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Abstract
We develop a constructive method for computing explicitly multivariate Bessel expan-
sions of the type

∑

m≥1

αm

k∏

i=1

Jμi (ζmxi )

(ζmxi )μi
,

assuming that for a particular value η a closed expression for the single-variable Bessel
expansion

∑

m≥1

αm
Jη(ζmx)

(ζmx)η

as a power series of x2 j , j ∈ N, is known. Using the method we compute in a closed
form a bunch of examples of multivariate Bessel expansions.
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1 Introduction

In 2022 we commemorated the first centenary of Watson’s celebrated masterpiece
A treatise on the theory of Bessel functions [19]; see also [14]. Although one hundred
years have passed since the first edition of this fundamental book was published, there
are still some interesting problems about Bessel functions to be addressed. One of them
is related to Bessel expansions in several variables. Watson displayed just a couple
of bivariate expansions: the Kneser-Sommerfeld expansion [19, §15.42, p. 499] (by
the way, this expansion is likely the only mistake in Watson’s book: see [13]), and a
particular example of a Neumann series [19, §16.32, p. 531]. And it is enough to take
a look at [16, Sect. 5.7] or [1, Sect. 6.8] to realize that only a few two variable Bessel
series of the form

∑

m≥1

αm Jμ1(ζmx1)Jμ2(ζmx2)

have been explicitly computed if we compare to single-variable ones (see also [4, 10,
12]). Even less is known if we consider multivariate Bessel series with an arbitrary
number of variables (see [17]). That also happens in the more studied case when the
sequence ζm is the sequence of zeros jm,ν of other Bessel function Jν .

Of course, this is not surprising because the multivariate case is more difficult to
handle than the single-variable one.

The purpose of this paper is to improve that situation. To do that, we develop a
method for computing in a closed form multivariate Bessel expansions of the type

∑

m≥1

αm

k∏

i=1

Jμi (ζmxi )

(ζmxi )μi
, (1.1)

assuming that for a particular valueη, a closed expression for the single-variableBessel
expansion

∑

m≥1

αm
Jη(ζmx)

(ζmx)η
(1.2)

as a power series of x2 j , j ∈ N, is known.
Usingourmethod,we compute explicitly a bunchofmultivariateBessel expansions,

among which are (for n ∈ Z)

∑

m≥1

jν−2n−1
m,ν

Jν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
, (1.3)

∑

m≥1

jν−2n−1
m,ν

( j2m,ν − z2)Jν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νx)μi
, (1.4)
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∑

m≥1

(−1)m

(1 + m2/θ2)n

k∏

i=1

Jμi (
√
1 + m2/θ2xi )

(
√
1 + m2/θ2xi )μi

, (1.5)

∑

m≥1

λν−2n
m

(λ2m − ν2 + H2)Jν(λm)

k∏

i=1

Jμi (λmxi )

(λmxi )μi
, (1.6)

∑

m≥1

λν−2n
m

(λ2m − z2)(λ2m − ν2 + H2)Jν(λm)

k∏

i=1

Jμi (λmxi )

(λmxi )μi
, (1.7)

where in the last two expansions λm are the positive zeros (ordered in increasing size)
of the function

z J ′
ν(z) + H Jν(z), ν > −1, ν + H > 0.

The method is explained in full detail in Sect. 4. In order to establish our method
we prove in Sect. 3 a theorem on multivariate cosine expansions which has interest by
itself (see Theorem 3.1); this theorem is the bridge which allows us to move from the
single-variable Bessel expansion (1.2) to the multivariate one (1.1).

In Sect. 5, we consider the case when the particular Bessel series (1.2) is a poly-
nomial in certain interval; this includes the expansions (1.3) and (1.6). We show that
associated to this type of Bessel expansions are the so-called Bessel–Appell polyno-
mials, i.e., one-parameter sequences of polynomials (pn,μ)n defined by a generating
function of the form

A(z)
Jμ(xz)

(xz)μ
=

∞∑

n=0

pn,μ(x)zn,

where A is a function analytic at z = 0. In particular, they satisfy

p′
n,μ(x) = −xpn−1,μ+1(x), n ≥ 1.

The multivariate Bessel series (1.1) can then be explicitly summed from the Taylor
coefficients of the analytic function A. For the benefit of the readers, we display here
one of our results in full detail. Denote by

Ĉ = C \ {−1,−2,−3, . . .} (1.8)

and, for ω > 0,

	[ω] =
{
(x1, . . . , xk) ∈ R

k :
k∑

i=1

|xi | ≤ ω
}
, (1.9)

	∗[ω] =
{
(x1, . . . , xk) ∈ 	[ω] :

k∏

i=1

xi �= 0
}
. (1.10)
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We then prove that for ν > −1, ν + H > 0, μi ∈ Ĉ, i = 1, . . . , k, with ν <

2n + (k + 1)/2 + ∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗[1], the multivariate Dini-Young

expansion (1.6) is equal to the polynomial

n∑

l=0

aH ,ν
n−l

∑

l1+···+lk=l

k∏

i=1

(−x2i /4
)li

2μi li ! 
(μi + li + 1)
,

where (aH ,ν
n )n is the sequence defined by the generating function

zν

2
(
(H − ν)Jν(z) + z Jν−1(z)

) =
∞∑

n=0

aH ,ν
n z2n .

In Sect. 6 we extend our results to the case when the particular Bessel series (1.2) is
not a polynomial but still can be expanded in powers of x2 j , j ∈ N (which includes
the expansions (1.4), (1.5) and (1.7)). Here is an example in full detail. For Reν <

2n + ∑k
i=1 Reμi + (k + 5)/2 and (x1, . . . , xk) ∈ 	∗[1], the multivariate Dini-Young

expansion (1.7) is equal to

1

z2n+2

(
zν

2
(
(H − ν)Jν(z) + z Jν−1(z)

)
k∏

i=1

Jμi (xi z)

(xi z)μi

−
n∑

l=0

z2l
l∑

j=0

aH ,ν
l− j

∑

l1+···+lk= j

k∏

i=1

(−x2i /4)
li

2μi li ! 
(μi + li + 1)

)
.

When the particular Bessel series (1.2) cannot be expanded in powers of x2 j , j ∈ N,
the application of ourmethod ismuchmore complicated. InAppendixA (“Multivariate
Sneddon expansion” section), we consider an example of such situation. We can still
obtain some result but not as complete as in the previous scenario.We have considered
the multivariate Sneddon expansion

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
. (1.11)

The case k = 2 has been summed in [9] for 2Reν < 1 + Reμ1 + Reμ2 and 0 <

x + y < 2 (see also [18, §2.2] and [13]). For k ≥ 3, we consider the sets

�+
i =

{
(x1, . . . , xk) ∈ R

k : ∀ j x j > 0,
k∑

j=1

x j < 2,
∑

j �=i

x j < xi
}
, i = 1, . . . , k,

(1.12)

�+
r =

{
(x1, . . . , xk) ∈ R

k :
k∑

j=1

x j < 2, ∀i 0 < xi <
∑

j �=i

x j
}

(1.13)
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(notice that for k = 2, �+
r = ∅).

Assuming that oneof the parametersμi is equal to−1/2,wehave explicitly summed
the expansion (1.11) in the piece �+

i . More precisely using the symmetry of (1.11)
we can take μ1 = −1/2, and then we have

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
= 22ν−2
(ν + 1)2

ν
∏k

i=1 2
μi 
(μi + 1)

×
⎛

⎝−1 +
(

μ1

ν

) ∞∑

j=0

(ν) j (ν − μ1) j x
−2ν−2 j
1

∑

l2+···+lk= j

k∏

i=2

x2lii

li ! (μi + 1)li

⎞

⎠

(1.14)

for ν, μi ∈ Ĉ, i = 2, . . . , k, with 2Reν < 2n+ k/2+∑k
i=1 Reμi and (x1, . . . , xk) ∈

�+
1 . Moreover, we have computational evidence showing that the sum (1.14) also

holds when μ1 �= −1/2, but we have not been able to prove it.
We have also failed summing the expansion (1.11) in the piece �+

r (1.13).

2 Preliminaries

Throughout this paper, by Jμ(z)
zμ we denote the even entire function

1

2μ

∞∑

n=0

(−1)n(z/2)2n

n! 
(μ + n + 1)
, z ∈ C.

As usual, (a)n denotes the Pochhammer symbol

(a)n = a(a + 1)(a + 2) . . . (a + n − 1) = 
(a + n)


(a)

(with n a nonnegative integer).
The zeros of the even function Jν(z)/zν , are simple and can be ordered as a double

sequence ( jm,ν)m∈Z\{0} with j−m,ν = − jm,ν and 0 ≤ Re jm,ν ≤ Re jm+1,ν for m ≥ 1
[19, §15.41, p. 497]. The imaginary part of these zeros is bounded and, when m is a
sufficiently large integer, there is exactly one zero in the strip mπ + π

2 Reν + π
4 <

Rez < (m + 1)π + π
2 Reν + π

4 [19, §15.4, p. 497], so that

lim
m→+∞

| jm,ν |
πm

= 1.

For ν > −1 and H + ν > 0, the zeros λm , m ≥ 1, of z J ′
ν(z) + H Jν(z) interlace the

zeros of the Bessel function Jν [19, §15.23, p. 480]. In particular, they are positive
and increasing.
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We will also use the well-known estimate

0 < c ≤ |Jν+1( jm,ν)
2 jm,ν | ≤ C

for some constants c and C not depending on m.
Bessel functions satisfy the bound

|Jβ(z)| ≤ C
e|Imz|

|z|1/2 ,

for |z| large enough, with a constant C depending only on β. To be precise, for
|z| > ε > 0 and β on a compact set K , there is a constant C depending only on ε and
K , as follows from [15, Eq. 10.4.4 and §10.17(iv)].

