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ABSTRACT In an increasingly aging world, the effort to automate tasks associated with the care of elderly
dependent individuals becomes more and more relevant if quality care provision at sustainable costs is
desired. One of the tasks susceptible to automation in this field is the automatic detection of falls. The
research effort undertaken to develop automatic fall detection systems has been quite substantial and has
resulted in reliable fall detection systems. However, individuals who could benefit from these systems
only consider their use in certain scenarios. Among them, a relevant scenario is the one associated to
semi-supervised patients during the night who wake up and get out of bed, usually disoriented, feeling
an urgent need to go to the toilet. Under these circumstances, usually, the person is not supervised, and
a fall could go unnoticed until the next morning, delaying the arrival of urgently needed assistance. In this
scenario, associated with nighttime rest, the patient prioritizes comfort, and in this situation, body-worn
sensors typical of wearable systems are not a good option. Environmental systems, particularly visual-based
oneswith cameras deployed in the patient’s environment, could be the ideal option for this scenario. However,
it is necessary to work with far-infrared (FIR) images in the low-light conditions of this environment. This
work develops and implements, for the first time, a fall detection system that works with FIR imagery.
The system integrates the output of a human pose estimation neural network with a detection methodology
which uses the relative movement of the body’s most important joints in order to determine whether a fall
has taken place. The pose estimation neural networks used represent the most relevant architectures in this
field and have been trained using the first large public labeled FIR dataset. Thus, we have developed the first
vision-based fall detection systemworking on FIR imagery able to operate in conditions of absolute darkness
whose performance indexes are equivalent to the ones of equivalent systems working on conventional RGB
images.

INDEX TERMS Computer vision, convolutional neural, fall detection, infrared imaging.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma .

I. INTRODUCTION
The United Nations report on population aging [1] suggests
that the number of people aged over 60 has doubled since
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1980 and is expected to double again around 2050, reaching
the figure of 2 billion. At that time, the number of individuals
over 60 will exceed that of individuals under 24.

While this demographic aging phenomenon is more pro-
nounced in developed countries, it actually affects developing
nations as well, where over two-thirds of the world’s pop-
ulation over 60 reside. Consequently, we can anticipate an
exponential increase in resources dedicated to elderly care
in the coming years, and in the near future, this sector could
potentially become one of the most economically significant.
This projected increase in resources has led to a substantial
rise in research interest in areas related to elderly care.

The elderly care sector, at present, has automated a limited
number of processes. However, considering the described
expectations, if societies aim to provide high-quality care to
this community at a reasonable cost, the sector will need to
automate as many tasks as reasonably possible.

One of the areas that could accept automation is the fall
detection one. It is a very relevant activity, as for the afore-
mentioned community over 30% of falls have important
consequences, ranging from hip fractures to concussions and,
a good number of them, end up by causing death [2].

In this paper a novel fall detection system able to work
on far-infrared (FIR) imagery is proposed. It is based on
three key elements: i) the use of FIR images; ii) A human
pose detection system able to infer the position of the most
important body joints; iii) A fall detection system fed by the
position of the main body joints provided by step ii able to
determine whether a fall has taken place. In section II-C it is
argued that the proposed system overcomes several limita-
tions of current system. Firstly, it protects privacy, a major
concern of potential vision-based fall detection system’s
users [3], in scenarios where they accept the use of this kind
of systems, i.e., older individuals getting up at night with
absent human supervision. Secondly, it addresses the insuf-
ficient amount of real world data [4] by employing dynamic
descriptors that hold physical meanings related to human bal-
ance. Therefore, the goal of this paper is the implementation
and performance evaluation of a visual-based fall detection
system able to operate in low-illumination environments,
a scenario not properly covered by the present systems.

Thus, the main contributions of this paper to the state of
the art are:

• The implementation of the first fall detection system
working on FIR imagery and, therefore, the only high
resolution image-based system able to operate under
low-illumination conditions ever developed. This sys-
tem integrates the output provided by a pose estimation
neural network and the fall detection system proposed by
the authors in [4] with excellent results. This way, devel-
oping this system requires human pose neural networks
properly trained using FIR imagery.

• The development of FIR-human, the first major labeled
FIR dataset developed to train human pose estimation
neural networks. It contains video-clips of a number
of volunteers engaged in different activities and falls.

All major joints of volunteers are labeled in each of
the images of these video-clips, so the dataset can
be used with training and validation purposes in the
field of human pose estimation. The dataset, which
contains over 250000 labeled images, has been made
public for research and can be found at https://ieee-
dataport.org/documents/fir-human.

• A comparative study of the performances of the eight
most relevant neural network architectures used in
the field of two-dimensional human pose estimation
after they have been trained using FIR imagery. These
architectures include both the convolutional and trans-
former families and cover both the direct regression and
heat-map approaches and their outputs are used to feed
the fall detection system.

Regarding the outlined contributions, the first one is con-
sidered the most relevant one, with the others serving as
necessary elements to achieve it.

The rest of this paper is structured as follows. Section II
presents a discussion on the evolution of human pose esti-
mation systems, as well as the most relevant neural network
architectures used in this field to determine the position of
the major human joints from an image. Additionally, the most
used datasets used in this field to train and compare the pre-
sented neural networks are introduced. Finally, the techniques
currently employed for automatic fall detection are described
and how they are not suitable for addressing the problem of
fall detection in nighttime conditions for unsupervised elderly
individuals.

In Section III, FIR-Human is described, the first publicly
available database containing FIR video clips along with
annotations of the volunteers’ joint positions. This database
allows training the networks presented in Section II from
scratch, an option not explored until now, as all previous
works used visible spectrum images to train such networks.
Additionally, this section describes the methodology for
training neural networks using FIR-Human and the per-
formance indexes used to test the human pose estimation
networks. Finally, the performance indexes employed to eval-
uate the fall detection system as a whole are also presented.

