
University of Zaragoza
Faculty of Sciences

Undergraduate Dissertation of BSc Mathematics

The Finite Element Method
for problems in fluid mechanics

Author:
Luis Medrano Navarro

Supervisors:
Francisco José Gaspar Lorenz

Carmen Rodrigo Cardiel

September 2023





List of acronyms

PDE: Partial Differential Equation.

EDP: Ecuación en Derivadas Parciales.

FEM: Finite Element Method.

FDM: Finite Difference Method.

FVM: Finite Volume Method.

CGM: Conjugate Gradient Method.

HPC: High Performance Computing.

CFD: Computational Fluid Dynamics.

CR: Crouzeix-Raviart.

LBB: Ladyzhenskaya–Babuška–Brezzi condition.

GMRES: Generalized Minimal Residual method.

RANS: Reynolds-Averaged Navier-Stokes.





Introduction

Applied Mathematics deals with the application of mathematical tools in science and engi-
neering. Many mathematical methods have been used in physics, chemistry, biology, engineering,
or economics. Especially after the recent development of computer science, these methods are
an important part of the training of scientists and engineers. This field was born mainly with
the study of differential equations, from analytical methods to modern simulation techniques
and numerical analysis. The development of the theory of differential equations has always been
closely related to newtonian physics and mechanics and quickly found applications, for example,
in fluid mechanics, one of the most important fields of application nowadays.

The aim of this work is to study the Finite Element Method (FEM), a numerical method
that allows solving all kinds of differential equations. This and other similar methods, such as the
Finite Difference Method (FDM) and the Finite Volume Method (FVM) (see Appendix B), have
a wide range of applications in engineering, from structural analysis to fluid mechanics and heat
transfer; and in physics, for example, in acoustics, electrodynamics or plasma physics. In this
work, we will focus on fluid dynamics. All these numerical methods in fluid physics constitute a
broad field known as Computational Fluid Dynamics (CFD). The Navier-Stokes equations, which
are the equivalent of Newton’s laws in fluids, are of great importance in physics, engineering,
and medicine, but are also particularly interesting from a mathematical point of view. So
much so that the study of the existence and uniqueness of solutions is one of the 7 problems
of the millennium. That is because, despite their importance in science and engineering, their
theoretical properties are hardly known due to their complexity.

The first version of FEM was developed by Richard Courant in 1943 for a rod torsion
problem, which was based on a 1908 Ritz paper in which he sought solutions to a problem
involving linear combinations of simple functions. The first article on FEM was written in 1956
[1], already closely related to the branch of aerospace engineering. Finally, the widespread use of
the method had to wait for the development of the first computers, where, for example, the first
computer program called NASTRAN stands out. The FEM consists in discretizing the domain
into small portions in which the solution is approximated by simple polynomials, reducing the
problem to a system of linear algebraic equations. Current challenges of this method include the
estimation of errors in non-linear or non-stationary problems and the increase in computation
time as we make the discretization increasingly finer.

This work begins with an introduction to fluid physics. Then we introduce the mathematical
foundations behind FEM, and finally we show how to apply it to Stokes’ equations.





Resumen

La Matemática Aplicada es la rama que se encarga de la aplicación de herramientas matemáti-
cas en otras ramas de la ciencia o la ingeniería. Especialmente tras el reciente desarrollo de la
computación, estos métodos son una parte importante de la formación de científicos e ingenieros.
Este campo nace fundamentalmente con el estudio de ecuaciones diferenciales, desde métodos
analíticos hasta las modernas técnicas de simulación y análisis numérico.

El objetivo de este trabajo es estudiar el Método de Elementos Finitos (FEM), un método
numérico que permite resolver todo tipo de ecuaciones diferenciales y que tiene un gran rango de
aplicación en la ingeniería, desde el análisis estructural, hasta la mecánica de fluidos, pasando por
la transferencia del calor. En este caso nos centraremos especialmente en la dinámica de fluidos.
Las ecuaciones de Navier-Stokes, que son el equivalente a las leyes de Newton en fluidos, tienen
una gran importancia en la física, la ingenieria y la medicina, pero también son especialmente
interesantes desde el punto de vista matemático.

La primera versión del FEM fue desarrollada por Richard Courant en 1943 para un prob-
lema de torsión de una barra, que se basó en un artículo de Ritz en 1908 en el que buscaba
soluciones a un problema en forma de combinaciones lineales de funciones simples. El primer
artículo sobre el FEM fue escrito en 1956 [1], ya muy relacionado con la rama de la ingeniería
aeroespacial. Finalmente, el uso extendido del método tuvo que esperar al desarrollo de los
primeros ordenadores, donde destaca, por ejemplo, el primer programa informático llamado
NASTRAN. Este método consiste en discretizar el dominio en pequeñas porciones en las que se
aproxima la solución por polinomios sencillos, reduciendo el problema a un sistema de ecuaciones
algebraicas.

Este trabajo comienza con una introducción a la física de fluidos, posteriormente veremos los
fundamentos matemáticos detrás del FEM, y por último veremos como aplicarlo a las ecuaciones
de Stokes.

Física de fluidos

Un fluido es una sustancia sin una forma fija y que se deforma continuamente cuando apli-
camos una fuerza o presión. Las ecuaciones de Navier-Stokes son un sistema de dos ecuaciones,
la conservación de la masa y la conservación del momento (segunda ley de Newton), que mode-
lan el comportamiento de fluidos incompresibles. Consideremos Ω ⊂ Rn abierto y acotado con
frontera ∂Ω. Utilizando el teorema de la divergencia y el hecho de que el cambio de masa dentro
de Ω es igual al flujo de masa a través de la frontera, llegamos a:

1
ρ

Dρ

Dt
+ ∇ · u = 0, (1)

donde ρ es la densidad del fluido, u = (u1, ..., un) la velocidad y D
Dt

:= ∂
∂t + (u · ∇) la derivada

material. En este trabajo consideramos solo fluidos incompresibles, que satisfacen Dρ
Dt = 0 y por

tanto permiten expresar la conservación de la masa simplemente mediante ∇ · u = 0.

Un cálculo más complejo sobre la segunda ley de Newton permite obetener la conservación
del momento en los fluidos:

Du
Dt

:= ∂u
∂t

+ (u · ∇)u = F − 1
ρ

∇p+ ν∆u, (2)



donde F(x, t) ∈ Rn es una fuerza externa, p la presión y ν la viscosidad del fluido. Cuando
tenemos un fluido muy lento y viscoso, las ecuaciones de Navier-Stokes se pueden transformar
en las más sencillas ecuaciones de Stokes, que son lineales y estacionarias, y que junto a las
condiciones de contorno apropiadas, forman el problema que vamos a considerar en este trabajo:

∇ · u = 0, en Ω, (3)

−∆u + ∇p = f, en Ω, (4)

u = g, en ∂Ω. (5)

El Método de Elementos Finitos

Como hemos dicho, este método consiste, en primer lugar, en crear una malla en el dominio
que lo subdivida en elementos más pequeños. Sea Ω ⊂ R2 abierto y acotado, definimos una
malla triangular en Ω como un conjunto K = {Ki}n

i=1 tal que
1. Ki es un triángulo, para todo i = 1, ..., n.
2. ∪n

i=1Ki = Ω̄.
3. Ki ∩Kj con i ̸= j es vacio, un vértice o un lado completo de un triángulo.

Entonces definimos sobre K un espacio finito de funciones Vh con una base {φj}N
j=1 que aproxime

el espacio funcional continuo al que pertenece la solución de la Ecuación en Derivadas Parciales
(EDP). Normalmente consideramos el espacio de funciones continuas lineales a trozos

Vh = {v ∈ C(Ω) : v |K∈ P1(K),∀K ∈ K}, (6)

donde P1(K) = {v(x) = c0 + c1x + c2y : (x, y) ∈ K, c0, c1, c2 ∈ R} es el conjunto de funciones
lineales en K y h = max{hK} con hK el lado mayor de cada K.

El siguiente paso es multiplicar nuestra ecuación por una función de test e integrar aplicando
la fórmula de Green. De esta manera llegaremos a la formulación variacional o débil del problema.

(V )

 Encontrar u ∈ V tal que
a(u, v) = l(v), ∀v ∈ V,

(7)

donde a(·, ·) es una forma bilinial continua y coerciva, y l(·) una forma lineal continua. Ahora
en el Método de Elementos Finitos aproximamos la función u ∈ V con una función uh ∈ Vh,
dando lugar a:  Encontrar uh ∈ Vh tal que

a(uh, vh) = l(vh), ∀vh ∈ Vh.
(8)

Considerando la base {φi}N
i=1 de Vh el problema anterior es equivalente a Encontrar uh ∈ Vh tal que

a(uh, φi) = l(φi), ∀i = 1, 2, ..., N.
(9)

Como uh ∈ Vh, podemos escribirla como una combinación lineal uh = ∑N
j=1 ξjφj . Sustituyendo:

bi := l(φi) =
N∑

j=1
ξja(φj , φi) :=

N∑
j=1

Aijξj ⇔ Aξ = b. (10)

Así hemos transformado el problema diferencial en un sistema de ecuaciones algebraicas. En
este trabajo se va a estudiar teóricamente la existencia y unicidad de soluciones, así como la
aplicación de distintos tipos de elementos finitos para la resolución numérica del problema.



Las ecuaciones de Stokes y el problema de la lid-driven cavity

En las ecuaciones de Stokes previamente mencionadas queremos encontrar la velocidad
u = (u1, u2) y la presión p. Por ello, necesitamos introducir dos espacios de test distintos y
trabajar con lo que se conocen como Elementos Finitos Mixtos.

Vg = {v ∈ H1(Ω) : v |∂Ω= g}, Q = {q ∈ L2(Ω) :
∫

Ω
q dx = 0}, (11)

donde H1(Ω) es el espacio de Sobolev de orden uno y en general H1(Ω) = H1(Ω)× ..n..×H1(Ω)
(en nuestro caso n = 2), es decir, que cada componente del vector está en H1(Ω). Multiplicando
la segunda ecuación (4) por v ∈ V0 e integrando usando la fórmula de Green, y multiplicando la
primera ecuación (3) por q ∈ Q, llegamos a la formulación variacional del problema.

(V )


Encontrar u ∈ Vg y p ∈ Q tal que
a(u,v) + b(v, p) = l(v), ∀v ∈ V0,

b(u, q) = 0, ∀q ∈ Q,

(12)

donde
a(u,v) = (∇u : ∇v) =

∫
Ω

(∇u1 · ∇v1 + ∇u2 · ∇v2)dx,

b(v, p) = −(∇ · v, p) = −
∫

Ω
∇ · v p dx,

l(v) = (f,v) =
∫

Ω
f · v dx.

Como ejemplo vamos a calcular la solución del problema conocido como lid-driven cavity.
Consideramos un fluido viscoso e incompresible en un dominio cuadrado Ω = (−1, 1)2 donde la
pared superior se mueve horizontalmente, es decir, consideramos las siguientes condiciones de
contorno 

u(x, 1) = (1, 0), ∀x ∈ (−1, 1),
u(x,−1) = (0, 0),∀x ∈ (−1, 1),
u(1, y) = (0, 0), ∀y ∈ (−1, 1),
u(−1, y) = (0, 0),∀y ∈ (−1, 1),

(13)

Para resolverlo utilizando el Método de Elementos Finitos, podemos usar, por ejemplo, el ele-
mento P1 − P0 no conforme, que consiste en aproximar la presión por constantes y la velocidad
por las funciones lineales de Crouzeix-Raviart SCR

i , que solo son continuas en el punto medio
de los lados de los triángulos. Al final llegamos al siguiente sistema de ecuaciones.

A 0 C1 0
0 A C2 0
CT

1 CT
2 0 T

0 0 T T 0




Ux

Uy

P
p̄

 =


l1
l2
l3
0

 , (14)

donde li contiene información de las fuerzas actuando sobre el fluido (en nuestro caso ninguna)
y las condiciones de contorno. Además

Aij =
∫

Ω
∇SCR

i · ∇SCR
j , Ti =

∫
Ω
SCR

i , (15)

(C1)ij =
∫

Ω
SCR

i

∂SCR
j

∂x
, (C2)ij =

∫
Ω
SCR

i

∂SCR
j

∂y
, (16)

y p̄ es la presión media, de manera que la última condición implica que la presión promedio sea
cero y por tanto estaremos considerando siempre las diferencias de presión.





