resumen en español 25

1

3 NEURAL NETWORKS Arturo Fredes Cáceres

1 Introduction

Artificial intelligence and machine learning techniques are currently a very hot topic, and recent

advances in the field have raised hopes, doubts and fear in society. These techniques are useful

for tackling several types of problems like classification, regression, generation of content or

forecasting. The focus of this work was set on forecasting time series, which plays an important

role in different areas such as business, weather or economics providing insights into future trends

or outcomes.

2 Objectives and methodology

The objective was to a study how recurrent neural networks perform when forecasting future

steps of time series, by working with different sets of data of increasing complexity. A proof of

concept was made working with one-dimensional data of the sum of two waves and some noise.

Different types of neurons and architectures were used to compare performance in different

scenarios. Next, the study was continued using data from a 3D chaotic system (the Lorenz

Attractor), and finally it was attempted to apply these techniques to real business data.

The code of this work was written in Python and the Keras library was used to build the

models. Keras is an open-source deep learning library that serves as an interface to build and

train neural networks in a user-friendly way. Google Colab notebooks were used to run the

code because of the free GPU runtime provided, which made compilation faster. When longer

runtimes and more RAM where needed a laptop with 8 GB of RAM and an intel Core i5 CPU

was used. The code, trained models and generated data can be found in the GitHub repository

[3].

3 Neural Networks

Neural networks constitute one of the most popular branches of AI due to their capacity of

finding trends and patterns in data and generalizing them to new data. These networks consist

in webs of artificial neurons distributed in different layers through which information flows to

process an output.

3.1 Artificial Neurons

Figure 1: Scheme of an artificial neuron. The product of an input vector x and a weight vector is evaluated

by an activation function to produce an output y

2

3 NEURAL NETWORKS Arturo Fredes Cáceres

The first step will be introducing the inner workings of a simple artificial neuron . These neurons

are inspired by biological neurons, and they learn through weighted connections. Usually, a

neuron receives an input vector, which is multiplied by a weight vector. Weights are trainable

parameters, which give a sense of importance of the input for our output.

Neurons are activated if the input signal is more intense than a certain threshold. This is

translated to the artificial neuron with the use of an activation function. The simplest approach

is the use of a step function, which dictates if the neuron is ‘on’ or ‘off’, but other activation

functions can be used to determine the ‘intensity’ of the output. The resulting output of the

neuron will be something like Equation 1, where x is the input vector, w is the weight vector, b

is the bias and Φ is the activation function.

y = Φ(
n∑

i=1

wi · xi + b) (1)

Some of the most common activation functions are the Rectified Linear Unit (ReLU), the

Logistic sigmoid and the Hyperbolic Tangent, which can be seen in Equations 2.

ReLU(x) = max(x, 0) ; σ(x) =
1

1 + e−x
; tanh(x) =

ex − e−x

ex + e−x
(2)

(a) (b) (c)

Figure 2: Some of the most common activation functions: (a) ReLU (b) Logistic sigmoid (c) Hyperbolic

tangent

After explaining how the network generates output, it must be explained how it ‘learns’ to

generate the desired output. A training data set is used to ‘teach’ the network how to compute

the outputs, or to be more precise, to adjust its weights and biases. The training data set must

consist of K input data elements xk and the desired outputs for these elements, yk. The neuron

has to learn from its hits and misses, by reinforcing connections when the output is similar to

the desired one and changing them when it is not. For each element, the neuron’s output ŷk (the

prediction) and the desired output yk are compared by a function Ck(yk, ŷk). The loss function

is defined as the sum of these, and since the training data set is fixed, it will be a function of

the weights and biases:

C(w, b) =

K∑
i=1

Ck(y
k, ŷk) =

K∑
i=1

Ck(Φ(x · w + b), ŷk) (3)

3

3 NEURAL NETWORKS Arturo Fredes Cáceres

By minimizing this loss function, the optimum weights and biases will be obtained. Some

examples of loss functions that will be used along this work are the Mean Squared Error (MSE)

and the Mean Absolute Error (MAE) seen in equation 4.

MSE(y, ŷ) =
1

K

K∑
i=1

(ŷk − yk)2 ; MAE(y, ŷ) =
1

K

K∑
i=1

|ŷk − yk| (4)

To minimize the loss function, the gradient descent method is used. The gradient of the

loss function is computed, and it indicates the direction of the steepest increase. The negative

gradient will point in the direction of the steepest decrease. Therefore, weights and biases will

be recalculated as in Equation 5.

wi = wi − α
∂C

∂wi
; bi = bi − α

∂C

∂bi
(5)

The solution will be approached by carrying out this process iteratively. The hyper parameter

α is called learning rate, and it must be chosen carefully for the training to converge.

3.2 Multilayer Neural Networks

Figure 3: Scheme of a Multilayer Neural Network

Single neurons are not able to learn complex patterns, and it has been proven that they can only

be used to classify separable problems. Nevertheless, when organized and stacked into multilayer

networks, neurons become really powerful. This webs are called deep neural networks and they

can represent any function if enough parameters are used. Deep neural networks have an input

and an output layer which are responsible for taking data into the network and carrying it out.

The intermediate layers are called hidden layers. The input of the neurons of one layer will

be the output of the neurons of the previous one, so information will ‘flow from left to right’.

The number of neurons in each layer will be another important hyper parameter affecting the

performance of the model.