We also use the well-known identity

d

dx

(
Jμ(x)

xμ

)
= −x

Jμ+1(x)

xμ+1 . (2.1)

For μ and η satisfying Reμ > Reη > −1, consider the integral transform Tμ,η

given by

Tμ,η( f )(x) = 1

2μ−η−1
(μ − η)

∫ 1

0
f (xs)s2η+1(1 − s2)μ−η−1 ds (2.2)

(with a small abuse of notation, we will often write Tμ,η( f (x)) if it does not cause
confusion).

Sonin’s formula for the Bessel functions [19, 12.11(1), p. 373] can be written as

Jμ(x)

xμ
= 1

2μ−η−1
(μ − η)

∫ 1

0

Jη(xs)

(xs)η
s2η+1(1 − s2)μ−η−1 ds

= Tμ,η

(
Jη(x)

xη

)
(2.3)

valid for Reμ > Reη > −1.
For 2Reη + r + 2 > 0, we also have

Tμ,η(x
r ) = 
(η + r

2 + 1)

2μ−η
(μ + r
2 + 1)

xr , (2.4)

where we have used that

∫ 1

0
sa(1 − s2)b ds = 
( a+1

2 )
(b + 1)

2
( a+1
2 + b + 1)

, Rea,Reb > −1.

The identity (2.3) can be extended for Reη < −1 as follows. For μ ∈ Ĉ, η ∈ Ĉ,
η �= −3/2,−5/2, . . ., and a positive integer h satisfying Reη > −h/2 − 1, Reμ >
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Reη + h, consider the integral transform Tμ,η,h given by

Tμ,η,h( f )(x) = (−1)h2η+1−μ
(2η + 2)


(μ − η)
(2η + 2 + h)

×
∫ 1

0

dh

dsh
(
f (xs)(1 − s2)μ−η−1)s2η+h+1 ds. (2.5)

It is then easy to check that

Tμ,η,h(x
r ) = 


(
η + r

2 + 1
)

2μ−η

(
μ + r

2 + 1
) xr ,

Tμ,η,h

(
Jη(x)

xη

)
= Jμ(x)

xμ
.

3 Multivariate cosine expansions

We denote by πk the set of k-tuples ε = (ε1, . . . , εk) of signs ε j = ±1 and by sε the
number of negative signs in ε (so that

∏k
j=1 ε j = (−1)sε ).

We define

Clk(x1, . . . , xk) = 1

2k
∑

ε∈πk

( k∑

j=1

ε j x j

)l

,

where l ∈ N (we often use Clk without the variables x j ).
In what follow, we will use the multinomial formula

(y1 + y2 + · · · + yk)
l =

∑

l1+l2+···+lk=l

(
l

l1, l2, . . . , lk

)
yl11 yl22 . . . ylkk

(in the sum, the l j are non negative integers), where

(
l

l1, l2, . . . , lk

)
= l!

l1! l2! . . . lk ! , with l1 + l2 + · · · + lk = l

are the so-called multinomial coefficients. Of course, these coefficients are invariant
under permutation of the l j ; this will be used along the paper without explicit remark.
This gives
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Clk(x1, . . . , xk) = 1

2k
∑

ε∈πk

( k∑

j=1

ε j x j

)l

= 1

2k
∑

ε∈πk

∑

l1+···+lk=l

(
l

l1, . . . , lk

) k∏

i=1

ε
li
i x

li
i

= 1

2k
∑

l1+···+lk=l

(
l

l1, . . . , lk

) k∏

i=1

xlii
∑

ε∈πk

k∏

i=1

ε
li
i .

If some l j is odd, then

∑

ε∈πk

k∏

i=1

ε
li
i =

∑

ε∈πk−1

k∏

i=1;i �= j

ε
li
i −

∑

ε∈πk−1

k∏

i=1;i �= j

ε
li
i = 0,

and the corresponding summand in
∑

l1+···+lk=l vanishes; otherwise, if all the l j are
even,

∑

ε∈πk

k∏

i=1

ε
li
i =

∑

ε∈πk

1 = 2k .

Consequently, Clk = 0 when l is odd, and

C2lk (x1, . . . , xk) =
∑

l1+···+lk=l

(
2l

2l1, . . . , 2lk

)
x2l11 . . . x2lkk . (3.1)

Theorem 3.1 Let (am)m≥1, (ζm)m≥1 be two sequences of real numbers such that the
following sine and cosine expansions converge pointwisely in some interval (−w,w):

φ(x) =
∑

m≥1

am cos(ζmx),

ψ(x) =
∑

m≥1

am sin(ζmx).

Then, the series

G(x1, . . . , xk) =
∑

m≥1

am

k∏

j=1

cos(ζmx j ) (3.2)
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converges pointwisely if
∑k

j=1 |x j | < ω, and

G(x1, . . . , xk) = 1

2k
∑

ε∈πk

φ

( k∑

j=1

ε j x j

)
. (3.3)

Proof First of all, we note that

k∑

j=1

|x j | < ω ⇐⇒ −ω <

k∑

j=1

ε j x j < ω for all ε ∈ πk . (3.4)

Using Euler’s formula cos x = (eix + e−i x )/2, we get

k∏

j=1

cos(ζmx j ) =
k∏

j=1

eiζmx j + e−iζmx j

2
=

∑

ε∈πk

k∏

j=1

1

2
eε j iζmx j

=
∑

ε∈πk

1

2k
eiζm

∑k
j=1 ε j x j .

Formally, we get from (3.2)

G(x1, . . . , xk) =
∑

m≥1

am
∑

ε∈πk

1

2k
eiζm

∑k
j=1 ε j x j =

∑

ε∈πk

1

2k
∑

m≥1

ame
iζm

∑k
j=1 ε j x j

=
∑

ε∈πk

1

2k
∑

m≥1

am

⎛

⎝cos

⎛

⎝ζm

k∑

j=1

ε j x j

⎞

⎠ + i sin

⎛

⎝ζm

k∑

j=1

ε j x j

⎞

⎠

⎞

⎠

=
∑

ε∈πk

1

2k

⎛

⎝φ

⎛

⎝
k∑

j=1

ε j x j

⎞

⎠ + iψ

⎛

⎝
k∑

j=1

ε j x j

⎞

⎠

⎞

⎠ .

The pointwise convergence of the series φ and ψ and (3.4) say that each series in
the last sum is convergent, and hence, we deduce the pointwise convergence of the
series (3.2). The identity (3.3) then follows taking into account thatG is a real function
because am , m ≥ 1, are real numbers. ��

4 Themethod

Our method for computing a multivariate Bessel expansion like (1.1) can be described
in the following three steps.
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4.1 First step

We start with a particular expansion

fη(x) =
∑

m≥1

αm
Jη(ζmx)

(ζmx)η
. (4.1)

By applying the integral transform Tμ,η (2.2) to (4.1), we get the more general expan-
sion

∑

m≥1

αm
Jμ(ζmx)

(ζmx)μ
= Tμ,η( fη)(x). (4.2)

This approach was worked out in [8, Lemma 1] assuming that a closed expression for
(1.2) as a power series of x is known. In [8], we considered only the case when (ζm)m
is the sequence of zeros ( jm,ν)m of the Bessel function Jν , but there is not problem
in taking any arbitrary sequence ζm . We consider here complex parameters μ, η ∈ Ĉ

(1.8), removing the assumption in [8] where we only considered real parameters with
μ, η > −1. For the benefit of the readers, we display next the new version of [8,
Lemma 1] we will use in this paper.

Lemma 4.1 Given a real number ω ≥ 1, a complex number η ∈ Ĉ such that
Reη �= − 3

2 ,− 5
2 ,− 7

2 , . . ., and two sequences (αm)m≥1 and (ζm)m≥1, ζm �= 0, with
lim inf |ζm | ≥ 1, assume that

∑

m≥1

|αm |
|ζm |Reη+1/2 < +∞ and

∑

m≥1

αm
Jη(ζmx)

(ζmx)η
=

+∞∑

j=0

u j x
2 j , x ∈ (0, ω).

(4.3)

Let μ ∈ Ĉ. If

∑

m≥1

|αm |
|ζm |Reμ+1/2 < +∞, (4.4)

then

∑

m≥1

αm
Jμ(ζmx)

(ζmx)μ
=

+∞∑

j=0

u j
(η + j + 1)

2μ−η
(μ + j + 1)
x2 j , x ∈ (0, ω). (4.5)

In particular, this holds if Reμ ≥ Reη.

Proof Take a positive integer h and μ ∈ Ĉ such that Reη > −h/2 − 1 and Reμ >

Reη + h. The first assumption in (4.3) implies that the series in the left-hand side of
the Bessel expansion in (4.3) converges uniformly on compacts. The identity (4.5)
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can then be proved by applying the integral transform Tμ,η,h (2.2) to both sides of the
Bessel expansion in (4.3). The assumption (4.4) implies that the series in the left-hand
side of (4.5) is an analytic function of μ. Since the right-hand side of (4.5) is also an
analytic function of μ, we can conclude that (4.5) holds for complex numbers μ ∈ Ĉ

satisfying (4.4). ��

4.2 Second step

The second step of our method consists in a bridge which allows us to move from a
single-variable Bessel expansion to a multivariate one, and use the result on multivari-
ate trigonometric expansions proved in Sect. 3. Once we have (4.2), since

J−1/2(z)

z−1/2 = (2/π)1/2 cos z, (4.6)

setting μ = −1/2 in (4.2) and using Theorem 3.1 we get the multivariate cosine
expansion

∑

m≥1

αm

k∏

j=1

cos(ζmx j ) = 1

2k
∑

ε∈πk

φ

⎛

⎝
k∑

j=1

ε j x j

⎞

⎠ , (4.7)

where φ(x) = (π/2)1/2T−1/2,η( fη)(x).

