Ricardo Garzo Castro

IAI UniverSidad Escuela de
il Za ragoza Ingenieria y Arquitectura
Universidad Zaragoza

PROYECTO FIN DE CARRERA

Ingenieria Técnica Industrial: Electrénica

SCADA Online

Autor

Ricardo Garzo Castro

Director

Jesus Ponce de Ledn

Escuela de Ingenieria y Arquitectura — Universidad de Zaragoza

Marzo 2014

Ricardo Garzo Castro

Ricardo Garzo Castro

Resumen

El presente proyecto consiste en un SCADA para la monitorizacidn y supervision de autématas
programables de forma remota con un enfoque al control de procesos industriales. EIl SCADA
ha de ser capaz de acceder a cualquier PLC sin importar la marca del mismo. Ademas del
control de autématas, el SCADA también dispone de funcionalidades como pueden ser alarmas
asociadas a eventos y el manejo de usuarios dentro de la plataforma.

Se ha disefiado utilizando Python como lenguaje de programacién principal de la aplicacién y
adicionalmente JavaScript como lenguaje de programacién en el interfaz de usuario,
obteniendo asi una aplicacién web, accesible tanto para ordenadores como para mdviles.

Durante el mes de Febrero y Marzo de 2014, la aplicacidn web estara a uso de los interesados
en la siguiente direccion IP: http://155.210.159.208:80/home . La aplicacion web se encuentra
alojada en un servidor del laboratorio de audio y video del departamento de electrdnica de la

Escuela de Ingenieria y Arquitectura. Al servidor estd conectado un autémata programable de
Siemens ademas de un segundo autdmata simulado por software, y ambos se podran
controlar. Los credenciales para acceder al sitio web seran:

e Usuario: usuario
e Contrasena: contrasefa

Finalmente, sefialar que el proyecto ha nacido de la Catedra entre TAIM-WESER vy la
Universidad de Zaragoza.

http://155.210.159.208/home

Ricardo Garzo Castro

Ricardo Garzo Castro

Indice
LRT=E] 0 0 1= o OO PPTPPP 3
LTS TR L T8 L U 8
1. Capitulo 1. Introduccidn y 0bJELIVOS. ...cccccuuiiiiiiiiie i 11
1.1 (0] oY [18 1o 1SS 11
1.2 Ideas previas a la realizacion del Proyecto......ccccveeeeciiee e e 11
1.3 Organizacion del dOCUMENTOcciicviie ittt e e e e 12
N O 1o T 401 (o 1 A ot - To [o e [I o TSP 12
2.1 CONCEPLOS PrOVIOS .uvvvviieeeteeeiiiiiiteee e e e e eritree et e e s s ssatbtreeeeesssssssbtraeeeesssnsssssenaaeeesssnsanns 12
2.2 ANTECEUBNTES ...ttt sttt ettt b e bt s bt st e et e sbe e sbe e saeesare e 13
T 0 1o T U1 o T T B 1Y [o] 1 o U 15
3.1 Descripcion y esquemas del trabajo realizado.......cccccuveveeciiiiicciiee e, 15
3.2 ComuNICACION CON [0S PLES ..ccuuviiiiiieiieeeiieesiee ettt ettt ettt e s esare e 17
3.2.1 Respecto a servidores OPC........ooiiiieiiiiieeeciee ettt e e e ree e s sree e e 19
3.2.2 Respecto a 10S ClienteS OPCooociiiiieiiee ettt e e e e 19
33 Tal =Y F= A= - (ol IO 20
3.3.1 Documentos HTML, CSS y BOOTSTrap.uuueuuuuuuuuueiiiicsesese e 22
3.3.2 Lenguaje de programacion Javascript, jgPlot y librerias jQuerycccuueeen..... 22
34 El Servidor de iNterNet......cceeeiiiiiiiceeee e 25
341 DiIAlOGO HTTP ..ttt 25
3.4.2 Componentes del servidor de Internetcccceveeecieiiicciee e 27
3.4.3 YT {U T T - T U 28
35 Y=Y o] [ToF=ToiTo] o IRV =] o USRI 29
3.5.1 Django como framework de la aplicacidon webccccoveeeeiiiicceiee e, 30
3.5.2 Los modelos de [a aplicacion Webccveveiiiiiiicee e 32
3.5.3 Supervision y adquisicion de datos.ccccvveeieiiiie i 35
3.5.4 Actividades periddicas: Almacenaje en base de datos.ccccceevcveeeeiciieeeeinneenn, 36
3.5.5 Actividades periodicas: Alarmas.ccveeeeciiieeeciieee e ecree e et e e are e e e eaneea s 40
4. Capitulo 4. RESUITATOS.eiiiiciiee ettt ettt ettt e et e e et e e e e e tte e e e e bte e e e ebeeeeeeabaeaeenses 42
5. Capitulo 5. CONCIUSIONES ..cccueriieeeiiie ettt ettt ettt e et e e e ba e e e et ee e e e abaeeeeeabaeeeenses 47
B, ANEXOS cueiiiiiiitiie e s a e s ra e s aba s 49
6.1 CAdigo del SErvidor WEDcocuiiei e 49
6.1.1 [Tol Y=Y o T U1 N 1Y SRR 49
6.1.2 Fichero automataconNNECt.PY ..ueeeee e e 50

Ricardo Garzo Castro

6.1.3 (10l o 1T o I = 1 S 1Y SRR 51
6.1.4 FICHEIO VIBWS. Y ...ttt ettt ettt e e e et e e e e bte e e e e bae e e e e abtee e e e abaeeeeennees 53
6.2 (000 To [1={o X [=] Mol 1= o o <SSR 58
6.2.1 FUNCION BT _VAriable ... 58
6.2.2 FUNCION PrOCESS_VAlUE ...vviiiiiiieeceiiie e ceitee e cettee et e e e siee e s sbee e e e s bee e e e sbee e e enabeeeeennnes 61
6.2.3 FUNCION Graph_plotooeeeueieiieiiiie ettt e s s 63

7. MaNUAl dE USUAIIO c..eeteiiiiiiieiieeieete ettt ettt st ettt st st s s e b e b e snees 66
7.1 INTFOTUCCION «.eeieitee ettt ettt b e st sttt et esbe e saee st e s be e b e e nbeennees 66
7.2 INSErUCCIONES 08 USO...ceuviiiiiiieiiiieieesttesiee sttt ettt et sbee st st e e bt e st e saeesate st e ebeebeenbeennees 66
7.2.1 Acceso al menu de administrador........ceevvieiiiiienieenee et 66
7.2.3 Adicion de variables y tareas periddiCasccveeeeeveeiiieciee e 66
7.2.3 Creacion de usuarios del SiSteMa......c.ccueerieiiiiieeiieeree et 67
7.3 Instrucciones de iNSTAlaCionoocueiiiieiierie e s 68
7.4.1 PaqUELES PYLRONooiiee e e e 69
7.4.2 Archivo de configuracion APache........occuueeiieiiiei i e 70

Ricardo Garzo Castro

Ricardo Garzo Castro

Indice de Figuras

Figura 1 Imagen de una planta manejada por un sistema de control industrial.ccccc........ 14
Figura 2 PLC de 1a Marca SIEMENS.cuuiiiieiiiieecciiee et ee et e et e e st e e e s satae e e ssataeeessasseeessnnneeees 15
Figura 3, Esquema de conexion para €l SCADA ONliNEcuvvieeciiiieeiiiie e 16
Figura 4 Diagrama de bloques de la plataforma software construida........ccccccoeeveieiiciieeincinennn. 17
Figura 5 Diagrama Cliente-Servidor OPC.........coocuiiiiiiiieeeeciieeeeciiee e ssieee e ssere e s ssraee e ssareeesssneeeen 18
Figura 6 Control por consola de comandos del cliente OPC “OpenOPC for Python” 20
Figura 7 Interfaz grafico en un navegador web de escritorio.cccoccuveeeriiieeieiiieee e, 21
Figura 8 Interfaz grafico en un dispositivo MOVIlcc..ceiviiiiiiiiiiiiicec e 21
Figura 9 Extracto de un fichero con contenido HTML........cccueiiviiiiieeiiiee e 22
Figura 10, Formato dado a 1a pagina WED.ccccuiiiiiiiiie et 22
Figura 11 Funcién Javascript con comunicacién asincrona y manipulacion de documento HTML.
... 24
Figura 12 Grafica construida mediante el plugin jaPIOt.........coovcviiiiiiiiieiecec e 24
Figura 13 Diagrama de bloques del servidor de Internetcccceeeeciieeecciiee e, 25
Figura 14 Respuesta del servidor ante una peticion HTTP de tipo GET......cccceevvvveeeciieeeecinennn, 26
Figura 15 Peticion HTTP con MELOd0O POST.....cccciiiiiiiiee ettt eeitee et e e et e s svae e s s saae e e e snneee s 26
Figura 16 Respuesta HTTP del servidor ante una peticion HTTP tipo POST.ccccceevvvveeeinnennn. 26
Figura 17 Diagrama de flujo para la conversion de diversos formatos en JSONccccuueee. 27
Figura 18 Configuracidon del servidor Apache para alojar la aplicacién Python..........ccccceeuueeee. 28
Figura 19 Esquema de urls con sus funciones asociadas de un fichero Python 30
Figura 20 Logo de Django, framework usado para construir la aplicaciéon web.c........... 30
Figura 21 Estructura del directorio que contiene la aplicacién creada para este proyecto. 31
Figura 22 Modelo Variable y sus distintas propiedades.ccccoeeeeciieieeiiieee e 32

Figura 23 Cdédigo de admins.py para la configuracién del formulario para incluir nuevas
VAITADIES. et s e bt e e s be e et e e s be e s nbeesbeeenare s 34
Figura 24 Formulario para la creacidon de una nueva variable a controlar en la base de datos. 34
Figura 25 Cddigo del script automataconnect.py para lectura de variables.............ccoveeennnen.. 35
Figura 26 Cdodigo para el envio de respuestas HTTP con un documento HTML y un diccionario
0372 o o TR RS 36
Figura 27 Formulario para la configuracion de una actividad periddica en el navegador web.. 38

Figura 28 Cddigo de la tarea de guardado del valor de una variable.ccccccoevieiiiiiieeiiinenn. 38
Figura 29 Base de datos del muestro periddico de una variable.ccceeeveeieiiieeeeccieee e, 39
Figura 30 Formulario web para la solicitud de rango de valores de una variable durante un
e A=Y RV 1 [Xo LI A =T 1 o'oY TS 39
Figura 31 Trozo de cédigo de la funcidn que filtra las entradas de la base de datos. 40
Figura 32 Grafica de la evolucidn temporal de una variable a partir de la base de datos.......... 40
Figura 33 Formulario de tarea periddica empleado para alarmas.........ccccecveeeviiveeeeicieeecicnneenn, 41
Figura 34 Cédigo de la tarea encargada de gestionar las alarmas del SCADA.cccceeeunneee. 42
Figura 35 Email de notificacidon de alarma ocurrida en el SCADA.cccocevveeeiiieeecccieee e, 42
Figura 36 Estructura del sitio web creado para el SCADA Online.cccceeeveveeeeiiieeeeiiieee e, 43
Figura 37 Pagina web para lectura de variables.cccooeoiiiieeciiii e 43
Figura 38 Pagina web para escritura de variables..........cccccoveiieiiiiicciie e 44
Figura 39 Pdgina web para eleccidn de variables a controlar........cccccveeeeicieeicicieee e, 44

Figura 40 Pagina web para la representacidn grafica del registro histérico de una variable. ... 45

8

Ricardo Garzo Castro

Figura 41 Pagina web para el muestro en tabla de la evolucidn histérica de una variable........ 45
Figura 42 Pagina web para la creacién de una grafica a tiempo real del estado de una variable
... 46
Figura 43 Pagina web para creacidon de alarmas configurables por el usuario..........ccccceeeunneen. 46
Figura 44 Pagina web para la administracion de la aplicacién web desde el navegador. 47
Figura 45 Menu desplegable del USUAIio.covciiiiiiciiieiciie e 66
Figura 46 Menu de administrador para Variables.cooucieeeciiieieeiiieee e e 66
Figura 47 Menu de administrador para Tareas periddiCas.ccccvveeeeireeeeiieieeeecieee e 67
Figura 48 Menu de gestion de usuario del sistema SCADA.veviviiiieieiiiiee e 67
Figura 49 Formulario de creacidn de Un NUEVO USUAIIO.eeeecvieeeeiireeeeiiieeeeeireeeesnreeeesnneees 68
Figura 50 Formulario para [os permisos de USUario.......ccccccveeeeciieeeeciiieee e e et e e ecaeeeeeeaneee s 68
Figura 51 Ejemplo del uso de pip en la consola de comandos Windows........cccccveeeviiveeeennnennn. 69
Figura 52 Directivas aplicables al interfaz wsgi en Apache.cccceeciiiieeiiiee e, 70

Ricardo Garzo Castro

10

Ricardo Garzo Castro

1. Capitulo 1. Introduccion y objetivos.

La Catedra TAIM WESER - Universidad de Zaragoza nace en 2010 con el propdsito de generar
proyectos de investigacidn avanzada y aplicada en el entorno de la ingenieria de alto nivel. Su
objetivo es favorecer la Investigacion, el Desarrollo y la Innovacién (I+D+i) en tres perfiles
estratégicos: ingenieria y bienes de equipo, tratamientos de residuos y, especialmente,
energias renovables.

Para ello, se ha establecido una linea de colaboracién permanente entre los técnicos de la
empresa y los docentes universitarios de cara al desarrollo de una politica de formacion
practica de los estudiantes e investigadores. Se trata de una unién estratégica y duradera, por
la que ambas partes se benefician de los resultados de la investigacion, el desarrollo y la
innovacion.

En este marco, se apoya especialmente la realizaciéon de tesis doctorales y proyectos fin de
carrera (PFC) de I+D+i con un alto contenido cientifico y tecnolégico.

El primer proyecto de esta Catedra, que es este proyecto fin de carrera, trata de la creacidn de
una plataforma remota multiacceso para mantenimiento y control de automatas.

1.1 Objetivos

TAIM WESER define un guidn sobre el cual se llevara a cabo el proyecto, y donde se exponen
los siguientes objetivos que se alcanzardan mediante la construccion de una plataforma
software:

1. Supervisidény control de los estados de las variables de los PLCs y la reprogramacién de sus
tareas con independencia de la marca de los mismos.