Section IV compiles the obtained results, both regarding
the accuracy in determining joint positions and the system’s
overall ability to determine if a fall occurs. Subsequently,
these results are discussed, evaluating the reasons for impre-
cise position estimation under certain conditions and the
causes of errors in fall detection.

Finally, in Section V, final conclusions are drawn, and
future lines of work are proposed.

II. BACKGROUND AND RELATED WORK
A. HUMAN POSE ESTIMATION
Human pose estimation has traditionally been one of the most
challenging fields of study in computer vision, as determining
the position of body key-points has proven to be an elu-
sive task.
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This process involves determining the pose of the image
in either two or three dimensions, and a number of dif-
ferent approaches have been proposed in the literature to
solve it. All these approaches can be classified into two
different groups [5]; the generative and the discriminative
ones.

Generative human pose estimation methods involve a geo-
metric projection of a volumetric human body model onto
the image plane, aligning it with the observed image. These
methods focus on solving the intrinsic problem of pose esti-
mation by assessing the probability of an observation given
a pose of the model. In this way, the process, which aims to
find an absoluteminimum, requires a complex search over the
model state space to achieve it. A good number of systems
have been developed following these methods [6], [7], [8],
[9], and, as expected, they are susceptible to errors related to
local minima, necessitating accurate initial pose estimations
to mitigate this issue. The most common methodologies to
obtain the sought minimum are local optimization [10], [11],
[12] and stochastic search [13], [14].
Generative methods deliver good results under optimal

conditions. However, under poor lighting or occlusion con-
ditions, their performance is significantly degraded.

Unlike generative methods, discriminative ones are capa-
ble of establishing a direct relation between the array of
features collected from images and a set of different poses.
As a result, multi-dimensional boundaries separating classes
associated with poses can be determined for the array of
features.

The determination of boundaries requires system training
based on real data, which takes time and demands processing
power. However, once the boundaries have been established,
the amount of processing power and time required for pose
determination is much lower than that required by generative
models. This is because generative models need to go through
an optimization process in a high-order state space every time
they estimate a pose.

The most popular discriminative methods to estimate
human pose are support vector machines [15], [16], [17], Rel-
evance Vector Machines [18], [19], mixture of experts [20],
[21], manifold learning methods [22], [23], [24], [25], [26],
pose embedding methods [27], [28], locality-constraint linear
code like [29], [30], bag-of-words [20], random forest [31],
[32], [33] and deep learning methods.
In global terms, discriminative methods, although show-

ing higher resistance than generative ones to perfor-
mance degradation due to occlusion and poor lighting
conditions, still present important restrictions under those
circumstances.

Deep learning methods, while computationally more
expensive than other ones, have proven to be not only more
accurate than the rest in optimal conditions, but also more
resilient to the adverse impact of occlusion and poor lighting.
These characteristics have made them gain high relevance
over the last few years.

In broad terms, human pose estimation based on deep
learning models consists of two basic steps. During the first
step, the model focuses on joint recognition (e.g., shoulder,
knee, ankle), while the second phase is centered on joint
grouping, so that the array of joints configures a valid human
pose configuration.

Two common approaches have been used for pose esti-
mation of individuals in images. The first one, known as
top-down, identifies the number of individuals in the image
and isolate them, usually by creating a bounding box. Once
individuals have been isolated, the system focuses on joint
identification and pose determination. This first philoso-
phy is followed by a number of different artificial neural
networks (ANN) architectures [34], [35], [36]. The second
approach [37], [38], [39], bottom-up, follows a reverse logic
and start by identifying joints to group them together after-
wards in a coherent entity representing a person.

The bottom-up philosophy presents several advantages
over the top-down option, as it is better able to overcome
early commitment problems associated with a faulty detec-
tion of individuals in the image. Furthermore, although the
computational cost of top-down approaches is lower than that
of the bottom-up one when the number of individuals is low,
it becomes higher as the number grows.

While ANN architectures able to estimate human pose is
large, all of them deliver one of the two following outcomes.
They can either directly regress the coordinates of a person’s
joints, or they can generate a probability map, called a heat
map, which represents the likelihood that an area of an image
contains a specific joint.

Traditionally, the backbone architectures used in human
pose estimation are based on convolutional neural networks.
DeepPose [40] is the first relevant network in this area pre-
sented in a research paper. It uses a classical convolutional
network as a backbone, Alexnet. Since then, a number of
alternative convolutional architectures capable of delivering
heat-maps or regressing joint positions have been proposed.

The introduction of ViT [41] meant the introduction of
an alternative option to the use of convolutions in the field
of artificial vision. This alternative is based on the use of
transformers, an architecture developed for the field of natural
language processing which identifies how relevant an item of
the input vector is for the rest of elements.

Visual transformers have been very recently introduced
in the world of human pose estimation and the number of
proposed networks for this purpose based on them is still
limited. This new architecture can rival state of art convo-
lutional networks and, in certain occasions, where relative
positions become relevant, it can outperform them. However,
although the computational cost for equivalent results tends
to be lower, the transformers architectures require far more
training information than convolutional networks to reach
equivalent performances [42].

Following the criteria stablished in [43], which thor-
oughly revises the most important two-dimensional human
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estimation neural networks belonging to both groups, convo-
lutional and transformers, the most relevant architectures are
selected.

These architectures, which are extensively presented in the
reference papers that introduce them, are briefly described in
the following paragraphs. They can be reproduced from the
papers that introduce them, but unlike what is done in their
original design, where they are trained using conventional
RGB images, we have trained them using FIR images to
assess their performance with this type of imagery.

1) CONVOLUTIONAL ARCHITECTURES
a: DeepPose
DeepPose is a convolutional architecture presented in [40]
whose backbone is Alexnet [44]. The network uses a cas-
cade of regresssors to refine joint position determination.
It crops the image around the joint coordinates estimated
by the previous stage, so further stages can improve joint
position determination, as these new-cropped images have
higher resolution levels.