4.3 Third step

The third step of our method consists in a multivariate version of Lemma 4.1, which
was also established in [8] (see Lemma 2) again by using the integral transforms Tμi ,ηi

(2.2) in each variable xi . In doing that we get from (4.7) the more general multivariate
expansion

∑

m≥1

αm

k∏

i=1

Jμi (ζmxi )

(ζmxi )μi

(the original version in [8] takes as ζm the zeros of a Bessel function Jη and considers
only real parameters, but this is not relevant). Indeed, consider sets 	 ⊆ (0,+∞)k

with the property that (0, 1)k ⊂ 	 and

(x1, x2, . . . , xk) ∈ 	 �⇒
k∏

i=1

(0, xi ] ⊆ 	.

The precise statement goes as follows:
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Lemma 4.2 Let ηi ∈ Ĉ, i = 1, . . . , k, such that Reηi �= − 3
2 ,− 5

2 ,− 7
2 , . . ., and (αm)m

and (ζm)m be two sequences, ζm �= 0, with lim inf |ζm | ≥ 1, such that

∑

m≥1

|αm |
∏k

i=1 |ζm |Reηi+1/2
< +∞.

Assume that, for (x1, . . . , xk) ∈ 	,

∑

m≥1

αm

k∏

i=1

Jηi (ζmxi )

(ζmxi )ηi
=

∞∑

j1,..., jk=1

u j1,..., jk

k∏

i=1

x2 jii ,

where the power series on the right-hand side converges absolutely. If μi ∈ Ĉ, i =
1, . . . , k, and Reμi > Reηi then for (x1, . . . , xk) ∈ 	,

∑

m≥1

αm

k∏

i=1

Jμi (ζmxi )

(ζmxi )μi
=

∞∑

j1,..., jk=1

u j1,..., jk

k∏

i=1


(ηi + ji + 1)x2 jii

2μi−ηi 
(μi + ji + 1)
. (4.8)

Moreover, if μi ∈ Ĉ, i = 1, . . . , k, satisfy

∑

m≥1

|αm |
∏k

i=1 |ζm |Reμi+1/2
< +∞,

then (4.8) also holds.

To sum up, this three-step method works as far as we can explicitly compute the
integral transforms Tμ,η( fη) in (4.2) in the first and the third steps. This is the case
when a closed expression for the function fη in (4.1) as an even power series of x is
known. Then, step 1 is Lemma 4.1, step 2 is Theorem 3.1, and step 3 is the particular
case ηi = −1/2 in Lemma 4.2.

In the following lemma we put together all the steps.

Lemma 4.3 Let η,μi ∈ Ĉ, i = 1, . . . , k, withReη �= − 3
2 ,− 5

2 ,− 7
2 , . . ., a real number

ω ≥ 1, and two sequences (αm)m and (ζm)m, ζm �= 0, with lim inf |ζm | ≥ 1, such that
the series

∑

m≥1

|αm ||ζm |−Reη−1/2,
∑

m≥1

|αm |,
∑

m≥1

|αm ||ζm |−k/2−∑k
i=1 Reμi (4.9)

all converge. Assume that

∑

m≥1

αm
Jη(ζmx)

(ζmx)η
=

∞∑

l=0

ul x
2l , x ∈ (−ω,ω). (4.10)
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Then we have, for k ∈ N and
∑k

i=1 |xi | < ω,

∑

m≥1

αm

k∏

i=1

Jμi (ζmxi )

(ζmxi )μi
=

∞∑

l=0

2η
(η + l + 1)ul

×
∑

l1+···+lk=l

(
l

l1, . . . , lk

) k∏

i=1

x2lii

2μi 
(μi + li + 1)
. (4.11)

Proof The assumptions in (4.9) on the sequences (αm)m and (ζm)m guarantee the
uniform convergence in compact sets of R of the series in the left-hand side of (4.10)
and (4.11).

Taking into account (4.6) and applying Lemma 4.1 for μ = −1/2 (this is why we
need the second assumption in (4.9)), we get for x ∈ (0, ω) that

∑

m≥1

αm cos(ζmx) = √
π

∞∑

l=0

ul
(η + l + 1)

2−η
(l + 1
2 )

x2l . (4.12)

Since both sides in (4.12) are even functions we get that (4.12) also holds for x ∈
(−ω, 0) and trivially from (4.10) also for x = 0.

Theorem 3.1 gives, for
∑k

i=1 |xi | < ω,

∑

m≥1

αm

k∏

j=1

cos(ζmx j ) = 1

2k
∑

ε∈πk

p
( k∑

j=1

ε j x j
)
,

where p is the power series in the right-hand side of (4.12). Using (3.1) we get, for∑k
i=1 |xi | < ω,

∑

m≥1

αm

k∏

j=1

cos(ζmx j ) = √
π

∞∑

l=0

ul
(η + l + 1)

2−η
(l + 1
2 )

∑

l1+···+lk=l

(
2l

2l1, . . . , 2lk

)
x2l11 . . . x2lkk .

Taking into account (4.6), the last identity can be rewritten in the form

∑

m≥1

αm

k∏

j=1

J−1/2(ζmx j )

(ζmx j )−1/2

= 2k/2

π(k−1)/2

∞∑

l=0

ul
(η + l + 1)

2−η
(l + 1
2 )

∑

l1+···+lk=l

(
2l

2l1, . . . , 2lk

)
x2l11 . . . x2lkk .
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Write � = {(x1, . . . , xk) : xi > 0,
∑k

i=1 xi < ω}. Lemma 4.2 gives, for
(x1, . . . , xk) ∈ �,

∑

m≥1

αm

k∏

i=1

Jμi (ζmxi )

(ζmxi )μi
= 2k/2

π(k−1)/2

×
∞∑

l=0

ul
(η + l + 1)

2−η
(l + 1
2 )

∑

l1+···+lk=l

(
2l

2l1, . . . , 2lk

) k∏

i=1


(li + 1
2 )

2μi+1/2
(μi + li + 1)
x2lii ,

(4.13)

from where (4.11) follows easily. Since both sizes of (4.13) are even functions in each
variable xi , we deduce that (4.11) also holds in

∑k
i=1 |xi | < ω, if x1 . . . xk �= 0, and

by continuity for x1 . . . xk = 0 as well. ��
We illustrate the method with a simple but significant example.
One of the most interesting examples of a trigonometric expansion is the Hurwitz

series for the Bernoulli polynomials, n ≥ 1,

B2n+1(x) = (−1)n+1 2(2n + 1)!
(2π)2n+1

∞∑

m=1

sin(2πmx)

m2n+1 , x ∈ [0, 1],

B2n(x) = (−1)n+1 2(2n)!
(2π)2n

∞∑

m=1

cos(2πmx)

m2n , x ∈ [0, 1], (4.14)

see [5, 24.8(i)].
For our purpose, it is better to translate the expansion (4.14) to the interval [−1, 1].

Hence, we change x �→ (x + 1)/2 to obtain the equivalent cosine series

B2n((x + 1)/2) = (−1)n+1 2(2n)!
22n

∞∑

m=1

(−1)m cos(πmx)

(πm)2n
, x ∈ [−1, 1].

(4.15)

Using the binomial expansion of the Bernoulli polynomials,

B2n((x + 1)/2) =
2n∑

l=0

(
2n

l

)
B2n−l(1/2)

( x
2

)l
,

the identity Bj (1/2) = −(1−21− j )Bj (see [5, 24.4.27]), as well as B1(x) = x −1/2
and B2 l+1 = 0 for l = 0, 1, 2 . . ., we get

B2n((x + 1)/2) = −
n∑

j=0

(
2n

2 j

)
(22n−2 j−1 − 1)B2n−2 j

22n−1 x2 j .

123



How to compute multivariate Bessel expansions...

Hence, (4.15) gives, for x ∈ [−1, 1],
∞∑

m=1

(−1)m cos(πmx)

(πm)2n
= (−1)n

(2n)!
n∑

j=0

(
2n

2 j

)
(22n−2 j−1 − 1)B2n−2 j x

2 j .

Taking into account (4.6), we can apply the Lemma 4.1 to get (after easy computations)
the Bessel expansion

∞∑

m=1

(−1)m

(πm)2n

Jμ(πmx)

(πmx)μ
= (−1)n

n∑

j=0

(22n−2 j−1 − 1)B2n−2 j

22 j+μ j ! (2n − 2 j)! 
(μ + j + 1)
x2 j ,

(4.16)

valid for x ∈ [0, 1] and 2n+Reμ > 1/2 (n ≥ 1). The identity (4.16) is already known
(although in a more complicated form): it is [16, p. 678, (14)].

Applying Lemma 4.3, we get the following multivariate Bessel expansion which
seems to be new (as far as we know):

∞∑

m=1

(−1)m

(πm)2n

k∏

i=1

Jμi (πmxi )

(πmxi )μi

= (−1)n
n∑

j=0

(22n−2 j−1 − 1)B2n−2 j

(2n − 2 j)!
∑

l1+···+lk= j

k∏

i=1

(xi/2)2li

2μi li ! 
(μi + li + 1)
, (4.17)

valid for
∑k

i=1 |xi | ≤ 1 and 2n + ∑k
i=1 Reμi + k/2 > 1 (n ≥ 1). Actually, this is the

particular case of the expansion (1.3) (which will be computed in the next section: see
(5.38)) for ν = 1/2.

We can also find the case when n ≤ 0 by differentiating (4.17). Indeed, for n = 1,
we have

∞∑

m=1

(−1)m

(πm)2

k∏

i=1

Jμi (πmxi )

(πmxi )μi
= 1

4

k∏

i=1

1

2μi 
(μi + 1)

(
−1

3
+ 1

2

k∑

i=1

x2i
μi + 1

)
.

