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ABSTRACT: Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment
(TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable
target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles
are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a
significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides
also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide
(GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate
and the free −NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.
KEYWORDS: Copper, Amino acids, Transamination, Nanocatalysis, Cancer therapy, Glutathione, Glutamine, Alanine, Pyruvate

Catalytic nanoparticles have recently been enlisted as new
weapons in the fight against cancer. In particular, it is

expected that they will help to modify the chemistry of the
tumor microenvironment (TME), fostering tumor cell death
or at least a nonproliferative scenario. Catalytic actions
followed two main strategies. The first corresponds to the
so-called “pro-drug activation” approach that involves in situ
production of chemotherapy drugs from less toxic or inert
molecules, usually by metal-catalyzed chemical reactions1 such
as dealkylation,2 azide−alkyne cycloaddition,3 or carbamate
cleavage4 (Figure 1a). This has given rise to a vast array of
possibilities, especially with deprotection chemistry, as
researchers devised creative ways of anchoring inactive
functional groups that could later be cleaved on site by the
action of a metal catalyst.1,5 The second strategy, often termed
“nanocatalytic therapy”, exploits essential features of the tumor
microenvironment (TME)6−8 and, in contrast to the pro-drug
activation route, rather than introducing foreign molecules,
attempts to do chemistry with the chemical species already
available. The set of reactions targeted for catalytic therapy has

not changed in years, including only four processes, namely, (i)
glutathione (GSH) oxidation;9 (ii) reactive oxygen species
(ROS) production (H2O2, •O2− or •OH);10,11 (iii) O2
production using endogenous H2O2,

12 and (iv) glucose
oxidation13 (Figure 1b). These reactions interfere with cellular
metabolism in general but are particularly harmful to cancer
cells given their elevated oxidative stress14 and dependency on
glucose uptake.15 In vitro and in vivo studies have analyzed
potential effects on proteins, enzymes, and genes involved in
redox homeostasis whose functioning becomes altered by these
catalytic processes, such as, glutathione peroxidase (GPX4),16

dihydroorotate dehydrogenase (DHODH),17 or hypoxia-
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induced factor (HIF-1)18 among others. These catalytic
reactions are powerful tools to disrupt tumor homeostasis by
altering its redox balance (via processes i and ii), the typically
hypoxic environment (via process iii), and nutrient supply (via
process iv), respectively. However, reactions i, ii, and iv are
oxygen-dependent and are therefore hampered under the
hypoxic conditions of the TME. This is where reaction iii
enters, aimed to partially alleviate hypoxia locally using
available H2O2, but on many occasions, the reaction rates or
the insufficient availability of H2O2 limit the feasibility of the
process. Therefore, unveiling new O2-independent processes of
therapeutic interest is of paramount interest.
As already mentioned, the existing nanoparticle catalysts for

catalytic therapy work exclusively around the four processes
described in Figure 1b, and no new reaction pathways have
been reported. This is surprising since the TME is teeming
with key molecules and reactions that could be exploited, and
it seems unlikely that these four processes could exhaust all of
the catalytic opportunities available to fight cancer growth.
Recently, Moran and co-workers19,20 demonstrated that
transamination, a reaction of biological importance that is
usually governed by enzymatic catalysis, could also be
catalyzed in a test tube by Co2+, Ni2+, V5+, and especially
Cu2+ cations. Inspired by this work, we hypothesized that the
use of Cu-releasing nanoparticles that are easily internalized by
endocytosis and display a rapid Cu2+ release kinetics21 could
effectively perform this type of catalysis within cancer cells,

thus adding a new reaction to the panoply pictured in Figure
1b. Specifically, we propose that the catalytic action of
transition metals on key molecules such as amino acids and
α-ketoacids (Figure 1c) may open up unexplored therapeutic
opportunities.
Especially noteworthy, in view of its potential therapeutic

