Future Generation Computer Systems 157 (2024) 313-329

Contents lists available at ScienceDirect x =
FIBICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs e

»

Check for

GenArchBench: A genomics benchmark suite for arm HPC processors et

Lorién Lopez-Villellas ¢!, Rubén Langarita-Benitez ?, Asaf Badouh 2, Victor Soria-Pardos?,
Quim Aguado-PuigP?, Guillem Lépez-Paradis ?, Max Doblas ?, Javier Setoain ¢, Chulho Kim ,
Makoto Ono ¢, Adria Armejach ¢, Santiago Marco-Sola ¢, Jestis Alastruey-Benedé 9,

Pablo Ibafiez ¢, Miquel Moret6 ¢

a Barcelona Supercomputing Center, Barcelona, Spain

b Department d’Arquitectura de Computadors, Universitat Autonoma de Barcelona, Barcelona, Spain

¢ Department d’Arquitectura de Computadors, Universitat Politécnica de Catalunya, Barcelona, Spain

d Departamento de Informdtica e Ingenieria de Sistemas/Aragén Institute for Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain
¢ Arm Research, Cambridge, United Kingdom

f Lenovo Research, United States

& Lenovo Infrastructure Solutions Group, United States

ARTICLE INFO ABSTRACT

Keywords: Arm usage has substantially grown in the High-Performance Computing (HPC) community. Japanese super-
Genomics computer Fugaku, powered by Arm-based A64FX processors, held the top position on the Top500 list between
Arm June 2020 and June 2022, currently sitting in the fourth position. The recently released 7th generation of

High-performance computing
Parallel computing

Vector computing
Performance characterization

Amazon EC2 instances for compute-intensive workloads (C7 g) is also powered by Arm Graviton3 processors.
Projects like European Mont-Blanc and U.S. DOE/NNSA Astra are further examples of Arm irruption in HPC. In
parallel, over the last decade, the rapid improvement of genomic sequencing technologies and the exponential
growth of sequencing data has placed a significant bottleneck on the computational side. While most genomics
applications have been thoroughly tested and optimized for x86 systems, just a few are prepared to perform
efficiently on Arm machines. Moreover, these applications do not exploit the newly introduced Scalable Vector
Extensions (SVE).

This paper presents GenArchBench, the first genome analysis benchmark suite targeting Arm architectures.
We have selected computationally demanding kernels from the most widely used tools in genome data
analysis and ported them to Arm-based A64FX and Graviton3 processors. Overall, the GenArch benchmark
suite comprises 13 multi-core kernels from critical stages of widely-used genome analysis pipelines, including
base-calling, read mapping, variant calling, and genome assembly. Our benchmark suite includes different
input data sets per kernel (small and large), each with a corresponding regression test to verify the
correctness of each execution automatically. Moreover, the porting features the usage of the novel Arm SVE
instructions, algorithmic and code optimizations, and the exploitation of Arm-optimized libraries. We present
the optimizations implemented in each kernel and a detailed performance evaluation and comparison of
their performance on four different HPC machines (i.e., A64FX, Graviton3, Intel Xeon Skylake Platinum, and
AMD EPYC Rome). Overall, the experimental evaluation shows that Graviton3 outperforms other machines
on average. Moreover, we observed that the performance of the A64FX is significantly constrained by its
small memory hierarchy and latencies. Additionally, as proof of concept, we study the performance of a
production-ready tool that exploits two of the ported and optimized genomic kernels.

1. Introduction In recent years, Arm has burst onto the high-performance computing
market with influential companies and consortiums that have become

For many years, Arm processors have dominated the mobile device licensees, such as Fujitsu, Amazon, Apple, NVIDIA, Samsung, AMD,
segment. Their energy efficiency and license-based business model have
been the pillars underpinning this success.

Broadcom, HUAWEI, and Qualcomm. Currently, the Arm-based Fujitsu

* Correspondence to: Departamento de Informética e Ingenieria de Sistemas/Arag6n Institute for Engineering Research (I3A), Universidad de Zaragoza, Spain.
E-mail address: lorien.lopez@unizar.es (L. Lépez-Villellas).
1 The corresponding author conducted this work while affiliated with the Barcelona Supercomputing Center.

https://doi.org/10.1016/j.future.2024.03.050

Received 3 November 2023; Received in revised form 25 March 2024; Accepted 31 March 2024

Available online 2 April 2024

0167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:lorien.lopez@unizar.es
https://doi.org/10.1016/j.future.2024.03.050
https://doi.org/10.1016/j.future.2024.03.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.03.050&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

L. Lopez-Villellas et al.

A64FX processor powers the Japanese supercomputer Fugaku, which
held the top position on the Top500 list between June 2020 and June
2022 and is currently in the fourth position. Moreover, Amazon has
been using Arm processors to power its cloud computing platform
(AWS), starting in 2018 with the Graviton processor. They followed
with the second generation of Graviton in 2019 and the recently
released Graviton3.

In the near future, NVIDIA Grace CPUs and Ampere servers will
be leading further efforts to breakthrough Arm in HPC. As a result,
large-scale computing infrastructures, usually equipped with x86 and
IBM Power processors, now have an additional competitive alternative.
However, most of the scientific code for HPC is not fully adapted and
optimized for Arm architectures.

Over the last decade, genome sequencing has become the corner-
stone of genomics and modern precision medicine. Due to the rapid
improvement of sequencing technologies, it is currently possible to
sequence an individual’s genome in less than 24 h. This breakthrough
has enabled effective personalized healthcare, allowing the diagnosis
and treatment of diseases based on each person’s unique genomic
disposition [1]. Furthermore, genome sequencing has also been proven
crucial in cancer studies [2], drug development [3], or COVID-19 out-
break control [4]. In the past 20 years, genome sequencing costs have
dropped dramatically and the amount of sequencing data produced
yearly has increased exponentially. More notably, this increase in data
production has outperformed the pace of Moore’s law. As a result, a
significant bottleneck in current genome sequencing analysis is placed
on the computational side, executing computational-intensive genomics
tools and pipelines.

Genome analysis pipelines have historically been designed to run
efficiently on x86 architectures. With the irruption of Arm-based HPC
servers, adapting and optimizing genomics tools to exploit HPC Arm
architectures effectively has become paramount. For that, we have
selected 13 computationally-demanding CPU kernels from the most
widely-used genomics tools, and we have included them in a bench-
mark suite called GenArchBench. All the kernels exploit multi-core
parallelism and implement common stages from widely-used genome
analysis pipelines such as base-calling, read mapping, variant call-
ing, and de-novo assembly. Additionally, GenArchBench includes input
datasets for each kernel (i.e., a small dataset and a large dataset per
kernel) and their corresponding outputs to be used as ground truth. The
small datasets have been sized to require single-thread execution times
no longer than a few minutes (for testing purposes); meanwhile, large
datasets require several minutes (for performance evaluation purposes).
For convenience, we provide automatic regression tests for all the
kernels to verify the correctness of the outputs.

Furthermore, this work introduces code adaptations and optimiza-
tions of the genomics kernels targeting Arm HPC CPUs. GenArchBench
leverages Arm-specific HPC libraries (carefully optimized for Arm pro-
cessors) and presents algorithmic and code optimizations to exploit the
architecture and resources of Arm HPC machines. Notably, we have
optimized some kernels by utilizing the latest Arm Scalable Vector
Extensions (SVE) to leverage the potential of the latest Arm HPC
Processors.

In addition to the benchmark suite porting and optimization, this
work presents a performance characterization of GenArchBench on
four HPC machines (two Arm-based and two x86-based nodes). The
experimental evaluation compares the performance of an A64FX pro-
cessor, a Graviton3 processor, an Intel Xeon Skylake Platinum 8160
processor, and an AMD EPYC 7742 Rome processor. This characteri-
zation includes the kernels’ instruction breakdown, single-thread and
multi-thread performance evaluations, a microarchitecture bottleneck
analysis, and an energy-to-solution study in the different processors.
Ultimately, we evaluate the performance impact of these optimizations
by integrating two of the accelerated kernels in a production-ready tool
used in a myriad of genome analysis pipelines.

In summary, this work makes the following contributions:

314

Future Generation Computer Systems 157 (2024) 313-329

+ We present GenArchBench, the first benchmark suite targeting
Arm HPC architectures for genome analysis pipelines and tools.
The benchmark suite is publicly available at https://github.com/
LorienLV/genarchbench/releases/tag/1.0.0.

We propose HPC adaptations and code optimizations applied to
GenArchBench’s kernels to exploit the potential of Arm HPC pro-
cessors, leveraging Arm-specific HPC libraries and Arm Scalable
Vector Extension (SVE).

We perform a comprehensive performance characterization of
GenArchBench in two HPC Arm processors (i.e., A64FX and
Graviton3). We compare the performance of Arm against two
reference HPC x86 machines.

2. Background

Genome data analysis pipelines comprise multiple stages and com-
putational tools, from sequencing biological samples to deriving mean-
ingful data analysis results for scientists and healthcare professionals.
This section introduces the main sequencing technologies, pipelines,
and tools used in common genome analysis (Fig. 1 shows a succinct
graphic summary).

2.1. Sequencing technologies

Before any computational analysis can be performed, biological
DNA samples must be converted to digital data. This process is per-
formed by the sequencing machines (Fig. 1-1), and, despite the remark-
able advances in the last decades, these machines are still unable to
read a complete DNA molecule from end to end. Instead, sequencing
machines allow reading relatively small chunks of DNA, called reads
or fragments, from random locations within the donor’s DNA genome.
Afterwards, sequenced reads must be jigsaw together to reconstruct or
reassemble the original donor’s genome.

Sequencing machines are commonly categorized into three genera-
tions based on their technological advancements. The first sequencing
technologies (Sanger et al. [5] and Maxam et al. [6]) were developed
in 1977 and used to sequence the first draft of the human genome in
2000 [7]. Since then, sequencing technologies have evolved quickly,
simplifying the sequencing process and increasing the data-production
throughput. In the mid-2000s, second-generation technologies [8] were
introduced and soon replaced first-generation technologies. Second-
generation technology can generate fixed-length sequences of 100-300
bps at a throughput of tens of gigabytes per hour and with a low reading
error rate (0.1% of the read length). At present, Illumina dominates the
market of second-generation sequencing machines. Recently introduced
third-generation technologies, known as long-read sequencing, can read
variable-length sequences of considerable length (i.e., tens of kilo base-
pairs) at the expense of lower production throughput (less than 10
Gb/hour) and higher reading error rate (0.1%-10% of the read length).
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)
are the most notable manufacturers of third-generation sequencing
technologies.

2.2. Genome data analysis pipelines and tools

Before any processing can be performed, the sequencing machines’
raw signals must be transformed into sequences of nucleotides (A,
C, G, T). This process is called basecalling (Fig. 1-2). Typically, a
specialized basecalling tool is used to perform this process tailored to
each sequencing technology. For instance, Bonito [9] and Guppy [10]
are two of the most widely-used tools for basecalling Oxford Nanopore’s
raw-signal output.

Once the sequences of nucleotides are decoded, sequenced reads
must be processed and analyzed to derive meaningful biological in-
sights. Although many different genome analyses can be performed
using sequenced data, most analyses begin with either genome rese-
quencing (1-3.a) or genome assembly (1-3.b). Both analyses seek to
reconstruct the sample’s genome by putting together all the sequenced
reads.

https://github.com/LorienLV/genarchbench/releases/tag/1.0.0
https://github.com/LorienLV/genarchbench/releases/tag/1.0.0
https://github.com/LorienLV/genarchbench/releases/tag/1.0.0

L. Lopez-Villellas et al.

1. Sequencing

2. Basecalling

Future Generation Computer Systems 157 (2024) 313-329

3.a. Genome Resequencing

1. Read Mapping

2. Variant Calling

1. Seed 2. Chain 3. Extend J
Se:d“ de‘pos“,o,,] Read Reference [AJG[CA]T]T]C]
AlT][c[L0 | [6]cla]T]
Alrofass] H Aligned
Reference E Resds G|r[r]
e = E [Ale[cls[T)
= [] Reaa
— ﬁ o~
== = \7 W [l FMI CHAIN Bl FAST-CHAIN [BPM [@ Bsw Ml WFA NN-VARIANT 4 PILEUP
Nlumina PacBio ~ ONT 3.b. Genome Assembly (De-Novo Assembly)
IS < [> [~] <]
EERARF AR 1. K-mer Counting 2. De-Bruijun Graph 3. Multiple Sequence
Construction Alignment
AL TeTeTe [AT Lemar || & G- ®
Reads A|T|A|120 ~ToTc
A NEEE ©
Image Movie Squiggle e o
A[T[Clam $40 ofo
Alr]cose © ©,
N ABEA [l NN-BASE KMER-CNT DBG POA

Fig. 1. Workflow diagram of common genome analysis pipelines. Going from (1) sequencing, through (2) basecalling, to (3.a) genome resequencing or (3.b) and genome assembly.

The figure shows the different computational kernels used within each stage or tool.

2.2.1. Genome resequencing

The most common approach to reconstructing the sample’s genome
is by resequencing and involves reconstructing the sample’s genome
using a previously known reference genome. For that, each sequenced
read is located and matched to the most likely originating position
in the reference genome, allowing small differences (e.g., mismatches,
insertions, and deletions). This processes is called read mapping (Fig. 1-
3.a.1) and it is implemented by many tools like BWA-MEM2 [11,12],
Minimap2 [13], Bowtie2 [14,15], and GEM [16]. Read mapping is one
of the most computationally expensive steps in all genome sequence
analyses. Consequently, read mapping has been extensively studied and
optimized.

Most sequence mappers are based on the seed-chain-extend tech-
nique. This technique implements three algorithmic steps to swiftly
locate and align a sequence with a reference genome. During the first
step, known as seeding (Fig. 1-3.a.1.1), the mapper searches small
subsequences of the reads (seeds) in the reference leveraging an index
structure. The most widely-used indexes used for seeding are FM-
Index [17] and hash-tables [18,19]. Seeding reduces the potential num-
ber of locations in the reference where a sequence can match, decreas-
ing the amount of work performed in subsequent steps. Afterwards, a
chaining step (Fig. 1-3.a.1.2) is performed to reduce further the list of
possible matching locations in the reference. During the chaining step,
all the mapped seeds are processed to find a colinear chain of seeds
that can potentially match the input sequence. Finally, during the ex-
tensién or alignment step (Fig. 1-3.a.1.3), the input sequence is aligned
against the candidate location in the reference genome, discovering the
differences between the donor’s sequence and the reference genome.
Usually, a dynamic programming-based algorithm, such as Needleman—
Wunsch [20] or Smith-Waterman-Gotoh [21,22], is used to compute
the alignment.

After sequence mapping, once the reads are located in the refer-
ence genome, a variant calling algorithm (Fig. 1-3.a.2) determines the
variants and mutations between the donor’s genome and the refer-
ence genome. These variations provide crucial insights into the ge-
netic makeup of the sequenced individual, potentially revealing ge-
netic variations that may be associated with diseases and health con-
ditions. Notable examples of widely-used variant callers are GATK
Haplotype-Caller [23], Platypus [24], Clair [25,26], DeepVariant [27]
and Medaka [28].