Differentiating with respect to x1, using (2.1), and setting μ1 + 1 �→ μ1, we get

∞∑

m=1

(−1)m
k∏

i=1

Jμi (πmxi )

(πmxi )μi
= −1

2

k∏

i=1

1

2μi 
(μi + 1)
,

valid for
∑k

i=1 |xi | ≤ 1 and
∑k

i=1 Reμi + k/2 > 1. And then, differentiating again,
we get

∞∑

m=1

(−1)m(πm)2n
k∏

i=1

Jμi (πmxi )

(πmxi )μi
= 0,
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valid for
∑k

i=1 |xi | ≤ 1 and −2n + ∑k
i=1 Reμi + k/2 > 1 (n ≥ 1) (for k = 1 this is

[16, Identity (10), p. 678]).
Cosine expansions (4.14) and (4.15) are equivalent under the linear change of

variable x �→ (x + 1)/2. However if we apply our method to the expansion (4.14) we
get completely different results to those found above (expansions (4.16) and (4.17)).
For the one variable case, producing the Bessel extension is as easy as the previous
one, but the scenario changes dramatically in the multivariate case. This is because
in the left hand side of (4.14), B2n(x) contains a term x2n−1, which corresponds to
the even function f (x) = |x |2n−1. This even function is not analytic at 0 and in
the multivariate case it makes the computation of the integral transforms (2.2) rather
complicated. In fact, in that case infinite power series appears in the close expression for
the multivariate Bessel expansion. Indeed, by applying the integral transform Tμ,−1/2
(2.2) to both sides of (4.14), we can still produce the following Bessel expansion:

∞∑

m=1

1

(πm)2n

Jμ(πmx)

(πmx)μ
= (−1)n+122n

2
√

π(2n)!
2n∑

j=0

(
2n

j

)

(( j + 1)/2)B2n− j

2μ
(μ + j/2 + 1)
(x/2) j ,

(4.18)

valid for x ∈ [0, 2] and 2n+Reμ > 1/2 (n ≥ 1). This identity is different to (4.16) but
it is also known: [16, p. 678, (13)] (the case n ≤ 0 can be obtained by differentiation
from the case n = 1 in (4.18)).

As mentioned above, the monomial x2n−1 in the cosine expansion (4.14) makes
difficult to extend it to a multivariate expansion using our method. To illustrate the
problem, let us take n = 1, then (4.14) gives

∞∑

m=1

cos(πmx)

(πm)2
= x2

4
− |x |

2
+ 1

6

for |x | ≤ 1. Using Theorem 3.1, we get

∞∑

m=1

cos(πmx) cos(πmy)

(πm)2

= x2

4
+ y2

4
+ 1

6
− 1

4
(|x + y| + |x − y|).

Applying the integral transforms Tμ1,−1/2 in the variable x and Tμ2,−1/2 in the variable
y, respectively, and using (2.3), (2.4), we find that
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∞∑

m=1

1

(πm)2

Jμ1(πmx)Jμ2(πmy)

(πmx)μ1(πmy)μ2

= 2−μ1−μ2−3


(μ1 + 1)
(μ2 + 1)

(
x2

μ1 + 1
+ y2

μ2 + 1
+ 4

3

)

− 2−μ1−μ2

π
(μ1 + 1/2)
(μ2 + 1/2)
∫ 1

0

∫ 1

0
(|r x + sy| + |r x − sy|)(1 − r2)μ1−1/2(1 − s2)μ2−1/2 dr ds. (4.19)

It is not necessary to compute the double integral because the Bessel expansion (4.19)
is the particular case ν = 1/2 of the Sneddon-Bessel series we compute in [9], and so
using [9, Sect. 4.1.2], we get

∞∑

m=1

1

(πm)2

Jμ1(πmx)Jμ2 (πmy)

(πmx)μ1(πmy)μ2
= 1

2μ1+μ2+3
(μ1 + 1)
(μ2 + 1)

(
x2

μ1 + 1
+ y2

μ2 + 1

+ 4

3
− 2

(
μ1

1/2

)
x

(
2F1

(−1/2−μ1,1/2
μ2+1 ; y2

x2

)

μ1 + 1/2
+

y2

x2 2F1
(
1/2−μ1,1/2

μ2+2 ; y2

x2

)

μ2 + 1

))
, (4.20)

valid for 0 < 2 + Reμ1 + Reμ2, and 0 < y ≤ x , x + y < 2 (also for x + y = 2 if
0 < 1 + Reμ1 + Reμ2).

Contrary to the multivariate Bessel expansion (4.17), (4.20) is not anymore a poly-
nomial (except when the parameters μ1 and μ2 are half positive integers).

5 Bessel expansions of multivariate polynomials

5.1 Bessel–Appell polynomials

Given a function A(z) analytic at z = 0 with A(0) �= 0, we define the associated
one-parameter family pn,μ(x), n ≥ 0, of Bessel–Appell polynomials by means of the
following generating function:

A(z)
Jμ(xz)

(xz)μ
=

∞∑

n=0

pn,μ(x)zn . (5.1)

It is straightforward from the definition that each pn,μ is an even polynomial of
degree 2n, n ≥ 0. Moreover, using (2.1) we have

p′
n,μ(x) = −xpn−1,μ+1(x), n ≥ 1. (5.2)

Bessel–Appell polynomials have been already considered in the literature ( [2]),
although with no special denomination and, as far as we know, with no connection
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with the explicit sum of Bessel expansions. Bessel–Appell polynomials also satisfy

T (pn,μ)(x) = pn−1,μ(x), T = − d2

dx2
− 2μ + 1

x

d

dx
.

Write T̂ for the linear operator T̂ (p)(x) = T (p(x2))(
√
x) acting on polynomials p.

We then have

T̂ (pn,μ(
√
x)) = pn−1,μ(

√
x), n ≥ 1,

and so the polynomials (pn,μ(
√
x))n are of the Appell type studied in [11, Chap. 10].

The generating function (5.1) also shows that if A(z) = ∑∞
n=0 anz

n , then

pn,μ(0) = an
2μ
(μ + 1)

, n ≥ 0. (5.3)

Moreover, iterating the identity (5.2), we get

p(2 j)
n,μ (0)

(2 j)! = (−1) j an− j

2μ+2 j j ! 
(μ + j + 1)
, n ≥ 0. (5.4)

For Reμ > Reν > −1, using the integral transform (2.2) in (5.1) we have

Tμ,ν(pn,ν)(x) = pn,μ(x), n ≥ 0. (5.5)

The identity (5.5) can be extended for Reν < −1 using the integral transform (2.5).
In the opposite direction, assume that we have a one-parameter family pn,μ(x),

n ≥ 0, of polynomials with pn,μ of degree 2n satisfying (5.2) and (5.3) for certain
sequence (an)n such that A(z) = ∑∞

n=0 anz
n defines a function analytic at z = 0,

which is equivalent to

lim sup
n→+∞

|an|1/n < +∞. (5.6)

Since (5.2) and (5.3) determine uniquely the whole parametric family of polynomials,
it follows that (pn,μ)n also satisfy (5.1).

Remark 5.1 Wecanfind a connection ofBessel–Appell polynomials andBessel expan-
sions of the form

∑

m≥1

αmζ−2n
m

Jμ(ζmx)

(ζmx)μ
. (5.7)

123



How to compute multivariate Bessel expansions...

To this end, assume we have sequences (αm)m≥1, (ζm)m≥1, ζm �= 0, such that for
certain ν ∈ C, Reν > −1, and ω > 0,

lim inf
m

|ζm | ≥ 1,
∑

m≥1

|αm |
|ζm |Reν+1/2 < +∞, (5.8)

∑

m≥1

αm
Jν(ζmx)

(ζmx)ν
= a0 ∈ C \ {0}, x ∈ (0, ω). (5.9)

Using the assumption (5.8) we can define for Reμ ≥ Reν, n ≥ 0 and 0 < x the
functions

pn,μ(x) =
∑

m≥1

αmζ−2n
m

Jμ(ζmx)

(ζmx)μ
. (5.10)

Notice that the convergence is uniform in compact subsets of (0,+∞). It is then easy
to see using (2.1) that they satisfy (5.2), that is,

p′
n,μ(x) = −xpn−1,μ+1(x), n ≥ 1.

Moreover, for Reμ > Reν, using (2.3) we have, from (5.10) that

pn,μ(x) = Tμ,ν(pn,ν)(x), (5.11)

where Tμ,ν is the integral transform (2.2): the assumption (5.9) allows changing the
order of the integral transform and the series (5.10) which defines the function pn,ν(x).

The assumption (5.9), the identity (5.11) for n = 0, and (2.4) imply that for Reμ ≥
Reν, p0,μ(x) is constant in (0, ω), and then pn,μ(x), n ≥ 0, is a polynomial of degree
2n in (0, ω). With a small abuse of notation, we also write pn,μ(x) for the polynomial
in C that coincides with pn,μ(x) in (0, ω).

Let us take

an = 2ν
(ν + 1)pn,ν(0). (5.12)

The sequence (an)n can be used to sum a bunch of Bessel series, including (5.7). This
goes as follows. Since for n big enough

pn,ν(0) = 1

2ν
(ν + 1)

∑

m≥1

αmζ−2n
m ,

it follows from (5.8) that (an)n satisfies (5.6) andwe can define a function A(z) analytic
at z = 0, with A(0) = a0 �= 0, by the power series

A(z) =
∞∑

n=0

anz
2n . (5.13)
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Using (5.11) for x = 0 and (2.4) for r = 0, we get (5.3):

pn,μ(0) = an
2μ
(μ + 1)

, n ≥ 0.

Hence for Reμ > Reν our discussion at the beginning of this section shows that the
polynomials pn,μ, n ≥ 0, defined by (5.10), are also the Bessel–Appell polynomials
defined by (5.1) where the analytic function A is given by (5.13).

Using (5.4) and (5.10), we get

∑

m≥1

αmζ−2n
m

Jμ(ζmx)

(ζmx)μ
=

n∑

j=0

an− j (−x2/4) j

2μ j ! 
(μ + j + 1)
, x ∈ (0, ω). (5.14)

Moreover, if for some n < 0,
∑

m≥1 |αm ||ζm |−2n−Reμ−1/2 < +∞ (with Reμ > Reν),
differentiating −n times in (5.14) for n = 0, we get

∑

m≥1

αmζ−2n
m

Jμ(ζmx)

(ζmx)μ
= 0, x ∈ (0, ω).

