
2014 19

María Elena Gómez Martínez

Software Perfomance
Assessment at

Architectural Level: a
Methodology and its

Application

Departamento

Director/es

Informática e Ingeniería de Sistemas

Merseguer Hernáiz, José Javier

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

 Autor

María Elena Gómez Martínez

SOFTWARE PERFOMANCE
ASSESSMENT AT ARCHITECTURAL
LEVEL: A METHODOLOGY AND ITS

APPLICATION

 UNIVERSIDAD DE ZARAGOZA
Informática e Ingeniería de Sistemas

 Director/es

Merseguer Hernáiz, José Javier

Tesis Doctoral

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

2013

Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Software Performance Assessment at

Architectural Level:

a Methodology and its Application

Maŕıa Elena Gómez Mart́ınez

Ph.D. DISSERTATION

Departamento de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza

Advisor: Dr. José Javier Merseguer Hernáiz

December 2013

A los tres hombres de mi vida, con todo mi amor:

José Antonio, Alejandro y Carlos.

Me lo contaron y lo olvidé;

lo vi y lo entend́ı;

lo hice y lo aprend́ı.

Confucio

Sólo sé que no sé nada y,

al saber que no sé nada, algo sé;

porque sé que no sé nada.

Socrates

Agradecimientos

En primer lugar, me gustaŕıa agradecer a mi director de tesis, José Merseguer, por
su apoyo, est́ımulo y buenos consejos para realización de esta tesis, pero sobre todo
por la infinita paciencia que ha tenido conmigo. Esta tesis ha sido larga, muy larga,
pero al fin ha salido. ¡Muchas gracias!

Mi agradecimiento especial es para uno de los mejores profesores que he tenido,
Javier Campos, por darme la oportunidad de poder comenzar mi doctorado. Aunque
un poco más tarde de lo habitual, me permitió conocer mi verdadera vocación.

No puedo olvidar de mencionar a mis compañeros de laboratorio en la Universidad
de Zaragoza durante la primera parte de mi doctorado: Juan Pablo, Simona, Maŕıa,
Anacris, Dario, Diego... me olvido de muchos, pero me es imposible poner a todos.

También quiero agradecer a mis compañeros (y amigos) de I+D de Technosite
en el proyecto INREDIS, entre ellos Lourdes, Esteban y Marta, a Sara, por ser mi
“oráculo” particular, a Fausto, por su profundo conocimiento de todo lo relacionado
con la discapacidad, a José “Guti”, por ayudarme con las pruebas y, en especial, a
Rafa por su imprescindible aportación en la arquitectura de interoperabilidad. Trabajar
con todos ellos fue un auténtico placer. Alĺı aprend́ı el valor de la superación personal
de muchas personas con discapacidad y de cómo la tecnoloǵıa puede mejorar sus vidas.

Tampoco me puedo olvidar de mis compañeros de investigación del grupo Babel en
la Universidad Politécnica de Madrid, en particular a Guillem, Ricardo, Clara y, en
especial, a Álvaro por sus ánimos en esta última etapa. ¡Los necesitaba!

A mi amiga Esther, por estar siempre ah́ı para escucharme y darme ánimos en
los momentos que más me haćıan falta. Me siento afortunada de tener una amiga
como ella.

Agradecer a mis familias: De la que vengo, a mis padres y hermanos por enseñarme
el valor del trabajo y el esfuerzo; a la que me “encontré”, mis suegros Antonio y Maŕıa
del Carmen, por tratarme como a una hija y darme todo su apoyo; y la que he formado
junto a mi marido, mis hijos Alejandro y Carlos, por dejarme robarles tiempo para
esta tesis. Sus sonrisas son el motor de mi vida. Os quiero mucho.

Finalmente, quiero dar las gracias a mi marido José Antonio. No encuentro
palabras para escribir en unas ĺıneas todo lo que le tengo que agradecer. Gracias por
ser mi compañero, amigo, pareja, esposo, amante, padre de mis hijos... por compartir
conmigo este extraño y apasionante viaje que es la vida. Sin ti, sin tu ayuda y sin tus
ánimos, hubiera sido imposible hacer esta tesis. Gracias por todo, cielo. Te quiero.

Resumen

El diseño de la arquitectura de un sistema software es una valiosa herramienta para
evaluar las propiedades del mismo, tanto cualitativas como cuantitativas. Conseguir
el diseño adecuado es cŕıtico para asegurar la bondad de dichas propiedades. Tomar
decisiones tempranas equivocadas puede implicar considerables y costosos cambios en
un futuro. Dichas decisiones afectaŕıan a muchas propiedades del sistema, tales como
su rendimiento, seguridad, fiabilidad o facilidad de mantenimiento.

Desde el punto de vista de la prestaciones del software, la ingenieŕıa del
rendimiento del software (SPE) es una disciplina de investigación madura y
comúnmente aceptada que propone una evaluación basada en modelos en las primeras
fases del ciclo de vida de desarrollo software. Un problema en este campo de investi-
gación es que las metodoloǵıas hasta ahora propuestas no ofrecen una interpretación
de los resultados obtenidos durante el análisis del rendimiento, ni utilizan dichos re-
sultados para proponer alternativas para la mejora de la propia arquitectura software.
Hasta la fecha, esta interpretación y mejora requiere de la experiencia y pericia de los
ingenieros software, en especial de expertos en ingenieŕıa de prestaciones. Además,
a pesar del gran número de propuestas para evaluar el rendimiento de sistemas soft-
ware, muy pocos de estos estudios teóricos son posteriormente aplicados a sistemas
software reales.

El objetivo de esta tesis es presentar una metodoloǵıa para asesorar decisiones
arquitecturales que tienen impacto en el rendimiento del software. La metodoloǵıa
hace uso del Lenguaje Unificado de Modelado (UML) para representar las arquitec-
turas software y de métodos formales, concretamente redes de Petri, como modelo de
prestaciones. El asesoramiento, basado en patrones y antipatrones, intenta detectar
los principales problemas que afectan a las prestaciones del sistema y propone cam-
bios para mejorar dichas prestaciones. Como primer paso, estudiamos y analizamos
resultados de rendimiento de diferentes estilos arquitecturales. A continuación, sis-
tematizamos los conocimientos previamente obtenidos para proponer una metodoloǵıa
y comprobamos su aplicabilidad asesorando un caso de estudio real, una arquitectura
de interoperabilidad para adaptar interfaces a personas con discapacidad conforme a
sus capacidades y preferencias. Finalmente, se presenta una herramienta para la eva-
luación del rendimiento como un producto derivado del propio ciclo de vida software.

Preface

Software architectures have emerged in the last years as the cornerstone for early
evaluation of qualitative and quantitative properties of the software. Software archi-
tecture design is a critical issue to get the right system. Wrong decisions at early
development phases might imply expensive rework and considerable future changes.
Architectural decisions may also directly affect other system properties, such as main-
tainability, reliability, dependability, security or performance, among others.

From the performance point of view, Software Performance Engineering (SPE)
is a mature and well-known research field that proposes a QoS evaluation based on
models at early-stages in the life-cycle. A problem in this field is that methodologies
generally lack of feedback to interpret performance analysis results and their utiliza-
tion to propose alternatives to improve the software architecture. Hitherto, it requires
skills and experience on the part of software engineers, namely experts in software
performance. Furthermore, in spite of the number of proposals to evaluate software
performance, very few studies focus on applying these theoretical approaches to the
study of real systems.

The aim of this thesis is to present a methodology for assessing software architec-
tures from a performance perspective. The methodology uses the Unified Modeling
Language (UML) as a software modeling annotation and the Petri net formalism as
performance model. The assessment, based on performance patterns and antipat-
terns, tries to detect potential performance issues and also tries to enhance software
architecture designs for improving system performance, in order to finally propose the
optimal configuration of the software architecture. As a first step, we study and anal-
yse performance results of different software architectural styles. Secondly, we build
the methodology on the insight previously gained and test its applicability for the
performance assessment of a real interoperable architecture for adapting interfaces
conforming the preferences and capabilities of people with disabilities. Lastly, we
provide a tool for the performance evaluation of software systems as a “by-product”
of the software life-cycle.

Contents

List of Figures v

List of Tables vii

List of Acronyms xi

1 Introduction 1
1.1 Outline . 4

2 Preliminary Concepts 5
2.1 Software Architectures . 5

2.1.1 Architectural Style . 6
2.1.2 Architecture Assessment . 9

2.2 The Unified Modeling Language . 10
2.2.1 UML Diagrams . 10
2.2.2 SPT/MARTE Profiles . 11

2.3 Software Performance Engineering . 12
2.3.1 Performance Scenarios and Objectives 13
2.3.2 Performance Models . 14
2.3.3 SPE Process . 16

2.4 Petri Nets . 19
2.4.1 Nets and Net Systems . 19
2.4.2 Stochastic Petri Nets . 20
2.4.3 Generalized Stochastic Petri Nets 21
2.4.4 Petri Nets Analysis . 22

2.5 Conclusions . 24

3 Foundations of the Methodology 25
3.1 CDSS: Web Service Application . 26

3.1.1 Performance Issues of Web Services 26
3.1.2 CDSS Web Service . 28
3.1.3 Applying SPE to the CDSS . 29
3.1.4 Performance Improvements for the CDSS Web Service 33

i

ii

3.1.5 Related Work . 40
3.1.6 Concluding Remarks on CDSS 41

3.2 SPRINGS: Mobile Agents Tracking . 42
3.2.1 Mobile Agent Technology . 42
3.2.2 System Performance View . 46
3.2.3 Performance Models . 48
3.2.4 Performance Analysis . 54
3.2.5 Related Work . 56
3.2.6 Concluding Remarks on SPRINGS 57

3.3 UCH: Universal Control Hub . 59
3.3.1 URC-UCH Architecture . 60
3.3.2 Applying SPE to UCH . 61
3.3.3 Concluding Remarks on UCH 71

3.4 Conclusions . 72

4 A Performance Assessment Methodology 73
4.1 Overview of the Methodology . 74
4.2 Performance-Oriented Design . 76

4.2.1 Software Design: UML diagrams 76
4.2.2 Performance View: Scenarios and Annotations 79

4.3 Performance Model . 84
4.4 Performance Analysis . 89

4.4.1 Responsiveness . 91
4.4.2 Scalability . 92
4.4.3 Utilization . 93

4.5 Performance Assessment . 94
4.5.1 Resource Replication . 95
4.5.2 Performance Patterns . 96
4.5.3 Performance Antipatterns . 100
4.5.4 Optimal Configuration . 103

4.6 Related Work . 104
4.7 Conclusions . 105

5 Industrial Case Study: An Interoperable Architecture 107
5.1 Overview . 108
5.2 An Interoperable Architecture . 109

5.2.1 First Interaction Scenario . 113
5.2.2 Navigation Scenario . 118
5.2.3 Device Interaction Scenario . 119
5.2.4 Back to Top Scenario . 122
5.2.5 Assistive Software Selection Mechanism 122

5.3 Applying the Assessment Methodology 125
5.3.1 Performance-Oriented Design 125
5.3.2 Performance Model . 126
5.3.3 Performance Analysis . 132

iii

5.3.4 Performance Assessment . 139
5.3.5 Optimal Configuration . 146
5.3.6 Validation of the Performance Assessment 146
5.3.7 Comparison of Results . 148

5.4 Discussion . 150
5.4.1 Concerning the Methodology 150
5.4.2 Concerning the Optimal Configuration 152

5.5 Related Work . 153
5.6 Conclusions . 155

6 The ArgoSPE Tool 157
6.1 ArgoSPE Features . 157

6.1.1 Queries in the Statechart Diagram 158
6.1.2 Queries in the Deployment and Collaboration Diagrams 159
6.1.3 Performance Annotations . 159

6.2 Software Architecture . 160
6.2.1 Model Editor . 160
6.2.2 Model Configurer . 161
6.2.3 Model Processor . 162

6.3 Related Work . 164
6.4 Conclusions . 165

7 Final Conclusions and Future Work 167
7.1 Achievements . 167
7.2 Scientific Results . 169
7.3 Future Research . 172

Bibliography 173

Index 190

iv

List of Figures

Figure 2.1: SPE process . 17
Figure 2.2: PUMA approach . 18

Figure 3.1: CDSS: UML Sequence Diagram for the invocation process . . . 28
Figure 3.2: CDSS: Performance results obtained by Catley et al. (2004) . . 29
Figure 3.3: CDSS: CSM for invocation . 30
Figure 3.4: CDSS: CSM for process . 31
Figure 3.5: CDSS: GSPN representing the whole scenario 32
Figure 3.6: CDSS: Response times obtained from the GSPN model 33
Figure 3.7: CDSS: UML Sequence Diagram with tunning 35
Figure 3.8: CDSS: Response times for different XML parsers 35
Figure 3.9: CDSS: UML Sequence Diagram with SOAP toolkit 37
Figure 3.10: CDSS: Response times for different SOAP implementations . . 37
Figure 3.11: CDSS: Response times when EPR file increases in size 38
Figure 3.12: CDSS: Response times when CDSS processing time increases . 39
Figure 3.13: SPRINGS: Architecture for mobile agent platforms 43
Figure 3.14: SPRINGS: UML Sequence Diagram for agent movement 45
Figure 3.15: SPRINGS: UML Sequence Diagram for agents communication 46
Figure 3.16: SPRINGS: UML Deployment Diagram of the architecture . . . 47
Figure 3.17: SPRINGS: UML IOD of the performance scenario 48
Figure 3.18: SPRINGS: CSM for agent movement 50
Figure 3.19: SPRINGS: CSM for agents communication 51
Figure 3.20: SPRINGS: GSPN for agent movement 52
Figure 3.21: SPRINGS: GSPN for agents communication 53
Figure 3.22: SPRINGS: Response times . 54
Figure 3.23: SPRINGS: Response times when multithreading contexts . . . 55
Figure 3.24: SPRINGS: Response times when multithreading (II) 56
Figure 3.25: SPRINGS: Sensitivity analysis 57
Figure 3.26: UCH: Components of the architecture 61
Figure 3.27: UCH: UML Sequence Diagram for device control process . . . 63
Figure 3.28: UCH: UML Sequence Diagram for a value set request 64
Figure 3.29: UCH: UML Deployment Diagram 65
Figure 3.30: UCH: CSM . 67

v

vi LIST OF FIGURES

Figure 3.31: UCH: GSPN for a value set request 68
Figure 3.32: UCH: Response times for 40 users 69
Figure 3.33: UCH: Response times . 70
Figure 3.34: UCH: Response times when multithreading 71
Figure 3.35: UCH: Optimal configuration 71

Figure 4.1: Performance assessment methodology loop 74
Figure 4.2: Producer-Consumer example: UML Deployment Diagram. . . . 77
Figure 4.3: Producer-Consumer example: UML State Machine Diagram. . 78
Figure 4.4: Producer-Consumer example: UML Sequence Diagram. 79
Figure 4.5: MARTE: subset of GQAM and GRM 81
Figure 4.6: MARTE: pre-declared NFP types 82
Figure 4.7: Producer-Consumer example: GSPN. 88
Figure 4.8: Producer-Consumer example: Closed-cycle GSPN. 90
Figure 4.9: Producer-Consumer: Scalability 93
Figure 4.10: Producer-Consumer: Utilization 94
Figure 4.11: Producer-Consumer: Resource replication 95
Figure 4.12: Producer-Consumer: Utilization when multithreading 96
Figure 4.13: Pattern detection algorithm . 99
Figure 4.14: Antipattern detection algorithm 102

Figure 5.1: INREDIS: UML Deployment Diagram 111
Figure 5.2: INREDIS: UML IOD of the main processes 112
Figure 5.3: INREDIS: UML Sequence Diagram for first interaction 114
Figure 5.4: INREDIS: UML Sequence Diagram for perimeter calculation . 115
Figure 5.5: INREDIS: UML Sequence Diagram for initial interface generation117
Figure 5.6: INREDIS: UML Sequence Diagram for a navigation 118
Figure 5.7: INREDIS: UML Sequence Diagram for an interface generation 120
Figure 5.8: INREDIS: UML Sequence Diagram for a user’s device interaction121
Figure 5.9: INREDIS: UML Sequence Diagram for a back-to-top 122
Figure 5.10: INREDIS: UML Activity Diagram for AS selection 124
Figure 5.11: INREDIS: GSPN for first interaction scenario 127
Figure 5.12: INREDIS: GSPN for navigation scenario 128
Figure 5.13: INREDIS: GSPN for device interaction scenario 129
Figure 5.14: INREDIS: GSPN for back-to-top scenario 130
Figure 5.15: INREDIS: GSPN for ASSM scenario 131
Figure 5.16: INREDIS: Empirical response times 135
Figure 5.17: INREDIS: Response times of performance models 136
Figure 5.18: INREDIS: Empirical response times of ASSM 137
Figure 5.19: INREDIS: Response times of ASSM using models 138
Figure 5.20: INREDIS: Resource utilization 140
Figure 5.21: INREDIS: Response times when multithreding 141
Figure 5.22: INREDIS: Resource utilization (II) 141
Figure 5.23: INREDIS: Response times when multithreding (II) 142
Figure 5.24: INREDIS: Response times when multithreding (III) 142

LIST OF FIGURES vii

Figure 5.25: INREDIS: Response times with Fast Path pattern 143
Figure 5.26: INREDIS: The Ramp antipattern 145
Figure 5.27: INREDIS: Response times for specific recommender of ASSM . 146
Figure 5.28: INREDIS: Response times for the optimal configuration 147
Figure 5.29: INREDIS: Comparison of results (I) 148
Figure 5.30: INREDIS: Comparison of results (II) 149

Figure 6.1: ArgoSPE: An example . 158
Figure 6.2: ArgoSPE: Architecture proposed by OMG 161
Figure 6.3: ArgoSPE: Snapshot . 162
Figure 6.4: ArgoSPE: Example of a configuration file 163

viii LIST OF FIGURES

List of Tables

Table 3.1: CDSS: Mean execution times of XML parsers 34
Table 3.2: CDSS: Mean execution times of SOAP toolkits 36
Table 3.3: CDSS: Mean execution times of EPR size 38
Table 3.4: SPRINGS: Mean execution times of operations 49
Table 3.5: UCH: Mean execution times of operations 65

Table 4.1: Subset of performance annotations in MARTE. 85
Table 4.2: Translation rules of the performance annotations in MARTE

into GSPN models. 86
Table 4.3: Performance patterns . 98

Table 5.1: INREDIS: Results in seconds for each performance scenario . . 136
Table 5.2: INREDIS: Probabilities rates of ASSM 137

Table 6.1: ArgoSPE: Supported performance annotations 160

ix

x LIST OF TABLES

List of Acronyms

AD Activity Diagram

AS Assistive Software

ASSM Assistive Software Selection Mechanism

CDSS Clinical Decision Support Systems

CSM Core Scenario Model

CTMC Continuous-Time Markov Chain

DD Deployment Diagram

DOM Document Object Model

EQN Extended Queueing Network

FTP File Transfer Protocol

GRM Generic Resource Modeling

GSPN Generalized Stochastic Petri Nets

GQAM Generic Quantitative Analysis Modeling

HCI Human Computer Interaction

HTTP HyperText Transfer Protocol

ICT Information and Communications Technology

INREDIS INterfaces for RElations between Environment and people with DISabil-
ities

IOD Interaction Overview Diagram

ISO International Standard Organization

KB Knowledge Base

xi

xii LIST OF ACRONYMS

LQN Layered Queueing Network

MARTE Modeling and Analysis of Real-Time and Embedded systems

MDA Model Driven Architecture

NFP Non Functional Properties

OMG Object Management Group

PASA Performance Assessment of Software Architectures

PDF Probability Distribution Function

PEPA Performance Evaluation Process Algebra

pmf probability mass function

PN Petri nets

PSM Platform Specific Models

PUMA Performance by Unified Model Analysis

QN Queueing Network

QoS Quality of Service

SA Software Architecture

SAX Simple API for XML

SD Sequence Diagram

SM State Machine Diagram

SMG Stochastic Marked Graph

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPA Stochastic Process Algebra

SPE Software Performance Engineering

SPN Stochastic Petri net

SPPN Stochastic Process Petri Net

SPT UML profile for Schedulability, Performance and Time

LIST OF ACRONYMS xiii

TCP/IP Transmission Control Protocol/Internet Protocol

TPN Timed Petri net

TVL Tag Value Language

UCH Universal Control Hub

UC Use Case Diagram

UDDI Universal Description Discovery and Integration

UIML User Interface Markup Language

UML Unified Modeling Language

URC Universal Remote Console

VSL Value Specification Language

W3C World Wide Web Consortium

WS Web Service

WSDL Web Service Description Language

XHTML eXtensible HyperText Markup Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

XPP XML Pull Parser

xiv LIST OF ACRONYMS

Chapter 1

Introduction

Software architectures have emerged in the last years as the cornerstone for early eval-
uation of qualitative and quantitative properties of the software. Software architecture
design represents one of the earliest decisions made in the software development life-
cycle. This decision is critical to get the right system, because of the difficulties to
introduce changes once the system has been deployed. Wrong decisions at early devel-
opment phases may imply an expensive rework to fix involving considerable changes
at any stage of the software development life-cycle.

ISO 42010:2011 standard defines the concept of software architecture as the fun-
damental organization of a system embodied in its components, their relationships to
each other and to the environment and the principles guiding its designs and evolu-
tion. This standard, as well as most of the definitions regarding software architecture,
chiefly focuses on modeling the structure and behaviour of a system. Obviously, the
software architecture must deliver functional requirements, i.e, how it should behave.
Nevertheless their compliance is not enough for assuring its quality, which is also
determined by how well non-functional requirements (or non-functional properties,
NFP) are met, i.e., how it should perform. Thus, architectural decisions may directly
affect non-functional properties, such as maintainability, reliability, dependability, se-
curity or performance, among others.

Software performance is a pervasive quality difficult to understand, because it is
affected by every aspect of the design, code, and execution environment (Woodside
et al., 2007). Performance influences all the components in a software system. Hence,
it must be analysed by considering the software architecture as a whole and how
its components interact. Software performance is then a non-functional property
related to software quality that it is not always taken into account at the design stage
notwithstanding.

Software performance can be defined by means of performance objectives, which
specify quantitative criteria for evaluating the performance characteristics of the soft-
ware system (Smith and Williams, 2002b). According to Smith (1990), performance
objectives can be expressed in several different ways, including response time, through-

1

2 1. Introduction

put or constrains on resource usage (or utilization).

Therefore, software performance evaluation focuses on the dynamic behaviour
analysis and the prediction of these performance indices and measures. Unfortunately,
performance evaluation of software systems has been traditionally accomplished after
deployment. This is the well-known “fix-it later” approach and it has well-known
problems (Smith, 1990). For example, the cost of re-architecting, re-implementing
and re-deploying the system when performance goals are not fulfilled. Also the over-
budget for being out of schedule as Woodside et al. (2007) described.

Software Performance Engineering (SPE) was defined by Smith in 1981 as a sys-
tematic and quantitative approach to build software systems that meet performance
objectives. SPE represents the entire collection of software engineering activities and
related analyses used throughout the software development cycle, which are directed
to meeting performance requirements (Woodside et al., 2007; Cortellessa et al., 2011).

The usual way in SPE for introducing a performance specification is by anno-
tating the design diagrams. Annotations account for properties such as workload,
host demands or routing rates. Following SPE principles, the aforementioned design
diagrams annotated with performance information are translated into performance
models. Performance models are formal models that help to obtain performance mea-
sures of interest (e.g. system response time) by analysis or simulation, and thence to
evaluate software systems.

Nowadays, the Unified Modeling Language (UML), defined by the Object Man-
agement Group (OMG, 2011b), is the industry-standard language for specifying, visu-
alizing, constructing, and documenting the artifacts of software systems (Rumbaugh
et al., 1999; Fowler, 2000). UML is enriched with profiles, i.e., tailored subsets of
the UML metamodel for specific purposes, such as transactional, dependability or
fault-tolerant systems. The UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) described by OMG (2011a) is a standard that
customizes UML for the modeling and analysis of performance properties.

Regarding performance models, there are different kinds of performance for-
malisms widely accepted in SPE: queuing networks (Lazowska et al., 1984), stochastic
process algebras (Hermanns et al., 2002) and stochastic Petri nets (Ajmone Marsan
et al., 1995). There exist SPE methodologies that translate performance-annotated
UML models into the formalisms above mentioned. For example, the work in (Petriu
and Woodside, 2002; Petriu and Shen, 2002) to obtain queuing networks, the work
in (Tribastone and Gilmore, 2008) to obtain process algebras or (Bernardi and
Merseguer, 2007; Distefano et al., 2011) to obtain Petri nets. Using the latter for-
malisms, PUMA (Performance by Unified Model Analysis) (Woodside et al., 2005,
2013) is a transformation model chain that proposes to carry out the performance
analysis using intermediate performance models, concretely Core Scenario Models
(CSM). Some of these approaches have associated tools that automate the transla-
tion process.

Nevertheless, these approaches generally lack of feedback to interpret performance
analysis results and their utilization to propose alternatives to improve the software
architecture is not immediate. Hitherto, it requires skills and experience on the part

3

of software engineers, namely experts in software performance. Furthermore, in spite
of the large number of proposals to evaluate software performance, very few studies
focus on applying these theoretical approaches in the study of real systems.

A solution to this problem could be the development of a systematic and structured
approach to evaluate architectural decisions in order to close the “assessment loop”,
that is, Design → Performance Model → Analysis → Results → new Design. This
performance assessment methodology based on SPE principles and techniques allows
us to systematically evaluate performance of software architectures in the design stage,
the detection of design errors and subsequent assessment for their correction. It
tries thus to enhance the initial software architecture design for improving system
performance.

To the best of our knowledge, there are very few initiatives to assess architectures
based on SPE principles. An exception is the PASA (Performance Assessment of
Software Architectures) method, proposed by Williams and Smith (2002). PASA
is a performance scenario-based software architecture analysis method that provides
a framework for the whole assessment process. Nevertheless, some steps of PASA
entrust in the software engineer expertise to be applied and to identify alternatives
for improvements.

Therefore, the main objective of this dissertation thesis is to devise a methodology
for the assessment of software performance in the early phases of the software devel-
opment life-cycle, and apply it to a complex architecture, as well as its automation.
So, it is our objective that the resulting performance assessment should be obtained
as a “by-product” of the software life-cycle, avoiding the software engineer to perform
tasks for which a strong mathematical background is required.

From the viewpoint of the performance modeling and analysis, we base our
methodology on the use of UML (OMG, 2011b), MARTE profile (OMG, 2011a) and
the Petri nets formalism, concretely Generalized Stochastic Petri nets (GSPN) devel-
oped by Ajmone Marsan et al. (1995). From the performance assessment perspective,
we use the concepts of response time and resource utilization studied by Jain (1991),
performance patterns proposed by Smith and Williams (2002b) and derived from de-
sign patterns of Gamma et al. (1995) and performance antipatterns defined by Smith
and Williams (2000). We inspire our work in the PASA method and PUMA approach.
Chapter 2 introduces these concepts.

In order to accomplish this objective, we analyse diverse software architectures
using SPE techniques and interpreted the obtained performance results, as well we
have studied the impact of some technological decisions. We put the focus on three
different kind of software architecture: a web service-based application, a mobile
agents platform, and a remote console framework. We analyse these samples applying
PUMA approach with GSPNs as formal method. As outcome of this research, we gain
insight in performance issues, how to interpret the results of performance analysis and
the first steps for improving initial architecture designs. Chapter 3 describes this work,
which paves the development of the methodology.

Once we achieved a deep insight in the performance analysis of software architec-
tures and a certain knowledge on closing the “assessment loop” by interpreting the

4 1. Introduction

performance results, we apply our methodology to a real-complex case study. This
industrial case study is an interoperable architecture to automatically adapt user in-
terfaces (device controllers or web services) according to the capabilities or preferences
of people with special needs. We assess this software architecture in order to obtain
its optimal configuration. Moreover, the theoretical performance results are validated
against the experimental ones obtained in the user testing phase. In addition, other
hypothetical situations are studied. Chapter 5 describes the main components of the
aforementioned software architecture and presents the application of the performance
assessment methodology proposed in this dissertation thesis.

Moreover, we develop a tool for the automation of the performance evaluation of
software systems in the first stages of the development process. This tool implements
the algorithms given in (Bernardi and Merseguer, 2007; Distefano et al., 2011) and
follows the architecture proposed in the UML-SPT (OMG, 2005). It permits to ex-
pedite the performance analysis of software systems. Chapter 6 details the most of
the features of this tool.

1.1 Outline

This thesis comprises seven chapters including this one. The balance is as follows.
Chapter 2 reviews the main research fields considered in this work and introduces

preliminary concepts needed to follow the rest of the dissertation, such as Software
Architecture, UML models, basic principles for SPE and Petri net formalism.

In Chapter 3, we address some sample applications to explore performance anal-
ysis. We analyse a Web-based application, a mobile agent tracking approach and a
gateway oriented architecture for devices controllers.

Chapter 4 describes a scenario-based methodology for the performance assess-
ment of software architectures using Software Performance Engineering principles.
This methodology aims to assess performance as a “by-product” of the software de-
velopment life-cycle.

In Chapter 5, we apply our methodology to an industrial case study. An interop-
erable architecture to automatically adapt interfaces for people with disabilities.

Chapter 6 introduces ArgoSPE, we have developed to automatize some aspects
of the methodology. For this purpose, ArgoSPE translates UML diagrams annotated
with performance properties into Generalized Stochastic Petri Nets. ArgoSPE is
implemented according to the architecture proposed in the UML-SPT (OMG, 2005)
profile and it is plugged into the open source ArgoUML CASE tool.

Finally, Chapter 7 concludes this dissertation thesis. It gives a summary of the
achieved results and the main contributions. In addition, it establishes the open issues
and the proposed future work.