315

2.2.2. Genome assembly

Despite the simplicity and effectiveness of genome resequencing,
there is still a lack of high-quality reference genomes for many species.
In those situations, genome de-novo assembly (Fig. 1-3.b) is used to
reconstruct the donor’s genome from scratch jigsawing the sequenced
reads together.

Most popular de-novo assembly methods rely on de Bruijn graphs.
For a given set of sequences, its corresponding de Bruijn graph contains
a node per each sequence’s k-mer (i.e., sub-string of length k nu-
cleotides) and an edge that connects adjacent and overlapping k-mers.
Before constructing the de Bruijn graph of a set of input sequences, the
number of unique k-mers in the reads is counted (Fig. 1-3.b.1) to prune
the least frequent ones (likely artifacts of the sequencing process).
Afterwards, the de Bruijn graph is constructed (Fig. 1-3.b.2). Then,
the consensus sequence is derived using multiple sequence alignment
(MSA) algorithms (Fig. 1-3) and the constructed de Bruijn graph.
Notable examples of de Bruijn graph based assemblers are Flye [29],
Canu [30], and Racon [31].

2.2.3. Metagenomics

Beyond genome resequencing, variant calling, and de-novo assem-
bly, many previously described analysis steps and tools can be found
in other genome analysis pipelines. This is the case for many metage-
nomics analysis pipelines. Metagenomics pipelines seek to analyze
genomic information from mixed microbial communities, providing
insights into the diversity, interactions and function of microorgan-
isms present in an environmental sample. Metagenomics analyses are
performed using tools such as Centrifuge [32], RawMap [33], UN-
CALLED [34], ReadFish [35], Kraken2 [36] and Clark [37]. These
tools employ k-mer counting (Fig. 1-3.b.1) and seeding techniques
(Fig. 1-3.a.1.1) for their analysis. Moreover, variant callers like GATK
Haplotype Caller [23] and Platypus [24] are used to construct De Bruijn
graphs (Fig. 1-3.b.2) and correct artifacts produced during the map-
ping process (Fig. 1-3.a.1). Furthermore, the chaining process (Fig. 1-
3.a.1.2) is also utilized for genome assembly when using alternative
approaches based on de Bruijn graphs [38].

3. GenArch benchmark suite

The GenArch benchmark suite comprises 13 multithreaded CPU
kernels derived from the most widely used genomics tools and covers

L. Lopez-Villellas et al.

the most important genome sequencing steps. It includes ten kernels
from the GenomicsBench [39] benchmark suite and three additional
kernels: the Bit-Parallel Myers algorithm [40] (BPM), the Wavefront
Alignment algorithm [41] (WFA), and FAST-CHAIN [42]. BPM and
WFA complement the sequence alignment kernels of GenomicsBench to
better capture contemporary trends. Additionally, FAST-CHAIN [42] is
a recent vector-enabled reimplementation of the CHAIN kernel present
in GenomicsBench, which allows us to further explore the capabilities
of SVE.

Additionally, GenArchBench includes input datasets for each ker-
nel (i.e., a small dataset and a large dataset per kernel) and their
corresponding outputs to be used as ground truth. The small datasets
have been sized to require single-thread execution times no longer
than a few minutes (for testing purposes); meanwhile, large datasets
require several minutes (for performance evaluation purposes). For
convenience, we provide automatic regression tests for all the kernels
to verify the correctness of the outputs.

Although some kernels included in GenArchBench can exploit the
capabilities of modern GPUs, this research focuses on porting, accel-
erating, and evaluating the performance of genomics kernels in Arm
processors. Moreover, the Arm-systems evaluated in this work (A64FX
and Graviton3) are not equipped with GPUs.

The following text presents GenArchBench’s kernels, briefly describ-
ing its functionality, which tools use them, and a description of their
usage and inputs.

Adaptive Banded Signal to Event Alignment (ABEA): ABEA is
a dynamic programming algorithm that compares raw nanopore sig-
nals from ONT sequencing machines to a reference genome sequence.
ABEA’s implementation is based on the Suzuki—Kasahara (SK) [43] al-
gorithm. This step is performed in some tools, such as Nanopolish [44],
to correct errors produced in the basecalling process (Fig. 1-2). For
GenArchBench, we have used the CPU implementation of f5c¢ [45],
a version of ABEA based on Nanopolish’s, optimized for both CPU-
only and hybrid CPU/GPU executions. This implementation of ABEA
exploits coarse-grain multi-threading by dividing the raw signals of
the input between the available cores. Since the signals are not of
regular size, f5c implements work-stealing to improve load balance.
The small and large inputs comprise 1K and 10K raw FAST5 (ONT)
reads from chromosome 22 of NA12878 and GRCh38 as the reference
genome [46].

Bit-Parallel Myers (BPM): BPM [40] is a dynamic programming
algorithm that finds all locations a query string of size m matches a
reference string of size n with k or fewer differences (Fig. 1-3.a.1.3). It
computes the approximate string matching of two strings in O(mn/w)
time, where w is the word size of the machine. BPM is used in read map-
ping tools, such as GEM-Mapper [16], Edlib [47], GraphAligner [48]
or Hobbes [49]. For GenArchBench, we have used an in-house imple-
mentation of the algorithm that exploits multi-threading by assigning
different pairs of strings to different threads. The small and large
inputs comprise 100K and 10M sequence pairs from human sample
SRR7733443 downloaded from the sequence read archive [50].

Banded Smith-Waterman (BSW): The Smith-Waterman algorithm
[21] is a dynamic programming algorithm that computes the local
sequence alignment of two sequences of length m and n, respectively,
in O(mn) time and space. A banded version of Smith-Waterman [51]
is used to align sequences with a maximum of w insertions/deletions,
reducing the time and space complexity to O(wn) (Fig. 1-3.a.1.3).
BSW is used in variant discovery tools such as GATK [23], and in
sequence alignment software like BWA-MEM [11,12]. For GenArch-
Bench, we have used BWA-MEM2’s x86-vectorized implementation of
BSW. In order to exploit multi-threading, the set of pairs of strings to
align is dynamically divided between processors. The small and large
inputs comprise 100K and 10M sequence pairs from human sample
SRR7733443 [50].

Seed Chaining (CHAIN): Given the set of seeds from a DNA se-
quence (read) mapped to another sequence, such as the reference

316

Future Generation Computer Systems 157 (2024) 313-329

genome, the chaining step (Fig. 1-3.a.1.2) aims to find a chain of
colinear seeds. This is a time-consuming step performed by alignment
tools, such as Minimap2, and by de-novo assemblers like Flye [29]
or Canu [30]. We have used the implementation of CHAIN found in
GenomicsBench that extends Minimap2’s to exploit inter-task paral-
lelism across reads. The small and large inputs comprise the seeds from
1K, and 10K reads of Pacbio’s Caenorhabditis elegans worm sequence
data [52].

SIMD Seed Chaining (FAST-CHAIN): The previously presented
implementation of the CHAIN algorithm utilizes heuristics to stop
executing when the result is sufficiently good. This speedups execution
at the cost of accuracy, and it hinders the vectorization of the kernel.
FAST-CHAIN [42] is an x86-vectorized version of CHAIN that removes
the heuristics to exploit SIMD computation. As a result, FAST-CHAIN
outputs accurate results and presents performance gains compared to
CHAIN. FAST-CHAIN uses the same inputs as CHAIN.

De Bruijn Graph Construction (DBG): The De Bruijn graph (DBG)
of an input set of reads is used to represent the overlaps between the
sub-strings of length k (k-mers) found in the input (Fig. 1-3.b.2). Each
node of the graph represents a k-mer and the edges connect adjacent
k-mers in the input set. The construction of these graphs is a time-
consuming step in de-novo assemblers like Flye [29], Canu [30] or
Racon [31], and in variant callers such as GATK [23] and Platypus [24].
For GenArchBench, we have used the DBG construction of Platypus,
which exploits parallelism by assigning different regions of the input
to different threads. Both inputs employ chromosome 22 of BWA-MEM
aligned records from the Platinum Genomes dataset [53]. The small
input uses bases 16M-16.5M, while the large input uses the entire
chromosome.

FM-Index Search (FMI): The FM-index is a compressed sub-string
index based on the Burrows—Wheeler transform [54]. Given a sub-string
s, FM-index can be used to find the location of s in the reference
genome in O(|s|) time, where |s| is the length of the sub-string (Fig. 1-
3.a.1.1). The FM-index data structure is used in sequence alignment
tools such as BWA-MEM [11,12] or Bowtie2 [15], and in metagenomic
classification software like Centrifuge [32]. For GenArchBench, we
have used the super-maximal exact match kernel of BWA-MEM2, which
utilizes the FM-Index structure. This kernel exploits parallelism by
dynamically assigning batches of reads among threads. The small and
large inputs comprise 1M and 10M pairs of 151 bases from human
sample SRR7733443 [50].

K-mer Counting (KMER-CNT): K-mer counting aims to count the
number of occurrences of each k-mer in an input sequence (Fig. 1-
3.b.1). This task is performed in de-novo assemblers such as Flye [29]
or Canu [30] and in metagenomics classification software like Clark
[37]. Additionally, note that the functionality of KMER-CNT is very
similar to accessing large lookup tables, as done in state-of-the-art map-
pers like Minimap2 [13]. For GenArchBench, we have used the k-mer
counting kernel of Flye. This implementation divides the input-reads
between threads and relies on the thread-safe hash-map implementa-
tion of Libcuckoo library [55] to concurrently increase the number of
individual k-mers shown by each thread. The small and large inputs
comprise 1K and 50K Escherichia coli Oxford Nanopore reads sequenced
by Loman Labs [56].

Neural Network-based Base Calling (NN-BASE): ONT sequencing
machines monitor changes in an electrical current as single strands of
DNA or RNA pass through a protein nanopore. These changes in the
electrical current are then converted to a sequence of nucleotide bases
in the basecalling process (Fig. 1-2). The analog signal inevitably con-
tains ambiguities due to noise or measurement errors. Some basecallers,
such as Guppy [10] and Bonito [9], rely on neural networks to solve
these ambiguities, determining the most likely observed nucleotide
in each part of the electrical current. For GenArchBench, we have
used Bonito’s deep-learning base-caller (NN-BASE), which depends on
the PyTorch library [57]. Bonito splits the input signal into smaller
chunks of regular size and feeds them to a PyTorch neural network that

L. Lopez-Villellas et al.

Future Generation Computer Systems 157 (2024) 313-329

Table 1
Characteristics overview of the experimental setup.
A64FX Graviton3 SKX Rome
Cores 4 x 12 (+ 4 assistant) 64 2 X 24 64
SMT No No Disabled Disabled
Frequency 2.2 GHz (static) 2.6 GHz 1-2.1 GHz (dynamic) 1.5-2.25 GHz (dynamic)
Max. power 120 W N/A 2 x 150 W 225 W
Mem. capacity 4 x 8 GB 8 x 16 GB 2x6x8GB 16 x 64 GB
Mem. technology on-package HBM2 off-package DDR5 4800 MHz off-package DDR4 2667 MHz off-package DDR4 3200 MHz
Peak bandwidth 4 x 256 GB/s 300 GB/s 2 x 120 GB/s 204.8 GB/s
L1i 64 KB (4-way) 64 KB 32 KB (8-way) 32 KB (8-way)
L1d 64 KB (4-way) 64 KB 32 KB (8-way) 32 KB (8-way)
L2 - 1 MB 1 MB (16-way) 512 KB (8-way)
LLC 4 x 8 MB (16-way) 32 MB 2 x 33 MB (11-way) 16 x 16 MB (16-way)

Vector extension NEON/SVE 512 bits NEON/SVE 256 bits

SSE/AVX2/AVX512 SSE/AVX2

internally exploits multi-threading. The small and large inputs comprise
1 and 10 raw FASTS5 reads from chromosome 20 of NA12878, obtained
from the Nanopore WGS Consortium [46].

Neural Network-based Variant Calling (NN-VARIANT): Variant
calling is the process of detecting the differences (variants or mutations)
between the aligned reads and the reference genome (Fig. 1-3.a.2). This
is a costly process performed by statistics-based variant callers, such as
GATK HaplotypeCaller [23] or Platypus [24], and deep-learning variant
callers, such as Clair [25,26], DeepVariant [27] or Medaka [28]. For
GenArchBench, we have used the second generation of Clair variant
caller (Clair3), based on the TensorFlow framework [58]. Clair3 ex-
ploits parallelism by dividing the input into regular-size chunks, and
each of these chunks is processed by one thread using TensorFlow. Our
small and large inputs comprise 100K and 10M reference positions,
respectively, of chromosome 20 of HG002 from NITS’s Genome in
a Bottle (GIAB) project [59]. We are using Clair3’s ONT pre-trained
model r941_prom_hac_g360+g422 [60].

Pileup Counting (PILEUP): Given the alignment data of a set of
aligned reads to a region of a reference genome, usually a SAM or BAM
file [61], pileup counting is the process of summarizing the base-pair in-
formation at each chromosomal position. This summary, called pileup,
is customary the input for long-read neural network variant callers such
as Clair [25,26] or Medataka [28] (Fig. 1-3.a.2). For GenArchBench
we have used the pileup counting implementation of Medaka, which
exploits multi-thread parallelism by distributing 100 kilobase regions
of the reference genome between threads. The small input comprises
bases 1-1499707 of the Staphylococcus aureus genome [10], and the
large input comprises bases 1-1412827 of chromosome 20 of sample
HGO002 [59].

Partial-Order Alignment (POA): The construction of an overlap
graph from a set of reads leads to an approximate representation of the
original sample’s genome. To determine the consensus genome of the
sample, the alignment of all the reads against each other is performed
in a process called multiple sequence alignment (MSA) (Fig. 1-3.b.3).
The Partial Ordered Alignment (POA) algorithm [62] computes the
MSA of all sequences by incrementally constructing a partially-order
graph aligning new sequences to it using a dynamic programming
algorithm such as Smith-Waterman [21] or Needleman-Wunsch [20].
The multiple alignment sequence (consensus sequence) is inferred from
the graph by using the Heaviest Bundle algorithm [63]. POA is used
in software packages such as Nanopolish [44] or Racon [31]. For
GenarchBench we have used the SIMD-optimized version of POA of the
SPOA library [64]. SPOA exploits multi-threading by computing the
partially-ordered graph of multiple sets of sequences in parallel. The
small and large inputs comprise 1K and 6K sets of multiple sequences
aligned to a reference genome, each containing between 5 and 115
sequences. This data comes from Minimap2’s polishing step of the
Flye-assembled Staphylococcus Aureus genome [10].

Wavefront Alignment (WFA): The wavefront alignment algorithm
(WFA) [41] is a pairwise alignment algorithm (Fig. 1-3.a.1.3) that takes
advantage of homologous regions between the sequences to accelerate
the alignment process. As opposed to traditional dynamic programming

317

algorithms that run in quadratic time, WFA time complexity is O(ns),
proportional to the read length n and the alignment score s, using
O(s*) memory. The wavefront algorithm is used in tools such as wf-
mash [65], AnchorWave [66] or AncestralClust [67]. GenArchBench
uses a custom multi-thread implementation of the algorithm, in which
each thread works in the alignment of a pair of strings. The small and
large inputs comprise 100K and 1M sequence pairs from human sample
SRR7733443 [50].