DeepPose has three stages that operate in cascade. All
stages make the input image go through 5 convolutional lay-
ers reducing horizontal complexity to gain depth information
before injecting the extracted features in a block of two fully
connected layers that regresses joints positions. Then, the
image is cropped around that point and it is passed to the next
stage of the cascade for a more precise joint regression.

b: ConvNet POSE
ConvNet POSE is a convolutional architecture presented
in [45]. It represents the first approach to heat-map generation
leaving the previous regression philosophy used by Deep-
Pose.

The architecture integrates three modules. The first one
produces a coarse heat-map generated by convolutional and
pooling layers. A second module crops the image around the
predicted position of every joint. Finally, the third module is
used for heat-map fine-tuning.

c: CONVOLUTIONAL POSE MACHINES
Convolutional pose machines, presented in [34], is an archi-
tecture capable of producing an array of 2D heat maps that
represent the probability distribution in space for the location
of each key-point. The architecture is multi-stage and end-to-
end trainable. In the initial stage, the input data is the original
image, which, after being processed by a standard Visual
Geometry Group structure, generates heat maps for every
joint. Subsequent stages employ a similar strategy, although
the input data is an aggregation of the heat maps produced by
the previous stage and the original image.

This architecture uses large receptive fields to learn spatial
relationships that, in conjunction with the combined input
of the original image and the heat maps generated by the
previous stage, enhance the accuracy of the network output.

d: STACKED HOURGLASS NETWORKS FOR HUMAN POSE
ESTIMATION
The stacked hourglass architecture presented in [35] takes
its name from its appearance, which resembles an hourglass.
It combines the bottom-up and top-down approaches, as the
initial layers of each stage are convolutional and reduce hor-
izontal complexity while gaining depth and the final layers
are deconvolutional and execute the reverse operation. This
structure captures local information contained in the image at
different scales, which allows the network to learn different
relationships, such as body position, limbmovements, and the
relationship between joints.

The architecture stacks several hourglass stages in order
to get optimal performances and the down-sampling effect
is obtained using max pooling techniques while the
up-sampling one uses nearest-neighbor interpolation.

e: HUMAN POSE ESTIMATION WITH ITERATIVE ERROR
FEEDBACK
Iterative error feedback, presented in [46], is an architecture
capable of identifying what is wrong in the network’s forecast
and correcting it in an iterative way. This approach incorpo-
rates error predictions into the initial solution to iteratively
correct and optimize joint position determination. Unlike the
previous method, which directly identifies key-point posi-
tions, this approach progressively corrects an initial forecast
to optimize it.

This multi-stage process uses the fusion of the original
image and the heat-map produced by the previous stage as
the initial stage data. With this information, the errors in
the predictions from the previous stage are forecasted, and
joint positions are updated accordingly. These updated joint
positions are then used to generate updated heat-maps, which
will serve as input, along with the initial image, for the next
stage.

f: CASCADE FEATURE AGGREGATION FOR HUMAN POSE
ESTIMATION
This architecture, presented in [36], is based on a cascade
of hourglass stages that aggregate predictions from previous
stages with the original output of the initial backbone, aiming
to better capture the local information contained in an image.

This approach enables feature aggregation through image
inspection at different levels. Human joints are located
through low-level inspection, while in complex environments
with poor lighting or occlusion conditions, high-level inspec-
tion helps to refine their position.

2) TRANSFORMERS ARCHITECTURES
a: TFPose
TFPose, which is presented in [47], is an architecture based
on transformers that directly regresses key-point positions.
Its backbone extracts multilevel feature maps by processing
the input image through a series of convolutional layers with
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increasing strides. These maps are then flattened and concate-
nated together to feed a transformer-encoder block, following
a Deformable DERT [48] design. This encoder block consists
of six consecutive encoder layers, taking as input the output
of the previous one. Finally, a decoder block is used to
regress the coordinates of all joints from the encoder block
output.

The novelty of methods based on transformers is the atten-
tion mechanism they implement in the encoder block. This
way, input images or their feature maps are divided into spa-
tial segments, and the encoder block determines the level of
importance of every segment in relation to the rest, allowing
the network to learn spatial relations among joints in this case.

b: ViTPose
This architecture, presented in [49], is based on transformers
and can produce key-point heat-maps. Unlike the previous
network, ViTPose is purely based on transformers and does
not use convolutions to extract multilevel featuremaps. In this
case, the input image goes through an embedding block,
which fragments it into tokens that are flattened and concate-
nated into a single tensor. This tensor then feeds the encoder
block, which consists of a series of transformer sub-blocks,
with each one feeding the following one.

Similar to the previous network, the objective of the
encoder block is to learn the relative spatial relationships
among body key-elements to work effectively in cluttered
environments with low illumination or occlusion conditions.

Finally, a decoder block, fed by the encoder block’s output,
produces an array of heat-maps associated with each joint.

B. DATASETS USED FOR HUMAN POSE ESTIMATION
SYSTEM TRAINING
This work introduces FIR-Human, the first public dataset
of its kind, including far infrared video clips of people
engaged in daily life activities and falls, providing both two
and three-dimensional coordinates of their major joints. The
quantity of images within FIR-Human is sufficient to train
human pose estimation neural network capable of inferring
the position of human joints in both two and three dimensions
from scratch. In this work that training will be limited to
two dimensional networks, as the fall detection system we
implement works with that input. Prior to the introduction of
FIR-Human, previous works implementing pose estimation
networks able to infer joint’s position used RGB images for
network training and small sets of labeled FIR images for
performance testing. This is the case of the systems proposed
in [50] and [51], where the network is evaluated using reduced
FIR datasets specifically designed for that purpose.