Contents

1 Introduction to fluid mechanics 1

1.1 Definition of fluid and continuum hypothesis . . . . . . . . . . . . . . . . . . . . 1

1.2 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Finite Element Method 5

2.1 Concepts of Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Approximation with Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Types of Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Application to CFD problems 15

3.1 Irrotacional fluids and Laplace equation . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Incompresible fluids and Stokes’ equations . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Existence, uniqueness and Inf-Sup/LBB condition . . . . . . . . . . . . . 17

3.2.3 Finite Elements approximation . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.4 Example: lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.5 Solving the linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Turbulent flow and the Navier-Stokes equations . . . . . . . . . . . . . . . . . . . 24

4 Conclusions 24

5 Bibliography 25

A Proofs of Riesz-Fréchet and Lax-Milgram theorems

B Appendix: Why FEM? Comparison with other methods

C Appendix: Computer programs





1 Introduction to fluid mechanics

First of all, in order to understand the meaning of the equations that are going to be
considered in this work, it is important to explain the physics used to model fluid mechanics.

1.1 Definition of fluid and continuum hypothesis

The main characteristic that defines a fluid, whether liquid or gas, is its ease of deformation.
A fluid, unlike a solid, does not have a definite shape and its different elements may be rearranged
freely without affecting the macroscopic properties. Thus, we can define a fluid as a substance
that deforms continuously under the application of shear stress, regardless of its state of matter
(liquid or gas). It is characterized by its ability to flow and has no fixed shape, allowing it to
take the shape of its container.

On a small scale, mass is concentrated in the particles that make up the fluid separated
by regions of vacuum. However, in fluid mechanics we are interested in studying large-scale
properties and the molecular structure is not important. For this reason, we consider fluids to
have a perfectly continuous structure. This is known as the continuum hypothesis.

Forces in a fluid and stress tensor

Acting on a fluid, two types of forces are distinguished:

• Volume forces: These are long-range forces that vary slowly with distance, in such a way
that we can consider them constant at all points in the fluid. The most common are
gravity, electromagnetic forces and fictitious forces due to accelerations. Since these forces
are equal in all volume elements, we can assume that the total force is proportional to the
volume. Then the total force will be ∫

V
F(x, t)ρdV (17)

where F is the acceleration (g = (0, 0, g) in the gravitational case), ρ the density of the
fluid, dV a volume element, x its position and t the time.

• Surface forces: These short-range forces are of molecular origin and decrease rapidly as
the distance between particles increase. They are negligible unless there is direct contact
between the elements of the fluid. Therefore, they are determined by the area of the
elements and not by their volume. If we consider a flat surface element (the faces of a
small cube around a point, for example), the force is proportional to its area and is given
by

ΣΣΣ(n,x, t)dA (18)

where n is the external normal unitary vector and ΣΣΣ is the stress, which represents a force
per unit area and is calculated using the strain tensor σ:

Σi(n⃗) = σijnj (19)

1



where σij represents the i component of the stress on a surface element with normal in
the direction j. This tensor is symmetric (σij = σji), the three elements on the diagonal
σii are called normal stresses and those outside the diagonal are called shear stresses.

For a fluid at rest, σij = −pδij , where p is the static pressure. For a general fluid we have
two contributions to the stress:

1. Internal stress: Due to the movement that occurs in a fluid when the pressure changes.
It has the same form σ1 = −pI.

2. Viscous stress: The viscosity µ measures the resistance of a fluid to deform under
stress and exists due to friction between neighboring fluid layers with different ve-
locities. Thus, this stress is produced by the deformation of the fluid. A Newtonian
fluid is defined as a fluid in which the viscous stress is proportional to the gradient
of the velocity u: σ2 = µ∇u, where µ is the viscosity. However, it is better to define
σ2 = µ(∇u + (∇u)T ) in order to get a symmetric matrix.

The total stress is σ = −pI + µ(∇u + (∇u)T ).

Material derivative

Velocity is both position-dependent and time-dependent, and in fact, a fluid element may
undergo an acceleration by moving to a new position where the velocity has a different value.
For this reason, acceleration is not just ∂u

∂t , where u is the velocity of the fluid. Suppose that
the velocity at time t is u and at time t + dt is u + du. Since u depends on x and t, we write
explicitly:

u = q(x, t), u + du = q(x + dx, t+ dt). (20)

Then
du = q(x + dx, t+ dt) − q(x, t+ dt) + q(x, t+ dt) − q(x, t), (21)

and using Taylor series expansions q(x + dx, t+ dt) − q(x, t+ dt) = (dx · ∇)q(x, t+ dt) +O(||dx||2),
q(x, t+ dt) − q(x, t) = dt ∂

∂tq(x, t) +O(dt2).
(22)

Dividing by dt and taking the limit dt → 0, we get

du
dt

= ∂u
∂t

+ (u · ∇)u. (23)

Definition 1 The material or convective derivative of a function in R3 × R is defined as the
operator

D

Dt
:= ∂

∂t
+ (u · ∇), (24)

and represents the change of a function in time following the fluid’s current, where u is the flow
velocity.

2



1.2 Conservation of mass

We now consider a surface ∂Ω enclosing a volume Ω, which is an open and connected set
of R3. The total mass inside of the volume is∫

Ω
ρ dV,

where dV = dx · dy · dz, and the amount of mass that flows outside Ω through ∂Ω is∫
∂Ω
ρu · n dS,

where n is the external normal unitary vector to ∂Ω. What the conservation of mass tells us is
that the change in time of the mass inside Ω is equal to the difference between the mass going
in and going out through ∂Ω, that is:

d

dt

∫
Ω
ρ dV = −

∫
∂Ω
ρu · n dS. (25)

Using the divergence theorem and the derivation under integral we reach∫
Ω

(
∂ρ

∂t
+ ∇ · (ρu)

)
dV = 0, (26)

and since this is valid for any volume Ω, it must be

∂ρ

∂t
+ ∇ · (ρu) = 0. (27)

Using the material derivative, this equation becomes

1
ρ

Dρ

Dt
+ ∇ · u = 0. (28)

Incompressible fluids

A fluid is said to be incompressible when the density of a fluid element does not change
when the pressure changes. In this case, Dρ

Dt
= 0 and due to conservation of mass, we get

∇ · u = 0.

Types of fluids, Reynolds number and vorticity

In addition to classifying fluids as viscous or non-viscous, and Newtonian or non-Newtonian,
it is important to distinguish between laminar and turbulent flow. The flow is laminar when it
is ordered and the stream lines (lines in which the velocity is tangent at each point) are parallel
(they do not mix). Conversely, turbulent flow is chaotic and disordered, and the trajectories
of the particles intersect forming aperiodic whirlpools. What differentiates these two types of
flow is mainly the type of force that dominates in each case. In turbulent flow, inertial forces
dominate over viscous forces, while in laminar flow, viscous forces dominate. To quantify this
phenomenon numerically we define the Reynolds’ number:

Re := inertial forces
viscous forces = Luρ

µ
, (29)

3



where L is the size of the domain, u = ||u||, ρ the density and µ the dynamic viscosity. It is
also usually expressed as a function of the kinematic viscosity defined as ν := µ/ρ, Re = LU/ν.
When Re is low the flow is laminar, while when Re is high the flow is turbulent.

In this context, it is also important to define the vorticity of a fluid, which is given by the
rotational of the velocity

ωωω := ∇ × u. (30)

A fluid is said to be irrotational when ∇ × u = 0. In such case we can understand the velocity
u as a conservative field, which implies the existence of a potential ϕ such that u = −∇ϕ. If
the fluid is also incompressible (∇ · u = 0) we can obtain the fluid dynamics simply by means
of Laplace’s equation

∇2ϕ = 0. (31)

1.3 Conservation of momentum

The equation of motion is nothing more than Newton’s second law, which states that the
change of momentum over time is equal to the sum of the total forces acting on the fluid. The
linear momentum in an open and connected volume Ω ⊂ R3 is∫

Ω
ρu dV, (32)

and its change over time is given by

d

dt

∫
Ω
ρu dV =

∫
Ω

Du
Dt

ρ dV. (33)

On the other hand, the sum of volume forces and surface forces will be∫
Ω

Fρ dV +
∫

Ω
∇ · σ dV. (34)

Newton’s second law tells us that∫
Ω

Du
Dt

ρ dV =
∫

Ω
Fρ dV +

∫
Ω

∇ · σ dV, (35)

and since it is fulfilled for any volume Ω we reach

ρ
Du
Dt

= ρF + ∇ · σ. (36)

Now remembering that σ = −pI + µ(∇u+ ∇Tu) and substituting

ρ
Du
Dt

= ρF − ∇p+ µ(∇2u + ∇(∇ · u)). (37)

Therefore, for a Newtonian and incompressible fluid, the equations of conservation of mass and
momentum are:

∇ · u = 0, (38)
Du
Dt

= ∂u
∂t

+ (u · ∇)u = F − 1
ρ

∇p+ ν∆u. (39)

This system of partial differential equations is known as the Navier-Stokes equations. The
term ∂u

∂t
represents the change in velocity, (u · ∇)u is called the convective term, −1

ρ∇p is the

4



acceleration produced by pressure changes, F is the acceleration produced by volume forces and
ν∆u is the diffusive term due to the fluids’ viscosity. The Navier-Stokes equations are non-linear
and therefore difficult to solve. However, in the case that we have a laminar flow (the viscous
forces dominate over the inertial ones), the convective term is negligible. In that case and in
stationary state the system of equations becomes linear and is called Stokes equations.

2 The Finite Element Method

2.1 Concepts of Functional Analysis

In this section we are going to see the mathematical foundations behind FEM. We need to
introduce some concepts of Functional Analysis, starting with Hilbert spaces.

Definition 2 A Hilbert space is a complete inner product vector space, which means a vector
space with an inner product, such that every Cauchy sequence is convergent.

Throughout this dissertation we will work especially with the space L2(Ω) = {f : Ω → R :
||f ||L2(Ω) < ∞} of square integrable functions, which is a Hilbert space under the norm:

||f ||L2(Ω) :=
(∫

Ω
|f(x)|2dx

)1/2
, (40)

inherited from the dot product
(f, g)Ω :=

∫
Ω
fg dx. (41)

Definition 3 Given two Hilbert spaces H1 and H2 and their induced norms || · ||H1 and || · ||H2,
a linear map L : H1 → H2 is said to be continuous if

∃c > 0 such that ||Lu||H2 ≤ c||u||H1 , ∀u ∈ H1. (42)

Existence and uniqueness

Theorem 1 (Riesz-Fréchet representation theorem) Let H be a Hilbert space and H ′ its
dual (H ′ = L(H,R) = {f : H → R : f linear}), then

∀L ∈ H ′, ∃!u ∈ H such that L(v) = (u, v)H =: Ju(v), ∀v ∈ H, (43)

and the function

J : H −→ H ′

u −→ Ju = (u, ·)H
with

Ju : H −→ R
v −→ Ju(v) = (u, v)H

(44)

is an isometric isomorphism, which means ||L||H′ = ||u||H .

Proof: See the Appendix A.

5



Definition 4 Let H be a Hilbert space. A bilinear form

a : H ×H −→ R
(u, v) −→ a(u, v)

(45)

is continuous if ∃M > 0 such that |a(u, v)| ≤ M ||u||H ||v||H , ∀u, v ∈ H, where M is called
continuity constant.

Definition 5 Let H be a Hilbert space. A bilinear form

a : H ×H −→ R
(u, v) −→ a(u, v)

(46)

is coercive if ∃α > 0 such that |a(v, v)| ≥ α||v||2H , ∀v ∈ H, where α is called coercivity constant.

Definition 6 Let a : H × H → R be bilinear and continuous and l ∈ H ′ acting on the Hilbert
space H, we define an abstract variational problem as

(V )

 Find u ∈ H such that
a(u, v) = l(v), ∀v ∈ H

(47)

If the bilinear form a is also symmetric, then it defines a scalar product. In the context of FEM
this product is usually called energy product. Besides, if a is coercive, then a is also positive
definite.

Lemma 1 (Lax-Milgram lemma) If a(·, ·) is a bilinear continuous and coercive form, and l
is a linear continuous form, then the abstract variational problem (V) that we have just defined
has a solution u ∈ H and is unique.

Proof: See the Appendix A.

Distributions

Definition 7 Let Ω be an open set in Rn. Given f : Ω → R, we define the support of f as the
closure of the set of points where f takes non-zero values, that is, suppf = {x ∈ Ω : f(x) ̸= 0}.

Definition 8 A function f : Ω → R is said to have a compact closure in Ω if ∃K ⊂ Ω compact
such that suppf ⊆ K. We call D(Ω) = {φ ∈ C∞(Ω) : ∃K ⊆ Ω compact such that suppφ ⊆ K}
to the vector space of infinitely differentiable functions with compact support in Ω.

Definition 9 A linear form T : D(Ω) → R is said to be continuous if ∀(φn)n∈N ⊂ D(Ω) such
that φn → φ in D(Ω), we get T (φn) → T (φ).