4. Experimental setup

Our experimental setup consists of two Arm and two x86 HPC
systems: a compute node featuring an Arm-A64FX processor (A64FX),
a c7 g.16xlarge Amazon-EC2 instance (Graviton3), a system with two
x86-64 Intel Xeon Skylake Platinum 8160 (SKX), and a compute node
with one x86-64 AMD EPYC 7742 Rome processor (Rome). Table 1
presents an overview of the main characteristics of the four systems.

In terms of computing cores, the A64FX is based on four Non-
Uniform Memory Access (NUMA) domains within the chip, also re-
ferred to as core memory groups (CMG). Each NUMA domain has 12
cores, plus one assistance core not used for general computing (running
daemons, I/0, asynchronous MPI, etc.). In total, the A64FX implements
48 computing cores. Graviton3 implements 64 cores in a single NUMA
domain. The AMD Rome CPU comprises 8 core chiplets, known as core
cache dies (CCD), and a central I/0 die that controls all the I/O and
memory functions of the chip. A CCD has two core complex (CCX)
clusters, each with 4 cores. Any pair of CCDs can communicate through
the I/0 die. SKX contains two NUMA chips, each with 24 physical cores.

Regarding operational frequency, Graviton3 presents the highest
maximum frequency among the systems with 2.6 GHz. The other three
systems’ maximum frequency is very similar, ranging between 2.1 and
2.25 GHz. Both x86 systems dynamically adjust their frequency based
on their load. Additionally, SKX reduces its frequency when executing
AVX/AVX512 instructions. In contrast, the A64FX operates at a fixed
frequency set to 2.2 GHz. There is no public information about adaptive
frequency operation on Graviton3.

With respect to SIMD extensions, the A64FX is the first CPU to
implement the Armv8.2-A Scalable Vector Extension (SVE) [68]. One
of SVE’s main features is that it is Vector Length Agnostic (VLA);
that is, the same binary works on architectures implementing vector
registers of different lengths ranging from 128 to 2048 bits. The A64FX
implements 512 bits SVE registers. Graviton3 also implements SVE,
with a vector length of 256 bits. The A64FX and Graviton3 also support
the Arm Neon SIMD extension, a non-VLA SIMD ISA that works with
128-bit vectors. Both x86 systems implement the SSE and AVX2 SIMD
extensions, with a vector length of 128 and 256 bits, respectively. The
SKX also supports the AVX512 extension, with a vector length of 512
bits. None of the x86 SIMD extensions are VLA.

Concerning main memory, each A64FX’s NUMA domain has its own
local on-chip 8 GB HBM2 main memory and can access the other three
NUMA domains’ local memories via a ring bus. Graviton3 is connected
to 8 x 16 GB DDR5 channels, for a total of 128 GB of memory. Each

L. Lopez-Villellas et al.

Future Generation Computer Systems 157 (2024) 313-329

Table 2 Table 3
Load-to-use memory latencies in nanoseconds of the experimental setup. Out-of-order resources of the experimental setup.
A64FX Graviton3 SKX Rome A64FX Graviton3 SKX Rome
L1 2.3-5 1.5 1.9 1.8 General registers 96 N/A 180 180
L2 - 4.6 6.7 3.5 SIMD/FP registers 128 N/A 168 160
LLC 16.8-21.4 33.1 25.1 13.0 Issue width 7 (uOP) 15 (uOP) 8 (uOP) 11 (uOP)
Main Mem. Local 118.2-126.4 153.5 86.2 121.5 Commit width 4 (uOP) N/A 4-8 (uOP) 8 (MOP)
Main Mem. Remote 187.7-242.3 - 144.0 - ROB (entries) 128 256* 224 224
LB (entries) 40 85* 72 44
SB (entries) 24 90* 56 48
RS (entries) 2 x 20 + N/A 97 4 x 16 +
2 x 10 + 19 28 + 36

chip of the SKX is connected to 6 x 8 GB DDR4 local channels and can
access the other chip’s local memory. The Rome CPU is connected to
16 x 64 GB DDR4 channels, totaling 1 TB of memory.

The cache hierarchy organization of the processors is relatively
different. Both Arm machines have two 64 KB private L1 caches per
core (instructions and data), while the x86 CPUs feature two 32 KB
private L1s per core. Graviton3 and SKX include one private 1MB
L2 cache per core, and Rome has one 512 KB private L2 per core.
The A64FX has one 8 MB last-level cache (LLC) per NUMA domain,
Graviton3 includes one 32 MB LLC, SKX has two 33 MB LLCs (one per
NUMA domain), and Rome includes one 16 MB LLC per each 4-core
CCX.

Concerning memory bandwidth, the A64FX is designed to achieve
good performance executing high memory bandwidth-demanding ap-
plications. The peak bandwidth of this chip (4 x 256 GB/s) is nearly
3.5 times higher than the peak bandwidth of Graviton3 (300 GB/s), the
second system among the studied in terms of memory throughput. It is
followed by SKX, reaching up to 120 GB/s per chip (240 GB/s in total),
and Rome holds the last position with a peak bandwidth of 204.8 GB/s.

Table 2 presents the memory access latencies to each level of
the memory hierarchy for all machines. All latencies on Rome and
Graviton3 and latencies to remote memories on the A64FX have been
measured using the LMbench benchmark [69]. Latencies to cache and
local memory on the A64FX have been extracted from the micro-
architecture manual of the CPU. Latencies on SKX have been measured
using Intel Memory Latency Checker. The number of cycles to access
the A64FX caches depends on the type of instruction: scalar, floating-
point, short SIMD, and large SIMD. The latencies to access the L1 on
the systems range from 1.5 ns (Graviton3) to 5 ns (large SIMD access
on the A64FX). Even though scalar accesses on the A64FX are faster
(2.3 ns), it still presents the highest L1 access latency. As presented
previously, the A64FX only implements two levels of caches (L1 and
LLC). The L2 access latencies of the other systems range between 3.5 ns
(Rome) to 6.7 ns (SKX). Rome presents the fastest access to its LLC
(13 ns), closely followed by the A64FX (16.8 ns for scalar access and
21.4 ns for large SIMD access). The LLC access latency on the SKX and
Graviton3 is 25.1 and 33.1 ns, respectively. SKX presents the fastest
access latency to local main memory (86.2 ns), followed by the A64FX
and Rome, with similar latencies (~120 ns). Graviton3 has the highest
local memory access latency, as expected from current DDR5 SDRAMs.
Accessing remote main memories in the A64FX takes between 187.7 ns
(near-remote memory) and 242.3 ns (far-remote memory). Accessing
the other chip’s main memory on the SKX machine takes 144 ns, 23%
faster than A64FX’s best case.

The out-of-order resources of the experimental setup are presented
in Table 3. We assume that Graviton3 implements the same resources as
Neoverse V1 for non-publicly available data (marked with *). Unavail-
able data for neither Graviton3 nor Neoverse V1 is represented as N/A.
The A64FX is tight in out-of-order resources compared with the other
three processors. The SKX and Rome have a similar number of physical
registers, almost doubling the number of general-purpose registers of
the A64FX (180 vs. 96) and implementing 30% more SIMD/FP registers
than the A64FX (160 vs. 128). The A64FX can issue up to 7 micro-
operations (¢OP) per cycle, Graviton3 can issue up to 15, 8 for SKX, and
11 for Rome. The A64FX and SKX are capable of committing 4 micro-
operations per cycle. However, SKX can merge two micro-operations

318

*Neoverse V1 CPU defaults.

into one fused micro-operation, increasing its theoretical commit rate
to 8 micro-operations. Rome can commit up to 8 macro-operations
(MOP) - i.e., ALU, memory, or merged ALU/memory operation — per
cycle. The reorder buffer (ROB) of Graviton3 (256 entries) is twice as
big as the A64FX’s (128 entries). SKX and Rome have an identical-size
ROB (224 entries). The sizes of the load buffers (LB) and store buffers
(SB) of the CPUs are relatively different. Graviton3 and SKX implement
the largest LB, with 85 and 72 entries, respectively. The LB of the
A64FX has 40 entries, and Rome implements a 44-entry LB. Similarly,
Graviton3 and SKX have the largest SB (90 and 56 entries, respectively).
The A64FX implements a 24-entry SB, half the size of Rome’s. Addition-
ally, a store instruction on the A64FX occupies one entry in both the
load and the store buffer. While SKX implements a unified reservation
station (RS) with 97 entries, both the A64FX and Rome have several
smaller RS. The A64FX divides its reservation station into 2 x 20 entries
for 2 integer, floating-point, and SIMD pipelines, 2 x 10 entries for 2
address calculation pipelines, and 19 entries for the branch pipeline.
Rome’s reservation station has 4 x 16 entries for 4 integer pipelines
(scalar+SIMD), 28 entries for 3 address calculation pipelines, and 36
entries for 4 floating-point pipelines (scalar + SIMD).

5. Arm porting of genomics kernels

Most kernels presented in Section 3 target x86 architectures and
have not been extensively tested nor optimized for Arm machines.
Thus, it was expected that some kernels could run into failures and
even generate incorrect results. To verify the execution of the kernels,
we used the SKX system to compute the correct output for all kernels
and inputs (i.e., ground truth).

For our experiments, we used the GNU compiler (GCC) on Graviton3
(v11.2.0), SKX (v10.1.0), and Rome (v10.2.0). On the A64FX, we used
GCC (v10.2.0) and the Fujitsu Compiler (FCC) (v4.2.0b). For most
kernels, FCC-compiled binaries exhibited better performance. The Fu-
jitsu Compiler implements two compilation modes: a traditional mode
(Trad) based on compilers for earlier systems and a Clang mode based
on Clang/LLVM. In all cases, we obtained better execution times when
compiling with FCC’s Clang mode. We lacked FCC-compiled versions
of key-optimized Python libraries. For these reasons, all the results
presented in this document for the A64FX have been obtained using
the Clang mode of FCC, excluding the two Python kernels (NN-BASE
and NN-VARIANT), whose libraries were compiled using GCC.

We compile all kernels with at least —02 optimization level and
enable CPU-specific optimizations: -march=armv8-a+sve on the
A64FX, -mcpu=native on Graviton3 and -march=native on SKX
and Rome. Enabling CPU-specific optimizations in ABEA and POA
resulted in incorrect executions, probably due to programming errors
in the original source code. Therefore, such optimizations are not used
for these two kernels.

After performing the appropriate modifications to the kernels so
all of them successfully execute on Arm, we applied further opti-
mizations to some kernels to improve the performance obtained in
this architecture. Such optimizations are described in the following
subsections.

L. Lopez-Villellas et al.

B A64FX B Graviton3 EE SKX [Rome
6
E =
= S5 2
%
5 47
g 3
=
2 27
O -
BPM BSW FAST-CHAIN WFA
Application

Fig. 2. Speedup of SIMD kernels over their scalar version on the experimental setup
using the large inputs.

5.1. Exploiting vectorization

Some kernels implement x86-vectorized versions of their most time-
consuming parts. In particular, BSW and FAST-CHAIN include AVX2
and AVX512 versions of their critical functions using intrinsics. Simi-
larly, POA implements SIMD versions of its code using AVX2-intrinsics
and SIMD Everywhere (SIMDe). We have implemented SVE-intrinsics
versions of FAST-CHAIN, BSW, and WFA and a Neon-intrinsics version
of BPM. SIMDe does not fully support SVE yet, so we could not leverage
POA’s SIMDe version. Fig. 2 shows the speedup of vectorized kernels
over their scalar version on the experimental setup using the large input
of the kernels. Note that the SVE vector length of Graviton3 (256 bits)
is half the A64FX’s (512 bits), and therefore the performance speedups
of SVE kernels over their scalar versions are more modest in Graviton3.

BPM: The core idea behind vectorizing BPM is to transform the
alignment operations used to fill the dynamic programming table into
simple machine-word operations. These simple operations are integer
additions, bit shifts, and bitwise ORs and ANDs. This way, various
dynamic programming cells are bit-packed within a machine word
and its dependencies are encoded using bit-wise operations. In packed
SIMD, vector operations are performed in independent packets with a
maximum width equal to the machine’s maximum word width, rather
than a whole bit vector (i.e., it is not possible to perform a 128-bit
width operation in a 64-bit double word machine). For example, when
performing a left-shift operation, the leftmost bit of each word is lost.
However, in order to vectorize BPM we would want this bit to be
appended to the closest-left word, effectively performing a vector-width
left-shift operation. To circumvent this problem, we must perform
additional operations to manually carry that bit to the correct position.
The number of additional operations required by this approach to work
scales with the vector length. Thus, we decided to evaluate the potential
of the vector version of BPM using the Neon vector extension (128-bit
vectors). The vectorized loop executes 1.7x more instructions than the
original but performs 2x fewer iterations.

On the A64FX, SIMD versions of simple instructions, like integer
addition, were much more expensive than scalar ones. For example,
a simple 64-bit addition takes one cycle, while a vector addition of
two 64-bit words takes four cycles. This difference in latencies leads
to a slow-down of 2x. Graviton3 has lower SIMD latencies. However,
the increase in the number of instructions in the loop leads to a 30%
performance loss. Since we did not gain any performance using the
Neon version, it was discarded in favor of the original scalar code.
We believe that an inter-sequence or coarse-grain approach (i.e., per-
form the sequence alignment of several sequences simultaneously) will
deliver better performance since it simplifies the vectorization.

BSW: The SVE version of BSW [70] is a translation to Arm SVE-
intrinsics of the x86-vector version found in BWA-MEM2, which groups
the sequence alignment of multiple equal-length sequences via SIMD in-
structions (i.e., inter-sequence vectorization). The x86-intrinsics version
of BSW relies on masks and blend operations to select valid entries from

319

Future Generation Computer Systems 157 (2024) 313-329

the vector registers. The SVE version takes advantage of SVE’s predicate
instructions to avoid the need for blend operations, effectively reducing
the number of total instructions executed. BSW uses integers of 16 bits,
allowing to process 32 elements per iteration using SVE-512 (A64FX)
and 16 using SVE-256 (Graviton3).

The SVE version of BSW performs 3.4x and 1.3x faster than its scalar
version on the A64FX and Graviton3, respectively.

FAST-CHAIN: Our SVE implementation of FAST-CHAIN is a transla-
tion to SVE intrinsics of the x86 version. The original x86 implementa-
tion of FAST-CHAIN executes its main loop scalar version (i.e., avoids
executing the vectorized loop) when the number of iterations to per-
form is small. Additionally, as usual in x86 vector loops, it implements
a loop-tail to process the remaining elements. Since SVE is vector-length
agnostic, we could avoid most of the logic of the x86 version, reducing
the number of performed instructions.

The x86 vectorized version of FAST-CHAIN uses 32 bits anchors. In
some cases, 32-bit anchors are not sufficient, and this kernel generates
incorrect results. To solve this, we have implemented 64 and 32 bits
SVE versions of FAST-CHAIN. The 64 bits version always outputs cor-
rect results, but we have used the 32 bits implementation to compare
against the 32 bits x86 implementation.