Despite the absence of FIR datasets used for pose esti-
mation system training, there is a substantial number of
datasets containing RGB images for the training of human
pose estimation neural networks. Themost important ones are
FLIC [52], LSP [53],MPII Human Pose [54] and COCO [55],

which are systematically used to train and validate pose
estimation architectures. Additionally, Human 3.6M [56],
MPI-INF-D-HP [57], NTU RGB+D [58] and Deepcap [59]
have also been used with this purpose.

AUTOMATIC FALL DETECTION
The research effort to develop automatic fall detection

systems has been quite substantial. Tasnim et al. state in [60]
that the number of research papers found on Google Scholar
in 2022 exceeds 4000. This endeavor has produced positive
results, creating systems capable of reliably performing auto-
matic fall detection. Traditionally, these systems have been
categorized into three types: wearable, ambient, and vision-
based [61].
All systems, irrespective of their category, follow a com-

mon approach to fall determination or gait analysis. They all
process signals related to the person’s movement and, in one
way or another, define that movement. The signal is typically
pre-processed to minimize noise, and then it is analysed to
infer movement descriptors. Finally, these descriptors that
define movement are classified using various techniques to
ascertain whether a fall has occurred or if a specific gait aligns
with the requirements associated with a high fall probability.

Wearable systems employ sensors carried by themonitored
person to assess their movements. The predominant sensors
in these systems are either accelerometers or gyroscopes,
although other types, such as microphones, pressure sensors,
electrocardiography, and electroencephalography, are also
utilized. Despite the drawbacks related to limited connectiv-
ity capabilities and restricted edge processing power, these
devices have attained a high level of maturity.

Ambient fall detection systems rely on contact, passive
infrared, acoustic, radar, orWi-Fi technologies. Their primary
distinction, compared to wearable devices, lies in sensor
placement. While in wearable systems, sensors are carried by
the monitored person, in the case of ambient ones, sensors are
positioned around them.

While these systems offer a significant advantage over
wearable ones, as they are not dependent on batteries, their
level of maturity is still limited. As a result, most commercial
fall detection systems are currently wearable.

Vision-based systems operate with visible spectrum, near-
infrared, or depth video inputs. In tandem with the advance-
ment of artificial vision technologies, primarily driven by the
use of artificial neural networks, a substantial amount of effort
has been invested in recent years to develop these types of
devices. This significant research endeavor, as evidenced by
the number of published research papers in the area [62],
has enabled vision-based fall detection systems to attain a
noteworthy degree of maturity.

Despite the generally limited acceptance of these sys-
tems [3], the majority of commercial automatic fall detection
systems use wearable technologies, particularly the inertial
ones, while a good number of the most recent ones are based
on vision-based technologies. This is likely a reflection of
the technology’s maturity, which, in turn, may indicate how
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well-suited a certain technology is for addressing the issue of
fall determination.

Nevertheless, as indicated in [3], the utilization of these
systems may be perceived as acceptable by the elderly com-
munity and their caregivers in specific situations, provided
that they are truly tailored to the user’s needs. These situations
are primarily linked to times when human supervision is
minimal or absent [63]. A common scenario of this nature,
described by numerous interviewees in [3], is associated
with semi-supervised patients getting up at nighttime. In this
scenario, the individual is often disoriented, heightening the
risk of a fall. Furthermore, in the event of a fall, it might
go unnoticed until the next day, significantly delaying poten-
tially necessary medical intervention.

In these situations, the use of inertial-based systems is
a suboptimal solution, as the requirement to wear sen-
sors attached to the body disqualifies its use in situations
where patients wear light outfits to maximize comfort dur-
ing sleep. Ambient systems might appear to be the optimal
choice in these conditions, but the current low maturity
of these technologies discourages their use. Vision-based
systems combine good technological maturity with optimal
operational conditions under the described circumstances.
However, the low illumination conditions associated with
these scenarios disqualify the use of visual or near-infrared
cameras.

In contrast, FIR sensors and their images are perfectly
suitable for this situation, as the images they provide are not
dependent on light. Moreover, their use contributes to privacy
protection, and several groups related to elderly care have
expressed a preference for them. Finally, the introduction of
low-cost, high-resolution FIR cameras allows the develop-
ment of a system with these characteristics at a very low
price. Consequently, automatic fall detection based on FIR
imagery could be the optimal approach to address the safety
problem posed by semi-supervised patients getting up at
night-time.

Besides, a key aspect of practical fall detection is the
generalization problem associated to a lack of real data is
extensively studied in [4]. This way, the vision-based auto-
matic fall detection system revision made in [62] concludes
that, although the systems’ performances are very satisfac-
tory in laboratory environments, the significant differences
between simulated and real falls, and between falls of elderly
and young people, documented in [64] and [65], as well
as the difficulty to access real-world data as a consequence
of privacy protection, yield reasonable doubts about their
performances in real circumstances.

These doubts are a direct consequence of the use of kine-
matic descriptors [62] to evaluate whether a fall has taken
place. These descriptors are features inferred from the falls
contained in the datasets used in system training. This way,
if the video datasets do not contain real falls of elderly
people, the obtained descriptors could be inaccurate or incor-
rect and the system performances in the real-world could

be poorer than expected. The addressed problem is, there-
fore, a problem of generalization or, in other words, how to
assess whether an elderly person has experienced a fall based
on information inferred from simulated falls performed by
young people who fall in a different way.

Generalization problems are addressed through a number
of methods based on the correction of the modeling errors
associated to a training phase based on non-comprehensive
information. This family of approaches, considered in [66] for
the field of data-driven fault diagnosis and in [67] and [68] for
the field of automatic control, implies access to, at least, a lim-
ited amount of real data after initial system training in order
to correct the modeling errors caused by non-comprehensive
training information. Unfortunately, the absence of any video
database containing real falls of elderly people makes the
implementation of this approach impossible in the field of
video based automatic fall detection.

