000134585 001__ 134585 000134585 005__ 20250923084425.0 000134585 0247_ $$2doi$$a10.1038/s41586-024-07194-6 000134585 0248_ $$2sideral$$a138264 000134585 037__ $$aART-2024-138264 000134585 041__ $$aeng 000134585 100__ $$aGao, Zihao Rei 000134585 245__ $$aInterchain-expanded extra-large-pore zeolites 000134585 260__ $$c2024 000134585 5060_ $$aAccess copy available to the general public$$fUnrestricted 000134585 5203_ $$aStable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1,2,3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si–CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion–condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant 000134585 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/TED2021-131223B-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC-2018-024561-I$$9info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019- 105479RB-I00$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9info:eu-repo/grantAgreement/ES/DGA/E13-20R$$9info:eu-repo/grantAgreement/ES/AEI/FJC2018-035697-I 000134585 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000134585 590__ $$a48.5$$b2024 000134585 592__ $$a18.288$$b2024 000134585 591__ $$aMULTIDISCIPLINARY SCIENCES$$b2 / 135 = 0.015$$c2024$$dQ1$$eT1 000134585 593__ $$aMultidisciplinary$$c2024$$dQ1 000134585 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000134585 700__ $$aYu, Huajian 000134585 700__ $$aChen, Fei-Jian 000134585 700__ $$0(orcid)0000-0002-5229-2717$$aMayoral, Álvaro 000134585 700__ $$aNiu, Zijian 000134585 700__ $$aNiu, Ziwen 000134585 700__ $$aLi, Xintong 000134585 700__ $$aDeng, Hua 000134585 700__ $$aMárquez-Álvarez, Carlos 000134585 700__ $$aHe, Hong 000134585 700__ $$aXu, Shutao 000134585 700__ $$aZhou, Yida 000134585 700__ $$aXu, Jun 000134585 700__ $$aXu, Hao 000134585 700__ $$aFan, Wei 000134585 700__ $$aBalestra, Salvador R. G. 000134585 700__ $$aMa, Chao 000134585 700__ $$aHao, Jiazheng 000134585 700__ $$aLi, Jian 000134585 700__ $$aWu, Peng 000134585 700__ $$aYu, Jihong 000134585 700__ $$aCamblor, Miguel A. 000134585 773__ $$g628, 8006 (2024), 17 pp.$$pNature$$tNature$$x0028-0836 000134585 8564_ $$s13439537$$uhttps://zaguan.unizar.es/record/134585/files/texto_completo.pdf$$yVersión publicada 000134585 8564_ $$s3235278$$uhttps://zaguan.unizar.es/record/134585/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000134585 909CO $$ooai:zaguan.unizar.es:134585$$particulos$$pdriver 000134585 951__ $$a2025-09-22-14:38:55 000134585 980__ $$aARTICLE