Chapter 2

Preliminary Concepts

This chapter relates the work of this thesis to relevant research fields. It is subdi-
vided into a number of sections. First, software architectures are described including
architectural styles in Section 2.1. This is followed by the explanation of UML in
Section 2.2 that allows to model software architecture. Then, software performance
engineering in Section 2.3 is contextualized to be aware with its principles and ob-
jectives and to know the techniques and models used in this area. Finally, a brief
introduction to Petri nets in Section 2.4 is presented. In each section, there is also
an explanation of how the thesis is related to each area. Finally, some conclusions
concerning this chapter are given in Section 2.5.

2.1 Software Architectures

The Software Architecture (SA) of a program or computer system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them (Bass et al., 2005).

A software architecture is an abstraction of the run-time elements of a software
system during some phase of its operation. A system may be composed of many
levels of abstraction and many phases of operation, each with its own software archi-
tecture (Shaw, 1990; Shaw and Garlan, 1996).

Hence, at the heart of software architecture is the principle of abstraction: hiding
some of the details of a system through encapsulation in order to better identify and
sustain its properties (Shaw, 1990). A complex system will contain many levels of
abstraction, each with its own architecture. An architecture represents an abstraction
of system behaviour at that level, such that architectural elements are delineated by
the abstract interfaces they provide to other elements at that level (Bass et al., 2005).

Other definition can be found in the 42010:2011 standard, which defines a archi-
tecture as “the fundamental organization of a system embodied in its components,
their relationships to each other and to the environment and the principles guiding
its designs and evolution” (ISO/IEC/IEEE, 2011). This standard describes an archi-

5

6 2. Preliminary Concepts

tecture using Unified Modeling Language (UML) class diagrams to represent these
elements.

Therefore, a software architecture models the structure and behaviour of a sys-
tem. Focussing on these aspects, quality attributes such as usability, performance,
reliability, and security indicates the success of the design and the overall quality of
the software application. Moreover, some of these properties are determined by the
structure or architectural style.

In this work, we analyse and assess software architectures in the design phase
with respect to software performance using Software Performance Engineering (SPE)
techniques. Thus, we describe software architectures expressed in terms of UML
diagrams.

2.1.1 Architectural Style

Software architecture of a large system can be guided by using architectural styles and
design patterns (Bass et al., 2005; Monroe et al., 1997). It describes the organization
of a family of systems that share common features.

Architectural styles are closely related to design patterns in two ways. First,
architectural styles can be viewed as kinds of patterns (Shaw and Garlan, 1996)
or perhaps more accurately as pattern languages (Kerth, 1995). There are many
recognized architectural patterns and styles (Garlan and Shaw, 1993):

• Data-centered architectures. They aim to achieve the quality of integra-
bility data. Basically, a centralized data store communicates with a number of
clients, which use data manipulation protocols to work with the data. Some of
the most well-known example are a database architecture or web architecture.

• Data-flow architectures. They aim to achieve the quality of reuse and mod-
ifiability. This style is characterized by viewing the system as a series of trans-
formations on successive pieces of input data. Some examples are networking
architectures.

• Abstraction layer architectures. The structure of the system is organized
into set of layers. These architectures focus on a hierarchical distribution of
roles and responsibilities. The role denotes the type and the mode of interaction
with other layers and the responsibility indicates the functionality. Operating
Systems are typically organized into layers, as well as network protocol stack,
such as TCP/IP.

• N-tier architectures. The functionality is divided into different segments, but
each segment is physically located on separated platforms. Each layer interacts
with only the layer directly below, and has specific function that it is responsible
for. Client-Server systems are defined with two-tier architectures. Most of the
web applications are based on three-tier architectures, which typically comprise
a presentation tier, a business or data access tier, and a data tier.

2.1. Software Architectures 7

• Notification architectures. The information and activity is propagated by a
notification mechanism. Thus, when an event occurs the interested component
is notified.

• Remote invocation and service architectures. These architectures in-
volve distributed processing components. Typically, a client component invokes
a method (function) on a remote component. Service-oriented architectures
introduce a special component where services are registered. Any component
interested in a services asks that component for the address of that service.

• Heterogeneous architectures. Since no real system follows strictly only a
single style, architectures might be conceptually, structurally, executional het-
erogeneous. For instance, a Web-based search engine might be conceptually
data-centric, layered and three tier. From the structure viewpoint might follow
layered and notification style. And its execution might be distributed, service-
oriented and notification.

Next, we briefly describe Service-Oriented Architectures and Mobile Agent-Based
System, since our work is mainly focused on them.

Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a technology architectural model for service
oriented solutions with distinct characteristics in support of realizing service orienta-
tion and the strategic goals associated with service oriented computing (Erl, 2007).
Hence, SOA is a paradigm for developing and deploying business applications as a
set of reusable services. SOA is not based on a specific technology or programming
languages.

Therefore, SOA is an architectural style whose goal is to achieve loose coupling
among interacting software service, some of them acting as providers and others, as
consumers (Erl, 2007). A service is a unit of work done by a service provider to
achieve desired end results for a service consumer in SOA, services are the mechanism
by which needs and capabilities are brought together. When a service is deployed on
the net, it is named Web Service (WS).

Web Services are universally accessible software components deployed on the Web,
thus in a Web service architecture clients and services are loosely coupled and ge-
ographically distributed. One important characteristic is the heterogeneous and
architecture-neutral of the computing platform. Therefore, one of the key ideas is
that a Web service’s implementation and deployment platform are not relevant to the
application that is invoking the service (Alonso et al., 2004).

A refined definition is supplied by the World Wide Web Consortium (W3C)
in (W3C, 2004): A Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP-messages, typ-

8 2. Preliminary Concepts

ically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.

A Web service is a collection of protocols and standards used for exchanging data
between applications. Software applications written in various programming lan-
guages and running on various platforms can use Web Services to exchange data over
computer networks like the Internet, in a manner similar to inter-process communi-
cation on a single computer. This interoperability is due to the use of open standards
such as the following and others:

• Simple Object Access Protocol (SOAP) (W3C, 2007) is a W3C specifi-
cation describing a way to use XML and HTTP to create information delivery
and remote procedure mechanisms. It is a lightweight protocol for the exchange
of information decentralized, distributed environment; therefore, it is a speci-
fication that defines a uniform way of passing XML-encoded data. Examples
of transport protocols that may be used are HTTP, SMTP, FTP or POP3.
Currently, the most used is HTTP over port 80, originally reserved by Web
browsers.

• Web Service Description Language (WSDL) (W3C, 2001) is an XML
format for describing network services as a set of endpoint operating on messages
containing either document-oriented or procedure-oriented information. WSDL
is used to describe what services does, where they resides and how to invoke
them.

• Universal Description Discovery and Integration (UDDI) (OASIS,
2005) specifications define a way to publish and discover information about
Web Services. It consists of several related documents and an XML schema
that defines a SOAP-based programming protocol for registering and discover-
ing Web Services. UDDI is a framework for Web Services integration. From
a performance perspective, the discovery process involves the time to look up
the service in the Web Services directory using UDDI. It is possible to assume
a more simplistic approach, where the client has prior knowledge of the service
addressed.

In our work, we focus on the performance issues of industrial cases based on UCH
and SOA with web services, cfr. Chapters 3 and 5.

Mobile Agent Architecture

In the traditional client/server architecture, a server at a certain computer offers a
set of services to interested parties. Then, three steps take place:

1. a client located at another computer requests the execution of a service by
interacting with the server,

2. the server performs the requested service,

3. the server returns the result to the client.

2.1. Software Architectures 9

As opposed to this classical approach, a mobile agent (Milojičić et al., 1999) is
a software component that can move autonomously among computers, and so it can
decide itself when and where to move in order to perform its tasks.

Thanks to their mobility, mobile agents offer a range of unique advantages, such as
autonomy, flexibility, and effective usage of network bandwidth (Lange and Oshima,
1999). For example, in a distributed information system a mobile agent can travel
where the data are stored and process them locally, avoiding the need to communicate
all the data over the network. Furthermore, in certain contexts they also exhibit a
good performance compared with the traditional client/server approach (Spyrou et al.,
2004; Mena et al., 2002).

We analyse SPRINGS, a mobile agent-based architecture, from performance per-
spective in Chapter 3.

2.1.2 Architecture Assessment

In the 24765:2010 Standard for Vocabulary of Systems and software engineer-
ing (ISO/IEC/IEEE, 2010), software quality is defined as the degree to which a
system, a component, or a process meets specified requirements.

Architecture assessment is an activity of the architecting process that is tar-
geted to evaluate the degree of fulfillment of quality, or non-functional require-
ments (Del Rosso, 2006).

Although there is a lack of consensus about the meaning and of non functional
requirements or properties (NFP), as pointed out some authors (Glinz, 2007; Chung
and Prado Leite, 2009), along this work, we follow the simple, but in our opinion very
concise, definition proposed in (Espinoza et al., 2005): Functional properties describe
what a system model does, and non-functional properties how it does it. Hence, non-
functional requirements mostly define the overall attributes of the “resulting” system.
The 29148:2011 Standard for Requirements engineering of Systems and software en-
gineering (ISO/IEC/IEEE, 2011) enumerates a lists of 13 non-functional properties,
among them: safety, security, usability, reliability and performance requirements.

The 25010:2011 Standard for System and software quality models of Systems and
software engineering (ISO/IEC, 2011b) denotes performance as a quality attribute
that meets the functionality of the system with timeless and correctness. It defines
also performance as efficiency that requires two main factors: time behaviour and
resource efficiency. These factors usually address common performance metrics such
as response time, throughput and utilization.

Software performance assessment aims to evaluate and refine software architec-
tures with respect of performance objectives as early as possible in the system de-
velopment life-cycle. Thus, performance objectives include performance metrics with
specific threshold.

In this dissertation, we propose a scenario-based software architecture assessment
that aims to meet performance objectives and is carried out using principles and
techniques of the Software Performance Engineering (SPE) field, which are described
in the following sections.

10 2. Preliminary Concepts

2.2 The Unified Modeling Language

The UML, defined by the Object Management Group (OMG, 2011b), is a semi formal
general-purpose visual modeling language that is designed to specify, visualize, con-
struct and document the artifacts of software systems (Rumbaugh et al., 1999; Fowler,
2000). UML offers a standard way to write a system’s blueprints, including conceptual
things such as business processes and system functions, as well as concrete things such
as programming language statements, database schemas, and reusable software com-
ponents (Rumbaugh et al., 1999). UML has been formally published as the standard
19505-1:2012 by the International Standard Organization (ISO/IEC, 2012).

2.2.1 UML Diagrams

UML defines thirteen types of diagrams, divided into three categories: Six dia-
gram types represent static application structure; three represent general types of
behaviour; and four represent different aspects of interactions.

• Structural Diagrams. Structure (or static) diagrams are intended to model
the static structure (logical and architectural) of the objects in a system. That
is, they depict those elements in a specification that are irrespective of time.
They include the Class Diagram, Object Diagram, Component Diagram, Com-
posite Structure Diagram, Package Diagram, and Deployment Diagram.

• Behaviour Diagrams Behaviour diagrams show the dynamic behaviour of
the objects in a system, including their methods, activities, and state histories.
The dynamic behaviour of a system can be described as a series of changes
to the system over time. They include the Use Case Diagram (used by some
methodologies during requirements gathering), Activity Diagram, and State
Machine Diagram.

• Interaction Diagrams Interaction diagrams are all derived from the more gen-
eral Behaviour Diagram. They include the Sequence Diagram, Communication
Diagram, Timing Diagram, and Interaction Overview Diagram.

In the following paragraphs, we outline the diagrams used for our work. For a
more extended description, see the specification (OMG, 2011b).

UML Deployment Diagram

A UML Deployment Diagram (DD) depicts a static view of the execution architecture
of a system that represents the allocation (deployment) of software artifacts to de-
ployment nodes. It identifies the system software components as well as the hardware
nodes in which the former are deployed and their relationships. Nodes (drawn as
cubes) represent either hardware devices or software execution environments. Soft-
ware components (represented as a rectangle and associated to a node through an
arrow labelled deploy) represent the software that is installed. The relationships

2.2. The Unified Modeling Language 11

(drawn as lines) represent the middleware or the network used to connect the ma-
chines to one another.

Use Case Diagrams

A UML Use Case Diagram (UC) is used to model user (called actor) or system
interactions in a horizontal way. They defines behaviour, requirements and constraints
in the form of scripts or scenarios. UCs do not only represent details of individual
features of a system, but they show all of its available functionality. A UC can extend
another UC when the former is a special case behaviour of the latter. An actor does
not necessarily represent a specific physical entity but merely a particular facet or
role. An actor is represented by a “stick man” with its name.

UML Activity Diagrams

A UML Activity Diagram (AD) emphasizes the sequence of activities and conditions
for coordinating lower-level behaviours of an object. Therefore, it shows the work
flow from a start point to the finish point detailing the many decision paths that exist
in the progression of events contained in the activity.

State Machine Diagrams

A UML State Machine Diagram (SM) depicts the various states that an object may
be in and the transitions between those states. A state represents a stage in the
behaviour pattern of an object. An initial state is the one that an object is in when
it is first created, whereas a final state is one in which no transitions lead out of.

UML Sequence Diagrams

A UML Sequence Diagram (SD) is used primarily to show the interactions between
objects in the sequential order that those interactions occur. It is used to model usage
scenarios with respect to a timeline.

Interaction Overview Diagrams

A UML Interaction Overview Diagram (IOD) constitutes a high-level structuring
mechanism that is used to compose scenarios through sequence, iteration, concurrency
or choice. IODs are a special and restricted kind of ADs where the activity nodes are
interactions or interaction uses and the activity edges denote control flow only.

2.2.2 SPT/MARTE Profiles

UML is enriched with Profiles, i.e., tailored subsets of the UML metamodel for specific
purposes, such as safety (de Miguel et al., 2008), dependability (Bernardi et al., 2012)
or fault-tolerant systems (OMG, 2008). The field of real-time embedded software
systems is one such domain for which extensions to UML are required to provide more

12 2. Preliminary Concepts

precise expression of domain specific phenomena (e.g., mutual exclusion mechanisms,
concurrency, deadlines, and the like). The OMG had already issued a UML profile
for this purpose, called the UML profile for Schedulability, Performance and Time
(SPT), (OMG, 2005), Since SPT is based on UML 1.4, when UML 2.0 was adopted,
it became necessary to upgrade the SPT profile to new one, named MARTE (Modeling
and Analysis of Real-Time and Embedded systems) (OMG, 2011a). MARTE is also
compliant with the UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QoS & FT) (OMG, 2008), developed by de Miguel
(2003), in order to define Quality of Service (QoS) properties and requirements. The
content of this section is taken from (OMG, 2005, 2011a).

MARTE builds on previous UML profiles and consists of a set of sub-profiles ded-
icated for different aspects, globally divided into foundations, design, analysis and
annexes. The foundation part defines general concepts such as non-functional prop-
erties and time. The modeling part contains concepts that are useful for modeling,
e.g. the component model and high level application modeling concepts dealing for
instance with time properties of service invocations. The modeling part also contains
for instance the possibility to characterize the properties of hardware resource like for
example bandwidth/jitter of busses. In the context of components, it is a useful to an-
notate target platforms (deployment) with these properties in order to enable timing
analysis. The annex of MARTE standardizes common non-functional characteristics,
for instance durations, frequencies or arrival patterns.

Since, MARTE introduces the notion of time as annotations in the UML diagrams,
it is the most comprehensive proposal for performance assessment using UML.

Key features of MARTE are the Non Functional Properties (NFP) framework and
the Value Specification Language (VSL). NFP framework is used to define data-types
characterized by several properties: measurements by means of magnitude and unit
(e.g. energy, data size and duration); and qualifiers, such as value source, statistical
measure and value precision. VSL is an expression language which VSL aims at the
specification of NFPs, say performance, dependability and security. VSL specifies
mathematical expressions (such as arithmetic and logical), time expressions (delays,
periods, triggers conditions and so on) and variables, i.e., placeholders for unknown
parameters.

Since the present work spanned a long period of time, we use in an interchange-
ably way a subset of SPT and MARTE profiles to address performance aspects in
software designs. In addition, we partly automate the translation process from UML
diagrams to GSPNs using ArgoSPE, an ArgoUML plugin, see a detailed description
in Chapter 6. Performance annotations supported by ArgoSPE are not in MARTE,
but in SPT profile format.

2.3 Software Performance Engineering

Architectural decisions are among the earliest made in a software project, as Williams
and Smith (2002) point out. Early performance assessment for system architecture is
highly desirable to prevent underperformance during system deployment. Neverthe-

2.3. Software Performance Engineering 13

less, performance evaluation of software systems has been traditionally accomplished
after deployment. This is the well-known fix-it later approach and it has well-known
problems (Smith, 1990). For example, the cost of re-architecting, re-implementing
and re-deploying the system when performance goals are not fulfilled. Also the over-
budget for being out of schedule as Woodside et al. (2007) described.

Software Performance Engineering (SPE) was introduced by Smith in 1981 as a
systematic, quantitative approach to constructing software systems that meet perfor-
mance objectives.

Smith (1990) refined the latter SPE definition as a research field that tries to
use quantitative methods and performance models in order to assess the performance
effects of different design and implementation alternatives during the development of
a system. SPE promotes the integration of performance analysis into the software
development process from its earliest life-cycle stages, in order to assure that the
system will meet its performance objectives.

Therefore, SPE represents the entire collection of software engineering activities
and related analyses used throughout the software development cycle, which are di-
rected to meeting performance requirements (Woodside et al., 2007). As Smith (1990)
pointed out, SPE augments others software engineering methodologies; it does not
replace them.

2.3.1 Performance Scenarios and Objectives

Performance scenarios are those Use Cases of a software system that are executed
frequently or are critical to the user’s perception of performance (Williams and Smith,
2002). Each performance scenario corresponds to a workload.

A workload is the collection of request made by the users of the system. The
workload intensity is a measure of the number of request made by a workload in a
given time interval Smith and Williams (2000), i.e., it specifies the level of usage of a
scenario. Workloads can be classified in closed, open or partly open.

Performance objectives specify quantitative criteria for evaluating the performance
characteristics of performance scenarios in the system (Smith and Williams, 2002b).
Thus, performance objectives not only include performance metrics with specific
threshold; it is typically a set of numbers describing a combination of the input-
processing-output for a particular situation in a performance scenario.

Performance objectives can be expressed in several different ways, including re-
sponse time, throughput or constrains on resource usage (Smith, 1990). Jain (1991)
defines these performance indices as follows:

• Response time is the time interval between a user request of a service and the
response time of the system

• Throughput of a system is the number of requests that can be processed in some
specified time interval. It is defined as a rate and is measured in request per
time.

14 2. Preliminary Concepts

• Utilization is the ratio of busy time of a resource and the total elapsed time of
measurement period.

Taking these quantitative measures, two important dimensions to software perfor-
mance timeless are introduced by Smith (1990):

• Responsiveness is the ability of a system to meet its objectives for response time
or throughput.

• Scalability is the ability of a system to continue to meet its response time or
throughput objectives as the demand for the software functions increases.

This dissertation proposes a scenario-based performance assessment methodology
for software architectures to meet performance objectives.

2.3.2 Performance Models

Performance models are formal models that help to obtain measures of interest (e.g.,
system response time) by analysis or simulation. They describe the system behaviour,
expressed as scenarios which are realizations of Use Cases, and have the special ca-
pability of predicting some of its properties before it is built.

Performance models can be created from scenarios, which denotes a realizations
of Use Cases that are frequently executed; or from objects and components, which
interact between them and modify the complete system behaviour.

There are different kinds of performance formalisms widely accepted in SPE. In
the following paragraphs they are briefly introduced.

Queueing Network Queueing Network (QN) was introduced by Lazowska et al.
(1984) and it models a system as a network of queues. A network of queues consists
of a set of queues, named stations. Each station consist of a queue and one or more
resources, called servers (either single-server, multiple-server, or infinitive-server). En-
tities called customers or jobs generated by an external arrival process join the queue
to receive service at one of the servers.

Extended Queueing Network Extended Queueing Network (EQN) (Cortellessa
and Mirandola, 2002) inherits all components of queuing networks, i.e., sources where
jobs enter the network, sinks where jobs leave the network, active queues consisting
of a number of servers in which jobs are served and waiting areas where jobs wait for
service, and finally interconnections between those network elements. Additionally,
passive queues are introduced. A passive queue consists of one token pool and a num-
ber of network nodes assigned to this token pool. Passive queues allow for simulation
of simultaneous resource possession and resource consumption.

2.3. Software Performance Engineering 15

Layered Queueing Network Layered Queueing Network (LQN) is an extension
of QN model (Petriu and Woodside, 2002; Petriu and Shen, 2002). A LQN model
is an acyclic graph, with nodes representing software entities and hardware devices
(both known as tasks), and arcs denoting service requests. The software entities are
drawn as rectangles with thick lines, and the hardware devices as ellipses. The nodes
with outgoing but no incoming arcs play the role of clients, the intermediate nodes
with both incoming and outgoing arcs are usually software servers and the leaf nodes
are hardware servers (such as processors, I/O devices, communication network, etc.)
A software or hardware server node can be either a single-server or a multi-server.

Stochastic Process Algebra In the process algebra approach systems are mod-
elled as collections of entities, called agents, which execute atomic actions. These
actions are the building blocks of the language and they are used to describe sequen-
tial behaviours which may run concurrently, and synchronisations or communications
between them. Stochastic Process Algebra (SPA) in (Clark et al., 2007) extends
process algebra by associating a random variable, representing duration, with every
action (Hermanns et al., 2002). Performance Evaluation Process Algebra (PEPA)
extends classical process algebras by introducing probabilistic branching and timing
of transitions (Gilmore and Hillston, 1994).

Simulation Models Simulation models establish a correspondence between the
system behaviours in a simulation model in order to obtain performance mea-
sures (Banks et al., 2009), i.e., the simulation model is used to derive a simulation
program.

Stochastic Petri Net Stochastic Petri net (SPN), or similar token-based state
model, is outlined in Section 2.4.3. We concretely use generalized SPN (GSPN)
developed by Ajmone Marsan et al. (1995). Some of the reasons for using GSPNs
were: their capacity to represent routing rates, competition for shared resources,
stochastic duration of the host demands, parallel executions and forks and joins.

Performance Models from UML Diagrams

There exist SPE methodologies that translate performance-annotated UML models
into the formalisms above mentioned. For example, the work in (Petriu and Wood-
side, 2002) to obtain queuing networks, the work in (Tribastone and Gilmore, 2008)
to obtain process algebras, the work in (Balsamo and Marzolla, 2003a) to obtain sim-
ulation models or (Bernardi and Merseguer, 2007; Distefano et al., 2011) to obtain
Petri nets.

Some of these methodologies have associated tools that automate the translation
process. Concretely, we use ArgoSPE, detailed in Chapter 6, which converts UML
diagrams into GSPNs. We translate each critical performance scenario and obtain
the corresponding structure of a GSPN. Nevertheless, the translation, although au-
tomatic, require some additional effort as shown in Chapter 5.

16 2. Preliminary Concepts

2.3.3 SPE Process

SPE, as Schmietendorf and Scholz (2001) pointed out, reuses and enlarges concepts
and methods from many others disciplines such as: Performance management, perfor-
mance modeling, software engineering, capacity planning, performance tunning and
software quality assurance.

In this work, we emphasize the use of the SPE in the early phases of the life-
cycle effectively avoiding the “fix-it later” approach, as well as in (Smith, 1990),
that proposes evaluating performance of software systems in the early stages of the
development process. Thus, if performance problems are detected, it will be easier
and less expensive to take the appropriate design decisions to solve them. Although
our proposal focuses only in these uses of the SPE, in our opinion the use of good SPE
practices must be extended along the complete development process, then facilitating
to meet performance objectives in each stage. In this way the best choices of software
architecture, design and implementation can be considered.

The SPE process that appears in Figure 2.1 was formerly proposed by Smith
(1990) and still remains as reference for a very general proposal to establish the basic
steps that a methodology based on SPE principles should consider.

Firstly, it must be defined which goals or quantitative values are of interest, ob-
viously it changes from one stage of the software life cycle to other and also among
different kind of systems. Business systems define performance objectives in terms of
responsiveness as seen by the system users while reactive systems take into account
event responses or throughput. The concept for the life cycle product also depends
on the stage of the life cycle and it refers to the software architecture, the design, the
algorithms, the code and so on. Responsive architectures and designs are conceived
by applying SPE principles, patterns and antipatterns. Subsequently, data gathering
is accomplished by defining the proper scenarios interpreting how the system will
be typically used and its possible deviations (defining upper and lower bounds when
uncertainties). The construction and evaluation of the performance model associated
with the system is one of the fundamentals in SPE. Later in this section we explore
common types of performance models proposed in the literature.

SPE relies on models to forecast the performance of the proposed software. Never-
theless, due to the fact of the multiplicity of performance models, the interoperability
among them is sometimes difficult.

Performance by Unified Model Analysis

Performance by Unified Model Analysis (PUMA) approach tries to bridge the
gap between design models and performance models in terms of performance at-
tributes (Woodside et al., 2005; Petriu et al., 2012; Woodside et al., 2013). It is a
methodology for the performance evaluation of software systems. PUMA was designed
as a framework to obtain different kinds of performance models (queuing networks,
layered queuing networks, Petri nets, among others), as targets, from different kind
of design models (first and foremost UML diagrams), as sources.

PUMA uses a common intermediate performance model, called Core Scenario

2.3. Software Performance Engineering 17

FORK

Verifica!on &
Valida!on

Create concept for
lifecycle product

Gather data

appropriate model
Construct & evaluate

Report results

Alterna!ves
preferable?

Define SPE assessments
for lifecycle phase

Complete lifecycle
product

JOIN

phase
Enter next

Modify lifecycle
concept

Revise performance
goalInfeasible

Feasible

Aceptable

performance

Figure 2.1: Software Performance Engineering Process taken from Smith (1990).

18 2. Preliminary Concepts

Model (CSM), as a bridge among sources and targets, then smartly solving the prob-
lem of translating N sources into M targets (Petriu and Woodside, 2007). Figure 2.2
summarizes the PUMA methodology.

Extract CSM
from this

specifica�on
(S2C)

Core
Scenario
Model
(CSM)

Some type of
performance

model

Any
specifica�on

with
performance
annota�ons

Convert CSM
some performance

model language
(C2P)

Explore
solu�on

space

Designer
/analyst

Performance
results and design

advice

Figure 2.2: Architecture of the PUMA toolset taken from Woodside et al. (2005, 2013).

The CSM is based on the domain model of the UML-SPT profile. CSM is focused
on describing performance scenarios. A scenario is a sequence of Steps, linked by
Connectors that include sequence, branch/merge, fork/join and Start and an End
points, where it begins and finishes. A step is a sequential piece of execution. A start
connector is associated with a Workload, which defines arrivals and customers, and
may be open or closed. There exist two kinds of Resources: Active, which execute
steps, and Passive, which are acquired and released during scenarios by special Re-
sAcquire and ResRelease steps. Steps are executed by (software) Components which
are passive resources. A primitive step has a single host processor, which is connected
through its component.

Regarding automation, it is worth noticing that PUMA offers tools to translate a
UML-SPT annotated model into CSM models (Petriu and Woodside, 2007), and also
a tool to translate from CSM models into GSPN (CSM2PN, 2013).

In the first stages of our work, we use PUMA as starting point to analyse how
to evaluate performance of complex distributed architectures in order to develop an
assessment methodology, and we start addressing some simple samples.

2.4. Petri Nets 19

2.4 Petri Nets

Petri nets (PN) are a graphical tool for the formal description of the flow activities in
complex systems. They are particularly suited to represent in a natural way logical
interactions among parts or activities in a system. Typical situations that can be
modelled by PN are synchronisation, sequentiality, concurrency and conflict.

The theory of Petri nets originated from doctoral thesis of C.A. Petri in 1962.
From then, several authors have enriched the basic model with temporal interpreta-
tion for the quantitative analysis of performance and reliability of systems. The time
variables associated to Timed Petri net (TPN) can be either deterministic or random
variables, leading to the class of models called Stochastic Petri Nets (SPN). Gener-
alized Stochastic Petri Nets (GSPN) extend TPN to include immediate transitions
used to model conflicts with specific routing rates.

In this section, we briefly outline some basic concepts and definitions concerning
Petri nets. For a more extended introduction, we invite to see (Peterson, 1981; Silva,
1985; Murata, 1989; Vernadat et al., 1993).

2.4.1 Nets and Net Systems

A Petri net model of a dynamic system consist of:

• a net structure: a bipartite directed graph, that represents the static part of the
system.

• a marking : representing a distributed overall state on the structure.

According to the definitions and annotations proposed by Murata (1989), a Petri
net (PN) is characterized as a four-tuple mathcalN = (P, T,Pre,Post), where:

P = {p1, p2, ..., pnp} is the set of np places and is drawn as circles in the graphical
representation;

T = {t1, t2, ..., tnt} is the set of nt transitions and is drawn as bars;

Pre is the |P |×|T | sized, natural valued, pre-incidence matrix or input function. It
is represented by arcs directed from places to transitions;

Post is the |P |×|T | sized, natural valued, post-incidence matrix or output function.
It is represented by arcs directed from transitions to places.

For instance, Post[p, t] = w means that there is an arc from t to p with multiplicity
w. When all weights are one, the PN is ordinary. A PN is said to be pure if it has
no self-loops. This kind of PN is characterized by the single incidence matrix of the
net C = Post − Pre. For pre- and postsets of a transition we use the conventional
dot notation, that can be extended to set of nodes, •t = {p ∈ P : Pre[p, t] ≥ 1}.