GenArchBench’s SVE version of FAST-CHAIN runs 4.5x and 1.8x
faster than its scalar version (CHAIN without heuristics) on the A64FX
and Graviton3, respectively. Experimental results show that the per-
formance of FAST-CHAIN compared to regular CHAIN greatly depends
on the input used—the usage of heuristics may lead to performance
variations based on the characteristics of the input. For instance, us-
ing GenArchBench’s large input, our SVE version of FAST-CHAIN is
2.2x faster than regular CHAIN on the A64FX, but it presents a 1.4x
slowdown on Graviton3.

WFA: The Wavefront Alignment Algorithm consists of two opera-
tions: compute the next wavefront (next operation) and extend all the
farthest-reaching points of a wavefront by exact matching characters
from two strings (extend operation). The next operation can be au-
tomatically vectorized by the compiler due to its simple computational
pattern. In contrast, the extend operator cannot be automatically vec-
torized as each diagonal requires an irregular amount of computations.
To this end, we have vectorized the extend operation using a custom
implementation relying on SVE intrinsics. Each vector lane extends a
different diagonal, comparing four bases per lane until a mismatch is
found. Because each diagonal requires a different number of character
comparisons, some lanes can require more iterations than others. We
tackle this problem by masking the lanes as they finish the extension
process. This way, several diagonals are extended in parallel.

The SVE version of WFA delivers a 1.6x and 1.25x speedup over its
scalar version on the A64FX and Graviton3, respectively.

5.2. Optimized libraries

Many HPC kernels and tools rely on frequently used libraries. It
is common for vendors, such as Arm, Fujitsu, or Intel, to develop
optimized versions of widely used functions and libraries targeting their
systems and architectures. For genome data analysis, some tools exploit
neural networks (NNs) to improve the quality of their analysis and re-
sults. For the GenArchBench, we have tested different implementations
of the libraries used by the NN-BASE and NN-VARIANT kernels.

NN-BASE: The NN-BASE kernel builds upon the PyTorch library
[57]. On the A64FX we have used an optimized version of PyTorch
for this specific CPU provided by Fujitsu. On Graviton3, we tried
two different PyTorch backends: PyTorch compiled with OpenBLAS
(recommended by Arm) and PyTorch compiled with oneDNN optimized
with ACL (labeled as experimental). The docker images with the two
backends are available in [71]. The oneDNN-ACL backend performed
6.5% better than the OpenBLAS one, and therefore, we used it for our
experiments. On SKX, we used an optimized version of PyTorch that
exploits the AVX512 vector extension. On Rome, we used an optimized

L. Lopez-Villellas et al.

B AG4FX

B Graviton3

Future Generation Computer Systems 157 (2024) 313-329

Bl SKX [Rome

Single Core

Norm. Exec. Time

BSW CHAIN FCHAIN DBG

FMI

KCNT NNB NNV PILEUP POA WFA Average

Application

All Cores

Norm. Exec. Time

ABEA BPM BSW CHAIN FCHAIN DBG

FMI

Application

KCNT NN NNV PILEUP POA WFA Average

Fig. 3. Single-core (top) and multi-core (bottom) execution time of GenArchBench’s kernels on the experimental setup. Multi-core results correspond to executions using all available
cores on each machine: 48 threads on the A64FX and SKX and 64 threads on Graviton3 and Rome. The results are normalized to the performance on the A64FX using one core
(top) and 48 cores (bottom). FCHAIN, KCNT, NNB and NNV are the abbreviations of FAST-CHAIN, KMER-CNT, NN-BASE and NN-VARIANT, respectively. NN-VARIANT is not

taken into consideration for the average in the multi-core plot.

PyTorch version that supports the AVX2 vector extension available on
the machine.

NN-VARIANT: The original NN-VARIANT kernel from Genomics-
Bench is based on Clair [25] variant caller. In turn, this variant caller re-
lies on TensorFlow [58]. Clair uses TensorFlow 1 while Fujitsu provides
an optimized version of TensorFlow 2 for the A64FX. For that reason,
we decided to use Clair3 [26] instead, an updated version of Clair that
relies on TensorFlow 2. To execute using GenArchBench’s inputs, we
used the Oxford Nanopore r941_prom_hac_g360+g422 [60] pre-
trained model from Clair3. On Graviton3, we tested three different
TensorFlow backends: TensorFlow compiled with oneDNN optimized
with ACL, using TensorFlow’s Eigen thread-pool for parallelism (recom-
mended by Arm); TensorFlow compiled with oneDNN optimized with
ACL, using ACL’s scheduler; and Tensorflow compiled with the Eigen
backend. The docker images with the three backends are available
in [72]. The Eigen backend performed more than 1.6x better than the
other and therefore it was the one used to run our experiments. We used
optimized TensorFlow versions on SKX and Rome capable of exploiting
the AVX512 and AVX2 vector extensions.

5.3. Algorithmic and code optimizations

This section presents the algorithmic and code optimization we
performed to improve the performance of FMI and KMER-CNT.

FMI: GenArchBench’s FMI version implements three optimizations
proposed by Langarita et al. [70]. One of the most called functions in
this kernel is backwardExt. To reduce the overhead of the calls, this
function is always forced to be in-lined. FMI uses the
builtin_popcount function. This function counts the number of
bits set to one in an integer. None of the tested compilers translates
this function to SVE’s population count instruction. Instead, they use
bitwise operations and masks. To force exploiting SVE capabilities,
all calls to builtin_popcount are replaced by SVE intrinsics. FMI
performance is heavily affected by memory access latencies. To hide
these latencies, the optimized version of FMI interleaves the execution
of several sequences, effectively performing several memory accesses in
parallel. By applying the three presented optimizations, we improved
the kernel performance on both Arm machines by roughly 35%.

KMER-CNT: Our experimental evaluation shows that the perfor-
mance of this kernel is heavily affected by thread migrations. To avoid
thread migrations, we ported KMER-CNT from the Pthreads library to

320

OpenMP and set OMP_PROC_BIND clause to true before executions.
This change led to more than 4x speedups on both x86 machines
when using all available cores. However, the performance of the Arm
machines remained the same.

KMER-CNT relies on two global data structures to store the number
of individual k-mers: an array of 4-bit counters and libcuckoo’s [55]
multi-thread hash-map, which stores 64-bit counters. Each entry of
the global array is an 8-bit atomic integer, which is split in half
to create two 4-bit counters. The array counters are updated using
atomic compare-and-swap operation. Once the 4-bit counter of a k-mer
saturates, the following increments are performed in the global hash
map, also relying on atomic compare-and-swaps to update its counters.

Even by avoiding thread migrations, the scalability of the original
kernel was poor on all the machines. It achieved a maximum of 7x and
5% vs. serial execution on the A64FX (48 threads) and Graviton3 (64
threads), respectively. We decided to implement two new approaches
to try to improve parallel performance.

The application divides the input between the available threads.
Each thread iterates through the k-mers of its part of the input and
increments the counter of the read k-mers in the global array or
hash map. Since the input is read sequentially and there is almost no
computation to perform, most of the execution time is spent accessing
the global counters in mutual exclusion. To reduce contention and
improve data locality, our first approach assigns part of the input to
each thread, and all threads read the full input but only count part of
the k-mers. This way, instead of having a single global array and hash
map, each thread can have a smaller instance of the data structures and
access them without contention.

The original version of the kernel uses compare-and-swap instead
of fetch-and-add to update the counters because each 8-bit entry of the
array stores two 4-bit counters. In order to limit memory usage, when
the k-mer size is greater than 17, the kernel does not instantiate the
global array, and all the counting takes place on the hash-map. For the
maximum allowed k-mer size (17), we require 2!7 4-bit entries in the
global array, resulting in 8 GB of memory. Since we have more than
enough memory in all systems, our second approach uses 8-bit instead
of 4-bit counters, doubling the memory requirements. This enables
fetch-and-add usage and reduces the number of accesses to the hash
map.

The single thread execution time of the kernel did not change with
any of the new versions. Our first approach (private structures) equally

L. Lopez-Villellas et al.

divides the possible k-mers between threads. However, some k-mers are
more common in the input, causing load imbalance between threads
deriving in even poorer scalability than the original kernel. The second
approach (fetch-and-add) improves the kernel’s scalability on all the
machines: it runs 2.5%, 1.4x, 3x and 2.3x faster than the original
version on the A64FX (48 threads), Graviton3 (64 threads), SKX (48
threads) and Rome (64 threads), respectively. Consequently, we used
the fetch-and-add approach for the rest of the experiments.

6. Performance characterization

This section presents a detailed performance characterization of the
kernels in our experimental setup. We use the optimized versions of
the kernels described in Section 5. For all of the studies presented, we
have annotated the code of the kernels to define their region of interest,
i.e., we only study the part of the kernels dedicated to meaningful
computation. All the results shown in this section have been computed
using the large input of each kernel. We noted minimal variation
between executions of the kernels, with a maximum relative standard
deviation of 5% observed across 10 repetitions of the experiments.
Consequently, we showcase the results based on a single execution in
the figures. While executing DBG with high thread counts in Graviton3,
outlier execution times occurred approximately 10% of the time. In the
case of DBG in Graviton3, we selectively present results from an inlier
execution.

6.1. Single-thread performance

The top plot of Fig. 3 shows the single-thread execution time of each
kernel on the experimental setup. The results are normalized to the
performance on the A64FX (see Table 3 of the supplementary material
for the execution times of the kernels).

The A64FX features significantly fewer out-of-order resources, a
smaller memory hierarchy, and higher memory latencies than the
rest of the systems. On average, the former is 2.4x, 1.8, and 1.7x
slower than Graviton3, SKX and Rome on single-threaded executions,
respectively. Exploiting the SVE capabilities of the A64FX helps to
reduce this slowdown. SVE vectorized kernels (BSW, FAST-CHAIN,
and WFA) present better-than-average performance on the A64FX:
BSW performance is similar to the exhibited on Graviton3 and only
17% worse than the performance on the x86 machines, FAST-CHAIN
performs better than on Rome, and WFA performs better than on SKX.
Note that BSW and FAST-CHAIN exploit AVX512 on SKX while they
leverage AVX2 on Rome, and that WFA is not vectorized on the x86
machines. The deep-learning kernels (NN-BASE and NN-VARIANT) are
the worst-performing on the A64FX.

Graviton3 performs exceptionally well in single-thread executions.
On average, it presents 2.44x, 1.33%, and 1.39x performance speedups
with respect to the A64FX, SKX and Rome, respectively. FAST-CHAIN
performance on Graviton3 is 1.8x better than on Rome (AVX2) but
70% worse than on SKX since it exploits AVX512 (512 bits) on that
machine. WFA runs 2.5x and 1.8x faster on Graviton3 than on SKX and
Rome, respectively. In contrast to the A64FX, the deep-learning kernels
(NN-BASE and NN-VARIANT) deliver good performance on Graviton3,
showing speedups of between 3.1-6.2x compared to the A64FX.

6.2. Parallel performance

We evaluate the parallel performance of GenArchBench’s kernels
using different thread counts: 2, 8, 24, 48, and 64. The A64FX and
SKX implement 48 cores. Hence, executions with more than 48 threads
have only been performed on Graviton3 and Rome. Controlling thread
affinity was mandatory in our experiments to achieve good parallel
performance on the machines, especially on the A64FX. For most
kernels, all the executions were performed by binding threads to cores.

321

Future Generation Computer Systems 157 (2024) 313-329

ABEA BPM
64 A 64
Z 48 1 5 48 1 //
o 32 1 — o 32 41
S164 e o &6 —
0 24— T T T 04— T T T
28 24 48 64 28 24 48 64
Threads # Threads
BSW CHAIN
64 64
2 48 | g
T 32 = B 321
& 16 = & 16
0 “— T T T 0 T T T
28 24 48 64 28 24 48 64
Threads # Threads
FAST-CHAIN DBG
64 64
g 48 g 48 -
$ 32 " g 32 =
a6 G169 Y
0 “— T T T 0 T T T
28 24 48 64 2 8 24 48 64
Threads # Threads
FMI KMER-CNT
64 64
g 48 =1 g
T 32 - == T 32 -
&16q " S16H —Zu—=a
[— —
04— T T T 0 4= T T T
28 24 48 64 28 24 48 64
Threads # Threads
NN-BASE NN-VARIANT
64 64
B 48 - & 48 -
T 32 T 32
216 2016 — —
n ey S 2 —
T T T T 0 4= T ; T
28 24 48 64 28 24 48 64
Threads # Threads
PILEUP POA
o 64 o 64
= 48 + = 48 +
g % R =
G166 & 164 ="
T T T T 0 A T T T
28 24 48 64 28 24 48 64
Threads # Threads
WFA
o 461; 7]] = Ideal
g]
=
T 2 /, —— A64EX
vnz‘ 16 - == Graviton3
T T T T —o— SKX
28 24 48 64 Rome
Threads

Fig. 4. Speedup over serial execution of GenArchBench’s kernels on the experimental
setup. We show the achieved speedup using different thread counts: 2, 8, 24, 48, and
64. The A64FX and SKX 64-threads points are not shown in the figure, since those
machines only implement 48 cores.

ABEA, NN-BASE, and NN-VARIANT do not allow full thread affinity
control. Therefore, thread migrations can occur in these three kernels.

Fig. 4 shows the speedup over serial execution achieved by the
kernels on the experimental setup using the previously presented thread
counts. Additionally, the bottom plot of Fig. 3 compares the perfor-
mance obtained using all available cores on each machine: 48 threads

L. Lopez-Villellas et al.

Future Generation Computer Systems 157 (2024) 313-329

B Load I Register Move/Manipulation [Integer/Logical 3 Other
100% = Store I Floating-Point =3 Branch
12} 0 [r—
2] — [|
=]
£ e {] | B [b .ll Sl 1L
Z 50%
=
S 25%
£ 2|E 2|E 2|E 2|E 2|8 2|E 2|E 2|2|2|E 2| 2|k ¢
ABEA BPM BSW CHAIN FCHAIN DBG FMI KCNT NNB NNV PILEUP POA WFA
Application

Fig. 5. Instruction mix of GenArchBench’s kernels on Arm (A64FX) and x86 (SKX). FCHAIN, KCNT, NNB and NNV are the abbreviations of FAST-CHAIN, KMER-CNT, NN-BASE

and NN-VARIANT, respectively.

on the A64FX and SKX and 64 threads on Graviton3 and Rome.
For the total execution times of the kernels, refer to Table 3 of the
supplementary material. The parallel performance of NN-VARIANT on
the A64FX is extremely poor; therefore, it is not considered for the
average calculation. The results are normalized to the performance on
the A64FX using 48 threads.

All GenArchBench’s kernels exploit coarse-grain parallelism. Most
of them, except for KMER-CNT, present little to no interaction between
threads. It can be seen that some kernels achieve near-perfect scaling on
all machines. This is the case for BPM, BSW, CHAIN, FMI, and WFA. For
this set of kernels, the normalized plots using 1 thread and all available
cores are similar. It is important to note that Graviton3 and Rome show
some performance gains compared to the other two machines since the
number of available cores is higher.

In ABEA and PILEUP, the primary thread reads the full input and
splits it into smaller chunks that are dynamically assigned to idle
threads. This is the same scheduling implemented by other kernels,
such as BSW. However, the chunks used in ABEA and PILEUP are
significantly bigger, leading to load imbalance. For ABEA, the small-
est grain size assigned to a thread is a whole read. Therefore, to
improve scalability, we would need to change the granularity used
by the kernel. PILEUP implements a default chunk size of 100 kbp.
Dynamically choosing the chunk size based on the input would reduce
load imbalance. The parallel performance of both kernels should also
improve by using larger inputs. In both kernels, the A64FX presents
poorer scalability than the other three machines, further increasing
their performance difference compared to single-thread executions.