value, is the oxygen-independent character of the trans-
amination processes, enabling them to occur within the
hypoxic TME without the need to resort to complex oxygen-
generation schemes. Cancer cells are particularly sensitive to
the depletion of key molecules employed as building blocks to
sustain the energetic and growth demands of their accelerated
metabolism.22 Amino acids are essential players in these
metabolic routes, and indeed, amino acid starvation is currently
employed in the clinic to treat acute lymphoblastic leukemia or
non-Hodgkin lymphoma by targeting asparagine through the
enzyme L-asparaginase,23 while others like glutamine, arginine,
or methionine are currently being explored in preclinical or
clinical phases.24 Finally, as presented in Figure 1b, glutathione
(GSH) is rapidly becoming another therapeutic target due to
its central role in balancing intracellular redox stress in cancer
cells. Transition-metal catalysis9 converts GSH into gluta-
thione disulfide (GSSG).21,25 Unfortunately, this process can
be easily reverted through the action of glutathione
reductase,26 thereby reducing the therapeutic effect of the
oxidation. In contrast, the transamination process of Figure 1c
could provide another, nonoxidative way to deplete both GSH

Figure 1. Different nanoparticle-catalyzed strategies developed for cancer therapy. (a) Bioorthogonal catalysis based on pro-drug activation
strategies typically require a transition-metal catalyst including Pd, Pt, Au, Rh, or Cu to form a cytotoxic compound by either removing a chemical
group from a pro-drug or binding two low-toxicity molecules. (b) Reactions employed in the context of nanocatalytic therapy in the TME: (i) GSH
oxidation, (ii) •OH or (iii) O2 generation using endogenous H2O2, and (iv) glucose oxidation. (c) New scenario potentially enabled by the
internalization of transition-metal leaching nanoparticles. In particular, Cu2+ catalyzes the transamination reaction between the −NH3

+ group
attached to α-C of an amino acid/peptide and the keto group of pyruvate to yield D/L-alanine and the corresponding keto-acid derived from the
amino acid/peptide. Reactions target key biomolecules in the cell: glutamine, glutamic acid, aspartic acid, and GSSG.
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and GSSG pools since they have an iso-peptidic bond between
the −COO− group from the side chain of the glutamate
residue and the amino group from cysteine that is expected to
be chemically able to undergo transamination.
Using CuCl2 as the Cu(II) source requires a previous

reduction step into Cu(I)27 to be internalized through the
high-affinity Cu(I)-selective copper ion channel (CTR1),28

which restricts the total copper uptake by cell. Instead, here,

we have used CuFe2O4 nanoparticles as reservoirs to deliver
much larger amounts of Cu upon internalization into U251-
MG glioblastoma cells. Nanoparticle internalization typically
occurs via an endocytosis29−31 and this enables higher
internalization rates. Specific Cu importers such as members
of the Ctr1 family have evolved to maintain Cu homeostasis
and, therefore, manage very low ion fluxes. In contrast, the
primary particle size of the CuFe2O4 nanoparticles is around 8