When using deep neural networks optimization of the loss function becomes very costly

due to the large number of parameters. The flow of information being only in one direction

enables the calculation of derivatives using the chain rule. This ‘trick’ reduces computation

time drastically when finding the optimum weights and is called backpropagation. Another

4

4 WORKING WITH TIME SERIES Arturo Fredes Cáceres

technique used to reduce computational cost is the stochastic gradient descent. It consist in

taking a random sample of the training data set of big enough size so it will probably point

in a direction similar to the one obtained when using the whole set. The Adaptative Moment

Estimation (Adam) optimizer [2] is a variation of the stochastic gradient descent, and it will be

the one used throughout this work.

4 Working with Time Series

As it was mentioned earlier, the task in hand is working with time series, and using neural

networks to forecast future values of the series. Time series are sequences of data which take

up different values through time. The structure of these data sets are usually tensors with

dimensions (number of steps, number of features). This means that for each series we will make

observations of some variables (features), for example, temperature, humidity and atmospheric

pressure. These observations are taken periodically a specific number of times (number of steps),

for example once a day during ten days. For the previous example, data would have the following

structure: (10,3).

4.1 Recurrent Neural Networks

Feedforward neural networks can be used to work with time series but they are not the best

candidate due to their lack of ‘memory’. When a time series is fed to these type of networks, they

will take the whole series as a vector and then give a forecast. This way, it does not necessarily

‘see’ the relation between a time step and the previous one.

Recurrent neural networks not only have connections pointing forward, but also going back-

wards. For each time step of the data sequence, the network will take a vector of the sequence

and the output of the previous iteration to give a new output. As the output is a result of all

the previous time steps that have gone through the network, we can understand it as some kind

of memory, although very limited. The outputs are calculated as we can see in Equation 6.

y(t) = Φ(W ⊺
x · x(t) + W ⊺

y · y(t− 1) + b) (6)

In Figure 4 shows the diagram of a basic recurrent cell and how information flows through

time.

Figure 4: Left: Scheme of a Recurrent cell. Right: Scheme of a recurrent cell unrolled through time.

5

4 WORKING WITH TIME SERIES Arturo Fredes Cáceres

When the input of the cell is a sequence, two types of outputs can be given out. If we take

into account the output of every time step like in the left of Figure 5, the resulting output is

also a sequence. There are other occasions when only the last output is of interest, for example,

when forecasting the next time step. In these cases, the rest of the outputs are ignored and

the final result is a vector, like on the right of Figure 5. Each of the approaches gives different

results when training the network as it will be observed in the following sections.

Figure 5: On the left a sequence to sequence recurrent cell, and on the right a sequence to vector cell

4.2 Long Short Term Memory Cells

Basic recurrent cells are better at keeping information about previous time steps than feedfor-

ward networks, but they struggle with detecting long term patterns in the data. Long Short

Term Memory cells (LSTM) [5] were designed to tackle this problem and have an additional

state vector c(t) which is a long-term state. Their training also converges faster than one of

basic recurrent cells.

Figure 6: Scheme of a LSTM cell

In first place, the current input vector x(t) and the previous short-term state h(t–1) are fed

to four different fully connected layers. Each of the layers plays a different role.

The main layer is the one that outputs g(t) seen in Equation 7. It analyses the current inputs

x(t) and the previous short-term state h(t–1) using the hyperbolic tangent activation function.

This layer works just like the basic cell, but now y(t) and h(t) are not directly outputted, and

additional operations are made to take into account the long-term state c(t), which will also be

modified with information of the new input.

g(t) = tanh(W ⊺
xg · x(t) + W ⊺

hg · h(t− 1) + bg) (7)

6

4 WORKING WITH TIME SERIES Arturo Fredes Cáceres

The other three layers use the logistic activation function, and they work as gates. Since their

output varies from 0 to 1 and goes to element-wise multiplications, it ‘opens’ (1) or ‘closes’ (0)

the gate.

The output of the first layer, f(t) seen in Equation 8, controls the ‘forget’ gate. In this gate

some parts of the long-term sate c(t-1) are dropped and others continue to flow through the cell.

f(t) = σ(W ⊺
xf · x(t) + W ⊺

hf · h(t− 1) + bf) (8)

The second of the layers outputs i(t) seen in Equation 9, which controls the input gate.

This gate identifies which part of the input is important and updates the long-term sate by

adding this new information to it.

i(t) = σ(W ⊺
xi · x(t) + W ⊺

hi · h(t− 1) + bi) (9)

After this, the cell outputs the long-term state c(t) as in Equation 10, which by now has

erased and added new memories from the process.

c(t) = f(t)⊗ c(t− 1) + i(t)⊗ g(t) (10)

A copy of the long-term sate is made, and the hyperbolic tangent is applied to it. Finally, the

output gate which is controlled by o(t) (Equation 11) decides which parts of the information of

this copy is outputted as h(t) and y(t), Equation 12.

o(t) = σ(W ⊺
xo · x(t) + W ⊺

ho · h(t− 1) + bo) (11)

y(t) = h(t) = o(t)⊗ tanh(c(t)) (12)

In a nutshell, LSTM cells are able to store important bits of data in its long term memory

and use it when it is needed or delete it if it is not.

4.3 Gated Recurrent Unit (GRU)

Figure 7: Scheme of a GRU cell

7

5 TOY MODEL Arturo Fredes Cáceres

The Gated Recurrent Unit (GRU) [1] is a simplified version of the LSTM cell, and it has a

similar performance. Like in the basic cell, we have a single sate-vector h(t), and now a single

layer controls both the input and the forget gate using function z(t) seen in Equation 13.

z(t) = σ(W ⊺
xz · x(t) + W ⊺

hz · h(t− 1) + bz) (13)

This is done by feeding the output z(t) to the forget gate and 1-z(t) to the input gate. Conse-

quently, when one is closed, the other is open, forcing the cell to forget memories to be able to

make new ones or ignore the input data to maintain the current ones.