In the next proposition, we include other series that can be summed using the
sequence (an)n given in (5.12).

Proposition 5.2 Assume that the sequences (αm)m≥1, (ζm)m≥1, satisfy (5.8) and (5.9).
We then have for n ≥ 0, Reμ ≥ Reν and x ∈ (0, ω),

∑

m≥1

αmζ−2n
m

(ζ 2
m − z2)

Jμ(ζmx)

(ζmx)μ

= 1

z2n+2

⎛

⎝A(z)
Jμ(xz)

(xz)μ
−

n∑

l=0

z2l
l∑

j=0

al− j (−x2/4) j

2μ j ! 
(μ + j + 1)

⎞

⎠ , (5.15)

where A is given by (5.13) and (an)n is defined by (5.12).

Proof The proof is a matter of computation. Indeed, using the geometric series and
the polynomials (5.10), we deduce for |z| < infm |ζm | (and then on the whole range
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by analytic continuation) that

∑

m≥1

αmζ−2n
m

(ζ 2
m − z2)

Jμ(ζmx)

(ζmx)μ
=

∑

m≥1

∞∑

l=0

αmz2l

ζ 2n+2l+2
m

Jμ(ζmx)

(ζmx)μ

=
∞∑

l=0

z2l
∑

m≥1

αm

ζ 2n+2l+2
m

Jμ(ζmx)

(ζmx)μ

=
∞∑

l=0

pn+l+1,μ(x)z2l = 1

z2n+2

∞∑

l=n+1

pl,μ(x)z2l

= 1

z2n+2

(
A(z)

Jμ(xz)

(xz)μ
−

n∑

l=0

pl,μ(x)z2l
)

.

It is then enough to use (5.4). ��

Moreover, if for some n < 0,
∑

m≥1 |αm ||ζm |−2n−Reμ−5/2 < +∞ (with Reμ >

Reν), differentiating −n times in (5.15) for n = 0 and taking into account the identity
(2.1), we have, for x ∈ (0, ω),

∑

m≥1

αmζ−2n
m

(ζ 2
m − z2)

Jμ(ζmx)

(ζmx)μ
= A(z)

z2n+2

Jμ(xz)

(xz)μ
.

Our method will allow us to compute explicitly the corresponding multivariate
version of the expansions (5.15). They can well be called Kneser-Sommerfeld type
expansions, since for

ζm = jm,ν , αm = 1

Jν+1( jm,ν)2

the corresponding two variable expansion is the well-known Kneser-Sommerfeld
expansion ( [13]).

Let us develop a couple of illustrative examples. The first one is the Dini-Young
series

∑

m≥1

λν−2n
m

(λ2m − ν2 + H2)Jν(λm)

Jμ(λmx)

(λmx)μ
, (5.16)

for 0 < x ≤ 1, where ν and H are real parameters satisfying ν > −1 and H + ν > 0,
μ ∈ Ĉ with ν < 2n + 1 + Reμ and λm are the positive zeros (ordered in increasing
size) of the function

z J ′
ν(z) + H Jν(z). (5.17)
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To sum explicitly (5.16), we define the sequence (aH ,ν
n )n by

zν

2
(
(H − ν)Jν(z) + z Jν−1(z)

) =
∞∑

n=0

aH ,ν
n z2n . (5.18)

Using the power series for the Bessel functions, the sequence (aH ,ν
n )n can be recur-

sively defined as follows: aH ,ν
0 = 2ν−1
(ν + 1)/(H + ν), and

n∑

j=0

ν + 2(n − j) + H

(−4)n− j (n − j)! (ν + 1)n− j
aH ,ν
j = 0, n ≥ 1. (5.19)

Define now the one-parameter Bessel–Appell polynomials by the generating function

zν

2
(
(H − ν)Jν(z) + z Jν−1(z)

) Jμ(xz)

(xz)μ
=

∞∑

n=0

pH ,ν
n,μ (x)zn . (5.20)

For n ≥ 0 and 0 ≤ j ≤ n, define

bnj = 2(−4) j (n − j + 1) j (ν + n − j + 1) j (ν + 2(n − j) + H).

An easy computation, using the power series of the Bessel functions, shows that the
polynomials pH ,ν

n,ν , n ≥ 0, can also be defined recursively by

pH ,ν
0,ν = 1

2(ν + H)
,

n∑

j=0

bnj p
H ,ν
j,ν (x) = x2n, n ≥ 1. (5.21)

Consider next the Bessel-Dini series of x2n in (0, 1), namely

x2n =
∑

m≥1

βn
m
Jν(λmx)

(λmx)ν
. (5.22)

The case n = 0 was summed by Young [20], this is why we call Dini-Young series to
the expansion (5.16). If we write

ξm = λν
m

(λ2m − ν2 + H2)Jν(λm)
,

according to [19, §18.12, (2), p. 581] we have

β0
m = 2(ν + H)ξm, (5.23)
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as follows from [19, §18.12, (2), p. 581] and the trivial fact that the zeros λm of (5.17)
satisfy

(λ2m − ν2)Jν(λm)2 + λ2m J ′
ν(λm)2 = (λ2m − ν2 + H2)Jν(λm)2,

λm Jν+1(λm)

Jν(λm)
= ν + H .

According to the reduction formula in [19, §18.12, p. 581], we have the recursion

βn
m = 2(ν + 2n + H)ξm − 4n(ν + n)

λ2m
βn−1
m , n ≥ 1.

This shows that

βn
m = ξm

n∑

j=0

bnj
1

λ
2 j
m

. (5.24)

Define finally the functions

qH ,ν
n (x) =

∑

m≥1

ξmλ−2n
m

Jν(λmx)

(λmx)ν
, x ∈ (0, 1).

The definition of βn
m (5.22) and the identity (5.24) show that

n∑

j=0

bnj q
H ,ν
j (x) = x2n, n ≥ 1. (5.25)

On the one hand, (5.21), (5.22), and (5.23) for n = 0 imply that qH ,ν
0 = pH ,ν

0,ν . On the

other hand, the recursions (5.20) and (5.25) show that qH ,ν
n = pH ,ν

n,ν , n ≥ 1.
Hence setting ζm = λm and αm = ξm , we can apply Remark 5.1 to get, for Reμ > ν

and 0 < x ≤ 1,

∑

m≥1

λν−2n
m

(λ2m − ν2 + H2)Jν(λm)

Jμ(λmx)

(λmx)μ
=

n∑

j=0

aH ,ν
n− j

(−x2/4
) j

2μ j ! 
(μ + j + 1)
. (5.26)

The identity (5.26) also holds for ν < 2n + 1 + Reμ, because then both sides of the
identity are analytic functions of μ. The identity is also valid for x = 0 assuming that
ν < 2n + 1/2.

Moreover, for 0 < −2n < −ν + Reμ + 1,

∑

m≥1

λν−2n
m

(λ2m − ν2 + H2)Jν(λm)

Jμ(λmx)

(λmx)μ
= 0, x ∈ (0, 1).
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In the next section, we will consider the expansions provided by Proposition 5.2.
The second illustrative example are the Bessel expansions

∑

m≥1

jν−1−2n
m,ν

Jν+1( jm,ν)

Jμ( jm,νx)

( jm,νx)μ
, (5.27)

0 < x < 1 and Reν < Reμ + 2n. The series (5.27) was explicitly summed in [7,
Sect. 5] using the theory of residues. For the sake of completeness, we compute the
sum here using our method.

The starting point is the sequence (aν
n )n defined by

zν

2Jν(z)
=

∞∑

n=0

aν
n z

2n . (5.28)

This is the case H = ν of the previous example with ν + 1 instead of ν, but since we
now consider complex parameters ν, we work it out from the scratch.

Using the power series for the Bessel functions, the sequence (aν
n )n can be recur-

sively defined as follows: aν
0 = 2ν−1
(ν + 1), and

n∑

j=0

4ν + 4(n − j + 1)

(−4)n− j (n − j)! (ν + 2)n− j
aν
j = 0, n ≥ 1. (5.29)

Define now the one-parameter Bessel–Appell polynomials by the generating function

zν

2Jν(z)

Jμ(xz)

(xz)μ
=

∞∑

n=0

pν
n,μ(x)z2n . (5.30)

For μ = ν and μ = ν − 1 they are the even Euler-Dunkl and Bernoulli-Dunkl
polynomials we introduced in [6] and [3], respectively (up to renormalization). Using
[6, Theorem 3.1], we have

∑

m≥1

jν−1−2n
m,ν

Jν+1( jm,ν)

Jν( jm,νx)

( jm,νx)ν
= pν

n,ν(x), (5.31)

with uniform convergence on compact subsets of (−1, 1)\{0} for n = 0 and
[−1, 1]\{0} for n ≥ 1. The convergence extends to x = 0 provided thatReν < n+1/2.

We next prove that for Reμ + 2n > Reν and x ∈ (0, 1),

∑

m≥1

jν−1−2n
m,ν

Jν+1( jm,ν)

Jμ( jm,νx)

( jm,νx)μ
= pν

n,μ(x) =
n∑

j=0

aν
n− j (−x2/4) j

2μ j ! 
(μ + j + 1)
. (5.32)
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It is interesting to note that the polynomials pν
n,μ(x) in this formula are Bessel–Appell

polynomials as defined in (5.1), with A(z) = zν
2Jν (z) , see (5.30). In particular, they

satisfy the general properties (5.2) and (5.5).

Let us start taking ζm = jm,ν and αm = jν−1
m,ν

Jν+1( jm,ν )
. Although the second assumption

in (5.8) fails, we can still use the Remark 5.1 due to the uniform convergence in
(−1, 1) \ {0} of (5.31) for n = 0.