DBG also implements dynamic scheduling and shows good scalabil-
ity and load balance on the A64FX, SKX, and Rome. Runs of DBG on
Graviton3 using more than 8 threads present high variability in contrast
to the other machines, resulting in poor scalability in most cases. Due to
this behavior, DBG performance on Graviton3 using all cores is similar
to SKX’s.

In KMER-CNT, all threads continuously perform random memory
write accesses using atomic operations, resulting in high memory con-
tention and poor scalability. For this kernel, the A64FX presents the
best parallel scalability: a maximum speedup of 16x with respect to
single-thread executions vs. a maximum of 5x on the other machines.
This results in similar performance between the A64FX, Graviton3 and
SKX when using all available cores.

NN-BASE does not implement any high-level parallelism. It relies on
PyTorch multithreading, which allows using intra-op parallelism (via
math libraries like Intel MKL) and inter-op parallelism. This approach
works relatively well on the A64FX but offers poor scalability on the
rest of the systems.

NN-VARIANT presents significant load imbalance even with low
thread counts. In order to improve this, we tried two different schedul-
ing policies: to assign each core a similar-sized chunk of the input and
to dynamically assign small chunks to available threads. In both cases,
the time needed to process the chunks was unpredictable. Additionally,
NN-VARIANT relies on Tensorflow, making it difficult to control the
number of threads used. Besides the kernel’s high-level parallelism,

322

Tensorflow uses between 1 to 4 threads during the model inference
step, degrading parallel performance when NN-VARIANT uses more
than 1/4 of the available threads. The performance of NN-VARIANT
on the A64FX does not improve with any number of threads, resulting
in extremely poor parallel performance compared to the other systems.

6.3. Instruction mix comparison

An application’s instruction mix determines which processor pipel-
ines and functional units are the most used during its execution. To
obtain it, we used the instruction mix report offered by the Fujitsu
Advanced Performance Profiler (FAPP) on Arm (A64FX) and a mod-
ified version of DynamoRIO’s opcode_mix tool [73] on x86 (SKX)
that divides the executed instructions into different categories®. The
instruction mix offered by both tools is significantly different, so we
designed a mapping from FAPP categories to the categories defined in
our modified DynamoRIO (see Table 1 of the supplementary material).

Fig. 5 shows the instruction mix of GenArchBench’s kernels in
Arm (A64FX) and in x86 (SKX). The Fujitsu Advanced Performance
Profiler does not allow the creation of child processes. For this rea-
son, we have not been able to compute the Arm instruction mix
of the Python kernels (NN-BASE and NN-VARIANT). The Regis-
ter Move/Manipulation category includes any data movement
between registers or manipulation of the contents of a register without
performing any arithmetic operation (like the setz instruction of x86).
The Other category includes prefetching, cryptographic, string, and
special instructions (such as the DCZVA and MOVPRFX instructions of
Arm or the RDRAND instruction of x86).

ABEA and the deep-learning kernels (NN-BASE and NN-VARIANT)
are the only kernels that perform a significant number of floating-
point operations. As explained before, we lack the tools to compute
the instruction mix of NN-BASE and NN-VARIANT on Arm, but as for
the rest of the kernels, we expect it to be similar on both architectures.
CHAIN and FAST-CHAIN also perform floating-point operations but are
mainly dominated by integer, logical, and register move/manipulation
instructions. FMI mainly performs memory operations and is heavy on
register move/manipulation instructions on Arm. On the other hand,
KMER-CNT performs nearly no data movements (although memory
accesses in this kernel are expensive, as shown in Section 6.4). The
rest of the kernels mostly execute integer and logical instructions and
between 30% and 40% of data movement operations.

6.4. Microarchitecture bottleneck analysis

We have studied the microarchitecture bottlenecks of each appli-
cation using FAPP on the A64FX, Perf on Graviton3 and Rome, and
Intel VTune Profiler on SKX. We have not been able to compute the

2 https://github.com/LorienLV/dynamorio

https://github.com/LorienLV/dynamorio

L. Lopez-Villellas et al.

—==- [Back-End Stalls = = = -
| EEE Memory Stalls [Core Stalls |
100%
3 5%
<
>
O 50%
St
=)
R 25%
0%

BSW CHAIN FCHAIN DBG

FMI

Future Generation Computer Systems 157 (2024) 313-329

[Front-End Stalls [——] Bad Speculation Stalls [EZ3 Useful Work [Other

KCNT NNB NNV PILEUP POA

Application

Fig. 6. Microarchitecture bottlenecks of GenArchBench’s kernels on the experimental setup. FCHAIN, KCNT, NNB and NNV are the abbreviations of FAST-CHAIN, KMER-CNT,

NN-BASE and NN-VARIANT, respectively. Grav3 is the abbreviation of Graviton3.

B A64FX

B SKX

[Rome

Single Core

g

2

=

3

&)

&

3

=

=

£

5

z ABEA BPM BSW CHAIN FCHAIN DBG FMI KCNT NNB NNV PILEUP POA WFA Average
Application

. All Cores

£

2

=

S

]

)

)

3

=

=

£

Bt

z

ABEA BPM BSW CHAIN FCHAIN DBG FMI KCNT NNB NNV PILEUP POA WFA Average

Application

Fig. 7. Single-core (top) and multi-core (bottom) energy-to-solution of GenArchBench’s kernels on the experimental setup. Multi-core results correspond to executions using all
available cores on each machine: 48 threads on the A64FX and SKX and 64 threads on Rome. The results are normalized to the performance on the A64FX using one core (top)
and 48 cores (bottom). FCHAIN, KCNT, NNB and NNV are the abbreviations of FAST-CHAIN, KMER-CNT, NN-BASE and NN-VARIANT, respectively. NN-VARIANT is not taken into
consideration for the average in the multi-core plot. Graviton3 is not included in this plot since it does not expose its energy consumption.

microarchitectural bottlenecks of Python kernels (NN-BASE and NN-
VARIANT) on the A64FX, as FAPP does not allow the creation of child
processes.

Analogous to the instruction mix, we have designed a mapping from
the different profilers and systems metrics to our microarchitecture bot-
tleneck categories: Back-End stalls, Front-End Stalls, Bad
Speculation Stalls, Useful Work and Other. A detailed de-
scription of such mappings can be found in Table 2 of the supplemen-
tary materials. We further split the category Back-End stalls into
Memory Stalls and Core stalls. The Memory Stalls category
includes stalls due to main memory and caches. Unfortunately, we
could not compute Memory Stalls nor Core stalls in Rome
since it does not implement the required performance counters. The
same problem occurs on Graviton3, where we could not measure Core
stalls and the Memory Stalls category only includes stalls due to
main memory.

Most hardware events in SKX measure slots instead of cycles. Al-
though we have homogenized the formulas used in each machine as
much as possible, it is important to note that performance counters are
not standardized between machines, let alone architectures, so similar
metrics may count moderately different events on different machines.
Comparisons between counters of different machines must be seen as
rough estimations of reality.

Fig. 6 shows the microarchitecture bottlenecks of GenArchBench’s
kernels on the experimental setup. On average, there are significantly

323

more memory stalls on the A64FX than on the rest of the machines.
While the A64FX has the highest memory bandwidth, it implements a
small memory hierarchy and suffers from high memory latencies. On
the other hand, the bottlenecks on Graviton3 are more similar to those
shown by the x86 machines. ABEA, BSW, DBG, and POA suffer from a
high percentage of memory stalls on the A64FX compared to the other
machines. On the other hand, FMI and KMER-CNT are mainly memory-
bound on all machines. These two kernels mainly perform random
memory accesses and do not exploit temporal or spatial locality. Thus,
they are highly impacted by memory latencies. Kernels such as DBG,
PILEUP, or WFA suffer from a high count of stalls due to bad specula-
tion on x86 systems, especially on SKX, while the bottleneck on Arm is
much smaller. Although this can very well be due to how these stalls
are counted on different machines, we believe that Arm predicated
instructions play an important role in this metric. The number of cycles
NN-VARIANT dedicates to useful work on Rome is small compared to
the other machines, explaining its poor performance compared to other
kernels on this machine. On the contrary, the Useful Work metric
percentage of NN-BASE is considerable on all machines.

6.5. Energy consumption
Fig. 7 shows the energy-to-solution of GenArchBench’s kernels on

the A64FX, SKX, and Rome using one (top plot) and all available
cores (bottom plot) on each machine. Graviton3 is not included in the

L. Lopez-Villellas et al.

figure as it does not expose its energy consumption. Additionally, we
cannot measure the energy consumption of Rome’s DRAM. However,
since Rome and SKX use the same DRAM technology, we have added
a 12% extra energy consumption to Rome’s measurements based on
the energy consumption of SKX’s DRAM (expressed as error bars in
Fig. 7). Energy consumption was measured using the Fujitsu power API
on the A64FX, and an in-house library® based on the Running Average
Power Limit (RAPL) on SKX and Rome. Since there is a large difference
between machines, the results of NN-VARIANT were not taken into
consideration for the average calculation.

The maximum power consumption of the A64FX (120 W) is substan-
tially lower than that of the x86 systems: 2 x 150 W on SKX and 225 W
on Rome. However, SKX and Rome are capable of dynamically scaling
their frequency depending on the load of the system (CPU throttling),
while the A64FX constantly consumes power near its peak, even on low
usage.

The results shown in the top plot of Fig. 7 are highly similar to
those presented in the top plot of Fig. 3. On average, the A64FX
consumes 1.7x more than SKX and 2.6x more than Rome in single-
thread executions. Kernels with good single-thread performance, such
as BSW or WFA, show better-than-average energy-to-solution results on
the A64FX.

The previous picture changes when using all available cores on each
machine (bottom plot of Fig. 7). In this scenario, all the machines are
near their peak power consumption. The A64FX consumes less energy
than SKX in 8 out of 13 kernels (12% less energy consumption on
average), while Rome is again the most energy efficient when executing
most kernels (1.9x less energy consumption than the A64FX).

6.6. Evaluation of a real genomics tool

Finally, we evaluate the performance of a real genomics tool that
uses some of the ported kernels presented in this article. For this
matter, we use BWA-MEM2 [12], a read mapping tool (Fig. 1-3.a.1)
that employs the FMI kernel for the seed stage (Fig. 1-3.a.1.1) and the
BSW kernel for the extend stage (Fig. 1-3.a.1.3). We use the optimized
versions of the kernels, which have been presented and evaluated in
this work. In our tests, BWA and FMI represent 45% and 34% of the
total execution time of BWA-MEM2, respectively.

For our study, we have used three input datasets, each one with
1.25M reads of different lengths obtained from real sequencing ma-
chines: D3 [74], D4 [75], and D5 [76]. These reads are aligned against
the human genome [77].

Fig. 8 shows the performance of BWA-MEM2 using one (left) and all
available cores (right) on the machines of the experimental setup. On
single-thread executions, Graviton3, SKX and Rome perform similarly,
showing over 2x speedups over the A64FX. When using all available
cores, Graviton3 performs 10% better than Rome, and more than 30%
better than SKX (as can be expected due to the difference in cores). The
A64FX, on the other hand, shows 2x slowdowns compared to SKX. Both
single-thread and multi-thread results can be easily correlated with the
ones shown in Fig. 3. In the results from GenArchBench, BSW on Gravi-
ton3 showed slowdowns with respect to the x86 systems. However,
FMI performed better on Graviton3, and the kernel represents a higher
percentage of the total execution time of BWA-MEM2. Similarly, the
A64FX delivered good performance when executing BSW, but severe
slowdowns with respect to the other machines when executing FMI.

We also evaluate the parallel scalability of BWA-MEM2 using 2,
8, 24, 48, and 64 threads. As presented previously (see Fig. 4), BSW
and FMI achieved perfect scaling when executed standalone as part
of GenArchBench. As we could anticipate, BWA-MEM2 also showed
excellent parallel scalability, as presented in Fig. 9.

3 https://github.com/LorienLV/rapl_stopwatch

324

Future Generation Computer Systems 157 (2024) 313-329

I A64FX [Graviton3 [EEE SKX [Rome
Single Core All Cores
1.00 1.00
]]
E E
= 075 = 075
g g
& 0.50 & 0.50
£ 025 £ 025
=] =]
r4 V4
0.00 0.00
D3 D4 D5 D3 D4 D5
Input Input

Fig. 8. Execution time of BWA-MEM2 using one core (left) and all available cores in
each machine of the experimental setup (right). We show results using three inputs:
D3, D4, and D5. The results are normalized to the performance on the A64FX using
one core (left) and 48 cores (right).

D3 D4
o 64 A = 64 =
= 48 1 = 48 1
B 32 - e g 32 - =
&6 =" &s16q ==
0 “— T T T 0 “— T T T
28 24 48 64 28 24 48 64
Threads # Threads
D5
a 4613 = Ideal
g]
T /- —0— AGIFX
& 16 1 //~ =% Graviton3
0 = T T T —&— SKX
28 24 48 64 Rome
Threads

Fig. 9. Speedup over serial execution of BWA-MEM2 on the experimental setup for
three inputs: D3, D4 and D5. We show the achieved speedup using different thread
counts: 2, 8, 24, 48, and 64. The figure does not show the A64FX and SKX 64-thread
points since those machines only implement 48 cores.

7. Discussion

In this section, we discuss the key lessons we have learned through
this project.

We have found that working with intrinsics-vectorized kernels tends
to be laborious and error-prone. Most of these kernels are not adapted
to run on non-x86 architectures, as they often rely on SSE, AVX2, and
AVX512 vector intrinsics. To make things worse, some applications
do not provide a scalar version that can run on any architecture. The
complexity of the studied kernels makes it challenging to auto-vectorize
them, requiring the use of intrinsics-vectorized versions to achieve per-
formance improvements. Unfortunately, this approach sacrifices main-
tainability and readability since it requires multiple versions tailored to
different vector extensions, instead of having a single version for testing
and maintenance.

Vector agnostic SIMD extensions, such as SVE, enable easier to
develop and maintain intrinsics-code that works with different vec-
tor lengths. However, we believe that a higher-level solution, in the
middle of intrinsics and auto-vectorized code, similar to the SIMDe
library, maybe the best way to enable applications to exploit the vector
capabilities of current and future vector extensions and architectures.

Measuring and comparing micro-architectural bottlenecks in dif-
ferent systems is extremely challenging. Different CPUs implement
completely different hardware counters, and even similar counters may
register widely different events. Additionally, some systems expose very
few counters, making it challenging to extract meaningful information
from them. We found it extremely important for both developers and
CPU manufacturers to standardize hardware counters, making it easier

https://github.com/LorienLV/rapl_stopwatch

L. Lépez-Villellas et al.

to perform deep analysis of applications’ bottlenecks, and enabling
straightforward comparison between different systems.