2. Qué todo se pueda realizar de forma remota, via Internet, y los usuarios que accedan
tengan restricciones en funcion de su nivel de acceso.

En otras palabras, lo que TAIM WESER desea construir es un SCADA, acronimo de Supervisory
Control And Data Acquisition (control de supervision y adquisicion de datos). Una plataforma
software que permita controlar y supervisar procesos industriales a través de internet.

Como objetivo secundario se pretendera:

e Que el SCADA tendra un interfaz gréfico intuitivo para el usuario y sea accesible desde
distintas plataformas, ordenadores o dispositivos moviles, y ademas sea facilmente
expandible en el futuro.

1.2 Ideas previas a la realizacion del proyecto

Respecto a uno de los objetivos a alcanzar por la empresa, existe un problema. Que es el de
reprogramar o incluir nuevas tareas en PLCs. El autor considerd que este objetivo no se puede
lograr de una manera sencilla.

Desde un punto de vista técnico, si se quieren programar tareas en un PLC de forma remota, se
necesita acceso a una herramienta software que pueda:

11

http://es.wikipedia.org/wiki/Acr%C3%B3nimo
http://es.wikipedia.org/wiki/Software

Ricardo Garzo Castro

e Transformar el cddigo de la tarea a instrucciones que entienda el PLC y alojarlo en la
memoria del mismo.
e Que a esta herramienta de software se pueda controlar de forma remota.

Actualmente existen herramientas de software que cumplen la primera parte, son los
programas de escritorio para la programacion de PLC que proporciona cada fabricante de PLC.
Pero desafortunadamente, son programas de escritorio con un entorno grafico, lo que dificulta
su control remoto.

Los fabricantes de PLCs tampoco proporcionan herramientas de desarrollo para crear algo que
cumpla lo expuesto arriba, y por lo tanto no se ha podido encontrar y mucho menos fabricar
alguna herramienta que pueda cumplir el objetivo.

Por otra parte, y centrandose en un aspecto del modo de operacién, reprogramar tareas de
PLCs sin estar fisicamente presente en la planta donde se lleve a cabo el proceso presenta un
peligro potencial muy alto. Es obvio que si durante la realizacidon de la tarea del PLC algo
perjudicial ocurriera no existiria forma manual de parar la tarea.

Finalmente, y con todo lo explicado, se abandona el objetivo de la reprogramacion de tareas
remota; tanto por razones de seguridad como razones técnicas.

Respecto a los demas objetivos, no existe ninguna limitacion y seran llevados a cabo.

1.3 Organizacion del documento
Esta memoria estd dividida en cinco capitulos que abarcan distintos aspectos sobre la
realizacion de este proyecto fin de carrera.

1. Introducciéon: El presente capitulo que situa al lector en el marco de creacién del
proyecto.

2. Estado del arte: Un capitulo dedicado a los antecedentes histéricos relacionados con
este proyecto asi como la terminologia empleada en el mundo de los SCADA.

3. Desarrollo: el capitulo mas extenso de este documento, pues explica la fase de
creacion y tecnologias involucradas en el presente proyecto ademads de las distintas
funcionalidades empleadas en la creacién del SCADA.

Resultados: donde se expondra el proyecto creado.

5. Conclusiones.

2. Capitulos 2. Estado del arte

Con este capitulo se pretende situar al lector en el entorno que rodea a los SCADA, tanto en la
terminologia técnica que se usa para hablar de los elementos de construccién de un SCADA
como el contexto tecnoldgico en el que estan englobados.

2.1 Conceptos previos
Los siguientes términos deberian ser familiares para el lector. Si bien no es necesario
conocerlos en detalle, es conveniente entender que significan:

e Aplicacién web: Es una aplicacidn de software que se ejecuta en un navegador web.

12

Ricardo Garzo Castro

e Plugin: Un complemento, o plugin, es una aplicacién que se relaciona con otra para
aportarle una funcién nueva y generalmente muy especifica.

e APIl: Interfaz de programacién de aplicacioneso APIl, en inglés es el conjunto
de funciones y procedimientos que ofrece cierta biblioteca para ser utilizado por otro
software como una capa de abstraccién

e Log: Unlog es un registro de eventos durante un rango de tiempo en particular.

e Script: Es un guién o archivo de drdenes que forma un programa para un entorno
especial y automatiza la ejecucion de tareas.

e Framework: Es una estructura conceptual con médulos de software concretos que
sirve de base para la organizacion y desarrollo de software.

e HTTP: el protocolo usado en cada transaccion de la World Wide Web.

2.2 Antecedentes

Actualmente, por SCADA se entiende un software que permita controlar y supervisar procesos
industriales a distancia y controlarlos automaticamente. Provee de toda la informacion que se
genera en un proceso productivo. Esto estd intimamente ligado con el concepto de
realimentacion que esel proceso de observar procesos con la intencién de recabar
informacidon para mejorar o modificar diversos aspectos del funcionamiento. Un SCADA no
deja de ser un sistema de control industrial.

Los sistemas de control industrial son sistemas controlados por ordenador para monitorizar y
controlar procesos industriales que existen en el mundo fisico. Son usados generalmente en
industrias eléctricas, de tratamiento de aguas, petréleo, gas y datos. Los sistemas de control
industrial usan datos que reciben de estaciones remotas para llevar a cabo tareas de
supervisidn, ya sea de manera automatizada o mediante técnicos, sobre elementos de control.
Estos elementos controlan operaciones locales como la apertura de vélvulas y accionamientos
de frenado, recoleccidon de datos a partir de sensores y monitorizacidn de variables del
entorno local para condiciones de alarma.

13

http://es.wikipedia.org/wiki/Subrutina
http://es.wikipedia.org/wiki/Biblioteca_(programaci%C3%B3n)
http://es.wikipedia.org/wiki/Software
http://es.wikipedia.org/wiki/Protocolo_de_comunicaciones
http://es.wikipedia.org/wiki/World_Wide_Web

Ricardo Garzo Castro

Figura 1 Imagen de una planta manejada por un sistema de control industrial.

El término de sistema de control industrial es un concepto general que engloba varios tipos de
sistemas de control como son los sistemas de supervisién y adquisiciéon de datos (SCADA),
sistemas de control distribuido (DCS) y los controladores l6gicos programables (PLC).

Los PLCs son un reemplazo electrénico de los sistemas cableados de relés, pues estos no son
elementos estables, son dificiles de re-configurar y es complicado detectar el origen de los
fallos. Por otra parte, los PLCs tienden a usarse en controles binarios de gran velocidad con un
gran conjunto de entradas y salidas.

SIEMENS

O o' ‘o §

9 ses weel

14

Ricardo Garzo Castro

Figura 2 PLC de la marca Siemens.

Los DCS son un disefio funcional para el sistema de control distribuido que existe dentro de
una planta de procesos industriales. Y nacen de la necesidad de capturar datos y controlar los
sistemas de una red de datos de una gran planta en tiempo real, gran ancho de banda y baja
latencia. Originalmente estos sistemas eran controles neumdticos que controlaban plantas
pequefias y evolucionaron en DCS.

Y finalmente, los SCADA que estan ligados a las aplicaciones de distribucion donde hay una
necesidad de recolectar datos remotamente a través de redes potencialmente inseguras o con
baja latencia y bajo ancho de banda. El SCADA emplea un control de lazo abierto sobre sitios
separados geograficamente. Y usa terminales remotos para enviar datos de supervision a un
centro de control

3. Capitulo 3. Desarrollo

En este capitulo, el mas extenso del documento, se recoge como se llevd a cabo el trabajo
realizado para TAIM WESER para el proyecto de construccién de un SCADA Online. Se ha
pretendido la realizacién de un SCADA Online que cumpla los objetivos presentados en el
capitulo 1.

3.1 Descripcion y esquemas del trabajo realizado

Se ha construido una aplicacion web en Python, desarrollada con los framework Django y
Bootstrap, que se encuentra alojada dentro de un servidor Apache mediante la tecnologia
WSGI y que es capaz de hacer tareas de supervision y adquisicion de datos de cualquier
marca de PLC mediante el estandar de interoperabilidad OPC.

Antes de comenzar el proyecto habia dos enfoques para construir el SCADA. Uno era realizar
una aplicacidn de escritorio y el otro una aplicaciéon web. La aplicacidon web, a grandes rasgos,
es similar a una aplicacion tradicional de escritorio pero es manejada a través de un navegador
web.

Finalmente se optd por realizar una aplicacion web. Hecho que otorga al SCADA mas ventajas y
permite alcanzar los objetivos con mayor facilidad. Esta decisién es la que moldeara en
grandisima medida el aspecto final y la metodologia de trabajo a seguir durante el proyecto. A
continuacién se recoge una lista de las ventajas de haber acabado optando por realizar una
aplicacion web, aunque en este documento se ird explicando con mayor detalle cuales son las
caracteristicas principales de una aplicacién web:

e las aplicaciones web funcionan a través de un navegador. Esto permite que el SCADA
funcione en cualquier tipo de sistema operativo que tenga instalado un navegador
web.

e El SCADA se podra distribuir y actualizar de forma inmediata a todos los usuarios que
lo necesiten. Ya que no se necesitan paquetes de instalacién o actualizaciones

Para conseguir el objetivo de un control remoto por internet, que como se explicard mas
adelante no es otra cosa que manejar peticiones HTTP, se ha utilizado un servidor Apache por
ser una solucién de software libre.

15

Ricardo Garzo Castro

Para el control de autématas y la garantia de que el SCADA funcione con cualquier marca de
PLC se ha utilizado el estandar OPC, que es un estandar para la interoperabilidad creado por la
industria de la automatica.

La configuracidn hardware del proyecto queda de la siguiente manera: el usuario accede al
SCADA mediante un dispositivo que pueda ejecutar un navegador web, y todos los
documentos y datos que el usuario necesite se generan en un Unico ordenador al que estaran
conectados todos los PLCs. En este ordenador se ejecutardn las tareas pertinentes para
devolver al usuario la informacidén que solicite.

Es necesario recalcar que para este SCADA, al mismo ordenador al que se conecten los PLCs
también debera alojar la aplicacion web y el servidor de internet. Asi que si existen PLCs
conectados a otro ordenador que no tenga la aplicacion web y el servidor, no se podran
controlar mediante este SCADA.

PLCA1

PLC2 Partatil
PC

Internet

@
©
©

PLC3

Smartphone
Figura 3, Esquema de conexidn para el SCADA Online

Para explicar el apartado de software del proyecto se empleara todo lo que resta de este
capitulo de la memoria. Y para fines didacticos se van a dividir todas las tareas que se realizan
en el SCADA en bloques funcionales. En la siguiente figura se muestra un diagrama de bloques
del proyecto a nivel de software:

16

Ricardo Garzo Castro

Servidor de
Internet
Interfaz Aplicacion web
Gréfico et P

Usuario |

Comunicacion

con PLCs
Contenido del proyecto]
PLC1 PLCZ2 PLC3

Figura 4 Diagrama de bloques de la plataforma software construida

Para mayor comprension del lector, se explicaran a continuacién de manera breve que es lo
gue hacen los distintos bloques:

1. Comunicacién PLC: Es un conjunto de herramientas software que hace posible la
comunicacion con los distintos PLCs

2. |Interfaz gréfico: Permitird al usuario interactuar con los PLCs mediante iconos
graficos e indicadores visuales y mandara peticiones de informacién al servidor de
internet.

3. Servidor de internet: Recibe las peticiones de informacion del usuario y envia las
respuestas de la informacion solicitada permitiendo la comunicacién via internet.
Gestiona peticiones y respuestas HTTP.

4. Aplicacion web: La aplicaciéon que se encargarad de traducir las peticiones del
usuario en drdenes para los PLCs y de generar los documentos para proveer al
usuario con la informacién solicitada.

En los siguientes apartados de este capitulo se ird explicando con mas detalle cada uno de los
bloques, qué es lo que hace y que objetivos ayuda a cumplir. También cdmo funciona y las
tecnologias empleadas en este bloque, ademas de como interactua con los demas bloques que
le rodean.

3.2 Comunicacion con los PLCs

Con este bloque se asegura la comunicacién con PLCs, tanto lectura como escritura de
variables e independientemente de la marca de los mismos. Y por lo tanto, en este apartado
se hablara de como el protocolo de interoperabilidad OPC logra este objetivo.

17

Ricardo Garzo Castro

La comunicacidon universal aporta grandes ventajas que no se tendrian si hubiera
incompatibilidades con distintas marcas. Por ejemplo:

e A la hora de comprar nuevos PLCs, la marca seria un factor determinante que podria
eliminar la posibilidad de adquirir PLCs de mayor calidad.

e No existe un gasto en tiempo y dinero que habria que invertir cada vez que se
comprasen PLCs de otra marca para hacerlos compatibles con el sistema que ya
hubiera.

La solucién al problema radica en usar el estdndar de interoperabilidad OPC creado por la OPC
foundation para el propdsito que aqui se quiere conseguir, la comunicacién con un sistema de
adquisicion de datos con independencia del fabricante.

El protocolo OPC funciona con un esquema cliente-servidor. Esto significa que existen dos
paquetes de software, uno para el servidor y otro para el cliente:

e Los PLCs conectados al ordenador se comunican con el servidor OPC, que transforma
las instrucciones propias de la marca del PLC en instrucciones OPC.

e El servidor OPC se comunica con el cliente OPC, que transforma las instrucciones OPC
en otras instrucciones de diverso tipo, ya sea python, C, java...

En la Figura 5 se ilustra lo explicado, empleando Python como lenguaje de las aplicaciones que
hardn uso de la comunicacidn con los PLCs. De este modo:

App Python 1 App Python 2 App Python 3

Lenguaje Python Lenguaje Python Lenguaje Python

Lenguaje Python

Cliente OPC 1

Protocolo OPC

Protocolo OPC Protocolo OPC Protocolo CPC

OPC Server 1 OPC Server 2 OPC Server 3

Protocolo Siemens Protocolo Allen Protocolo ABB

PLC Siemens

Figura 5 Diagrama Cliente-Servidor OPC

18

Ricardo Garzo Castro

La Figura 5 es un ejemplo practico de cémo funciona la tecnologia OPC: los PLCs de distintas
marcas se conectan a un servidor OPC que es capaz de comunicarse con el protocolo de cada
marca, a su vez los servidores se comunican con el cliente OPC mediante el protocolo OPCy
finalmente este cliente sirve los datos requeridos a las distintas aplicaciones Python.