Figure 2. 1H NMR analysis of the transamination reaction in the presence of CuFe2O4 nanoparticles: (a) Schematic display of the transamination
reaction between selected amino acids (glutamine, glutamic acid, and aspartic acid acting as amino donors) and pyruvate to yield α-ketoacid acid
and alanine. (b) 1H NMR analysis of the glutamine−pyruvate transamination reaction at different times. (c) UPLC-MS chromatogram of the
produced alanine from the glutamine−pyruvate transamination (m/z = 90, [M + H]+). (d) Control experiment using CuFe2O4 as catalyst in the
absence of GSH using glutamine as the amino acid substrate. (e) 1H NMR spectra of the glutamic acid−pyruvate transamination at different
reaction time intervals. (f) Evolution of alanine concentration with reaction time in a system containing 1 mM GSH using glutamic acid as the
amino acid substrate (additional 1H NMR spectra and UPLC-MS chromatograms can be found in Figure S5 and Figure S6). Alanine derived from
aspartic acid−pyruvate transamination reaction was also found in (g), the 1H NMR spectra corresponding to the aspartic acid−pyruvate
transamination at different reaction time intervals. (h) UPLC-MS analysis of alanine derived from aspartic acid−pyruvate transamination
(additional 1H NMR spectra/UPLC-MS chromatograms are depicted in Figure S6 and Figure S7). Reaction conditions for all experiments: [Cu] =
6 mM, [pyruvate] = 30 mM, [amino acid] = 45 mM, [GSH] = 5 mM, pH = 7.4 (Na2HPO4/NaH2PO4 1M), T = 37 °C.
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nm and the specific Cu intake in each internalization event is
likely to be much larger, as in the culture medium the particles
form 37 nm agglomerates, according to NTA results.21 This
means that internalization of Cu-containing nanoparticles is
highly efficient to supply Cu to the cell, and in fact,
agglomerates of CuFe2O4 NPs are easily visible in confocal
microscopy images after a few hours of incubation.29 Herein,
we investigate whether the Cu2+ cations leached from the NPs,
besides promoting GSH oxidation,21,29 may also catalyze
transamination reactions using pyruvate and different amino
acids/peptides as substrates. In addition, we have performed
DFT calculations to provide a theoretical support to the
catalytic outcomes observed and specifically to the variation of
intracellular glutamine, as a key amino acid, together with
alanine, as the transamination reaction product. We also
demonstrate a promising and nonpreviously reported specific
transamination of GSH, thereby adding a new reaction that
may target this antioxidant key for the regulation of redox
homeostasis in cancer cells.
We first carried out kinetic studies of the removal of

glutamine, glutamic acid, and aspartic acid via transamination,
although in this case we used CuFe2O4 nanoparticles as
catalysts19 (information regarding the synthesis and character-
ization of CuFe2O4 nanoparticles can be found in the
Supporting Information and Figure S1). The selection of this
nanostructure was motivated by two crucial reasons. First, this
catalyst exhibits exceptional performance in GSH oxidation
due to the synergy between Cu and Fe catalysis.21 Second, this
specific partnership works particularly well under TME
conditions (i.e., hypoxia and low pH10−12). Therefore, we
hypothesize that CuFe2O4 nanoparticles can operate in a
sequential manner. Initially, the high concentration of GSH in
cancerous cells can trigger the release of copper ions from
CuFe2O4. Subsequently, these copper ions can rapidly deplete
GSH levels through oxidation catalysis, aided by the presence
of the remaining Fe-enriched nanoparticle. Finally, the copper
ions might catalyze a transamination reaction using endoge-
nous amino acids/peptides and pyruvate as substrates.
Consequently, all tested reactions in our system were carried
out in the presence of 5 mM of GSH, an expected intracellular
concentration in tumor cells.29 This is important because the
presence of GSH promotes Cu2+ leaching, to a much larger
extent than any of the amino acids tested in this work (Figure
S2). Additionally, the catalyst showed negligible leaching in the
absence of GSH/amino acids (Figure S3).
Regarding the transamination of glutamine, the primary

amine of glutamine (highlighted in blue, Figure 2a) undergoes
exchange with the keto group of pyruvate (highlighted in red,
Figure 2a) yielding the corresponding α-ketoacid derived from
the amino acid and alanine (Figure 2a). This reaction is
catalyzed by the released Cu2+ from the CuFe2O4 NPs.

21 It is
noteworthy that this reaction is nonstereospecific19 and,
consequently, the D-alanine generated as byproduct (half of
the total produced) becomes useless for cells. Therefore, the
transamination reaction depicted in Figure 2a is potentially
useful for a catalytic starvation therapy scenario since it
simultaneously removes glutamine and pyruvate, two key
molecules in different types of cancers,32,33 and can perform in
an oxygen-independent ambient atmosphere.34 Afterward, we
monitored the reaction between the CuFe2O4 NPs and
glutamine at different times (Figure 2b−d). 1H NMR analysis
at early reaction stages (5 h, Figure 2b) revealed the
characteristic signal of the generation of GSSG as byproduct