Definition 10 We define a distribution on Ω as a linear and continuous function

T : D(Ω) −→ R
φ −→ T (φ)

(48)

6



Example 1 Let f ∈ L2(Ω). Then

Tf : D(Ω) −→ R

φ −→ Tf (φ) =
∫

Ω
fφ = (Tf , φ)Ω

is a distribution, since it is linear and continuous.

Weak derivatives

Example 2 Let Ω = (a, b) ⊂ R be bounded and f ∈ C1((a, b)). Let Tf be the distribution in the
previous example. Consider now its derivative f ′ ∈ C((a, b)), which has a distribution associated
to it Tf ′ : D(a, b) → R given by

Tf ′(φ) =
∫ b

a
f ′(x)φ(x)dx =︸︷︷︸

part.int.

−
∫ b

a
f(x)φ′(x)dx+ f(b)φ(b)︸ ︷︷ ︸

=0

− f(a)φ(a)︸ ︷︷ ︸
=0

= −(Tf , φ
′)Ω.

Definition 11 Let α = (α1, ..., αn) ∈ Nn, |α| = α1 + ... + αn and T ∈ D′(Ω). We define the
weak derivative or derivative in the sense of distributions as DαT ∈ D′(Ω) given by (DαT, φ) =
(−1)|α|(T,Dαφ).

Definition 12 We call Sobolev space of order m, Hm(Ω), to the space of functions in L2(Ω)
such that their weak derivatives up to order m are in L2(Ω)

Hm(Ω) = {u ∈ L2(Ω) : u(k) ∈ L2(Ω), 1 ≤ k ≤ m}. (49)

In H1(Ω) we define the dot product (u, v)H1 := (u, v)L2 +(u′, v′)L2 . H1(Ω) is a Hilbert space with
this dot product. We can generalise this to Hm(Ω) by defining (u, v)Hm := ∑

|α|≤m(u(α), v(α))L2 .

Definition 13 We denote H1
0 (Ω) = {u ∈ H1(Ω) : u(ω) = 0, ∀ω ∈ ∂Ω}.

Proposition 1 (Poincaré inequality) Let Ω ⊂ R be bounded. Then there exists a constant
c ∈ R such that ∀u ∈ H1

0 (Ω), ||u||L2 ≤ c||u′||L2 (this can also be generalised to Rn).

Proof: First, in the case Ω = (0, π), we consider the sine Fourier series of the even extension of
u ∈ H1

0 (Ω) (which means u(0) = u(π) = 0), that is,

u(x) =
∞∑

k=1
bk sin(kx), u′(x) =

∞∑
k=1

kbk cos(kx). (50)

Using Parseval inequality
∫ π

−π
|u(x)|2dx = π

∞∑
k=1

b2
k, twice we get:

||u′||2L2 =
∫ π

0
|u′(x)|2dx = 1

2

∫ π

−π
|u′(x)|2dx = π

2

∞∑
k=1

k2b2
k (51)

≥ π

2

∞∑
k=1

b2
k = 1

2

∫ π

−π
|u(x)|2dx =

∫ π

0
|u(x)|2dx = ||u||2L2 . (52)

Using the transformation y = a+ b−a
π x and the chain rule one can prove that ∀u ∈ H1

0 ((a, b)):

||u||L2((a,b)) ≤ b− a

π
||u′||L2((a,b)). (53)

■

7



2.2 Approximation with Finite Elements

Example in 1D

First of all, let us see what this method consists of in 1D and then we will how to generalize
it to 2D. Let us consider the following problem

Find u such that
−u′′(x) = f(x), x ∈ I = (0, L),
u(0) = u(L) = 0.

(54)

The first step is to find what is known as the variational formulation of the problem. To do this
we multiply the differential equation by a test function v and integrate by parts:∫ L

0
fv dx = −

∫ L

0
u′′v dx =

∫ L

0
u′v′ dx− u′(L)v(L) + u′(0)v(0) =

∫ L

0
u′v′ dx, (55)

where the last equality follows from assuming v(0) = v(L) = 0. Specifically, what we are doing
is imposing that the solution u and the test function v are in the set V0 = H1

0 (I). Thus, we have
the variational problem 

Find u ∈ V0 such that∫ L

0
u′v′dx =

∫ L

0
fv dx, ∀v ∈ V0.

(56)

The second step is discretizing the variational problem using the Galerkin method, which
approximates u by a continuous piecewise linear function. That is, we consider a partition
I : 0 = x0 < x1 < x2 < ... < xn−1 < xn = L of I into n subintervals Ii = [xi−1, xi] of lengths
hi = xi − xi−1, i = 1, ..., n; and the set Vh = {v ∈ C(I) : v |Ii∈ P1(Ii)}, where C(I) is the set
of continuous functions on I and P1(Ii) = {v(x) = c0 + c1x : x ∈ Ii, c0, c1 ∈ R} is the set of
linear functions on Ii and h = max{hi}. Now, the variational problem becomes the so-called
Galerkin’s problem: 

Find uh ∈ V0,h such that∫ L

0
u′

hv
′
hdx =

∫ L

0
fvh dx, ∀vh ∈ V0,h,

(57)

where V0,h = {v ∈ Vh : v(0) = v(L) = 0}.

Finally, we transform this problem into a system of algebraic equations. To do this, we
realise that solving the Galerkin’s problem is equivalent to solving

Find uh ∈ V0,h such that∫ L

0
u′

hφ
′
idx =

∫ L

0
fφidx, i = 1, 2, ..., n− 1,

(58)

where {φi}n−1
i=1 is a basis of the space V0,h. This can be done because Vh is a finite-dimensional

vector space and we can introduce a basis {φi}n−1
i=1 , the so-called hat functions, associated to the

nodes of the partition such that

φi(xj) =

 1, if j = i

0, if j ̸= i
, which implies φi(x) =



x− xi−1
hi

, if x ∈ Ii

xi+1 − x

hi+1
, if x ∈ Ii+1

0, otherwise

.

(59)

8



Since uh ∈ V0,h, uh can be written as a linear combination of the base elements

uh =
n−1∑
j=1

ξjφj , with ξj ∈ R for all j = 1, ..., n− 1. (60)

Then ∫ L

0
fφi dx =

∫
I

n−1∑
j=1

ξjφ
′
j

φ′
idx =

n−1∑
j=1

ξj

∫
I
φ′

jφ
′
idx (61)

Introducing the matrix notation Aij =
∫

I
φ′

jφ
′
idx, i, j = 1, ..., n−1 known as the stiffness matrix,

and bi =
∫ L

0
fφidx, i = 1, ..., n − 1 the load vector, we are left to solve the system Aξξξ = b.

Quadrature methods such as the trapezoidal rule or Simpson’s formula are used to calculate the
integrals of the elements of A and b. To solve the system, as in general we will have very large
matrices, the matrix is not inverted, but numerical methods such as Cholesky or the Conjugent
Gradient Method are used.

Generalization to 2D

Partial differential equations have two or more variables, so it is necessary to extend the
method above to spaces with larger dimensions. Let us look at the 2-dimensional case. Now,
instead of partitioning an interval, we have to discretise a two-dimensional domain.

Definition 14 Let Ω ⊂ R2 be an open and bounded portion of the plane with a polygonal
boundary, we call mesh or triangulation of Ω to a set of elements K = {Ki}n

i=1 so that:

1. Ki is a triangle, i = 1, ..., n.

2. ∪n
i=1Ki = Ω̄.

3. Ki ∩Kj with i ̸= j is empty, a vertex or a complete side of a triangle.

Definition 15 Let K be a mesh or triangulation of Ω, we define the space Vh of continuous
piecewise linear functions as

Vh = {v ∈ C(Ω) : v |K∈ P1(K),∀K ∈ K}, (62)

where now P1(K) = {v(x, y) = c0 + c1x + c2y : (x, y) ∈ K, c0, c1, c2 ∈ R} is the set of linear
functions in K and h = max{hK} with hK the longest side of each K.

In the same way, we can define a basis of hat functions {φi}
np

i=0 of Vh, see Figure 1, and
the linear interpolant πf(x) = ∑np

i=1 f(Ni)φi(x) from the nodal values f(Ni) in each of the np

nodes.

The process of getting a variational or weak problem out of the classical problem can be
generalized to problems in more dimensions. We simply have to use Green’s formula instead
of applying integration by parts. We recall that Green’s formula tells us that for an open and
connected set Ω ⊂ R2, with boundary ∂Ω and exterior unit normal vector n, the following holds:∫

Ω
−(∆u)v dx =

∫
Ω

∇u · ∇v dx−
∫

∂Ω
n · (∇u)v ds. (63)

9



Figure 1: Example of a triangular mesh with the hat function in one of its nodes (Source: [2]).

Example 3 We can see an example of application to Poisson’s equation. −∆u = f, in Ω,
u = 0, in ∂Ω.

(64)

Multiplying by a test function v ∈ H1
0 (Ω) = {u ∈ L2(Ω) : u′ ∈ L2(Ω), u |∂Ω= 0} and using

Green’s formula∫
Ω
fv dx = −

∫
Ω

(∆u)v dx =
∫

Ω
∇u · ∇v dx−

∫
∂Ω

n · ∇u v dx =
∫

Ω
∇u · ∇v dx. (65)

So the variational problem is
Find u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇vdx =
∫

Ω
fvdx, ∀v ∈ H1

0 (Ω). (66)

Taking a(u, v) =
∫

Ω
∇u · ∇vdx and l(v) =

∫
Ω
fvdx, we can apply the Lax-Milgram lemma and

obtain that there exists solution and is unique. The hypotheses that we have to verify are:

1. a is coercive:
a(u, u) =

∫
Ω

∇u · ∇u dx = ||∇u||2L2 ≥ α||u||2H1 ,

where in the last inequality the Poincaré inequality has been applied in Rn.

2. a is continuous: using the Cauchy-Schwarz inequality,

a(u, v) = (∇u,∇v)L2 ≤ ||∇u||L2 ||∇v||L2 ≤ ||u||H1 ||v||H1 .

3. l is continuous:
l(v) = (f, v)L2 ≤ ||f ||L2 ||v||L2 ≤ ||f ||L2 ||v||H1 .

In section 3.1 we will discuss how to solve the dynamics of an irrotational fluid using Laplace’s
equation, which is the case when f = 0. In addition, the energy product a for the Poisson
equation with homogeneous Dirichlet boundary conditions is positive definite:

a(u, u) =
∫

Ω
(∇u(x))2 dx ≥ 0, for all u ∈ H1

0 (Ω) (67)

a(u, u) = 0 ⇔ u = 0 (68)

10



Sumary of Finite Elements

Starting with an abstract variational problem

(V )

 Find u ∈ V such that
a(u, v) = l(v), ∀v ∈ V,

(69)

the Galerkin approximation takes in general the form Find uh ∈ Vh such that
a(uh, vh) = l(vh), ∀vh ∈ Vh.

(70)

Let {φi}n
i=1 be a basis of Vh. Then the Finite Element Method is Find uh ∈ Vh such that

a(uh, φi) = l(φi), ∀i = 1, 2, ..., n.
(71)

Since uh ∈ Vh, we can write it as uh = ∑n
j=1 ξjφj . Substituting:

bi := l(φi) =
n∑

j=1
ξja(φj , φi) :=

n∑
j=1

Aijξj ⇔ Aξξξ = b. (72)

Conjugate Gradient Method

Proposition 2 For the Poisson equation:

1. The stiffness matrix A ∈ Rn×n is symmetric.

2. The stiffness matrix A is positive definite, that is, xTAx > 0, for all 0 ̸= x ∈ Rn.

Proof: The first statement is obvious since Aij = a(φj , φi) and a is symmetric. For the second:

xTAx =
n∑

i,j=1
xia(φi, φj)xj = a

 n∑
i=1

xiφi,
n∑

j=1
xjφj

 = a(x, x) > 0, ∀x ̸= 0 (73)

■

Taking into account these properties, we can create fast linear system solvers, such as
the Conjugate Gradient Method (CGM), which, together with the properties of the matrix A,
reduces substantially the number of operations. To run large simulations in computers one can
also use some High Performance Computing (HPC) techniques, like parallel programming.

Definition 16 Two non-zero vectors u and v are conjugate (with respect to A) if uTAv = 0.
Since A is symmetric and positive definite this defines an inner product (u, v)A = (Au, v) =
(u, Av). Thus, two vectors are conjugate if and only if they are orthogonal with respect to this
inner product.