The state of a PN is distributed and is defined by the number of tokens (drawn
as dots) in each place. A net system of marking Petri net, S, is a Petri net N with
a initial marking M0 = {m1,m2, ...,mnp}. M0 is a |P | sized, natural valued, vector.

20 2. Preliminary Concepts

The generic entry mi is the number of tokens in place pi in marking M0. The number
of tokens at a place represents the local state of that place.

The structure of a net is something static. The dynamic of a PN is obtained by
moving the tokens in the places by means of the following execution rules, informally
named token game:

• A transition is enabled in a given marking M if all its input places carry at least
one token, i.e., M iff M ≥ Pre[P, t].

• An enabled transition fires by removing one token per arc from each input
place and adding one token per arc to each output place. Its firing, denoted by

M
t→M′, yields a new marking M′ = M+C[P, t].

Given an initial marking M0, the reachability set denoted as RS(N ,M0) is the set
of all reachable markings that can be obtained by repeated application of the above
rules. An occurrence sequence from M is a sequence of transitions σ = t1 . . . tk . . .

such that M
t1→M1 . . .Mk−1

tk→ Given σ such that M
σ→M′, and denoting by

σ the |T | sized firing count vector of σ, then M′ = M +C · σ is known as the state
equation of N .

If N ′ is the subnet of N , defined by P ′ ⊆ P and T ′ ⊆ T , then Pre′ = Pre[P ′, T ′],
Post′ = Post[P ′, T ′] and M′

0 = M0[P
′]. Subnets defined by a subset of places

(transitions), with all their adjacent transitions (places), are called P- (T-) subnets.

2.4.2 Stochastic Petri Nets

PN models originally include no notion of time. This concept was intentionally
avoided by Petri 1962, because of the effect that timing may have on the behaviour
of PNs. The association of timing constraints with the activities represented in PN
models or systems may prevent certain transitions from firing, thus destroying the
important assumption that all possible behaviours of a real system are represented
by the structure of the PN.

A variety of time mechanisms have been proposed in the literature. Influenced
by the specific application fields, the distinguishing features of the time mechanisms
are whether the duration of the events is modelled by deterministic variables or ran-
dom variables, and whether the time is associated to the PN places (Sifakis, 1979),
transitions (Ramchandani, 1974) or tokens (Merlin and Farber, 1976). In the case
of performance evaluation, based on stochastic process analysis, the time associated
with the PN transitions is an exponentially distributed random delay.

A Stochastic Petri net (SPN) is a PN with a temporal interpretation which permits
to model timing constraints in a system (Molloy, 1982; Natkin, 1980). The activities
of a process are modelled by means of firing rates with transitions. The temporal
interpretation must include conflict resolution policy, associating a routing rates to
each subset of transitions in conflict.

The firing of a transition is an atomic operation. Tokens are removed from its
input places and deposited into its output places with one indivisible operation. A

2.4. Petri Nets 21

firing delay is associated with each transition. This specifies the amount of time that
must elapse before transition can fire.

Formally, a SPN is a pair (S, w) where S is a PN system and w : T → (0,∞)
is a function which associates to each transition a random variable with negative
exponential probability density function (pdf) with w, its random firing time or firing
delay.

A Stochastic Marked Graph (SMG) is a Stochastic Petri net whose underlying
Petri net is a Marked Graph. A Stochastic Process Petri Net (SPPN) system is a
Stochastic Petri net system whose underlying Petri net is a Process Petri net.

By definition, all the places of a SPPN are covered by p-semiflows, and therefore
it is structurally bounded.

There exist different semantics for the firing of transitions, being infinite and finite
server semantics the most frequently used. Given that infinite server semantics is more
general (finite server semantics can be simulated by adding self-loop places), we will
assume that the timed transitions work under infinite server semantics.

The average behaviour of the PN in the limit of time is the existence of a steady
state behaviour. Ergodicity, introduced by Ross (1983), allows to speak about the
average behaviour estimated on the long run of the system, but it is valid only for
very strong assumptions on the probability distribution functions (PDF) defining the
timing of the model (Campos et al., 1991).

The average marking vector, m, in an ergodic Petri net system is defined as (Florin
and Natkin, 1989):

m(p)=AS lim
τ→∞

1

τ

∫ τ

0

m(p)u du

where m(p)u is the marking of place p at time u and the notation =AS means
equal almost surely.

Similarly, the steady state throughput, χ, in an ergodic Petri net is defined
as (Florin and Natkin, 1989):

χ(t)=AS lim
τ→∞

σ(t)τ
τ

where χ(t)τ is the firing count of transition t at time τ .

Markov process that describes the time evolution(Ajmone Marsan et al., 1995) of
these nets is ergodic(Campos et al., 1991), i.e., when the observation period tends to
infinite, the estimated values of average marking and steady state throughput tend
to a certain value, what implies the existence of the above limits.

2.4.3 Generalized Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPN) are a graphical and mathematical modeling
tool for describing concurrent systems (Ajmone Marsan et al., 1995). They extends
SPN which include immediate transitions in order to model conflicts with specific

22 2. Preliminary Concepts

routing rates. They are very useful in practical modeling, without losing, except for
some special cases, the possibility of performing quantitative and qualitative studies.

Formally, a GSPN is a tuple G = (N ,Π,Λ, r), where N is a PN system and the set
of transitions T is partitioned in two subsets Tt and Ti of timed and immediate tran-
sitions, respectively. Timed transitions are depicted as thick white bars, immediate
ones are depicted as thin black bars,

Π is a natural valued, |T | sized, vector that specifies a priority level of each
transition; timed transitions have zero priority, immediate transitions have priority
greater than zero. A transition t ∈ T , enabled in marking M, can fire if no transition
t′ ∈ T : Π[t′] > Π[t] is enabled in M.

Immediate transitions fire in zero time. Instead, the firing of a timed transition is a
random variable, distributed according to a negative exponential probability distribu-
tion function PDF with rate parameter λ (i,e., mean 1

λ). Then Λ is the non negative
real valued, |Tt| sized, vector associated to the transition firing rates (accordingly, the
transition firing delay is the inverse of the corresponding firing rate). The positive
real valued vector r is |Ti| sized, and specifies the weights of the immediate transitions
for probabilistic conflict resolution. A marking of a GSPN is called vanishing if at
least one immediate transition is enabled in the marking and tangible otherwise.

It has been proved that exactly one Continuous-Time Markov Chain (CTMC)
corresponds to a given GSPN under condition only a finite number of transitions can
fire in a finite time with no-zero probability (Ajmone Marsan et al., 1984).

In this work, to obtain performance measures we translate UML diagrams into
GSPNs by means of ArgoSPE, an ArgoUML plugin, crf. Chapter 6, which implements
translation approach proposed by Bernardi et al. (2002); Merseguer (2003); López-
Grao et al. (2004); Bernardi and Merseguer (2007).

2.4.4 Petri Nets Analysis

Performance models can be used to estimate some quantifiable performance measures
in the first stages of the life-cycle to evaluate alternatives for some system param-
eters. With this purpose a performance model can be simulated or analysed, both
approaches have been followed in the examples developed in this work.

Responsiveness and utilization performance measures can be calculated, either
operationally or stochastically, see Campos (1998) for a survey. As an example, it
can be calculated for places, the average steady-state marking; for transitions, the
average steady-state enabling degree, utilization or the throughput.

Traditionally, techniques for the analysis (computation of performance measures
or validation of logical properties) of Petri nets are classified in three complementary
groups (Colom et al., 1998): enumeration, transformation, and structural analysis:

• Enumeration methods are based on the construction of the reachability graph
(coverability graph in case of unbounded models), but they are often difficult
to apply due to their computational complexity, the well-know state explosion
problem.

2.4. Petri Nets 23

• Transformation methods obtain a Petri net from the original one belonging to a
subclass easier to analyse but preserving the properties under study, see (Berth-
elot, 1987).

• Structural analysis techniques are based on the net structure and its initial
marking, they can be divided into two subgroups: Linear programming tech-
niques, based on the state equation and graph based techniques, based on “ad
hoc” reasoning, frequently derived from the firing rule.

A complementary classification of the techniques for the quantitative analysis of
the SPNs based on the quality of the results obtained can be: exact, approximation
and bounds.

• Exact techniques are mainly based on algorithms for the automatic construc-
tion of the infinitesimal generator of the isomorphic Continuous Time Markov
Chain (CTMC). Refer to Colom et al. (1998) for numerical solutions of GSPN
systems. In general, these techniques suffer the referred state explosion prob-
lem. In Donatelli and Franceschinis (1996) the model is decomposed for the
exact computation of the steady state distribution of the original model. Oth-
ers techniques based on tensor algebra to obtain exact solutions are proposed
in Campos et al. (1999).

• Approximation techniques do not obtain the exact solution but an approxima-
tion. Some of them substitute the computation of the isomorphic CTMC by
the solution of smaller components (Campos et al., 1994). In Pérez-Jiménez
(2002) techniques based on divide and conquer strategies are presented for the
approximated computation of the throughput.

• Finally, bounds are techniques that offer the further results from the reality.
Nevertheless, they can be useful in the early phases of the software life-cycle.

Performance Analysis of GSPN Models

The analysis of a GSPN model requires the solution of a system of linear equations
comprising as many equations as the number of reachable tangible markings (Aj-
mone Marsan et al., 1984). The steady state solution of the model is obtained by
solving the system of linear equations:

ΠQ = 0∑
M∈RS

Π[M] = 1.

Q is the infinitesimal generator matrix, whose elements outside the main diagonal
are the rates of the exponential distributions associated with the transitions from
state to state, while the elements on the main diagonal make the sum of the elements
of each row equal to zero.

24 2. Preliminary Concepts

Π is the equilibrium probability mass function (pmf) over the reachable markings;
being Π[M] the steady-state probability of a given marking M .

The transient solution of the model is instead obtained solving the set of differential
equations:

dΠ(t)

dt
= QΠ(t)

where Π(t)[M] is the probability of the system being in state M at time t.
Some of the most commonly computed aggregate results obtained from steady-

state distributions over reachable markings are (Ajmone Marsan et al., 1995; Reisig
and Rozenberg, 1998):

• The pmf of the number of tokens at steady-state in a place, say p, can be
obtained by computing the individual probabilities in the pmf as probabilities
of the event “place p contains k tokens”.

• The average number of tokens in a place can be computed from the pmf of
tokens in that place.

• The frequency of the firing of a transition (throughput) can be computed as the
weighted sum of the transition firing rate.

In this dissertation thesis, performance measures are calculated or simulated from
GSPNs obtained by ArgoSPE, an ArgoUML plugin, cfr. Chapter 6. ArgoSPE in-
ternally calls GreatSPN (Chiola et al., 1995) and/or TimeNET (Zimmermann et al.,
2000) to analyse or simulate GSPNs. Both tools are software packages for the model-
ing, validation, and performance evaluation of distributed systems using Petri Nets.
We compute all the measures (response time, utilization and scalability) under steady
state assumption. Steady state means that the system reaches an equilibrium, so,
measures obtained will continue in the future, which is a more general assumption
than transient state. In a GSPN, steady state analysis can be carried out when the
net is cyclical.

2.5 Conclusions

This chapter examines the background for this dissertation. It introduces and formal-
izes a set of terminology and annotations for software architecture concepts, software
performance engineering, UML, including their SPT and MARTE profiles, and some
concepts of Petri nets. These four research fields are the foundations of our work.

Chapter 3

Foundations of the
Methodology

As a step previous to develop the performance assessment methodology described in
Chapter 4, we started addressing some sample applications. The work presented in
this chapter paved the development of the methodology, which is completely estab-
lished in the industrial case study. Applying SPE techniques to different software
technological environments permitted us to detect potential shortcomings and im-
provements in the methodology to assess software architectures.

We started following the SPE principles and applying the Performance by Unified
Model Analysis (PUMA) approach (Woodside et al., 2005, 2013) with GSPNs as
formal method to analyse performance issues in three case studies from different
domains: a Web-based application, named CDSS, a mobile agent tracking approach
called SPRINGS and a gateway oriented architecture for devices controllers, UCH.

CDSS service is recalled from literature (Catley et al., 2004) and we analysed
it in Gómez-Mart́ınez and Merseguer (2006b). Thus, we have studied middleware
performance issues and proposed different technological alternatives and tunning for
determining the optimal system configuration.

Our analysis of SPRINGS, a mobile tracking approach, was presented in Gómez-
Mart́ınez et al. (2007) and allowed us to validate the experimental results previously
obtained by Ilarri et al. (2006), and to evaluate a mobile agents platform in a variety
of hypothetical situations without the burden of real experimentation.

The UCH (Zimmermann and Vanderheiden, 2007) is a realization of the Universal
Remote Console (URC) that acts as a gateway for communicating devices. We anal-
ysed three implementations of UCH from the performance point of view to achieve
the optimal system configuration in Gómez-Mart́ınez and Merseguer (2010).

This chapter is organized as follows. Section 3.1 evaluates performance aspects
of the CDSS software system. Section 3.2 analyses SPRINGS tracking approach for
mobile agents. Then, Section 3.3 studies the performance of the UCH interoperable
architecture. Finally, some conclusions are given in Section 3.4.

25

26 3. Foundations of the Methodology

3.1 CDSS: Web Service Application

A web service is a collection of protocols and standards used for exchanging of XML
messages between applications (Alonso et al., 2004). Unlike other middleware tech-
nologies, web services allow to communicate heterogeneous environments deployed
on the network, offering flexibility and interoperability. This interoperability is due
to the use of open standards such as SOAP (W3C, 2007), Web Service Description
Language (WSDL) (W3C, 2001) and Universal Description Discovery and Integra-
tion (UDDI) (OASIS, 2005). A more extended description of these standards can be
found in Section 2.1.1.

Performance is one of the key aspects and probably the Achilles’ heel of web ser-
vices and in general of services offered over the Internet (Woodside and Menascé,
2006). In this case study, we try to overcome some aspects of this lack by accom-
plishing an in-depth study of different key aspects of web services performance at the
middleware layer: the Simple Object Access Protocol (SOAP) implementations and
the eXtensible Markup Language (XML) parsers.

Our study is based on an interesting performance case study of a web service
developed, also under the SPE principles, in Catley et al. (2004). We rearchitect
this case study following the PUMA approach to get a Generalized Stochastic Petri
Nets (GSPN) (Ajmone Marsan et al., 1995). The GSPN, properly analysed with the
TimeNET tool (Zimmermann et al., 2000), allows us to offer interesting results about
performance middleware key aspects and to contrast them with the results obtained
from pragmatic (non-formal) studies.

In this section, firstly we address key issues concerning performance of web services
at middleware layer. Then, we recall the web service under study and we obtain the
GSPN that models the target system. Such net will be useful to accomplish the study
proposed in this section. Therefore, the impact of SOAP implementations and XML
parsers is studied by means of that formal model. Finally, we revise the state of the
art and places our proposal for study performance of web services in the current scene.

3.1.1 Performance Issues of Web Services

Web service technology has not been developed with performance as a goal. Per-
formance issues affect several aspects: the XML protocols, such as discovering us-
ing UDDI (Menascé and Almeida, 2001), transporting using usually HTTP (Elfwing
et al., 2002), the latency of SOAP implementations (Davis and Parashar, 2002) or
the use of an XML parser (Head et al., 2005). Furthermore, web services can be
provided with dynamic composition of web services, affecting performance in any
way (Chandrasekaran et al., 2003; Menascé, 2004). The software infrastructure is
other significant factor (Liu et al., 2004).

Although all these issues are relevant, we focus on those that being closer to the
middleware layer can be parameterized in a UML design. Among them, SOAP imple-
mentation is one of the key factors that have influence on performance, as previous
studies have shown (Davis and Parashar, 2002; Elfwing et al., 2002; Head et al., 2005).
Therefore, it is important to determine which particular SOAP toolkit can meet the

3.1. CDSS: Web Service Application 27

performance requirements of an application. These studies remark the following top-
ics:

• Serialization is the process to convert an in-memory object into an XML
stream. This includes to pack the XML message in the SOAP envelope and to
build the message which will be sent by the corresponding transport protocol,
mainly HTTP (Head et al., 2005).

• Deserialization converts XML streams in wire-format objects in memory. In
this process two phases must be emphasized: (1) unpacking the SOAP envelope
and (2) parsing and interpreting the XML document. The most widely models
used for parsing are Document Object Model (DOM) (W3C, 2009), Simple API
for XML (SAX) (SAX, 2004) and XML Pull Parser (XPP) (Slominski, 2004).
DOM parsers are suitable for small documents which must be validated and/or
modified. SAX parsers are better for large documents. XPP is optimized when
the XML elements are processed in succession and do not need to be visited
again. The parser process has a great impact in the performance of SOAP
implementation, as previous works have studied (Elfwing et al., 2002; Head
et al., 2005). Note that XML native parsers and those embedded in SOAP
have to be differentiated, since they exhibit different features and performance
characteristics (Sosnoski, 2002; Slominski, 2004).

However, not only these processes affect the performance of a SOAP toolkit, others
such as data structure support, optimizations to handle scientific data or algorithms
implementation and protocols have influence too (Davis and Parashar, 2002; Head
et al., 2005). These topics will not be addressed in this work, since they are out of
scope of the case study which guides it. Other significant factors that may impact in
performance are the service processing time, i.e., the business logic, and the XML file
size (Catley et al., 2004).

The goal is to study the impact of the following aspects in web service perfor-
mance: (G1) XML parsers and (G2) SOAP toolkits. Furthermore, other factors that
may impact in performance will be studied, such as (G3) the sensibility of a web ser-
vice with respect to the document file size exchanged and (G4) the service processing
time. The implementations of XML parsers under consideration are: Xerces (Apache
Software Foundation, 2010a), Xerces2 (Apache Software Foundation, 2010b), Crim-
son (Crimson, 2005) and XML Pull Parser (XPP) from (Slominski, 2004). The SOAP
toolkits considered are AxisJava and .NET, since they are widely used. We have also
included XSUL for its excellent performance for large documents (Slominski, 2004).
In order to study the impact of the previous goals, we recall a performance case
study taken from (Catley et al., 2004), first we summarize it and show its results.
Then, we apply the PUMA approach to obtain a GSPN model from the UML system
description.

28 3. Foundations of the Methodology

3.1.2 CDSS Web Service

Catley et al. proposed in (Catley et al., 2004) “an infrastructure to support artificial
intelligence-based clinical decision systems (CDSSs). The system processes multido-
main medical data in high-risk medical environments in order to reduce medical er-
rors and alert detection systems”. It integrates and accesses CDSSs and distributed
databases from different medical domains in order to predict medical outcomes. These
CDSSs are offered as web-services. The paper models a representative subset of this
infrastructure, which invokes a CDSS as a web service and accesses the patient’s
Electronic Patient Record (EPR).

<<PAresource>>
WSRequestor

<<PAresource>>
WSCoordinator

<<PAresource>>
SOAP1

<<PAresource>>
XML1

<<PAresource>>
CDSS

<<PAresource>>
SOAP2

<<PAresource>>
XML2

<<PAresource>>
EPR

<<PAresource>>
DISK

User

requestWS()

protocolProcessing()

transmitWSRequest()

parseXMLDoc()

processWebService()
retrieveEPR()

validate()

transformXMLDoc()

CDSS_Processing()

parseXMLDoc()

updateEPR()

na ve XML DB Write()

na ve XML DB Read()

WebServiceDone()

determineOutputFormat()
pack()

transmitWSResult()
display()

unpack()

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(60,’ms’)),
PArep=12}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(50,’ms’)),
PArep=8}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.8,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(18.75,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(25,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.7,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(500,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,

(12.5,’ms’))}

<<PAstep>>
{PArespTime=((’req’,’percen le’,100,(10,’s’)),

(’pred’,’percen le’,100,$UserR))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(25,’ms’))}

<<PAclosedLoad>> {PApopula on=$NUsers}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,

(0.03,’ms’)),
PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,

(12.5,’ms’))}

Figure 3.1: UML Sequence Diagram taken from (Catley et al., 2004) describing the CDSS

system invocation process.

3.1. CDSS: Web Service Application 29

Figure 3.1 depicts the SD of such CDSS invocation process, that proposes an initial
system configuration made of one instance per hardware and software resource.

The system parses XML documents using the Xerces parser through a DOM in-
terface. The required response time for 50 users requesting the system should not
exceed 8 seconds.

Catley et al. applied the SPE techniques developed in Petriu and Shen (2002)
to assess the required metric. Then they modeled the system by means of deploy-
ment and UML Sequence Diagrams annotated according to the UML-SPT profile,
cfr. Section 2.2.2, and translated them into an LQN model (Woodside et al., 1995).

This model was solved with the initial configuration, determining that the system
can not meet the performance target, see Figure 3.2(a) where the response time for 50
users is 39.9 seconds. They identified system bottlenecks and proposed a new config-
uration that replicates processors and threads (10 WSCoordinator, 10 CDSS, 3 AppCPU
and a variable number of EPR). Figure 3.2(b) depicts the results of multithreading the
EPR task when the system is executed by 50 concurrent users. They determined that
the target is achieved in this new configuration with 8 threads of EPR.

Number of Users

R
e

sp
o

n
se

 T
im

e
(s

e
c)

0 20 40 60
0

10

20

50

40

30

(a) Ini!al configura!on
Number of EPR threads

R
e

sp
o

n
se

 T
im

e
(s

e
c)

0 5 10 15
0

2

4

6

8

(b) New replicated configura!on

Figure 3.2: Performance results obtained by Catley et al. (2004).

3.1.3 Applying SPE to the CDSS

As mentioned in Section 2.3.3, PUMA was designed as a framework to obtain perfor-
mance models from design models (Woodside et al., 2005, 2013). Therefore, we used
PUMA to obtain a GSPN model from the SD in Figure 3.1, which models the CDSS.
The GSPN model aims for validating the CDSS results obtained in (Catley et al.,
2004) and for dealing with the performance goals previously given.

PUMA offers a translation process to get a Core Scenario Model (CSM) from a
UML SD annotated with UML-SPT. Figures 3.3 and 3.4 depict the resulting CSM for
our target SD. Observe that this CSM is made of two scenarios, the one corresponding
to the CDSS invocation process in Figure 3.3 and the CDSS processing in Figure 3.4.
The CDSS processing scenario comprises the messages from processWebService() to

30 3. Foundations of the Methodology

Start

ResAcq

protocolProcessing

transmitWSRequest

ResAcq

WSControl

ResAcq

unpack

ResRel

ResAcq

parseXMLDoc

ResRel

ResRel

ResAcq

ResAcq

WSControl

determineOutputFormat

ResAcq

pack

ResRel

transmitWSResult

ResRel

ResRel

ResRel

UserP

Processing
Resource

Network
ExtOp

WSCoordinator
Component

WSP

Processing
Resource

SOAP
Component

processWebService

ResRel

End

XML
Component

CDSS
Component

App_CPU

Processing
Resource

Network
ExtOp

ResAcq

WSRequestor
Component

Figure 3.3: Core Scenario Model for the SD of Invocation Scenario.

3.1. CDSS: Web Service Application 31

retrieveEPR

ResAcq

ResAcq

native_XML_DB_Read

ResRel

ResRel

ResAcq

validate

ResRel

ResAcq

transformXMLDOC

ResRel

CDSS_processing

ResAcq

parseXMLDOC

ResRel

updateEPR

ResAcq

ResAcq

native_XML_DB_Write

ResRel

ResRel

ResRel

Start

CDSS
Component

App_CPU

Processing
Resource

ResAcq

EPR
Component

Database
Component

DB_CPU

Processing
Resource

XML_2
Component

End

ResAcq

ResRel

DISK

Passive
Resource

ResAcq

ResRel

Figure 3.4: Core Scenario Model for the SD of Process Scenario.

32 3. Foundations of the Methodology

C
D

S
S

 I
n

v
o

ca
�

o
n

 S
ce

n
a

ri
o

C
D

S
S

 p
ro

ce
ss

 S
ce

n
a

ri
o

p
a

ck

d
e

te
rm

in
e

O
u

tp
u

tF
o

rm
a

t

W
S

In
te

rf
a

ce

W
S

C
o

o
rd

in
a

to
r

W
S

P

tr
a

n
sm

it
W

S
R

e
su

lt

C
D

S
S

S
O

A
P

X
M

L

u
n

p
a

ck

W
S

R
e

q
u

e
st

o
r

tr
a

n
sm

it
W

S
R

e
q

u
e

st

W
S

C
o

n
tr

o
l

p
ro

to
co

lP
ro

ce
ss

in
g

U
se

r

v
a

li
d

a
te

re
tr

ie
v
e

E
P

R

n
a

�
v
e

_
X

M
L_

re
a

d

X
M

L E
P

R

D
IS

K

C
D

S
S

_
p

ro
ce

ss
in

g

tr
a

n
sf

o
rm

X
M

LD
o

c
u

p
d

a
te

E
P

R

n
a

�
v
e

_
X

M
L_

w
ri

te

p
a

rs
e

X
M

LD
o

c

A
p

p
C

P
U

p
a

rs
e

Figure 3.5: CDSS: GSPN representing the whole scenario

3.1. CDSS: Web Service Application 33

WebServiceDone(). The other messages of the SD correspond to the CDSS invocation
process.

The CSMs in Figures 3.3 and 3.4 are translated into a GSPN, see Figure 3.5, by
means of a extraction process developed in (Woodside et al., 2005, 2013). So, each
class of the CSM corresponds with a GSPN pattern. For instance, a step is translated
into a timed transition with an input place, where its delay is the demand attribute
of the step. All of the GSPN patterns are composed until the GSPN representing the
whole scenario is built.

Validation of Results

Performance metrics can be obtained using TimeNET, developed by Zimmermann
et al. (2000) to solve this GSPN by means of simulation techniques. Figure 3.6(a)
and Figure 3.6(b) present the same experiments as Figure 3.2(a) and Figure 3.2(b),
respectively, i.e., the response times for the initial and the new replicated configura-
tion. In Figures 3.6(b) and 3.2(b), the response time for 50 users is stated in 9.23
seconds and 5.4 seconds, respectively. The response times obtained with the GSPN
are greater than those given by the LQN since PNs introduce synchronization in the
model. However, both the order of magnitude and the tendency of the results are
kept.

0

10

20

30

40

50

0 10 20 30 40 50
Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

(a) Ini!al configura!on

0
2
4
6
8

10
12
14

0 5 10 15
Number of EPR threads

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

(b) New replicated configura!on

Figure 3.6: Response times obtained from the GSPN model.

Once it has been verified that the results, obtained by the GSPN, are similar to
those obtained in (Catley et al., 2004) with LQN, the following step is to study, using
this GSPN, the impact of XML parsers and SOAP implementations.

3.1.4 Performance Improvements for the CDSS Web Service

In this section we exploit the CDSS case study to deal with the goals G1, G2, G3
and G4 proposed in Section 3.1.1. The final objective is to extract conclusions about
those key aspects of web service performance from the case study.

34 3. Foundations of the Methodology

Impact of XML Parsers

Since XML parsers affect web service performance (Elfwing et al., 2002; Davis and
Parashar, 2002; Head et al., 2005), we explore different alternatives in order to study
their impact in the CDSS web service.

We realized that some of the CDSS parameters in (Catley et al., 2004) should be
changed for the following considerations:

A Document build time is the time to scan and interpret the XML document (Sos-
noski, 2001), but in Catley et al. (2004) is assigned to the packing operation. In
our experiments, we will assign this value for parsing operations, see Table 3.1.

B Document modify time is the time required to systematically modify the con-
structed document representation (Sosnoski, 2001), but in Catley et al. (2004) is
assigned to the parsing operations. We do not assign this value to an operation,
since we consider that EPR file is not updated.

C Document walk time is the time required to walk the constructed document
representation (Sosnoski, 2001). As Catley et al. (2004), we will assign it to
validate the XML document, see Table 3.1.

D Text generation time is the time required to output document representations
as text XML documents (Sosnoski, 2001). As Catley et al. (2004), we will assign
it to transform the XML document, see Table 3.1.

Table 3.1 gives the new values taken from an updated benchmark (Sosnoski, 2002).
Figure 3.7 depicts the part of the SD that has been changed to consider the new values
in the model.

Table 3.1: Performance parameters for XML operations from Sosnoski (2002)

Operation Parameter Mean Execution Time (ms)

in SD Xerces Xerces2 Crimson XPP

(A) parseXMLDoc() $tp 6.957 2.898 9.856 1.159

(C) validate() $tv ≃0 ≃0 ≃0 ≃0
(D) transformXMLDoc() $tt 1.055 1.231 1.231 0.703

Figure 3.8(a) and (b) depict the response times when the parameters in Table 3.1
are applied. These results can be compared with those in Figure 3.2(a) and (b), as
well as with those in Figure 3.6(a) and (b), being similar in all cases. Therefore, it
does not matter which parser is used.

However, according to Elfwing et al. (2002) and Sosnoski (2002), the response
times for Xerces parsers are worse than the ones obtained for Crimson or XPP parsers.

3.1. CDSS: Web Service Application 35

<<PAresource>>
WSCoordinator

<<PAresource>>
CDSS

<<PAresource>>
XML2

<<PAresource>>
EPR

<<PAresource>>
DISK

retrieveEPR()

validate()

transformXMLDoc()

parseXMLDoc()

updateEPR()
na ve XML DB Write()

na ve XML DB Read()

processWebService()

WebServiceDone()

CDSS_Processing()

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(500,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,($tp,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($",’ms’))}
<<PAstep>>

{PAdemand=(’asmd’,
’mean’,($tv,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(50,’ms’)),PArep=8}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(60,’ms’)), PArep=12}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.8,’ms’))}

A

C

D

Figure 3.7: UML Sequence Diagram with changes in CDSS w.r.t. the original proposal

Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c)

0

10

20

30

40

0 10 20 30 40 50

Xerces DOM
Crimson DOM
Xerces2 DOM
XPP2

(a) Ini!al configura!on

Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0

2

4

6

8

10

12

0 10 20 30 40 50

(b) New replicated configura!on

Figure 3.8: Response times for different XML parsers.