of the GSH oxidation.21,35 In contrast, we could not detect
alanine, suggesting that kinetics of Cu2+-catalyzed GSH
transformation into GSSG are faster in comparison to the
Cu2+-catalyzed transamination reaction.
More extended reaction times resulted in an increase in the

alanine signal (CH3, 1.48 ppm, Figure S4), also detected by
UPLC-MS (Figure 2c), and α-ketoglutaramic acid (Figure S6),
the α-ketoacid derived from glutamine. The reaction also took
place in the absence of GSH (Figure 2d, Figure S5), since
glutamine itself has the potential to release copper cations
(Figure S2), which are the catalytically active species in the
transamination reaction.19 We also tested transamination with
other important single amino acids, such as glutamic acid
(Figure 2e,f, Figure S7 and Figure S8) and aspartic acid
(Figure 2g,h, and Figure S9 and Figure S10). The results were
analogous to glutamine. 1H NMR and UPLC-MS analyses
revealed a time-dependent increase of alanine and the
corresponding α-ketoacid (except for the case of the
oxalacetate produced from aspartic acid, which can be easily
decarboxylated in the presence of transition metals such as
Cu2+ 36), together with the depletion of pyruvate and the
donor amino acid (Figures S7−S10). No alanine was detected
in the absence of the CuFe2O4 NPs (Figure S11).
The reaction rates depended on the amino acid employed as

substrate, with initial kinetic constants (kinitial) sorted in the
following order: aspartic acid > glutamic acid ≈ glutamine
(Figure S12) in agreement with the results of Mayer et al.19

using CuCl2. The generation of alanine using the CuFe2O4
NPs was lower than that of the control experiments with CuCl2
as catalyst (Figure S13), but the observed kinetic constant
(kobs) exhibited similar values. This can be attributed to the
immediate availability of copper when CuCl2 is utilized, in
contrast to the progressive release taking place in the case of
the CuFe2O4 nanoparticles (Figure S2). We also observed that
the concentration of GSH played a key role in the reaction
kinetics. Decreasing the initial concentration of GSH from 5
mM (expected intratumoral levels) to 1 mM positively affected
the progress of the reaction (Figure 2f), reducing the activation
time and increasing the total alanine produced, in comparison
to the experiments where the initial concentration of GSH was
5 mM (Figure S12b). Two additional control experiments
were conducted to delve deeper into the role of GSH. First, the
presence of 1 mM GSH also hampered the progression and
yield of transamination using CuCl2 as catalyst (Figure S14).
Second, the absence of GSH enhanced the overall yield and
kinetics of the transamination reaction of glutamine using
CuFe2O4 (Figure 2d). This system was chosen because
glutamine itself can also release copper from CuFe2O4 (Figure
S2), although to a minor extent in comparison to GSH.
Besides GSH, we also tested the influence of another
biologically relevant sulfhydryl containing molecule, cysteine,
known by its affinity toward copper ions.37 In the presence of
100 μM of cysteine, a concentration equal to intracellular
levels,38 the transamination reaction could also occur,
producing alanine since early reaction times (Figure S15).
A higher concentration of GSH increases the reducing

character of the mixture, decreasing the availability of Cu2+
ions in solution,21 which is the active species in the
transamination reaction.19 In contrast, if the amino acid
employed as substrate does not induce copper release, a small
amount of GSH or of another suitable agent is required to
trigger this release. Finally, the transamination reaction using
CuO nanoparticles rendered similar kinitial values to CuFe2O4,
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reinforcing the general applicability of any copper-containing
nanostructure able to release Cu(II) cations for this reaction
(Figure S16).
We also hypothesized that the same transamination could

extend beyond single amino acids to include peptides that
possess free carboxyl (−CO2

−) and amino (−NH3
+) groups

linked to the α-C atom of an amino acid residue. A very
important example of this family of compounds would be GSH
and its oxidized form GSSG. Both are peptides that exhibit this
specific structural configuration (highlighted in orange in
Figure 3a). Given their central role in redox homeostasis in
cancer cells, transamination of these molecules could have
significant interest in cancer therapy because the resulting
unnatural α-ketoGSSG product might be more challenging for
cancer cells to metabolize compared to naturally occurring
antioxidants like GSH and GSSG.39