11



Let B = {p1, ...,pn} be a basis of Rn with n mutually conjugate vectors. We can express the
solution x∗ of Ax = b in this basis as x∗ = ∑n

i=1 αipi. Then Ax∗ = ∑n
i=1 αiApi. Multiplying

Ax∗ = b on the left by pT
k

pT
k b = pT

kAx∗ =
n∑

i=1
αipT

kApi = αk(pk,pk)A. (74)

Thus, the coefficients of x∗ are αk = (pk,b)
(pk,pk)A

. Now, to finish the method we need to find n

different conjugate vectors. But, if what we need is an approximation of x∗, we do not need to
calculate all the pk. Thus, we build an iterative process starting at x0, which can be assumed
to be x0 = 0. To build the next iteration we need a way to decide whether we are closer to x∗.
The solution x∗ is also the unique minimum of the quadratic function f(x) := 1

2xTAx − xT b.
The existence of unique minimum is guaranteed by the fact that the Hessian H(f(x)) = A is
symmetric positive definite and x∗ solves ∇f(x) = Ax − b = 0, our initial problem. We take
p0 as the negative of the gradient of f at x0, that is p0 = b − Ax0. Let rk = b − Axk be
the residual at the k-th step. As above, rk is the negative gradient of f at xk, so the gradient
descent method would indicate to move in the direction rk. However, the directions pk must be
conjugate to each other. Hence we can use the Gram-Schmidt method to create the next pk

pk = rk −
∑
i<k

pT
i Ark

pT
i Api

pi. (75)

Following the direction pk, the next iterative step for the solution is

xk+1 = xk + αkpk , where αk = pT
k b

pT
kApk

. (76)

For more details on the CGM and other fast solvers we refer to [3].

A priori errors

To get information about the error e := u−uh between the exact and the Galerkin solution,
we subtract the equations (69) and (70) and get a(e, vh) = 0, ∀vh ∈ Vh, which means that
the error e is orthogonal to Vh with respect to the inner product a. This is called Galerkin
orthogonality.

The a priori error estimates involve the exact unknown solution u, as formulated in Céa’s
lemma.

Theorem 2 (Céa’s lemma) The error e = u−uh between the exact and the Galerkin solution
satisfies

||e||V ≤ M

α
||u− vh||V , ∀vh ∈ Vh. (77)

Proof: Since a is coercive, we have ∀v ∈ Vh

α||e||2V ≤ a(e, e) = a(e, u−vh+vh−uh) = a(e, u−vh)+a(e, vh−uh) = a(e, u−vh) ≤ M ||e||V ||u−vh||V

where a(e, vh − uh) = 0 by Galerkin’s orthogonality, and in the last inequality the continuity of
a has been used. ■

Theorem 3 The error e = u− uh between the exact and the Galerkin solution satisfies

||e||V = ||u− uh||V ≤ Ch||u||H2 . (78)

12



A posteriori errors

These error estimates do not use the unknown solution u, but the calculated one, so they are
more useful. Knowing the following bounds of a posteriori errors allows to perform refinements
in the mesh, which is a process known as Adaptive Finite Element Methods. It consists in
creating a finer mesh (smaller h) in the areas where ||e||V is bigger.

Theorem 4 The error e = u− uh between the exact and the Galerkin solution satisfies

||e||V ≤ C

∑
K∈K

h2
K ||l + ∆uh||2K + 1

4hK ||[n · ∇uh]||2∂K

 (79)

where [n · ∇uh] denotes the jump in the directional derivative of uh on the sides of element K.

Proof: The proofs of the two previous theorems can be found in [2].

2.3 Types of Finite Elements

Up to now, we have only used approximations with piecewise linear functions, but in general
we can use other kind of polynomials. In this section, we see how to do this.

Definition 17 Formally, a finite element is a triplet consisting of

1. A polygon K ⊂ Rd: lines, triangles, quadrilaterals, tetrahedrons, cubes...

2. A polynomial functional space P over K with base {Sj}N
j=1, where each Sj is called shape

function.

3. A set of N = dim(P ) linear functions Li(·) defining the degrees of freedom. These define
the shape functions by imposing the conditions Li(Sj) = δij, ∀i, j = 1, 2, ..., N .

Definition 18 The Lagrange family is the family of finite elements that has Li(v) = v(Ni),
∀i = 1, 2, ..., N , which consists of the evaluation of the function v in the N nodes.

Shape functions in the reference triangle

For the two-dimensional case, if K is a triangle and P = P1(K) the space of linear polyno-
mials on the triangle K, the nodes are the 3 vertices of the triangle and we have 3 shape functions
S1, S2, S3. We consider the so-called reference triangle K = {(r, s) ∈ R2 : 0 < r, s < 1; r+s < 1}.
Then we take L1(v) = v(0, 0), L2(v) = v(1, 0) and L3(v) = v(0, 1). The simplest base of P is
{1, r, s} and the first form function, for example, will take the form S1 = c1 + c2r + c3s. To
determine the coefficients we impose Li(S1) = δi1, which results in the system

1
0
0

 =


L1(1) L1(r) L1(s)
L2(1) L2(r) L2(s)
L3(1) L3(r) L3(s)



c1

c2

c3

 =


1 0 0
1 1 0
1 0 1



c1

c2

c3

 , (80)

whose solution gives rise to S1 = 1 − r− s. Doing the same, S2 = r and S3 = s. We can use this
process to define other more complex finite elements, such as quadratic elements, or elements
with other geometries, such as quadrilaterals or tetrahedrons.

13



Isoparametric mapping

Figure 2: Scheme of the isoparametric
mapping (Source: [2]).

In order to calculate the elements of the stiff-
ness matrix in any element or in curved domains
we do an affine transformation that takes us to the
reference element K. Suppose we have a triangle K
with nodes Ni = (xi

1, x
i
2), i = 1, 2, ..., n. We build

a map that takes us from a given point (r, s) ∈ K

to a point (x1, x2) ∈ K:

x1(r, s) =
n∑

i=1
xi

1Si(r, s), (81)

x2(r, s) =
n∑

i=1
xi

2Si(r, s). (82)

Any function on a finite element K can be written as v(r, s) = ∑n
i=1 viSi(r, s), where

vi = v(Ni) are the nodal values of v. In the stiffness matrix A of the element K appear the
partial derivatives of v with respect to x1 and x2. In order to express them as a function of r
and s we use the chain rule:

∂v

∂x1
= ∂v

∂r

∂r

∂x1
+ ∂v

∂s

∂s

∂x1
, (83)

∂v

∂x2
= ∂v

∂r

∂r

∂x2
+ ∂v

∂s

∂s

∂x2
, (84)

or with matrix notation ∂v
∂x1
∂v

∂x2

 =

 ∂r
∂x1

∂s
∂x1

∂r
∂x2

∂s
∂x2

 ∂v
∂r
∂v
∂s

 = JK

 ∂v
∂r
∂v
∂s

 , (85)

where the elements of the change matrix can be calculated by doing

(J−1
K )11 = ∂x1

∂r
=

n∑
i=1

∂Si

∂r
xi

1, (J−1
K )21 = ∂x2

∂r
=

n∑
i=1

∂Si

∂r
xi

2, (86)

(J−1
K )12 = ∂x1

∂s
=

n∑
i=1

∂Si

∂s
xi

1, (J−1
K )22 = ∂x2

∂s
=

n∑
i=1

∂Si

∂s
xi

2. (87)

In this way, we can calculate the partial derivatives of any function v at any point (x1, x2)
of a generic element by solving a system of equations given by the Jacobian matrix of the change
of coordinates. In particular, we can calculate the stiffness matrix and the load vector on any
element from the calculation on the reference element using the Jacobi transformation formula.
Going back to Poisson’s equation, remember that we had

aij = a(φj , φi) =
∫

Ω
∇φi · ∇φj =

∑
K∈K

∫
K

∇φi · ∇φj and bi =
∑

K∈K

∫
K
fφi

Introducing the change of coordinates to the reference element (x1, x2) → (r, s) in the
integrals, we get

14



aij =
∫

Ω
∇φj · ∇φi =

∑
K∈K

∫
K

∇φj · ∇φi (88)

=
∑

K∈K
| det JK |−1

∫
K̄

(
∂φj(r, s)
∂x

,
∂φj(r, s)

∂y

)
·
(
∂φi(r, s)
∂x

,
∂φi(r, s)
∂y

)
(89)

=
∑

K∈K
| det JK |−1

∫
K̄

(
∂Sj(r, s)

∂r
,
∂Sj(r, s)

∂s

)
JT

KJK

(
∂Si(r, s)
∂r

,
∂Si(r, s)
∂s

)
(90)

:=
∑

K∈K
| det JK |−1

∫
K̄

(
(CK)11

∂Si

∂r

∂Sj

∂r
+ (CK)12

∂Si

∂r

∂Sj

∂s
+ (CK)21

∂Si

∂s

∂Sj

∂r
+ (CK)22

∂Si

∂s

∂Sj

∂s

)
(91)

:=
∑

K∈K
| det JK |−1

(
(CK)11m

rr
ij + (CK)12(mrs

ij +mrs
ji ) + (CK)22m

ss
ij

)
(92)

bi =
∑

K∈K
|detJK |−1

∫
K̄
f̄Si (93)

where f̄(r, s) = f(x1(r, s), x2(r, s)), M rr = (mrr
ij ) =

∫
K̄

∂Sj

∂r

∂Si

∂r
, M rs = (mrs

ij ) =
∫

K̄

∂Sj

∂r

∂Si

∂s
,

M ss = (mss
ij ) =

∫
K̄

∂Sj

∂s

∂Si

∂s
and CK = JT

KJK .

3 Application to CFD problems

3.1 Irrotacional fluids and Laplace equation
As explained in the first section, an irrotational fluid can be described by defining a potential

ϕ, which is a scalar function such that u = −∇ϕ. This potential satisfies the Laplace’s equation

−∆ϕ = 0, in Ω. (94)
The simplest example of airfoil design can be done assuming that we have such a flow

around a wing. Although air does not really behave in this way, but tends to have a turbulent
flow due to its low viscosity (the Navier-Stokes or Euler equations would have to be solved),
this is a first example of application of the Finite Element Method. Furthermore, we assume
that the wing is much longer than it is wide, in order to reduce the problem to two dimensions.
Vortices will be produced at the wingtips that cannot be explained in this way. The domain
Ω = (−30, 30) × (−15, 15) is a rectangle with the wing inside and Γ = ∂Ω, see Figure 3. Let’s
assume an airflow from left to right. Finally, it remains to impose the boundary conditions:

n · ∇ϕ = 1, in Γin, ϕ = 0, in Γout, (95)

n · ∇ϕ = 0, otherwise, (96)

where n is the exterior normal unit vector, so the last condition tells us that the velocity is
horizontal on the top and bottom walls. The second condition establishes the source of potential,
and the first represents the incoming flow.

Programming the code that creates the stiffness matrix for the Laplacian using P1 elements
(continuous piecewise linear) and solving the system of equations, we arrive at Figure 3. On the
left we see the discretization of the domain. On the right we see the direction of the velocity
and, in colours, the values of the pressure. A pressure difference creates a force equal to the
pressure gradient, so the wing will produce an upward lift force and a drag force.

15



(a) Triangular mesh on the domain. (b) Solution of Laplace equation.

Figure 3: Solution of Laplace’s equation to model an irrotational flow around an airfoil. The arrows
indicate the direction of the speed and the colour the values of the pressure.

3.2 Incompresible fluids and Stokes’ equations
When we have laminar flow, that is, the fluid is viscous, it has low velocity or the flow lines

are parallel and we assume a steady state, this can be modelled with the Stokes equations:

∇ · u = 0, in Ω, (97)

−∆u + ∇p = f, in Ω, (98)
u = g, in ∂Ω, (99)

where we have assumed that the viscosity is ν = 1 and no slip condition at the boundary
u = g. The pressure only appears within the gradient, so when solving the equation it will be
determined up to a certain constant. We could set this constant as a hydrostatic pressure level
or,as we do in this case, we can force the mean pressure to be 0, so that the solution will actually
give pressure changes with respect to the mean:

1
|Ω|

(p, 1)Ω = 1
|Ω|

∫
Ω
p dx = 0. (100)

3.2.1 Weak formulation

In this case, we want to find the velocity u = (u1, u2) and the pressure p, so it will be
necessary to introduce two test function spaces and work with the so-called mixed finite elements.

Vg = {u ∈ H1(Ω) : u |∂Ω= g}, (101)

Q = {q ∈ L2(Ω) :
∫

Ω
q dx = 0}. (102)

Now, we multiply the second equation by a test function v ∈ V0 and integrate using Green’s
formula.∫

Ω
v · f dΩ =

∫
Ω

−(∆u)v dΩ +
∫

Ω
∇p v dΩ (103)

= −
∫

∂Ω
(n · ∇u)v dS +

∫
Ω

∇u : ∇v dΩ +
∫

∂Ω
(n · v)p dS −

∫
Ω
p∇ · v dΩ (104)

=
∫

Ω
∇u : ∇v dΩ −

∫
Ω
p∇ · v dΩ, (105)

16



where ∇u : ∇v =
2∑

i,j=1

∂ui

∂xj

∂vj

∂xi
. For the first equation we multiply by q ∈ Q and get∫

Ω
q∇ · u dΩ = 0. Finally, the variational problem is as follows

(V )


Find u ∈ Vg and p ∈ Q such that
a(u,v) + b(v, p) = l(v), ∀v ∈ V0,

b(u, q) = 0, ∀q ∈ Q,

(106)

where
a(u,v) = (∇u : ∇v) =

∫
Ω

∇u : ∇v dΩ,

b(v, p) = −(∇ · v, p) = −
∫

Ω
∇ · v p dx, l(v) = (f,v) =

∫
Ω

f v dx.