Slightly best results are obtained by XPP. The reason for our results is the small size
of the EPR file, only 5 KBytes. So, in this case, the XML parser significantly does
not affect the performance of the CDSS web service. But in Section 3.1.4 we try to

36 3. Foundations of the Methodology

validate the conclusions in (Elfwing et al., 2002; Sosnoski, 2002) by varying the EPR
file size.

Impact of SOAP Implementations

Currently, several implementations of SOAP are emerging and their performance
differs to a great extent (Davis and Parashar, 2002; Head et al., 2005). Therefore, it
is profitable to determinate what toolkit meets performance objectives in the CDSS
invocation web service.

We guess that in (Catley et al., 2004) the SOAP parameters are taken from (Sos-
noski, 2001), but we consider more appropriate to use specific SOAP benchmark,
taken from (Head et al., 2005). Table 3.2 provides the values of SOAP operations,
(F) deserialization and (G) serialization and the overhead that the SOAP toolkit im-
poses, (E) the latency. Note that they have been calculated assuming that most of
the content of the EPR file are strings. Figure 3.9 depicts the part of the SD changed
to include in the CDSS these new parameters.

Table 3.2: Performance parameters for SOAP toolkits from (Head et al., 2005).

Operation Parameter Mean Execution Time (ms)

in SD AxisJava .NET XSUL

(E) Latency → protocolProcessing() $tl 8.35 3.5 2.435

(F) Deserialization → deserialize() $td 10.476 4.797 3.935

(G) Serialization → serialize() $ts 16.151 4.481 3.706

Figure 3.10(a) shows that all the SOAP toolkits give similar response time for
the CDSS. Only XSUL performs a little better in the replicated configuration, see
Figure 3.10(b). Comparing these results with those in Figure 3.2(a), they are alike.
We guess that as the SOAP message, which contains the EPR file, is small, the time
taken by processing SOAP is negligible with respect to the CDSS processing time. In
Section 3.1.4, we try to verify this affirmation by varying this service processing time.

Impact of the EPR File Size

The previous experiments showed that due to the small size of the EPR file, both
the XML parser and the SOAP implementations have no relevant impact for the
performance of the CDSS web service.

If it would be considered that this file increases in size, the results could be dif-
ferent. Note that the XML-based EPR file is also enveloped in the SOAP mes-
sage, therefore its size affects both XML and SOAP operations. Table 3.3 provides
the new parameters, considering two sizes for the EPR, they are set in SDs of Fig-

3.1. CDSS: Web Service Application 37

<<PAresource>>
WSRequestor

<<PAresource>>
WSCoordinator

<<PAresource>>
SOAP Toolkit

<<PAresource>>
CDSS

User
requestWS()

protocolProcessing()

transmitWSRequest()

processWebService()

WebServiceDone()

determineOutputFormat()

serialize()

transmitWSResult()
display()

deserialize()

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,($tl,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,($td,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($ts,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.7,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAclosedLoad>>
{PApopula!on=$NUsers}

<<PAstep>>
{PArespTime=((’req’,’percen!le’,100,(10,’s’)),

(’pred’,’percen!le’,100,$UserR))}

Figure 3.9: UML Sequence Diagram describing the proposed key performance scenario

with SOAP toolkit

Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0

10

20

30

40

50

0 10 20 30 40 50

(a) Ini!al configura!on

Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0

2

4

6

8

10

0 10 20 30 40 50

AXIS
.NET
XSUL

(b) New replicated configura!on

Figure 3.10: Response times for different SOAP implementations.

38 3. Foundations of the Methodology

ure 3.7 and 3.9. We have taken into account that XPP is the native parser for XSUL
and for Xerces through DOM or SAX interface for AxisJava.

Table 3.3: Performance parameters from Sosnoski (2002) and Head et al. (2005).

Mean Execution Time (ms)

Parameter 100 KBytes 1 MBytes

in SD AxisJava AxisJava

DOM SAX XSUL DOM SAX XSUL

(A) $tp 27.68 10.19 40.79 297.8 78.37 501.56

(C) $tv 1.37 ≃0 0.68 31.34 ≃0 15.67

(D) $tt 11.36 ≃0 26.51 282.13 ≃0 203.76

(E) $tl 8.35 8.35 2.435 8.35 8.35 2.435

(F) $td 44.39 44.39 26.78 917.11 917.11 431.464

(G) $ts 32.00 32.00 35.53 291.82 291.82 265.81

Figures 3.11(a) and 3.11(b) show the response time with the initial configuration
when the EPR file size is 100 KBytes and 1 MBytes, respectively. If we observe the
results when EPR file size is 100 KBytes, these are similar to those when it is only 5
KBytes, see Figure 3.10(a). However, the response time increases meaningfully with
1 MBytes. As Elfwing et al. (2002) expected, comparing the SOAP implementations,
AxisJava through SAX interface outperforms AxisJava through DOM. Surprisingly,
in spite of the good results of XSUL presented in Head et al. (2005) for large sizes,
it performs poorly in this case. It may be due to the time required by XPP to build
the document in memory, as suggested by (Sosnoski, 2002).

Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0

10

20

30

40

0 10 20 30 40 50

AXIS DOM
XSUL
AXIS SAX

Number of Users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0
10
20
30
40
50
60
70

0 10 20 30 40 50

(a) EPR file sized with 100 KBytes. (b) EPR file sized with 1 MBytes.

Figure 3.11: Response time for the CDSS web service when EPR file increases in size.

3.1. CDSS: Web Service Application 39

Impact of the CDSS Processing Time

Once studied the impact of EPR file size, we come back to Section 3.1.4 to verify
if the time required for processing this EPR file (with SOAP and the XML parser)
is irrelevant with respect to the time taken by the CDSS Processing() process. In
order to validate this supposition, the service processing time will be modified. See
the annotation of the CDSS Processing() message self dispatched by the CDSS in
the UML Sequence Diagram depicted in Figure 3.1.

In previous Sections, we guess that XML parser and SOAP toolkits have not
influence in CDSS web service, since XML-based EPR file size is small. Therefore,
the time required for being processed it by SOAP and XML parser is irrelevant with
respect to the time taken by CDSS Processing() process. In order to validate this
supposition, the service processing time is modified.

Figure 3.12(a) depicts the response times for 50 users with the initial configuration
when the CDSS Processing() service time varies from 0.1 to 2.5 seconds and the EPR
file is 5 KBytes; in Figure 3.12(b) the EPR file is 100 KBytes and in Figure 3.12(c),
1 MBytes.

Axis DOM
Axis SAX
XSUL

Time for CDSS process (sec)

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0
20
40
60
80

100
120
140

0,0 0,5 1,0 1,5 2,0 2,5

(a) EPR file sized with 5 KBytes
Time for CDSS process (ms)

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0
20
40
60
80

100
120
140

0,0 0,5 1,0 1,5 2,0 2,5

(b) EPR file sized with 100 KBytes

Time for CDSS process (ms)

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

0
25
50
75

100
125
150
175

0,0 0,5 1,0 1,5 2,0 2,5

(c) EPR file sized with 1 MBytes

Figure 3.12: Response time when CDSS processing time increases.

40 3. Foundations of the Methodology

The response time of the different SOAP implementations and XML parsers fol-
lows the same tendency while sizing EPR file to “small sizes”, 5 KBytes or 100
KBytes. However, when EPR file is 1 MBytes, “big sizes”, and CDSS Processing()

is less than 0.4 seconds, AxisJava through SAX parser performs poorly compared
to AxisJava through DOM and XSUL. But, when service time increases, AxisJava
through SAX parser outperforms them. We guess that XSUL performs better when
the service time is small because it is oriented to slightly processed scientific data.
Similarly, we guess that DOM and SAX outperform XSUL when the processing time
is greater than 0.4 seconds since they are conceived to process generic information
which may be repeatedly accessed.

This experiment shows that the CDSS processing time (CDSS Processing()) and
the EPR file size condition the impact of the XML parser and the SOAP implemen-
tation.

3.1.5 Related Work

Performance is an important aspect of web services. Nevertheless, from the best of
our knowledge, very few papers focus on performance evaluation of web service-based
applications. And a very few of them follow the techniques proposed in the SPE
by Smith and Williams (2002b).

Menascé and Almeida (2001) developed a methodology from we have learnt the
key issues of performance evaluation of web services. While this methodology is
focussed on capacity planning using queuing networks (QN), we aim at its performance
prediction using PN and the UML.

Chandrasekaran et al. (2003) proposed a simulation technique for analyzing per-
formance of composite web services in order to obtain efficient web processes. Menascé
(2004) studies QoS issues of composite web services. Datla and Goševa-Popstojanova
(2005) presented a measurement-based study of performance of e-commerce applica-
tions. They study the impact of web services together with other components on
integrated applications using benchmark techniques. Ng et al. (2004) evaluated di-
verse SOAP implementations by means of benchmarks of a simple service with three
types of message. In contrast to us, they probe that serialization and deserialization
are the primary important bottleneck for this application.

Liu et al. (2004) proposed an approach to predict performance metrics for a
middleware-hosted application using QN models. Although, this work is focussed
on a J2EE application, their modeling approach is suitable to other middleware tech-
nologies, such as CORBA and COM+/.NET.

Verdickt et al. (2005) proposed a Model Driven Architecture (MDA) model trans-
formation for Platform Specific Models (PSM), including middleware performance
details. It is based on SPE and the UML-SPT (OMG, 2005) profile. The transfor-
mation process is made by a tool which generates LQN models.

Gilmore et al. (2005) proposed a UML-based methodology for analyzing security
and performance aspects using PEPA models. This method is implemented in the
Choreographer design platform.

3.1. CDSS: Web Service Application 41

3.1.6 Concluding Remarks on CDSS

Our experiments indicate that the XML parser choice slightly affects web services per-
formance when the XML-based file size is small, whereas the SOAP implementation
influence is even smaller. However, when the EPR file increases in size, the response
times obtained are worst and there exist noticeable differences among XML parsers
and SOAP implementations. These differences intensify when the service processing
time changes.

We can conclude that the impact of the XML parsers and the SOAP implementa-
tions is conditioned by both XML-based file size and service time, i.e., the serialization
and deserialization processes are not bottlenecks for large data applications and large
service times.

42 3. Foundations of the Methodology

3.2 SPRINGS: Mobile Agents Tracking

Mobile agents have arisen as an interesting paradigm to build distributed applications,
due to the unparalleled advantages they offer. However, along with the advantages
they also present new challenges. One of the most relevant is that it is not easy to en-
sure efficient communication among agents that move continually from one computer
to another.

In this section, we analyse the performance of the SPRINGS tracking approach
developed by Ilarri et al. (2006). Our analysis allows us to validate the experimental
results previously obtained by Ilarri et al. (2006), and to evaluate the platform in a
variety of other hypothetical situations without the burden of real experimentation.

The structure of this section is as follows. In Section 3.2.1, we introduce basic as-
pects of mobile agent technology, which is important for this work. In Section 3.2.1,
we describe and model the SPRINGS architecture for tracking mobile agents. In
Section 3.2.2, the latter model is annotated with performance information. In Sec-
tion 3.2.3, the PUMA approach is applied in order to get the performance models
corresponding to the modeled architecture. Section 3.2.4 exploits the performance
models to deal with the proposed analysis goals. Section 3.2.5 revises the related
literature.

3.2.1 Mobile Agent Technology

Mobile agents (Milojičić et al., 1999) have stirred up a lot of interest and research
efforts. They are programs that can autonomously travel from computer to computer,
and present a range of unique advantages, such as autonomy, flexibility, and effective
usage of network bandwidth (Lange and Oshima, 1999). Due to their features, the
use of mobile agent technology is very attractive in wireless (Spyrou et al., 2004),
pervasive, and distributed computing in general.

One of the main challenges in applications based on mobile agents is how to keep
track of the current locations of the agents in order to allow an efficient communication
among them. If the location of an agent cannot be obtained in a short time, the agent
can move to another computer before such location data is used for communication
purposes; this situation may occur indefinitely, leading to livelock problems from the
point of view of the agents that want to communicate with the agent.

The vital importance of designing efficient communication and tracking schemes
for mobile agents have been highlighted in many works, such as (Kastidou et al.,
2003; Aridor and Oshima, 1999). Moreover, according to the experiments in (Ilarri
et al., 2006), this is a key issue to ensure the scalability of a mobile agent platform,
especially in highly dynamic contexts.

Several models for tracking agents are conceivable; thus, the work in (Aridor
and Oshima, 1999) suggests three methods to locate agents (brute force, logging,
and redirection), and in (Milojičić et al., 1998) were proposed four (updating at the
home node, registering, searching, and forwarding). A mobile agent platform, called
SPRINGS (Ilarri et al., 2006) (Scalable PlatfoRm for movING Software) proposes
a new tracking approach; in (Ilarri et al., 2006) has been experimentally shown to

3.2. SPRINGS: Mobile Agents Tracking 43

be highly scalable and how it outperforms other popular platforms, especially in
environments with a high number of mobile agents.

So how can an agent move to another computer and resume its execution there?
Mobile agents need a specific execution environment, which we call context1. Thus,
for an agent to travel to another computer, a context must be available there: an
agent needs a context in the same way that a web page request needs a web server.
Contexts are provided by a specific mobile agent platform (Silva et al., 2001), from
which several alternatives are available, e.g., Aglets (Lange et al., 1997), Grasshop-
per (Bäumer and Magedanz, 1999) or SPRINGS; and provides them with different
services, such as communication and mobility. The two mentioned services are inter-
related. Particularly, mobile agents must be able to communicate among themselves,
via remote method invocation or message passing, even if they move across computers.

Contexts and Regions

The architecture, depicted in Figure 3.13, of an agent platform is usually made of
agents, contexts and regions.

Region 1

Region k

Region n

Agent4 calling a
method of Agent3

Agent1 reques!ng moveTo
from Context1 to Context3

RNS

Updater
Proxy

Updater
Proxy

RNS RNS

Updater
Proxy

NodeRNS k

Proxy
Updater

Agent2

Agent4

Agent6

Context4Context3

Node 4

Agent3
Agent7

Context2

Node 3

NodeRNS 1 NodeRNS n

Agent1

Context1

Agent5

Node 2

Figure 3.13: Architecture for mobile agent platforms.

• Contexts (also called places for example in Grasshopper) are the environment
where agents execute: a computer can host several contexts, each one assigned
to a different communication port and execution process. A context provides

1In the literature of mobile agents, the term place is frequently used instead.

44 3. Foundations of the Methodology

agents with services such as a call routing service irrespective of the target
agents’ locations2, and a transportation service to move to other contexts.

• A region is a set of related contexts. In SPRINGS, for example, the functional-
ity of a region is provided through a remote object called Region Name Server
(RNS), which can be located on any computer in the network. An RNS has sev-
eral functions, such as ensuring the uniqueness of agent/context names, mapping
from context names to context addresses, and assigning tracking responsibilities
to contexts.

Modeling Tracking

A key functionality of a mobile agent platform is to offer a communication service
that allows an agent to communicate with another without the need of knowing its
current location. Most agent platforms use the idea of proxy as an abstraction to
communicate with an agent (if an agent a1 wants to communicate with another agent
a2, it must first obtain a proxy to a2); location transparency means that the proxy
routes the message to its corresponding agent efficiently, wherever it is. SPRINGS
hides the proxies to the programmer and stores them in the contexts3: an agent
can communicate with another one by just specifying the name of the target agent,
without the need of using proxies explicitly.

An agent proxy stores the (remote) reference to that agent: its name and current
context. If the agent moves to another context, the information contained in the proxy
becomes invalid. In SPRINGS, dynamic proxies are considered: when an agent arrives
at a new context, the remote proxies to that agent (i.e., held by other contexts) are
updated to reflect the new agent location. These proxies are updated before resuming
the agent’s execution in order to maximize the probability that another interested
agent succeeds in communicating with it. In each context, a Proxy Updater thread is
in charge of updating the remote proxies to the incoming agents efficiently (see (Ilarri
et al., 2006) for more details).

Regarding agent mobility, two important related concepts are considered:

• Location servers. A location server of an agent a is a context that stores a
dynamic proxy to a because it has been assigned by the RNS to do so.

• Observer contexts. A context c is an observer of a certain agent a when it
is interested in knowing the current location of a, which happens when: 1) a
local agent has communicated recently with a, which means to include a in its
ProxyList, or 2) it is a location server for a. An observer of an agent a always
stores a dynamic proxy to the agent.

Following the concepts given so far, the SD in Figure 3.14 describes the scenario
of how an agent changes its context and how the platform keeps track of it. Firstly,

2Not all the existing platforms feature this property.
3All the agents in a context that want to communicate with another one use a shared proxy that

points to that agent.

3.2. SPRINGS: Mobile Agents Tracking 45

an agent a1 requests to its current context c1 to travel to a new one c2. The origin
context unregistries the agent. Just before traveling, the agent prepares its departure
and when it has finished, the current context sends it to c2. When it arrives, a new
instance a2 of the agent is created; meanwhile the old instance a1 at origin ends
its departure and it is completely removed from the origin context. Assuming that
the agent has successfully arrived, it prepares its arrival and then it is registered.
Afterwards, its proxies have to be updated, so the Proxy Updater thread, embedded
in the Context component, informs all observer contexts of the agent to update its
dynamic proxy. After this, the arrival has finished.

<<PAresource>>
a₁:Agent

<<PAresource>>
c₁:Context

<<PAresource>>
c₂:Context

<<PAresource>>
a₂:Agent

RequestMove₍c₂₎

UnregistryAgent₍a₁₎

preDeparture

SendAgent₍a₁₎

postDeparture
CreateAgent

preArrival

RegistryAgent₍a₂₎

UpdateProxies₍a₂,c₂₎

postArrival

RemoveAgent₍a₁₎
delete

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(3.86,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(13.14’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(20.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(3.86,’ms’))} <<PAstep>>

{PAdemand=(’asmd’,’mean’,(46.3,’ms’)),
PAextOp=(’network’,1,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(43.82,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

Figure 3.14: Annotated UML Sequence Diagram for agents movement in SPRINGS archi-

tecture.

The SD in Figure 3.15 models how agents communicate. Let us assume that an
agent a1 executing on context c1 wants to communicate with another agent a2 on
context c2. If any agent on c1 has recently communicated with a2, a dynamic proxy
to a2 will be locally available (c1 is an observer of a2); in this case, the callAgent will
be directly routed through that proxy, without executing the locationTransparency
fragment. Otherwise, c1 must find a2 in the following way: 1) c1 obtains from its
RNS a location server for a2; 2) c1 obtains a proxy to a2 from that location server
(ls2), which registers c1 as a new observer for a2 (UpdateProxyList task); and 3) the

46 3. Foundations of the Methodology

retrieved proxy is used to route the call to a2, and it is stored by c1 (so the RNS
will not need to be contacted the next time). Information about agents not located
in the region would be requested by the local RNS to other RNS. In that case, the
sequence diagram in Figure 3.15 must be augmented with a lifeline representing the
RNS which knows a location server for the called agent.

sd callTo

<<PAresource>>
a₂:Agent

<<PAresource>>
ls₂:Context

<<PAresource>>
r:RNS

<<PAresource>>
c₁:Context

<<PAresource>>
a₁:Agent

RequestCall₍a₂₎

callAgent

AskLoca$on₍a₂₎

UpdateProxyList₍a₂,proxy₎

FindProxy₍a₂₎

return₍proxy₎

return₍ls₂₎

opt loca$onTransparency

[$prob=0.04]

<<PAstep>>
{PAextOp=(’network’,0.1,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(20,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(32,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.0,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(9.3,’ms’))}
<<PAstep>>

{PAextOp=(’network’,1,’ms’)}

Figure 3.15: Annotated UML Sequence Diagram for agents communication in SPRINGS

architecture.

Finally, the modeling of the physical structure in Figure 3.13 is provided using a
UML Deployment Diagram (DD), see Figure 3.16, which describes resources on the
system connected through a network. The DD depicts the system architecture for
only one region; new regions with their contexts can be incorporated by duplicating
this structure. Since a node may host several contexts and each of them provides
services to a number of agents, there may exist several instances of both agents and
contexts on each node.

3.2.2 System Performance View

In this section, we present the performance view of the proposed mobile agents track-
ing approach. We use the UML-SPT profile (OMG, 2005) to annotate both the
performance metrics, that characterize the goals of our performance analysis, and the

3.2. SPRINGS: Mobile Agents Tracking 47

<<PAhost>>
Node_i Processor

<<PAresource>> Intranet

Agent Context

<<PAhost>>
Node_j Processor

Agent Context

<<PAhost>>
RNS Processor

RNSProxyUpdaterProxyUpdater

<<PApopula!on>>
{PAclosedLoad=$NAgents}

<<PApopula!on>>
{PAclosedLoad=$NContexts}

Figure 3.16: UML Deployment Diagram of the SPRINGS architecture.

performance parameters of the system.

Performance Metrics

The first analysis goal is to validate the analytical results obtained from the UML-
SPT models against those experimentally obtained in (Ilarri et al., 2006). The valid
performance models will be used to determine the platform optimal configuration.
Finally, this configuration will allow to perform a sensitivity analysis, i.e., to study
system response time when the agents size increases or the system is running on slow
networks.

The experiments in (Ilarri et al., 2006) present a configuration composed of a
single region with 5 contexts residing on 5 computers, one of them executing also
the RNS and a variable number of agents ranging from 1 to 1500, each one assigned
to a context thread. The analytical experiments, Section 3.2.4, consider the same
number of agents and regions as in (Ilarri et al., 2006), but a variable number of
context threads running on separate processors, as expressed in the DD annotations,
see Figure 3.16.

The Interaction Overview Diagram (IOD) in Figure 3.17 depicts the performance
scenario, where the analysis goals will be studied. Considering this IOD, an agent
will change its current context (moveTo) and immediately will perform a method
invocation to another agent (callTo). The proposed analysis goals will be studied
using as performance metric the one defined in the IOD, i.e., the scenario response
time.

Performance Parameters

The performance information concerning the actions duration and the messages delay
has been taken from (Ilarri et al., 2006), they correspond to the experiment described
in Section 3.2.2 when only one agent was executing the platform.

The actions are represented by the stereotype <<PAstep>>, where the PAdemand

48 3. Foundations of the Methodology

ref
callTo

ref

moveTo

<<PAstep>>
{PArespTime₌₍’pred’,$RT}

<<PAcontext>>

performance scenario

Figure 3.17: UML Interaction Overview Diagram of the performance scenario in SPRINGS.

tag specifies its corresponding execution or delay time as an exponentially distributed
random variable. Table 3.4 summarizes the mean execution times that have been
annotated along the SDs. By mean execution time we mean that these processing
times have been measured by running the system repeating 50 iterations per agent.
Experiments in (Ilarri et al., 2006) were developed in this way to ensure accuracy in
the experimental tests.

Another parameter that may impact the system performance is the probability of
executing the optional fragment LocationTransparency in Figure 3.15. Values close
to 0 mean that the ProxyList of context c1 owns knowledge enough to solve most of
the RequestCall messages. Then, values close to 1 are supposed to penalize system
performance.

The network is indirectly specified by the PAextOp tagged value, see SendAgent
message in the SD of Figure 3.14. The << PAresource >> stereotype annotated in
the lifeline of each object defines them as software components.

3.2.3 Performance Models

Once, the performance scenario and its performance parameters have been defined,
we apply the PUMA approach to get the performance models where to evaluate the
proposed performance metric.

As mentioned in Section 2.3.3, PUMA (Woodside et al., 2005, 2013) is a framework
that aims at extracting from a design model (UML or Use Case Maps) an interme-
diate model, called CSM (Petriu and Woodside, 2007). We translate the CSM into
Generalized Stochastic Petri Nets (GSPN) (Ajmone Marsan et al., 1995).

3.2. SPRINGS: Mobile Agents Tracking 49

Table 3.4: Mean execution time for system basic operations in SPRINGS.

Operation Mean Execution Time (ms)

preDeparture() 0.10

postDeparture() 0.10

preArrival() 0.10

postArrival() 0.10

CreateAgent() 43.82

RemoveAgent() 3.86

SendAgent() 46.30

RegistryAgent() 13.14

UnregistryAgent() 3.86

UpdateProxies() 20.20

RequestCall() 0.10

CallAgent() 9.30

AskLocation() 20.00

FindProxy() 32.00

UpdateProxyList() 1.00

Building the CSMs

According to PUMA, each SD in the IOD of Figure 3.17 has been translated into a
CSM scenario. So, Figures 3.18 and 3.19 illustrate the CSMs that represent the UML
SDs in Figures 3.14 and 3.15, respectively.

In order to make clear how PUMA proposes to generate the CSMs, a piece of
execution is explained. See the RequestMove message in the SD of Figure 3.14, it is
straightforward to check that it has its corresponding step in the CSM of Figure 3.18.
Furthermore, before executing it, it is necessary to acquire the agent a1 and the
context c1 software components, which run on the CPU Node1.

Each element in a CSM (e.g., steps, components or resources) has attributes
concerning the performance information annotated in the SD. For example, the
RequestMove step has a demand attribute, its value is taken from the <<PAstep>>

annotation in the SD. However, we have not shown these performance attributes in
our CSM scenarios due to lack of space, but they will be used when parameterizing
the performance model.

50 3. Foundations of the Methodology

Network

ExtOp

a Agent

Component

Node CPU

Processing
Resource

 c Context

Component

c Context

Component

a Agent

Component

Start

ResAcq

RequestMove

preDeparture

SendAgent

ResRel

UnregistryAgent

ResAcq

Fork

ResAcq

CreateAgent

ResAcq

preArrival

ResRel

ResRel

postArrival

UpdateProxies

registryAgent

ResRel

End

ResRel

postDeparture

ResRel

ResAcq

removeAgent

End

Node CPU

Processing
Resource

1

1

2

1

2

2

ResAcq

Figure 3.18: Core Scenario Model for moving an agent among contexts in SPRINGS ar-

chitecture.

3.2. SPRINGS: Mobile Agents Tracking 51

a Agent

Component

Node CPU

Processing
Resource

c Context

Component

End

RNS

Component

ResAcq

callAgent

ls Context

Component

ResRel

ResRel

a Agent

Component

ResRel

Node CPU

Processing
Resource

ResRel

ResAcq

AskLocation

FindProxy

UpdateProxyList

ResAcq

ResRel

Start

ResAcq

ResAcq

RequestCall
RNS_CPU

Processing
Resource

Network

ExtOp

1

1

1
2

2

2

Fork

Join

Figure 3.19: Core Scenario Model for agents’ communication in SPRINGS architecture.

52 3. Foundations of the Methodology

Building the Performance Models

The next step is to translate the CSMs into GSPNs following the translation process
given by PUMA. Figures 3.20 and 3.21 depict the GSPNs that represent the CSMs
in Figures 3.18 and 3.19. Just to outline the translation, see the UnregistryAgent
step in the CSM of Figure 3.18, it is mapped into a timed transition, see Figure 3.20,
being its delay defined as the demand attribute of the step. Previously, the agent
a1 and the context c1 have been acquired, see transition t c1 1. Places representing
resources, such as CPUs or software components, are marked with the amount of
tokens specified by the corresponding PAclosedLoad tag.

a1

c1

c2

CPU2

CPU1

t_c1_1

preDeparture

postDeparture

r_a1

t_c1_2

r_CPU1_2

RequestMove

UnregistryAgent

r_c1_1

RemoveAgent

t_a2

CreateAgent

r_c2

UpdateProxies

r_c2_2

preArrival

t_c2_2

postArrival

RegistryAgent

SendAgent

r_CPU2

t_CPU1_1

r_a2

r_CPU1_1

t_CPU1_2

r_c1

t_CPU2t_c2

a2

Figure 3.20: GSPN for agent movement in SPRINGS architecture.

3.2. SPRINGS: Mobile Agents Tracking 53

a1

c1

RNS
a2

ls2

CPU1
CPU_RNS

CPU2

t_c1

RequestCall

acq_RNS

UpdateProxyList

t_ls2

r_CPU_RNSt_a2

rel_a2

rel_c1

rel_ls2

FindProxy

CallAgent

AskLoca�on

first

rest

t_CPU1

r_CPU1

t_CPU2

r_CPU2

t_CPU_RNS

r_RNS

t_CPU2_ls

r_CPU2_ls

Figure 3.21: GSPN for communication between agents in SPRINGS architecture.

54 3. Foundations of the Methodology

Finally, the GSPNs in Figures 3.20 and 3.21 are composed in order to obtain
a performance model, i.e., a new GSPN that models the performance scenario in
Figure 3.17. GSPN composition is based on merging the net places that represent
common elements in the CSMs, such as resources or components.

3.2.4 Performance Analysis

Once the performance model has been built, we use TimeNET (Zimmermann et al.,
2000) to compute the given metric in it by means of simulation techniques.

Validation of the Performance Models

Figure 3.22 depicts the response times given by the experimental test in (Ilarri et al.,
2006) and the performance model. The configuration for each one was described in
Section 3.2.2. As it can be observed, the results are very similar, and in both cases
the response time increases linearly.

0

1

2

3

4

5

6

7

8

1 100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

1500

Number of agents

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

Analy!cal

Experimental

Analy!cal0,16 0,39 0,77 1,15 1,54 1,92 2,32 2,71 3,09 3,46 3,87 4,25 4,63 5,01 5,42 5,77
Experimental0,16 0,53 0,94 1,37 1,81 2,24 2,69 3,13 3,54 4,01 4,58 4,97 5,52 5,89 6,58 7,04

Figure 3.22: System response times of SPRINGS architecture.