3.2.1 Respecto a servidores OPC

Como ya se ha comentado, un servidor OPC traduce las instrucciones propias del PLC a
instrucciones OPC. Por lo tanto, el servidor debera conocer el protocolo de comunicacién del
PLC con el que se quiera comunicar. Los protocolos de los PLCs cambian de un fabricante a
otro y son cerrados.

Asi que para la creacién de un servidor OPC se necesita acceso a una serie de herramientas de
desarrollo de software no gratuitas que son los protocolos de cada marca de PLC. Esto hace
qgue no se haya podido encontrar un servidor OPC de software libre, aunque existen servidores
OPC desarrollados por las propias empresas que fabrican los PLCs o terceras compaiiias de
software y actualmente, con la compra de PLCs se suelen distribuir también paquetes de
software que incluyen servidores OPC, por lo que en principio resulta facil acceder a estos.

Esto significa que para poder usar el SCADA creado en este proyecto el usuario deberd
adquirir por su cuenta un servidor OPC que satisfaga sus necesidades.

Respecto a cdmo funciona un servidor OPC y teniendo en cuenta que inicialmente uno se
encuentra Unicamente con una I/O analdgica o digital:

e Cuando se programa la tarea a realizar por el PLC, se especifica que I/O digital o
analdgica sera a su vez una variable OPC. Esto se hace en el propio compilador de la
tarea

e A continuacion, en el software que es el servidor OPC se afiaden las variables del PLC
que se deseen controlar. Asi que ahora la I/O del PLC queda asignada a su servidor
OPC correspondiente con un nombre especifico.

e Lal/O del PLC ha quedado etiquetada de manera univoca a una variable OPC.

Durante la realizacidn de este proyecto se emplearon dos servidores OPC:

e Un servidor OPC con simulador de variables de PLCs para la fase de desarrollo del
SCADA Online llamado “MatrikonOPC Server for Simulation”, de la empresa Matrikon.

e Y el segundo, un servidor de siemens llamado “S7-200 PC Access” que se uso para
realizar pruebas sobre un PLC real, y en este caso de Siemens.

3.2.2 Respecto alos clientes OPC

El cliente OPC es una herramienta que se comunica con el servidor OPC para crear una
aplicacion, ya sea representar datos en graficas, guardar registros en bases de datos o un
listado de comandos en python para controlar PLCs, y este Ultimo caso es el de este proyecto,
donde se ha escogido el cliente OPC “OpenOPC for Python” que sera controlado por la
aplicacion web.

Este cliente OPC funciona mediante comandos en linea, lo que le otorga la ventaja especial de
ser controlado mediante un script. En este script estd el cddigo para controlar los PLCs y la

19

Ricardo Garzo Castro

aplicacién web llamaria a este script para ejecutar las instrucciones pertinentes en funcion de
lo que pida el usuario. Esto sera explicado con mayor detalle en el apartado de la aplicacion
web.

Con el cliente “OpenOPC for Python” se pueden realizar las siguientes funciones:

e Adquisicién de datos: Lectura y escritura de variable.

e Consulta de tiempo: A qué hora y fecha se ha realizado algo sobre la variable.

e Consulta de propiedades de la variable: como que tipo de variable es y si se puede
escribir.

En la Figura 6, mediante consola Python se importa el cliente OPC llamado OpenOPC, y
después de conectarse al servidor de Matrikon se efectla la lectura y escritura de la variable
Random.Int4 y Triangle Waves.Real8.

»>»» import OpenOPC

>>» opec = OpenQPC.client()

>»> opc.connect('Matrikon. OPC.S8imulation’ >

>»> ope.readd’Random.Int4* >

(4, 'Good’, 'B2/84-14 1@0:41:89">

»»» ope.write! (‘'Triangle Waves.RealB’. 1686.68> >

‘Success’

>>»> opc.properties¢ ['Random.Int2’, ’'Random.Int4’, ‘Random.String’l,. id=1>
[<{'Random.Int2’, *UT_I2*'>, 'Random.Int4’, *UT_I4'>. ¢’Random.Stwring’. 'UT_BSTR’
>1

»»» ope.listC’Simulation Items.Random.*Real=">

[u*Random.Array0fReald’ . u' Random.Reald’ . uw'Random.RealB’]

bl

Figura 6 Control por consola de comandos del cliente OPC “OpenOPC for Python”

La combinacion de todas estas funciones permite alcanzar todos los objetivos requeridos en
este proyecto en cuanto al tipo de tareas de adquisicion de datos que se necesitan realizar
sobre los PLCs.

3.3 Interfaz grafico

El interfaz grafico se ejecuta en el navegador web del usuario, y es un documento HTML que
usa javascript como lenguaje de programacion. A lo largo de este apartado se hablara de las
distintas tecnologias empleadas para crear una pagina web dindmica, que es lo que se emplea
como interfaz grafico de usuario, ademas del framework Bootstrap para el desarrollo de los
documentos HTML. También se hablara de: HTML, CSS, Javascript, JQuery, jgPlot y Bootstrap.

En las Figura 7 y Figura 8, se puede apreciar el interfaz grafico sobre un navegador de escritorio
y un navegador movil respectivamente.

20

Ricardo Garzo Castro

Last Update: 10047:13 4/002/2014

- Variable |aiikon 0PC. Simulation. 1 - Random.Int2 v

Control]]
C Update - | Launch display edior

Dizplay Editor)))
o Matrikon.OPC.Simulation.1 Random. Int2
Adminigtrate

Graph from
Data Base - .

Leg frem
[Data Base

EE T

Alarms a -

Figura 7 Interfaz grafico en un navegador web de escritorio.

simyo % Q@ Sal 310:50AM

Matrikon.OPC.Simulation.1 - Triangle Waves.Real8 M

G Update ' Launch display editor

Matrikon.OPC.Simulation.1 Triangle Waves.Real8

164

162 F
160
i
158
156 o
154
-
152
150 .
148
r
146
144
10:50:41 10:50:42 10:50:43 10:50:44 10:50:45 10:50:46 10:50:47 10:50:48 10:50:49 10:50:50

Figura 8 Interfaz grafico en un dispositivo movil

A continuacién se explicaran los procesos involucrados en la creacién del interfaz gréfico. Es
decir, como llega el interfaz grafico al navegador del usuario y que funcién desempefian las
distintas tecnologias empleadas en la creacién del mismo.

Para que el usuario pueda acceder al interfaz gréafico para controlar el SCADA, ha de acceder a
su navegador web e introducir una URL perteneciente al SCADA. Esta URL es una peticién HTTP

21

Ricardo Garzo Castro

al servidor que tiene alojada la aplicacién web. Esto se explicard con mas detalle en los
proximos apartados. Entre la aplicacién y el servidor se encargan de gestionar la peticion
enviada y devuelven, si todo ha ido bien, un fichero HTML que se ejecutara en el navegador del
usuario.

3.3.1 Documentos HTML, CSS y Bootstrap.

El contenido en HTML del documento es el encargado de posicionar todos los elementos del
documento, definiendo la estructura; tanto los parrafos con texto, los botones que
desencadenan acciones y las tablas de informacién. Esto corresponde a la parte estatica del
interfaz grafico, pues ese documento HTML permanece de forma invariante en el servidor y se
envia cada vez que es solicitado. Ademas, el documento HTML contiene todo el cédigo de las
funciones Javascript que se necesitan para permitir la funcionalidad del interfaz.

id="tabla" cl
>

Figura 9 Extracto de un fichero con contenido HTML.

Por otra parte, se usa CSS como lenguaje de estilo para dar aspecto y formato al contenido
mostrado mediante HTML. Se usa para dar una buena presentacion al documento, ganando
usabilidad. Todo lo referente a CSS, que es lo mismo que hablar de la estética, en este
proyecto viene dado por las librerias del framework Bootstrap. El resultado final es una pagina
web en la que ademds se ha buscado un disefio grafico bonito, empleando por ejemplo
botones y marcos redondeados de distintos colores, como se aprecia en la Figura 10.

Last Update: Hone

Read Launch display editor

Control

Figura 10, Formato dado a la pagina web.

La importancia de usar Bootstrap como framework de trabajo para el desarrollo de los
documentos HTML y CSS ha sido fundamental, pues dota de un disefio grafico que se ha
convertido en un referente actual y es similar al empleado en la pagina web Twitter y que
ademas permite un uso en dispositivos méviles. Esto puede parecer algo trivial en un principio,
pero representar la informacion de forma elegante e intuitiva al usuario es algo que busca
cualquier desarrollador de paginas web pues permite que la experiencia de manejar el SCADA
sea algo agradable y rapido. De esta manera se puede conseguir que el cliente utilice una
solucidn SCADA frente a otra solo por el hecho de que resulte mas atractivo de usar.

3.3.2 Lenguaje de programacion Javascript, jqPlot y librerias jQuery

Javascript es el lenguaje de programacion usado en paginas web. Se trata de cddigo que es
alojado en la parte del usuario, dentro del fichero HTML, y se emplean para interactuar con el
usuario, controlar el navegador, comunicarse de forma asincrona con la aplicacién web vy

22

Ricardo Garzo Castro

alterar el contenido del documento a mostrar. Un ejemplo de cémo funciona una funcion
javascript que realiza las funciones descritas aparece en la Figura 11:

1.El usuario desea actualizar una variable de los PLCs pulsando un botdén que
llama a la funcién javascript.

Last Update: None

econds F Launch display editor

(3]

Server Name Value
Matrikon.OPC._Simulatio Triangle Waves Reald 3.14159268452
Matrikon. OPC _Simulatio Random.Int1 0

Matrikon. OPC._Simulatio Random.Int2 18467
Matrikon. OPC.Simulatio Random.Boolean False

2. La funcidn solicita actualizar una variable, mediante comunicacion
asincrona con el servidor web y la aplicacion web, y recibe el dato solicitado.

C Update ~ Launch display editor

Server Name Value
Matrikon.OPC_Simulatio Triangle Waves.Reald 3.14159268452
Matrikon.OPC._Simulatio Random.iInt1 0

Matrikon.OPC _Simulatio Random.Int2 18467

Matrikon. OPC.Simulatio Random.Boolean False

3. La funcidn javascript se encarga de eliminar el antiguo valor de la pantalla
de usuario e introduce el nuevo contenido en su lugar correcto.

Last Update: 11:13:05 3/02/2014

Seconds C Update ~ | Launch display editor

Server Name Value
Matrikon. OPC._Simulatio Triangle Waves. Reald 0.42477805356
Matrikon.OPC.Simulatio Random.Int1 44
Matrikon.OPC.Simulatio Random.Int2 29358
Matrikon.OPC.Simulatio Random.Boolean True

23

Ricardo Garzo Castro

Figura 11 Funcion Javascript con comunicacion asincrona y manipulacién de documento HTML.

De esta forma se ha obtenido informacidon de forma asincrona que se ha alojado en el mismo
documento HTML original. El hecho de que no se solicite un nuevo documento HTML, sino que
sea el documento original el que vaya cambiando es lo que dota de dinamismo al interfaz
grafico. Y esto, que aunque no se pueda apreciar de forma tan directa como es disefio del
interfaz, es otra de las caracteristicas que definen a este interfaz gréfico. Es decir, un interfaz
dinamico.

Hasta ahora se ha hablado exclusivamente de Javascript como un lenguaje de programacion
aislado. Pero también hay que tener en cuenta la libreria de funciones JavaScript que se ha
estado usando, jQuery. Como cualquier libreria, sirve para implementar funciones de forma
mas rapida y en concreto, estd orientada a facilitar la manipulacidon del documento HTML,
manejo de eventos y comunicacion asincrona. En el Anexo 6.2 se puede ver ejemplos del uso
de estas librerias.

Como combinacién del lenguaje de programacién Javascript y la libreria jQuery se desarrolld
jqPlot, que es un plugin para realizar graficas dentro de documentos HTML y el autor ha
empleado en este proyecto para visualizacidon de variables tanto en tiempo real como para
representar informacién de bases de datos.

En el Anexo 6.2 se presentara el cddigo con detalle y aqui se explicara la funcionalidad del
plugin jgPlot. Su misidn es representar datos en un elemento del documento HTML. Los datos,
en este caso de los PLCs, son suministrados al plugin jgPlot para que este cree el elemento del
documento HTML que el usuario ve como una grafica. En la Figura 12 se observa una grafica
creada mediante el plugin jgPlot.

Matrikon.OPC.Simulation.1 Triangle Waves.Real8

=
a0
Fal,

S
12:14:24 12:14:26 12:14:28 12:14:30 12:14:32 12:14:54 12:14:36 12:14:38 12:14:40 12:14:42

Figura 12 Grafica construida mediante el plugin jgPlot

24

Ricardo Garzo Castro

3.4 Elservidor de internet

Gracias al servidor de internet se tiene la posibilidad de una comunicacién remota, para
alcanzar el control de los PLCs mediante internet. Dicho de otra manera, el servidor de internet
gestiona todas las peticiones y respuestas HTTP, y se queda como el nexo de unidn entre el
interfaz grafico y la aplicacion web Python. Sirve pues para enviar al usuario todos los ficheros
y datos que requiera para hacer uso del SCADA. En la siguiente figura se ha representado con
un diagrama de bloques el servidor de Internet:

HTTP Regquest

Sarvidor Apache Mod_wsgi Aplicacidn Python

HTTP Response

Usuario

Servidor de Internet

Figura 13 Diagrama de bloques del servidor de Internet

3.4.1 Dialogo HTTP

A continuacidon se detallard en qué consiste el concepto de peticiones y respuestas HTTP del
que se ha hablado anteriormente, y como se usan estos elementos para alcanzar los objetivos
del proyecto.

Un servidor lo que hace es recibir peticiones HTTP del usuario y manda de vuelta respuestas
HTTP. Las peticiones HTTP son solicitudes de informacidn por parte del usuario y las respuestas
HTTP son los datos de respuesta del servidor ante la solicitud. La peticién HTTP del usuario es
una llamada a una url dentro del dominio del servidor web y se puede realizar de forma
asincrona, esto es cada vez que el usuario necesite informacion puede solicitarla
inmediatamente. Por otra parte, las respuestas HTTP del servidor pueden ser estaticas, cuando
los datos de la respuesta son ficheros alojados en el servidor; o dinamica, cuando los datos de
la respuesta han sido generados por la aplicacién web a partir del momento que el usuario ha
mandado la peticion.