In [4], this generalization problem is approached from
a different perspective than the conventionally adopted
approaches based on the use of kinematic descriptors. In clas-
sical approaches, descriptors that characterize a fall are
inferred from fall images contained in datasets developed
for research using different techniques. However, since these
images have been recorded by actors or volunteers who are
significantly younger than the elderly community, it can be
expected that kinematic descriptors, inferred for a young
population and generalized to the rest, are not suitable for a
monitoring system devoted to elderly individuals.

This way, given the absence of real data, alternative
approaches need to be implemented to address this general-
ization problem. In [4], the use of a neural network called
CoGNet is proposed to determine the center of gravity posi-
tion of a person projected onto the ground, as well as the
support polygon defined by their feet, based on the position
of their joints. This position is determined by bi-dimensional
human pose estimation networks.

This approach, based on the use of dynamic descriptors,
approximates the human body in terms of stability and bal-
ance. This way, the described generalization problems can be
overcome, since the differences between real and simulated
falls lose relevance, as all falls are a direct result of failures
in the continuous effort of the body to maintain balance,
regardless of other considerations.

This work implements, for the very first time, a fall detec-
tion system that operates with high-resolution FIR imagery.
All previous works in the field of fall detection using infrared
sensors are limited to the use of very low-resolution Passive
Infrared Sensors (PIR). The studies conducted in this regard
are described by Ben-Sadoun et al. [69], which compiles
research published by IEEE Xplore Digital Library, MED-
LINE (PubMed), MDPI, SpringerLink, and ScienceDirect.
In total, it identifies 15 systems based on these technologies,
utilizing various types of sensors with resolutions ranging
from 8 × 8 pixels to 16 × 16 pixels, figures significantly
distant from the 480 × 640 pixels used by our system.
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The datasets used to evaluate the performance of these
systems were specifically developed for each of them, mak-
ing it impossible to establish comparisons between them
or with other systems. In any case, with the exception of
two systems whose performances were lower, their accu-
racy, precision, sensitivity, or specificity fell within the range
of 85-90%.

In a subsequent review, Elagovan et al. [63] studied the
night fall detection systems, concluding that the number of
systems using infrared sensors is very small and that none
of them use FIR imagery, as all identified systems use very
low-resolution PIR sensors.

C. SUMMARY
To sum up this section, it has been argued that practical
and widespread use of fall detection systems faces problems
related to user acceptance and generalization abilities of the
automatic detection system. Getting up at nighttime is a
scenario in which user are willing to accept an automatic
supervision system. The use of FIR images preserves users’
privacy, overcoming users’ concerns and avoiding wearing
uncomfortable sensors. Moreover, using dynamic descriptors
allows overcoming the generalization problem. Thus, in this
paper we propose to implement a fall detection system from
FIR images. The system includes two stages: a pose detection
system, and then a fall detection system based on dynamic
descriptors obtained from the pose.

The implementation of an automatic fall detection system
that works with FIR images and incorporates the concept of
dynamic descriptors requires bi-dimensional human position
estimation methods properly trained on FIR imagery. This
way, it requires a dataset specifically developed for this pur-
pose, as there is none with these characteristics. Thus, this
works introduces FIR-Human, as a novel dataset that fulfils
these requirements.

III. MATERIALS AND METHODS
A. FIR-HUMAN
Our new dataset, called FIR-Human, is the only one of its
kind to the best of our knowledge. It includes video clips
recorded by five volunteers engaged in various activities. The
dataset contains over 250,000 far infrared images (FIR) of the
volunteers, along with the 3-dimensional and 2-dimensional
annotations of their 19 main body joint positions.

The group of five volunteers is composed of four males
and one female, with body mass indexes (BMI) ranging
from 16 to 24, ages spanning from 25 to 56 and heights that
vary within the interval of 161 cm to 180 cm. This ensures
variability in body types and movements. Additionally, the
volunteers wore a variety of clothes, and the thermal condi-
tions of the laboratory where the recording was conducted
were highly diverse. In this way, the dataset obtained is rich
and varied. All volunteers signed an informed consent to
participate in the research.

The potential uses of this dataset include training systems
for FIR human pose estimation in both 2 and 3 dimensions,

human action recognition based on FIR imagery, surveil-
lance, healthcare, and potentially, autonomous driving.

FIR-Human is publicly available for download for aca-
demic and research use under the conditions established in the
license agreement at https://ieee-dataport.org/documents/fir-
human.

1) DATA MODALITIES
ASeek FIR camera is used to record our dataset, which is syn-
chronized with a Qualisys MoCap (Motion Capture) system.
The MoCap system captures the 3-dimensional position of
markers placed on the main body joints. Through this process
and after appropriate processing, a sequence of 3-dimensional
positions for each joint in each video clip is collected.

The FIR video clips are recorded at 23.98 frames per
second, and each frame has a resolution of 480 × 640 pixels.
The joint information consists of 3-dimensional positions
of 19 major body joints (Head top, forehead, neck base,
shoulders, elbows, wrists, hips, knees, ankles, heels and toes
tips), defined with an error of less than 5 millimetres for each
recorded frame. Additionally, the 2-dimensional projection of
those coordinates onto the recording plane is also provided.

2) ACTION CLASSES
The dataset contains a total of 27 action classes. Twenty-six
of them represent daily life activities, while the remaining
one includes different types of falls. The various actions
are repeated by the volunteers in four different positions,
allowing for frontal, rear, and side views of the same actions
to be recorded.

The dataset is divided into three blocks. The first block,
which includes the motions of four volunteers, is used for
system training, and in this group, all volunteers are recorded
executing 13 daily life activities. The second block includes
a single person who performs a different set of actions for
validation purposes. Finally, the third block includes four vol-
unteers who are recorded from different perspectives falling
forward, falling backward, and side falling. The falls start
from static or dynamic situations, and a number of them are
low-energy slow falls, a common type of fall in the elderly
community [70]. All the activities executed in the different
blocks are described in Table 1.