In Ilarri et al. (2006), linear scalability was considered acceptable, since the exper-
iments were carried out to test the platform in a stressful scenario for highly mobile
agents (Murphy and Picco, 2002). Moreover, for a platform to support 1500 agents
in such scenario is a real challenge. Mobile agents platforms can get lower response
times when agents do not move and communicate so frequently. In the following we
describe the stressful scenario.

The goal is to make agents stay on a context for a very short time and continually
calling among themselves. To do so, in the experimental configuration described in

3.2. SPRINGS: Mobile Agents Tracking 55

Section 3.2.2, each agent has a communication peer and performs the following steps:
1) calls its peer; 2) moves randomly to another context; and 3) steps 1 and 2 are
repeated without delay until reaching 50 iterations. While the number of agents
increases up to 1500, the performance of agent communication decreases; thus, a
target agent could move to another context before a message reaches it. So, the
scalability of the platform is studied in terms of the time that an agent needs to
perform one entire iteration (callTo + moveTo) as the number of agents increases.

Optimal Configuration and Sensitivity Analysis

Optimal configuration for a platform means to minimize the number of context threads
needed to execute the agents while keeping the response time.

The analytical experiment in Figure 3.22 was very relaxed in this sense and it
considered up to 1500 threads, i.e., a thread per agent.

However, in a new experiment, depicted in Figure 3.23, we drastically reduced
the number of threads, in a range from 50 to only 1, while keeping the rest of the
parameters. The response time grows exponentially with values under 10 threads.

1

1
0

0

2
0

0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0
1

2
0

0
1

3
0

0
1

4
0

0
1

5
0

0

1

1
0

2
0

3
0

4
0

5
0

0

20

40

60

80

100

120

140

160

180

200

220

240

R
e

sp
o

n
se

 !
m

e
 (

se
c)

Number of agents Number o
f th

re
ads

Figure 3.23: Response times when multithreading contexts in SPRINGS architecture.

Finally, Figure 3.24 enlarges Figure 3.23 in the range from 50 to 15 threads. Now,
we can observe that the response times obtained in Figure 3.22 are preserved only for
the range from 50 to 40 threads. Therefore, 40 threads is the optimal configuration

56 3. Foundations of the Methodology

for the agent platform, because values lower than 40 cause response times greater
than 6 sec. with 1500 agents.

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0
1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

R
e

sp
o

n
se

 !
m

e
 (

se
c)

Number of agents

Number o
f th

re
ads

Figure 3.24: Detail of Figure 3.23.

The network speed may also affect the performance of the platform, influencing the
time spent by agents traveling to another context, which is captured by the SendAgent
task.

Using the optimal configuration with 1500 agents and considering that the
SendAgent() message size is 2 KBytes, Figure 3.25 illustrates the system response
time when the delay of the SendAgent() message varies. Be aware that a send delay
of 10 ms corresponds with a network speed of 200 KBytes per second, while 250 ms
corresponds with 8 KBytes per second. The system is sensitive to the network speed;
although from 33 KBytes per second (60 ms), it does not perform better.

3.2.5 Related Work

To the best of our knowledge, there is no other work that analyses the performance of
mobile agent tracking strategies using a model-based approach; an experimental anal-
ysis can be found in (Ilarri et al., 2006). In the following, we study the most relevant
works related with the modeling of mobility with performance analysis purposes.

Currently, there is no standard way for modeling mobility, although different pro-

3.2. SPRINGS: Mobile Agents Tracking 57

0

2

4

6

8

10

12

14

1030507090110130150170190210230250

Sending Time (ms)

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

Figure 3.25: Sensitivity analysis of SPRINGS architecture.

posals exist, some of them based on UML (Baumeister et al., 2003; Balsamo and
Marzolla, 2003b; Grassi et al., 2004; Bracchi et al., 2004), while others such as (Hill-
ston and Ribaudo, 2004) follow some formalism, in this case PEPA nets.

The work in (Baumeister et al., 2003) presents an extension of the UML class,
sequence and UML Activity Diagrams to model mobile systems and performance
and security characteristics, but they do not explain how to get any performance
model or how to compute metrics. In (Grassi et al., 2004), a non-standard UML
profile for modeling mobile systems using activity, deployment and state machine
diagrams is proposed, as well as an extension for collecting performance information
according to the UML-SPT. The models are automatically translated into queueing
networks to analyse performance. Balsamo and Marzolla (2003b) described a UML-
based methodology for modeling and evaluating the performance of mobile systems
using use case, activity and UML Deployment Diagrams augmented with the UML-
SPT. They use simulation techniques to compute metrics.

Bracchi et al. (2004) proposed a framework to model performability for mobile
software systems using use case, sequence, collaboration and deployment diagrams,
from which Stochastic Activity Networks (SANs) are obtained.

Finally, it is worth noticing some works that use Petri nets for mobility and
performance. In (Scarpa et al., 2002), the performance of different communication
paradigms is compared using stochastic Petri nets. Merseguer et al. (2003) compared
the performance of two software retrieval systems applying SPE techniques using
high-level Petri nets.

3.2.6 Concluding Remarks on SPRINGS

In this section we have analysed the performance of the SPRINGS tracking approach.

The most interesting conclusion for the SPE point of view is that it has been

58 3. Foundations of the Methodology

possible to analyse one of the key aspects concerning performance of mobile agent
platforms without tailoring a SPE methodology for this purpose. Therefore, the paper
shows that the PUMA approach is powerful enough to deal with complex performance
problems in the mobile agents software domain. Nevertheless, PUMA method lacks
assessment proposal about performance improvements.

3.3. UCH: Universal Control Hub 59

3.3 UCH: Universal Control Hub

In industrial societies, people massively use electronic devices in everyday life: mobile
phones, TV sets or washing machines are some of several examples. Nevertheless,
their use may became very complicated, and even impossible, to people with special
needs, such as impaired or elderly people. Their user interfaces are not generally
designed considering their needs neither Design for all principles proposed by Newell
(2008).

According to last reports of Eurostat office (2013), the majority of the European
countries own more mobile subscriptions than inhabitants. Internal studies of ONCE4

foundation demonstrate similar trends for people with disabilities. So, the achieve-
ment of moving the proper control of electronic devices to adapted devices (e.g.,
mobile phone) may solve most user interface accessibility issues. Therefore, interop-
erability is critical to realizing the vision of personalized and pluggable user interfaces
for electronic devices and services. An International Standard on pluggable user in-
terfaces has here a key role to play, Universal Remote Console (URC) (ISO/IEC,
2008). Such a standard would facilitate user interfaces that adapt or can be adapted
to user’s personal needs and preferences. It would allow easy to use interfaces that
employ various modalities for input and output.

Limitations in URC advised to develop an architecture called Universal Control
Hub (UCH) (Zimmermann and Vanderheiden, 2007) to make URC practical in real
scenarios. In short, UCH is a URC realization that acts as a gateway for communi-
cating devices. UCH has been implemented, using different languages and technolo-
gies (URC Consortium, 2010c,b), and currently is offering adequate and interoperable
service within environments of a reduced number of users. However, for UCH is not
only interoperability the critical issue, performance is or will be a must when the
amount of plugged devices depletes the infrastructure to the point of exhausting its
resources. This may happen in real scenarios such as intelligent buildings where
hundreds or thousands of users will concurrently access the deployed architecture.
Although UCH and underlying implementations have not been tested in such envi-
ronments, we propose to assess whether UCH can offer quality of service in these
interesting settings. Note that the costs (in budget as well as in technical difficulties)
prevent the architecture from testing in the new proposed environments, then in our
opinion the use of predictive performance models can play a role in this context. Be-
sides, in case of identifying adversities that turn UCH into a non practicable solution,
the testing investment would be a waste in resources. So, the assessment should be
also useful to pinpoint where in the UCH architecture are the problems located, again
predictive models can offer cheaper solutions than real experimentation.

The study of the performance of UCH in future real situations is then a necessity
that we will carry out using the formal model of Petri nets (Ajmone Marsan et al.,
1995) in the context of the PUMA approach (Woodside et al., 2005, 2013).

In the following, the URC-UCH architecture is detailed in order to understand
potential performance problems it may provoke. We analyse UCH and propose a set

4National Organization of blind people in Spain.

60 3. Foundations of the Methodology

of experiments that will allow to compare their results with results obtained from
current real implementations, then they will validate the performance model. From
the validated model, the system will be tested to assess its usefulness for future
necessities above described.

3.3.1 URC-UCH Architecture

The URC is an ISO published as the standard ISO/IEC 24752 in 2008. URC describes
an interoperable architecture with a set of elements that allow users to control one or
various devices by means of a remote console, in a transparent way for them. So, URC,
or remote console, defines a framework of remote access to control devices or services.
It can be designed both, as a dedicated hardware (e.g., a universal remote control),
or as a URC-complaint software to run on specific devices such as personal computer,
PDA or mobile phone. Therefore, it is a device or software architecture (gateway)
through which the user accesses other devices, then being capable of rendering its
user interface. This fact allows to develop adaptable user interfaces, which can satisfy
users with special needs. In the following, the devices or services that the user wants
to control are referred as targets, and the controller may be any user device. For
instance, a blind person can control the washing machine, in this case the target
device, by means of his/her mobile phone (controller device). So, URC allows to
show washing machine functionalities in accessible manner.

ISO/IEC 24752 does not impose how it must be implemented. Besides, it does not
assume a specific network protocol between controller and targets, but only network
requirements. So, a URC interaction could be implemented on top of existing net-
working platforms as long as they support device discovery, control and eventing, such
as UPnP (universal plug and play), Web services and/or HomePlug (IEEE 1901:2010).
Among others, URC defines the following XML documents: Target Description (TD)
and User Interface Implementation Description (UIID). The TD document permits
the remote console to learn how to use the target device, locate its functionalities,
current status, and other interesting information. The main advantage of UIID is
that delivers a generic user interface, so the remote console can implement it under
the most adaptive way to the user (optical, audible, tactile), addressing Design for
All principles (Newell, 2008). Nevertheless, URC presents some issues: lack of de-
vices with URC technology, lack of plugging in several targets and multiplicity of
communication protocols.

The Universal Control Hub (UCH)architecture fixes some of the above mentioned
problems (Zimmermann and Vanderheiden, 2007) . Indeed, UCH is seen as an “open
box” between the target and the controller, acting as gateway between various con-
trollers and various targets, which overcomes communication limitations of URC.
Basically, UCH is a manner to implement URC, that focusses on normalizing how
the Control Hub works. So, UCH defines APIs and interfaces between internal mod-
ules of Control Hub, inheriting the URC XML documents. Figure 3.26 depicts the
components in UCH:

• User Interface Protocol Module (UIPM): is a “pluggable user interface”

3.3. UCH: Universal Control Hub 61

that specifies a protocol between the controller and the Socket Layer via an
API. URC-HTTP protocol is a UIPM specification based on HTTP.

• Socket Layer: is the core part of UCH, hosting the sockets of the targets.

• Target Adaptor (TA): synchronizes one or multiple targets with their sockets
(running in the Socket Layer). TAs can be dynamically loaded at runtime.

• Target Discovery Module (TDM): discovers specific targets, connects to the
Socket Layer via API, and to the targets via any protocol. TDMs can also be
dynamically loaded at runtime.

• UIList: contains a dynamic list of available user interfaces, as given by the
currently loaded UIPMs.

UCH

(Socket

Layer)

IU
P
M
Liste

n
e
r

IT
D
M
Liste

n
e
r

ITA
Liste

n
e
r

UIPM

IU
P
M

p
ro
p
rie

tra
ry

IT
D
M

p
ro
p
rie

tra
ry

IT
D
M

p
ro
p
rie

tra
ry

TDM

ITA

p
ro
p
rie

tra
ry

ITA

p
ro
p
rie

tra
ry

TA
Control

UIList

Controller Target

Control

Discovery

Discovery

UCH

Figure 3.26: Components of UCH architecture taken from (URC Consortium, 2005).

Currently, there are three implementations of UCH, two of them developed under
open source: UCHj (2010c) and UCHe (2010b), and another one under proprietary
software. UCHj is a Java implementation designed for a closed delimited network, such
as an office or home. UCHe is developed in C/C++ for embedded systems. Recently,
a UIPM client for iPhone smart phone has been published (URC Consortium, 2010a),
however this one does not implement UCH core.

These different implementations could seriously affect performance in a scenario
with concurrent users. As URC and UCH are based on exchanging XML messages,
they suggest poor performance, as previous studies have observed (Elfwing et al.,
2002; Davis and Parashar, 2002; Head et al., 2005). Since both UCHj and UCHe im-
plement UIPM on HTTP, then UIPM performance should be also taken into account.
Moreover, dynamic loading of modules (TA, TDM) will impact system performance.
Considering that the Socket Layer is the UCH core module, then it will play a decisive
role from a performance point of view, since it is attending all system requests.

3.3.2 Applying SPE to UCH

UCH and related implementations comprise a complex software for which, as above
described, their performance was considered critical in project. Complexity advised

62 3. Foundations of the Methodology

to carry out the evaluation from different points of view, so to allow comparison, gain
insights on the products and also validate results. Therefore, it was decided that
performance of current implementations should be traced both, experimentally and
within a benchmark approach (Catalán and Catalán, 2010), but also it was pointed
out the interest of an evaluation with formal methods, hence to be able to test the
system not only in its current form but under future variations (mainly concurrent
users).

Design Models

For an initial understanding and in order to determine the interactions that mostly
affect system performance, we start summarizing the necessary steps to control a
target device, see UML Sequence Diagram in Figure 3.27.

In a first step, the UCH core is initialized and then it discovers and registers
connected target devices by means of TDM module. Targets are listed (UIPM) as
accessible devices for users to eventually manage their services. Then UCH waits for
requests from user devices. When a request arises and compatibility is checked, the
UIPM module opens a session and obtains the target devices list and corresponding
services or functionalities which are granted in the form of a list (UIList document),
that is eventually shown in the user interface. Hitherto, the system has performed
two complex processes, discovery and user interface auto-adaptation, that obviously
spend a considerable amount of time and resources. However, we will leave them
out of our performance study since they are executed only once, i.e., they are the
equivalent to start up the system, and all we understand the need for this process
and its implications. So, we assume that from now on, the user is able to control
the target device (i.e., to invoke commands through setValues message), which also
means to modify the device status and variables. Indeed, this is the normal usage
of the system and it repeats as many times as invoked commands (as indicated by
the loop in the diagram), besides, several concurrent users (all those initialized in the
system) will be executing. Then this loop interaction turns to be the performance
critical part of the system.

UML Sequence Diagram in Figure 3.28 models how a user requests a target by
means of setValue() operation, i.e., it details the previous critical loop. Firstly, the
User Device communicates to UCH core by means of UIPM via URC-HTTP protocol.
The Socket Layer module, i.e., UCH core, connects to TA module in order to send a
setValue() request to the Target Device. Once the request is made, the response is
rendered in the User Device in an adaptive way.

The physical structure of the system is necessary to describe the resources where
to allocate the modules of the architecture, as well as their connections through
a network, which obviously will delay the interchange of messages among modules
according to the size of the messages. A UML Deployment Diagram, Figure 3.29, will
help to understand these issues.

3.3. UCH: Universal Control Hub 63

User Device Target DeviceUIPM UCH TATDM

InitServer()

StartDiscover() DiscoverTarget()

TargetDiscovered
TargetDiscovered()

RegisterTarget()

TargetDiscovered()

OpenUserContext()

GetCompa!bleUis()GetCompa!bleUis()

UIListUIList

InitTarget() OpenSessionRequest()
OpenSessionRequest()

SessionID
SessionID

getValues()
getValues()

setValues() setValues() setValues() setValues()

loop

Figure 3.27: UML Sequence Diagram summarizing the target device control process.

64 3. Foundations of the Methodology

org.myurc.webclient urch�p UchServletUchAc�on UCHUrcH�pUIPM SetValuesAc�on TargetListener TA Target Device

User

setValue()
setValue()

createEmptyDoc()

setTextContent()

serverRequest()

message h�p

doGet()

processRequest()

execute()

postRequest()

controllerRequest()

processRequest()

setValuesRequest()

setValuesRequest()
setValuesRequest()

setValuesRequest()
setValue()

sendUpdatedValues()
updateValues()

updateValues()
updateValues()

returnMap

setValueResponseMapsetValueResponseMap

setValueResponseMap

setValueResponseString

setValueResponse

responseDoc
pathValues

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tuipm,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAextOp=(’target’,$target,’ms’)}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PArespTime=(’pred’,$RT)}

<<PAclosedLoad>>
{PApopula�on=$NUsers}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,($�a,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,($tuch,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

Figure 3.28: UML Sequence Diagram describing a key performance scenario: SetValue()

request.

3.3. UCH: Universal Control Hub 65

<<PAhost>>
User Device Processor

<<PAresource>> network

<<PAhost>>
Interop Processor

<<PAhost>>
Target Processor

Target
Device

UIPM

urch!p

UrcH!pUIPM TA

UI Device

org.myurc.webclient

UCH core

TAListener

TDMListener

UchAc"on

UchServlet TDM

<<PApopula"on>>
{PAclosedLoad=$NUsers}

Figure 3.29: UML Deployment Diagram of UCH architecture.

Performance Parameters

Once the design has been carried out, the models of interest (Figures 3.28 and 3.29)
have to be annotated as PUMA proposes, i.e., with performance information according
to the UML-SPT (OMG, 2005). They will help to introduce input parameters and
metrics in the eventual performance model.

Table 3.5: Mean execution time in milliseconds of UCH operations.

Parameter UCHj UCHe

$tuipm 243.05 81.96

$tuch 3.00 1.18

$tta 51.45 1.27

Table 3.5 summarizes this performance information concerning atomic actions
duration collected by experimental tests, which have considered both UCHj and UCHe
implementations. These actions are represented by <<PAstep>> stereotype, where
PAdemand tag specifies its corresponding average execution time as an exponentially
distributed random variable.

66 3. Foundations of the Methodology

Other parameter that may affect system performance is the access to the target
device, which is tagged by the PAextOp value. In the following, let us assume that
this time is negligible, since it is independent of UCH architecture (e.g., the whole
cycle time of a washing machine is very different from a TV set), and obviously we
have to take it as an external and non-controlable part of our system.

The metric to be calculated will be the system response time, it has been annotated
in the UML Sequence Diagram attached to the first message. The workload of the
system is the number of users, annotated in the first life line of the UML Sequence
Diagram. The rest of parameters of interest can also be seen in this diagram.

From the UML-SPT models we obtained the corresponding CSM model, depicted
in Figure 3.30.

Performance Model

The next step in PUMA advises to transform the CSM into a performance model
(GSPN in our case), for which we used the CSM2GSPN translator (CSM2PN, 2013)
then to obtain the GSPN in Figure 3.31. The value of $tuimp in Table 3.5 corre-
sponds to the duration of transition controllerRequest in the GSPN, as indicated
by annotation attached to the same message (controllerRequest) in Figure 3.28.

In the same way, values for GSPN transitions postRequest and
setValuesRequest correspond to variables $tuch and $tta. On the other
hand, setValue, sendUpdateValues and setValueResponse are external oper-
ations whose duration is given by variables $net and $target that were set to
0.01 milliseconds. These values were taken from real experimentation, they are low
because they depend on the network infrastructure that in this case was the corporate
intranet. Finally, transitions createEmptyDoc, setTextContent, serverRequest,

doGet, processRequest, execute and updateValues represent simple operations
or calls, being their execution time around 0.01 milliseconds. The accuracy of the
latter values is imposed by the system clock function.

Resources are indicated with tokens in corresponding places. So, the number of
concurrent users, or system closed workload, is the number of tokens in place users,
then matching to variable $NUsers in the sequence and UML Deployment Diagrams.
Tokens in place p userDevice represent the user device (and its corresponding user
interface) and hence the concurrent threads, while places p uipm, p uch and p ta
represent the UCH modules as resources.

A first glance to the GSPN reveals that the net sequentially executes the activities
once resources are acquired step by step, hence the performance will be hampered by
the number of concurrent users, place users, and alleviated by the number of available
threads, p userDevice, p uipm, p uch and p ta.

Performance Analysis

Once the performance model has been built, we used TimeNET (Zimmermann et al.,
2000) in order to solve the GSPN by means of simulation techniques. Our first

3.3. UCH: Universal Control Hub 67

Target CPU

Processing
Resource

UI

Component

UCH

Component

Interop CPU

Processing
Resource

Start

ResAcq

setValuesUCH

User Device

Processing
Resource

Network

ExtOp

UIPM

Component

ResAcq

invokeCommand

ResAcq

TA

Component

Target

Component

setValuesTA

ResRel

ResAcq

makeCommand

ResAcq

Command

ResRel

ResRel

ResRel

ResRel

End

Network

ExtOp

Network

ExtOp

Network

ExtOp

Figure 3.30: Core Scenario Model of UCH architecture.

68 3. Foundations of the Methodology

users

p_userDevice

acq_userDevice

acq_uipm

end

rel_userDevice

p_uipm

setValue createEmptyDoc

setTextContent

serverRequest

p_uch

acq_uch

doGet

processRequest

postRequest

execute

controllerRequest

processRequest

setValuesRequest

p_ta

acq_ta

setValue

SendUpdateValues

rel_uch

setValueResponse

rel_uipm

messageHTTP

updateValues

rel_ta

Figure 3.31: Petri net describing the key performance scenario.

analysis goal was to study UCH scalability considering the current open source im-
plementations, UCHj and UCHe. Later, we will try to determine a system “optimal
configuration” in a context with several concurrent users.

UCH was initially designed as an interoperable architecture for smart homes, which
means that relatively few people will be simultaneously using the system to control
different devices. Nevertheless, this architecture may be projected in more complex

3.3. UCH: Universal Control Hub 69

environments, such as intelligent buildings, business buildings, hospitals or hotels. In
this case, the system will have to support requests from several concurrent users.

Firstly, both implementations, UCHj and UCHe, were experimentally tested
within the INREDIS project (Catalán and Catalán, 2010; INREDIS Consortium,
2010a). These experiments assumed that each user wanted to control his/her own
device, i.e., one user per target device. Results regarding response time (Catalán and
Catalán, 2010; INREDIS Consortium, 2010a) could be hardly obtained up to forty
users due to the difficulties of real experimentation. We reproduced these experiments
using our performance model, which meant to put as many tokens as users in places
users and p userDevice of the GSPN, so to also match one user to one interface,
and then we obtained the results in Figure 3.32. Differences in the results between
our performance model and the Java and C/C++ real implementations accounted for
less than a ten percent, then we assumed our GSPN as a valid performance model
and ready to address experiments initially not feasible to carry out with the real
implementations.

0

5

10

15

20

25

30

1 5 10 15 20 25 30 35 40

Number of users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

UCHj

UCHe

Figure 3.32: Response time of UCHj and UCHe implementations from 1 to 40 concurrent

users.

On the other hand, the discussion about what could be considered a good response
time is controversial, since besides the times so far considered, it may also depend on
the kind of impairment the user has and on the kind of target device the user wants
to control. For example, elderly people could request commands in their personal
telecare device at a rate of few seconds. However for a blind person it could last
much more time to operate for instance the washing machine. Pragmatically, we
will assume quantities around ten seconds as acceptable response times, according
to (Miller, 1968; Nielsen, 1993). This is so because in the experiments (both, real
and GSPN) we did not want to consider the time spend by the impaired persons and

70 3. Foundations of the Methodology

neither the time to operate the target5. Therefore, for concrete scenarios (persons
and targets with defined profiles) the response times will be higher.

Our next step, assuming valid the performance model, was to exercise the same for
a larger amount of concurrent users. Figure 3.33 extends experiments in Figure 3.32
up to 1000 users, so offering response time of the GSPN w.r.t. both implementa-
tions, where we observe that UCH performs poorly, specially Java implementation.
Therefore, although UCHe outperforms UCHj, UCH should not be considered as a
practicable architecture in a real time environment with hundreds of concurrent users.
Now, we will try to get solutions by means of replication.

0

200

400

600

800

1000

1200

1400

1600

1
100

200
300

400
500

600
700

800
900

1000

Number of users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

UCHj

UCHe

Figure 3.33: Response times of UCHj and UCHe implementations.

UCH specification does not define whether UIPMs, TDMs and TAs modules should
be executed as independent processes or threads, or if they should be allocated in
different memory spaces, hence these are choices for each specific implementation. In
the case of both UCHj and UCHe, all UCH components execute in the same space of
memory and are attended by a unique process.

Now, we want to study an “optimal configuration” for the architecture by means of
modules replication. In fact, we replicated the two implementations of UCH modules,
i.e., UIPM, Socket Layer and TA modules (represented by places p uipm, p uch, p ta
in Figure 3.31), which were populated with threads ranging from 1 to 25 in the
same space of memory. Figure 3.34(a) shows the effect of adding threads in UCHj
implementation and Figure 3.34(b) in UCHe. Although both graphics have similar
shape, the order of magnitude is quite different. As expected, UCHe outperforms
UCHj. Note that using 15 threads, the response times improve significantly in both
cases, but adding more threads they do not perform better. For a few hundreds of
users, UCHe may get acceptable values with 15 threads, around 8 seconds, however

5Note that this is not a limitation to evaluate the UCH architecture.

3.3. UCH: Universal Control Hub 71

UCHj in these cases still is not feasible, around 50 seconds. Figure 3.35 summarizes
the response times of both implementations with 15 threads.

11
0

02
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
5

10
15

20

0

200

400

600

800

1000

1200

1400

1600

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Number o
f th

reads

11
0

02
0

0

3
0

04
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
5

10
15

20
25

0

25

50

75

100

125

150

175

200

225

250

275

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Number o
f th

reads
25

a) UCHj implementa!on b) UCHe implementa!on

Figure 3.34: Response times of UCH implementations adding threads.

As a conclusion, a solution for an “optimal configuration” for populated environ-
ments could be a UCHe implementation of 15 threads, since as it can be observed in
the graph, UCHe response times in this setting may be acceptable.

0

20

40

60

80

100

120

1 100 200 300 400 500 600 700 800 900 1000

Number of users

R
e

sp
o

n
se

 T
im

e
 (

se
c
)

UCHj

UCHe

Figure 3.35: Response times of UCHj and UCHe implementations using 15 threads.

3.3.3 Concluding Remarks on UCH

We have analysed the performance of the UCH interoperable architecture through
two open source implementations, UCHe and UCHj. The use of GSPNs has made

72 3. Foundations of the Methodology

possible to validate experimental results and to analyse scenarios that otherwise could
not be afforded with real experimentation.

The performance results demonstrate that current UCH implementations fit in a
very delimited context, with very few users. However we assessed that system perfor-
mance can be improved by adding threads, but also that UCHe will always outperform
UCHj, confirming that it is the best option for achieving user requirements.

We think that further analyses of the GSPN can help improving URC architec-
ture and consequently related implementations. The solution explored, i.e., module
replication, have to be supplemented with other architectural decisions that indeed
we hope could be assessed by the GSPN analysis.

3.4 Conclusions

Taking our models and results as a background, the chief contribution of this chapter
is the use of SPE principles, concretely the PUMA approach, in different case studies,
with different architectural styles and from different domains, being one of them a
real-complex case study in the industrial setting. To the best of our knowledge, PUMA
has been applied in examples or academic studies, but not in an industrial setting. We
remark that case studies presented along this chapter are delimited, they are studied
in isolation, i.e., without taking into account interactions with other components of
the complex systems which they are within.

In addition, we carried out the assessment of the performance of these software
architectures in hypothetical situations, note the case of UCH where over budget
hampers the benefits of the evaluation. The use of GSPNs has made possible to
validate experimental results and to analyse scenarios that otherwise could not be
afforded with real experimentation.

The final objective of these assessments is to gain insight in closing the “assessment
loop” (Design→ Performance Model→ Analysis→ Results→ new Design). Actually,
the first transitions in the loop are well-known today and even some tool support exists
for them. However, very different is the case for the last one (from Results to a new
Design), and our interest is to further exploit these case studies to gain insight at
this regard and then to try to automate some aspects of this transition, i.e., how to
automate design decisions based on analysis results.

Chapter 4

A Performance Assessment
Methodology

Architecture design is a crucial part of the software development process, where deci-
sions about which software elements will make up the system and their relationships
are taken, as pointed out Williams and Smith (2002). Software architectures have
emerged in the last years as the cornerstone for early evaluation of qualitative and
quantitative properties of the software (QoSA, 2013). In the SPE field, architecture
design is recognized as an asset for performance assessment.

In this chapter, we present a scenario-based methodology to apply SPE principles
and techniques to assess software architecture at design. Our methodology has been
developed in Gómez-Mart́ınez et al. (2013a) taking the insight gained in (Gómez-
Mart́ınez and Merseguer, 2006b; Gómez-Mart́ınez et al., 2007; Gómez-Mart́ınez and
Merseguer, 2010; Gómez-Mart́ınez et al., 2013b) and makes use of the concepts and
notations given in Chapter 2. This methodology allows to assess performance as a
“by-product” of the software life-cycle.

Along this dissertation thesis, we describe the iterative process leading to develop
this methodology by means of examples. In Chapter 3, we apply SPE principles to
different systems: a Web-based service application, a mobile agent tracking system
and an interoperability gateway. In Chapter 5, we offer advise by indicating how we
actually applied the methodology in an industrial project.

The remainder of the chapter is organized as follows. Section 4.1 outlines the
assessment approach. Then, Section 4.2 presents the phase of designing a system
architecture. Section 4.3 explains how performance models are obtained. Section 4.4
defines performance objectives. Section 4.5 details the assessment stage, proposing
alternatives to meet performance objectives and to improve software architectures.
Section 4.6 revises the state of the art and places our proposal in the current scene.
Finally, some conclusions are given in Section 4.7.