Para realizar peticiones HTTP en este proyecto se han usado los métodos GET y POST, cémo se
puede ver en los anexos. A continuacidn se explican en qué consisten estos métodos:

e GET: Se solicita cierta informacion al servidor. Este método solo deberia devolver
informacion, el usuario no mandaria datos. Por ejemplo cuando se entra a una url
determinada, el servidor devuelve un documento HTML. O cuando el usuario solicita
actualizar las variables, el servidor devolvera los nuevos valores. Pero en ningun caso el
usuario manda datos al servidor.

La siguiente imagen es la respuesta del servidor ante una peticion HTTP de tipo GET. La
respuesta, en formato JSON, contiene el valor actualizado de las variables contenidas en el
servidor OPC.

25

Ricardo Garzo Castro

URL Estado Domini T fi IP Remota Linea de tiempo
-l GET fjsonfread_ 200 COK 127.0.0,1:3000 5408 127.0.0.1:8000

Encabezrados Respuesta JSON Caché Cookies

{"wariables™: [{"access rights": "Read/Write", "guality": "Good", "name": "Triangle Wawves_Real3", "value™

: ™12 _5663707381", "server": "Matrikon.OPC.Simulation.1"}, {"access rights": "Read", "guality": "Good"

, "mame": "Random.Intl", "walue™: "35", "serwer": "Matrikeon.OPC.Simulaticn.l"]l, {"access_rights": "Read"

, "guality™: "Good™, "name™: "Random.Int2"™, "wvalue™: "5705™, "server": "Matrikon. OPC.S5imulation_1"},
{"access_rights™: "Read", "quality": "Good", "name": "Random. Boolean", "wvalue": "True", "server": "Matrikon

SOPC.Simulation. 1™}]}

1 peticion 540 B 1,24s (onload:
Figura 14 Respuesta del servidor ante una peticion HTTP de tipo GET.

e POST: Similar al GET, con la diferencia de que aqui el usuario manda informacion al
servidor. Por ejemplo si el usuario quiere cambiar el valor de algunas variables, se
mandara al servidor el nombre de las variables y sus nuevos valores para que ejecute las
operaciones. En la siguiente imagen se observa los datos enviados por el usuario mediante
una peticion HTTP tipo POST al servidor de internet. Los datos estan en formato JSON y
contienen el valor a escribir sobre una serie de variables. La respuesta del servidor ante
este tipo de peticion es igual que ante una peticion GET.

URL Estado Dominio Tamaiio IP Remota Linea de tiempo
= POST fjsonfcon 200 CK 127.0,0,1:8000 20B 127.0.0,1:3000 130ms

Encabezados Post Respuesta JS0N Caché Cookies

Parametros

{"data":[{"server":"Matri..

JSON
- data [Object { server="Matrikon OPC.Simulation.l1", name="Triangle Wawves. Realg",
value="4" }, Object { server="Matrikon. OPC.Simulation.1",
name="Random. Int2", value="32" 1}]
+ 0 Object { server="Matrikon OPC.Simulation.1", name="Triangle Waves RealB",
value="4" }
1 Object { server="Matrikon.OPC.Simulation.l”, name="Random.Int2", wvalue="32" 1}

Figura 15 Peticion HTTP con método POST.

En la siguiente figura se observa la respuesta HTTP del servidor. Consiste en una string en
formato JSON donde se informa del resultado de ciertos sucesos.

URL Estado Dominio Tamario IP Remota
- POST /jsonfcont 200 OK 127.0.0,1:8000 208 127.0.0.1:8000 |
Encabezados Post Respuesta J1S0ON Caché Cookies

["success", "error"]
1 peticion 208
Figura 16 Respuesta HTTP del servidor ante una peticién HTTP tipo POST.

Como se puede observar, cuando se intercambia informacion entre el servidor y el cliente se
usa el estandar abierto JSON. Esto es porque para poder transmitir la informacién ha de
hacerse en un formato especifico y por lo tanto no se pueden enviar las variables que usan
Javascript o la aplicacién Python directamente, han de transformarse primero al formato JSON
para ser después enviadas.

26

Ricardo Garzo Castro

En definitiva, JSON transforma cualquier tipo de formato, por ejemplo Javascript o Python, en
una string para que se pueda transmitir mediante el protocolo HTTP. Y por lo tanto, existiran
funciones, tanto en Javascript y Python, para codificar y descodificar elementos JSON.

Propiedades:

* Servidor: Matrikon. OPC
* Mombre: Random_Int2
+ Valor 32

Codificador Javascript-JSON

{"data™
{"server:"Matrikon OPC",
"mame";"Random.|nt”,

"walue™"32")]}

Decodificador JSOM-Python

Claves:

. Servidor: Matrikon. OFC
« MNombre: Random. Int2
. Valor 32

Figura 17 Diagrama de flujo para la conversion de diversos formatos en JSON

3.4.2 Componentes del servidor de Internet
Como se ha expuesto en el diagrama de bloques al principio de este apartado, el servidor de
internet estd compuesto de un servidor Apache y un médulo Apache llamado “mod_wsgi”.

Mientras que el servidor Apache se encarga de gestionar todas las peticiones y respuestas
HTTP, el médulo Apache “mod_wsgi” sirve para alojar la aplicacién Python dentro del servidor
Apache. Este mddulo usa la especificacion “wsgi” (Web Server Gateway interface) que
establece como se comunican las aplicaciones web con un servidor web, y mas concretamente
“mod_wsgi” permite la comunicacién con aplicaciones python.

En la siguiente figura se muestra como se ha modificado la configuracién de Apache para
incluir el modulo “mod_wsgi”:

e Con la directiva “WSGIScriptAlias” el usuario indica que cuando se acceda a una
determinada url ha de destinarse esa peticién HTTP a la aplicacién Python.

e Las demas directivas son para importar distintos modulos python. Tiene que ver con
configuracion relativa al funcionamiento interno de Python.

WSGIScriptalias / C:/Users/Ricardo/Dropbox/django_scada/django_scada/apache/wsgi.py
wsGIPythonPath C:/Users/Ricardo/Dropbox/django_scada/

wsGIPythonPath C:/users/Ricardo/Dropbox/django_scada:C:/Python27/Lib/site-packages
Alias /static/ C:/users/Ricardo/Dropbox/static/

27

Ricardo Garzo Castro

Figura 18 Configuracion del servidor Apache para alojar la aplicacién Python.

3.4.3 Seguridad

En este apartado se discutird la seguridad que proporciona el sistema ante un usuario que
desease cambiar o acceder a los ficheros de cddigo fuente o cualquier otro tipo de informacién
a la que no deberia poder acceder.

En un principio, se puede decir que la plataforma SCADA entrafia un compromiso de seguridad
importante ya que permite controlar PLCs de forma remota. Pero teniendo en cuenta esa
caracteristica intrinseca, ha de averiguarse cuales son las posibilidades de realizar cambios
para que el SCADA se comporte de forma no debida.

El servidor Apache permite al usuario acceder a un directorio local, respecto del ordenador al
que estan conectados los PLCs, donde habria un conjunto de archivos que han de ser servidos
al usuario. Estos archivos serian documentos HTML, librerias de funciones Javascript y CSS e
imagenes. En los documentos de Apache se especifica que ese directorio en ningin momento
ha de incluir ficheros de configuracién del servidor Apache o una aplicacion web, ni tampoco el
cddigo fuente de una aplicacion web. Respetando esta directiva, el servidor Apache nunca
suministrara archivos comprometidos.

Este tipo de archivos locales a los que se puede se acceder se les da el nombre de ficheros
locales, y como ya se ha indicado nunca han de comprometer la seguridad del sistema.

Otro tema de vulnerabilidad seria la facilidad para acceder al SCADA sin los credenciales
requeridos. Este tema asociado con la criptografia estd resuelto por métodos de proteccion
estandar en paginas web y por tanto no existe un riesgo especifico por la dificultad de adivinar
o acceder al sistema mediante credenciales falsos. Las funciones para acreditar el acceso de un
usuario al SCADA vienen dadas por el framework de aplicaciones web Django.

28

Ricardo Garzo Castro

3.5 Laaplicacion web

Cémo se ha explicado, el servidor de internet da respuestas HTTP ante peticiones HTTP del
usuario. La aplicacion web es la encargada de proporcionar las respuestas estdticas y
dinamicas del servidor. Con respuestas dindmicas se entiende un tipo de informacién que ha
de ser generada sobre la marcha y por lo tanto no estaba almacenada previamente en el
servidor. La aplicacion web es ejecutada en el mismo ordenador que tiene el servidor de
internet, es capaz de comunicarse en HTTP y genera el contenido que el navegador necesita.

A lo largo de este proceso se hablard de la aplicacidn web, cuyo contenido ha sido desarrollado
exclusivamente por el autor, y es el componente principal de este proyecto. A continuacion se
hablard de cémo el framework Django da forma estructural a la aplicacién web, los modelos
creados para la representacidon de datos en la aplicacion y las distintas tareas que realiza, ya
sea supervision y control de datos y actividades periddicas.

Como simplificacién general se puede decir que la aplicacién web genera la informacién
necesaria para construir el SCADA y la cadena de procesos para generar el contenido estatico o
dindmico de la aplicacidon web es el siguiente:

1. El usuario desea hacer algo y realiza una accién que desencadena un evento. Ejemplo:
apretar un botdn de actualizacion.

2. Ese evento es una funcidon de llamada a una url determinada. Es decir, se envia una
peticiéon HTTP al servidor.

3. El servidor Apache recibe la peticidn y traslada la orden a la aplicacién web python
mediante “mod_wsgi”.

4. La aplicacion web recibe la instruccion y ejecuta la funcidn asociada a la url a la que se
ha llamado inicialmente.

5. La funcién de la aplicacion web genera una salida que es transmitida al servidor
Apache para que este la transforme en una respuesta HTTP, y que recibirda el
navegador web del usuario.

6. Finalmente, el navegador web procesard la informacién recibida. Por ejemplo,
actualizando los valores de las variables que se vean por pantalla.

Para llevar a cabo el paso cuatro que se ha descrito arriba, en la siguiente imagen se ilustra el
fichero Python que asocia una url con una determinada funcién. En este caso, la url “/home”
tiene la funcion asociada “variables.views.home”, una funcién que devuelve una plantilla html:

from django.conf import settings

admin.autodiscover()

urlpatterns = patterns('’,

url{r’'“read/", ‘varigbles.views.read'},
url{r'“json/read_update/', 'variables.views.read_update '},

29

Ricardo Garzo Castro

Figura 19 Esquema de urls con sus funciones asociadas de un fichero Python

3.5.1 Django como framework de la aplicacién web
Django ha sido el framework empleado para construir la aplicacién web y emplea el lenguaje
de programacién Python. Algunas de las ventajas del uso de Django son las siguientes:

e Estd orientado a crear aplicaciones web rapidamente. Pues incorpora, es decir, no ha
de emplearse tiempo en escribirlas; funciones generales como: registro de usuarios,
gestion de peticiones y respuestas HTTP.

e Django se ha disefado para hacer aplicaciones web escalables. Es decir, una vez se
haya construido una aplicaciéon se pueden acoplar mas funcionalidades de manera
sencilla.

e Existe una comunidad de cddigo abierto como equipo de desarrollo de Django. Y por lo
tanto, resulta sencillo encontrar documentos o foros donde poder consultar dudas.

Por lo que se pueden crear utilidades de forma rapida.

Django makes it easier to build better Web apps more quickly and with less code.

Figura 20 Logo de Django, framework usado para construir la aplicaciéon web.

Django establece como punto de partida unos ficheros configurables y expandibles que serdn
los bloques fundacionales de la aplicacidon que se desea construir para alcanzar los objetivos
deseados.

La siguiente imagen es del directorio de la aplicacién que se ha creado para este SCADA:

30

Ricardo Garzo Castro

Wariables/

[

Automataconnect.py

i

Models.py

il

Tas

[}
% Ei

Py

!

JLIL
Tests.py

=

LT

Urls._py

Ll

Views.py

Figura 21 Estructura del directorio que contiene la aplicacidn creada para este proyecto.

“«

La carpeta “Variables” contiene los ficheros python, con extension “.py”, y su contenido es
creado en su totalidad, obviando ciertas directivas estandar, por el autor para dar forma al
proyecto. Cada fichero python estd encaminado a cumplir una serie de tareas que seran

explicadas brevemente en el siguiente parrafo. De esta forma:

e Admin.py: Se encarga de tareas administrativas. Tales como afiadir datos a la base de
datos.

e Automataconnect.py: Es un script realizado por el autor y sirve para comunicar la
aplicacion web con el cliente OPC.

e Models.py: Contiene la informacion acerca de las variables especiales creadas para
esta aplicacion web. El nombre que reciben este tipo de variables especiales es
Modelos.

e Tasks.py: Aqui se encuentran unas funciones especiales que son las tareas
programables del proyecto. Con programables se quiere decir que se pueden ejecutar
ciclicamente cada cierto periodo de tiempo. Como por ejemplo afiadir el estado de
una variable a la base de datos cada cierto intervalo de tiempo.

e Tests.py: Se trata de un fichero usado en la fase de desarrollo para tareas de testeo. Y
es irrelevante en la aplicacion final.

e Urls.py: Es el fichero que asocia cada url con una funcidon determinada.

31

Ricardo Garzo Castro

e Views.py: Todo el resto de funciones para que la aplicacion web pueda funcionar se
encuentran aqui. Como consultar el estado de una variable por ejemplo. Aqui se
encuentra practicamente todo el cédigo realizado para la aplicacion web.

3.5.2 Los modelos de la aplicacién web

Con Django, uno puede crear variables personalizadas para la aplicaciéon que desea crear. Esto
se hace a través de modelos. Un modelo es una manera de almacenar informacion pues puede
contener los campos y propiedades que se deseen. Visto desde el punto de vista de la base de
datos un modelo es una tabla, como las de una hoja de calculo, y cada campo del modelo
corresponderia a un campo de la tabla. Pero siendo mas técnico un modelo se asocia al
concepto de clase en la programacion orientada a objetos.

A lo largo de este apartado se tratard sobre los modelos que se han definido para esta
aplicacion, que propiedades contienen y como una vez creados el usuario introduce
informacidn nueva.

Para esta aplicaciéon web se han creado dos modelos. Uno para poder representar variables de
los PLCs y el otro para guardar un registro histérico de los valores de los PLCs. El cédigo que
los define se encuentra en el fichero models.py.

El modelo Variable es empleado para la representacién de variables del PLC y contiene una
serie de campos para representar propiedades relacionadas con una variable OPC. Asi se ve en
la siguiente figura:

access_rights

Figura 22 Modelo Variable y sus distintas propiedades.