When working with the A64FX, it is crucial to be aware of its
micro-architecture in order to achieve optimal performance. The CPU
has limited out-of-order resources compared to other HPC processors,
which is why it is recommended to use aggressive approaches like loop
fissioning to save resources [78] (the Fujitsu Compiler offers hints for
this). Moreover, the NUMA configuration and memory characteristics
of the A64FX call for minimizing remote memory accesses to reduce
latencies and maximize memory bandwidth. We understand that the
A64FX is a memory-bandwidth-oriented CPU and that this negatively
affects latencies, making it not suitable for all types of applications.
However, we expect further iterations of the CPU to implement more
000 resources in order to be competitive with other HPC processors for
a wide range of applications, such as genomics. Also, we believe that
it will be very beneficial for the energy efficiency of the processor to
implement dynamic frequency scaling.

Graviton3 delivers excellent out-of-the-box performance for all of
GenArchBench'’s kernels without requiring the user to extensively know
its micro-architecture for fine-tuning. Nonetheless, as of the day we
are writing this document, the system is extremely closed, providing
scarce hardware counters and not exposing its frequency and power
consumption, making it difficult to deeply understand the performance
of applications and study the energy efficiency of the system.

8. Related work

Outside the field of genomics and bioinformatics, there are many
examples of domain-specific benchmark suites. Some widely known
examples are LINPACK Benchmarks [79], for linear algebra; the GAP
benchmark suite [80], for graph processing; or BigDataBench [81], for
big data.

Focused on genomics, GenomicsBench [39], on which this work
is based, is a benchmark suite that includes 12 computationally de-
manding kernels from common steps in genome data analysis. Ge-
nomicsBench includes CPU and GPU kernels, targeting the x86 HPC and
NVIDIA GPU ecosystem. GenarchBench includes 10 CPU kernels of this
suite and three additional ones. All GenArchBench’s kernels have been
ported to the Arm architecture and, most of them, implement optimiza-
tions targeting Arm. Additionally, GenArchBench includes automatic
regression tests to verify the correctness of the execution of its kernels.

The BioPerf [82] benchmark suite, released in 2005, compiles DNA
and protein analysis applications, such as Blast [18] or FASTA [83],
two of the most widely used aligners at the time. Moreover, it includes
three inputs per kernel; pre-compiled binaries for x86, PowerPC, and
Alpha; execution scripts; and simulation points (Simpoints) to simulate
the execution of the kernels. Similarly, BioBench [84], also released in
2005, offers some of BioPerf’s benchmarks and presents a performance
characterization. Recently, some of the kernels included in BioBench
were updated in BioBench2 [85].

Furthermore, many publications analyze state-of-the-art genomics
workloads, algorithms, and tools. Jason et al. [86] present a review
of the steps involved in genome assembly. Similarly, Mohammed
et al. [87] focus on the genome resequencing pipeline. Most notably,
one of the main bottlenecks in genome sequence analysis is read
mapping. As a result, there are many works discussing the algorithms
used for this process and its acceleration on HPC processors [42,88-90].

Recently, there have been multiple efforts to accelerate widely-used
genome analysis kernels exploiting novel hardware solutions [91-96].
Tony et al. [97] provide a comprehensive review of state-of-the-art
hardware acceleration techniques for genomics.

325

Future Generation Computer Systems 157 (2024) 313-329
9. Conclusions

This paper presents GenArchBench, an Arm-based benchmark com-
posed of 13 computationally demanding kernels for HPC CPUs. GenAr-
chBench’s kernels are used within widely used genomics tools and
exploit coarse-grain thread-level parallelism. We have optimized these
kernels to exploit the capabilities of A64FX and Graviton3 CPUs, in-
cluding the novel Arm Scalable Vector Extension (SVE). Moreover, we
have performed algorithmic and code optimizations and adapted them
to exploit Arm-optimized libraries. This work also introduces a detailed
performance characterization on four different processors: two Arm
CPUs (A64FX and Graviton3) and two x86-64 CPUs (Intel Xeon Skylake
Platinum 8160 and AMD EPYC 7742 Rome).

Our results show that Graviton3 performs 1.3x better than the x86
machines on single-thread executions; unlike the A64FX, which shows
2x slowdowns compared to the x86 machines. SVE-enabled kernels
perform 1.5-4.5x better on the A64FX and 1.2-1.8x better on Gravi-
ton3 compared to their scalar version. On multi-threaded executions,
Graviton3 showed performance improvements between 7% and 32%
compared to the x86 systems, whereas the A64FX performed 2.3x
worse than Graviton3.

Most notably, our results highlight that although the A64FX offers
high memory bandwidth, the system implements a modest memory
hierarchy and suffers from long-latency memory access. In turn, this is
translated into inefficiencies and bottlenecks when executing GenArch-
Bench’s kernels. Although only two kernels can be classified as memory
bound, more than half of the kernels spend many cycles waiting for
memory data on the A64FX.

Regarding power consumption, the peak power consumption of
the x86 systems is significantly higher than that of the A64FX. How-
ever, x86 systems implement dynamic frequency and voltage scaling
based on system load to control energy consumption. In contrast, the
A64FX nearly always operates at its maximum power consumption
level. Albeit, the A64FX demonstrates similar energy-to-solution re-
sults compared to SKX when using all available cores. Unfortunately,
Graviton3 is a closed system and does not expose power consumption
metrics.

To put the performance evaluation results in context, we integrated
our optimized versions of FMI and BSW into BWA-MEM2, a produc-
tion application that uses these two kernels. Then, we evaluated the
performance of the application in the experimental setup. BWA-MEM2
performed similarly on Graviton3 and the x86 systems for single-thread
executions. However, Graviton3 showed speedups of 1.1-1.5x over the
x86 machines when using all available cores. In contrast, BWA-MEM2
performed 2x worse on the A64FX than on the other machines.

Although we have presented many optimizations applied to GenAr-
chBench’s kernels, we can foresee room for improvement, not only for
Arm architectures but also for x86. Similarly, kernels based on the
SIMDe library remain to be vectorized since the library does not sup-
port SVE as of today. Moreover, we have observed that deep-learning
Python-based kernels deliver extremely poor parallel performance. Due
to the increasing importance of these types of applications, we believe
that we need to focus on improving their HPC performance.

Looking forward, we envision repeating the evaluation on cutting-
edge Arm architectures like Graviton4 and NVIDIA Grace, as well as
on the latest x86 microarchitectures such as Intel Sapphire Rapids and
AMD Genova. This analysis can provide new valuable insights into the
ever-evolving landscape of processor architectures. Furthermore, our
research lays a solid foundation for potential porting efforts to other
architectures, particularly emphasizing the prospect of adapting our
kernels to emerging platforms like RISC-V.

Our results demonstrate that Arm is fully capable of competing with
x86 when executing genomics workloads. We believe that GenArch-
Bench lays down the bases for future optimizations of genome analysis
tools on Arm. We hope that this benchmark suite can be of help to
bioinformatics software developers and computer architects focusing on
future HPC Arm architectures.

L. Lopez-Villellas et al.
CRediT authorship contribution statement

Lorién Loépez-Villellas: Writing - original draft, Visualiza-
tion, Validation, Software, Investigation, Data curation. Rubén
Langarita-Benitez: Writing — original draft, Visualization, Software,
Investigation, Data curation. Asaf Badouh: Writing - original
draft, Software, Investigation. Victor Soria-Pardos: Writing -
original draft, Software, Investigation. Quim Aguado-Puig: Writing
- original draft, Software. Guillem Lépez-Paradis: Software. Max
Doblas: Software. Javier Setoain: Writing — review & editing.
Chulho Kim: Writing — review & editing. Makoto Ono: Writing
- review & editing. Adria Armejach: Writing - review &
editing. Santiago Marco-Sola: Writing — original draft, Supervision,
Methodology, Conceptualization. Jests Alastruey-Benedé: Writing —
original draft, Supervision, Methodology, Conceptualization. Pablo
Ibafiez: Writing — original draft, Supervision, Methodology, Con-
ceptualization. Miquel Moreté: Supervision, Project administration,
Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Javier Setoain reports a relationship with Arm Research
that includes: employment. Makoto Ono reports a relationship with
Lenovo Infrastructure Solutions Group that includes: employment.
Chulho Kim reports a relationship with Lenovo Infrastructure
Solutions Group that includes: employment. If there are other
authors, they declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the repository containing the code and the data is shared
in the manuscript.

Acknowledgments

This work has been partially supported by the Spanish Ministry
of Science and Innovation MCIN/AEI/10.13039/501100011033 (con-
tracts PID2019-107255GB-C21, PID2019-105660RB-C21, PID2022-
136454NB-C22, and TED2021-132634A-100), by the Generalitat de
Catalunya, Spain (contract 2021-SGR-763), by the Gobierno de Aragén
(T58_23R research group), by the European Union NextGenerationEU/
PRTR, and by Lenovo BSC Contract-Framework Contract (2020).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.future.2024.03.050.

References

[1] M. Flores, et al, P4 medicine: how systems medicine will transform the
healthcare sector and society, Pers. Med. 10 (6) (2013) 565-576, http://dx.doi.
org/10.2217/pme.13.57.

L. Chin, et al., Cancer genomics: from discovery science to personalized medicine,
Nature Med. 17 (3) (2011) 297-303, http://dx.doi.org/10.1038/nm.2323.

R. Spreafico, et al., Advances in genomics for drug development, Genes 11 (8)
(2020) 942, http://dx.doi.org/10.3390/genes11080942.

M.E.K. Niemi, et al., The human genetic epidemiology of COVID-19, Nature Rev.
Genet. 23 (9) (2022) 533-546, http://dx.doi.org/10.1038/541576-022-00478-5.
F. Sanger, et al., DNA sequencing with chain-terminating inhibitors, Proc. Natl.
Acad. Sci. 74 (12) (1977) 5463-5467, http://dx.doi.org/10.1073/pnas.74.12.
5463.

A.M. Maxam, et al., A new method for sequencing DNA, Proc. Natl. Acad. Sci.
74 (2) (1977) 560-564, http://dx.doi.org/10.1073/pnas.74.2.560.

[2]

[3]

[4]

[5]

[6]

326

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Future Generation Computer Systems 157 (2024) 313-329

E.S. Lander, et al., Initial sequencing and analysis of the human genome, Nature
409 (6822) (2001) 860-921, http://dx.doi.org/10.1038/35057062.

J.A. Reuter, et al., High-throughput sequencing technologies, Molecular Cell 58
(4) (2015) 586-597, http://dx.doi.org/10.1016/j.molcel.2015.05.004.

Bonito, 2023, https://github.com/nanoporetech/bonito. (Accessed 7 January
2023).

R.R. Wick, et al., Performance of neural network basecalling tools for oxford
nanopore sequencing, Genome Biol. 20 (1) (2019) 1-10, http://dx.doi.org/10.
1186/s13059-019-1727-y.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM, 2013, arXiv preprint arXiv:1303.3997.

M. Vasimuddin, et al., Efficient architecture-aware acceleration of BWA-MEM
for multicore systems, in: 2019 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, 2019, pp. 314-324, http://dx.doi.org/10.1109/
IPDPS.2019.00041.

H. Li, Minimap2: pairwise alignment for nucleotide sequences, in: I. Birol
(Ed.), Bioinformatics 34 (18) (2018) 3094-3100, http://dx.doi.org/10.1093/
bioinformatics/bty191.

B. Langmead, et al., Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome, Genome Biol. 10 (3) (2009) R25, http://dx.
doi.org/10.1186/gb-2009-10-3-1r25.

B. Langmead, et al., Fast gapped-read alignment with Bowtie 2, Nature Methods
9 (4) (2012) 357-359, http://dx.doi.org/10.1038/nmeth.1923.

S. Marco-Sola, et al., The GEM mapper: fast, accurate and versatile alignment by
filtration, Nature Methods 9 (12) (2012) 1185-1188, http://dx.doi.org/10.1038/
nmeth.2221.

P. Ferragina, et al., Opportunistic data structures with applications, in: Proceed-
ings 41st Annual Symposium on Foundations of Computer Science, 2000, pp.
390-398, http://dx.doi.org/10.1109/SFCS.2000.892127.

S.F. Altschul, et al., Basic local alignment search tool, J. Mol. Biol. 215 (3)
(1990) 403-410, http://dx.doi.org/10.1016/50022-2836(05)80360-2.

S. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs, Nucleic Acids Res. 25 (17) (1997) 3389-3402, http://dx.doi.
org/10.1093/nar/25.17.3389.

S.B. Needleman, et al., A general method applicable to the search for similarities
in the amino acid sequence of two proteins, J. Mol. Biol. 48 (3) (1970) 443-453,
http://dx.doi.org/10.1016,/0022-2836(70)90057-4.

T. Smith, et al., Identification of common molecular subsequences, J. Mol. Biol.
147 (1) (1981) 195-197, http://dx.doi.org/10.1016,/0022-2836(81)90087-5.

0. Gotoh, An improved algorithm for matching biological sequences, J. Mol. Biol.
162 (3) (1982) 705-708, http://dx.doi.org/10.1016/0022-2836(82)90398-9.

A. McKenna, et al., The genome analysis toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data, Genome Res. 20 (9) (2010)
1297-1303, http://dx.doi.org/10.1101/gr.107524.110.

A. Rimmer, et al., Integrating mapping-, assembly- and haplotype-based ap-
proaches for calling variants in clinical sequencing applications, Nature Genet.
46 (8) (2014) 912-918, http://dx.doi.org/10.1038/ng.3036.

R. Luo, et al., Exploring the limit of using a deep neural network on pileup
data for germline variant calling, Nat. Mach. Intell. 2 (4) (2020) 220-227,
http://dx.doi.org/10.1038/s42256-020-0167-4.

Z. Zheng, et al., Symphonizing pileup and full-alignment for deep learning-
based long-read variant calling, Nat. Comput. Sci. 2 (12) (2022) 797-803,
http://dx.doi.org/10.1038/5s43588-022-00387-x.

R. Poplin, et al., A universal SNP and small-indel variant caller using deep
neural networks, Nature Biotechnol. 36 (10) (2018) 983-987, http://dx.doi.org/
10.1038/nbt.4235.

Medaka, 2023, https://github.com/nanoporetech/medaka. (Accessed 7 January
2023).

M. Kolmogorov, et al., Assembly of long, error-prone reads using repeat graphs,
Nature Biotechnol. 37 (5) (2019) 540-546, http://dx.doi.org/10.1038/s41587-
019-0072-8.

S. Koren, et al.,, Canu: scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation, Genome Res. 27 (5) (2017) 722-736,
http://dx.doi.org/10.1101/gr.215087.116.

R. Vaser, et al, Fast and accurate de novo genome assembly from long
uncorrected reads, Genome Res. 27 (5) (2017) 737-746, http://dx.doi.org/10.
1101/gr.214270.116.

D. Kim, et al., Centrifuge: rapid and sensitive classification of metagenomic
sequences, Genome Res. 26 (12) (2016) 1721-1729, http://dx.doi.org/10.1101/
gr.210641.116.

H. Sadasivan, et al., Rapid real-time squiggle classification for read until using
RawMap, Arch. Clin. Biomed. Res. 07 (01) (2023) http://dx.doi.org/10.26502/
acbr.50170318.