In the presence of O2, the Cu2+-catalyzed oxidation of GSH
to GSSG exhibited faster kinetics than the competing
transamination, as can be seen at early reaction times (1 h),

where UPLC-MS analysis revealed predominant generation of
GSSG (Figure 3d) and depletion of GSH (Figure 3e), with
minimal formation of alanine through transamination (Figures
3b,c). However, at longer reaction times (24 h and beyond),
the UPLC-MS, 1H NMR, and MS analyses detected the
formation of alanine and α-ketoGSSG, demonstrating
successful transamination of GSSG (Figures 3b−d). Additional
experiments confirmed the compatibility of other polypeptides,
such as γ-Glu-ε-Lys with this transformation (Figure S17).
Moreover, it was experimentally determined that amino acids
containing secondary amines, such as proline, were not
transaminated (Figure S18).
The transamination mechanism was investigated by using

density functional theory (DFT). Due to the presence of
strong interactions among the different components, a direct
evaluation of the Gibbs free energy difference (ΔG) between
the isolated reagents and products did not yield informative
results (Figure S19). Consequently, we used a comprehensive
modeling approach that encompassed all pertinent reaction

Figure 3. Cu-catalyzed transamination of GSH-GSSG in the presence of CuFe2O4 nanoparticles. (a) Cu2+ released from CuFe2O4 nanoparticles
first catalyzes GSH oxidation with dissolved O2, giving GSSG; then it furthers catalyzes its transamination with pyruvate. (b) 1H NMR and (c)
UPLC-MS analysis of the generation of alanine from transamination of GSSG at different reaction times. (d, e) MS analysis of the formation of α-
ketoGSSG and the depletion of GSH at various reaction times. Reaction conditions: [Cu] = 6 mM, [pyruvate] = 30 mM, [GSH] = 5 mM, pH = 7.4
(Na2HPO4/NaH2PO4 1 M), T = 37 °C.
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components, including GSSG/α-ketoGSSG, Cu2+, pyruvate/
alanine, and HPO4

2−, in the calculations illustrated in Figure 4.
Initially, Cu2+ establishes strong interactions with the

−CO2
− groups present in GSSG and pyruvate (Int-I, Figure

4d). In the most stable conformation discovered, the cation
predominantly coordinates with three −CO2

− groups, two of
which stem from a folded branch of GSSG, and the other from
pyruvate. Subsequently, one of the −NH3

+ groups of GSSG
reacts with the ketone of pyruvate, resulting in the formation of
a protonated imine that requires deprotonation before
coordinating with Cu to generate Int-II. This sequence of
steps exhibits slight endergonicity (ΔG = 4.1 kcal·mol−1) when
one of the −CO2

− groups acts as the base for deprotonation to
obviate the need for separate calculations. Consistent with
previous Cu-catalyzed transaminations,19 the calculated rate-
limiting step involves the presence of the activated imine···Cu
group. Therefore, the pH employed could influence the
reaction kinetics as a more alkaline solution would render
deprotonation and subsequent imine···Cu coordination. This
theoretical approach is supported by the observed 2-fold
reaction rate increase upon raising the pH from 5 to 9 (Figure
4c). Furthermore, the computational findings indicate that the
transamination equilibrium is essentially energetically balanced
(ΔG = 1.1 kcal·mol−1, Figure 4d), emphasizing the importance
of an excess of pyruvate in the medium to drive the equilibrium
toward the α-ketoGSSG product.
Similar to previous mechanisms calculated for metal-

catalyzed transaminations,19 the kinetics of the process are
governed by a stepwise 1,3-H migration. In this mechanism, an
HPO4

2− basic molecule from the solution buffer triggers an H
shift from the α-C atom to the iminic C atom (Figure 4a). As

in the imine-Cu coordination process, this base-promoted 1,3-
H migration should be favored by more basic pH environ-
ments, which aligns with the experimental kinetic trend
(Figure 4c). Interestingly, this process involves not only C�
N···Cu activation but also CO2