To avoid working with two test spaces V0 and Vg, we can expand g to all of Ω and write
u = g + u0, where u0 ∈ V0 is the new unknown that satisfies a(u0,v) + b(v, p) = l(v) − a(g,v), ∀v ∈ V0,

b(u0, q) = 0, ∀q ∈ Q.
(107)

3.2.2 Existence, uniqueness and Inf-Sup/LBB condition

The solution existence condition is not given by the Lax-Milgram Lemma, since the coer-
civity of B((u, p), (v, q)) = a(u,v) + b(v, p) + b(u, q) cannot be defined.

Proposition 3 Let us consider the variational problem (106) with a : Vg × Vg → R bilinear,
coercive and continuous, l : Vg → R linear and continuous and b : Vg × Q → R bilinear and
continuous. Let F (v) = 1

2a(v, v) − l(v). Then u ∈ Vg is a solution of (106) if and only if
F (u) = minv∈Vg F (v) under the condition b(v, q) = 0,∀q ∈ Q.

Proof : By defining the Lagrangian L(v, q) := 1
2a(v,v) − l(v) + b(v, q), finding the minimum u

of F under the condition b(v, q) = 0,∀q ∈ Q is equivalent to solving

min
q∈Q

max
v∈Vg

L(v, q). (108)

Assuming that the first derivatives of L with respect to v and q are null, we arrive at the two
equations in (106). ■

Definition 19 Let b : Vg ×Q −→ R be a bilinear form. b is said to satisfy the Inf-Sup condition
or LBB condition if

∃β > 0 such that β ≤ inf
q∈Q

sup
v∈Vg

|b(v, q)|
||v||V ||q||Q

. (109)

Theorem 5 Let b : Vg ×Q → R be bilinear and continuous and as defined in (106). Then there
exists a constant β > 0 such that

β||q||Q ≤ sup
v∈Vg

b(v, q)
||v||Vg

, ∀q ∈ Q, (110)

which is equivalent to the LBB condition.

17



Proof: To prove that the b term in the Stokes’ equations satisfy the LBB condition, you can
consult page 160 of [4].

Theorem 6 (Brezzi) Let Vg and Q be two Hilbert spaces, let a(·, ·) and b(·, ·) be two continuous
bilinear forms in Vg × Vg and Vg × Q respectively and let Z = Ker{b} = {v ∈ Vg : b(v, q) =
0,∀q ∈ Q}. If a(·, ·) is coercive in Z and b(·, ·) satisfies the LBB condition, then there exists a
unique solution (u, p) ∈ Vg ×Q of the problem (106).

Proof: First we prove the uniqueness of p. Suppose that both p and p̃ satisfy

b(v, p) = (r,v), ∀v ∈ V (111)

where r is the residual defined by (r,v) = l(v) − a(u,v),∀v ∈ V . By subtraction we get

b(v, p− p̃) = 0,∀v ∈ V (112)

Combining this with the inf-sup condition, we have

β||p− p̃||Q ≤ sup
v∈V

b(v, p− p̃)
||v||V

= 0 (113)

from which it follows ||p − p̃||Q = 0 and thus p = p̃. For the velocity we can use the same idea
using the coercivity of a instead of the LBB condition. ■

3.2.3 Finite Elements approximation

Let Vh and Qh be two piecewise polynomial finite spaces approximating Vg and Q, the finite
element approximation takes the form:

Find uh ∈ Vh and ph ∈ Qh such that
a(uh,vh) + b(vh, ph) = l(vh), ∀vh ∈ Vh,

b(uh, qh) = 0, ∀qh ∈ Qh,

(114)

where h = max{hK} and hK the longest side of each element K, giving a sense of the size of the
triangularization. As explained in the previous section, if {φφφi}n

i=1 is a basis of Vh and {χi}m
i=1 is

a basis of Qh, then uh = ∑n
i=1 ξiφφφi and ph = ∑m

j=1 ψjχj . The problem is reduced to a system
of equations:  A BT

B 0

 ξ

ψ

 =

 b

0

 , (115)

where Aij = a(φj , φi), Bij = b(φi, χj) and bi = l(φi).

Next, we have to choose a finite element type that satisfies the discrete LBB condition. We
could think of the element P1 − P1, but this is not LBB stable.

Brezzi-Pitkäranta stabilization There are modifications of the P1−P1 element that make it
stable. An example is the Brezzi-Pitkäranta stabilization, which consists of adding an additional
term in the second equation.

(V )


Find uh ∈ Vh y ph ∈ Qh such that
a(uh,vh) + b(vh, ph) = l(vh), ∀vh ∈ Vh,

b(uh, qh) + 1
12h

2
∫

Ω
∇ph · ∇ph = 0, ∀qh ∈ Qh.

(116)

18



Taylor-Hood element It is one of the most used elements in the simulation of incompressible
fluids, since it is not numerically very complicated and it provides a good approximation of both
the velocity and the pressure. It consists of approximating the velocity by piecewise quadratic
polynomials and the pressure by piecewise linear polynomials. In Figure 5 we can see the
pressure and velocity nodes of different elements.

Vh = {v ∈
(
C(Ω)

)2 : v|K ∈
(
P2(K)

)2}, (117)

Qh = {q ∈ C(Ω) : q|K ∈ P1(K)}. (118)

MINI element It is probably the simplest element that satisfies the inf-sup condition. Ve-
locity and pressure are approximated by piecewise linear polynomials, but in addition, to each
velocity element a cubic bubble function φbubble = S1S2S3 is added. The finite element spaces
are then

Vh = {v ∈
(
C(Ω)

)2 : v|K ∈
(
P1(K)

)2 ⊕
(
B3(K)

)2}, where B3(K) = span{φbubble}, (119)

Qh = {q ∈ C(Ω) : q|K ∈ P1(K)}. (120)

Although it is easier to implement than the previous one, the pressure errors are much larger.

Theorem 7 (Fortin’s trick) If there exists an interpolation operator Π : Vg −→ Vh such that

b(v − Πv, qh) = 0, ∀v ∈ Vg, qh ∈ Qh and ||Πv||Vh
≤ C||v||Vg , ∀v ∈ Vg, (121)

then the discrete inf-sup condition is satisfied.

Proof :
β||qh||Q ≤ sup

v∈Vg

b(v, qh)
||v||Vg

= sup
v∈Vg

b(Πv, qh)
||v||Vg

≤ C sup
v∈Vg

b(Πv, qh)
||Πv||Vh

, (122)

and thus ∀qh ∈ Qh

β||qh||Q ≤ C sup
v∈Vh

b(v, qh)
||v||Vh

. (123)

■

Theorem 8 Assume that Ω is convex or has smooth boundary. Then the MINI element satisfies
the inf-sup condition.

Proof : Let π0
h : H1

0 (Ω) → Vh be the L2-projector, which for any v ∈ H1
0 (Ω) returns π0

hv ∈ Vh

such that ∫
Ω

(v − π0
hv)w · x = 0, ∀w ∈ Vh.

A proposition in [4] tells us that ||π0
hv||H1 ≤ c1||v||H1 and ||v − π0

hv||L2 ≤ c2h||v||H1 . We fix a
linear mapping π1

h : L2(Ω) → B3 such that∫
K

(π1
hv − v)dx = 0, ∀K ∈ K.

We can interpret this map as a two-step process. First we apply the L2-projection onto the
space of piecewise constant functions. Then, in each triangle the constant is replaced by a

19



bubble function with the same integral. In this way we get ||π1
hv||L2 ≤ c3||v||L2 . Now, we define

Πhv := π0
hv + π1

h(v − π0
hv). Since p is continuous, we can apply Green’s formula and the fact

that the gradient of the pressure is piecewise constant:

b(v−Πhv, qh) =
∫

Ω
∇·(v−Πhv)qh dx =

∫
∂Ω

(v−Πhv)·n qh ds−
∫

Ω
(v−Πhv)·∇qh dx = 0, (124)

and the boundedness of Πh is given by:

||Πhv||H1 ≤ ||π0
hv||H1 + ||π1

h(v − π0
hv)||H1 (125)

≤ c1||v||H1 + c4
h

||π1
h(v − π0

hv)||L2 (126)

≤ c1||v||H1 + c4
h
c3||v − π0

hv||L2 (127)

≤ c1||v||H1 + c4c3c2||v||H1 . (128)

where c4 comes from the Poincare inequality. In addition, we have the following error estimate

||u − uh||V + ||p− ph||Q ≤ ch(||u||H2 + ||p||H1). (129)

■

P1-P0 non-conforming element

Figure 4: Scheme of Crouzeix-Raviart elements
(Source: [2]).

It consists of approximating the velocity
by Crouzeix-Raviart functions and the pres-
sure by piecewise constants. The Crouzeix-
Raviart element is a linear element that is only
continuous at the midpoint of the edges of the
triangles. The corresponding basis functions
have the form SCR

i = −Si +Sj +Sk, where the
Si, Sj and Sk are the classical hat functions
and with a cyclic permutation of the indices
{i, j, k}.

Theorem 9 The non-conforming P1-P0 ele-
ment satisfies the inf-sup condition.

Proof : In this case

Vh = {v ∈
(
L2(Ω)

)2
: v ∈

(
P1(K)

)2
,∀K ∈ K, ([vi], 1)∂Ω = 0, i = 1, 2}, (130)

Qh = {q ∈ L2
0(Ω) : q|K ∈ P0(K),∀K ∈ K}. (131)

We define the linear interpolant Πv = (Πvi)2
i=1 in each triangle K as:

Πvi =
3∑

j=1

(vi, 1)Ej

|Ej |
SCR

j , (132)

20



where the three Ej ’s are the edges of the triangle. Let mj be each edge mid-point. Using the
divergence theorem:

(∇ · v, 1)K = (v,n)∂K =
3∑

j=1
(v,n)Ej =

3∑
j=1

Πv(mj) · n|Ej | =
3∑

j=1
(Πv,n)Ej =

= (Πv,n)∂K = (∇ · Πv, 1)K ⇒ b(Πv, qh) = b(v, qh). (133)

Finally, since the norm of all v ∈ V is invariant under the addition of a constant, we take
vi = ṽi + v̄i with v̄i = Πvi(m0) where m0 is the mid-point of the edge. As a consequence,
ṽi(m0) = 0 and Πv = Π(ṽ + v̄) = Πṽ + v̄ . Also, Πṽ is a Crouzeix-Raviart function, so
Πṽ = ∑3

j=1
(ṽi,1)Ej

|Ej | SCR
j . Putting all this together we get

||∇Πvi||K = ||∇Πṽi||K ≤ C max
j

|(ṽj , 1)Ej | ≤ C||ṽi||∂K ≤ C(||ṽi||K + ||∇ṽi||K) ≤ C||∇vi||K

Adding to all elements K and all spatial dimensions, we obtain

||Πv||V ≤ C||v||V . (134)

■

Figure 5: Pressure nodes (circles) and velocity nodes (points) for the elements: Taylor-Hood, MINI,
P1-P0 non-conforming. The number of nodes coincides with the number of degrees of freedom.

3.2.4 Example: lid-driven cavity

Finally, to put what has been learned into practice, a typical example of fluid dynamics,
known as lid-driven cavity, will be solved.

A viscous and incompressible fluid is considered in a square domain Ω = (−1, 1)2 in which
the upper wall moves with horizontal velocity, that is, the boundary conditions are:

u(x, 1) = (1, 0), ∀x ∈ (−1, 1),
u(x,−1) = (0, 0), ∀x ∈ (−1, 1),
u(1, y) = (0, 0), ∀y ∈ (−1, 1),
u(−1, y) = (0, 0), ∀y ∈ (−1, 1),

(135)

and the finite element approximation in the Stokes equations is given by
Find (uhx, uhy, ph) ∈ Vh × Vh ×Qh such that∫

Ω
∇uhx · ∇vhx dΩ +

∫
Ω

∇uhy · ∇vhy dΩ −
∫

Ω

∂vhx

∂x
ph dΩ −

∫
Ω

∂vhy

∂y
ph dΩ =

∫
Ω
fvh dΩ, ∀vhx, vhy ∈ Vh0,∫

Ω

∂uhx

∂x
qh dΩ +

∫
Ω

∂uhy

∂y
qh dΩ, ∀qh ∈ Qh,

(136)

21



(a) Pressure graph. (b) Velocity graph.

