000134831 001__ 134831
000134831 005__ 20240711085510.0
000134831 0247_ $$2doi$$a10.1002/admi.202301090
000134831 0248_ $$2sideral$$a138335
000134831 037__ $$aART-2024-138335
000134831 041__ $$aeng
000134831 100__ $$0(orcid)0000-0001-6189-1642$$aEscorihuela, Enrique$$uUniversidad de Zaragoza
000134831 245__ $$aMolecular templates on surfaces by exploiting supramolecular chemistry in Langmuir–Blodgett monolayers
000134831 260__ $$c2024
000134831 5060_ $$aAccess copy available to the general public$$fUnrestricted
000134831 5203_ $$aAttaining precise control over molecular arrangements is of paramount importance for numerous applications in nanotechnology, particularly in constructing molecular templates to accurately immobilize target materials on surfaces. A strategic combination of supramolecular and interfacial chemistry may serve to build a well‐organized molecular network, enabling the subsequent location of target molecules on specific positions of a surface. A supramolecular complex (compound 1) comprised of a melamine unit forming hydrogen bonds with dendritic arms terminated in a coumarin unit is utilized, which readily undergoes photodimerization. The research demonstrates the formation of well‐organized Langmuir films of compound 1 which can be transferred on substrates at low surface pressures adopting a lying‐flat orientation. Upon irradiation of the pristine films at 365 nm the coumarin units undergo photo‐cross linking, leading to the formation of a compact photo‐crosslinked film. Incubation of these photo‐crosslinked films in a solution containing 1‐hexanethiol results in the withdrawal of the melamine and the chemisorption of two thiol molecules per each melamine unit. The nanopores created by the removal of the melamine core are attributed to the disruption of hydrogen bonds in compound 1 by the thiols. This precisely defined molecular network holds significant promise as a template for orchestrating the arrangement of functional materials on surfaces.
000134831 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2021-122882NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-097583-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105881RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-141433OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031154-I$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131318B-I00
000134831 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000134831 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000134831 700__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000134831 700__ $$aCardona, Teresa
000134831 700__ $$aZuccheri, Giampaolo
000134831 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, Santiago$$uUniversidad de Zaragoza
000134831 700__ $$0(orcid)0000-0001-9866-6633$$aSerrano, José L.$$uUniversidad de Zaragoza
000134831 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000134831 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000134831 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000134831 773__ $$g11, 18 (2024), 2301090 [8 pp.]$$pAdv. mater. interfaces$$tAdvanced Materials Interfaces$$x2196-7350
000134831 8564_ $$s2780655$$uhttps://zaguan.unizar.es/record/134831/files/texto_completo.pdf$$yVersión publicada
000134831 8564_ $$s2368749$$uhttps://zaguan.unizar.es/record/134831/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000134831 909CO $$ooai:zaguan.unizar.es:134831$$particulos$$pdriver
000134831 951__ $$a2024-07-11-08:52:26
000134831 980__ $$aARTICLE