−···Cu activation of the −CO2
−

group located next to the carbanion resulting from H
abstraction. The Cu atom coordinates with this −CO2

−

group, enhancing its capability to stabilize neighboring
carbanions and thus reducing the energy barriers (ΔG‡ from
39.8 to 16.0 kcal in TS-II B and TS-II A, respectively, Figure
4b).
Encouraged by the activity of lixiviated Cu2+ as a

transamination catalyst for a variety of biologically relevant
substrates, we evaluated the potential of CuFe2O4 NPs to
disrupt the amino acid pool in U251-MG cancer cells. We
selected these cells because of the significant role of glutamine
in their metabolism.59,60 Indeed, some studies point out the
relevance of glutamine in NADPH production and anaplerotic
reactions (i.e., to generate Kreb’s cycle intermediates) beyond
their role as a nitrogen source in glioblastoma cells.61 We
detected a significant decrease in the intracellular glutamine
levels in U251-MG cells incubated with CuFe2O4 NPs after 72
h (Figure 5a). On the other hand, intracellular alanine levels
clearly increased for the CuFe2O4-treated group up to 48 h.
This is consistent with the results shown above, as there is a
significant pool of intracellular pyruvate and using pyruvate as
the ketoacid always yielded alanine in all transamination
reactions evaluated throughout this work, regardless of the
amino precursor. Interestingly, alanine was consumed in both
the control and treated U251-MG cells (Figure 5b) at 72 h.
We attribute this result to cellular metabolic responses. In the

Figure 4. (a) ΔG values for the 1,3-H shift with HPO4
2− acting as the H-transferring agent. (b) Depiction of the most stable conformers of TS-II A

and TS-II B. Dotted black lines indicate Cu−ligand bonds, thin yellow lines represent TS bonds, and distances are displayed in Å. (c) Experimental
reaction rates at different pH values after 7 h. (d) Thermodynamic aspects of the transamination process. Computational protocols: DFT
calculations40−42 were carried out with ωB97X-D/Def2-QZVPP//ωB97X-D/6-31+G(d,p),43−51 SMD52−57 (solvent = water) was included in all
the calculations, standard state = 1 M, T = 37 °C.58
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absence of other amino acids, alanine can be incorporated into
the TCA cycle to support ATP biosynthesis through its
enzymatic transamination to pyruvate.62 In addition, alanine
can also serve as nitrogen source in glutamine-starved
glioblastoma cells.63 Both of these facts may explain the
strong decrease observed in both groups after 72 h. Finally,
although only glutamine was monitored, our results show that
the catalyst promotes transamination of a variety of amino
acids and peptides, causing a severe disruption of the cell
metabolism.
We also monitored the concentration of pyruvate, the α-keto

acid that acts as substrate for the Cu-catalyzed transamination
reaction, in cell media (Figure 5c). We found a larger
consumption of pyruvate in the presence of 0.05 mg·mL−1

CuFe2O4 catalyst, which reinforces the idea of a trans-
amination reaction in the biological environment. The
intracellular GSH levels in the presence of the CuFe2O4 NPs
dropped after 24 and 48 h in comparison to those in control
experiments (Figure S20a). Likewise, the GSSG signal, the

main product of GSH oxidation, in cell media progressively
increased after nanoparticle treatment (Figure S20b). All these
changes in the concentration of glutamine, alanine, pyruvate,
and GSH help to explain the abrupt interruption seen in the
growth of cells for the treatment (Figure S21) after 24 h. We
evaluated the cell viability using nanoparticles prepared by an
identical procedure but without containing copper (i.e., iron
oxide). As can be seen in Figure S22, a significant decrease of
viability is detected for Cu-containing nanoparticles at every
concentration studied. The successful internalization of the
CuFe2O4 nanocatalyst was confirmed by confocal microscopy
(Figure 5d). Nanoparticle aggregates could be detected inside
U251-MG cells due to their own reflection close to the cellular
nucleus stained in blue (Figure 5d). We also studied the
evolution of total intracellular Cu, the main homogeneous
catalysts studied in this work, after treatment with CuFe2O4
NOs using MW plasma atomic emission spectroscopy (MP-
AES) (Figure 5e). The maximum intracellular copper value
was reached at 48 h after the treatment with 50 μg·mL−1