Figure 6: Solution of the Stokes equations with the boundary conditions at (135) and the P1 − P0

non-conforming element.

where Vh0 = {vh ∈ Vh : v|∂Ω = 0}. Using the non-conformimg P1 − P0 element with the
Crouzeix-Raviart functions, we are left with the following system of equations to be solved:

A 0 C1 0
0 A C2 0
CT

1 CT
2 0 T

0 0 T T 0




Ux

Uy

P
p̄

 =


l1
l2
l3
0

 , (137)

where li contains information about the forces acting on the fluid (none in this case) and the
boundary conditions. Besides

Aij =
∫

Ω
∇SCR

i · ∇SCR
j , Ti =

∫
Ω
SCR

i , (138)

(C1)ij =
∫

Ω
SCR

i

∂SCR
j

∂x
, (C2)ij =

∫
Ω
SCR

i

∂SCR
j

∂y
, (139)

and p̄ is the mean pressure, so the last condition dictates that the mean pressure must be zero.
Thus, the pressure obtained is actually the pressure difference with respect to the average. The
obtained results are shown in Figure 6. As we can see, the movement of the upper wall drags the
viscous fluid and it begins to rotate around an interior point. The pressure shows a maximum
in the upper right corner, where the fluid hits the wall, and a minimum in the upper left corner.

Another option may be to use the MINI element, which is a bit more difficult to program but
is much more widely used. Remember that in this type of element the pressure is approximated
by functions Qh = P1 and the velocity by Vh = P1 ⊕ B3. We now call {Sl

i} the base functions
of P1 and {Sb

i } those of B. Then, we have to solve the following system,

A 0 0 0 C1

0 A 0 0 C2

0 0 D 0 C3

0 0 0 D C4

CT
1 CT

2 CT
3 CT

4 0
0 0 0 0 T





Ul
x

Ul
y

Ub
x

Ub
y

p
p̄


=



l1
l2
l3
l4
l5
0


, (140)

22



(a) Pressure graph. (b) Velocity graph

Figure 7: Solution of the Stokes equations with the MINI element.

where the matrices A,C1, C2 and T are as in the previous case but with the new basis linear
functions of P1 and also:

Dij = δij

∫
Ω

∇Sb
i · ∇Sb

j (C3)ij =
∫

Ω
Sl

i

∂Sb
j

∂x
(C4)ij =

∫
Ω
Sl

i

∂Sb
j

∂y
(141)

As we can see in Figure 7, similar results to the previous case are obtained. This time Ω = (0, 1)2

has been considered instead to simplify the code for the boundary conditions.

3.2.5 Solving the linear systems

In the Stokes equations, the obtained stiffness matrices are not positive definite. Therefore
we cannot use the CGM. Other techniques, similar to the CGM and based on Krylov subspaces,
have been developed for non definite matrices. One example is the Generalized Minimal Residual
Method (GMRES), which iteratively approximates the solution by the minimal residual vector
in a Krylov subspace.

Definition 20 The n-th Krylov subspace for a system Ax = b is defined as Kn = Kn(A, r0) :=
{r0, Ar0, A

2r0, ..., A
n−1r0}, where r0 = b −Ar0 and x0 is an initial guess.

The GMRES method aims at finding an approximate solution xn ∈ Kn that minimizes the
euclidean norm of the residual rn = b − Axn. Instead of the linearly dependent vectors r0,
Ar0, ..., An−1r0, the Arnoldi iteration is used to obtain orthonormal vectors q1, ...,qn, which
serve as a basis for Kn. Specifically, q1 = ||r0||−1

2 r0. Consequently, the vector xn ∈ Kn can
be expressed as xn = x0 + Qnyn, where yn ∈ Rn and Qn is the m-by-n matrix composed of
q1, ...,qn. The Arnoldi process also produces an upper Hessenberg matrix Hn ∈ R(n+1)×n with
AQn = Qn+1Hn. Since the columns of Qn are orthonormal

||rn|| = ||b −Axn|| = ||b −A(x0 +Qnyn)|| = ||r0 −AQnyn|| = ||αq1 −Qn+1Hnyn|| (142)
= ||Qn+1(αe1 −Hnyn)|| = ||αe1 −Hnyn||, (143)

(144)

23



where α = ||r0|| and e1 = (1, 0, ..., 0). Thus, xn can be found by xn = x0 + Qnyn and yn

minimizes the norm of the residual rn = Hnyn − αe1, which is a linear least squares problem.

In practice, the CGM and the GMRES need preconditioning to really beat other methods.
The convergence speed is given by the condition number κ2(A) = λmax

λmin
. With a preconditioner

we can solve Au = b with A ∈ Rn×n by defining another matrix B ∈ Rn×n and Ā = AB−1.
Then, we solve (Ā)ū = b and finally Bu = ū. The advantage is that B is choosen so that
κ2(Ā) < κ2(A) and Bu = ū is easy to solve. An example is the Gauss-Seidel preconditioner,
where, given A = L+D+U a separation of A in its diagonal D, lower L and upper U triangular
parts, we take B = A+ LD−1U .

3.3 Turbulent flow and the Navier-Stokes equations

After studying the basic properties of laminar and incompressible flows through the Stokes
equations, the next step would be to study more general flows as the Navier-Stokes and the Euler
equations, which depend on time and can be dominated by the convective term, making them
nonlinear and much more difficult to solve. Some important properties such as the existence
and uniqueness of solutions have not yet been proven. Nevertheless, due to its wide range
of application, numerous techniques have been developed to solve them numerically under the
name of Computational Fluid Dynamics or CFD. The main problem in solving the Navier-
Stokes equations is turbulence, which is a chaotic behaviour exhibited by fluids with low viscosity
moving at high speed (high Reynolds number). Turbulence is caused by the dissipation of energy
in the form of heat on a microscopic scale with large momentum transport on a macroscopic scale.
Due to the microscopic nature of turbulence it is very difficult to simulate it with finite elements,
since we cannot make the elements infinitely small without increasing the computation time.
Some models, such as RANS (Reynolds-averaged Navier-Stokes), attempt to model turbulence
by taking an average, so that each magnitude is expressed as the sum of its average over time
plus a fluctuating component.

4 Conclusions

This work has analyzed the Finite Element Method as a powerful numerical technique for
solving a wide range of PDEs, particularly those appearing in fluid mechanics. We have examined
the fundamental principles and key steps involved in the FEM and shown an example from very
basic principles, including the variational formulation, the shape functions, the Galerkin method,
the assembly of the global system of equations and its iterative solvers.

The FEM provides a systematic framework for dividing a domain into smallerand more
manageable elements, enabling the formulation of local approximations and the construction of
a global solution. By discretizing the problem into a finite set of unknowns, the FEM transforms
the original differential problem into a system of algebraic equations, that can be solved using
well-established numerical methods. One of the main advantages of the FEM is its ability to
handle irregular geometries and complex boundary conditions. The FEM has proven to be a
valuable tool in the field of computational mathematics and engineering, providing insights into
complex physical phenomena and aiding in the design and optimization of various systems.

24



5 Bibliography

[1] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp. Stiffness and deflection analysis
of complex structures. Journal of the Aeronautical Sciences, 23(9):805–823, 1956.

[2] Larson M. G. Bengzon F. The finite element method : theory implementation and appli-
cations. Springer, 2013.

[3] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2003.

[4] Dietrich Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechan-
ics. Cambridge, 2007.

[5] Howard Elman, David Silvester, and Andy Wathen. Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, 06
2014.

[6] Antonio Huerta Jean Donea. Finite Element Methods for Flow Problems. Wiley, 2003.

[7] Jean-Luc Guermond Alexandre Ern. Theory and Practice of Finite Elements. Springer,
2004.

[8] Michel Fortin Daniele Boffi, Franco Brezzi. Mixed Finite Element Methods and Applications.
Springer, 2013.

[9] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathematical Library.
Cambridge University Press, 2000.

[10] Barrero Ripoll A. y Pérez-Saborid Sánchez-Pastor M. Fundamentos y Aplicaciones de la
Mecánica de Fluidos. McGrawHill, 2005.

[11] Francisco J. Gaspar, Yvan Notay, Cornelis W. Oosterlee, and Carmen Rodrigo. A simple and
efficient segregated smoother for the discrete stokes equations. SIAM Journal on Scientific
Computing, 36(3):A1187–A1206, 2014.

[12] Francisco José Gaspar Lorenz. Apuntes de la asignatura de Ecuaciones en Derivadas Par-
ciales. Universidad de Zaragoza, 2022.

[13] Martin Brokate und Johannes Zimmer. Vorlesungsskript zur Analysis 3. Technische Uni-
versität München, 2023.

[14] Caroline Lasser. Notes of Numerical Programming 2. Technische Universität München,
2023.

25



A Proofs of Riesz-Fréchet and Lax-Milgram theorems

Riesz-Fréchet representation theorem: Let H be a Hilbert space and H ′ its dual (H ′ =
L(H,R)), then

∀L ∈ H ′, ∃!u ∈ H such that L(v) = (u, v) =: Ju(v), ∀v ∈ H (145)

and the function

J : H −→ H ′

u −→ Ju = (u, ·)
with

Ju : H −→ R
v −→ Ju(v) = (u, v)

(146)

is an isometric isomorphism, which means ||L||H′ = ||u||H .

Proof: First, let us see that J is well defined, that is, Ju ∈ H ′. By the linearity of the
dot product (u, v + w) = (u, v) + (u,w) we get that Ju(v + w) = Ju(v) + Ju(w), ∀v, w ∈ H.
In addition, (u, λv) = λ(u, v) implies that Ju(λv) = λJu(v), ∀v ∈ H. Last but not least,
|Ju(v)| ≤ ||u||H ||v||H , which in total means Ju ∈ H ′.

Now, we see that J is isometric, that is we have to prove that ∀u ∈ H, ||L||H′ = ||u||H . By
the Cauchy-Schwarz inequality

∀0 ̸= v ∈ H, |Ju(v)| = |(u, v)| ≤ ||u||H ||v||H =⇒ |Ju(v)|
||v||H

≤ ||u||H .

On the other hand, by the definition of norm of a linear map

||Ju||H′ ≤ sup
0̸=v∈H

|Ju(v)|
||v||H

.

Besides that, for v = u

|Ju(u)| = |(u, u)| = ||u||2H =⇒ |Ju(u)|
||u||H

= ||u||H .

Thus, on the one hand, we have ||Ju||H′ ≤ ||u||H , and on the other ||u||H ≤ ||Ju||H′ .

Now, we see that Ju is inyective. We have alredy seen that ||u||H = ||Ju||H′ = ||J (u)||H′ .
Then, if Ju = 0, we get ||Ju||H′ = 0 =⇒ ||u||H = 0 =⇒ u = 0H .

Finally, we have to show that J is surjective, which means that ∀L ∈ H ′, ∃u ∈ H such
that J (u) = Ju = L, and therefore Ju(v) ∈ L(v), ∀v ∈ H and (u, v) = L(v), ∀v ∈ H. Let
w ∈ (Ker L)⊥, then

∀v ∈ H, L
(
v − L(v)

L(w)w
)

= L(v) − L(v)
L(w)L(w) = 0 =⇒

=⇒ v − L(v)
L(w)w ∈ Ker L =⇒

(
v − L(v)

L(w)w,w
)

= 0 =⇒ (v, w) − L(v)
L(w) = 0 =⇒

=⇒ L(v) = (v, L(w)w).

So, just take u = L(w)w. ■



Lax-Milgram’s lemma: If a(·, ·) is a bilinear continuous and coercive form, and l is a
linear continuous form, then the following abstract variational problem has a solution u ∈ H

and is unique.

(V )

 Find u ∈ H such that
a(u, v) = l(v), ∀v ∈ H

(147)

Proof: Let u ∈ H be fixed. Consider the map

Au : H −→ R
v −→ a(u, v)

Au is linear by the bilinearity of a and |Au(v)| = |a(u, v)| ≤ M ||u||H ||v||H ≤ c||v||H , ∀v ∈ H,
which means that Au is continuous. Therefore Au ∈ H ′ and

||Au||H′ = sup
0̸=v∈H

|Au(v)|
||v||H

.

Now, we define
A : H −→ H ′

u −→ A(u) = Au

Then the abstract variational problem is equivalent to

(V )

 Find u ∈ H such that
a(u, v) = l(v), ∀v ∈ H

⇔

 Find u ∈ H such that
Au = l in H’

⇔

 Find u ∈ H such that
A(u) = l in H’

(148)
By the Riesz-Frechét representation theorem, for l ∈ H ′, ∃!f ∈ H such that l(v) = (f, v), ∀v ∈ H

and ||l||H′ = ||f ||H . Likewise, for Au ∈ H ′, ∃!Au ∈ H such that Au(v) = (Au, v), ∀v ∈ H y
||Au||H′ = ||Au||H . Now, we define

A : H −→ H

u −→ A(u) = Au
||A(u)|| = ||Au||H ≤ M ||u||H .