S. Kovaka, et al., Targeted nanopore sequencing by real-time mapping of raw
electrical signal with UNCALLED, Nature Biotechnol. 39 (4) (2020) 431-441,
http://dx.doi.org/10.1038/s41587-020-0731-9.

https://doi.org/10.1016/j.future.2024.03.050
http://dx.doi.org/10.2217/pme.13.57
http://dx.doi.org/10.2217/pme.13.57
http://dx.doi.org/10.2217/pme.13.57
http://dx.doi.org/10.1038/nm.2323
http://dx.doi.org/10.3390/genes11080942
http://dx.doi.org/10.1038/s41576-022-00478-5
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.2.560
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1016/j.molcel.2015.05.004
https://github.com/nanoporetech/bonito
http://dx.doi.org/10.1186/s13059-019-1727-y
http://dx.doi.org/10.1186/s13059-019-1727-y
http://dx.doi.org/10.1186/s13059-019-1727-y
http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1109/IPDPS.2019.00041
http://dx.doi.org/10.1109/IPDPS.2019.00041
http://dx.doi.org/10.1109/IPDPS.2019.00041
http://dx.doi.org/10.1093/bioinformatics/bty191
http://dx.doi.org/10.1093/bioinformatics/bty191
http://dx.doi.org/10.1093/bioinformatics/bty191
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1016/s0022-2836(05)80360-2
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1038/ng.3036
http://dx.doi.org/10.1038/s42256-020-0167-4
http://dx.doi.org/10.1038/s43588-022-00387-x
http://dx.doi.org/10.1038/nbt.4235
http://dx.doi.org/10.1038/nbt.4235
http://dx.doi.org/10.1038/nbt.4235
https://github.com/nanoporetech/medaka
http://dx.doi.org/10.1038/s41587-019-0072-8
http://dx.doi.org/10.1038/s41587-019-0072-8
http://dx.doi.org/10.1038/s41587-019-0072-8
http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1101/gr.214270.116
http://dx.doi.org/10.1101/gr.214270.116
http://dx.doi.org/10.1101/gr.214270.116
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.26502/acbr.50170318
http://dx.doi.org/10.26502/acbr.50170318
http://dx.doi.org/10.26502/acbr.50170318
http://dx.doi.org/10.1038/s41587-020-0731-9

L. Lopez-Villellas et al.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

A. Payne, et al., Readfish enables targeted nanopore sequencing of gigabase-sized
genomes, Nature Biotechnol. 39 (4) (2020) 442-450, http://dx.doi.org/10.1038/
541587-020-00746-x.

D.E. Wood, et al., Improved metagenomic analysis with Kraken 2, Genome Biol.
20 (1) (2019) http://dx.doi.org/10.1186,/513059-019-1891-0.

R. Ounit, et al.,, CLARK: fast and accurate classification of metagenomic and
genomic sequences using discriminative k-mers, BMC Genomics 16 (1) (2015)
http://dx.doi.org/10.1186/512864-015-1419-2.

J.T. Simpson, et al., Efficient de novo assembly of large genomes using com-
pressed data structures, Genome Res. 22 (3) (2011) 549-556, http://dx.doi.org/
10.1101/gr.126953.111.

A. Subramaniyan, et al., GenomicsBench: A benchmark suite for genomics,
in: 2021 IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS, 2021, pp. 1-12, http://dx.doi.org/10.1109/ISPASS51385.
2021.00012.

G. Myers, A fast bit-vector algorithm for approximate string matching based on
dynamic programming, J. ACM 46 (3) (1999) 395-415, http://dx.doi.org/10.
1145/316542.316550.

S. Marco-Sola, et al., Fast gap-affine pairwise alignment using the wavefront
algorithm, Bioinformatics 37 (4) (2020) 456-463, http://dx.doi.org/10.1093/
bioinformatics/btaa777.

S. Kalikar, et al., Accelerating minimap2 for long-read sequencing applications
on modern CPUs, Nat. Comput. Sci. 2 (2) (2022) 78-83, http://dx.doi.org/10.
1038/s43588-022-00201-8.

H. Suzuki, et al., Introducing difference recurrence relations for faster semi-global
alignment of long sequences, BMC Bioinform. 19 (S1) (2018) http://dx.doi.org/
10.1186/512859-018-2014-8.

N.J. Loman, et al., A complete bacterial genome assembled de novo using
only nanopore sequencing data, Nature Methods 12 (8) (2015) 733-735, http:
//dx.doi.org/10.1038/nmeth.3444.

H. Gamaarachchi, et al., GPU accelerated adaptive banded event alignment
for rapid comparative nanopore signal analysis, BMC Bioinform. 21 (1) (2020)
http://dx.doi.org/10.1186/5s12859-020-03697-x.

Nanopore wgs consortium, 2023, https://github.com/nanopore-wgs-consortium/
NA12878. (Accessed 7 January 2023).

M. Sosié, et al., Edlib: a C/C ++ library for fast, exact sequence alignment using
edit distance, in: J. Hancock (Ed.), Bioinformatics 33 (9) (2017) 1394-1395,
http://dx.doi.org/10.1093/bioinformatics/btw753.

M. Rautiainen, et al.,, GraphAligner: rapid and versatile sequence-to-graph
alignment, Genome Biol. 21 (1) (2020) http://dx.doi.org/10.1186/s13059-020-
02157-2.

A. Ahmadi, et al., Hobbes: optimized gram-based methods for efficient read
alignment, Nucleic Acids Res. 40 (6) (2011) e41, http://dx.doi.org/10.1093/nar/
gkr1246.

NCBI sequence read archive, 2023, https://www.ncbi.nlm.nih.gov/sra. (Accessed
7 January 2023).

K.-M. Chao, et al., Aligning two sequences within a specified diagonal band,
Bioinformatics 8 (5) (1992) 481-487, http://dx.doi.org/10.1093/bioinformatics/
8.5.481.

Pacific biosciences dataset: Caenorhabditis elegans 40x coverage, 2023,
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/list.html. (Accessed
7 January 2023).

M.A. Eberle, et al., A reference data set of 5.4 million phased human variants
validated by genetic inheritance from sequencing a three-generation 17-member
pedigree, Genome Res. 27 (1) (2016) 157-164, http://dx.doi.org/10.1101/gr.
210500.116.

M. Burrows, A block-sorting lossless data compression algorithm, 1994, SRC
Research Report, 124.

Libcuckoo, 2023, https://github.com/efficient/libcuckoo. (Accessed 7 January
2023).

Loman labs: Escherichia coli, 2023, https://zenodo.org/record/1172816/files/
Loman_E.coli MAP006-1_2D_50x.fasta. (Accessed 7 January 2023).

A. Paszke, et al., PyTorch: An imperative style, high-performance deep learning
library, in: H. Wallach, et al. (Eds.), Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024-8035.

M. Abadi, et al., TensorFlow: Large-scale machine learning on heterogeneous
systems, 2023, Software available from tensorflow.org. (Accessed 18 July 2023).
J.M. Zook, et al., Extensive sequencing of seven human genomes to characterize
benchmark reference materials, Sci. Data 3 (1) (2016) http://dx.doi.org/10.
1038/sdata.2016.25.

Clair3 ONT model r941_prom_hac_g360+g422, 2023, http://www.bio8.cs.hku.
hk/clair3/clair3_models/r941_prom_hac_g360+g422.tar.gz. (Accessed 7 January
2023).

H. Li, et al., The sequence alignment/map format and SAMtools, Bioinformatics
25 (16) (2009) 2078-2079, http://dx.doi.org/10.1093/bioinformatics/btp352.

327

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Future Generation Computer Systems 157 (2024) 313-329

C. Lee, et al., Multiple sequence alignment using partial order graphs, Bioinfor-
matics 18 (3) (2002) 452-464, http://dx.doi.org/10.1093/bioinformatics/18.3.
452.

C. Lee, Generating consensus sequences from partial order multiple sequence
alignment graphs, Bioinformatics 19 (8) (2003) 999-1008, http://dx.doi.org/10.
1093/bioinformatics/btg109.

Spoa library (SIMD POA), 2023, https://github.com/rvaser/spoa. (Accessed 30
January 2023).

Wfmash: a pangenome-scale aligner, 2023, https://github.com/waveygang/
wfmash. (Accessed 30 January 2023).

B. Song, et al.,, AnchorWave: Sensitive alignment of genomes with high
sequence diversity, extensive structural polymorphism, and whole-genome du-
plication, Proc. Natl. Acad. Sci. 119 (1) (2021) http://dx.doi.org/10.1073/pnas.
2113075119.

L. Pipes, et al., AncestralClust: clustering of divergent nucleotide sequences
by ancestral sequence reconstruction using phylogenetic trees, in: I. Birol
(Ed.), Bioinformatics 38 (3) (2021) 663-670, http://dx.doi.org/10.1093/
bioinformatics/btab723.

N. Stephens, et al., The ARM scalable vector extension, IEEE Micro 37 (2) (2017)
26-39, http://dx.doi.org/10.1109/mm.2017.35.

L. McVoy, et al., Lmbench: Portable tools for performance analysis, in: Proceed-
ings of the 1996 Annual Conference on USENIX Annual Technical Conference,
ATEC ’96, USENIX Association, USA, 1996, p. 23.

R. Langarita, et al., Porting and optimizing BWA-MEM2 using the Fujitsu A64FX
processor, IEEE/ACM Trans. Comput. Biol. Bioinform. (2023) 1-14, http://dx.
doi.org/10.1109/TCBB.2023.3264514.

PyTorch Arm neoverse, 2023, https://hub.docker.com/r/armswdev/pytorch-arm-
neoverse. (Accessed 7 January 2023).

2023, https://hub.docker.com/r/armswdev/
tensorflow-arm-neoverse. (Accessed 7 January 2023).

TensorFlow Arm neoverse,
D. Bruening, Efficient, Transparent, and Comprehensive Runtime Code Manip-
ulation (Ph.D. thesis), Massachusetts Institute of Technology, Department of
Electrical Engineering ..., 2004.

SRX020470, 2022, https://www.ncbi.nlm.nih.gov/sra/SRX020470. (Accessed 10
November 2022).

SRX207170, 2022, https://www.ncbi.nlm.nih.gov/sra/SRX207170. (Accessed 10
November 2022).

SRX206890, 2022, https://www.ncbi.nlm.nih.gov/sra/SRX206890. (Accessed 10
November 2022).

Genome reference consortium human reference 38, 2022, http://hgdownload.
cse.ucsc.edu/goldenPath/hg38/bigZips/. (Accessed 23 July 2022).

T. Odajima, et al., Preliminary performance evaluation of the fujitsu A64FX using
HPC applications, in: 2020 IEEE International Conference on Cluster Computing,
CLUSTER, 2020, pp. 523-530, http://dx.doi.org/10.1109/CLUSTER49012.2020.
00075.

J.J. Dongarra, et al., The LINPACK benchmark: past, present and future, Concurr.
Comput.: Pract. Exper. 15 (9) (2003) 803-820, http://dx.doi.org/10.1002/cpe.
728.

S. Beamer, et al., The GAP benchmark suite, 2015, arXiv preprint arXiv:1508.
03619.

L. Wang, et al., BigDataBench: A big data benchmark suite from internet services,
in: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture, HPCA, 2014, pp. 488-499, http://dx.doi.org/10.1109/HPCA.2014.
6835958.

D. Bader, et al.,, BioPerf: a benchmark suite to evaluate high-performance
computer architecture on bioinformatics applications, in: IEEE International.
2005 Proceedings of the IEEE Workload Characterization Symposium, 2005,
2005, pp. 163-173, http://dx.doi.org/10.1109/11SWC.2005.1526013.

W.R. Pearson, et al., Improved tools for biological sequence comparison, Proc.
Natl. Acad. Sci. 85 (8) (1988) 2444-2448, http://dx.doi.org/10.1073/pnas.85.8.
2444,

K. Albayraktaroglu, et al., BioBench: A benchmark suite of bioinformatics
applications, in: IEEE International Symposium on Performance Analysis of
Systems and Software, 2005, ISPASS 2005, IEEE, 2005, pp. 2-9, http://dx.doi.
org/10.1109/ispass.2005.1430554.

BioBench2, 2023, https://github.com/reiverjohn/biobench2. (Accessed 30 Jan-
uary 2023).

J.R. Miller, et al., Assembly algorithms for next-generation sequencing data,
Genomics 95 (6) (2010) 315-327, http://dx.doi.org/10.1016/j.ygeno.2010.03.
001.

M. Alser, et al., From molecules to genomic variations: Accelerating genome
analysis via intelligent algorithms and architectures, Comput. Struct. Biotechnol.
J. 20 (2022) 4579-4599, http://dx.doi.org/10.1016/j.csbj.2022.08.019.

M. Alser, et al., Accelerating genome analysis: A primer on an ongoing journey,
IEEE Micro 40 (5) (2020) 65-75, http://dx.doi.org/10.1109/MM.2020.3013728.