A few examples of labeled images belonging to video-clips
of volunteers performing different activities and fallings can
be seen in figure 1.

B. TWO-DIMENSIONAL POSE ESTIMATION
Eight different state-of-the-art neural networks, which rep-
resent the most relevant architectures used in the field
of human pose estimation have been used to determine
the position of the main human joints. These architec-
tures, introduced in section II-A, include DeepPose [40],
ConvNet POSE [45], Convolutional pose machines [34],
Stacked hourglass [35], Iterative Error feedback [46], Cas-
cade feature aggregation [36], TFPose [47] and ViTPos [47].
No changes have been introduced regarding the structure
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TABLE 1. Description of activities.

or hyper-parameters presented in the reference papers that
introduce them, as the FIR imagery is fed into the network
using the standard thee-channel input philosophy used with
RGB images. Finally, it is worth noting that, unlike what is
done in the original reference papers, the networks are trained
using FIR images instead of conventional RGB imagery.

1) NETWORK TRAINING
All selected networks are trained using the first block
of the FIR-Human dataset. This section of the dataset
contains 149635 annotated images of four volunteers engaged
in 13 different daily life activities. The diversity in sample
amplitude, body types (ample range of BMI’s and heights as
well as sex as explained in III.A) and clothing, along with the
various thermal conditions of the laboratory (whose temper-
ature, depending on the clip, range from 16 to 31 degrees),
provide optimal conditions for network training.

The block one of the FIR-Human dataset was used for
network training while the block two was employed for
testing and network comparison. To enrich both blocks
as much as possible the data augmentation strategy pro-
posed in [71] was adopted. It includes random rotations
(45◦, -45◦), random scaling (0.65, 1.35), flipping and half
body data augmentation. This way, the total number of images
was multiplied by four.

FIGURE 1. Volunteer (a) running, (b) playing basketball, (c) picking up an
object, (d) coughing, (e) sitting, (f) exercising, (g) falling forward,
(h) falling backwards, (i) side falling.

All proposed networks are implemented using PyTorch
with an Adam function used as optimizer. The chosen
batch size was 32 images and all networks were trained for
220 epochs, a number high enough for all of them to show
a stable behavior. The initial learning rate was 10-3 and it
was dropped to 10-4 and 10-5 at the 160 and 200 epochs
respectively, following the same rationale explained
in [72].

All networks were trained on an NVIDIA RTX-3080 GPU.

2) LOSS FUNCTION
The used loss function in all cases is an L2 function, also
known as Mean Squared Error (MSE), which is calculated
as the average of the sum of all squares of the differences
between true and predicted values.

L2 =

∑i=n
i=1 (yi − f (xi))2

n
(1)

where yi is the real value and f(xi) is the network’s forecasted
one.

In spite of its sensitivity to outliers this function is usually
preferred over L1, as it allows an easier gradient determina-
tion, favoring this way network training.
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3) HUMAN POSE ESTIMATION EVALUATION METRICS
A number of evaluation metrics allow network performance
evaluation and comparison over a common dataset.

The most important ones are:

• PCP (Percentage of Correct Parts), which measures the
correct detection rate of limbs, considering the detection
as correct when the distance between the two predicted
joint locations and the true ones is less than half the limb
length [40].

• PDJ (Percentage of Detected Joints). This metric regards
the detection of a joint as correct when the distance
between the forecasted and real joint positions is below
a percentage of the distance between right hip and left
shoulder.

• PCK (Percentage of Correct Key-points). A metric simi-
lar to PDJ, although in this metric, the reference distance
is the maximum side length of the external rectangle
of ground truth body joints [73]. PCKh is a variation
of PCK, whose reference distance is defined as 50% of
the ground-truth head segment length [54]. PCKh@0.5,
by far the most used evaluation metric in the field of
human pose estimation, considers the joint correctly
detected when the error in forecasting is below 50% of
the PCKh reference distance.

Due to the generalized use of PCKh, a commonmetric used
in all the papers that present and evaluate the architectures
described in the previous paragraphs, PCKh will be used in
this work as the common metric for comparison.

C. FALL DETECTION EVALUATION METRICS
The system integrates a 2D human pose estimation network,
CoGNet, and the fall detection algorithm described in [4] to
address the problem of fall detection in poorly illuminated
environments.

For 2D human pose estimation, the networks previously
considered are utilized, as they represent most of the state-
of-the-art human pose recognition networks ever developed.
The output of these networks is a matrix containing the 2D
positions of the main body joints, which is then passed to
CoGNet. CoGNet is responsible for assessing, by using the
algorithm proposed in [4], whether a fall has taken place.
It is important highlighting that CoGNet is already trained

using datasets different from FIR-human [4] and, therefore,
the blocks 2 and 3 of FIR-Human are used solely for sys-
tem testing purposes. The datasets used to train CoGNet are
Human 3.6M [56], MPI-INF-D-HP [57], NTU RGB+D [58]
and Deepcap [59].

The dataset used for testing consists of the 72 falls from the
block 3 of FIR-Human dataset. Additionally, the video-clips
of block 2 from that dataset are split into 8-second clips,
resulting in 195 videos that show a person executing 13 dif-
ferent daily life activities. This way, 72 video-clips containing
falls (FIR-Human block 3) and 195 video-clips containing
daily life activities different from falling (FIR-Human block
2) are used for system testing purposes.

TABLE 2. PCkh@0.5 for the different human joints.

Themetrics used to evaluate the fall detection system’s per-
formance, which are the most common ones in this area [62],
are the following ones:

Sensitivity_SE =
TP

TP+ FN
x100 (2)

Specificit_SP =
TN

TN + FP
x100 (3)

Accuracy_AC =
TP+ TN

TP+ TN + FN + FP
x100 (4)

where TP, TN, FP and FN respectively stand for true posi-
tives, true negatives, false positives and false negatives.