Uniqueness: Let us see that A is inyective. ∀v ∈ H, α||v||2H ≤ a(v, v) = (Av, v) ≤
||Av||H ||v||H . If v ∈ H verifies that A(v) = 0, then v = 0H .

Existence: Let us see that A is surjective. We have to see that AH = H. If AH is closed,
then H = AH ⊕ (AH)⊥. Then we can just prove that (AH)⊥ = {0H}: Let v0 ∈ (AH)⊥,
α||v0||2H ≤ a(v0, v0) = Av0(v0) = (Av0 , v0) = (A(v0), v0) = 0 ⇒ v0 = 0H . Now we see that AH
is closed. To do that we consider (Avn)n∈N a sequence in AH converging to ω ∈ H. In the
injectivity we saw that ||Avn − Avm||H ≥ α||vn − vm||H . Then

(Avn) converges ⇒ (Avn) is Cauchy ⇒ (vn) is Cauchy ⇒ vn → v in H

On the other hand,
||A(vn − v)||H ≤ M ||vn − v||H ⇒ Avn → Av,

but also Avn → ω. Thus ω = A(v) ∈ H. ■



B Appendix: Why FEM? Comparison with other methods

In this appendix we are going to compare the FEM with the FDM and the FVM. To do
that we consider a test problem, consisting in the Poisson equation with homogenuous Dirichlet
conditions:  −∆u = f , in Ω = (0, 1)2 ⊂ R2

u(x) = 0, ∀x ∈ ∂Ω
(149)

We know this problem is well-posed in the sense of Hadamard, which means that exists a unique
solution u ∈ C2(Ω) and its dependence on the data f is continuous.

Finite Difference Method

Figure 8: Point grid in the FDM.

In the FDM we create a uniform point grid Ωh

of step size h = ∆x = ∆y. In the interior points we
approximate the derivatives using the quotients:

∂u

∂x
(xi, yj) = u(xi + h, yj) − u(xi − h, yj)

2h +O(h2),

∂2u

∂x2 (xi, yj) = u(xi + h, yj) − 2u(xi, yj) + u(xi − h, yj)
h2 +O(h2).

The discrete laplacian takes the form

−∆u(xi, yj) = 4u(xi, yj) − u(xi + h, yj) − u(xi − h, yj) − u(xi, yj + h) − u(xi, yj − h)
h2 . (150)

It is useful to represent this with stencils. Looking into one individual point, we have the
following representation.

−∆h = 1
h2


0 −1 0

−1 4 −1
0 −1 0

 . (151)

If N is the number of divisions on each direction and h = 1/N , then we have a total of (N − 1)2

interior points and the whole laplacian can be represented by a matrix Lh ∈ R(N−1)2×(N−1)2 .



Lh =



4 −1 ... 0 ... −1 ... 0 ...

−1 4 −1 ... 0 ... −1 ... 0
... −1 4 −1 ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

−1 0 ... ... ... ... ... ... ...

... ... ... ... ... ... −1 4 −1

... 0 −1 0 ... ... 0 −1 4



. (152)

At the end we arrive at a system of linear equations Lhuh = fh, where uh is the solution vector
at the points of the grid.

Finite Volume Method

We consider the same grid Ωh on the domain Ω. Instead of considering the vertices/points
we consider the little squares Ej ’s. In the problem will appear some integrals over these Ej .
Using the Green’s formula, we transform these integrals in integrals over the boundary ∂Ej .

−
∫

∂Ej

∂u

∂n
ds =

∫
Ej

(−∆u)dx−
∫

Ej

fdx, (153)

and then we separate the integral over the boundary in 4 integrals over the 4 sides of each square:∫
∂Ej

=
∫

right
+
∫

up
+
∫

left
+
∫

down
, (154)

∫
right

∂u

∂n
ds ≈ h

uh(xj + h, yj) − uh(xj , yj)
h

,∫
up

∂u

∂n
ds ≈ h

uh(xj , yj + h) − uh(xj , yj)
h

,∫
left

∂u

∂n
ds ≈ h

uh(xj − h, yj) − uh(xj , yj)
h

,∫
down

∂u

∂n
ds ≈ h

uh(xj , yj − h) − uh(xj , yj)
h

.

At the end∫
Ej

fdx = 4u(xj , yj)−u(xj+h, yj)−u(xj−h, yj)−u(xj , yj+h)−u(xj , yj−h) ≈ h2 1
|Ej |

∫
Ej

fdx = h2f(xj , yj).

(155)

Finite Element Method

As we saw during this work, the FEM consists in reducing the general function space
V of the solution into a finite dimensional function space Vh with a basis {φ}n

i=1. Then, we
approximate the solution u with Uh = ∑n

i=1 uh(xj , yj)φj(x, y) ∈ Vh and solve a linear system of
equations.



Comparison between FDM, FVM and FEM

In the next table we study the main advantages and disadvantages of each method. The
main advantages of the FEM are the possibility of using higher orders (not only linear), the fact
that it can be used for complex geometries and the preservation of the structure in the matrices.
However, the coding is not that simple and sometimes we need to use external packages, and
the fact that in the first place we have to transform the differential equation into a variational
problem.

PDEs high orders geometry structure preservation coding
FD universal possible unflexible difficult simple
FV conservative/divergence difficult flexible good need packages
FE variational problems possible flexible good need packages

Table 1: Comparison between FDM, FVM and FEM.

Although there are pros and cons in all three methods, for CFD the FVM has been tra-
ditionally used for many reasons. The FEM is very well suited for second order PDEs, and
consequently is very adecuate to problems such as elasticity and more generally structures, but
also for the Stokes equations in fluids. Other fluid problems are described by first order dif-
ferential equations (for example, the Euler equations of gas dynamics) or equations in which
the first order terms are dominant (the compressible Navier-Stokes equations). For these cases,
solutions are often discontinuous (for example in the form of shocks) and the Galerkin method
is not useful. One can fix this through stabilization techniques developed in the past years, but
still the preferred approach is to base methods on the conservation properties, thus the use of
finite volume methods, where, for example, mass conservation is directly inherited.

There are also many other methods not so well known but widely used for depending
on what type of applications, such as spectral methods, boundary element methods, particle
methods or the lattice Boltzmann methods.



C Appendix: Computer programs

MINI element:
1 [mxx , myy , mxy , mx , my] = matriz2 ; % Matrices con las integrales en el elemento

de referencia
2 ns1 = 20; % Numero de divisiones en x
3 ns2 = 20; % Numero de divisiones en y
4 d = 3; % Grados de libertad
5 nt = (ns1 + 1)*( ns2 + 1); % Numero de vertices
6

7 [globales , x, y, nel] = gen2(ns1 , ns2); % Generar malla , nel= numero de elementos
8 a = zeros(nt ,nt);
9 d1 = zeros(nt ,nt);

10 d2 = zeros(nt ,nt);
11 d3 = zeros(nel ,nt);
12 d4 = zeros(nel ,nt);
13 D = zeros(nel ,nel);
14 A = zeros (3* nt + 2* nel +1, 3*nt + 2* nel);
15 b = zeros (3* nt + 2* nel +1, 1);
16 nodos = zeros (1 ,3);
17 mk = zeros(d,d);
18 nk1 = zeros(d,d);
19 nk2 = zeros (1,d);
20 rk = zeros (1 ,1);
21 lk = zeros(d ,1);
22 t = zeros (1, nt);
23 aux1 = [ -1/120 , 1/120 , 0;]; %mx , my para las funciones burbuja
24 sol = zeros (3* nt + 2*nel , 1);
25 coord = [x;y]’;
26

27 % Ensamblado
28 for k=1: nel
29 nodos = globales (k ,:); % Vertices de cada elemento
30 [c,J,deter] = InvDet (coord(nodos ,:)); % T r a n s f o r m a c i n al elemento de

referencia
31 mk = deter *(c(1 ,1)*mxx + c(1 ,2) *( mxy+mxy ’) + c(2 ,2)*myy);
32 a(nodos ,nodos) = a(nodos ,nodos) + mk;
33 rk = deter *(c(1 ,1) + c(1 ,2) + c(2 ,2))/180;
34 D(k,k) = D(k,k) + rk;
35 nk1 = deter *(J(1 ,1)*mx + J(1 ,2)*my);
36 d1(nodos ,nodos) = d1(nodos ,nodos) + nk1;
37 nk1 = deter *(J(2 ,1)*mx + J(2 ,2)*my);
38 d2(nodos ,nodos) = d2(nodos ,nodos) + nk1;
39 nk2 = deter *(J(1 ,1)*aux1 + J(1 ,2)*aux1);
40 d3(k,nodos) = d3(k,nodos) + nk2;
41 nk2 = deter *(J(2 ,1)*aux1 + J(2 ,2)*aux1);
42 d4(k,nodos) = d4(k,nodos) + nk2;
43 t(nodos) = t(nodos) + deter /6;
44 end
45

46 % Construccion de la matriz por bloques
47 a = a*50;
48 A(1:nt ,1: nt) = a;
49 A(nt +1:2*nt , nt +1:2* nt) = a;



50 A(2* nt +1:2* nt+nel , 2*nt +1:2* nt+nel) = D;
51 A(2* nt+nel +1:2* nt +2* nel , 2*nt+nel +1:2* nt +2* nel) = D;
52 A(1:nt , 2*nt +1+2* nel :3* nt +2* nel) = d1;
53 A(nt +1:2*nt , 2*nt +2* nel +1:3* nt +2* nel) = d2;
54 A(2* nt +1:2* nt+nel , 2*nt +2* nel +1:3* nt +2* nel) = d3;
55 A(2* nt+nel +1:2* nt +2* nel , 2*nt +2* nel +1:3* nt +2* nel) = d4;
56 A(2* nt +2* nel +1:3* nt +2* nel , 1:nt) = d1 ’;
57 A(2* nt +2* nel +1:3* nt +2* nel , nt +1:2* nt) = d2 ’;
58 A(2* nt +2* nel +1:3* nt +2* nel , 2*nt +1:2* nt+nel) = d3 ’;
59 A(2* nt +2* nel +1:3* nt +2* nel , 2*nt+nel +1:2* nt +2* nel) = d4 ’;
60 A(3* nt +2* nel +1, 2*nt +2* nel +1:3* nt +2* nel) = t;
61

62 % Condicion Dirichlet en u_x
63 %0 en y=0
64 for k = 1:( ns1 + 1)
65 for i = 1:3* nt
66 A(k,i) = 0;
67 end
68 b(k) = 0;
69 A(k,k) = 1;
70 end
71 %0 en x=0
72 for k = 1: ns2 +1
73 for i = 1:3* nt
74 A(ns1 *(k -1)+k,i) = 0;
75 end
76 b(ns1 *(k -1)+k) = 0;
77 A(ns1 *(k -1)+k,ns1 *(k -1)+k) = 1;
78 end
79 %0 en x=1
80 for k = 1: ns2 +1
81 for i = 1:3* nt
82 A(ns1*k+k,i) = 0;
83 end
84 b(ns1*k+k) = 0;
85 A(ns1*k+k,ns1*k+k) = 1;
86 end
87 %1 en y=1
88 for k = 1: ns1 +1
89 for i = 1:3* nt
90 A(ns1*ns2+ns2+k,i) = 0;
91 end
92 b(ns1*ns2+ns2+k) = 1;
93 A(ns1*ns2+ns2+k,ns1*ns2+ns2+k) = 1;
94 end
95

96 % Condicion Dirichlet en u_y
97 %0 en y=0
98 for k = 1:( ns1 + 1)
99 for i = 1:3* nt

100 A(k+nt ,i) = 0;
101 end
102 b(k+nt) = 0;
103 A(k+nt ,k+nt) = 1;
104 end



105 %0 en x=0
106 for k = 1: ns2 +1
107 for i = 1:3* nt
108 A(ns1 *(k -1)+k+nt ,i) = 0;
109 end
110 b(ns1 *(k -1)+k+nt) = 0;
111 A(ns1 *(k -1)+k+nt ,ns1 *(k -1)+k+nt) = 1;
112 end
113 %0 en x=1
114 for k = 1: ns2 +1
115 for i = 1:3* nt
116 A(ns1*k+k+nt ,i) = 0;
117 end
118 b(ns1*k+k+nt) = 0;
119 A(ns1*k+k+nt ,ns1*k+k+nt) = 1;
120 end
121 %0 en y=1
122 for k = 1: ns1 +1
123 for i = 1:3* nt
124 A(ns1*ns2+ns2+k+nt ,i) = 0;
125 end
126 b(ns1*ns2+ns2+k+nt) = 0;
127 A(ns1*ns2+ns2+k+nt ,ns1*ns2+ns2+k+nt) = 1;
128 end
129