http://dx.doi.org/10.1038/s41587-020-00746-x
http://dx.doi.org/10.1038/s41587-020-00746-x
http://dx.doi.org/10.1038/s41587-020-00746-x
http://dx.doi.org/10.1186/s13059-019-1891-0
http://dx.doi.org/10.1186/s12864-015-1419-2
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1109/ISPASS51385.2021.00012
http://dx.doi.org/10.1109/ISPASS51385.2021.00012
http://dx.doi.org/10.1109/ISPASS51385.2021.00012
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1093/bioinformatics/btaa777
http://dx.doi.org/10.1093/bioinformatics/btaa777
http://dx.doi.org/10.1093/bioinformatics/btaa777
http://dx.doi.org/10.1038/s43588-022-00201-8
http://dx.doi.org/10.1038/s43588-022-00201-8
http://dx.doi.org/10.1038/s43588-022-00201-8
http://dx.doi.org/10.1186/s12859-018-2014-8
http://dx.doi.org/10.1186/s12859-018-2014-8
http://dx.doi.org/10.1186/s12859-018-2014-8
http://dx.doi.org/10.1038/nmeth.3444
http://dx.doi.org/10.1038/nmeth.3444
http://dx.doi.org/10.1038/nmeth.3444
http://dx.doi.org/10.1186/s12859-020-03697-x
https://github.com/nanopore-wgs-consortium/NA12878
https://github.com/nanopore-wgs-consortium/NA12878
https://github.com/nanopore-wgs-consortium/NA12878
http://dx.doi.org/10.1093/bioinformatics/btw753
http://dx.doi.org/10.1186/s13059-020-02157-2
http://dx.doi.org/10.1186/s13059-020-02157-2
http://dx.doi.org/10.1186/s13059-020-02157-2
http://dx.doi.org/10.1093/nar/gkr1246
http://dx.doi.org/10.1093/nar/gkr1246
http://dx.doi.org/10.1093/nar/gkr1246
https://www.ncbi.nlm.nih.gov/sra
http://dx.doi.org/10.1093/bioinformatics/8.5.481
http://dx.doi.org/10.1093/bioinformatics/8.5.481
http://dx.doi.org/10.1093/bioinformatics/8.5.481
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/list.html
http://dx.doi.org/10.1101/gr.210500.116
http://dx.doi.org/10.1101/gr.210500.116
http://dx.doi.org/10.1101/gr.210500.116
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb54
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb54
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb54
https://github.com/efficient/libcuckoo
https://zenodo.org/record/1172816/files/Loman_E.coli_MAP006-1_2D_50x.fasta
https://zenodo.org/record/1172816/files/Loman_E.coli_MAP006-1_2D_50x.fasta
https://zenodo.org/record/1172816/files/Loman_E.coli_MAP006-1_2D_50x.fasta
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb57
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb57
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb57
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb57
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb57
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb58
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb58
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb58
http://dx.doi.org/10.1038/sdata.2016.25
http://dx.doi.org/10.1038/sdata.2016.25
http://dx.doi.org/10.1038/sdata.2016.25
http://www.bio8.cs.hku.hk/clair3/clair3_models/r941_prom_hac_g360+g422.tar.gz
http://www.bio8.cs.hku.hk/clair3/clair3_models/r941_prom_hac_g360+g422.tar.gz
http://www.bio8.cs.hku.hk/clair3/clair3_models/r941_prom_hac_g360+g422.tar.gz
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/18.3.452
http://dx.doi.org/10.1093/bioinformatics/18.3.452
http://dx.doi.org/10.1093/bioinformatics/18.3.452
http://dx.doi.org/10.1093/bioinformatics/btg109
http://dx.doi.org/10.1093/bioinformatics/btg109
http://dx.doi.org/10.1093/bioinformatics/btg109
https://github.com/rvaser/spoa
https://github.com/waveygang/wfmash
https://github.com/waveygang/wfmash
https://github.com/waveygang/wfmash
http://dx.doi.org/10.1073/pnas.2113075119
http://dx.doi.org/10.1073/pnas.2113075119
http://dx.doi.org/10.1073/pnas.2113075119
http://dx.doi.org/10.1093/bioinformatics/btab723
http://dx.doi.org/10.1093/bioinformatics/btab723
http://dx.doi.org/10.1093/bioinformatics/btab723
http://dx.doi.org/10.1109/mm.2017.35
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb69
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb69
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb69
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb69
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb69
http://dx.doi.org/10.1109/TCBB.2023.3264514
http://dx.doi.org/10.1109/TCBB.2023.3264514
http://dx.doi.org/10.1109/TCBB.2023.3264514
https://hub.docker.com/r/armswdev/pytorch-arm-neoverse
https://hub.docker.com/r/armswdev/pytorch-arm-neoverse
https://hub.docker.com/r/armswdev/pytorch-arm-neoverse
https://hub.docker.com/r/armswdev/tensorflow-arm-neoverse
https://hub.docker.com/r/armswdev/tensorflow-arm-neoverse
https://hub.docker.com/r/armswdev/tensorflow-arm-neoverse
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb73
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb73
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb73
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb73
http://refhub.elsevier.com/S0167-739X(24)00125-0/sb73
https://www.ncbi.nlm.nih.gov/sra/SRX020470
https://www.ncbi.nlm.nih.gov/sra/SRX207170
https://www.ncbi.nlm.nih.gov/sra/SRX206890
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
http://dx.doi.org/10.1109/CLUSTER49012.2020.00075
http://dx.doi.org/10.1109/CLUSTER49012.2020.00075
http://dx.doi.org/10.1109/CLUSTER49012.2020.00075
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://dx.doi.org/10.1109/HPCA.2014.6835958
http://dx.doi.org/10.1109/HPCA.2014.6835958
http://dx.doi.org/10.1109/HPCA.2014.6835958
http://dx.doi.org/10.1109/IISWC.2005.1526013
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1109/ispass.2005.1430554
http://dx.doi.org/10.1109/ispass.2005.1430554
http://dx.doi.org/10.1109/ispass.2005.1430554
https://github.com/reiverjohn/biobench2
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://dx.doi.org/10.1016/j.csbj.2022.08.019
http://dx.doi.org/10.1109/MM.2020.3013728

L. Lopez-Villellas et al.

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

H. Li, et al., A survey of sequence alignment algorithms for next-generation
sequencing, Brief. Bioinform. 11 (5) (2010) 473-483, http://dx.doi.org/10.1093/
bib/bbq015.

A. Zielezinski, et al., Alignment-free sequence comparison: benefits, applications,
and tools, Genome Biol. 18 (1) (2017) http://dx.doi.org/10.1186/s13059-017-
1319-7.

Y. Turakhia, et al., Darwin, ACM SIGPLAN Not. 53 (2) (2018) 199-213, http:
//dx.doi.org/10.1145/3296957.3173193.

A. Nag, et al., Gencache: Leveraging in-cache operators for efficient sequence
alignment, in: Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2019, pp. 334-346, http://dx.doi.org/10.1145/
3352460.3358308.

D. Fujiki, et al., GenAx: A genome sequencing accelerator, in: 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture, ISCA, 2018,
pp. 69-82, http://dx.doi.org/10.1109/ISCA.2018.00017.

H. Sadasivan, et al., Accelerated dynamic time warping on GPU for selective
nanopore sequencing, J. Biotechnol. Biomed. 07 (01) (2024) http://dx.doi.org/
10.26502/jbb.2642-91280134.

T. Dunn, et al., SquiggleFilter: An accelerator for portable virus detection,
in: MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 21, ACM, 2021, http://dx.doi.org/10.1145/3466752.
3480117.

P.J. Shih, et al., Efficient real-time selective genome sequencing on
resource-constrained devices, GigaScience 12 (2022) http://dx.doi.org/10.1093/
gigascience/giad046.

T. Robinson, et al., Hardware acceleration of genomics data analysis: chal-
lenges and opportunities, Bioinformatics (2021) 1-11, http://dx.doi.org/10.
1093/bioinformatics/btab017.

Lorién Loépez-Villellas is a Ph.D. student at the University
of Zaragoza. His research focuses on exploiting novel and
consolidated parallel and vector architectures for scientific
applications, such as molecular dynamics and genomics.
Prior to starting his Ph.D., he worked as a research engineer
at the Barcelona Supercomputing Center for two years. He
holds a BSc in computer science from the University of
Zaragoza and a MSc in High-Performance Computing from
the Universitat Politécnica de Catalunya.

Rubén Langarita-Benitez received his B.S. degree in com-
puter science from Universidad de Zaragoza in 2018. He
spent one academic year as an Erasmus student at the
University College Cork. His final degree project was about
optimizing molecular dynamics applications. He received
MS degree from UPC in January 2021. He is currently work-
ing at the BSC as a research student. His research interests
include processor microarchitecture and HPC applications.

Asaf Badouh is a research software engineer with a pas-
sion for high-performance computing and machine learning.
Over the last 4.5 years, Asaf has been working at the
Barcelona Supercomputing Center as a Research Engineer,
focusing on genomics and healthcare applications. Prior to
that, Asaf worked for 6 years as an intern and engineer in
the Intel compiler R&D team in Israel, developing LLVM-
based compilers for OpenCL and C/C++. Aside from that,
Asaf holds a bachelor’s degree in computer science from the
Technion, Israel; and a master’s degree in Data Science from
Universitat Politécnica de Catalunya.

Victor Soria-Pardos received a B.Sc. in computer science
from Universitat de Zaragoza, in 2019. He received an
M.Sc. in computer science from Universitat Politécnica de
Catalunya (UPC), in 2022. He is currently a second-year
Ph.D. in computer architecture with the UPC. He also works
as a researcher in the Barcelona Supercomputing Center,
within the Center of Excellence partnership with Arm.
His research interests include high-performance computing
architectures, cache coherence, and multicore architectures.

328

Future Generation Computer Systems 157 (2024) 313-329

Quim Aguado-Puig received a B.Sc. degree in computer sci-
ence in 2019 from the Universitat Autonoma de Barcelona
(UAB). He received an MSc at the Universitat Politécnica de
Catalunya (UPC) in 2023. He is currently a first-year Ph.D.
student at UAB. He has previously worked as a research
engineer in the project Designing RISC-V-based Accelerators
for next-generation Computers (DRAC) at UAB in collab-
oration with the Barcelona Supercomputing Center (BSC).
His research interests include high-performance computing,
massively parallel architectures, and GPU programming;
with applications to genomics, computational biology, and
sequence alignment.

Guillem Lépez-Paradis received a B.Sc. and M.Sc. from
Universitat Politecnica de Catalunya (UPC) in 2017 and
2020, respectively. He is currently a third year Ph.D.
student in Computer Architecture at UPC and Barcelona
Supercomputing Center (BSC). He actively participates in
different European projects, as well as in international
collaborations with academia and industry. He has al-
ready published some papers in international conferences
and participated in different tapeouts designing power-
efficient RISC-V processors. His research interests include
high-performance computing architectures, scaling RTL Sim-
ulations, and domain-specific accelerators, with special
emphasis on coherent interconnects between cores and
hardware accelerators.

Max Doblas received a B.Sc. in electrical engineering and
computer science from Universitat Politecnica de Catalunya
(UPQC), in 2020. He received an M.Sc. in computer sci-
ence from UPC, in 2021. He is currently a second-year
Ph.D. in computer architecture with the UPC. He also
works as a Research Engineer in the project Designing
RISC-V-based Accelerators for next-generation Computers
(DRAC) at the Barcelona Supercomputing Center (BSC),
in which he has designed a power-efficient processor
with several extensions for domain-specific applications.
His research interests include high-performance computing
architectures, and domain-specific accelerators, with appli-
cations to genomics, computational biology, and sequence
alignment.

Javier Setoain received his Ph.D. in computer science and
engineering from the Complutense University of Madrid
(UCM), working on workload optimization for GPUs. After
working as a post-doc at the Spanish National Centre
for Biotechnology (CNB), and a research engineer at Arm
Research, he is currently a senior member of technical staff
in AMD Research and Advanced Development, working on
compiler research for Al accelerators. His research interests
center around computer accelerators and specialized archi-
tectures, and his current research is focused on automated
ML workload optimizations for spatial architectures.

Chulho Kim is Principal Consultant with the Lenovo
Infrastructure Solutions Group Services in United States.
Chulho has a Bachelor of Science degree in Mathemat-
ics of Computation from UCLA in 1989 and joined IBM
Kingston. He joined Lenovo US in 2014. He has worked
in High Performance Computing (HPC) since 1993. He
likes to apply his skills to debug extremely complex issues,
ranging from application performance to system and net-
working performance issues. He is responsible for running
Top500/Green500 on customer clusters for Lenovo (#1
Green500 entry since November 2022).

Makoto Ono received the ME in biophysics from the Osaka
University in 1985 and joined IBM Tokyo Research lab. He
worked on computer graphics research then started system
architecture development in IBM System x development.
He is currently a Distinguished Engineer at Lenovo Infras-
tructure Solutions Group and is a lead architect of edge
computing. His interests include edge computing, edge Al,
and heterogeneous and alternative architecture including
non traditional CPU / GPU architecture.

http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1186/s13059-017-1319-7
http://dx.doi.org/10.1186/s13059-017-1319-7
http://dx.doi.org/10.1186/s13059-017-1319-7
http://dx.doi.org/10.1145/3296957.3173193
http://dx.doi.org/10.1145/3296957.3173193
http://dx.doi.org/10.1145/3296957.3173193
http://dx.doi.org/10.1145/3352460.3358308
http://dx.doi.org/10.1145/3352460.3358308
http://dx.doi.org/10.1145/3352460.3358308
http://dx.doi.org/10.1109/ISCA.2018.00017
http://dx.doi.org/10.26502/jbb.2642-91280134
http://dx.doi.org/10.26502/jbb.2642-91280134
http://dx.doi.org/10.26502/jbb.2642-91280134
http://dx.doi.org/10.1145/3466752.3480117
http://dx.doi.org/10.1145/3466752.3480117
http://dx.doi.org/10.1145/3466752.3480117
http://dx.doi.org/10.1093/gigascience/giad046
http://dx.doi.org/10.1093/gigascience/giad046
http://dx.doi.org/10.1093/gigascience/giad046
http://dx.doi.org/10.1093/bioinformatics/btab017
http://dx.doi.org/10.1093/bioinformatics/btab017
http://dx.doi.org/10.1093/bioinformatics/btab017

L. Lopez-Villellas et al.

Adria Armejach is a Lecturer Professor in Computer Ar-
chitecture at Universitat Politécnica de Catalunya (UPC),
and associate researcher at the Barcelona Supercomputing
Center (BSC). He received his Ph.D. from UPC in 2014 and
then started his research career at BSC, where he lead the
technical contributions of multiple FP7 and H2020 projects.
His research interest include memory systems, heteroge-
neous architectures, simulation methodologies and vector
architectures. Currently he leads a group that oversees all
the architectural simulation efforts at BSC, enabling research
on multiple computer architecture topics. He has published
more than 30 well-ranked international conference and
journal papers.

Santiago Marco-Sola received the M.Sc. and Ph.D. degrees
in computer science from the Universitat Politécnica de
Catalunya (UPC) in 2012 and 2017, respectively. Dur-
ing his Ph.D., he worked at the Algorithm Development
and Bioinformatics Group at Spanish National Centre for
Genome Analysis (CNAG) and lectured at the Universitat
Autdonoma de Barcelona (UAB). He is currently a Senior
Researcher at the Barcelona Supercomputing Center (BSC)
and a Lecturer at the UPC. His research interests include
high-performance computing, heterogeneous architectures,
genome-data analysis, and algorithms in bioinformatics and
computational biology.

329

Future Generation Computer Systems 157 (2024) 313-329

Jestis Alastruey-Benedé received the M.S. degree in
Telecommunication and the Ph.D. degree in Computer Sci-
ence from Universidad de Zaragoza in 1997 and 2009,
respectively. He is an associate professor in the Computer
Science and Systems Engineering Department (DIIS), Uni-
versidad de Zaragoza, Spain. His research interests include
processor microarchitecture, memory hierarchy, and HPC
applications.

Pablo Ibaiiez received the M.S. degree in computer science
from the Universitat Politécnica de Catalunya, Spain, in
1989, and the Ph.D. degree in computer science from the
Universidad de Zaragoza, Spain, in 1998. He is an associate
professor with the Computer Science and Systems Engi-
neering Department, University of Zaragoza. His research
interests include processor microarchitecture, memory hier-
archy, parallel computer architecture, and high performance
computing applications.

Miquel Moreté received the B.Sc., M.Sc., and Ph.D. de-
grees from Universitat Politécnica de Catalunya (UPC),
Spain. Currently, he is a Ramén y Cajal Fellow at UPC
Barcelona. Prior to joining UPC, he spent 5 years as a
Senior Researcher with the Barcelona Supercomputing Cen-
ter (BSC), Spain, and 15 months as a post-doctoral fellow
with the International Computer Science Institute (ICSI),
Berkeley. His research interests include high performance
computer architectures, domain-specific accelerators and
hardware-software co-design for future massively parallel
systems.

	GenArchBench: A genomics benchmark suite for arm HPC processors
	Introduction
	Background
	Sequencing Technologies
	Genome Data Analysis Pipelines and Tools
	Genome resequencing
	Genome assembly
	Metagenomics

	GenArch Benchmark Suite
	Experimental Setup
	Arm Porting of Genomics Kernels
	Exploiting Vectorization
	Optimized Libraries
	Algorithmic and Code Optimizations

	Performance Characterization
	Single-Thread Performance
	Parallel Performance
	Instruction Mix Comparison
	Microarchitecture Bottleneck Analysis
	Energy Consumption
	Evaluation of a Real Genomics Tool

	Discussion
	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