To extend the identity (5.32) to Reμ+2n > Reν, we proceed as follows. For Reν <

−1, ν �= −3/2,−5/2, . . ., consider a positive integer h such that Reν > −h/2 − 1,
and take μ with Reμ > Reν + h. Using the integral transform Tμ,ν,h (2.5), together
with integration by parts and (5.11), we get from (5.31)

∑

m≥1

jν−1−2n
m,ν

Jν+1( jm,ν)

Jμ( jm,νx)

( jm,νx)μ
= Tμ,ν,h(p

ν
n,ν)(x)

= Tμ,ν(p
ν
n,ν)(x) = pν

n,μ(x), x ∈ (0, 1). (5.33)

For ν = −3/2,−5/2, . . ., (5.33) follows by continuity. It is now enough to take into
account that for fixed ν and assuming Reμ + 2n ≥ Reν both sides of (5.32) are
analytic functions of μ.

For n < 0, Reμ+2n > Reν and x ∈ (0, 1), we have, differentiating the case n = 0
in (5.32),

∑

m≥1

jν−1−2n
m,ν

Jν+1( jm,ν)

Jμ( jm,νx)

( jm,νx)μ
= 0.

5.2 Gettingmultivariate Bessel expansions of polynomials

Wenext useLemma4.3 to sum in an explicit form themultivariate series (1.6) and (1.3).
For the Dini-Young expansion (1.6), we assume ν, H to be real parameters with

ν + H > 0 and ν > −1, and μi ∈ Ĉ, i = 1, . . . , k. We next prove that for ν <

2n + (k + 1)/2 + ∑k
i=1 μi and (x1, . . . , xk) ∈ 	∗[1] (see (1.10))

∑

m≥1

λν−2n
m

(λ2m − ν2 + H2)Jν(λm)

k∏

i=1

Jμi (λmxi )

(λmxi )μi

=
n∑

l=0

aH ,ν
n−l

∑

l1+···+lk=l

k∏

i=1

(−x2i /4
)li

2μi li ! 
(μi + li + 1)
, (5.34)

where (aH ,ν
n )n is the sequence defined by (5.18) (or (5.19)).

We proceed in two steps.
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5.3 First step

The identity (5.34) holds for ν < 2n + 1/2, ν < 2n + (k + 1)/2 + ∑k
i=1 μi . This is

a direct consequence of Lemma 4.3 (after some easy computations).

5.4 Second step

The identity (5.34) holds for ν < 2n + (k + 1)/2 + ∑k
i=1 μi .

Fixed ν, notice that the series in the left-hand side of (5.34) converges uniformly
in 	∗[1] for each n such that ν < 2n + (k + 1)/2+ ∑k

i=1 μi . Fix then n such that ν <

2n+(k+1)/2+∑k
i=1 μi , and take a positive integer nν ≥ n such that ν < 2nν +1/2.

Since we also have ν < 2nν + (k + 1)/2 + ∑k
i=1 μi , the first step shows that (5.34)

holds for nν instead of n. Fix j , 1 ≤ j ≤ k, and write Hn,μ j (x j ), Hn,μ j (x j ) for the
functions in the left- and right-hand side of (5.34), respectively (there is no need to
include in the notation neither the parameters ν,μi , i �= j , nor the variables xi , i �= j).
We have that Hnν ,μ j (x j ) = Hnν ,μ j (x j ). Take now μi real and big enough so as to

satisfy ν < 2n + (k + 1)/2+∑k
i=1 μi and to allow the following computations. First

of all, we prove that

∂

∂x j
Hnν ,μ j (x j ) = −x j Hnν−1,μ j+1(x j ),

∂

∂x j
Hnν ,μ j (x j ) = −x jHnν−1,μ j+1(x j ).

(5.35)

Indeed, the first identity above is straightforward from (2.1).With respect to the second
identity, by differentiation it follows that

∂

∂x j
Hnν ,μ j (x j ) =

nν∑

l=1

aH ,ν
nν−l

∑

l1+···+lk=l

2l j
x j

k∏

i=1

(−x2i /4
)li

2μi li ! 
(μi + li + 1)

=
nν−1∑

l=0

aH ,ν
nν−1−l

∑

l1+···+lk=l+1

2l j
x j

k∏

i=1

(−x2i /4
)li

2μi li ! 
(μi + li + 1)
. (5.36)

Since the summand in right-hand side of (5.36) vanishes for l j = 0, we get (after
simplification)

∂

∂x j
Hnν ,μ j (x j ) = −x jHnν−1,μ j+1(x j ).

This means, using (5.35) and Hnν ,μ j (x j ) = Hnν ,μ j (x j ), that

Hnν−1,μ j+1(x j ) = Hnν−1,μ j+1(x j ).
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Iterating, we get

Hn,μ j+nν−n(x j ) = Hn,μ j+nν−n(x j ).

This proves the identity (5.34) for μi , i = 1, . . . , k, real and big enough. Since for
μi , i = 1, . . . , k, such that ν < 2n + (k + 1)/2 + ∑k

i=1 μi the left- and right-hand
sides of (5.34) are analytic functions of each μi , we deduce that (5.34) actually holds
in 	∗[1] under the assumption ν < 2n + (k + 1)/2 + ∑k

i=1 μi .

For n < 0, ν < 2n + (k + 1)/2 + ∑k
i=1 μi and (x1, . . . , xk) ∈ 	∗[1],

∑

m≥1

λν−2n
m

(λ2m − ν2 + H2)Jν(λm)

k∏

i=1

Jμi (λmxi )

(λmxi )μi
= 0.

Proceeding in the same way, we can explicitly sum the Bessel expansion (1.3). First
of all, we complete the notation (1.9) and (1.10) with the following one: for ω > 0,

	(ω) =
{
(x1, . . . , xk) ∈ R

k :
k∑

i=1

|xi | < ω
}
,

	∗
(ω) =

{
(x1, . . . , xk) ∈ 	(ω) :

k∏

i=1

xi �= 0
}
. (5.37)

Then we get, for Reν < 2n + (k − 1)/2 + ∑k
i=1 Reμi ,

∑

m≥1

jν−2n−1
m,ν

Jν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
=

n∑

l=0

aν
n−l

∑

l1+···+lk=l

k∏

i=1

(−x2i /4
)li

2μi li ! 
(μi + li + 1)
,

(5.38)

where (aν
n )n is the sequence defined by (5.28) (or (5.29)), and (x1, . . . , xk) ∈ 	∗[1] for

n ≥ 1, or (x1, . . . , xk) ∈ 	∗
(1) for n = 0.

For n < 0, Reν < 2n+ (k−1)/2+∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗

(1), we have

∑

m≥1

jν−2n−1
m,ν

Jν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
= 0.

6 Bessel expansions of non-polynomial functions

In this section, some other examples of Bessel expansions which are not polynomials
will be given.

We start from the expansion generated by Proposition 5.2 applied to the Bessel
expansions (5.32) and (5.26).

123



A. J. Durán et al.

6.1 Kneser-Sommerfeld type expansions

Let us prove the following identity for the multivariate expansion (1.4):

∑

m≥1

jν−1−2n
m,ν

( j2m,ν − z2)Jν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
= 1

z2n+2

(
zν

2Jν(z)

k∏

i=1

Jμi (xi z)

(xi z)μi

−
n∑

l=0

z2l
l∑

j=0

aν
l− j

∑

l1+···+lk= j

k∏

i=1

(−x2i /4)
li

2μi li ! 
(μi + li + 1)

)
, (6.1)

for Reν < 2n + (k + 3)/2+ ∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗[1] (see (1.10)), where

the sequence (aν
n )n is defined by (5.28) (or (5.29)).

We proceed in two steps.

6.2 First step

The case k = 1.
Applying Proposition 5.2 to the expansion (5.32), we get

∑

m≥1

jν−1−2n
m,ν

( j2m,ν − z2)Jν+1( jm,ν)

Jμ( jm,νx)

( jm,νx)μ

= 1

z2n+2

(
zν

2Jν(z)

Jμ(xz)

(xz)μ
−

n∑

l=0

z2l
l∑

j=0

aν
l− j (−x2/4) j

2μ j ! 
(μ + j + 1)

)
, (6.2)

with uniform convergence in compact sets of (0, 1] for Reν < 2n + 2 + Reμ and in
[0, 1] for Reν < 2n + 3/2, where the sequence (aν

n ) is defined by (5.28) (or (5.29)).

6.3 Second step

The case k ≥ 1.
Write

fn,ν(x, z) =
√

2

π

n∑

l=0

z2l
l∑

j=0

(−1) j aν
l− j x

2 j

(2 j)! . (6.3)

Consider the case μ = −1/2 in (6.2). Using the identity (4.6), we get, for Reν <

2n + 3/2 and x ∈ [−1, 1],
√

2

π

∑

m≥1

jν−2n−1
m,ν cos( jm,νx)

( j2m,ν − z2)Jν+1( jm,ν)
= 1

z2n+2

(
zν

√
2/π cos(zx)

2Jν(z)
− fn,ν(x, z)

)
.
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The trigonometric identity

∑

ε∈πk

cos
(
z

k∑

i=1

εi xi
)

= 2k
k∏

i=1

cos(zxi ),

together with Theorem 3.1 gives

√
2

π

∑

m≥1

jν−2n−1
m,ν

( j2m,ν − z2)Jν+1( jm,ν)

k∏

i=1

cos( jm,νxi )

= 1

z2n+2

(
zν

√
2/π

2Jν(z)

k∏

i=1

cos(zxi ) − 1

2k
∑

ε∈πk

fn,ν

( k∑

i=1

εi xi , z
))

.