There is an additional gate, which is controlled by r(t) seen in Equation 14, and it decides

which part of the previous state h(t-1) can be seen by the main layer. Once again, the main

layer is the one working with the tanh activation function, and it outputs g(t), Equation 15.

r(t) = σ(W ⊺
xr · x(t) + W ⊺

hr · h(t− 1) + br) (14)

g(t) = tanh(W ⊺
xg · x(t) + W ⊺

hg · (r(t)⊗ h(t− 1)) + bg) (15)

Finally, y(t) and h(t) are the result of adding what comes out from the input and forget

gate as seen in Equation 16

y(t) = h(t) = z(t)⊗ h(t− 1) + (1− z(t))⊗ g(t) (16)

5 Toy Model

5.1 Data

Firstly, we will work with a simple one-dimensional data to illustrate how the different techniques

can improve our predictions as seen in [2]. The data used will be the sum of two waves with

different amplitude, frequency and phase ,and some noise. For each sequence, four random

numbers between 0 and 1: w1, w2, ϕ1 and ϕ2 were generated, and for each timesteps some noise

was added, which was a random value in [-0.05,0.05].

y(t) =

Wave 1︷ ︸︸ ︷
0.5 · sin[(t− ϕ1) · (10ω1 + 10)]+

Wave 2︷ ︸︸ ︷
0.2 · sin[(t− ϕ2) · (20ω2 + 20)]+noise (17)

10.000 sequences of 50 steps were generated, and later divided into 7000 sequences for training,

2000 for validation and 1000 for testing.

5.2 Models

To begin, some baselines to beat should be defined. The data is made up by the sum of continuous

functions and some noise which is an order of magnitude smaller. Therefore, it would be a good

guess to think that in the next step, the series will take a value close to the last one. The first

‘naive’ baseline defined is to assume that the next value will be the same as the last one.

8

5 TOY MODEL Arturo Fredes Cáceres

Next, each one of the different cells mentioned in sections 1 and 2 were trained through 20

epochs, with the training data set of 7000 sequencers. The MSE loss function, and the Adam

optimizer were chosen for training. The results of the predictions of each cell on the test set

with respect to their targets, in terms of MSE, are collected in Table 1

Naive Feedforward Basic Recursive LSTM GRU

Parameters - 51 3 12 12

Test MSE 0.0199 0.0041 0.0109 0.0111 0.0109

Improvement (resp. naive) 0% 79.4% 45.2% 44.2% 45.2%

Table 1: MSE of predictions of the different types of cells (feedforward, simple recurrent, LSTM and GRU

with respect to their targets). Training was carried out though 20 epochs with MSE loss function and

Adam optimizer. The ‘naive’ model consists in predicting the previous step, and the improvement

with respect to this baseline is also shown.

It can be observed that the best performing model is the feedforward neuron with flattened

input, although it loses the temporal component of the data. In this case, the recursive cells

have a reduced number of trainable parameters, and therefore limited learning capacity, whilst

the feedforward neuron has significantly more, making it perform better. It can also be seen

that the three recursive cell give similar results, this could be because the data consists of short

series, and long-term memory does not play an important role.

(a) (b) (c)

(d) (e)

Figure 8

Figure 9: Example sequence, target, and prediction made by different type of cells. Each cell was trained

with a dataset of 7000 sequences of 50 steps through 20 epochs, using MSE loss function and Adam

optimizer. (a) Naive baseline, forecasting the previous step (b) feedforward neuron (c) Simple

recurrent cell (d) LSTM cell (e) GRU cell

To see if the recursive neurons are of some use, deep neural networks with the same ar-

chitecture but using the different types of cells were trained. The networks had the following

architectures:

9

5 TOY MODEL Arturo Fredes Cáceres

1. A layer of 20 neurons

2. A second layer of 20 neurons

3. A dense output layer of 1 neuron and ReLU activation function

All networks were trained for 20 epochs using the Adam optimizer. The results can be seen

in Table 2.

Naive Feedforward Basic Recursive LSTM GRU

Parameters - 1461 1281 5061 3921

Test MSE 0.0199 0.0033 0.0027 0.0026 0.0030

Improvement (resp. naive) 0% 83.4% 86.4% 86.9% 84.9%

Table 2: MSE of predictions of neural networks with the same architecture but different types of cells

(feedforward, simple recurrent, LSTM and GRU) with respect to their targets. Training was carried

out though 20 epochs with MSE loss function and Adam optimizer. The ‘naive’ model consists in

predicting the previous step, and the improvement with respect to this baseline is also shown.

(a) (b) (c)

(d) (e)

Figure 10: Example sequence, target, and prediction made by networks with the same architecture, two

layers of 20 cells and an output layer, using different type of cells. Each network was trained with

a dataset of 7000 sequences of 50 steps through 20 epochs, using MSE loss function and Adam

optimizer. (a) Naive baseline, forecasting the previous step (b) feedforward neurons (c) Simple

recurrent cells (d) LSTM cells (e) GRU cells

5.3 Predicting Several Time Steps

The next challenge is to predict several timesteps into the future. A study on the effectiveness of

three different techniques will be made using the LSTM network, which was the best performing

one.

10

5 TOY MODEL Arturo Fredes Cáceres

5.3.1 Iteration

The first method consisted in predicting a single timestep with the previous models, adding the

prediction to the timeseries and making new predictions with the new timeseries that started

from step 2 and ended in step 51. After 10 iterations we obtained the 10 next steps. With this

approach the results seen in Table 3 were obtained.

Average MSE Last time step MSE

0.0183 0.0363

Table 3: MSE of predictions of the next 10 time steps and of the 60th step over the test data set.