73

74 4. A Performance Assessment Methodology

4.1 Overview of the Methodology

In this chapter, we resort to well-established SPE principles and techniques (Smith,
1990) for performance assessment of software architectures. The methodology we
propose, outlined in Figure 4.1, loops to decide whether the proposed performance
objectives are met and to obtain the architecture that can meet these objectives.
The methodology is inspired by the Performance by Unified Model Analysis (PUMA)
approach proposed by (Woodside et al., 2005, 2013).

Design

Performance
Model

Performance
Analysis

Assessment

[No]

[Yes]

performance
objec!ves?

New Design

First Design

Design + Op!mal
Configura!on

Results

Figure 4.1: Performance assessment methodology loop

We base our work on PUMA for several reasons, among others because PUMA
was developed by one of the most experienced performance evaluation groups world-
wide1, and because we have had satisfactory industrial experiences using it in the
past (Gómez-Mart́ınez et al., 2007; Gómez-Mart́ınez and Merseguer, 2010). However,
PUMA not only presents advantages, we were aware that PUMA is a methodology
that demands performance expertise, at this regard we had to simplify PUMA in order
to ease its application by software engineers. Unlike PUMA, which was designed
for managing various formalisms in the same project, we only focus on Petri nets,

1http://www.sce.carleton.ca/rads/index.html

4.1. Overview of the Methodology 75

concretely GSPN, and we also include an assessment stage, being this phase the chief
contribution of our methodology. Although we based on PUMA for the reasons above,
there exist other methodologies that could have been used provided that the authors
would have had previous industrial experiences with them. Among these proposals it
is worth mentioning Q-ImPrESS (2009), PASA by Williams and Smith (2002) or the
Palladio Component Model (PCM) by Becker et al. (2009); these methodologies are
reviewed in Section 4.6.

Our methodology is then composed of four phases, which are outlined in the
following paragraphs:

• Design. The methodology begins by modeling the system architecture using
UML diagrams. We also address the behaviour of those scenarios of the sys-
tem critical for performance. Finally, in the design, it is also introduced the
performance view of the system, which identifies the scenarios that are impor-
tant from a performance perspective. These scenarios are called performance
scenarios (Smith, 1990).

• Performance Model. For each critical scenario, a performance model is obtained.
We use Generalized Stochastic Petri Nets (GSPN) proposed by (Ajmone Marsan
et al., 1995) as performance model. Section 2.4.3 offers an introduction to this
formalism.

• Performance Analysis. According to Smith (1990) measures of interest in our
work are response time, scalability and resources utilization. They are com-
puted by analysis or simulation of the performance model. We will carry out
sensitive analysis, which means to modify performance parameters to test differ-
ent system configurations. Sensitive analysis is managed in the assessment step
to locate performance issues (e.g., high response times or overused resources)
and solutions. In fact, the assessment of these outcomes will help us to get
responsive and scalable systems.

• Assessment. The assessment stage proposes alternatives to meet performance
objectives and to improve the software architecture. Resource replication,
threading and improvement of service times are the choices commonly explored.
In our work, we also considered performance patterns and performance antipat-
terns as choices that could improve performance.

This methodology for assessing software architectures is transparent for software
designers. By “transparent” we mean that the software designer should be concerned
as less as possible to learn new processes since the analysis and design task already
implies the use of the aforementioned methodology.

Although goal of this methodology is to apply it at architectural level, we put
into practice our methodology to a running example in order to illustrate the pro-
cess along this chapter. We adapt the classical in concurrency Producer-Consumer
problem (Gomaa, 2000). This problem describes two processes: the Producer and
the Consumer. The Producer generates a piece of data and puts it into a shared

76 4. A Performance Assessment Methodology

common resource, called Buffer. The Consumer is waiting to receive the data and,
then, consume it. In our example, a User calls to the Producer-Consumer.

4.2 Performance-Oriented Design

The first step in our methodology is to describe a software architecture by means of
UML diagrams. Thus, software engineers elaborate the UML design of a system; in
particular, the architectural design with special emphasis on the behavioural view,
which is of primary importance for performance assessment. Therefore, this step
includes two activities: software architecture design by means of UML diagrams and
performance view using performance information annotated with MARTE, a UML
profile.

4.2.1 Software Design: UML diagrams

We use UML as the modeling language for software design. We mainly focus on those
UML diagrams which allow us to extract performance information for the next steps
of our approach: Use Case Diagram, Deployment Diagram, Interaction Overview
Diagram, Sequence Diagram, Activity Diagram and State Machine Diagram. The
following paragraphs explain how we use each of these diagrams. For a more extended
explanation of these UML diagrams, see Section 2.2.

• UML Use Case Diagram (UC) is a behavioural diagram that describes the
functionality of a system in a horizontal way. In our approach, UCs model
scenarios, see Section 2.3.1, as well as the population, that is, the number of
concurrent users in each scenario.

• UML Interaction Overview Diagram (IOD) is a special and restricted
kind of UML Activity Diagram which represents the flow relationships among
fragments and UML Sequence Diagrams. IODs represent high-level scenarios,
as well as their population.

• UML Deployment Diagram (DD) identifies the system software components
as well as the hardware nodes in which the former are deployed. DDs are used to
have a static view of the software architecture and, for the performance perspec-
tive, to show potential communication delays and/or the number of available
resources.

• UML Sequence Diagram (SD) shows object interactions; more specifically
the messages exchanged between the system components arranged in time se-
quence. It provides useful constructors such as loops, alternatives or parallel
execution. SDs represent the performance scenarios with time information, host
demands, messages size exchanged and acquisition/release of resources.

• UML Activity Diagram (AD) specifies the control flow of a component,
subsystem, or system. An activity represents an action in the execution of the

4.2. Performance-Oriented Design 77

activity. In our methodology, ADs are employed to express execution times of
actions within a specific activity, as well as the acquisition/release of concrete
resources.

• UML State Machine Diagram (SM) describes the lifetime of objects. A
state represents a time period in the life of an object during which the object
satisfies some condition, performs some action or waits for an event. SMs are
mainly used to get information concerning activities duration.

The software engineer decides which of these UML diagrams better express the
performance design of the software architecture, as well as the level of detail, i.e.,
an IOD shows high-level interactions while a SM specifies object level. Nevertheless,
from the performance perspective, it is sufficient to model at least one behavioural
view (IOD, SD, AD and/or SM).

In the following, we document the Producer-Consumer example. The static view
is represented with the DD in Figure 4.2. Thus, the Producer node deploys the
Producer package; and the Consumer node, the Consumer package. Both nodes are
connected through a communication node, concretely a network.

network

Producer Processor

Producer

Consumer Processor

Consumer

<<deploy>><<deploy>>

<<gaCommHost>>

<<resource>>

{resMult=$nConsumers}

<<resource>>

{resMult=$nProducers}

<<gaExecHost>>

{u!liza!on=(expr=$uProducer,

source=req, statQ=mean)}

<<gaExecHost>>

{u!liza!on=(expr=$uConsumer,

source=req, statQ=mean)}

Figure 4.2: Producer-Consumer example: UML Deployment Diagram.

Figure 4.3 depicts the SM of the Producer-Consumer example. The Producer
produces an item, which could be an Integer or a String with a probability of 30%
and 70%, respectively. Then, it waits for a signal of IsConsumed from the Consumer.
Meanwhile, the Consumer is waiting to get an item from the Producer to consume.

78 4. A Performance Assessment Methodology

/Producer.IsConsumed()

IsProduced()
Consuming

do/Consume

Wai ngForProducer

Consumer

/Consumer.IsProduced()

IsConsumed()

ProducingString

do/ProduceString

Init Wai ngForConsumer

Producer

ProducingInteger

do/ProduceInteger

/Consumer.IsProduced()

do/Init

<<gaStep>>
{hostDemand=(100.00,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=(20.00,unit=ms,
statQ=mean,source=est),

prob=0.3}<<gaStep>>
{hostDemand=(5.00,unit=ms,
statQ=mean,source=est),

prob=0.7}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=est)}

Figure 4.3: Producer-Consumer example: UML State Machine Diagram.

4.2. Performance-Oriented Design 79

Figure 4.4 represents a SD of Producer-Consumer example scenario. Firstly, a
User interacts with the Producer. Then, the Producer produces an item (Integer or
String) as output and it sends it to the the Consumer. The Consumer is waiting for
consuming and, when it receives the item, it consumes it. The Producer waits for a
message communicating that the Consumer has consumed this item.

ref scenario

ProduceInteger()

ProduceString()[IsString]

Consume()

IsConsumed()

:Consumer:Producer
User

alt

Init()

[isInteger]

<<gaCommStep>>
{msgSize=((value=2,unit=KB,statQ=min),

(value=5,unit=KB,statQ=max))}

<<gaStep>>
{hostDemand=(100,unit=ms,

source=est,statQ=mean)}

<<gaStep>>
{hostDemand=(5,unit=ms,
source=est,statQ=mean)}

<<gaStep>>
{hostDemand=(20,unit=ms,
source=est,statQ=mean)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,

source=est,statQ=mean)}

<<gaWorkloadEvent>>
{pa!ern=(closed(popula"on=(expr=$nUsers)))}

<<gaScenario>>
{respT=(expr=$RT,unit=s,
source=req,statQ=mean)}

<<gaStep>>
{prob=0.3}

<<gaStep>>
{prob=0.7}

Figure 4.4: Producer-Consumer example: UML Sequence Diagram.

As it can be observed, diagrams in Figures 4.3 and 4.4 show a similar behavioral
information, but from different perspective. Note also that UML diagrams depicted
in Figures 4.2, 4.3 and 4.4 have notes, coloured in grey, which are performance anno-
tations explained in the following section.

4.2.2 Performance View: Scenarios and Annotations

Once the system is designed and modelled by means of UML diagrams and, following
SPE principles, we now introduce the performance view of the system, i.e., information
that is relevant from performance perspective: performance scenarios and objectives
and how to express this performance information.

80 4. A Performance Assessment Methodology

According to Smith and Williams (2001), performance scenarios are those scenar-
ios that are executed frequently, that are critical to the user’s perception of responsive-
ness, or that represent a risk that performance goals might not be met. Behavioural
UML diagrams, chiefly IODs and SD, augmented with performance information rep-
resent performance scenarios.

Performance objectives describe specific and measurable criteria that a software
system must meet. These criteria are specified in each performance scenario using
performance annotations.

The usual way in SPE for introducing a performance specification is by anno-
tating the design diagrams. Annotations have to specify the inputs and outputs
(performance measures) of the evaluation, both of which are statistical in nature.
They account for properties such as workload, host demands or routing rates. As
commented in Section 2.2, profiling is the mechanism UML offers to enhance a design
with specifications beyond the typical structural and behavioural views.

Profiling was introduced by UML to indeed add new capabilities to the language.
A UML profile is just an extension of the UML defined in terms of:

• Stereotypes: They are concepts in the target domain that will be added to
the UML, i.e., they specify the main performance characteristics of the UML
model elements.

• Tagged values: They specify the attributes of the stereotypes.

• Constraints: They are formulae that apply to stereotypes and UML elements
to extend their semantics.

MARTE is an Object Management Group (OMG) standard defined using the
profiling mechanism to support model-based description of real time and embedded
systems, crf. Section 2.2.2. MARTE annotations capture properties, measures and
requirements of interest for carrying out our performance analysis. We propose a
subset of MARTE profile to annotate performance properties, namely we focus on
a subset of Generic Quantitative Analysis Modeling (GQAM) and Generic Resource
Modeling (GRM), depicted in Figure 4.5.

According to UML, each stereotype is made of a set of tags which define its
properties. For example, GaAcqStep stereotype has acqRes and resUnits as tags.
The former is used to specify the Resource that this step needs to acquire to be
executed, and the latter to define the number of units of that resource that will be
acquired by this step. The values assigned to tags are either basic UML types or NFP
types expressed using the Value Specification Language (VSL) syntax. In particular,
for complex NFP different values can be set: a value or variable name prefixed by the
dollar symbol (value property); the origin of the NFP (source), e.g., a requirement
(req), an calculated parameter (calc), an estimated (est) or measured (mea) value;
the type of statistical measure (statQ), e.g., a mean or a variance. Instead, the VSL
enables the specification of variables and complex expressions according to a well-
defined syntax. Figure 4.6 shows the excerpts of NFP used in our approach.

4.2. Performance-Oriented Design 81

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

S
ce

n
a

ri
o

ca
u

se
:

G
a

W
o

rk
lo

a
d

E
v
e

n
t

h
o

st
D

e
m

a
n

d
 :

 N
F

P
_

D
u

ra
!

o
n

 [
*

]
re

sp
T:

 N
F

P
_

D
u

ra
!

o
n

 [
*

]

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

A
cq

S
te

p

a
cq

R
e

s:
 R

e
so

u
rc

e
re

sU
n

it
s:

 N
F

P
_

In
te

g
e

r
=

 (
1

)

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

R
e

lS
te

p

re
lR

e
s:

 R
e

so
u

rc
e

re
sU

n
it

s:
 N

F
P

_
In

te
g

e
r

=
 (

1
)

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

R
M

::
R

e
so

u
rc

e
U

sa
g

e

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
T

im
e

::
T

im
e

R
e

la
te

d
E

n
!

!
e

s:
:

T
im

e
d

P
o

rc
e

ss
in

g
M

o
d

e
ls

::
T

im
e

P
ro

ce
ss

in
g

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

W
o

rk
lo

a
d

E
v
e

n
t

p
a

"
e

rn
:

A
rr

iv
a

lP
a

"
e

rn
 [

0
..

1
]

e
ff

e
ct

:
G

a
S

ce
n

a
ri

o

<
<

 m
e

ta
cl

a
ss

 >
>

U
M

L:
:C

la
ss

e
s:

:K
e

rn
e

l:
:

N
a

m
e

d
E

le
m

e
n

t

<
<

 m
e

ta
cl

a
ss

 >
>

U
M

L:
:C

o
m

m
o

n
B

e
h

a
v
io

r
::

S
im

p
le

T
im

e
::

T
im

e
E

v
e

n
t

!
m

e
d

E
v
e

n
t

0
..

1

<
<

 d
a

ta
T
y

p
e

 >
>

<
<

 c
h

o
ic

e
T
y

p
e

 >
>

M
A

R
T

E
_

Li
b

ra
ry

::
B

a
si

cN
F

P
_

T
y

p
e

s:
:

A
rr

iv
a

lP
a

"
e

rn

cl
o

se
d

:
C

lo
se

d
P

a
"

e
rn

ch
il

d
S

ce
n

a
ri

o

0
..

1

p
a

re
n

tS
te

p

0
..

1

sc
e

n
a

ri
o

0
..

1

st
e

p
s *

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

C
o

m
m

S
te

p

m
sg

S
iz

e
:

N
F

P
_

D
a

ta
S

iz
e

re
p

:
N

F
P

_
R

e
a

l
=

(1
.0

)
p

ro
b

:
N

F
P

_
R

e
a

l
=

(1
.0

)
h

o
st

:
G

a
E

xe
cH

o
st

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

S
te

p

<
<

 d
a

ta
T
y

p
e

 >
>

<
<

 t
u

p
le

T
y

p
e

 >
>

M
A

R
T

E
_

Li
b

ra
ry

::
B

a
si

cN
F

P
_

T
y

p
e

s:
:

C
lo

se
d

P
a

"
e

rn

p
o

p
u

la
!

o
n

:
N

F
P

_
In

te
g

e
r

<
<

 s
te

re
o

ty
p

e
 >

>
M

A
R

T
E

::
G

R
M

::
R

e
so

u
rc

e

re
sM

u
lt

:
N

F
P

_
In

te
g

e
r

=
 1

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

R
M

::
S

to
ra

g
e

R
e

so
u

rc
e

<
<

 m
e

ta
cl

a
ss

 >
>

U
M

L:
:C

la
ss

e
s:

:K
e

rn
e

l:
:

N
a

m
e

d
E

le
m

e
n

t
<

<
st

e
re

o
ty

p
e

>
>

M
A

R
T

E
::

G
R

M
::

P
ro

ce
ss

in
g

R
e

so
u

rc
e

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

R
M

::
C

o
m

p
u

!
n

g
R

e
so

u
rc

e

<
<

st
e

re
o

ty
p

e
>

>
M

A
R

T
E

::
G

R
M

::
C

o
m

m
u

n
ic

a
!

o
n

M
e

d
ia

<
<

 s
te

re
o

ty
p

e
 >

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

E
xe

cH
o

st

u
!

li
za

!
o

n
:

N
F

P
_

R
e

a
l

[*
]

<
<

 s
te

re
o

ty
p

e
 >

>
M

A
R

T
E

::
G

Q
A

M
::

G
a

C
o

m
m

H
o

st

u
!

li
za

!
o

n
:

N
F

P
_

R
e

a
l

[*
]

sp
e

e
d

Fa
ct

o
r:

 N
F

P
_

R
e

a
l

Figure 4.5: Subset of GQAM and GRM of MARTE.

82 4. A Performance Assessment Methodology

<< modelLibrary>>
MARTE_Library::BasicNFP_Types

expr: VSL_Expression
source: SourceKind
statQ: Sta!s!calQualifierKind
dir: Direc!onKind
mode: String [*]

<< dataType >>
<< nfpType >>

NFP_CommonType

unit: TimeUnitKind
clock: String
precision: Real
worst: Real
best: Real

<< dataType >>
<< nfpType >>
NFP_Dura!on

value: Real

<< dataType >>
<< nfpType >>

NFP_Real

unit: DataSizeUnitKind
precision: Real

<< dataType >>
<< nfpType >>
NFP_DataSize

value: Integer

<< dataType >>
<< nfpType >>
NFP_Integer

est
meas
calc
req

<< enumera!on >>
SourceKind

max
min
mean
variance
range
percent
distrib
determ
other

<< enumera!on >>
Sta!s!calQualifierKind

unit: DataTxRateSizeUnitKind
precision: Real

<< dataType >>
<< nfpType >>

NFP_DataTxRate

<< import >>

<< modelLibrary>>
MARTE_Library::MARTE_DataTypes

<< primi!ve >>
VSL_expression

<< import >>

<< modelLibrary>>
MARTE_Library::MeasurementUnits

<< unit >> s
<< unit >> !ck
<< unit >> ms {baseUnit=s, convFactor=0.001}
<< unit >> us {baseUnit=ms, convFactor=0.001}
<< unit >> min {baseUnit=s, convFactor=60}
<< unit >> hr {baseUnit=min, convFactor=60}
<< unit >> hr {baseUnit=min, convFactor=24}

<< dimension >>
TimeUnitKind

<< unit >> bit
<< unit >> Byte {baseUnit=bit, convFactor=8}
<< unit >> KB {baseUnit=Byte, convFactor=1024}
<< unit >> MB {baseUnit=Byte, convFactor=1024}
<< unit >> GB {baseUnit=Byte, convFactor=1024}

<< dimension >>
DataSizeUnitKind

<< unit >> b/s
<< unit >> Kb/s {baseUnit=b/s, convFactor=1024}
<< unit >> Mb/s {baseUnit=Kb/s, convFactor=1024}

<< dimension >>
DataTxRateUnitKind

Figure 4.6: Excerpt of pre-declared NFP types and measures units from MARTE.

4.2. Performance-Oriented Design 83

In the following, we describe the performance annotations used by our approach.
Table 4.1 summarizes these annotations. Note that ArgoSPE tool supports a subset
of UML-SPT annotations, see Chapter 6.

• The workload is defined in behavioural and interaction diagrams, such as IOD
and SD, using GaWorkloadEvent stereotype. We specify the number of con-
current users that populates the system by means of a closed workload with
pattern=closed and through a variable in VSL, generally named $nUsers. This
variable allows to parameterize the performance model with values to carry out
system sensitivity analysis. An example of this annotation can be observed in
Figure 4.4: <<gaWorkloadEvent>> {pattern=(closed(population=$nUsers))}

• The response time is specified in behavioural diagrams, such as IOD and
SD, in this case using GaScenario stereotype. Response time is a mea-
sure to be predicted during analysis as indicated by source=calc. We
generally gather the result in a variable $RT . The unit of measure-
ment is seconds (s) or other derived unit. The statistical measure is a
mean. Figure 4.4 offers an example of this annotation: <<gaScenario>>
{respT=(expr=$RT,unit=s,staQ=mean,source=calc)}

• Host demands and size of the messages are requirements needed to compute
system duration activities. They are provided by the software engineer during
analysis. They are specified in behavioural diagrams, such as SD, AD and SM.
Figure 4.3 and 4.4 depict several examples, as the following: <<gaStep>>
{hostDemand=(20,unit=ms,statQ=mean,source=est)} In this case, GaStep
stereotype indicates an input parameter (source=est) with an execution
duration of 20 milliseconds and the statistical measure is a mean. Concerning
size of the messages Figure 4.4 illustrates an example: <<gaCommStep>>
{msgSize=((value=2,unit=KB,statQ=min),(value=5,unit=KB,statQ=max))}.
Thus, a message with a size between 2 and 5 KB is sent.

• UML Sequence Diagrams and Activity diagrams also capture system routing
rates, in the alternative fragments or flows. They are specified by prob anno-
tation in the GaStep attached to the alternative fragments. For instance, in
Figure 4.3, <<gaStep>>{prob=0.7}, a rate of 0.7 means a probability of 70%
to execute this step (ProduceString()).

• System resources are expressed in MARTE as lifelines in the SDs or as Nodes in
DDs. The resource type is specified in the UML Deployment Diagram with the
GRM package; for instance StorageResource for specifying a storage resource,
GaExecHost for specifying an execution host, GaCommStep for specifying a
communication host or Resource for a general resource.

The utilization of a resource is usually specified using a variable $U in VSL to
be computed in the utilization tag, which will be predicted during analysis.

Annotations acqRes and relRes attached to a resource specify their acquisi-
tion and release. In the case of communication resources, transmission speed

84 4. A Performance Assessment Methodology

for a connection or a network between communication nodes is tagged with
speedFactor.

For specifying the number of system available resources, annotation res-
Mult in the deployment is used. Figure 4.2 illustrates this annotation:
<<resource>>{resMult=$nProducers} These variables allow to perform sen-
sitive analysis parameterizing the system with different number of resources.

In addition, to allocate a class to a particular physical node the tagged value
host in GaStep stereotype is needed.

As it can be observed in Figures 4.2, 4.3 and 4.4, the corresponding UML diagrams
of the Producer-Consumer example are enriched with performance information.

4.3 Performance Model

According to our methodology, in this step, we need to obtain a performance model
for each critical scenario that we have previously annotated.

As above mentioned, performance models are formal models that help to obtain
measures of interest (e.g., system response time) by analysis or simulation. There
are different kinds of performance formalisms widely accepted in SPE: queuing net-
works (Lazowska et al., 1984), stochastic process algebras (Hermanns et al., 2002)
and stochastic Petri nets (Ajmone Marsan et al., 1995). There exist SPE method-
ologies that translate performance-annotated UML models into the aforementioned
formalisms. For example, the work in (Petriu and Woodside, 2002) to obtain queu-
ing networks, the work in (Tribastone and Gilmore, 2008) to obtain process algebras
or (Bernardi and Merseguer, 2007; Distefano et al., 2011) to obtain Petri nets. Some
of these methodologies have associated tools that automate the translation process.

We propose to use stochastic Petri nets (SPN) and concretely generalized (GSPN).
Section 2.3.2 gives a brief introduction of Petri nets formalism and some techniques of
analysis. In the following, we assume that the reader is familiar with this formalism.
This choice has been driven by two main factors: (i) GSPNs provide a formal notation
which avoids any source of ambiguity while representing the stochastic behaviour of
systems, such as their capacity to represent routing rates, competition for shared
resources, stochastic duration of the host demands, parallel executions and forks and
joins; (ii) GSPNs have a clear graphical notation and several tools have been developed
for analysis. Moreover, the transformation from UML to GSPN can be carried out
using well-established tools, such as ArgoSPE (see Chapter 6), ArgoPN (Delatour
and de Lamotte, 2003) and ArgoPerformance (Distefano et al., 2011).

We translate UML models into GSPNs according to the algorithms proposed
by Bernardi et al. (2002); Merseguer et al. (2002); López-Grao et al. (2004) and
Bernardi and Merseguer (2007). Nevertheless, we introduce some changes, with re-
spect these algorithms, needed to support our subset of the performance annotations
in UML-MARTE, shown in Table 4.1. The translation rules of the performance an-
notations into GSPNs is summarized in Table 4.2.

4.3. Performance Model 85

Table 4.1: Subset of performance annotations in MARTE.

Stereotype Tag Value Diagram Element Annotation

GaWorkload-
Event

pattern (closed (pop-
ulation=
NFP Integer))

IOD,
SD, AD

Scenario Closed population
that executes a sce-
nario.

GaScenario
respTime NFP Duration IOD,

SD, AD
Scenario Required response

time for a Scenario.

hostDemand NFP Duration SD,
AD,
SM

Scenario The sum of all de-
mands for all its
steps, executed in
the same host.

GaStep

hostDemand NFP Duration SD,
AD,
SM

Step CPU demand on
the host of the pro-
cess that executes
the Step.

rep NFP Integer SD,
AD,
SM

Step Repetition count
for a Step or loop.

prob NFP Real SD,
AD,
SM

Step The probability
that the Step (sub-
path) is executed.

host GaExecHost SD,
AD,
SM

Step To deploy a step to
a particular execu-
tion host.

GaCommStep msgSize NFP DataSize SD Messages Size of exchanged
messages.

GaAcqStep acqRes Resource DD Step Resource to be ac-
quired within the
step.

GaRelStep relRes Resource DD Step Resource to be re-
leased within the
step.

Resource resMult NFP Integer DD Node Number of an spe-
cific resource.

StorageResource- - DD Node A storage resource.

GaExecHost utilization NFP Real DD Node The fraction of time
that an execution
resource is busy.

GaCommHost
utilization NFP Real DD Node The fraction of time

that a communi-
cation resource is
busy.

speedFactor NFP DataTxRate DD Node Speed of a commu-
nication resource.

86 4. A Performance Assessment Methodology

Table 4.2: Translation rules of the performance annotations in MARTE into GSPN models.

Stereotype Tag Annotation GSPN

GaScenario
respTime Required response

time for a Scenario.
Variable to be computed.

hostDemand The sum of all de-
mands for all its steps,
executed in the same
host.

Firing delay rate of a
timed transitions.

GaWorkload-
Event

pattern Closed population that
executes a scenario.

Number of tokens in the
place which represents the
initial state of each sce-
nario.

workload

Scenario

GaStep

hostDemand CPU demand on the
host of the process that
executes the Step.

Firing rate of a timed
transitions.

rep Repetition count for a
Step or loop.

The arcs are weighted
with the number of repe-
titions.

ini_loop end_loopLoop

reprep

prob Probability rate that a
Step (subpath) is exe-
cuted.

Routing rate of subpaths
is specified by the firing
rate of a immediate tran-
sitions.

i

prob₁

prob₂

prob
...

being,∑
i

probi = 1

host To deploy a step to
a particular execution
host.

The host is acquired be-
fore the step execution
and released after the
completion of the step.

acq_host rel_hostStep

host

4.3. Performance Model 87

Stereotype Tag Annotation GSPN

GaAcqStep acqRes Resource to be ac-
quired within the step.

The resource is acquired
before the step execution.

acq_host rel_hostStep

host

GaRelStep relRes Resource to be released
within the step.

The resource is released
after the completion of the
step.

acq_host rel_hostStep

host

GaCommStep msgSize Size of exchanged mes-
sages.

See below speedFactor
stereotype.

Resource resMult Number of specific re-
sources.

By populating the place
representing a resource
with as many tokens as re-
sources indicated.

acq_host rel_hostStep

host
n

GaExecHost utilization The fraction of time
that an execution re-
source is busy.

Variable to be computed.

GaCommHost
utilization The fraction of time

that a communication
resource is busy.

Variable to be computed.

speedFactor Speed of a communica-
tion resource.

The transmission of a
message through a com-
munication node is mod-
eled with a timed tran-
sitions, being delay firing
time:

t = size
speed

ini_comm end_comComm

t

88 4. A Performance Assessment Methodology

Furthermore, we developed ArgoSPE, an ArgoUML (2013) plug-in which imple-
ments the aforementioned algorithms. A detailed description of ArgoSPE is found in
Chapter 6.

Thus, we model the system using ArgoSPE and translate each critical scenario
identified in the former step. For each critical scenario, we obtain the corresponding
structure of a GSPN. Nevertheless, the translation using ArgoSPE, although auto-
matic and, in principle, transparent for the software architect, requires some addi-
tional effort as we remark in Chapter 6, since ArgoSPE only supports a subset of
performance annotations in UML-SPT. Thereby, we need to introduce some of the
latter performance parameters in the GSPN models manually.

Recalling the Producer-Consumer example, if we translate the UML diagrams
depicted in Figures 4.2, 4.3 and 4.4 into a GSPN according to the aforementioned
algorithms and rules, we obtain the GSPN shown in Figure 4.7.

produceInteger

init

produceString

$nUsers

p=0.7p=0.3

t=0.1

t=5t=20

$nProducers
Producer

end_producer

Wai ngForConsumer

cycle

User

Consume

$nConsumers

t=100

Consumer

end_consumer

Figure 4.7: Producer-Consumer example: GSPN.

4.4. Performance Analysis 89

4.4 Performance Analysis

Once obtained the performance models of the key performance scenarios, the software
engineer reviews the performance objectives, which were defined during the design
step, and carries out the analysis of the performance model.

According to Smith and Williams (2002b), performance objectives are quantita-
tive measures that can be computed in the performance models. We chiefly focus on:
responsiveness and scalability. Responsiveness is the ability of a system to meet its
objectives for response time (or throughput). Scalability is the ability of a system to
continue to meet its response time as the demand for the software function increases.
The response time of a software architecture is the time required to response a user
request or an external request from other system. The scalability of a software archi-
tecture is the ability to support a very large amount of concurrent users or external
requests.