Using the identity (4.6), (6.3) and (3.1), this can be rewritten in the form

∑

m≥1

jν−2n−1
m,ν

( j2m,ν − z2)Jν+1( jm,ν)

k∏

i=1

J−1/2( jm,νxi )

( jm,νxi )−1/2 = 1

z2n+2

(
zν

2Jν(z)

k∏

i=1

J−1/2(zxi )

(zxi )−1/2

−
(
2

π

)k/2 n∑

l=0

z2l
l∑

j=0

(−1) j aν
l− j x

2 j

(2 j)!
∑

l1+···+lk= j

(
2 j

2l1, . . . , 2lk

) k∏

i=1

x2lii

)
,

(6.4)

where (x1, . . . , xk) ∈ 	∗[1].
Assuming that Reμi ≥ −1/2 and using the integral transform Tμi ,−1/2 (2.2) acting

on the variable xi , we get from (6.4) the identity (6.1).
To extend the formula (6.1) from Reν ≤ 2n + 3/2, Reμi ≥ −1/2 to Reν <

2n + (k + 3)/2 + ∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗[1], we can proceed as in the

second step in Sect. 5.2.
For n < 0, we have, by −n times differentiation of the case n = 0 of (6.1),

∑

m≥1

jν−1−2n
m,ν

( j2m,ν − z2)Jν+1( jm,ν)

k∏

i=1

Jμi ( jm,νxi )

( jm,νxi )μi
= 1

z2n+2

zν+k−2n−2

2Jν(z)

k∏

i=1

Jμi (xi z)

(xi z)μi

for Reν < 2n + (k + 3)/2 + ∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗[1].
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In the same way, one can prove that

∑

m≥1

λν−2n
m

(λ2m − z2)(λ2m − ν2 + H2)Jν(λm)

k∏

i=1

Jμi (λmxi )

(λmxi )μi

= 1

z2n+2

(
zν

2
(
(H − ν)Jν(z) + z Jν−1(z)

)
k∏

i=1

Jμi (xi z)

(xi z)μi

−
n∑

l=0

z2l
l∑

j=0

aH ,ν
l− j

∑

l1+···+lk= j

k∏

i=1

(−x2i /4)
li

2μi li ! 
(μi + li + 1)

)
,

for Reν < 2n+ (k+5)/2+∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗[1], where the sequence

(aH ,ν
n )n is defined by (5.18) (or (5.19)).

6.4 Twomore examples

In this section, we sum the Bessel expansion (1.5) and other related expansion.
Let ϕ be the analytic function in C\{m2 : m ∈ N\{0}} defined by

ϕ(z) = 1

z
− π√

z sin(π
√
z)

= 2
∑

m≥1

(−1)m

m2 − z
. (6.5)

Define now the sequence

aθ
n = 1 + θ2n+2ϕ(n)(−θ2)

n! , n ≥ 0.

We next prove that the multivariate Bessel series (1.5) is equal to

∑

m≥1

(−1)m

(1 + m2/θ2)n

k∏

i=1

Jμi (
√
1 + m2/θ2xi )

(
√
1 + m2/θ2xi )μi

= 1

2

(
−

k∏

i=1

Jμi (xi )

xμi
i

+
n−1∑

l=0

aθ
n−l−1

∑

l1+···+lk=l

k∏

i=1

(−x2i /4)
li

2μi li ! 
(μi + li + 1)

)
, (6.6)

where 1 < 2n + k/2 + ∑k
i=1 Reμi for (x1, . . . , xk) ∈ 	∗

(θπ) (with the notation
of (5.37)).

To this end, define the polynomials Pμ,θ
n (x), n ≥ 0, by

Pμ,θ
0 (x) = 0,

Pμ,θ
n (x) =

n−1∑

j=0

aθ
n− j−1(−x2/4) j

2μ j ! 
(μ + j + 1)
, n ≥ 1. (6.7)
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Then, Pμ,θ
n is an even polynomial of degree 2n − 2. On the one hand, it is easy to

check that

Pμ,θ
n (0) = 1

2μ
(μ + 1)

(
1 + θ2nϕ(n−1)(−θ2)

(n − 1)!

)
, n ≥ 1, (6.8)

(Pμ,θ
n )′(x) = −x Pμ+1,θ

n−1 (x),

Pμ,θ
n (x) = Tμ,−1/2,h(P

−1/2,θ
n )(x), μ ≥ −1/2 + h. (6.9)

On the other hand, it is plain that the conditions (6.8) and (6.9) determine uniquely
the family of polynomials Pμ,θ

n .
A simple computation using (6.5) and (6.7) shows that

Pμ,θ
n (0) = 1

2μ
(μ + 1)

⎛

⎝1 + 2
∑

m≥1

(−1)m

(1 + m2/θ2)n

⎞

⎠ , n ≥ 1. (6.10)

Let us note that the polynomials (Pμ,θ
n )n are actually quasi Bessel–Appell. Indeed,

write pμ,θ
n (x) = Pμ,θ

n+1(x) so that pμ,θ
n is a even polynomial of degree 2n. It is then

easy to check that the polynomials (pμ,θ
n )n are the Bessel–Appell polynomials defined

by (5.1) from the generating function

A(z) = A(z; θ) = 1

1 − z
+ θ2ϕ(θ2(z − 1)).

The starting point to prove (6.6) is the series (see [16, 5.7.22.3, p. 682])

∑

m≥1

(−1)m
Jμ(

√
1 + m2/θ2x)

(
√
1 + m2/θ2x)μ

= − Jμ(x)

2xμ
, (6.11)

where Reμ ≥ 0, x ∈ (0, θπ) and θ �= 0. This is the case k = 1, n = 0 of the
series (6.5).

We next prove the case k = 1 and n ≥ 0:

∑

m≥1

(−1)m

(1 + m2/θ2)n

Jμ(
√
1 + m2/θ2x)

(
√
1 + m2/θ2x)μ

= 1

2

(
− Jμ(x)

xμ
+ Pμ,θ

n (x)

)
, (6.12)

with x ∈ [0, θπ) for 1/2 < 2n + Reμ (or x ∈ (0, θπ) for n = 0). Write

Gμ,θ,n(x) =
∑

m≥1

(−1)m

(1 + m2/θ2)n

Jμ(
√
1 + m2/θ2x)

(
√
1 + m2/θ2x)μ

, x ∈ (0, θπ), (6.13)
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which is an analytic function of μ for 1/2 < Reμ + 2n. Let us define the functions
Qμ,θ,n by the identity

Gμ,θ,n(x) = 1

2

(
− Jμ(x)

xμ
+ Qμ,θ,n(x)

)
. (6.14)

This definition and (6.11) show that

Qμ,θ,0(x) = 0. (6.15)

Consider now μ big enough so as to allow the following computations. Using (2.1), it
easily follows thatG ′

μ,θ,n(x) = −xGμ+1,θ,n−1(x), which proves that Qμ,θ,n satisfies

Q′
μ,θ,n(x) = −xQμ+1,θ,n−1(x). (6.16)

Thus, (6.15) and (6.16) imply that Qμ,θ,n are polynomials. The identities (6.13), (6.14)
and (6.10) show that

Qμ,θ,n(0) = Pμ,θ
n (0). (6.17)

Then, from (6.16) and (6.17) we obtain Qμ,θ,n(x) = Pμ,θ
n (x). This proves the identity

(6.12) for μ big enough, and using a standard argument of analytic continuation, for
1/2 < 2n + Reμ.

The multivariate expansion (6.6) can be proved proceeding as in the second step in
Sect. 6.1.

If we assume n < 0 and 1 < 2n + k/2 + ∑k
i=1 Reμi , differentiating −n times in

(6.6) for n = 0 proves that

∑

m≥1

(−1)m

(1 + m2/θ2)n

k∏

i=1

Jμi (
√
1 + m2/θ2xi )

(
√
1 + m2/θ2xi )μi

= −1

2

k∏

i=1

Jμi (xi )

xμi
i

for (x1, . . . , xk) ∈ 	∗
(θπ).

The last example in this section is the Bessel expansion

∑

m≥1

(−1)m

m2(1 + m2/θ2)n

k∏

i=1

Jμi (
√
1 + m2/θ2xi )

(
√
1 + m2/θ2xi )μi

.

This can beworked out in a way similar to the previous example using now the analytic
function ϕ̂ in C\{m2 : m ∈ N\{0}} defined by

ϕ̂(z) = 1

z

(
1

z
− π√

z sin(π
√
z)

+ π2

6

)
= 2

∑

m≥1

(−1)m

m2(m2 − z)
.
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Define next the sequence

âθ
n = π2

6
− n + 1

θ2
+ θ2n+2ϕ̂(n)(−θ2)

n! , n ≥ 0,

and the polynomials P̂μ,θ
n (x), n ≥ 0, by

P̂μ,θ
0 (x) = 0,

P̂μ,θ
n (x) =

n−1∑

j=0

âθ
n− j−1(−x2/4) j

2μ j ! 
(μ + j + 1)
, n ≥ 1.

As before, P̂μ,θ
n is an even polynomial of degree 2n − 2 and satisfies

P̂μ,θ
n (0) = 1

2μ
(μ + 1)

(
π2

6
− n

θ2
+ θ2nϕ̂(n−1)(−θ2)

(n − 1)!

)
, n ≥ 1,

(P̂μ,θ
n )′(x) = −x P̂μ+1,θ

n−1 (x),

P̂μ,θ
n (x) = Tμ,−1/2,h(P̂

−1/2,θ
n )(x), μ ≥ −1/2 + h.