A continuacidn se explicara la figura superior:

e Variable: Es la clase que se usa para crear objetos de tipo Variable

o User: Hace referencia al usuario que controla la variable. El usuario a su vez
también es un tipo de modelo que trae Django creado en sus archivos fuente y por
lo tanto no tiene que ser configurado.
Server: Con este campo se asocia el servidor OPC de la variable.
Node: Dentro de un servidor, en qué nodo se encuentra.
Name: El nombre de la variable.

O O O O

Value: Su valor en un momento dado.

32

Ricardo Garzo Castro

o Quality: Si la variable se ha podido leer correctamente, o no, se indicara con este
campo.

o Data_type: Esto es una herencia del tipo de variables OPC. Las variables OPC
pueden ser, por ejemplo, enteros de 4 bytes con signo y esto ha de ser indicado.
Access_rights: Aqui se especifica si la variable es de escritura o lectura.

Display: Si el usuario desea que sea visible en las distintas operaciones de control
del SCADA.

Poniendo un ejemplo, lo explicado quedaria asi en una base de datos:

Base de datos

User Server Node Name | Value | Quality | Data_type | Access_rights | Display
Ricardo Matrikon Random | Int2 32 good VT 4 write True
Antonio | SiemensOPC | None Reald 45 good VT 4 read True

El otro modelo, llamado TimeSeries, es para el registro histérico del estado de las variables de
los PLCs. Esto es porque se querra hacer una visualizacion histdrica del estado de alguna de las
variables. El modelo queda representado graficamente de la siguiente manera:

e TimeSeries: Es la clase que se usara para crear objetos de tipo TimeSeries.
Server: Nombre del servidor donde esta alojada la variable.

O

o Name: El nombre de la variable.
o Value: El valor de la variable en un momento dado.
o Time: Registro de la fecha y hora de lectura de la variable.

Una vez explicado el proceso de configuracién de los modelos se va a hacer hincapié en la
creacion de los mismos.

33

Ricardo Garzo Castro

Cada vez que se quiera incluir un nuevo modelo, por ejemplo una nueva variable a controlar
de un PLC, lo que se hace es introducir en la base de datos la nueva variable para que el
usuario pueda acceder a ella cuando lo necesite.

Para poder realizar esto, la aplicacion web ha de crear una pégina en el SCADA donde el
usuario pueda a través de un formulario introducir los nuevos campos de la variable que desea
controlar y cuando la aplicacidn web reciba la solicitud, almacene la informacién en la base de
datos. Todas estas tareas se crean automaticamente con el framework Django. Y Unicamente
el autor ha de configurar el archivo admin.py para configurar que mostrara el formulario que
rellene el usuario, como se ve a continuacion:

class VariableAdmin(admin.ModelAdmin):
fieldsets = [
{ 'OPC Server’, {'fields': ['server']}).,
('"Varioble Name', {'fields': [

]
list display = (‘name’, 'server’)

search_fields = ['server’, 'nams"]

Figura 23 Cédigo de admins.py para la configuracion del formulario para incluir nuevas variables.

Este cddigo indica cuales son los campos que ha de rellenar en el formulario el usuario para
poder incluir una nueva variable. Se puede ver que solo se requieren los campos de servidor y
nombre de la variable, los demas campos se rellenaran posteriormente con otras funciones.
Django con esta informacién y la de sus ficheros fuente crea el siguiente formulario que es
accesible por el usuario:

Add variable

OPC Server

Server:

Variable Name

Name:

Save and add another Save and continue editing

Figura 24 Formulario para la creacion de una nueva variable a controlar en la base de datos

34

Ricardo Garzo Castro

Hay que tener en cuenta que las variables que un usuario guarde en su cuenta, no se asignaran
a la cuenta de otro usuario. De esta manera, cada usuario tendra un SCADA con las variables a
controlar que el desee. Es decir, cada usuario tendrd un SCADA personalizado a sus
necesidades.

Para el otro tipo de modelo para el registro histérico de variables el proceso es algo diferente
al tratarse de tareas programables en el tiempo y cdmo se crean nuevas tareas serd tratado en
el apartado 3.5.4 de este capitulo.

Finalmente, cuando el usuario desee guardar informacién sobre los modelos se guardaran en
una base de datos que viene incluida en las librerias que forman Python llamada SQLite.

3.5.3 Supervision y adquisicion de datos.

El SCADA, y por lo tanto la aplicacion web, ha de proveer al usuario con tareas de supervision y
adquisicion de datos. Este tipo de tareas son la lectura y escritura de variables de los PLCs. Este
tipo de tareas recibe y envia datos al usuario mediante el protocolo HTTP y se comunica con
los PLCs mediante el cliente OPC. Como se reciben y envian esos datos ya se ha tratado
previamente asi que este apartado se centra en la comunicacidn de la aplicacién web con el
cliente OPCy los algoritmos para las funciones de supervision y adquisicion de datos.

La aplicacidn web para comunicarse con el cliente OPC utiliza un script realizado por el autor
llamado automataconnect.py. A este script se le importa el cliente OPC en forma de médulo
python que recibe el nombre de OpenOPC. El médulo python es una libreria de funciones del
cliente OPC. El script ademas tiene dos funciones python: una para leer y otra para escribir
sobre variables de PLCs. Como argumentos se envian nombre y servidor en el primer caso; y
nombre, servidor y valor de escritura en el segundo.

from variables import OpenOPC

def read(server,name):
try:

opc = OpenOPC.open_client('locaglhost")
opc.connect(server)
value, gquality, time = opc.read(name)
access_rights=opc.properties(name, id=5)
opc.close()
value=str({value)
return value,quality,access_rights,time

except Exception:
opc.close()
return Mone, 'Error’,Mone,None

Figura 25 Cadigo del script automataconnect.py para lectura de variables.

El usuario accede a las tareas de supervision y adquisicion de datos en el interfaz desde tres
paginas web distintas: una con una tabla con los valores de las variables, otra con una grafica
en tiempo real del estado de una variable y la dltima también con una tabla pero para la
escritura de valores. Estas tres paginas web utilizan el navegador web para crear la interfaz
pero necesitan de datos y documentos que provee la aplicacién web.

35

Ricardo Garzo Castro

En una primera instancia la aplicacidn web recibe una peticién HTTP cuando el usuario accede
a una de estas paginas, y la aplicaciéon devuelve en una respuesta HTTP el documento HTML
correspondiente a la pdgina web solicitada y un diccionario python. Este diccionario Python
contiene los valores e informacién acerca de todas las variables controladas por el usuario y la
sintaxis del documento HTML se encarga de colocar esta informacidn en el interfaz de usuario.
Con llamadas al script automataconnect.py se obtienen los datos que alberga el diccionario
python .

@leogin_required
def read(request):
variable list=get wariables({request.user)
return render_to_response('read.html ', {'varigble_List': variable_list} ,
context_instance=RequestContext({request))

@legin_required
def control{request):

variable list=get writable wvariables(request.user)

return render_to_response(‘control.html ', {'variable_ List': variable_list} ,
context_instance=RequestContext({request))

L]

Figura 26 Codigo para el envio de respuestas HTTP con un documento HTML y un diccionario python.

Una vez que el usuario tiene en su navegador web la pagina web solicitada, este puede querer
actualizar los valores de la variable o enviar a que valores desea escribir en ciertas variables.
De esta manera, se realiza una comunicacion asincrona navegador-servidor para que la
aplicacion web ejecute la funcién correspondiente. Notese que en ninguno de estos casos se
vuelve a enviar un documento HTML, sino que se envian datos en formato JSON creados en el
mismo instante que los solicita el usuario. Se trata Unicamente de respuestas dinamicas. En
esta segunda instancia se emplea el siguiente flujo de operaciones para las pdginas web
descritas:

e Para actualizacién de tabla de valores: Cuando el usuario manda la peticion HTTP para
realizar esta operacion, la funcién python llama al script automataconnect.py para obtener
de nuevo un diccionario con la informacidén completa de las variables de los PLCs. El
diccionario se codifica en formato JSON.

e Para actualizar la grafica de una variable: El usuario manda la variable que desea actualizar
y la funcién python devuelve una string en formato JSON dando la informacion de la
variable y el instante de tiempo en que fue capturada .

e Para escritura de variables: Se decodifica del formato JSON los nuevos valores de las
variables que el usuario ha enviado, y se escriben en los PLCs llamando al script
automaconnect.py para que finalmente se devuelva al usuario, en formato JSON,
mensajes informando si se ha podido o no llevar a cabo la operacién.

Mediante este apartado se ha pretendido dar a conocer conceptualmente los algoritmos de
control pero para mas detalle en profundidad acerca de las funciones y cédigo python del
fichero views.py se puede consultar el Anexo 6.1.4.

3.5.4 Actividades periddicas: Almacenaje en base de datos.
Una caracteristica interesante del SCADA es la posibilidad de incluir un registro histérico de las
variables de PLCs para que de esta manera se puedan representar graficas temporales de la

36

Ricardo Garzo Castro

evolucion de una variable a lo largo del tiempo. Para lograr esto es necesario estar
almacenando durante un periodo de tiempo muestras de la variable a una frecuencia
determinada. Algo que ritmicamente guarde informacién en la base de datos. Esto se consigue
mediante un ejecutor de cddigo acorde a un horario llamado Celery.

El usuario deberd configurar qué variable quiere controlar y con qué frecuencia mediante el
interfaz grafico del navegador web. Configurando los ficheros de Django y Celery se le muestra
el siguiente formulario web al usuario. Donde se puede ver que aparecen los campos
necesarios en el siguiente orden de aparicion:

e Nombre que se le da a esta tarea periddica: “Muestro de variable Triangle Wave4”

e El nombre de Ila funcion que ha de llevarse a cabo periédicamente:
“variables.tasks.store_value”, que es la funcidon encargada de almecenar el valor de una
variable en la base de datos.

e Elintervalo de tiempo, que son cinco minutos en este ejemplo.

e Los argumentos de la variable escritos en forma de string, que son el servidor
“Matrikon.OPC.Simulation1” y el nombre de la variable “Triangle Waves.Real8".

37

Ricardo Garzo Castro

Change periodic task

Fields in bold are requirec
Name: Muestro de variable Triangle VWaved
Useful description
Task (registered) variables_tasks. store_value |E|

Task (custom)
Enabled

Schedule

Interval every 5 seconds |E| +

Arguments -

Keyword arguments {"semver”: "Matrikon. OPC_Simulation. 1",

“name": "Triangle YWaves RealB"

}

Figura 27 Formulario para la configuracion de una actividad periddica en el navegador web.

El formulario que ha rellenado el usuario es enviado a la aplicacién web que ejecutara, en este
caso, la tarea de almacenar el valor de la variable a la frecuencia estipulada a través del
mecanismo de programacion Celery. La tarea leera el valor de la variable y almacenara en la
base de datos el valor de la variable y su servidor al igual que la fecha y tiempo de lectura.

@Ftask()
def store_value(server,name):
value,quality,access_rights,time=connect.read({server,name)
t = TimeSeries(server=server, name=name, value=value, time = datetime.datetime.now().

t.save()
return

Figura 28 Cédigo de la tarea de guardado del valor de una variable.

38

Ricardo Garzo Castro

En la siguiente figura se puede observar la tabla de la base de datos que se obtiene con la
tarea periddica de guardado periddico. La frecuencia de muestro para este ejemplo es de cinco
segundos aunque el muestro fue parado hasta en tres ocasiones:

Servidor Nombre Valor Fechay hora
Matrikon.OPC.Simulation.1fTriangle Waves.Real8Q3.1415926845202013-180-21

6.28318536704)2813-16-21
2.42477885356)2813-16-21
12 .5663787381)2813-16-21
15.7879634226)2813-16-21

Matrikon.OPC.Simulation.1fTriangle Yaves
Matrikon . OPC.S8imulation.i1Triangle Waves

Matrikon . OPC.S8imulation.i1Triangle Waves

Matrikon . OPC.S8imulation.i1Triangle Waves

Matrikon . OPC.Simulation.1fTriangle Waves 25 13274147621 2013-18-21

Matrikon . OPC.Simulation.1fTriangle Waves 25 13274147621 2013-18-21

28.2743341608742813-16-21

Matrikon.OPC.Simulation.1§Triangle Waves.RealB

Figura 29 Base de datos del muestro periddico de una variable.

Cuando el usuario desee acceder a esta informacién para poder representar en su navegador
web deberd mediante un formulario solicitar a la aplicacion web que variable y que rango de
tiempo de tiempo desea consultar:

Variable: | n\1atrikon OPC Simulation 1 - Triangle Waves Reals

From: 21 [=]| October [=] | 2013 B
To: 22 [=]| October [=] | 2013 [~

G o

Figura 30 Formulario web para la solicitud de rango de valores de una variable durante un intervalo de tiempo.

Cuando la aplicacidon web recibe la peticidn del usuario, utiliza los valores del formulario para
filtrar la informacién que haya en la base de datos y encontrar de esta manera los valores
guardados para el rango de tiempo determinado.

Las consultas a la base de datos se realizan mediante una capa de abstraccién para bases de
datos (del inglés Database Abstraction Layer) que proporciona Django. Esto es una API para
facilitar la comunicacién mediante la aplicacion web python y el lenguaje propio de la base de
datos, SQLite en este caso.

En la siguiente figura se puede observar un trozo de la funcidon que realiza lo descrito, mas
concretamente las lineas que filtran toda las entradas de la base de datos para que solo estén
disponibles Unicamente las del servidor y variable que ha solicitado el usuario. La funciéon
continda filtrando el resto de pardmetros hasta quedarse Unicamente con las entradas
correctas.

39

Ricardo Garzo Castro

Elogin_required

def json_query_db{request):

data=check_json_data(request)

response_json_data={"TimesSeries":[]}
g=TimeSeries.objects.all()
g=q.filter(server=data['server'])
g=q.filter({name=data["name "]}

Figura 31 Trozo de cédigo de la funcidn que filtra las entradas de la base de datos.

Finalmente la funcidén devuelve en formato JSON al navegador web la informacion de la
variable solicitada, si la hubiese, para que este la procese y la muestre en gréficas o en tablas.

Last Update: 20:43:46 26/01/2014

Variable 11atrikon OPC.Simulation.1 - Triangle Waves Reals

From: | 24 [3]|| October [=] 2013 [=]
Tor 22 [=]|| October [=] 2013 [=]

Matrikon.OPC.Simulation.1 Triangle Waves.Real8

a

=

1734 17:36 17:38 17:40 1742 17:44 1746 17:48 1750 17:52 1754 17:56

Figura 32 Grafica de la evolucion temporal de una variable a partir de la base de datos.