Beyond these objectives, that are generally established by the software architect
during design step, we also determine software resource utilization as a performance
objective, due to its relation to scalability. Utilization appropriately measures the
effect of software as it scales in usage (Smith and Williams, 2002b). Furthermore,
in the case of a software architecture would be deployed in a “pay-per-use” cloud
infrastructures, the resources utilization affects directly with the economic cost.

Although the most important task in this step is to validate that the software
architecture meets the proposed performance objectives by analysing the performance
models of its critical scenarios for obtaining results, previously it is needed to compute
these performance objectives by means of performance measures.

Next, we discuss implications of performance objectives and how performance
measures are computed in the GSPN models. Section 2.4 offers an introduction of
Petri nets concepts, as well as some techniques of analysis.

Computation of Measures in the GSPN Models We compute all the measures
(response time, utilization and scalability) under steady state assumption. Transient
state is the probability of the system of being in state i at time t and steady state
is the probability of being in state i. Therefore, steady state means that the system
reaches an equilibrium. Thus, measures obtained will continue in the future, which
is a more general assumption than transient state. In consequence, transient solution
is more meaningful than steady state solution when the system under investigation
needs to be evaluated with respect to its short-term behaviour (Bolch et al., 2001).
Using steady state measures instead of transient measures could lead to substantial
errors in this case.

From the software architecture point of view, steady state assumption represents a
typical run execution of an application or component. Transient state could be inter-
preted as a snapshot of its execution. Although transient analysis can be interesting
to study reliability assessment (Gokhale and Trivedi, 2002), we only focus on steady
state analysis, since we propose to obtain mean response times of running software
architectures.

90 4. A Performance Assessment Methodology

In order to calculate the steady state, i.e., the values of the average behaviour,
all the places of a GSPN must be covered by p-semiflows, and therefore it must be
structurally bounded (Ross, 1983). Thus, in a GSPN, steady state analysis can be
carried out when the net is cyclical.

However, the translation of a UML behavioural diagram, such as a UML Sequence
Diagram, produces an acyclical GSPN. It starts with a place representing an initial
state (see in Figure 4.7, place $np) and ends with a transition for the last scenario
message, (see in Figure 4.7, transition tcycle). Therefore, we need to add an arc from
this last transition to the starting place, then achieving a cyclical net and all the
places are covered by p-semiflows. Observe the red arc depicted in Figure 4.8, which
illustrates the GSPN with the closed cycle of the Producer-Consumer example. Now,
the scenario can be analysed under steady state assumption.

produceInteger

init

produceString

$nUsers

p=0.7p=0.3

t=0.1

t=5t=20

$nProducers
Producer

end_producer

Wai ngForConsumer

cycle

User

Consume

$nConsumers

t=100

Consumer

end_consumer

$nUsers

$nUsers

Figure 4.8: Producer-Consumer example: Closed-cycle GSPN.

In addition, since we only consider closed workloads, we assume that the entire
execution cycle is finished when all the population finishes its cycle, i.e., the first

4.4. Performance Analysis 91

token must “wait” until the last one completes its cycle. We model this behaviour by
adding weight to the aforesaid arc, being this weight equals to the number of tokens
that populates the initial state. Figure 4.8 illustrates this weighted arc in red (from
transition cycle to place User).

4.4.1 Responsiveness

Responsiveness is the ability of a system to meet its objectives for response time or
throughput (Smith and Williams, 2002b). The response time of scenario is the time
required to response a user request or an external request from other system. There-
fore, it is important to determine who or what interacts with each critical scenario of
the software architecture under analysis. We only consider average response time of
critical performance scenarios.

In software systems with Human Computer Interaction (HCI), the response time
is defined from the users’s perspective as the number of seconds required to response
a user request. Basic advice regarding response times has been studied by Miller
(1968) and Card et al. (1991), among others. The Usability Engineering principles,
proposed by Nielsen (1993), establish the following intervals:

• 0.1 second is about the limit for having the user feel that the system is reacting
instantaneously.

• 1.0 second is about the limit for the user’s flow of thought to stay uninterrupted,
even though the user will notice the delay.

• 10 seconds is about the limit for keeping the user’s attention focused on the
dialogue. Users should be given feedback indicating when the computer expects
to be done.

Furthermore, in software architectures with human interaction, it would be desir-
able to analyse its target audience, as we demonstrate in the case study described in
Section 5.3.3. For instance, if in our target audience are people with special needs, we
should study the kind of impairment the user has and the kind of devices or services
they use; or if the potential users are kids, the response times should be less, since
they need quick responses. Generally, in any software architecture, all the expected
response times of HCI scenarios should be within these intervals.

For real-time systems, response time is the amount of time required to respond to
a particular external event or the number of events that can be processed in a given
time (Smith and Williams, 2002b). In these cases, the response times depend on the
purpose of the system and the application domain. Consequently, software engineers
must define the objective of response times in those cases.

In the presented methodology, we specify the response time of a scenario using
<<GaScenario>> stereotype and the annotation respT. Since the average response
time is calculated (source=calc), a variable $RT in VSL gathers the following com-
putation result. The unit of measurement is a time unit, usually seconds s, and the
statistical measure is a mean.

92 4. A Performance Assessment Methodology

Computation of Responsiveness in GSPN Models The average response time
RT of a scenario is calculated as the inverse of the throughput χ of the transition
tcycle that closes the entire execution cycle.

RT =
1

χtcycle

As mentioned, the result of this computation is gathered in the variable $RT and
translated to the UML behavioural diagram that represents the scenario.

4.4.2 Scalability

A software architecture is scalable if, when there is a significant increase in the number
of resources and the number of users, it will remain (Coulouris et al., 2005). Then,
the software architecture scalability can be defined as the ability to support a very
large amount of concurrent users.

Scalability of a software architecture depends on the usage context as well as
its deployment. The same software architecture can be deployed in very different
environments, e.g., building automation, urban, leisure or financial. The number of
concurrent users can vary considerably, even for the same kind of environment it
changes by orders of magnitude, for example, in the building automation case we
could have smart homes, asylums, hospitals or hotels. Considering that a software
architecture has to be the same for all environments, it needs to scale accordingly. In
an embedded system, the scalability is also conditioned for its own internal demand
of resources and services. As such, the execution context, not only users, is of crucial
importance for scaling up the system.

In consequence, the number of potential users (or internal demands) of a software
architecture should be studied taking into account the context of use. If this number
is large, the scalability must be analysed. Otherwise, this step can be skipped.

As mentioned previously, we model the scalability of a software architecture pa-
rameterizing the number of concurrent users that populates the system, which is
specified through a variable $nUsers in VSL in the <<GaWorkloadEvent>> stereo-
type. The annotation pattern=closed shows that we only consider closed workloads.
This population is represented in the GSPN with the initial marking of the first place
of the net.

Computation of the Scalability in GSPN Models We determine the scala-
bility of the system by calculating the response times using future workload intensi-
ties (Smith and Williams, 2002b). To study the system scalability, we compute the
system response time varying the parameter that represents the population. For each
population value we obtain its corresponding response time.

Figure 4.9 depicts the response times for the Producer-Consumer example with
concurrent users.

4.4. Performance Analysis 93

0
1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

2

4

6

8

10

12

Figure 4.9: Producer-Consumer: Response times for concurrent users.

4.4.3 Utilization

Lazowska et al. (1984) defined the utilization of a resource as the proportion of time
the resource is busy, or, equivalently, as the average number of customers in service.

From the SPE perspective, Smith and Williams (2002b) denoted the determina-
tion of software resource utilization to appropriately measure effect of software as it
scales in usage. Therefore, resource utilization analysis detects resource saturation
and potential bottlenecks when the system is highly populated and consequently, it
permits to tune up the resource configuration.

The optimal resources configuration directly defines resource optimization. When
resources are not well-dimensioned, it may happen that either the throughput is
constrained by lack of available resources (then performance is lower than it could
be), or there are idle resources (then money has been squandered) (Goldratt and Cox,
1992). In addition, the resource utilization relates with the power consumption.

Accordingly, apart from detecting bottlenecks, it is crucial an appropriate resource
utilization, since it determines how to deploy the software architecture into an infras-
tructure. For instance, if the architecture is planned to be deployed into cloud-based
infrastructure, which imply pay-per-use services. Being each new instance of a thread
independently invoiced, resource utilization must be optimized. If the case of infras-
tructure such as datacenter, the deployment of a new software architecture directly
impacts in the economic cost for the acquisition of new hardware.

As pointed out, resources are represented in the UML Sequence Diagrams by life-
lines or in the UML Deployment Diagrams as nodes. The number of copies of a
resource is modelled with the <<Resource>> stereotype annotated with restMult.
The utilization of a resource is specified through the annotation utilization of the
<<GaExecHost>> and the <<GaCommHost>> stereotype in the variable U , which

94 4. A Performance Assessment Methodology

is computed.

Computation of the Utilization in the GSPN Models According to the rules
described in Table 4.2, each resource, software or hardware, is represented by a place
p in the GSPN. The number of tokens M in the place p represents the available copies
of that resource. Sereno and Balbo (1997) defined that the utilization of a place is
given by the steady state probability that the place is non-empty. On the other hand,
the average number of tokens n in steady state represents the mean occupancy of
the place. Therefore, the utilization U of a place p that represents a resource can be
calculated as:

Up =
M(p)− n(p)

M(p)

Finally, the variable U in the corresponding UML-DD gathers the utilization rate
of the resource in the software architecture.

A resource is saturated when its utilization ratio is closed to 1. Nevertheless,
both Lazowska et al. (1984) and Smith and Williams (2002b) advice that percentages
higher than 80% should be analysed.

Figure 4.10 plots the utilizations of the Producer-Consumer example. As it can
be observed, Producer resource is high saturated.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

U

li
za

o

n

Producer

Consumer

1 10 20 30 40 50 60 70 80 90 100

Number of users

Figure 4.10: Producer-Consumer: Utilization of each resource.

4.5 Performance Assessment

In the light of the analysis results, the aim of the assessment is to introduce changes in
the system for getting the best possible software architecture configuration. For each
assessment iteration, we consider to apply at least: resource replication, performance
patterns and performance antipatterns. Next, we describe to which extend we use
these techniques.

4.5. Performance Assessment 95

4.5.1 Resource Replication

Utilization resource analysis detects saturated resources which would be potential sys-
tem bottlenecks. In both cases, the performance of software architecture can degrade
since their resource can not deal with all the request with low response time.

Firstly, we must identify potential saturated resources or bottlenecks by means
of their utilization. Thus, the resource utilization rates, gathered in variable U is
reviewed. As aforementioned, utilization rates higher than 80% should be analysed,
according to Lazowska et al. (1984) and Smith and Williams (2002b).

We then adapt the theory proposed by Goldratt and Cox (1992): once the bot-
tleneck is identified, the capacity of the associated resource is increased. Thus, we
increase the capacity by means of resource replication. Software replication relies on
multithreading to serve multiple requests in parallel. Nevertheless, this solution does
not always work, since the bottleneck can be in the hardware resources, such as I/O
devices or CPU capacity. In the latter case, the solution will be to add more CPU
capacity (e.g., adding additional computational nodes).

We recall that resources, both software and hardware, are represented: a) in
the UML Sequence Diagrams by life-lines or in the UML Deployment Diagrams as
nodes, b) in the GSPN by shared places. Thus, from the architectural point of view,
the resource replication means that the parameter value of the restMult tag in the
<<Resource>> stereotype is increased. Then, we recalculated the response times for
the performance scenario. Since the resource is modeled by a place in the GSPN,
the replication is modeled in the GSPN by populating the resource place with new
tokens, as same as the new value of the parameter restMult.

0
1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Threads of Producers

2

4

6

8

10

Figure 4.11: Producer-Consumer: Response times for 100 concurrent users when multi-

threading Producer.

In the Producer-Consumer example, the Producer resource is saturated, since its

96 4. A Performance Assessment Methodology

utilization is higher than 80%, as shown Figure 4.10. If we increase the number
of threads, we obtain the response times in Figure 4.11. We observe that, from 20
threads on, the example does not perform better. Figure 4.12 depicts the utilization
of each resource when multithreading.

Threads of Producers

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 20 30 40 50 60 70 80 90 100

U
!

li
za

!
o

n

Producer

Consumer

Figure 4.12: Producer-Consumer: Utilization of resources for 100 concurrent users when

multithreading Producer.

4.5.2 Performance Patterns

A pattern (or design pattern) is a general solution to a design problem that recurs
repeatedly in many different contexts (Gamma et al., 1995). Thereby, patterns pro-
vide generic solutions for many architectural, design and implementation problems.
Patterns use a formal approach to describing a design problem, its proposed solu-
tion, and any other factors that might affect the problem or the solution. Therefore,
patterns capture expert knowledge about “best practices” in software design. The
presented methodology assumes that the software engineer is familiar with the pat-
terns language.

Gamma et al. (1995) identified twenty three design patterns, that solve a wide
range of software design problems. This patterns language includes the following
types of information:

• Pattern name that describes the pattern.

• Problem to be solved by the pattern.

• Context, or settings, in which the problem occurs.

• Forces that could influence the problem or its solution.

4.5. Performance Assessment 97

• Solution proposed to the problem.

• Context for the solution.

• Rationale behind the solution (examples and stories of past successes or failures
often go here).

• Known uses and related patterns.

• Author and date information.

• References and keywords used or searching.

• Sample code related to the solution, if it helps.

Since design patterns and architectural styles are similar (Gamma et al., 1995)
in that the latter capture recurring solutions, at the level of the overall system or-
ganization, recurring solutions to common problems in structuring software systems.
Therefore, performance characteristics of the style can be used to reason about the
performance of that instance (Williams and Smith, 2002).

Smith and Williams (2002b) proposed performance patterns, which are inspired
by design patterns and describe best practices for producing responsive and scalable
software. Performance patterns are a higher level of abstraction than design patterns,
since they are applied at design level and implementation details are not considered.
Each pattern is characterized by its name, the problem description, the potential
solution and the consequences to apply this pattern, as well as the principle on which
is based. Performance patterns detected by Smith and Williams (2002b) are outlined
in the following, other important design patterns can be found in (Grand, 1998, 2001;
Lea, 1999; Schmidt et al., 2000). Table 4.3 summarizes these performance patterns.

• Fast Path pattern is based on the Centering principle proposed by Gamma
et al. (1995), which tries to minimize the processing for dominant workload
functions, thus Fast Path creates an alternative streamlined path and it also uses
the Locality Principle by combining information likely to be needed together.

• First Things First pattern extends the Centering principle proposed
by Gamma et al. (1995). This pattern prioritizes important processing tasks
to ensure that they complete. When overloading conditions arise, the system
gracefully degrades and improves as the conditions improve.

• Coupling pattern indicates that the responsibilities of each entity should be
correctly assigned in order to combine information likely to be needed together.
It is very effective in distributed systems to reduce the high communication
costs. It is based on Centering, Locality, Processing versus Frequency principles.

• Batching pattern extends Processing versus Frequency principle in order to
reduce the total amount of processing required of all tasks by combining frequent
requests for services to save the overhead of initialization, transmission and
termination processing for the request.

98 4. A Performance Assessment Methodology

• Alternate routes pattern spreads the demand for high-usage objects spatially
to reduce contention delays for the objects. It is based on the Spread-the-Load
principle.

• Flex Time pattern spreads the demand for high-usage objects temporally. This
pattern complements the Alternate routes pattern by spreading the load tem-
porally rather than spatially. It is based on the Spread-the-Load principle.

• Slender Cyclic Functions pattern based on Centering principle minimizes the
amount of work that must execute at regular intervals. This kind of processing
is very common in embedded real-time systems.

Table 4.3: Performance patterns

Pattern Description Principle

Fast Path Identify dominant workload functions and
streamline the processing to do only what
is necessary.

Centering

First Things
First

Focus on the relative importance of pro-
cessing tasks to ensure that the least im-
portant tasks will be the ones omitted if
everything cannot be completed within the
time available.

Centering

Coupling Match the interface to objects with their
most frequent uses.

Centering, Lo-
cality, Processing
versus Frequency

Batching Combine requests into batches so the over-
head processing is executed once for the
entire batch instead of for each individual
item.

Processing versus
Frequency

Alternate
Routes

Spread the demand for high-usage objects
spatially, that is, to different objects or lo-
cations.

Spread-the-Load

Flex Time Spread the demand for high-usage objects
temporally, that is, to different periods of
time.

Spread-the-Load

Slender Cyclic
Functions

Minimize the amount of work that must
execute at regular intervals.

Centering

In the presented methodology, performance patterns are used to obtain the best
design of the software architecture from the performance viewpoint. We then adapt
the algorithm proposed by (Bergenti and Poggi, 2000) and applied it throughout the

4.5. Performance Assessment 99

architecture. Figure 4.13 represents this algorithm. The pattern-detection algorithm
has a sequential structure comprising four steps. Firstly, detection of classes groups
that represent a pattern realization is made. Then, UML Sequence Diagrams are used
to refine this detection matching with pattern-specific interactions. The third step
consolidates the obtained results gathering the pattern realizations that are detected
more than once, as the rules used for the detection can find a single pattern realization
many times. The last step of the pattern-detection algorithm presents the obtained
results to the engineer. Unlike the Bergenti and Poggi’s proposal, which detects any
design pattern, we only focus on performance patterns.

Match Structure Templates
with the Class Diagrams

Refine with Sequence Templates
and Sequence Diagrams

Consolidate the Detected
Pa"erns and Select the Cri#cs

Show the Detected Pa"erns
and the Selected Cri#cs

Pa"erns + Cri#cs

Structural proper#es of the
pa"erns are used for the
detec#on.

Object interac#ons are
used to refine
the detec#on.

Merge the pa"ern
realisa#ons that are
detected more than once.

Pa"erns and cri#cs
are showed to
the engineer.

UML Model

Figure 4.13: Adapted pattern detection algorithm from (Bergenti and Poggi, 2000).

Nevertheless, the impact of changes made by design patterns on the design model is
not always expected from the performance perspective, as remark Smith and Williams

100 4. A Performance Assessment Methodology

(2002b) and Mani et al. (2011). Furthermore, some of these patterns force major
changes in the overall software application, and consequently in its behaviour.

Recalling the Producer-Consumer example, which is based on the Pro-
ducer/Consumer design pattern, which is based on the Master/Slave pattern in turn.
We observe that no performance pattern is detected.

4.5.3 Performance Antipatterns

Antipatterns extend the notion of patterns to capture design errors and their solu-
tion (Brown et al., 1998). Their use (or misuse) produces negative consequences.
Therefore, they describe common mistakes and their solutions: what to avoid and
how to solve the problems. Antipatterns are refactored (restructured or reorganized)
to overcome their negative consequences. A refactoring is a correctness-preserving
transformation that improves the quality of software (Smith and Williams, 2002a).

Smith and Williams (2000) defined performance antipatterns as “bad practices”
that affect software performance in a negative way. And thereby, they describe recur-
ring software performance problems and their solution (Smith and Williams, 2003).
Performance antipatterns identifies a problem, i.e., the bad practice that negatively
affects the software performance, a solution, i.e., a set of refactoring actions that can
carried out to remove it.

The following paragraphs summarize some of the performance antipatterns gath-
ered and analysed in (Smith and Williams, 2000, 2001, 2002a, 2003).

• Blob or “god” Class (Smith and Williams, 2000) occurs when a single class or
component either 1) performs all of the work of an application or 2) holds all of
the applications data. Either manifestation results in excessive message traffic
that can degrade performance. The solution will be to refactorize the design to
distribute intelligence uniformly over the application’s top-level classes, and to
keep related data and behaviour together.

• Concurrent Processing Systems (Smith and Williams, 2002a) occurs when
processing cannot make use of available processors. To solve this antipattern
is necessary to restructure software of change scheduling algorithms to enable
concurrent execution.

• “Pipe and Filter” Architecture (Smith and Williams, 2002a) occurs when
the slowest filter in a “pipe and filter” architecture causes the system to have
unacceptable throughput. The solution will be to break large filters into more
stages and combine very small ones to reduce overhead.

• Extensive Processing (Smith and Williams, 2002a) occurs when extensive
processing in general impedes overall response time. The solution will be to
move extensive processing so that it does not impede high traffic or more im-
portant work.

• Empty Semi Trucks (Smith and Williams, 2003) occurs when an excessive
number of request is required to perform a task. It may be due to inefficient

4.5. Performance Assessment 101

use of available bandwidth, and inefficient interface, or both. The Batching per-
formance pattern combines items into messages to make better use of available
bandwidth is the best solution.

• Roundtripping (Smith and Williams, 2003) occurs when many fields in a user
interface must be retrieved from a remote system. The solution will be to buffer
all the calls together and make them in one trip. The Facade design pattern
and the distributed command bean accomplish this buffering.

• Tower of Babel (Smith and Williams, 2003) occurs when processes excessively
convert, parse, and translate internal data into a common exchange format
such as XML. To detect this antipattern, the Fast Path performance pattern
identifies paths that should be streamlined. The solution will be to minimize
the conversion, parsing, and translation on those paths.

• One-Lane Bridge (Smith and Williams, 2000) occurs at a point in execution
where only one, or a few, processes may continue to execute concurrently. Other
processes are delayed while they wait for their turn. To alleviate the congestion,
use the Shared Resources Principle to minimize conflicts.

• Excessive Dynamic Allocation (Smith and Williams, 2000) occurs by the
overhead required when an application unnecessarily creates and destroys large
number of objects during its execution. The two solutions are: 1) “Recycle”
objects (via an object “pool”) rather than creating new ones each time they
needed. 2) Use the Flyweight pattern to eliminate the need to create new
objects.

• The Ramp (Smith and Williams, 2003) occurs when processing time increases
as the system is used. The solution will be to select algorithms or data structures
based on maximum size or use algorithms that adapt to the size.

• Traffic Jam (Smith and Williams, 2000) occurs when one problem causes a
backlog of jobs that produces wide variability in response time which persists
long after the problem has disappeared. To solve this antipattern is necessary
to begin by eliminating the original cause of the backlog. If this is not possible,
provide sufficient processing power to handle the worst-case load.

• More is Less (Smith and Williams, 2002a) occurs when a system spends more
time “thrashing than accomplishing real work because there are too many pro-
cesses relative to available resources. The solutions will be to Quantify the
thresholds where thrashing occurs (using models or measurements) and deter-
mine if the architecture can meet its performance goals while staying below the
thresholds.

• Sisyphus Database Retrieval (Dugan-Jr. et al., 2002) occurs when perform-
ing repeated queries that need only a subset of the results. The solutions will
be to use advanced search techniques that only return the needed subset.

102 4. A Performance Assessment Methodology

• Falling Dominoes (Smith and Williams, 2003) occurs when one failure causes
performance failures in other components. To solve this antipattern is necessary
to make sure that broken pieces are isolated until they are repaired.

• Unnecessary Processing (Smith and Williams, 2002a) occurs when process-
ing is not needed or not needed at that time. The solution will be to delete
the extra processing steps, reorder steps to detect unnecessary steps earlier, or
restructure to delegate those steps to a background task.

As we can observe, each antipattern is characterized by its name, problem and
textual solution description. Cortellessa et al. (2010, 2012) formalized this textual
description, by means of logical predicates, in order to systematize their identification.
Figure 4.14 illustrates the algorithm for the antipattern detection process that we
adopt in our methodology.

Detec�on Step
Detec�on engine

Performance
An�pa!erns instances

Extrac�ng Step
Extractor engine

An�pa!erns
boundaries

XML representa�on
architectural Model

Transform into
Performance model

Performance indices

UML Model
annotated with

MARTE

Modelling
Step

An�pa!erns modelling

XML schema
<<conformTo>>

<<implement>>

Performance an�pa!erns

Performance An�pa!erns
as logical predicates

Figure 4.14: Adapted antipattern detection algorithm from (Cortellessa et al., 2012).

4.5. Performance Assessment 103

Cortellessa et al. (2012) thus partitioned performance antipatterns in two cate-
gories: single-value performance antipatterns detectable by single values of perfor-
mance indices (such as mean, min or max) and multiple-value performance antipat-
terns, that require the trend or evolution of the performance indices during the time
to capture performance problems. The logical representation of performance antipat-
terns is based on the following rationale: an antipattern identified unwanted software
or hardware properties, hence an antipattern is formulated as predicate on the soft-
ware architectural model elements. Thereby, an antipattern is composed of a set
of basic predicates, which are first described as semi-formal natural language and
then formalized by means of first-order logics; and three different views of the soft-
ware architectural model elements: Static View (software elements), Dynamic View
(interactions) and Deployment View (hardware elements). The formalization of the
elements that they proposed provides only the concepts that antipatterns require to
be automatically detected. The basic predicates are XML Schema elements. The
detection process identifies the system elements encountered in performance antipat-
terns organized in XML schemas and bounded antipatterns indices in order to identify
performance antipatterns in software architecture.

In addition, Cortellessa et al. built an engine to automatically detect performance
antipatterns and to refactorize them by generating a feedback step at the software
architecture level. The detection engine returns as output the specific model elements
that participate in the occurrence of the antipattern, and if any device causes it.

We follow Cortellessa’s approach to automatically identify performance antipat-
terns in software architectures. Like our methodology, they also model software archi-
tecture by means of UML diagrams annotated with MARTE as input. However, they
transform the software architecture model to Queueing Network (QN) using PRIMA-
UML tool (Cortellessa and Mirandola, 2002) in order to obtain performance measures,
while we propose to use GSPN models. Moreover, we adapt their XML schemas which
represent the logical predicates of the performance antipatterns, to only consider our
subset of performance annotations, which slighly differs that Cortellesa’s approach.

Since the Producer-Consumer example is very simple, no performance antipattern
is detected.

4.5.4 Optimal Configuration

Finally, the final step in the assessment phase is the obtaining of the optimal config-
uration of the software architecture. In other words, we apply all the improvements
proposed in the previous steps to our initial software architecture design in order to
verify if our software architecture meets the performance objectives.

Once, all the proposed improvements are applied, the assessment loop of our
methodology is closed when we validate that the software architecture under study
meets performance objectives.

In the case of the Producer-Consumer example, the optimal configuration is the
following: the increasing of the number of Producer threads.

104 4. A Performance Assessment Methodology

4.6 Related Work

Software architecture assessment constitutes an important stage in the software design
process, in order to guarantee non-functional requirements. Nevertheless, to the best
of our knowledge, there are very few initiatives to assess architectures based on SPE
principles at industrial level. An exception is the PASA (Performance Assessment of
Software Architectures) method, proposed by Williams and Smith (2002).

PASA, focused on performance scenarios, is a performance-based software archi-
tecture analysis method that provides a framework for the whole assessment process.
PASA inspired us in order to automatically systematize the process to detect perfor-
mance issues, as well as to propose the corresponding potential solutions. As in PASA,
our methodology carries out performance analysis considering responsiveness, but also
resource utilization and scalability. Moreover, we have included automatic detection
of performance patterns and antipatterns, by considering the work of Cortellessa et al.
(2012).

Pooley and Abdullatif (2010) defined Continuous Performance Assessment of Soft-
ware Architecture (CPASA). This method adapts PASA to the agile development
process. To the best of our knowledge, CPASA has not been applied to an industrial
case yet.

Liu et al. (2005) developed a methodology for component-based applications to
predict their performance under various workloads. As in our approach patterns
play an important role, but at architectural level in this case. Patterns are modeled
by means of UML Activity Diagrams, while system scenarios using UML Sequence
Diagrams, as in our approach. Queuing networks were used for prediction. To verify
the approach they implemented different systems and established errors of prediction
around 11 and 15 percent.

Basing on component-based software engineering, Becker et al. (2009) proposed
a meta-model to predict extra-functional properties component-based software archi-
tectures designed with Palladio Component Model. They modeled parametric context
dependencies to system resources and dependencies to parameter usages. Following
this work, Huber et al. (2010) described an industrial case study where they applied
the Palladio Component Model to a storage system. A model was firstly implemented,
next they conducted several experiments on a prototype to derive the resource us-
age of each model component and finally, the model was calibrated with realistic
resource demands and validated. The approach presented by Trubiani and Koziolek
(2011) aimed to identify flaws in Palladio Component Models basing on performance
antipatterns. They suggested design alternatives to solve these antipatterns.

The Software Engineering Institute (SEI) created some well-known scenario as-
sessment methods: the Scenario-Based Analysis of Software Architecture (SAAM)
and the Architecture Tradeoff Analysis Method (ATAM). SAAM tries to measure the
software’s quality through scenarios, rather than the general and inaccurate quality
attributes description (Bass et al., 2005). ATAM is a method for evaluating soft-
ware architectures relative to quality attribute goals (Clements et al., 2002). ATAM
evaluations expose architectural risks that potentially inhibit the achievement of an

4.7. Conclusions 105

organization’s business goals. Nevertheless, neither of these two approaches follow
SPE principles.

As above stated, PUMA (Woodside et al., 2005; Petriu et al., 2012; Woodside
et al., 2013) also guided our work. PUMA is not a methodology, but a model trans-
formation chain. It translates behavioral UML diagrams annotated with performance
attributes into different formalisms using intermediate performance models, concretely
Core Scenario Models (CSM). Unlike PUMA, which is focused on performance anal-
ysis, we go one step beyond taking performance results of software architectures at
design phase and exploring different alternatives to meet performance objectives and,
consequently, improve the system. Nevertheless, we only use GSPN as performance
model.

4.7 Conclusions

In this chapter, we have presented a scenario-based methodology for assessing software
architectures at design level. This methodology is based on SPE techniques and
principles and inspired by the PUMA approach (Woodside et al., 2005, 2013). The
use of SPE in the early phases of the life-cycle avoids the fix-it later approach (Smith,
1990).

