000134880 001__ 134880
000134880 005__ 20240711085512.0
000134880 0247_ $$2doi$$a10.1002/advs.202308561
000134880 0248_ $$2sideral$$a138435
000134880 037__ $$aART-2024-138435
000134880 041__ $$aeng
000134880 100__ $$aSartori, Paolo
000134880 245__ $$aPhotochemically Induced Propulsion of a 4D Printed Liquid Crystal Elastomer Biomimetic Swimmer
000134880 260__ $$c2024
000134880 5060_ $$aAccess copy available to the general public$$fUnrestricted
000134880 5203_ $$aUnderwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape‐changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene‐containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate‐intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four‐lapped ephyra‐like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate‐intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light‐fueled robotic LCE free‐swimmers.
000134880 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/LMP221_21$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E15-20R$$9info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101069436/EU/Morphing tubular structures for adaptive biomedical devices/Stripe-o-Morph$$9info:eu-repo/grantAgreement/EC/H2020/956150/EU/Soft and Tangible Organic Responsive Materials progressing roBOTic functionS/STORM-BOTS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956150-STORM-BOTS$$9info:eu-repo/grantAgreement/ES/ISCIII/CB06-01/00263$$9info:eu-repo/grantAgreement/ES/MICINN/CNS2022-135887$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2017-84087-R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2020-113003GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-118485RB-I00
000134880 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000134880 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000134880 700__ $$aYadav, Rahul Singh$$uUniversidad de Zaragoza
000134880 700__ $$0(orcid)0000-0002-5380-6863$$aBarrio, Jesús del$$uUniversidad de Zaragoza
000134880 700__ $$aDeSimone, Antonio
000134880 700__ $$0(orcid)0000-0003-3900-2866$$aSánchez-Somolinos, Carlos
000134880 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000134880 773__ $$g11, 25 (2024), 2308561 [12 pp.]$$pAdv. sci.$$tAdvanced Science$$x2198-3844
000134880 8564_ $$s4240291$$uhttps://zaguan.unizar.es/record/134880/files/texto_completo.pdf$$yVersión publicada
000134880 8564_ $$s2612372$$uhttps://zaguan.unizar.es/record/134880/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000134880 909CO $$ooai:zaguan.unizar.es:134880$$particulos$$pdriver
000134880 951__ $$a2024-07-11-08:52:29
000134880 980__ $$aARTICLE