Figure 5. Tracking the intracellular transamination induced by CuFe2O4 nanoparticles. (a) Intracellular glutamine concentrations decrease for both
control and treated U251-MG cells. Glutamine is a key metabolite for cells as one of the major nitrogen sources and is used both for the TCA cycle
or for fatty acid/nucleotide biosynthesis.63 Treatment with CuFe2O4 nanoparticles significantly decreased glutamine levels especially after 72 h. (b)
Monitoring intracellular alanine concentration revealed different profiles in control/treated U251-MG cells. After 24 and 48 h, the alanine
concentration was significantly larger for treated U251, suggesting that artificial transamination had been successfully induced. (c) Pyruvate
concentration present in cell media at different incubation times with 0.05 mg·mL−1 CuFe2O4 nanoparticles. As a result of the Cu-catalyzed
transamination reaction, the concentration of pyruvate was lower after 48 and 72 h in comparison to the control experiment. Intracellular pyruvate
could not be determined with sufficient accuracy due to low concentration levels. (d) Confocal microscopy analysis of U251-MG cells revealed the
internalization of CuFe2O4 nanoparticles in the form of aggregates (highlighted in yellow). (e) Intracellular copper levels of U251-MG cells treated
with 50 μg·mL−1 of CuFe2O4 showed a strong increase of copper concentration up to 48 h, followed by a decrease at 72 h. (f) Schematic
illustration of some possible catalytic pathways of the intracellular amino acid pool: glutamine (or other amino acids) can enter different metabolic
routes to enable ATP or lipid biosynthesis. However, internalization of CuFe2O4 nanoparticles increases the intracellular concentration of Cu2+, a
catalyst that promotes artificial amino acid/pyruvate transamination, as well as that of other species with suitable chemical structure such as GSH
and GSSG. For GSSG this reaction competes with the reduction of GSSG to GSH by glutathione reductase. Statistically significant differences were
expressed as follows: *p < 0.05, **p < 0.005, ***p < 0.0005, and ****p < 0.00005.
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CuFe2O4, which is in agreement with the maximum
concentration of intracellular alanine in treated U251-MG
cells (Figure 5b). After 72 h, the intracellular Cu concentration
decreased down to 14.5 mM, following cellular regulation
mechanisms and excretion of remaining nanoparticles via
endosomes or copper ions via protein exporters such as
ATP7A/B.27 However, 72 h gives ample time for Cu2+ to
perform catalysis using the amino acid pool or the cytosolic
GSSG as amino donors, and the pyruvate as α-ketoacid to
catalyze the transamination reaction (Figure 5f).
In summary, Cu2+ cations released from CuFe2O4 nano-

particles can catalyze transamination using glutamine, glutamic
acid, and aspartic acid as amino acid substrates under
conditions relevant to TME (i.e., hypoxia and a 5 mM
concentration of GSH). The scope of transamination extends
to tri- and dipeptides as suitable substrates if an α-C with a free
−COO−/−NH3

+ group is present in their structure. We have
shown experimentally that GSSG can also be subjected to
transamination as a result of the formation of an imine
between the oxo group of pyruvate and the free −NH2 group
of GSSG, followed by the coordination of the imine to Cu(II).
Lastly, we have observed that glutamine consumption is
accelerated while intracellular alanine levels rise and cell
proliferation abruptly stops, a scenario in good agreement with
transamination reactions catalyzed by Cu(II)-releasing nano-
particles. In summary, the results of this work establish copper-
catalyzed transamination as a new valuable reaction to be
added to the existing toolkit of TME-directed nanocatalytic
therapy.
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