Starting from the expansion

∑

m≥1

(−1)m
Jμ(

√
1 + m2/θ2x)

(
√
1 + m2/θ2x)μ

= 1

2

(
x2 Jμ+1(x)

2θ2xμ+1 − π2

6

Jμ(x)

xμ

)

(see [16, 5.7.22.4, p. 682]), we can prove as before that

∑

m≥1

(−1)m

m2(1 + m2/θ2)n

Jμ(
√
1 + m2/θ2x)

(
√
1 + m2/θ2x)μ

= 1

2

(
x2 Jμ+1(x)

2θ2xμ+1 −
(

π2

6
− n

θ2

)
Jμ(x)

xμ
+ Pμ,θ

n (x)

)
,

with x ∈ [0, θπ) for −3/2 − 2n < Reμ (or x ∈ (0, θπ) for n = 0).
Proceeding as in the previous example, and using the identities

∑

ε∈πk

(
k∑

i=0

εi xi

)
sin

(
θ

k∑

i=0

εi xi

)
= 2k

k∑

i=1

xi sin(θxi )
∏

j=1; j �=i

cos(θx j ),

Tμ,−1/2(x sin(x)) = 2
√

πx2
Jμ+1(x)

xμ+1 ,
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we arrive at

∑

m≥1

(−1)m

m2(1 + m2/θ2)n

k∏

i=1

Jμi (
√
1 + m2/θ2xi )

(
√
1 + m2/θ2xi )μi

= 1

2

( k∑

i=1

x2i Jμi+1(xi )

2θ2xμi+1
i

k∏

j=1; j �=i

Jμ j (x j )

x
μ j
j

−
(

π2

6
− n

θ2

) k∏

i=1

Jμi (xi )

xμi
i

+
n−1∑

l=0

âθ
n−l−1

∑

l1+···+lk=l

k∏

i=1

(−x2i /4)
li

2μi li ! 
(μi + li + 1)

)
, (6.18)

for 0 < 2n + 1 + k/2 + ∑k
i=1 Reμi and (x1, . . . , xk) ∈ 	∗

(θπ) (recall that this set is
defined in (5.37)).

If we assume n < 0 and 0 < 2n + 1+ k/2+ ∑k
i=1 Reμi , differentiating −n times

in (6.18) for n = 0, we have, for (x1, . . . , xk) ∈ 	∗
(θπ),

∑

m≥1

(−1)m

m2(1 + m2/θ2)n

k∏

i=1

Jμi (
√
1 + m2/θ2xi )

(
√
1 + m2/θ2xi )μi

= 1

2

⎛

⎝
k∑

i=1

x2i Jμi+1(xi )

2θ2xμi+1
i

k∏

j=1; j �=i

Jμ j (x j )

x
μ j
j

−
(

π2

6
− n

θ2

) k∏

i=1

Jμi (xi )

xμi
i

⎞

⎠ .
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Appendix A: multivariate Sneddon expansion

As we wrote in the introduction, when the particular Bessel series (1.2) cannot be
expanded in powers of x2 j , j ∈ N, the application of our method is much more
complicated.We study here themultivariate Sneddon expansion (1.11) (see [18, §2.2],
[9, 13]).
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Our starting point is the case k = 1 of the multivariate Sneddon expansion (1.11)
(see [9, Sect. 4.3])

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

Jμ( jm,νx)

( jm,νx)μ
= 22ν−2−μ
(ν + 1)2

ν
(μ + 1)

(
−1 + |x |−2ν

(
μ

ν

))
,

which holds in (−2, 2)\{0} for 2Reν < 1/2 + Reμ with ν �= 0.
Taking μ = −1/2, we obtain

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)
cos(x jm,ν) = 22ν−2
(ν + 1)2

ν

(
−1 + |x |−2ν

(−1/2

ν

))
,

which holds in (−2, 2)\{0} for Reν < 0.
Using Theorem 3.1, we get, for (x1, . . . , xk) ∈ 	∗

(2),

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

k∏

i=1

cos(xi jm,ν) = 22ν−2
(ν + 1)2

ν

×
(

−1 + 1

2k

(−1/2

ν

)
ψ(x1, . . . , xk)

)
,

(A.1)

where

ψ(x1, . . . , xk) =
∑

ε∈�k

∣∣∣
k∑

i=1

εi xi
∣∣∣
−2ν

. (A.2)

In terms of the Bessel functions, (A.1) can be rewritten as

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

k∏

i=1

J−1/2(xi jm,ν)

(xi jm,ν)−1/2

= 22ν+k/2−2
(ν + 1)2

νπk/2

(
−1 + 1

2k

(−1/2

ν

)
ψ(x1, . . . , xk)

)
. (A.3)

By applying the integral transform Tμi ,−1/2 (2.2) in the variable xi , i = 1, . . . , k, and
using (2.3), the left-hand side of (A.3) gives

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

k∏

i=1

Jμi (xi jm,ν)

(xi jm,ν)μi
.
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On other hand, using (2.4), we get, for the right-hand side of (A.3),

22ν+k/2−2
(ν + 1)2

νπk/2

×
(

− 2−k/2
(1/2)k
∏k

i=1 2
μi 
(μi + 1)

+ 1

2k

(−1/2

ν

) k⊙

i=1

Tμi ,−1/2,xi (ψ(x1, . . . , xk))

)
,

where by
⊙k

i=1 Tμi ,−1/2,xi (ψ(x1, . . . , xk)) we denote the successive application of
each of the integral transforms Tμi ,−1/2,xi acting on the variable xi to the function
ψ(x1, . . . , xk), for i = 1, . . . , k.

That is,

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

k∏

i=1

Jμi (xi jm,ν)

(xi jm,ν)μi

= 22ν−2
(ν + 1)2

ν
∏k

i=1 2
μi 
(μi + 1)

×
(

−1 + 1

2k

(−1/2

ν

)∏k
i=1 2

μi 
(μi + 1)

2−k/2
(1/2)k

k⊙

i=1

Tμi ,−1/2,xi (ψ(x1, . . . , xk))

)
,

(A.4)

which holds in 	∗
(2) (see (5.37)) for Reν < 0 and Reμi ≤ −1/2. Since the function

in the left-hand side is even, we can assume that xi > 0, 1 ≤ i ≤ k. It is then enough
to compute the integral transforms

Tμi ,−1/2,xi (ψ(x1, . . . , xk)), i = 1, . . . , k.

We know how to proceed in the set �+
i (1.12) assuming that the parameter μi is equal

to −1/2. Indeed, by symmetry, we can assume i = 1. Taking into account that in �+
1

the first coordinate x1 dominates the sum of the others, we write

ψ(xi , . . . , xk) =
∑

ε∈�k−1

((
x1 +

k∑

i=2

εi xi
)−2ν +

(
x1 −

k∑

i=2

εi xi
)−2ν

)
,
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and then

ψ(x1, . . . , xk) =
∑

ε∈�k−1

x−2ν
1

((
1 +

∑k
i=2 εi xi
x1

)−2ν

+
(
1 −

∑k
i=2 εi xi
x1

)−2ν)

= 2
∑

ε∈�k−1

x−2ν
1

∞∑

j=0

(−2ν

j

)
(∑k

i=2 εi xi
) j

x j
1

= 2x−2ν
1

∞∑

j=0

(−2ν

j

)
1

x j
1

∑

ε∈�k−1

(
k∑

i=2

εi xi

) j

= 2x−2ν
1

∞∑

j=0

(−2ν

2 j

)
1

x2 j1

∑

ε∈�k−1

(
k∑

i=2

εi xi

)2 j

= 2x−2ν
1

∞∑

j=0

(−2ν

2 j

)
2k−1

x2 j1

∑

l2+···+lk= j

(
2 j

2l2, . . . , 2lk

) k∏

i=2

x2lii , (A.5)

where we have used that if j is odd then
∑

ε∈�k−1

(∑k
i=2 εi xi

) j = 0, and the iden-

tity (3.1).
We next apply the integral transform Tμi ,−1/2 (2.2) in the variable xi , i = 2, . . . , k,

and use (2.4). This can be done because for 0 < si < 1, i = 2, . . . , k, the set �+
1 is

stable under the map

(x1, . . . , xk) �→ (x1, s2x2, . . . , sk xk),

(i.e., if (x1, . . . , xk) ∈ �+
1 , then (x1, s2x2, . . . , sk xk) ∈ �+

1 , as well), and we can then
use the expansion (A.5). Hence, we find

k⊙

i=2

Tμi ,−1/2,xi (ψ(x1, . . . , xk))

= 2k
∞∑

j=0

(−2ν

2 j

)
x−2ν−2 j
1

∑

l1+···+lk= j

(
2 j

2l2, . . . , 2lk

) k∏

i=2


(li + 1/2)x2lii

2μi+1/2
(μi + li + 1)
.

Substituting in (A.4), we get after some easy computations

∑

m≥1

j2ν−2
m,ν

J 2ν+1( jm,ν)

J−1/2(x1 jm,ν)

(x1 jm,ν)−1/2

k∏

i=2

Jμi (xi jm,ν)

(xi jm,ν)μi
= 22ν−2
(ν + 1)2

ν2−1/2
(1/2)
∏k

i=2 2
μi 
(μi + 1)

×
(

−1 +
(−1/2

ν

) ∞∑

j=0

(ν) j (ν + 1/2) j x
−2ν−2 j
1

∑

l2+···+lk= j

k∏

i=2

x2lii

li ! (μi + 1)li

)
.
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This proves (1.14) in �+
1 for μ1 = −1/2, Reν < 0 and Reμi ≤ −1/2. The extension

to 2Reν < (k − 1)/2+∑k
i=2 Reμi can be done proceeding as in [9, Sect. 4.1], where

the case k = 2 was considered.
As pointed out in the introduction, we have computational evidence showing that

(1.14) also holds in �+
1 for μ1 �= −1/2. However, we have not been able to prove it,

because for 0 < s1 <

( ∑k
j=2 x j

)
/xi , the set �

+
1 is not stable under the map

(x1, . . . , xk) �→ (s1x1, x2, . . . , xk),

and we cannot use (A.5) to compute the integral transform Tμ1,−1/2 (2.2) acting on
the variable x1 applied to the function ψ(x1, . . . , xk) (A.2).

We have not succeeded in summing (1.11) in �+
r because this set is not stable with

respect to any of the maps

(x1, . . . , xk) �→ (x1, x2, . . . , si xi , . . . xk),

for certain values si with 0 < si < 1.
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