3.5.5 Actividades periddicas: Alarmas.

El SCADA contiene una funcién de alarma para que alertar al usuario de que una variable ha
alcanzado un valor no deseado. Para que esto sea posible ha de especificarse que variable hay
que controlar, el rango de valores que se consideran peligrosos y la frecuencia de muestro de
la variable.

Como se puede observar se comparte una similitud con respecto al guardado periddico de
variables y es que aqui también existe una componente de periodicidad. Aunque en este caso
no se guardan valores en una base de datos.

40

Ricardo Garzo Castro

Por lo tanto el usuario debera rellenar el mismo formulario que para el guardado periddico
solo que en esta ocasién se especificara que la funcién a repetir ha de ser la encargada de
gestionar las alarmas y los argumentos seran: la variable a controlar, el servidor OPC donde se
encuentra, el valor limite, la condicién para que salte la alarma y el email donde se enviara la
notificacién.

Change periodic task

Mame: @ Alarma de triangle waves 4

Useful description

Task (registered) variables tasks_alarm |E|

Keyword arguments {"semrver” "Matrikkon. OPC_Simulation.1"
“name": "Triangle Waves Reald"
“condition”: "less"
“value_limit" : "50"
“email”: "scandiskros{@gmail.com”

H

Figura 33 Formulario de tarea periédica empleado para alarmas.

Cuando a la aplicacion web le llega la peticion del formulario ejecuta, a través de Celery, la
tarea periddica encargada de las alarmas. Esta tarea lee el valor de la variable a controlar y si el
valor actual no esta dentro del rango seguro se envia un email alertando de lo ocurrido.

En la Figura 34 se recoge un trozo del cédigo de la tarea “alarm”. Esta funcién recibe los
valores del formulario como parametros. A continuacidn lee el valor de la variable y evalla si
esta dentro del rango que ha especificado el usuario para mandar un email.

41

Ricardo Garzo Castro

Ftask()

def alarm(server,name,condition,value_limit,email):

value,quality,access_rights,time=connect.read({server,name)

if condition=="greaoter':
value limit=float({value limit)
value=float(value)
if walue > wvalue limit:
send_mail({ 'Online Scadg Alarm’, 'The varigble ' + str{name) + ' on serve
". The actuagl value is "+str{valuel+'. ", ‘gnlinescadapfcfamail .

Figura 34 Cddigo de la tarea encargada de gestionar las alarmas del SCADA.

A continuacidn un ejemplo del email de notificacidon que recibiria el usuario:

onlinescadapfc@gmail.com 11/15M13 - v

to me [=

The variable Triangle Waves. Reald on server Matrikon. OPC_Simulation.1 is lesser than its value limit
50.0. The actual value is 43.98225975833.

Figura 35 Email de notificacion de alarma ocurrida en el SCADA.

4. Capitulo 4. Resultados

El resultado de este proyecto ha sido la creacidon de una aplicacién web que cumple con los
objetivos presentados en el Capitulo 1. Es accesible remotamente gracias al servidor Apache y
la aplicacion web python, existe un acceso basado en credenciales de usuario gracias a las
funciones integradas de Django y se consigue un control universal de PLCs gracias al protocolo
OPC.

Para conseguir montar la plataforma ha de instalarse en un PC, que actia a modo de servidor,
los siguientes programas o paquetes:

e Apache: Como servidor de internet con comunicacién HTTP.

e Python: Como lenguaje de programacion de la aplicacién web.
e Django: Como framework de la aplicacién web.

e Celery: Para la programacion automatica de tareas.

e Django_admin_bootstrapped: Configura ciertos ficheros de Django para cambiar la
estética de alguna pagina web.

e Servidor OPC: Que el cliente final del proyecto elegira segun sus necesidades.

Adicionalmente, se deberan almacenar los siguientes ficheros estaticos en el servidor para
facilitarselos al usuario cuando éste los requiera:

e Documentos HTML con las plantillas de cada pagina web.
e Ficheros con librerias JavaScript y CSS para la funcionalidad de las paginas web.

La estructura del sitio web desarrollado se explicard a continuacidon para dar una nocion de
como ha quedado el SCADA. Primer se mostrard una figura a modo de esquema para dar un
conocimiento global para después entrar en detalle con cada una de las paginas web.

42

Ricardo Garzo Castro

El sitio web construido es un conjunto de paginas web que forman lo que hemos llamado,
SCADA Online, concepto que da titulo al presente proyecto.

Las paginas web se pueden dividir en cuatro aparatados: uno para acceso a datos de las
variables de los PLCs, su supervision y su control, el siguiente como acceso histérico a la base
de datos que contiene informacidn guardada de las variables a controlar, un tercero para
alarmas y eventos que puedan surgir acerca de las variables de los PLCs y finalmente un
conjunto de sitios para la administracion de la aplicacion web desde el navegador web.

Estructura del SCADA Online

hoceso a datos Alarmas y eventos
« Lectura « Alarmas
« [Escritura « Grafica
+ Display instantanea

Acceso histdrlco Administracian

« (Grafica = Administracion
historica dela
« Tabla histdrica aplicacidn weab

Figura 36 Estructura del sitio web creado para el SCADA Online.

A continuacidon se comentaran las paginas web creadas para cada uno de los apartados
explicados detallados arriba.

Paginas web para el acceso a datos:

e Lectura: con este pagina se crea una tabla con las variables que controla el usuario

para poder sus valores. Se dispone de unos botones para actualizaciones periddicas de
la tabla.

Last Update: None

Read Launch display editor

Control

SERE AL Server Name Value

Administrate .) i)
Matrikon . OPC_Simulation.1 Triangle Waves Reald 3.14159268452
Matrikon OPC_Simulation.1 Random.Int1 0

~ Matrikon OPC_Simulation.1 Random.Int2 18467

Graph from

Data Base Matrikon OPC_Simulation.1 Random.Boolean False

' F [

Figura 37 Pagina web para lectura de variables.

43

Ricardo Garzo Castro

e Control: a través de una tabla con formulario se puede escribir sobre las variables de
los PLCs que tenga habilitada esa posibilidad. Se le informa al usuario mediante alertas
de color verde o rojo de que la operacién de escritura ha sido exitosa o no:

Last Update: 12:37:49 30/01/2014

Read C Update Launch display editor
Server Name Value

Display Editor Matrikon OPC.Simulation.1 Triangle Waves.Reald 10
Administrate

Matrikon.OPC.Simulation.1 Random.Int2 patata
Granh fram

Figura 38 Pagina web para escritura de variables.

e Editor de display: se selecciona cuales de las variables que controla el usuario estaran
visibles en las paginas web del SCADA. Es probable que el usuario no desee controlar
todas las variables al mismo momento.

Save changes

Read
Control Server Name Display
e Matrikon.OPC_Simulation.1 Triangle Waves Reald
Administrate
Matrikon. OPC_Simulation.1 Random.Int1
Matrikon.OPC_Simulation.1 Random.Int2
Graph from Matrikon.OPC_Simulation.1 Random.Boolean
Data Base
Figura 39 Pagina web para eleccion de variables a controlar
Paginas web para acceso histérico
e Grafica desde la base de datos: s eleccionando una variable y un rango de

tiempo determinado se mostrard una grafica de la evolucidon de esa variable si
estuviese registrada en la base de datos.

44

Ricardo Garzo Castro

Last Update: 12:49:23 30/01/2014

Read
Control
Display Editor

Administrate

Graph from Data Base

Log from Data Base

Graphics 0

Alarms

From:

To:

Variable: | \iatrikon OPG. Simulation.1 - Triangle Waves.Real8

Octaber [=] | 2013 [=]
October [=] | 2013 [=]

21 [+
2 [=]

Matrikon.QPC.Simulation.1 Triangle Waves.Real8

Figura 40 Pagina web para la representacion grafica del registro histérico de una variable.

e Registro histérico: de la misma forma que la pagina web anterior pero esta vez no se

representa mediante una grafica sino que se le da al usuario una tabla con los valores

registrado de esa variable para que se pueda exportar a otra plataforma que requiera

el usuario.

Read
Contral
Display Editor

Administrate

Graph from Data Base

Log from Data Base

Graphics

Alarms

Last Update: 12:51:07 30/01/2014

Variable: | pjatrikon. OPC_Simulation.? - Triangle Waves.Real8

01 [=] January [=] | 2013 [+]
To: 01 [z] December [=] | 2013 [~]

From:

Date Time Value
2013-10-21 17:35:47 3
201310-21 17:35:52 6
2013-10-21 17:35:87 9
2013-10-21 17:36:02 12

Figura 41 Pagina web para el muestro en tabla de la evolucion histérica de una variable.

Alarmas y eventos

e Graficas: para representar una variable se puede crear una grafica que nos haga una

visualizacién en directo del estado de la variable con una frecuencia de actualizacion

configurable.

45

Ricardo Garzo Castro

Last Update: 13:27:53 30/01/2014
Read Variable: Matrikon OPC_Simulation 1 - Triangle Waves Real§

Control 3 Launch display editor

Display Editor . . . N
- Matrikon.OPC.Simulation.1 Triangle Waves.Real8
Administrate a5

Graph from Data Base 50

Log from Data Base

ALARMS A

Alarms 50

Figura 42 Pagina web para la creacion de una grafica a tiempo real del estado de una variable

e Alarmas: mediante un panel administrativo el usuario puede configurar notificaciones
a su email para alertar sobre el valor no deseado que pueda tomar una variable

Add periodic task

Name: | Alarma de triangle waves 4|

Useful description

Task (registered) variables tasks_alarm |E|
Task (custom)

Enabled
Figura 43 Pagina web para creacidn de alarmas configurables por el usuario.
Acceso para administrador:

e Pagina para administrador: si bien esta pagina no forma parte del SCADA, en cuanto a
que no contribuye a controlar los PLCs, es necesaria para el funcionamiento de la
pagina web. La pdagina web sigue siendo una plataforma software que necesita ser

46

Ricardo Garzo Castro

configurada por algun usuario con una serie de conocimientos. Desde esta pagina se
podran controlar tareas administrativas como por ejemplo que usuarios pueden

acceder al SCADA o que pueden realizar esos usuarios en el SCADA.

Home

Site administration Applications -

Auth

Groups < Add | [Change

Users < Add | [z Change

Django

Messages & Add @ Change

Figura 44 Pagina web para la administracion de la aplicacion web desde el navegador.

5. Capitulo 5. Conclusiones
En primer lugar me gustaria agradecer la oportunidad de haber realizado este proyecto fin de
carrera a la Catedra TAIM WESER — Universidad de Zaragoza

Para llevar a cabo el proyecto, parti sin mucha experiencia previa en la programacién o
comunicacion con PLCs, siendo ambas las piedras angulares del SCADA que se ha desarrollado.
Mientras realizaba el estudio previo para poder asegurar la comunicacién universal de marcas
de PLC tuve siempre la incertidumbre de si podria conseguirlo. Algo a lo que no me habia
enfrentado antes, pues en la carrera si uno se prepara una asignatura, sabe que conseguird
aprobarla.

Otra tarea importante del proyecto fue la de trabajar en diversos entornos de programacion
para conseguir el SCADA online. Desde entornos graficos, comunicacidon con internet,
programacion de servidores web y desarrollo de aplicaciones web. Todo esto ha supuesto una
curva de aprendizaje lenta, pues lo trabajado no es el enfoque natural de mi carrera, pero que
ha concluido en este proyecto multidisciplinar en el que se han cubierto todos los objetivos
propuestos: la supervisidon y control de cualquier marca de PLCs de manera remota.

47

Ricardo Garzo Castro

Por otra parte y en referencia al SCADA, pienso que el hecho de que lo haya decidido
desarrollar para funcionar en un navegador web frente a realizar una aplicacién de escritorio
ha sido algo importante. Ultimamente, en el mundo de la informatica, se estd tendiendo a la
computacion en internet. Hace unos afios esto se traducia en almacenamiento de datos online,
pero ahora es fécil ver plataformas de desarrollo de software que funcionan completamente
Online como, “Salesforce.com Inc”, o de computacion online de tareas.

Por esto, este SCADA marca una diferencia frente a otro SCADA hecho mediante una
aplicacion de escritorio. Pues no en tanto en las funciones que pueda realizar como SCADA
propiamente dicho, sino en la manera de ejecutarse, que es mediante internet.

48

Ricardo Garzo Castro

6. Anexos

A lo largo de la Memoria se ha ido explicando el funcionamiento del SCADA Online sin entrar
con mucho detalle en el cddigo que lo desarrolla. Por lo tanto, aqui se va a exponer y explicar
con detalle el cddigo desarrollado Unicamente por el autor para este SCADA y asi quedarad clara
para el lector la frontera entre lo que ha creado el autor y las librerias integradas en los
distintos frameworks usados.

6.1 Coddigo del servidor web
En este apartado se mostrard y explicara el cédigo relacionado con las funciones que
componen la aplicacion web.

6.1.1 Fichero urls.py
Este fichero, urls.py, alojado dentro de la carpeta django_scada sirve para relacionar cada una
de las urls del proyecto con su funcién python.

Esta es la estructura de urls creada por el autor donde mediante la directiva url(r’Ahome/’,
‘variables.views.home’) se ha asociado a la url home/ la funcién home que esta en el fichero
views dentro de la carpeta variables . Esta directiva es empleada con el resteo de las urls del
sistema como se ve en el siguiente conjunto de cddigo.

49

Ricardo Garzo Castro

urlpatterns = patterns(’'’,
url(r'*home/"', 'variables.views.home'),
url(r'*manual/', 'variables.views.manual'),
url(r'”read/', 'variables.views.read'),
url(r'~json/read_update/', 'variables.views.read update'),
url(r'~control/', 'variables.views.control'),
url(r'”json/control_response/', 'variables.views.control_response'),
url(r'~display_editor/', 'variables.views.display editor'),

url(r'”json/display_editor_response/',
'variables.views.display editor _response'),

url(r'~graph_Live/', 'variables.views.graph_Live'),

url(r'~json/graph Live/', ‘'variables.views.json_graph_Live'),

url(r'~graph_db/', 'variables.views.graph_db'),

url(r'~json/graph _db/', 'variables.views.json_query db'),

url(r'~log db/', 'variables.views.log db'),

url(r'~json/log db/', 'variables.views.json _query db'),

6.1.2 Fichero automataconnect.py
Con las funciones de este fichero se comunican las funciones de la aplicaciéon web con el
cliente OPCy de esta manera se puede considerar este fichero como una libreria

La funcidn read tiene como pardmetros de entrada el servidor y el nombre de la variable a leer.
Con esta informacidn se conecta al servidor indicado y hace una letura para el valor, calidad ,
fecha a la que se ha leido la variable y ademds los derechos de acceso a esa variable.
Finalmente devuelve a la funcién de la que ha sido llamado todos los datos en formato string.
En caso de que no se haya podido realizar la lectura, devuelve strings avisando del error.