IV. RESULTS AND DISCUSSION
A. TWO-DIMENSIONAL POSE ESTIMATION EVALUATION
Performance comparison is summarized in figure 2, where
PCK is represented as a function of the normalized head
segment length.

Table 2 collects the performances of the different networks
as a function of joint.

Table 3 presents the computational cost required by the
different models while figures 3 and 4 compare the relation
between performance (total PCKh@0.5 in the first case and
foot PCKh@0.5, the most difficult joint to place, in the
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FIGURE 2. System performance comparison.

second) vs computational cost (GFLOP’s) for the different
considered networks.

Figure 5 illustrates the ground truth heat-maps of a FIR
image and the predictions made by the different architectures.

As expected, and in line with the results obtained in the
different papers that present each considered system, table 2
shows a significant difference in performances between the
networks that directly regress joint coordinates and the ones
which output heat-maps.

Although the introduction of transformers in the field of
artificial vision is very recent, and the number of models
applied to human pose estimation is still limited, the mod-
els based on transformers used in this work offer better
performances than the ones based on the classic use of con-
volutional neural networks.

TABLE 3. Computational cost.

FIGURE 3. Total PCKh@0.5 (Global performance) vs computational cost.

All models demonstrate exceptional performance at iden-
tifying the head, as can be easily inferred from figure 2,
where the obtained PCKh is quite similar for most of them.
A similar result is observed in the case of the shoulders, the
closest joint to the head. However, as the joints get farther
from the head, the model’s ability to determine joint position
degrades significantly, especially in the case of the ankle
and the foot. Additionally, the performances of the different
systems, which are similar for the less challenging key-points,
vary widely for the most challenging ones.

The computational cost of models based on transformers is
lower than that of the systems based on neural networks for
the same input resolution, and, with slight divergences, better
image input resolutions lead to better outcomes, especially for
the most challenging joints, albeit at a higher computational
cost.
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FIGURE 4. Foot PCKh@0.5 (Network performance to place the most
challenging joint) vs computational cost.

FIGURE 5. (a) Base image, (b) Ground truth heat-map, (c) ConvNet Pose
prediction, (d) CPM prediction, (e) Stacked hourglass prediction, (f) HPE
IF prediction, (g) Cascade prediction, (h) ViTPose prediction.

Finally, the computational power required to run these
networks in the limits of realistic motion perception
(24 frames per second), places the borders of the needed pro-
cessing power between 184.56 GFLOP’s/sec (7.69 GFLOP’s
per frame according to table 3 × 24 frames per second) for

TABLE 4. Processing power of chipsets mounted on modern mobile
devices.

FIGURE 6. Presentations of (a) volunteer playing basketball (b) volunteer
falling backwards from the FIR-Human dataset. Joints position, Center of
Gravity (COG) and Base of Support (BoS) are presented.

the case of DeepPose and 1838.16 GFLOP’s/sec (76.59× 24)
for ViTPose. These figures are out of boundaries for some
processors, especially the ones mounted on mobile devices
(table 4), which are often less capable than the hardware
used by desktop computers. Furthermore, these requirements
will be increased when other threads need to be run in
parallel.

B. FALL DETECTION SYSTEM EVALUATION
Figure 6 illustrates the two-dimensional network’s outcome
once it has been processed through the fall detection system
proposed in [4].

This system takes the outcome of two-dimensional pose
estimation networks and evaluates, by analyzing the relative
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TABLE 5. System accuracy comparison on FIR-Human dataset by type of
2D network employed.

movement of the major human joints, whether the person
keeps balance or falls down. The great advantage of this
concept is that it can be trained using RGB video-clips and,
therefore, an extensive dataset of falls recorded using FIR
video cameras is not necessary. Additionally, this system
approaches fall in terms of body balance and stability making,
this way, irrelevant the differences between simulated and real
falls, as all falls are a direct result of fails in the continuous
effort of the body to keep balance, regardless of other consid-
erations.

Table 5 presents the performance evaluation indexes of
the system which integrates the outcome of the considered
two-dimensional pose estimation networks presented in 3.1
with the fall detection system described in [4]. Results vary
widely depending on the performances of the used 2D net-
work. Additionally, table 6 reflects the confusion matrices for
all the considered cases.

Although comparison with other fall detection systems
working on FIR imagery is not possible as, to the best of our
knowledge, there is no other FIR image-based fall detection
system, the results obtained by the most performant network
shown in table 5 are in the ranges of specificity, sensitivity
and accuracy of the RGB fall detection systems considered
in [4] and presented in tables 7 and 8 and, in some cases, over
exceed them.

Although comparison with other fall detection systems
working on FIR imagery is not possible as, to the best of our
knowledge, there is no other FIR image-based fall detection
system, the results obtained by the most performant network
shown in table 5 are in the ranges of specificity, sensitivity
and accuracy of the RGB fall detection systems considered
in [4] and presented in tables 7 and 8.

Our system’s overall fall detection performance is espe-
cially dependent on the precision of the network to position
the lower joints. This way, the most performant networks

TABLE 6. Confusion matrixes.

TABLE 7. Accuracy comparison of different methods on RGB UR fall
dataset.

TABLE 8. Sensitivity and Specificity comparison of different methods on
UR fall dataset.

determining the position of the lower joints yield the best
results, as tables 2 and 5 clearly prove. These results are
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FIGURE 7. Presentations of system errors (a) false fall positive as a
consequence of fading of the right foot using Deep-Pose (b) false fall
negative as a result of the impossibility to determine the base of support
due to occlusion using CPM. Joints position, Center of Gravity (COG) and
Base of Support (BoS) are presented.

well aligned with the findings shown in table 10 of the paper
presenting CoGNet [4]. This table illustrates the diminishing
ability of CoGNet to properly determine the base of support
(BoS) and center of gravity (COG) of a person as the number
of joints passed to the network diminishes. The effect is
particularly noticeable when the lower joints’ positions are
not accurately provided, as these positions are the key ones
to determine whether the person will keep his balance and,
therefore, imprecisions in them will sharply diminish the
overall performance of the fall detection system.