Predictions were done predicting each one of the following steps iteratively using the LSTM model

mentioned in the previous section.

5.3.2 Sequence to Vector

As it will be seen, the results from the previuos method are not the best, since predictions

accumulate error through the iterations and after each one, the target is further away. The next

method consisted in changing the targets to be sequences of the desired length of the predictions.

After this, the network was trained to predict the following steps all at once, finding relationships

between the input and output sequences. To do so we had to change the last layer of our model:

3. A dense output layer of 1 neuron and ReLU activation function

3. A dense output layer of 10 neurons and ReLU activation function Results can be seen

in Table 4.

Average MSE Last time step MSE

0.0102 0.0193

Table 4: MSE of predictions of the next 10 time steps and of the 60th step over the test data set.

Predictions were done using a sequence-to-vector LSTM model, with the same layers as mentioned

in the previous section and changing the output layer.

5.3.3 Sequence to sequence

Finally, the previous approach was taken a step further and a sequence-to-sequence network was

constructed. Now, the output after each timestep will be saved using a TimeDistributed dense

neuron in the output layer:

3. A dense output layer of 1 neuron and ReLU activation function

3. A TimeDistributed dense output layer of 10 neurons and ReLU activation function

When training, the network will give an output of the m following steps at each step and

compare it with the real m following steps. Therefore, the targets will now be collections of

sequences of the form (number of steps, m). This way, the network learns to replicate the

sequence at every step. This could appear not to be a great practice because there is a big

overlap between data and targets. On the other hand, if we focus on each time step, there is no

overlap since the network only ‘sees’ the previous steps and the targets contains the following

11

5 TOY MODEL Arturo Fredes Cáceres

m steps. Results obtained are shown in Table 5

Last Series Average MSE Last time step MSE

0.0028 0.0042

Table 5: MSE of predictions of the next 10 time steps and of the 60th step over the test data set.

Predictions were done using a sequence-to-sequence LSTM model, with the same layers as mentioned

in the previous section but changing the output layer.

In Table 6 it can be observed that predictions improve by a 44.4% compared to the iterative

method when using targets of longer length. The predictions made by the sequence-to-sequence

model improve even more, a 84.7%. Although the computational cost is higher due to the size

of the targets, using these techniques brings significant improvements in performance.

Last sequence Average MSE Last step MSE

Iteration Test 0.0183 0.0363

(5061 params.) Improvement - -

S-V Test 0.0102 0,0193

(5250 params.) Improvement 44.4% 46.8%

S-S Test 0,0028 0,0042

(5250 params.) Improvement 84.7% 88.4%

Table 6: Comparison of accuracy of predictions of the next 10 time steps and the 60th step of a 50 step

sequence using three different methods and a model of LSTM cells. The model consisted in two

layers of 20 LSTM cells and the output layer changed to match the desired output. The first method

was an iterative method of predicting the next time step. The second method consisted in using

a sequence-to-vector network to output the next ten steps at once. Finally, a sequence-to-sequence

model was used and the next 10 steps for every point of the series were calculated.

In figure 11 the graphs of the data and predictions of each of the three models and how

they compare are shown. In this example it appears clear that there is a gradual improvement

with each of the new techniques introduced.

12

5 TOY MODEL Arturo Fredes Cáceres

(a) Iteration

MSE = 0.0146

(b) Sequence to Vector

MSE = 0.0114

(c) Sequence to Sequence

MSE = 0.0030

(d) Comparison of predictions and targets

Figure 11: Example sequence, target, and prediction made by networks with the same two layers of 20

LSTM cells but different output layers and targets. Each network was trained with a dataset of

7000 sequences of 50 steps through 20 epochs, using MSE loss function and Adam optimizer. (a)

Iterative method: the networks outputs the next step iteratively adding steps to the sequence (b)

Sequence to vector network: now the output consists of the next 10 steps. (c) Sequence to sequence

network: for each timestep of the sequence we forecast the next 10 steps (d) Comparison of the 3

methods with the real sequence

A visual way to see how predictions improve is plotting targets against predictions. If

predictions were perfectly accurate, they would overlap with the straight line of slope 1 that

passes through the origin of coordinates. In Figure 12 the last step predicted was plotted along

with its target value, and it can be clearly observed how the sequence-to-sequence model’s results

are the closest to this line, followed by the sequence-to-vector model, while the iterative method

is the one were points are the most disperse.

13

6 WORKING WITH CHAOTIC SYSTEMS Arturo Fredes Cáceres

(a) (b) (c)

Figure 12: Values of the last time step predicted plotted along with its target values. Predictions were

made over the test data set using three different methods to predict the next 10 steps. (a)Iterative

method (b)Sequnce-to-vector (c)Sequence-to-sequence

Finally, the same study was made with the other two types of recursive cells to see if the

improvement with these techniques were also noticeable. Looking at the results of Table 7 it

can be concluded that they do.

GRU Last sequence Average MSE Last step MSE

Iteration Test 0.0463 0.0917

(3921 params.) Improvement - -

S-V Test 0.0072 0.0149

(4110 params.) Improvement 93.6% 95.1%

S-S Test 0.0029 0.0045

(4110 params.) Improvement 84.4% 83.7%

Recurrent Neurons Last sequence Average MSE Last step MSE

Iteration Test 0,0221 0,0406

(1281 params.) Improvement - -

S-V Test 0.0099 0.0198

(1470 params.) Improvement 55.0% 51.3%

S-S Test 0.0081 0.0132

(1470 params.) Improvement 63.3% 67.5%

Table 7: Comparison of accuracy of predictions of the next 10 time steps and the 60th step of a 50

step sequence using three different methods and models of GRU cells and simple recurrent neurons.