50

Ricardo Garzo Castro

def read(server,name):
try:

opc = OpenOPC.open_client('Localhost")
opc.connect(server)
value, quality, time = opc.read(name)
access_rights=opc.properties(name, id=5)
opc.close()
value=str(value)
return value,quality,access_rights,time

except Exception:
opc.close()
return None, 'Error',None,None

La funcidn write, funciona de manera similar a la funcién read. Tiene como pardmetros de
entrada el servidor, nombre de la variable, valor de escritura y un vector. Una vez conectado al
servidor indicado se realiza la escritura de variable. Finalmente afiade al vector si la operacidn
de escritura ha sido exitosa o no, y se devuelve ese vector a la funcidon que hubiera llamado a
la funcién write.

def write(server,name,value,response_array):
try:
opc = OpenOPC.open_client('Localhost")
opc.connect(server)

if value:
a=opc.write((name,value))
else:
a=
response_array.append(a.lower())
return response_array

except Exception:
response_array.append(‘error")
return (response_array)

6.1.3 Fichero tasks.py
En este fichero se encuentran las tareas programables del sistema. Estas son las tareas que se
pueden automatizar y ejecutar de manera periddica.

La tarea store_value permite almacenar lecturas de las variables de los PLCs en la base de
datos del sistema. Como parametros de entrada tiene la variable a guardar y el servidor donde
estd alojada. Las operaciones son una lectura de la variable, calidad, derechos de acceso y
fecha de lectura mediante una llamada a la funcidn read del fichero automataconnect.py. Los
datos de lectura son alojados en una variable que funciona modelo TimeSeries y finalmente se
guarda el valor en la base de datos.

51

Ricardo Garzo Castro

@task()

def store_value(server,name):
value,quality,access_rights,time=connect.read(server,name)
t = TimeSeries(server=server, name=name, value=value, time =
datetime.datetime.now().strftime("%2Y-%m-%d %H:%M:%S"))
t.save()
return

La tarea alarm tiene como funcidn avisar al usuario mediante un email de que una variable ha
salido del rango que él ha fijado. Como parametros de entrada estdn el servidor, nombre de la
variable, el tipo de condicién para activar la alarma, el valor limite y el email al que mandar el
aviso. Se realiza una lectura de la variable indicada y se evalua el valor actual con el valor limite
segln la condicién de activacidon de alarma dada. Si la alarma fuera activada se enviaré un
email con los datos de la variable, el servidor y se indicaria que la evaluacién del valor actual ha
desencadenado la alarma. Las condiciones de activacién de alarma son: mayor que, menor que,
igual y no igual.

52

Ricardo Garzo Castro

@task()

def alarm(server,name,condition,value_limit,email):

value,quality,access_rights,time=connect.read(server,name)

if condition=='greater’:
value_limit=float(value_limit)

value=float(value)
if wvalue > value_limit:
send_mail('Online Scada Alarm', 'The variable ' + str(name) +
on server ' + str(server) + ' is greater than its value Limit '+
str(value_limit) +

'

The actual value 1is
"+str(value)+'. ", 'onlinescadapfc@gmail.com',[str(email)], fail_silently=False

if condition=="'less':
value_limit=float(value_limit)
value=float(value)

if wvalue < value_limit:
send_mail(‘Online Scada Alarm', 'The variable ' + str(name) +

’

'

’

on server ' + str(server) +
str(value_limit)+

is lesser than its value Llimit '+
". The actual value 1is

"+str(value)+'. ', 'onlinescadapfc@gmail.com',['scandiskros@gmail.com'],
fail _silently=False)

if condition=='equal ':
value_limit=float(value_limit)
value=float(value)
if value == value_limit:
send_mail(‘Online Scada Alarm', 'The variable ' + str(name) +
on server ' + str(server) + ' is equal to its Limit '+ str(value_limit),
'onlinescadapfc@gmail.com',['scandiskros@gmail.com'],

' ’

fail_silently=False)

if condition=='not equal':
value_limit=float(value_limit)
value=float(value)
if value != value_limit:
send_mail('Online Scada Alarm', 'The variable

r

’ ’

+ str(name) +
1s not equal to '+ str(value_limit)+
The actual value 1is
"+str(value)+'. ', 'onlinescadapfc@gmail.com',['scandiskros@gmail.com'],
fail silently=False)

return

’

on server ' + str(server) +

6.1.4 Fichero views.py
Este fichero contiene las funciones que han de ejecutarse cuando el usuario accede a la url
asociada.

53

Ricardo Garzo Castro

Existe un conjunto de funciones cuya Unica misién es facilitar el documento HTML al cliente.
Como parametro de entrada tienen el contenido de la peticién HTTP que ha mandado el
cliente al servidor, las funciones home y manual devuelven los ficheros home.html vy
manual.htm/ respectivamente cuando son llamadas.

@Login_required
def home(request):
return
render_to_response('home.html',context_instance=RequestContext(request))

@Login_required
def manual(request):
return

render_to_response('manual.html",context_instance=RequestContext(request))

Otro conjunto de funciones realiza una operacidn similar pero ademas afiaden un diccionario
con informacidn relativa a las variables de los PLCs que se estan controlando. De los datos que
contiene ese diccionario se rellenaran las distintas tablas o graficas de las pdginas webs.

54

Ricardo Garzo Castro

@Login_required
def read(request):

variable_list=get_variables(request.user)

return render_to_response('read.html', {'variable_List': variable_list} ,
context_instance=RequestContext(request))

@Login_required
def control(request):

variable_list=get_writable_variables(request.user)

return render_to_response(‘control.htmlL', {'variable List': variable list} ,
context_instance=RequestContext(request))

@Login_required
def display_editor(request):

variable list=get_variables(request.user)

return render_to_response('display editor.html', {'variable List':
variable list} , context instance=RequestContext(request))

@Login_required
def graph_live(request):

variable list=get_variables(request.user)

return render_to_response('graph_Live.html', {'variable List':
variable list} , context_instance=RequestContext(request))

@Login_required
def graph_db(request):

variable list=get variables(request.user)

return render_to_response('graph _db.html"', {'variable List': variable_list}
context_instance=RequestContext(request))

@Login_required
def log_db(request):

variable list=get variables(request.user)

return render_to_response('log db.htmlL', {'variable List': variable_list} ,
context_instance=RequestContext(request))

Para conseguir el diccionario con los valores actuales de las variables se utiliza en todas las
funciones enunciadas hasta ahora la funcién get_variables. Esta funcion tiene como pardmetro
de entrada el usuario que ha mandado la peticién HTTP a la aplicacién web, y crea una lista de
todas las variables que ha guardado ese usuario llamando a la funcidn variable_list_django_db,
que estad explicada mas adelante. Una vez creada la lista de variable, se crea otra con los
valores de las operaciones de lectura, que es la que finalmente se devuelve como pardmetro
de salida

55

Ricardo Garzo Castro

def get_variables(user):
variable list=variable_list django_db(user)
i=0
while i<len(variable_list):

variable_list[i].value,variable_list[i].quality,variable_list[i].access_rights,t
ime=connect.read(variable list[i].server,variable list[i].name)
i=i+1
return variable_1list

En la funcidn variable_list_django_db, que tiene como parametro de entrada el usuario que ha
realizado la peticién HTTP se realiza una consulta a la base de datos para extraer todas las
variables almacenadas por ese usuario. Las variables son filtradas de tal manera que si el
usuario hubiera introducido la misma variable mas de una vez por error el sistema lo detectay
no muestra la variable por duplicado en el SCADA.

def variable_list_django_db(user):

server_list=[]
raw_variable_list=Variable.objects.filter(user=user)
variable list = []
for e in raw_variable_list:
i=0
encontrado=False
while i<len(variable 1list):
if variable list[i].server==e.server and
variable_list[i].name==e.name:
encontrado=True
break
else:
encontrado=False
i=i+l
if not encontrado:
variable list.append(e)

return variable_1list

La funcidn control response se utiliza para generar los datos de vuelta cuando el usuario
decide enviar una peticién HTTP parar escribir sobre las variables de los PLCs. Como parametro
de entrada tiene el cuerpo de la peticion HTTP, en este cuerpo se encuentran los datos de las
variables a modificar y los valores de escritura. La funcidn verifica si el usuario ha mandado los
datos de forma correcta y escribe llamando a la funcion write del fichero automataconnect.py
en los PLCs. Finalmente, se envia un vector codificado en formato json donde se indica si las
operaciones de escritura se han realizado con éxito.

56

Ricardo Garzo Castro

@permission_required('variables.change Variable',raise_exception=True)
def control_response (request):

if request.method == 'POST':
json_data = simplejson.loads(request.body)
try:
data = json_data['data’][@]
except KeyError:
return HttpResponseServerError(“Malformed data!")

response_array=[]
i=0
while i<len(json_data['data’]):

server,name,value=json_data['data’'][i]['server'],json_data['data'][i]["'name ']
,json_data['data'][1i]['value']
response_array=connect.write(server,name,value,response_array)
i=i+l
return HttpResponse(json.dumps(response_array),
mimetype="application/json")

La funcion read_update devuelve, ante una peticion HTTP del usuario, los datos actualizados
de lectura de los PLCs. Como parametro de entrada estd el cuerpo de la peticion HTTP
conteniendo los datos de las variables a leer. Cuando la funcién ha realizado las operaciones
de lectura de todas las variables se crea un diccionario que se codifica en formato json para
enviarlo al usuario.

@Login_required
def read_update(request):
json_data={"variables":[]}
variable list=get_variables(request.user)
for e in variable_list:
dict={}
dict['server']=e.server
dict[‘name’']=e.name

dict['value'],dict['quality'],dict['access_rights'],time=connect.read(e.serve
r,e.name)
json_data['variables '] .append(dict)
return HttpResponse(json.dumps(json_data), mimetype='application/json")

La funcidn json_query_db es una funcién que realiza una consulta a la base datos para extraer
los valores histéricos de una variable determinada durante un intervalo de tiempo concretado
por el usuario para finalmente devolver un diccionario python con los valores requeridos. El
pardmetro de entrada es una peticion HTTP, en cuyo cuerpo se encuentran los datos de la
consulta: variable y su servidor, fecha de inicio de busqueda y fecha de fin de busqueda
Cuando la funcién ha realizado una consulta, donde se extraen todos los valores histéricos de
todas las variables almacenadas, se filtran los resultados en funcidn de los parametros que ha
indicado el usuario. Y finalmente se transforma la variable, que se encuentra en un formato
propio de la base de datos a un diccionario python.

57

Ricardo Garzo Castro

@Login_required
def json_query_db(request):

data=check_json_data(request)

response_json_data={"TimeSeries":[]}
g=TimeSeries.objects.all()
g=q.filter(server=data['server'])
g=q.filter(name=data['name’'])

to_year=int(data["to-year'],base=10)
to_month=int(data["to-month'],base=10)
to_day=int(data['to-day'],base=10)

from_year=int(data['from-year'],base=10)
from_month=int(data['from-month'],base=10)
from_day=int(data['from-day'],base=10)

g=q.exclude(time__gte=datetime.datetime(to_year,to_month,to_day))
g=q.filter(time__gte=datetime.datetime(from_year,from_month,from day))
g=q.order_by('time")

if not q:

dict={}

dict['value']="'None';

dict['time’']="None";

response_json_data['TimeSeries'].append(dict)
else:

for e in q:

print e.server,e.name,e.value,e.time

dict={}
dict['value']=e.value
dict["time’']=e.time
response_json_data['TimeSeries'].append(dict)
return HttpResponse(json.dumps(response_json_data, cls=DjangoJSONEncoder)
mimetype="application/json")

6.2 Coddigo del cliente

En este apartado se mostrard y explicara el cddigo que se ejecuta en la parte del cliente, y que
compone el conjunto de funciones javascript que usa el interfaz grafico. Estas funciones son:
get_variable, process_value, graph_plot. Todas estan en lenguaje JavaScript y se encuentran
en los documentos HTML que se alojan en el dispositivo del usuario final. Las funciones son
llamadas mediante botones cuando se quieren actualizar variables, escribir variables, y dibujar
una grafica en tiempo real.

6.2.1 Funcio6n get_variable

La funcidon get_variable es usada en la pagina web de lectura de variables y sirve para refrescar
los valores de las variables mediante comunicacién asincrona con el servidor. Carece de
pardmetros de entrada y utiliza un spinner para indicar al usuario que la funcion se esta
ejecutando. Mediante el uso de la funcién jQuery S.get/SSON, realiza una comunicacidn
asincrona con el servidor web y este devuelve una variable en formato json con los nuevos
valores de las variables. A continuacion y mediante selectores jQuery, se eliminan los antiguos

58

Ricardo Garzo Castro

valores de la tabla HTML de la pdgina web para introducir los datos nuevos. Finalmente se
muestra la hora de la ultima actualizacién para informar al usuario.