130 % Resolver el sistema de ecuaciones
131 disp(’Solving the linear system ... ’)
132 sol = A\b;
133

134 % Separar la s o l u c i n
135 X = reshape (coord (: ,1) , ns1 +1, ns2 +1);
136 ux = reshape (sol (1: nt), ns1 +1, ns2 +1);
137 Y = reshape (coord (: ,2) , ns1 +1, ns2 +1);
138 uy = reshape (sol(nt +1:2* nt), ns1 +1, ns2 +1);
139 Z = reshape (sol (2* nt +2* nel +1:3* nt +2* nel), ns1 +1, ns2 +1);
140

141 % Grafica de la presion
142 surf(X,Y,-Z/500)
143 xlim ([ -0.1 1.1])
144 ylim ([ -0.1 1.1])
145 xlabel (’x’, ’FontSize ’, 30)
146 ylabel (’y’, ’FontSize ’, 30)
147 zlabel (’P’, ’FontSize ’, 30)
148 ax=gca;
149 ax. FontSize = 30;
150 pause
151

152 % Grafica de la velocidad
153 h = quiver (X,Y,ux ,uy);
154 xlim ([ -0.1 1.1])
155 ylim ([ -0.1 1.1])
156 xlabel (’x’, ’FontSize ’, 30)
157 ylabel (’y’, ’FontSize ’, 30)
158 ax=gca;
159 ax. FontSize = 30;



160 axis square
161 shading interp

P 1 − P 0 non-conforming element:
1 function NCStokesSolver ()
2 [p,e,t]= initmesh (’squareg ’); % Dominio cuadrado [ -1 ,1]^2
3 figure (1)
4 set(gcf ,’DefaultLineLineWidth ’ ,0.2);
5 pdemesh (p,e,t,’EdgeColor ’,’blue ’)
6 xlim ([-1 1])
7 ylim ([-1 1])
8 xlabel (’x’)
9 ylabel (’y’)

10

11 t2e= Tri2Edge (p,t); %Lados de los triangulos
12 nt=size(t ,2); % Numero de triangulos
13 ne=max(t2e (:)); % Numero de lados
14 [A11 ,B1 ,B2 ,areas ]= NCAssembler (p,t2e ,t); %Valor de las integrales
15 nu =0.1; % Viscosidad
16 LHS =[nu*A11 sparse (ne ,ne) B1 ’;
17 sparse (ne ,ne) nu*A11 B2 ’;
18 B1 B2 sparse (nt ,nt)]; % Matriz de rigidez
19 rhs=zeros (2* ne+nt ,1); % Vector de carga
20 last =[ zeros (2*ne ,1); areas ]; % Ultima fila y ultima columna
21 LHS =[ LHS last; last ’ 0];
22 rhs =[ rhs; 0];
23

24 [xmid ,ymid ,edges] = EdgeMidPoints (p,t2e ,t);
25 fixed =[]; %Nodos internos
26 gvals =[]; % Condiciones de contorno
27 for i=1: length (edges) %Bucle en los lados
28 n=edges(i); % indice del lado
29 x=xmid(i); % coordenada x del punto medio del lado
30 y=ymid(i); % coordenada y del punto medio del lado
31 if (x < -0.99 | x >0.99 | y < -0.99 | y >0.99) % boundary
32 fixed =[ fixed; n; n+ne];
33 u=0; v=0; % valores en la frontera
34 if (y >0.99) , u=1; end % u=1,v=0 en [-1,1]x{1}
35 gvals =[ gvals; u; v];
36 end
37 end
38

39 neq =2* ne+nt +1; % Numero de ecuaciones
40 free= setdiff ([1: neq],fixed);
41 rhs=rhs(free)-LHS(free ,fixed)*gvals; % Vector de nodos internos
42 LHS=LHS(free ,free); % Matriz de nodos internos
43 sol=zeros(neq ,1);
44 sol(fixed)=gvals; % Insertar condiciones de contorno
45 sol(free)=LHS\rhs; % Resolver el sistema
46 U=sol (1: ne); V=sol (1+ ne :2* ne); P=sol (2* ne +1:2* ne+nt);
47 figure (2) , pdesurf (p,t,P’) % Grafica de la p r e s i n
48 xlim ([-1 1])
49 ylim ([-1 1])
50 xlabel (’x’, ’FontSize ’, 30)
51 ylabel (’y’, ’FontSize ’, 30)



52 zlabel (’P’, ’FontSize ’, 30)
53 ax=gca;
54 ax. FontSize = 30;
55 figure (3) , quiver (xmid ,ymid ,U’,V’) % Grafica de la velocidad
56 xlim ([ -1.1 1.1])
57 ylim ([ -1.1 1.1])
58 xlabel (’x’, ’FontSize ’, 30)
59 ylabel (’y’, ’FontSize ’, 30)
60 ax=gca;
61 ax. FontSize = 30;
62

63 function [A11 ,B1 ,B2 ,areas] = NCAssembler (p,t2e ,t)
64 nt=size(t ,2);
65 ne=max(t2e (:));
66 A11= sparse (ne ,ne);
67 B1= sparse (nt ,ne);
68 B2= sparse (nt ,ne);
69 areas=zeros(nt ,1);
70 for i=1: nt
71 vertex =t(1:3 ,i);
72 x=p(1, vertex );
73 y=p(2, vertex );
74 [area ,Sx ,Sy]= CRGradients (x,y);
75 edges=t2e(i ,:);
76 % Integrales numericas
77 A11(edges ,edges)=A11(edges ,edges)+(Sx*Sx ’+Sy*Sy ’)*area;
78 B1(i,edges)=-Sx ’* area;
79 B2(i,edges)=-Sy ’* area;
80 areas(i)=area;
81 end
82

83 % Gradiente y area de las funciones Crouzeix - Raviart
84 function [area ,Sx ,Sy] = CRGradients (x,y)
85 [area ,b,c]= HatGradients (x,y);
86 Sx=[-b(1)+b(2)+b(3); b(1) -b(2)+b(3); b(1)+b(2) -b(3) ];
87 Sy=[-c(1)+c(2)+c(3); c(1) -c(2)+c(3); c(1)+c(2) -c(3) ];
88

89 % Gradiente y area de las funciones sombrero
90 function [area ,b,c] = HatGradients (x,y)
91 area = polyarea (x,y);
92 b = [y(2) -y(3); y(3) -y(1); y(1) -y(2) ]/2/ area;
93 c = [x(3) -x(2); x(1) -x(3); x(2) -x(1) ]/2/ area;
94

95 function [xmid ,ymid ,e] = EdgeMidPoints (p,t2e ,t)
96 i=t(1 ,:); j=t(2 ,:); k=t(3 ,:); % Vertices del triangulo
97 t2e=t2e (:);
98 start =[j i i]; % Vertice inicial del lado
99 stop =[k k j]; % Vertice final del lado

100 xmid =(p(1, start)+p(1, stop))/2; % coordenada x del punto medio del lado
101 ymid =(p(2, start)+p(2, stop))/2; % coordenada y del punto medio del lado
102 [e,idx ]= unique (t2e);
103 xmid=xmid(idx);
104 ymid=ymid(idx);
105

106 function edges = Tri2Edge (p,t)



107 np=size(p ,2); % Numero de vertices
108 nt=size(t ,2); % Numero de triangulos
109 i=t(1 ,:); % i=1st vertice de todos los elementos
110 j=t(2 ,:); % j=2nd
111 k=t(3 ,:); % k=3rd
112 A= sparse (j,k,-1,np ,np); % 1st lado entre (j,k)
113 A=A+ sparse (i,k,-1,np ,np); % 2nd lado entre (i,k)
114 A=A+ sparse (i,j,-1,np ,np); % 3rd lado entre (i,j)
115 A= -((A+A.’) <0);
116 A=triu(A); % Submatriz triangular superior de A
117 [r,c,v]= find(A); %fila , columna y valor (= -1)
118 v=[1: length (v)]; % Renombrar lados
119 A= sparse (r,c,v,np ,np); % Reconstruir A
120 A=A+A’; %Hacer A simetrica
121 edges=zeros(nt ,3);
122 for k=1: nt
123 edges(k ,:) =[A(t(2,k),t(3,k))
124 A(t(1,k),t(3,k))
125 A(t(1,k),t(2,k))]’;
126

127 end

Matrices:
1 function [mxx ,myy ,mxy ,mx ,my] = matriz2
2 mxx = [0.5 , -0.5, 0.;
3 -0.5, 0.5, 0.;
4 0., 0., 0.];
5 myy = [0.5 , 0., -0.5;
6 0., 0., 0.;
7 -0.5, 0., 0.5];
8 mxy = [0.5 , 0., -0.5;
9 -0.5, 0., 0.5;

10 0., 0., 0.];
11 mx = [-1/6, -1/6, -1/6;
12 1/6, 1/6, 1/6;
13 0, 0, 0];
14 my = [-1/6, -1/6, -1/6;
15 0, 0, 0;
16 1/6, 1/6, 1/6];
17 return

Isoparametric mapping:
1 function [c, J, deter ]= InvDet (v)
2 % Calcula c=B_k ^{ -1}( B_k ^{ -1})^T y deter=abs( detB_k )
3 M=[v(2 ,1) -v(1 ,1) ,v(3 ,1) -v(1 ,1);v(2 ,2) -v(1 ,2) ,v(3 ,2) -v(1 ,2) ]; % Matriz de la

t r a n s f o r m a c i n afin
4

5 deter=det(M);
6 M=inv(M);
7 J=M ’;
8 deter=abs(deter);
9 c=M*M’;

10 return

Mesh generation:



1 % Programa para generar mallas 2D.
2

3 function [globales ,x,y,nel ]= gen2(ns1 ,ns2)
4

5 nel = ns1*ns2 *2; % Numero total de elementos .
6 nt = (ns1 +1) *( ns2 +1);
7 aux = zeros(nt ,1);
8

9 %En el siguiente bucle creamos la matriz de conectividad .
10 for j = 1: ns2
11 ind = 1+(j -1) *( ns1 +1);
12 for i = 1:2:2* ns1 -1
13 elem = i + (j -1) *2* ns1;
14 globales (elem ,1:3)= [ind ,ind +1, ind+ns1 +1];
15 ind = ind +1;
16 end
17 ind = ns1 +(j -1) *( ns1 +1) +3;
18 for i = 2:2:2* ns1
19 elem = i + (j -1) *2* ns1;
20 globales (elem ,1:3)= [ind ,ind -1,ind -ns1 -1];
21 ind = ind +1;
22 end
23 end
24

25 %En el siguiente bucle definimos las coordenadas de los nodos de la malla.
26 x1 = 0;
27 x2 = 1;
28 y1 = 0;
29 y2 = 1;
30 h1 = (x2 -x1)/ns1;
31 h2 = (y2 -y1)/ns2;
32

33 for j = 1: ns2 +1
34 for i = 1: ns1 +1
35 nodo = (j -1) *( ns1 +1) + i;
36 x(nodo) = h1*(i -1) + x1;
37 y(nodo) = h2*(j -1) + y1;
38 end
39 end
40

41 % Dibujamos la malla de triangulos .
42 for i=1:2: nel
43 nodos = globales (i ,:);
44 hold on
45 fill(x(nodos),y(nodos),’w’)
46 x1 = int2str (i);
47 x2 = int2str (nodos (1));
48 text(x(nodos (1))+ 0.35*h1 ,y(nodos (1)) +0.25* h2 ,x1 ,’Color ’ ,[1 0 0]);
49 text(x(nodos (1))+0.1*h1 ,y(nodos (1))+0.1*h2 ,x2 ,’Color ’ ,[0 0 0]);
50 end
51 for i=2:2: nel
52 nodos = globales (i ,:);
53 hold on
54 fill(x(nodos),y(nodos),’w’)
55 x1 = int2str (i);



56 text(x(nodos (1))- 0.25*h1 ,y(nodos (1)) -0.25*h2 ,x1 ,’Color ’ ,[1 0 0]);
57 end
58 pause
59 hold off
60

61 return


	Introduction to fluid mechanics
	Definition of fluid and continuum hypothesis
	Conservation of mass
	Conservation of momentum

	The Finite Element Method
	Concepts of Functional Analysis
	Approximation with Finite Elements
	Types of Finite Elements

	Application to CFD problems
	Irrotacional fluids and Laplace equation
	Incompresible fluids and Stokes' equations
	Weak formulation
	Existence, uniqueness and Inf-Sup/LBB condition
	Finite Elements approximation
	Example: lid-driven cavity
	Solving the linear systems

	Turbulent flow and the Navier-Stokes equations

	Conclusions
	Bibliography
	Proofs of Riesz-Fréchet and Lax-Milgram theorems
	Appendix: Why FEM? Comparison with other methods
	Appendix: Computer programs