The models consisted in two layers of 20 cells and the output layer changed to match the desired

output. The first method was an iterative method of predicting the next time step. The second

method consisted in using a sequence-to-vector network to output the next ten steps at once. Finally,

a sequence-to-sequence model was used and the next 10 steps for every point of the series were

calculated.

6 Working with chaotic systems

With the last example, how recursive networks can improve forecasting when working with

timeseries respect from feedforward networks was seen. However, these networks have not yet

exploited their full potential. Now, data of a chaotic system[6], the Lorenz System, will be

generated and used to explore the capabilities of the technique for its use in mathematical

14

6 WORKING WITH CHAOTIC SYSTEMS Arturo Fredes Cáceres

modelling.

6.1 The Lorenz System

In 1963 Edward Lorenz presented a mathematical model describing atmospheric convection[4] .

The model consisted in a three dimensional system of ordinary differential equations as seen in

Equation 18


dx
dt = σ(y − x)

dy
dt = x(ρ− z)− y

dz
dt = xy − βz

(18)

In the equations, x represents the fluid flow rate, y represents the horizontal temperature

gradient and z the vertical temperature gradient. Describing the dynamics of a two-dimensional

fluid layer uniformly cooled from above and warmed from below.

What makes this system interesting is that it presents chaotic solutions. These solutions

receive the name of Lorenz Attractor, and they describe aperiodic, bounded, non-linear trajec-

tories with a very high sensitivity to changes in initial conditions. Unlike other classical systems

where trajectories end up in orbits, fixed points or diverge, the solutions of the Lorenz system

stay bounded without repeating the same path, tracing a shape that resembles the wings of a

butterfly as we can see in Figures 13 and 15. Furthermore, high sensitivity to initial conditions

means that very small differences in initial conditions can lead to completely different outcomes

after some time, making the system both deterministic and highly unpredictable.

This phenomenon is popularly called the ‘butterfly effect’ and it makes forecasting a difficult

challenge in these types of systems. That is why it is of great interest to test the predictive

models with data of the Lorenz Attractor.

6.2 Data

5000 3D sequences of 1000 steps were generated. The first 900 steps of each sequence where used

as input data and the next 100 steps were used as targets. The parameters took values σ = 10,

ρ = 28 and β = 8/3 as chosen by Lorenz in his paper, this way we obtained chaotic solutions.

Data was generated using the fourth order Runge-Kutta method. 3500 elements were used for

training, 1000 for validation and 500 for testing.

6.3 Models

As done in the previous section, networks with the same architecture but different types of

neurons were trained. The chosen architecture was:

1. Layer of 64 neurons

2. A second layer of 64 neurons

3. A dense layer of 3 Neurons and ReLU activation function

15

6 WORKING WITH CHAOTIC SYSTEMS Arturo Fredes Cáceres

All the networks were trained for 20 epochs using MSE as loss functions and the Adam

optimizer. Results of training are shown in Table 8

Naive Feedforward Basic Recursive LSTM GRU

Parameters - 177219 12812 50627 38403

Test MSE 1.5986 1.6067 0.0136 0.0005 0.0008

Improvement (resp. naive) - -0.51% 99.15% 99.97% 99.95%

Table 8: MSE of neural networks with the same architecture but different types of cells after training for

20 epochs with MSE loss function and Adam optimizer.

The improvement of MSE in the test data is very significant now with respect to the

feedforward network, which does not beat the baseline. Another important observation is that

the gated cells have a MSE two orders of magnitude smaller than the basic recursive cell. This

is probably due to the effect of having a ‘long-term memory’ and working with longer sequences.

(a) (b) (c)

(d) (e)

Figure 13: Example sequence, target, and prediction made by networks with the same architecture, two

layers of 64 cells and an output layer, using different type of cells. Each network was trained with

a dataset of 3500 sequences of 900 steps through 20 epochs, using MSE loss function and Adam

optimizer. (a) Naive baseline, forecasting the previous step (b) feedforward neurons (c) Simple

recurrent cells (d) LSTM cells (e) GRU cells

6.4 Predicting Several Time Steps

Next, the study of the forecast of several timesteps into the future using different methods was

repeated with the new data set. This time the first 900 timesteps were used as data and the next

100 steps were forecasted. Again, the output layer had to be replaced when using the sequence

16

6 WORKING WITH CHAOTIC SYSTEMS Arturo Fredes Cáceres

to vector and sequence to sequence approaches:

S-V: A dense output layer of 300 neurons and ReLU activation function

S-S: A TimeDistributed dense output layer of 300 neurons and ReLU activation function

The results can be seen in Table 9.

Sequence MSE Last step MSE

Iteration Test 87.3004 111.3869

(50627 params.) Improvement - -

S-V Test 3.4737 8.1686

(69737 params.) Improvement 96.02% 92.67%

S-S Test 1.1842 2.2665

(69737 params.) Improvement 98.64% 97.97%

Table 9: Comparison Lorenz

It can be observed that the iterative method is considerably worse than the other two. This

may be an effect of working with a system which is very sensitive to small changes in initial

conditions, so the accumulated error leads to bigger differences in trajectories. It must also be

noted that the sequence-to-sequence model still outperforms the sequence to vector model. In

Figure 14 target values of the Z-coordinate of the 100th step are plotted against the predicted

values, the improvement in performance can be clearly appreciated in these graphs.

(a) (b) (c)

Figure 14: Values of the Z-coordinate of the last time step predicted plotted along with its target values.

Predictions were made over the test data set using three different methods to predict the next 100

steps. (a)Iterative method (b)Sequnce-to-vector (c)Sequence-to-sequence

In Figure 15 an example of predictions using the three methods is illustrated.