The fading of the lower joints is a direct consequence of
their distance from the head, which is particularly noticeable
in the first networks of table 2. As the networks become more
performant, they yield better results as we can observe in the
lower rows of the table.

Moreover, although neural networks used in the field of
artificial vision are more resilient to errors induced by noise

due to occlusion than previous pose estimation systems they
are still sensitive to this phenomenon [62].

The combined effect of these phenomena leads to inac-
curate joint coordinates being passed to CoGNet, especially
in the case of the most distant joints from the head; such as
knees, ankles, and feet. These inaccuracies result in incorrect
BoS definitions, causing the system to misjudge situations
where the COG approaches the real limits of the BoS. How-
ever, these effects tend to diminish as the network’s outcomes
affecting lower joints become more precise.

This way, after a careful review of the false negatives pre-
sented in table 6, all of them are related to falls recorded from
angles that induce occlusion effects during the last phases of
the fall in the case of the most performant 2D networks, while
in the case of less performant networks false negatives are
also linked to fading of lower joints phenomena. In either case
CoGNet is unable to properly place the COG in relation to the
BoS. Figure 7.b illustrates an example of false fall negative
as a consequence of occlusion phenomena.

On the other hand, all false positives are linked to situa-
tions where the movements place the COG very close to the
limits of the BoS but still within it. As in the previous case,
misjudgments by CoGNet regarding the COG’s position in
relation to the BoS are the result of occlusion phenomena
in the case of the most performant 2D networks, while the
less performant ones are also sensible to fading phenomena.
Figure 7.a is an example of a false fall positive as a result of a
fading phenomenon which affects the right foot of a volunteer
while is bent over trying his shoe.

V. CONCLUSION AND FUTURE WORK
The study carried out in [63] identifies a set of situations
associated with semi-supervised patients in which human
supervision is not provided, and inwhich these patients would
accept the use of automatic fall detection systems. One of
these situations is when these patients are sleeping. Under
these conditions, the use of a fall detection system based on
FIR (Far Infrared) could be the most suitable solution.

This work implements the first system of this kind by
integrating the output of a neural network for position esti-
mation with the fall detection methodology proposed in [4].
In this way, the system uses the relative positions of the joints
to determine whether the person is maintaining balance or
experiencing a fall. To do this, these positions are used as
input for a neural network called CoGNet, which calculates
the position of the center of gravity projected on the ground
and the body’s support base. Finally, a fall detection algorithm
uses all this information to determine if a fall has occurred.

In order to evaluate the system’s capabilities based on the
output of the neural network for position estimation, a wide
range of these networks has been selected, which, according
to the criteria established in [43], represent the essential
architectures developed in the field of human position esti-
mation. These networks have been trained using FIR-Human,
the first large publicly available FIR database in which the
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fundamental joints of volunteers are labeled in both two and
three dimensions.

The performances of these networks are in line with those
obtained with RGB databases. These performances show that
architectures based on Transformers yield better results than
those using convolutions for the same computational demand.

In general terms, as table 2 and figure 2 present, direct
regression offers worse performances than heat-map genera-
tion techniques, and regardless of the approach, joints closer
to the head are less challenging for all models compared
to those that are further away. Moreover, while the system
performances for the easier key-points are similar, they vary
widely for the most difficult ones.

Finally, the results clearly show that higher resolution
images allow the models to generate better results at the cost
of increased computational demands.

As for the overall performance of the fall detection sys-
tem, it depends primarily on the accuracy with which the
two-dimensional network establishes the position of the main
joints, especially those closer to the feet, as illustrated in
table 5.

Although it is not possible to compare this system with
others, as it is the first of its kind, the accuracy indexes
presented in table 4 for the most performant networks fall
within the range offered by classic systems that work with
RGB images, as can be deduced from the comparison of
table 4 with tables 7 and 8. This demonstrates that the pro-
posed automatic fall detection system, which operates on
FIR imagery, is a valid solution for working in poorly or
non-illuminated environments. Additionally, the use of FIR
images contributes to privacy protection, addressing concerns
raised by different communities related to the elderly care
sector.

The study of both false positives and false negatives in
Table 6 allows us to deduce that inaccuracies in joint deter-
mination, which in turn are the source of failures in the fall
detection system, are primarily the result of two phenomena:
occlusion and fading of joints distant from the head. In both
situations, CoGNet experiences limitations in calculating the
position of the Center of Gravity (COG) in relation to the
Base of Support (BoS). In the case of more capable 2D
networks, errors in fall determination are primarily the result
of occlusion phenomena, while in the case of less capable
networks, fading of joints further from the head compounds
these phenomena.

On the other hand, the amount of processing power
required to run the networks considered in this work
within the constraints of realistic motion perception exceeds
the capabilities of some processors, especially when
parallel threads need to be executed, as evident from
Tables 2 and 3.

Finally, all the network architectures considered in this
study were originally designed to operate with RGB imagery,
which means they are designed to accept three-channel
inputs, one for each primary color. However, FIR imagery
represents temperature using a two-color palette, typically

assigning one color, usually white, to the highest temperature
detected in the image and the other color, typically black,
to the lowest temperature. Therefore, potential redesigns of
these architectures to work with two-channel inputs may
not only improve their performance but also reduce the
computational requirements needed to run them. Future
research in this direction may significantly enhance both the
performance of pose estimation networks when working with
FIR imagery and the overall performance of the fall detection
systemwhile reducing the processing power required to oper-
ate it.
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