59

Ricardo Garzo Castro

function get_variable(){
//Activa el spinner para indicar al usuario que se esta ejecutando la funcién
S('#date').empty();
S('#date').append(spinner.el);
//Funcion para comunicacion asincrona a la url "/json/read_update" para refrescar lectura
S.getJSON("/json/read_update/", function(json_data) {
//El dato "json_data" contiene los nuevos valores de las variables devueltos por el servidor
var n = $("tr").length;
for (var i=0; i<n-1; i++){
//Mediante selectorse jQuery se modifica el aspecto de las tablas si ha habido algtn error.
if (json_data.variables[i].quality=="Error'){
S("#variable"+i).removeClass();
S("#variable"+i).toggleClass('error');

}

//Mediante selectorse jQuery se elimina el antiguo valor de la tabla HTML y se afiade el

nuevo.
S("#variable"+ i + " td#tserver").empty();

S("#variable"+ i + " td#tserver").append(json_data.variables[i].server);

S("#variable"+ i + " td#fname").empty();
S("#variable"+ i + " td#name").append(json_data.variables[i].name);
if (json_data.variables[i].quality=="Error'){
S("#variable"+ i + " td#value").empty();
S("#variable"+ i + " td#value").append('<i class="icon-exclamation-sign"></i>');
}
else{
S("#variable"+ i + " td#value").empty();

S("#variable"+ i + " td#value").append(json_data.variables[i].value);

60

Ricardo Garzo Castro

}

//Pongo fecha de la ultima actualizacién
var myDate = new Date();

var seconds=myDate.getSeconds();

var minutes=myDate.getMinutes();

var hours=myDate.getHours();

if (seconds<10) {seconds=('0"'+seconds);}
if (minutes<10) {minutes=('0'+minutes);}

if (hours<10) {hours=('0'+hours);}

var displayDate = hours + ":' + minutes + "' + seconds +'' + (myDate.getDate()) +'/'+ ('0'+
(myDate.getMonth()+1)).slice(-2) +'/' + myDate.getFullYear();

S('#date').empty();
S('#date').append('<p>Last Update: ' + displayDate + '</p>');
h;
2

6.2.2 Funcion process_value

A través de la funcion process_value se mandan al servidor web los datos de escritura de las
variables y se procesan los datos que se reciben para ser mostrados en la pagina web.
Primeramente, se utilizan selectores jQuery para manipular la estructura de los elementos del
documento HTML y se recoge la informacidon de escritura en un objeto JavaScript que es
codificado en formato json. A continuacidn se envia esta informacién al servidor web mediante
la funcién S.post de jQuery, que a diferencia de la funcién $S.get usada anteriormente, permite
mandar datos al servidor. El servidor manda en una variable llamada “dta” la informacion si las
operaciones de escritura han sido realizadas con éxito. Y finalmente, y mediante selectores
jQuery se modifica el documento HTML para informar al usuario del éxito o fracaso de la
escritura al igual que la fecha en la que se realizé.

61

Ricardo Garzo Castro

function process_value(){
S('#date').empty();
S('#date').append(spinner.el);
var n = S("tr").length;

//Mediante selecotrse jQuery se crea un objeto JavaScript con la informacion de las variables

a escribir
response = {"data" : []}
for (var i=0; i<n-1; i++){
var obj={};
S("#variable"+ i + " td#server").each(function(index, domele) {
obj['server'] = S(this).text();
1
S("#variable"+ i + " td#name").each(function(index, domele) {
obj['name'] = $(this).text();
1
S("#variable"+ i + " input:text").each(function(index, domele) {
obj['value'] = domele.value;

N;

response.data.push(obj);
}
//Codificacion de la variable JavaScript en formato json.
json_response = JSON.stringify(response);
//Funcién $.post de jQuery para envio y respuesta de datos al servidor
S.post("/json/control_response/", json_response).success(function(dta) {
for (var i=0; i<n-1; i++){

//"dta" retorna success o error, para cada operacion. Informamos al usuario con un cambio
en el color de la tabla

S("#variable"+i).removeClass();

62

Ricardo Garzo Castro

S("#variable"+i).toggleClass(dtali]);

//Pongo fecha de la ultima actualizacién
var myDate = new Date();

var seconds=myDate.getSeconds();

var minutes=myDate.getMinutes();

var hours=myDate.getHours();

if (seconds<10) {seconds=('0"+seconds);}
if (minutes<10) {minutes=('0'+minutes);}

if (hours<10) {hours=('0"+hours);}

var displayDate = hours + ":' + minutes + ":' + seconds + ' ' + (myDate.getDate()) + '/' + ('0'
+ (myDate.getMonth()+1)).slice(-2) + '/' + myDate.getFullYear();

S('#date').empty();
S('#date').append('<p>Last Update: ' + displayDate + '</p>'");
1
b

6.2.3 Funcion graph_plot

Esta funcién permite al usuario dibujar una grafica en tiempo real del estado de una variable
determinada. De esta manera su funcionamiento es similar al de la funciéon process_value,
pues ambas recogen mediante selectores jQuery los datos que el usuario ha seleccionado para,
después de codificarse en formato json, enviarlos mediante una funcion $.post al servidor de
internet. Como diferencia estd el hecho de que los datos de respuestas del servidor, son
alojados en un vector y mostrados por pantalla como una gréfica gracias a las funciones de las
librerias de jgPlot.

63

Ricardo Garzo Castro

function graph_plot(){
S('#date').empty();
S('#date').append(spinner.el);
//Se recogen los datos que ha seleccionado el usuario
response = {"data" : [}
S("select").each(function(index, domele) {
var obj={};
obj['server'] = S(this).find('option:selected').attr('id");
obj['name'] = $(this).find('option:selected').attr('class');
response.data.push(obj);
1;
//Se codifican en formato json los datos del usuario
json_response = JSON.stringify(response);
//Se verifica si la variable a mostrar ha cambiado.
if (previous_server !="None"){
if (/(previous_server == obj['server'] && previous_variable == obj['name'])){

new_data=true;

}

previous_variable = obj['name'];

previous_server = obj['server'];

//Llamada al servidor con envio de datos mediante $.post

S.post("/json/graph_live/", json_response).success(function(dta) {
//Codigo para afiadir el nuevo data al vector de la gréfica y dibujarla
var value = parselnt(dta.value,10);
if (new_data){

linel=[[dta.time,value]];

64

Ricardo Garzo Castro

var displayDate = hours + ":' + minutes + ":' + seconds + ' ' + (myDate.getDate()) + /' + ('0'

+ (myDate.getMonth()+1)).slice(-2) + '/' + myDate.getFullYear();
S('#date').empty();
S('#date').append('<p>Last Update: ' + displayDate + '</p>'");
1;
2

65

Ricardo Garzo Castro

7. Manual de Usuario

7.1 Introduccion
En este documento se explica cdmo se ha de realizar la instalacién del software para el SCADA
Online y ademds contiene un manual de instrucciones de uso.

El sistema se puede instalar en plataformas Windows, Mac y Linux; pero este manual estd
orientado a la instalacién en una plataforma Windows.

7.2 Instrucciones de uso
En la pagina web, que esta alojada en la IP http.://155.210.159.208:80/home, se encuentra un
manual basico del funcionamiento de la aplicacion web. Por lo tanto, este documento se

centra en un manual para un uso mds avanzado.

7.2.1 Acceso al menu de administrador

La aplicacion web creada por el framework de Django pone a disposicidn un menu en el
navegador web del usuario final donde se pueden editar los modelos ademds de un conjunto
de cosas relacionadas con la aplicacién, que en este caso son las tareas periddicas.

Para acceder a este menu, a la derecha de la barra de navegaciéon de la pagina web se
encuentra un menu desplegable donde el usuario pulsando el botén Settings puede acceder al
menu de administrador, como se ve en la Figura 1.

X ricardo~

i= Settings

Change password

¢ Sign Out

Figura 45 Menu desplegable del usuario.

7.2.3 Adicion de variables y tareas periddicas

La inclusion de variables y tareas periddicas nuevas se trata en los apartados 3.5.2 y 3.5.4,
respectivamente, de la Memoria de este proyecto, entonces este apartado solo se centrara en
como acceder al menu descrito en los apartados explicativos de la memoria, que estan dentro
del menu de administrador, en los apartados Variables->Variables y Djcelery->Periodic Tasks,
respectivamente y como se puede apreciar en la Figura 2 y Figura 3.

Variables

Variables 4 Add (# Change

Figura 46 Menu de administrador para Variables.

66

http://155.210.159.208/home

Ricardo Garzo Castro

Djcelery

Crontabs
Intervals
Periodic tasks
Tasks

Workers

Figura 47 Menu de administrador para Tareas periddicas.

7.2.3 Creacion de usuarios del sistema

+ Add

+ Add

+ Add

<+ Add

(& Change

(& Change

(& Change

(% Change

(% Change

Al igual que para las variables y las tareas periddicas, existe un menu para el control de usuario

del sistema. A través de este mendu, el usuario que actla como superusuario puede anadir

usuarios nuevos y dotarles de los credenciales para acceder a las distintas tareas del SCADA.

De esta manera se puede configurar que es lo qué haria un usuario en el sistema: se puede

configurar que pueda entrar al SCADA pero solo para realizar tareas de lectura, otro que pueda

realizar operaciones de control en los PLCs pero no afiadir usuarios nuevos o también un

usuario que pueda tener la funcionalidad completa del SCADA su disposicion.

Para gestionar los usuarios se acceder a Auth->Users dentro del menu de administrador. Como

se ve en la Figura

Auth

Groups

Users

Figura 48 Menu de gestion de usuario del sistema SCADA.

& Add

4 Add

(& Change

 Change

Durante el proceso de creacién de un nuevo usuario se pasa por formularios para indicar el

nuevo nombre y contrasefia, como indica la Figura 5

67

Ricardo Garzo Castro

Username:

Required. 30 characters or fewer. Letters, digits and @/./+/-/_
only.

Password:

Password confirmation:

Enter the same passwaord as above, for verification.

Save and add another Save and continue editing

Save

Figura 49 Formulario de creacion de un nuevo usuario.

En el siguiente apartado del formulario se indica el nivel de acceso que tendra el usuario al
sistema. En el ejemplo de la Figura 6 se puede observar un usuario con un conjunto de
permisos que se pueden configurar para determinar el nivel de acceso deseado para el usuario
acrear.

e Can add user: para afadir usuarios nuevos al sistema.

e (Can add periodic task: podrd aiadir nuevas tareas periddicas.

e (Can add variable: nuevas variables se pueden controlar en el sistema.

e (Can change variable: permite realizar operaciones de escritura en las variables.

Specific permissions for this user. Hold down "Control”, or "Command” on a Mac, to select more than one.
Available user permissions @ Chosen user permissions @

Filter auth | user | Can add user

' djcelery | periodic task | Can add periodic
variables | time series | Can change time variables | variable | Can add variable
variables | time series | Can delete time = variables | variable | Can change variable
variables | variable | Can delete variable

Choose all © ' Remove all

Figura 50 Formulario para los permisos de usuario.

7.3 Instrucciones de instalacion

En este apartado se enunciard los paquetes de software a instalar y se explicard cdmo se han
de incorporar los archivos del autor ademas de la configuracion de los programas pertinentes.
Si se estd en una plataforma Windows, los paquetes estan incluidos en el CD del proyecto.

68

Ricardo Garzo Castro

Software a instalar:

e Python 2.7: Lenguaje de programacion usado en el proyecto. Disponible en la web de
Python.

e Pip: Herramienta para la instalacién y manejo de paquetes Python. Disponible en la
web de pip.

e Pywin32: Extensiones de Python para Windows. Disponible en la pagina web de
Pywin320

e OpenOPC: Cliente OPC usado en el SCADA. Disponible en la pagina web de OpenOPC
for Python.

e Apache2.2: Servidor HTTP recomendado para el proyecto. Disponible en la pagina web
de Apache.

e RabbitMQ: Para las tareas automatizadas. Disponible en la web de RabbitMQ.

Adicionalmente a estos paquetes de software, que son archivos ejecutables en la plataforma
Windows, se instalardn paquetes python a través de la consola de comandos. Esto se detallara
a continuacién.

7.4.1 Paquetes Python

Como se ha explicado, python es el lenguaje de programacion predominante en la aplicacién.
Aqui se detallan los paquetes adicionales a instalar. Estos paquetes pueden ser instalados en
cualquier plataforma, pero aqui se usara Windows como ejemplo.

Para manejar Python en Windows desde la consola de comandos han de configurarse las
variables del entorno donde se afiadiran a la variable “Path” la siguiente directiva:

e “:C:\Python27;”
Con esto se consigue accede a la consola de Python desde la consola de commandos.
A través de Pip instalaremos los siguientes paquetes de Python con las siguientes directivas:

e “pipinstall django” Django es el framework de la aplicacién web.
e “pipinstall django-celery” Celery es un ejecutor de tareas.
e “pipinstall pyro” Libreria Django para objetos.

C:~>pip install django

Dovnloading- unpacking django
Dovnloading Django-1.6.2.tar.gz ¢6.6MB>»: 6.6MB downloaded
Running setup.py egg_info for package django

* found under dir

warning: neo previously—included files matching ' __pycache__
ectory *x’

warning: no previously—included files matching *#_pylcol® found under direct
ory ¥ gt
Installing collected packages: django

Running setup.py install for django

* found under dimw

wvarning: no previously—included files matching ' __pycache__
ectory =’

warning: no previously—included files matching *#_pylcel’ found wnder direct
oy Ly
Successfully installed django
Cleaning up...

G2

Figura 51 Ejemplo del uso de pip en la consola de comandos Windows.

69

Ricardo Garzo Castro

7.4.2 Archivo de configuracion Apache
A la hora de configurar el servidor Apache, hay que tener en cuenta:

e Moddulo “mod_wsgi”
e Configuracién de “http.conf”

El primer médulo hay que incluirlo en el directorio de médulos de Apache, y sirve para
comunicar al servidor con la aplicacién Python del SCADA. El mddulo se puede bajar de la web
de mod_wsgi para la plataforma necesaria.

Para el archivo de configuracién http.conf, se puede sustituir el que viene por defecto y usar el
que se suministra en el CD de instalacion. A continuacién se indican los cambios que habria
que hacer en el archivo http.conf de no quererse sustituir completamente:

e “ServerRoot “C:/Apache2.2””. O donde esté instalado Apache.

e “LoadModule wsgi_module modules/mod_wsgi.so”. Para indicar que cargamos el
madulo wsgi y el directorio donde esta alojado.

e “DocumentRoot “C:/Apache2.2/htdocs”.”

e Las siguientes directivas que se recogen en la imagen corresponden a la configuracion
para el interfaz wsgi. Sirven para definir, donde se encuentra el archivo para
comunicar la aplicacién web con el servidor Apache y los directorios en los que Apache
puede acceder para suministrar archivos al usuario como son los documentos estaticos
por ejemplo.

wsGIscriptalias / C:/django_scada/django_scada/wsgi. py
wsGIPythonPath C:/django_scada

alias /static/ C:/django_scada/apache/static/

#Directiva para suministrar los archivos estaticos
<Directory C:/django_scada/apache/static/>

order deny,allow

Allow from all

</Directory>

#Directiva para suministrar el archivo wsgi
<Directory C:/django_scada/django_scada/>
<Files wsgi.?¥>

order deny,allow

Allow from all

</Files>

</Directorys

Figura 52 Directivas aplicables al interfaz wsgi en Apache.

70