17

6 WORKING WITH CHAOTIC SYSTEMS Arturo Fredes Cáceres

(a) Iteration ; MSE = 30.7558 ; Last step MSE = 18.2213

(b) Sequence to Vector ; MSE = 1.4238 ; Last step MSE = 0.6661

(c) Sequence to Sequence ; MSE = 0.2845 ; Last step MSE = 0.2296

Figure 15: Example sequence , target, and prediction made by networks with the same two layers of

64 LSTM cells but different output layers and targets. Each network was trained with a dataset

of 3500 sequences of 900 steps through 20 epochs, using MSE loss function and Adam optimizer.

(a) Iterative method: the networks outputs the next step iteratively adding steps to the sequence

(b) Sequence to vector network: now the output consists of the next 100 steps. (c) Sequence to

sequence network: for each timestep of the sequence we forecast the next 100 steps

To get a better idea of how good these predictions were, a further analysis of the results of

our last model, which is the best performing, was made. The mean relative error gives a notion

of how far of off the predictions were, and the results can be seen in Figure 16 were the target

values of the last step were plotted against the predictions.

18

7 FORECASTING DEMAND WITH BUSINESS DATA Arturo Fredes Cáceres

(a) Rel. Error = 34%

Rel. Error* = 10%

(b) Rel. Error = 50%

Rel. Error* = 26%

(c) Rel. Error = 6%

Rel. Error* = 6%

Figure 16: Targets plotted against predictions for the three coordinates of the last time step of the

predictions. Mean eelative errors of the predictions made over a test data set of 500 elements with

a sequence to sequence LSTM neural network are included in the captions. *Target values in the

interval [-0.1,0.1] excluded.

It can be clearly seen that the points follow the tendency of the line with a slope of 1 that

passes through the origin of coordinates. The last step misses by an average of 50% in the y

coordinate, which is a considerable error. This is due to the target values in the denominator

being close to zero and making the relative error bigger even if the miss was small in absolute

values. To solve this, the relative error was calculated excluding elements with values in the

interval [-0.1,0.1], leaving 98% of all the elements. It was observed that the relative error

was reduced to 26%. This could be considered satisfactory or not depending on the accuracy

requirements.

7 Forecasting demand with business data

In this section, focus will finally be shifted to real data, working in partnership with Editorial

Edelvives. Edelvives is the oldest publishing house in Spain with more than 130 years of history.

The company specializes in educational materials, as well as children’s and young adult litera-

ture, offering a diverse range of educational resources, including textbooks, teaching materials

and reading books. The latter category was the one of interest for this work, and forecasting

the demand of literature books will be attempted.

The problem aimed to address is calculating the number of units of a book to be printed by

forecasting the demand of the upcoming months. Currently, this task is carried out by a very

experienced worker in the company who possesses extensive knowledge of the business aspect of

this specific sector. The goal is to help her in this endeavor.

7.1 Data

A monthly timescale for the time series was chosen, and the model will predict the demand of

the following 6 months using information of the past year. Four features that fluctuate through

time were selected:

• Accumulated sales (units): this is the feature to be forecasted. Accumulated sales were

19

7 FORECASTING DEMAND WITH BUSINESS DATA Arturo Fredes Cáceres

chosen over sales because this way the function would have less jumps.

• Price (€): the price of an article fluctuates through time, and an increase or decrease in

pricing can lead to more or less sales.

• Previous printings (units): Other units printed in the previous year were taken into ac-

count.

• Months of the year (1-12): The model will be indicated which months of the year the data

presented belong to. The data has strong seasonality due to the Christmas and summer

campaigns and the aim of this feature is to bare this in mind.

In Figure 17 An example of 5 years of each features of an article are shown.

(a) Accumulated sales (units) (b) Price €

(c) Units printed (d) Month of the year

Figure 17: Representations of 5 years of each feature for a specific article.

The data of 4081 articles through 5 years was transformed into all possible series of 12

months of data and 6 months of targets. The result was 171402 data elements which were

divided into 97944 for training (3 years), 48972 for validation (1 year) and 4081 for testing (the

last sequence of every article). In the end, sequences where the sales over the target 6 months

were zero were discarded, leaving 56068 elements for training, 30311 for validation and 2827 for

testing.

20

7 FORECASTING DEMAND WITH BUSINESS DATA Arturo Fredes Cáceres

7.2 MC Dropout

A new technique was introduced for these predictions, the Montecarlo Dropout. Firstly, dropout

layers were added after each of the recurrent layers. The effect of this, for every training step,

is that each neuron has a probability p (dropout rate) of being turned ‘off’. Therefore, the

network has to work with only the neurons which are ‘on’ at each step, helping neurons to

be more versatile and useful on their own. It also prevents the network from becoming too

dependent on a few very specialized neurons and reduces overfitting.

Another interpretation of this, is that if the network is composed of N neurons, at each step,

a different network of the 2N possibilities is selected (each of the neurons can be on or off). This

networks, although different, are not independent. We will take advantage of this interpretation

to make our predictions. Usually, after training, the dropout layers are not activated, so outputs

are always computed by the same neural network. The MC Dropout technique consists in leaving

the dropout layers ‘on’ when doing predictions, and for each element of the data set, we will

take the average of a large number of predictions.

7.3 Model

After trying several models trained with different amounts of neurons, loss functions and types

of outputs, the following was selected:

1. A sequence to sequence LSTM layer of 32 neurons

2. A Dropout layer with a dropout rate of 0.2

3. A second sequence to sequence LSTM layer of 32 neurons

4. Another Dropout layer with a dropout rate of 0.2

5. A Timedistributed Dense layer of 6 neurons.

The model was trained for 50 epochs using Adam optimizer and the MSE loss function,

and predictions on the test data set using the MC dropout technique. To have a sense of how

good the predictions were, the absolute error was used, since now what must be known is how

many books would have ended in a shelf of the warehouse or how short the stock would have

been, resulting in a new reprint. The result obtained for the predictions of the test data set was

a MAE of 160 books. Nevertheless, the model performs well on many elements, 2015 elements

(71%) miss by less than 100 books, and 1597 (57%) by less than 50 books. Some examples are

shown in Figure 18

21

7 FORECASTING DEMAND WITH BUSINESS DATA Arturo Fredes Cáceres

(a) Missed by 4 books (b) Missed by 23 books

Figure 18: Examples of sequences were our model made predictions correctly. Predictions were made

using MC dropout and averaging over 100 predictions.

To further analyse the performance, predictions of total sales over the next 6 months were

plotted against the actual sales over the next 6 months in Figure 19 (a). It can be observed that

the linear tendency is not clear, although the cloud of points is denser near the line. A different

zone with higher density of points was circled.

(a) (b)

Figure 19: Predictions were obtained using MC dropout and averaging over 100 predictions.

(a)predictions of total sales over the next 6 months plotted against the actual sales over the next

6 months (b)Distribution of absolute errors of the model over a test data set of 4081 articles. The

distribution is presented in logarithmic scale, and we can clearly see two peaks, one near zero and

one around 1000. The group of elements were predictions failed by around 1000 books had a com-

mon characteristic that we were not taking into account, they were part of special offers.

It can be seen when the distribution of absolute errors is drawn (Figure 19b) that there

is clearly a second peak near 1000 books of error. Under further examination, it was found

out that this peak corresponded to articles which had a sudden peak in sales, as the examples

in Figure 20. The model is capable of finding the trend in sales until the peak occurs. The

reason behind this is that for some articles online promotions were made (gifting a book with

the purchase of another one, 2x1 in a certain line of products...) which led to this steep increase

in sales. To solve this problem, a fifth feature including the historical information on special

offers is needed.

22

8 CONCLUSIONS Arturo Fredes Cáceres

(a) Missed by 4075 book (b) Missed by 1711 books

Figure 20: Example of data, predictions ,and actual sales of two articles. These articles belong to the

group which had been part of special offers, and the predictions miss by more than 1000 books.

If articles to the left of this peak are selected (error smaller than 900 books), 94% of the

total articles, an average absolute error of 83 books is obtained, which is an improvement of 48

%. The next steps would be including more business knowledge into the model by interviewing

the company workers.

8 Conclusions

Recurrent neural network appears to be a useful tool when forecasting time series. It was

first studied how these techniques can beat the forecasts made by feedforward networks when

working with time series using simple one-dimensional data as a proof of concept. It was also

seen that, although having a higher computational cost, sequence-to-sequence and sequence-to-

vector models bring a significant improvement in performance with respect to iterating one step

predictions.

The study of applying these techniques to chaotic 3D sequences (Lorenz Attractor) was

satisfactory, and it was possible to predict the 100th step into the future with the highest

average error for a coordinate of 26%, which has been considered satisfactory. This time, the

improvement in performance of recurrent neural networks with respect to their feedforward

counterparts was more noticeable, the latter ones were not even able to beat the baseline. LSTM

and GRU cells proved to be more useful working with longer series where the long-term memory

played an important role. When working with predictions further into the future the difference

in accuracy between the iterative method, sequence-to-vector and sequence-to-sequence models

was also accentuated due to the chaotic nature of the sequences, making accumulated error

bigger.

Finally, the study of its application to real data did not work as well due to a lack of business

knowledge taken into account when constructing the model. The demand of literature books

was predicted with an average absolute error of around 160 books, which was not considered

good enough. A missing feature was discovered, and taking out books which belonged to special

cases, reduced error to around 80 books. Overall, results were promising and improving this

model will be left as future work.

23

BIBLIOGRAPHY Arturo Fredes Cáceres

Bibliography

[1] Kyunghyun Cho. “Learning Phrase Representations using RNN Encoder-Decoder for Sta-

tistical Machine Translation”. In: (2014). doi: 10.48550/arXiv.1406.1078.

[2] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

Second Edition. O’Reilly Media, Inc., 2019. isbn: 978-1-492-03264-9.

[3] GitHub repository of the work. url: https://github.com/arturofredes/rnn-chaotic-

timeseries-applications.git.

[4] Edward N. Lorenz. “Deterministic Nonperiodic Flow”. In: Journal of the Atmospheric Sci-

ences, Volume 20 (1963). doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[5] Jürgen Schmidhuber Sepp Hochreiter. “Long Short-TermMemory”. In: Neural Computation

(1997) 9 (8): 1735–1780 (1997). doi: 10.1162/neco.1997.9.8.1735.

[6] Elizabeth M. Cherry Shahrokh Shahi Flavio H. Fenton. “Prediction of chaotic time series

using recurrent neural networks and reservoir computing techniques: A comparative study”.

In: Machine Learning with Applications, Volume 8 (2022). doi: 10.1016/j.mlwa.2022.

100300.

24

https://doi.org/10.48550/arXiv.1406.1078
https://github.com/arturofredes/rnn-chaotic-timeseries-applications.git
https://github.com/arturofredes/rnn-chaotic-timeseries-applications.git
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.mlwa.2022.100300
https://doi.org/10.1016/j.mlwa.2022.100300

9 ANNEX I: RESUMEN EN ESPAÑOL Arturo Fredes Cáceres

9 Annex I: Resumen en español

El objetivo de este trabajo era realizar un estudio sobre cómo las redes neuronales recurrentes

se desempeñan en la predicción de pasos futuros en series temporales, trabajando con difer-

entes conjuntos de datos de complejidad cada vez mayor. Se realizó una prueba de concepto

trabajando con datos unidimensionales que consist́ıan en la suma de dos ondas y algo de ruido.

Diferentes tipos de neuronas y arquitecturas fueron utilizadas para comparar el rendimiento

en diferentes escenarios. Posteriormente, se continuó el estudio utilizando datos de un sistema

caótico tridimensional (el Atractor de Lorenz) y finalmente se intentó aplicar estas técnicas a

datos de la empresa para realizar predicciones de demanda.

En la primera sección se introdujeron brevemente las redes neuronales y su funcionamiento

en general. Posteriormente, se describe más en detalle el problema a estudiar, definiendo qué son

la series temporales y explicando el funcionamiento de las redes neuronales recurrentes. Las series

temporales son secuencias de datos que vaŕıan con el tiempo y se organizan generalmente como

tensores con dimensiones (número de pasos, número de caracteŕısticas). Las redes neuronales

recurrentes, funcionan como las densas, pero a deferencia de ellas, en cada paso reciben nueva

información y la salida de la red en la iteración anterior. La salida de la red es dependiente de

todos los pasos anteriores, por lo que puede entenderse como una especie de memoria. Este tipo

de redes puede producir dos tipos de salidas: una secuencia de salidas si se consideran todas las

etapas temporales, o un vector final si solo interesa la última salida, por ejemplo, al predecir el

próximo paso temporal. La elección del tipo de salida puede afectar al entrenamiento de la red

y los resultados obtenidos, como se explica en secciones posteriores.

La memoria de las redes neuronales recurrentes simples es limitada, por lo que se introdujo

una nueva unidad de procesamiento, la celda LSTM. Esta celda emplea un estado a largo plazo

y es mejor a la hora de hacer predicciones con series largas. También se explica una versión

simplificada de ella, las celdas GRU.

Una vez finalizada la introducción teórica, en primer lugar, se estudió cómo estas técnicas

pueden superar las predicciones realizadas por las redes densas utilizando datos unidimensionales

sencillos como prueba de concepto. Las series empleadas se reǵıan por la Ecuación 17. Las neu-

ronas densas se mostraron superiores funcionando solas debido al mayor número de parámetros

entrenables, pero cuando se aumentaba el número de neuronas las redes recurrentes presenta-

ban un mayor rendimiento. Una vez hecho esto, se pasó al estudio de diferentes técnicas para

predecir varios pasos. Se observó que, aún teniendo un mayor costo computacional, los modelos

de secuencia a secuencia y de secuencia a vector mejoraban significativamente el rendimiento en

comparación con las predicciones iterativas de un solo paso.

Tras esta prueba de concepto, se utilizaron secuencias del atractor de Lorenz (Ecuaciones

18)generadas con el Runge-Kutta de orden 4 y parámetros σ = 10, ρ = 28 y β = 8/3 para

obtener las soluciones caóticas. Estas soluciones no lineales, acotadas, aperiódicas y con alta

sensibilidad a las condiciones iniciales supońıan un reto considerable a la hora de hacer predic-

ciones, permitiendo poner a prueba las técnicas. El estudio de la aplicación de estas técnicas

a secuencias caóticas 3D fue satisfactorio, y fue posible predecir el paso futuro número 100 en

el futuro con un error promedio más alto del 26% para una coordenada, lo cual se consideró

satisfactorio. En esta ocasión, la mejora en el rendimiento de las redes neuronales recurrentes

25

9 ANNEX I: RESUMEN EN ESPAÑOL Arturo Fredes Cáceres

en comparación con las densas fue más evidente; estas últimas ni siquiera pudieron superar el

‘baseline’. Las celdas LSTM y GRU resultaron ser más útiles al trabajar con series más largas

en las que la memoria a largo plazo desempeñaba un papel importante. Cuando se trabajó con

predicciones más lejanas en el futuro, la diferencia en la precisión entre el método iterativo y

los modelos de secuencia a vector y de secuencia a secuencia también se acentuó debido a la

naturaleza caótica de las secuencias, lo que aumentó el error acumulado.

Finalmente, se emplearon datos de la Editorial Edelvives y se intentó predecir la demanda

de libros de literatura teniendo en cuenta diferentes caracteŕısticas de los art́ıculos. El estudio

de la aplicación a datos reales no funcionó tan bien debido a la falta de conocimiento empresarial

impĺıcito en la construcción del modelo. La demanda de libros de literatura se predijo con un

error absoluto promedio de alrededor de 160 libros, lo que no se consideró lo suficientemente

bueno. Se descubrió una caracteŕıstica que faltaba y, al eliminar los libros que pertenećıan a

casos especiales, se redujo el error a alrededor de 80 libros. En general, los resultados fueron

prometedores y mejorar este modelo quedará como trabajo futuro.

26

	Introduction
	Objectives and methodology
	Neural Networks
	Artificial Neurons
	Multilayer Neural Networks

	Working with Time Series
	Recurrent Neural Networks
	Long Short Term Memory Cells
	Gated Recurrent Unit (GRU)

	Toy Model
	Data
	Models
	Predicting Several Time Steps
	Iteration
	Sequence to Vector
	Sequence to sequence

	Working with chaotic systems
	The Lorenz System
	Data
	Models
	Predicting Several Time Steps

	Forecasting demand with business data
	Data
	MC Dropout
	Model

	Conclusions
	Annex I: Resumen en español