This methodology closes the “assessment loop” (Design→ Performance Model→
Analysis → Results → new Design), since it automates some design decisions based
on performance analysis results.

The proposed methodology is a part of the software development life-cycle in
early stages, being the performance assessment a “by-product”. Therefore, software
engineer and practitioner does not need an additional effort to learn about software
architecture assessment from performance viewpoint, as well as GSPNs or other per-
formance models.

106 4. A Performance Assessment Methodology

Chapter 5

Industrial Case Study: An
Interoperable Architecture

Once we have gained insight in the performance assessment of software architectures
by means of the case studies in Chapter 3, we have applied our proposal of the
performance assessment methodology, developed in Chapter 4, to a case study.

This chapter is an industrial experience since we report results regarding the ap-
plication of the performance assessment methodology to a real-complex industrial
project, which we exhibited in (Gómez-Mart́ınez et al., 2013a). This case study is
an interoperable architecture to automatically adapt interfaces for people with dis-
abilities. Moreover, some of the components and functionalities of the system were
presented in Gómez-Mart́ınez and Merseguer (2010); Iglesias-Pérez et al. (2010); Mu-
rua et al. (2011) and Gómez-Mart́ınez et al. (2013b).

We have developed this chapter following recommendations from Runeson and
Höst (2009) about case study research methodology for software engineering. Thus,
the objective of the chapter is twofold. First, we want to describe how we applied
SPE in the project, with special attention to performance patterns and antipatterns.
Therefore, this chapter tries to be a blueprint for practitioners needing to evaluate
performance in a software project. On the other hand, we want to assess the software
architecture for performance, which is of interest not only for the project engineers
but also for designers of accessible user interfaces.

The rest of the chapter contains the following sections. Firstly, Section 5.1 summa-
rizes the industrial project and its objectives. The software architecture is outlined
in Section 5.2, where chief software components are described. Section 5.3 applies
the assessment approach to the aforementioned architecture. Section 5.4 discusses
obtained results. Section 5.5 covers related work. Finally, Section 5.6 gives some
conclusions of the chapter.

107

108 5. Industrial Case Study: An Interoperable Architecture

5.1 Overview

Universal Access continues being a critical quality target for Information and Com-
munications Technology (ICT), as Stephanidis (2001) stated, especially in industrial
societies where there is a growing number of people with functional diversity, including
those with aging-related conditions. Indeed, ICTs may require particular skills and
abilities to interact with platforms, the plethora of wireless communication systems
and smart devices such as kiosks or ATMs. The inexistence of these skills and abilities
extends in some cases the traditional concept of disabled people towards people with
functional diversity or special needs. The growing gap between their abilities and
access to ICT is called the digital divide. Interoperable software architectures that
support universal designed user interfaces and Assistive Software (AS from now on)
are two approaches to bridge this gap, e.g., (Margetis et al., 2012; Cabrera-Umpiérrez
et al., 2011; Zimmermann and Vanderheiden, 2008).

The INREDIS project (INterfaces for RElations between Environment and people
with DISabilities) (INREDIS Consortium, 2010b) aimed to develop environments that
enable the creation of communications and interaction channels between people with
some kind of special need and their context, where the targets are a set of auto-
discoverable devices. More than 200 researchers from 14 Spanish companies and 19
research organizations collaborated to carry out this project during 48 months and a
budget of e23.6 millions.

In the context of this project, an interoperable architecture, capable of adapting
different types of interfaces to users needs and preferences, was designed and devel-
oped. In addition, we also developed an autonomous AS selection mechanism that
makes the environment able to automatically select the most suitable AS according
to user’s profile, user’s device capabilities and target device services.

Although goal of the INREDIS project was to completely develop an accessibility
architecture for disabled people, here we only focus on the analysis and design steps
of the project, in particular in the performance assessment carried out. The basis for
the assessment is to explore the feasibility of deploying this architecture in environ-
ments with a large number of concurrent users. Early performance assessment for the
system architecture is highly desirable to prevent underperformance during system
deployment.

For achieving this performance assessment of the software architecture, we have
followed our proposed methodology, detailed in Chapter 4, based on the principles
of Software Performance Engineering (SPE) (Smith, 1990). Nevertheless, the perfor-
mance assessment was intricate, due to several reasons:

• INREDIS is a very large system, various developing teams of tens of people were
involved.

• Technologies were new for these teams. So, it was unknown how to capitalize
these technologies for system performance maximization.

• Being the product targeted to people with special needs, performance require-
ments may differ from the habitual ones.

5.2. An Interoperable Architecture 109

• We expected to deploy the system in various settings, most of them not yet
completely defined. For example, hotels or facilities where hundreds of users
could leverage the system.

Performance evaluation of software systems has been traditionally accomplished
after deployment. This is the well-known fix-it later approach and it has well-known
problems (Smith, 1990). For example, the cost of re-architecting, re-implementing
and re-deploying the system when performance goals are not fulfilled. Also the over-
budget for being out of schedule as Woodside et al. (2007) described. Moreover, our
project had specific reasons for rejecting the fix it later approach:

• Although the operative versions of the system should be deployed at the very
end of the project, we needed to deploy prototypes at the beginning of the
project, for users experimentation.

• We needed to experiment with the potential environments previously referred.
So, to gain some insight about their potential system performance. Otherwise,
successful implementations in real deployments could not be reused in potential
environments, which could imply to start a new project for each new deploy-
ment.

We have applied the methodology at software architecture design level. In fact,
architecture design is a crucial part of the software design process, where decisions
about which software elements will make up the system and their relationships are
taken. In the SPE field, architecture design is recognized as an asset for performance
assessment.

5.2 An Interoperable Architecture

The INREDIS architecture further develops the idea of Universal Control Hub (UCH)
proposed by Zimmermann and Vanderheiden (2007), see Section 3.3 for its description
and performance analysis. Its rationale is that a person with its adapted device
(e.g., smartphone, PDA or universal controller) should be able to interact and control
different devices (television, door locks, ATMs, and a long etcetera), as well as external
software services. For instance, a blind person can control the washing machine (target
device), by means of his/her mobile phone (controller device). The controller device
allows to introduce assistive technologies to bridge the gap between the user and the
target device.

The INREDIS architecture was conceived as a universal solution capable to pro-
vide disabled and elderly people with accessible and personalized interfaces according
to their preferences and needs. Consequently, the architecture was designed for a
general purpose context of use. Nevertheless, some running prototypes were built for
different environments, covering a wide range of real world scenarios, among them
leisure services (location and purchase tickets for events), smart home (Sainz et al.,
2011), urban networking (Giménez et al., 2012), social networks (Murua et al., 2011),

110 5. Industrial Case Study: An Interoperable Architecture

eGoverment (Alvargonzález et al., 2010) and banking services (ATMs) (Pous et al.,
2012). While users with functional diversity are able to fully exploit the architecture
capabilities, “any” user should be able to obtain benefits when using the system (e.g.,
using their mobiles as universal remote controllers in the smart environment).

The most important components of the INREDIS architecture are depicted in the
UML Deployment Diagram in Figure 5.1. Recall that the grey notes in the UML
diagrams are performance annotations which were explained in Chapter 4.

• Knowledge Base (KB in Figure 5.1). It stores ontologies and instances sets
that provide formal descriptions of the elements in the INREDIS domain (e.g.
user, assistive software instances, devices, software, etc.). The KB also stores the
terminology and a collection of rules. It also provides mechanisms for reasoning
with each of these type of knowledge and allows querying all the instances set
using SPARQL (Prud’hommeaux and Seaborne, 2006).

• Adaptive Modelling Server (AMS in Figure 5.1). It keeps updated the KB
content using information from different and heterogeneous sources (application
context, user interaction logs or complex events processing).

• Assistive Technology Server (ATS server in Figure 5.1). It provides au-
tomatic discovery and configuration of assistive technologies, in a smart and
transparent fashion reducing the existing accessibility gap that may exist be-
tween the users and their universal controller device.

• Interface Generator (IG in Figure 5.1). It adapts interfaces expressed in
a generic and abstract language, a subset of the User Interface Markup Lan-
guage (UIML) (Phanouriou, 2000), into concrete utilizable and accessible ones
(implemented in XHTML (W3C, 2010)). This activity is made in terms of the
user characteristics, the device capabilities and the context. All this is possible
using the reasoning capabilities provided by the KB.

The main processes performed by the INREDIS architecture are pictured by the
UML Interaction Overview diagram (IOD) in Figure 5.2. In the following we sum-
marized them.

• First Interaction. It consists in the creation of the initial interface that acts
as the access medium to the environment for the user. In the generation of such
interface the system must take into consideration the relevant set of devices
and services for the user (the INREDIS perimeter) and their state (without
forgetting the special needs of the user). This process involves an interface
generation subprocess, for building an accessible XHTML interface, and the
determination of the set of assistive software instances that permit the user to
interact which such interface.

• Navigation. Once the user has selected the device or service to interact with,
the navigation process starts. Devices and services are defined by complex multi-
staged interface descriptions that users can navigate. Through navigation, we

5.2. An Interoperable Architecture 111

<
<

g
a

E
xe

cH
o

st
>

>
A

T
 S

e
rv

e
r

<
<

g
a

E
xe

cH
o

st
>

>
U

se
r

D
e

v
ic

e
 P

ro
ce

ss
o

r

<
<

g
a

C
o

m
m

H
o

st
>

>
 n

e
tw

o
rk

<
<

g
a

E
xe

cH
o

st
>

>
S

e
rv

e
r

P
ro

ce
ss

o
r

A
T

S
U

I
K

B

Ta
rg

e
t

D
e

v
ic

e

In
fo

 E
x
te

rn
a

l
S

e
rv

ic
e

s

Ta
rg

e
t

A
M

S

IG

G
e

n
e

ra
to

r

D
e

ci
so

r
In

i!
a

l
C

re
a

to
r

In
je

ct
o

r

C
o

n
te

x
t

A
d

a
p

to
r

C
o

n
ta

in
e

r

<
<

g
a

E
xe

cH
o

st
>

>
Ta

rg
e

t
P

ro
ce

ss
o

r

C
o

re
O

rc
h

e
st

a
to

r

W
e

b
A

p
p

S
ta

r!
n

g
P

o
in

t
S

e
rv

le
t

In
te

ra
c!

o
n

 E
n

a
ct

e
r

<
<

g
a

E
xe

cH
o

st
>

>
W

e
b

 S
e

rv
ic

e
 P

ro
ce

ss
o

r

in
te

ro
p

G
a

te
w

a
yU

C
H

W
e

b
 S

e
rv

ic
e

A
S

S
M

<
<

d
e

p
lo

y
>

>

<
<

d
e

p
lo

y
>

>

<
<

d
e

p
lo

y
>

>
<

<
d

e
p

lo
y

>
>

<
<

d
e

p
lo

y
>

>
<

<
d

e
p

lo
y

>
>

<
<

d
e

p
lo

y
>

>
<

<
d

e
p

lo
y

>
>

<
<

d
e

p
lo

y
>

>
<

<
st

o
ra

g
e

R
e

so
u

rc
e

>
>

{r

e
sM

u
lt

=
$

p
K

B
}

<
<

re
so

u
rc

e
>

>

{r
e

sM
u

lt
=

$
p

A
T

S
}

<
<

re
so

u
rc

e
>

>

{r
e

sM
u

lt
=

$
p

A
M

S
}

<
<

g
a

E
xe

cH
o

st
>

>

{r
e

sM
u

lt
=

$
p

in
te

ro
p

G
a

te
w

a
y

}

<
<

re
so

u
rc

e
>

>

{r
e

sM
u

lt
=

$
p

U
C

H
}

<
<

re
so

u
rc

e
>

>

{r
e

sM
u

lt
=

$
p

W
S

}

Figure 5.1: UML Deployment Diagram of the INREDIS Interoperable Architecture

112 5. Industrial Case Study: An Interoperable Architecture

simplify the information offered at a time to the user and we allow complex
conversations with the device.

• Device interaction. When user navigation ends, or when the user performs
certain actions in the device interface, interactions with the end device occur.
The architecture supports interactions with devices either as a UCH Target or
as a Web service transparently.

• Back to top. The user can at any moment reset its interaction with the
device, going back to the first interface that the device offers. An updated
initial interface of the device must be rendered again.

performance scenario

[interac�ng][back]

ref
First Interac�on

ref
Naviga�on

[exi�ng]

ref
Back To Top

ref
Device Interac�on

<<gaWorkloadEvent>>
{pa!ern=(closed(popula�on = $NUser))}

<<gaScenario>>
{respT=(expr=$RT,unit=’s’,statQ=mean,source=req)}

Figure 5.2: UML Interaction Overview Diagram of the main processes of the architecture

These processes can be summarized with the following example: A user wants to
turn the TV at home on. Firstly, the user logins with his/her nickname and password
using his/her mobile phone (device controller). A screenshot with the available devices
and services, grouped by environment, is displayed (First Interaction), e.g. it
appears “Smart Home”, “Products and Services” and “Health Care”, among others.
These devices and services depend on the user’s location. The user navigates through
the screenshots until s/he identifies the device or service that s/he wants to control
(Navigation); for instance, in the “Smart Home” display, s/he selects “TV set”

5.2. An Interoperable Architecture 113

(target device) and “Turn on/Turn off” options. S/he turns on the TV (Device
Interaction) and waits for the notification of the new status. Finally, s/he comes
back to the first screenshot in order to interact with other device or service (Back to
top). Obviously, all the screenshots must be accessible and adapted to the specific
needs and preferences of this user.

Besides of these processes, special attention deserves the Assistive Software Selec-
tion Mechanism (ASSM). The ASSM makes the environment able to automatically
select the most suitable assistive technologies provided by the ATS component. It
considers possible discrepancies between the user and the environment, namely in the
case of functional diversity. The ASSM can work as an integrated component of the
INREDIS architecture, as well as a stand alone service.

Each of these four processes and the ASSM are carefully explained in the following
sections, which describe the behaviour of the system and make up the design of the
INREDIS architecture. Since the design of the architecture is the cornerstone for
performance evaluation, the performance engineer needs to use these diagrams in
his/her work, as we later describe.

Finally, although we exclusively focus on the analysis and design stages of the
INREDIS architecture, it is worth mentioning that the actual architecture implemen-
tation and the development of some target devices and services was carried out by all
the INREDIS Consortium (2010b) partners cooperatively.

5.2.1 First Interaction Scenario

First Interaction, depicted in the UML Sequence Diagram (SD) in Figure 5.3, consists
in the creation of the INREDIS initial interface, which acts as the access medium to
the environment for the user. It lists all the available devices and services along with
their current state and related information; and allows the user to select which one
she wants to interact with.

Its creation involves two processes detailed in the following sections:

• The calculation of the INREDIS parameter for that concrete user (Perimeter
Calculation).

• The generation of the initial interface in terms of this newly calculated perimeter
(Initial Interface Generation).

Perimeter Calculation Process

The user perimeter represents the list of devices and services available to the user in
a given moment. This kind of information is stored in the KB, but its calculation
is made by the AMS. This module makes the necessary updates in the KB, keeping
updated the situation of the user, the state of the surrounding devices, and the current
state and information of the available services. Figure 5.4 shows the SD describing
this process.

This task involves the following steps: First it must update the current location
of the user. It starts with the setAbsoluteLocation() method that updates the

114 5. Industrial Case Study: An Interoperable Architecture

sd First Interac�on

 : Servlet
<<control>>

 : UI
<<boundary>>

 : Star�ngPoint
<<control>>

 : interfaceGenerator
<<control>>

 : AMS
<<control>>

ini�ate()

initInredis()

requestProcess()

finalInterface

ref

Ini�al Interface Genera�on

setAbsoluteLoca�on()
ref

Perimeter Calcula�on

getIni�alInterface()

Interface

absoluteLoca�on

<<gaCommStep>>
{hostDemand=(65.7,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{msgSize=((value=$s1,unit=Mb,statQ=min),
 (value=$s2,unit=Mb,statQ=max))

<<gaStep>>
{hostDemand=(18.00,unit=ms,

statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.6,unit=ms,
statQ=mean,source=meas)}

Figure 5.3: UML Sequence Diagram representing the user’s first interaction

information about the user in the KB. After setting the current location of the user,
the AMS updates the current status of each device in the user’s INREDIS perime-
ter. It first requests the list of device and services in the user’s perimeter (the KB
getUserPerimeterServices() method) and for each of these devices:

• It requests to the Interoperability Gateway module the current state of each
device (the getState() method). The Interoperability Gateway obtains this
information no matter whether the device is exposed as a Web service or for
UCH Target in a transparent fashion.

• It updates their current state on the KB accordingly (the KB setState()

method).

A similar process is performed for the services in the user’s INREDIS parameter:

• It requests to the services in the perimeter information about their current state
(the getServiceInfo() method).

• It updates the current state of the KB accordingly (the KB setState()

method).

5.2. An Interoperable Architecture 115

sd Perimeter Calcula�on

 : AMS
<<control>>

 : KB
<<control>>

 : Servlet
<<control>>

 : InteroperabilityGateway
<<control>>

 : Info External Services
<<control>>

TargetDevice
<<boundary>>

setAbsoluteLoca�on()

ServiceList

getState()

setState()

getServiceInfo()

setAmbient()

setValue()
alt

[isUCHTarget]

[isWS]

invokeWS()

for each serviceloop

for each targetloop

setAbsoluteLoca�on()

getUserPerimeterServices()

<<gaCommStep>>
{hostDemand=(258.6,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(81,96,unit=ms,

statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=Target,resUnits=1}

<<gaAcqStep>>
{relRes=Target,resUnits=1}

<<gaStep>>
{hostDemand=(257.6,unit=ms,

statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=WS,resUnits=1}

<<gaAcqStep>>
{relRes=WS,resUnits=1}

<<gaCommStep>>
{hostDemand=(1.27,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(269.5,unit=ms,

statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(11.9,unit=ms,statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(15.5,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(65.7,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=AMS,resUnits=1}

<<gaAcqStep>>
{relRes=AMS,resUnits=1}

<<gaAcqStep>>
{acqRes=interopGateway,resUnits=1}

<<gaAcqStep>>
{relRes=interopGateway,resUnits=1}

<<gaAcqStep>>
{acqRes=infoExternal,resUnits=1}

<<gaAcqStep>>
{relRes=infoExternal,resUnits=1}

<<gaStep>>
{prob=0.1}

<<gaStep>>
{prob=0.9}

Figure 5.4: UML Sequence Diagram showing the perimeter calculation process.

116 5. Industrial Case Study: An Interoperable Architecture

Initial Interface Generation Process

Once the system has ensured that the interaction is possible, the first interface is
created, see Figure 5.5.

Before creating the initial interface the system has firstly to guarantee that the
user is able to interact with its controller device. In consequence, it is necessary to
determine the assistive technology that is necessary to enable such interaction. The
ATS is the module responsible of such task; and also of determining how this software
should be configured (method AskAT()). Using the user URI (Uniform Resource
Identifier) the ATS makes queries to the KB to obtain user’s profile, which is according
to CAP (ISO/IEC, 2009). With such profile, the ATS creates the list of the necessary
assistive technology along with its configuration. The next step is the creation of the
interface generator context where the variables are stored, such as the user URI, the
controller device URI, navigation graph and its variables. Now the initial interface
is created. As we have stated, in order to define interfaces we use a set of UIML
interfaces. The case of the initial interface is no exception, but instead of having
a static UIML document, in the case of the first interaction the UIML interface
definition is generated, a UIML document that contains all the available devices and
services, allowing the user to choose among of them. The Generator module, the
module that generates the UIML documents, delegates the creation of such interface
to the Initial Creator module.

The Initial Creator creates what we refer as an abstract interface. It is a UIML
document that still includes some context-dependent variables that have not been sub-
stituted, and a set of initialization rules that have not been performed. Such interfaces
are made concrete by the Injector module (method concretizeInterfaze()). This
module executes the initialization rules and retrieves context related values from the
IG context.

Once the UIML interface has been made concrete, it is time to determine the pro-
cess that transforms this UIML document into an accessible XHTML user interface.
For that we use a collection of XSLT transformations that address different UIML
components and users special needs, which after being applied to the UIML document
translate it into an XHTML document tailored to user concrete needs. The Decisor
module of the Interface Generator in charge of determining the set of transforma-
tions (chooseAdaptationTransformation() method). It does so by communicating
with the KB (getTransformations() method) that given a user URI and the user’s
controller URI determines which is the proper transformation to be applied. The
selection of this transformation takes into account many orthogonal aspects, such
as user’s special needs, preferences and the controller interaction capabilities, see
(González-Cabero, 2010).

Once the concrete UIML interface has been generated and the proper XSLT trans-
formations have been selected, there are a set of parameters that are needed to tailor
the transformations. We call them the adaptation parameters, and they include the
final interface language and other lower-level implementation topics. They are deter-
mined in an analogous manner to what we did for selecting the XSLT transformation.

The Decisor module (chooseAdaptationParameters() method) gathers such in-

5.2. An Interoperable Architecture 117

sd Ini�al Interface Genera�on

 : KB
<<control>>

 : interfaceGenerator
<<control>>

 : Adaptor
<<control>>

 : ATS
<<control>>

 :Container
<<control>>

 : Injector
<<control>>

 : Context
<<control>>

 : Generator
<<control>>

 : Ini�alCreator
<<control>>

 : Servlet
<<control>>

 : Decisor
<<control>>

getIni�alInterface()

AskAT()

getProfiles()

profiles
configATList

chooseAdapta�onTransforma�on()

getTransforma�ons()

transforma�ons

adapta�ons

adaptIni�alInterface()

Interface

applyATTransforma�on()

finalInterface
finalInterface

getUserPerimeterServices()

devicesPerimeter

getInterac�onGeneratorContext()

<<create>>

context()
generateInterface()

generateInterface()

abstractInterface

concre�zeInterface()

concreteInterface

chooseAdapta�onParameters()

getUser()

userInstance

parameters

adaptedInterface

getIni�alInterface()

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(166.6,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(34.14,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(1.6,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(199.6,unit=ms,

statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(6.4,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(969,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(27.8,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(3.4,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(10.6,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(9.6,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(1.6,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=ATS,resUnits=1}

<<gaAcqStep>>
{relRes=ATS,resUnits=1}

Figure 5.5: UML Sequence Diagram modeling the Initial Interface Generation process.

118 5. Industrial Case Study: An Interoperable Architecture

formation asking to the KB for information about the user, and it also takes into ac-
count information contained in the IG context. Once the IG posses all the necessary
information (i.e., the initial interface as a concrete UIML interface, the set of transfor-
mations, and the adaptation parameters) it invokes the adaptInitialInterface()

method of the Adaptor module. It returns the XHTML document that represents
the initial user interface.

Finally, there may be some transformations that must be applied to the ini-
tial interface XHTML document that stem from the set of assistive software pro-
vided and configured by the ATS. They are applied by the Adaptor module (the
applyATTransformation() method). After these transformations have been applied,
the final version of the interface has been created and can be delivered to the user’s
controller device.

5.2.2 Navigation Scenario

As we have already stated users interaction with a device often implies navigating
through different atomic interfaces. Figure 5.6 shows the SD of the Navigation process.

sd Naviga�on

<<boundary>>
UI

<<control>>
:Star�ngPoint

<<control>>
:Interac�onEnacter

<<control>>
:Servlet

<<control>>
:IntefaceGenerator

navigate

finalInterface

initInterac�onEnacter()
requestProcess()

inredis()

ack

getInterface()

interface
Interface Genera�on

ref

<<gaCommStep>>
{msgSize=((value=$1,unit=B,statQ=min),

(value=$2,unit=B,statQ=max))}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(16.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(62.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(34.5,unit=ms,
statQ=mean,source=meas)}

Figure 5.6: UML Sequence Diagram modeling a simple navigation

The interaction starts with the interface requesting a navigation to the Starting
Point that acts as a gateway between the user interface and the system. The Inter-
action Enacter is the module that handles the navigation between interfaces. It is
so because the Navigation activity is considered a subclass of the Device Interaction
activity, as from a user perspective, the kind of buttons that perform device interac-
tion activities are the same as those that allow the user navigate within the complex
interface. In the request Interaction Enacter accesses to the navigation graph of the
complex interface and determines which is the next interface that should be gener-

5.2. An Interoperable Architecture 119

ated. This information is stored in the context of the IG. Finally, a new interface
generation process starts. As the context of the IG has been updated with the next
interface to be rendered, this is the one that is rendered.

Interface Generation Process

INREDIS devices UIML interfaces are composed of two types of documents:

• Views, a set of UIML documents that describe structure and its interaction
elements of each atomic interface. As described in Abrams et al. (1999), the
use of UIML allows the abstract and platform-independent definition of user
interfaces.

• Navigability graph, which defines the how and on what conditions the complex
interfaces navigates throw the different views. Only one view at a time is shown,
we refer to it as the current view.

Generating an interface for a user means to transform the current view of an
interface into an accessible XHTML document taking into account the characteristics
of the user and the needed assistive technology. Most part of the process, depicted
in Figure 5.7, is identical to the one defined for the first interaction. The difference
is that this process does not adapt the initial interface, but it transforms the current
view of the device interface that the user is using at present (which like in the case
of the initial interface created by the Initial Creator is an abstract UIML interface).

The first part of the diagram, the one related with the detection of accessibil-
ity gaps and the determination of the necessary assistive technology, is the same
as the one defined for the first interaction with the INREDIS system. When
the Generator module receives the petition of generating an interface by means of
the generateInterface() module the first step is to determine which is the cur-
rent view of the interface. This information is stored in the context of the IG
(getCurrentView() method). The current view is a URL that points to the location
of the abstract UIML document that should be used as the starting point of the final
user interface. The Generator module invokes the retrieveXMLSource() method of
the helper class Resource Manager, and retrieves an abstract UIML interface.

The rest of the steps of the generation of the interface are exactly as the ones
described for the first interaction. Instead of using the abstract UIML interface cre-
ated by the Initial Creator, they use the abstract UIML interface retrieved by the
Resource Manager from the interface current view URL.

5.2.3 Device Interaction Scenario

The interactions with devices, and services are realized by the Interaction Enacter,
see the SD in Figure 5.8.

This module once initialized executes the action involved in the device/service
interaction. In order to do so it invokes the executeAction() method of the

120 5. Industrial Case Study: An Interoperable Architecture

sd Interface Genera�on

 : KB
<<control>>

 : Servlet
<<control>>

 : Interface Generator
<<control>>

 : Adaptor
<<control>>

 : ATS
<<control>>

 : Decisor
<<control>>

 :Container
<<control>>

 : Injector
<<control>>

 : Context
<<control>>

 : Generator
<<control>>

 :ResourceManager
<<control>>

getInterface()

AskAT()

getProfiles()

profiles
configATList

chooseAdapta�onTransforma�on()

getTransforma�ons()

transforma�ons

adapta�ons

applyATTransforma�on()

finalInterface

finalInterface

getInterac�onGeneratorContext()

generateInterface()

getCurrentView()

abstractInterfaceURL
retrieveXMLSource()

abstractInterface

concre�zeInterface()

injectContextVariables()
getA"ributeValue()

a"ributeValue

applyInitRules()

chooseAdapta�onParameter()

parameters

adaptInterface()

adaptedInterface

adaptedInterface

getUser()

userInstance

getInterface()

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(110.1,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(16.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(3.1,unit=ms,statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(2.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(0.6,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(51.1,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(6,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(1303.5,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(50.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(10,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(50.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(60.2,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(3.4,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=ATS,resUnits=1}

<<gaAcqStep>>
{relRes=ATS,resUnits=1}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=meas)}

Figure 5.7: SD modeling the Interface Generation process

5.2. An Interoperable Architecture 121

sd Device Interac�on

 : Servlet
<<control>>

 : InteroperabilityGateway
<<control>>

 : UI
<<boundary>>

 : Star�ngPoint
<<control>>

 : Interac�onEnacter
<<control>>

TargetDevice
<<boundary>>

 : Orchestator
<<control>>

DoInterac�on

InitInterac�onEnacter

processRequest()

executeAc�on()

setValue()

ac�onResponse

inredis()

finalInterface

ref

Interface Genera�on

alt

[isUCHTarget]

[isWS]
invokeWS()

ack

getInterface()

Interface

<<gaStep>>
{hostDemand=(13.7,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(283.7,unit=ms,

statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=(1.6,unit=ms,
statQ=mean,source=meas)}

<<gaStep>>
{hostDemand=($tuch,unit=ms,

statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=UCH,resUnits=1}

<<gaAcqStep>>
{relRes=UCH,resUnits=1}

<<gaStep>>
{hostDemand=($tws,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{acqRes=WS,resUnits=1}

<<gaAcqStep>>
{relRes=WS,resUnits=1}

<<gaCommStep>>
{msgSize=((value=$s1,unit=Mb,statQ=min),

 (value=$s2,unit=Mb,statQ=max))

<<gaStep>>
{hostDemand=(13.73,unit=ms,

statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=meas)}

<<gaAcqStep>>
{resRes=interopGateway,

resUnits=1}

<<gaAcqStep>>
{acqRes=interopGateway,

resUnits=1}

<<gaAcqStep>>
{resRes=AMS,

resUnits=1}

<<gaAcqStep>>
{acqRes=AMS,

resUnits=1}

<<gaStep>>
{prob=0.1}

<<gaStep>>
{prob=0.9}

Figure 5.8: UML Sequence Diagram representing a user’s device interaction

Interoperability Gateway, which is a class that decouples the Interaction En-
acter from the underneath technology used to interact with the device. The
executeAction() method may result in:

• setValue() method invocation, in case that the device is exposed as a UCH
target. The user interaction is translated into the change of one or more values
of the UCH Target.

• invokeWS() method invocation, in case that the device is exposed as a Web
service (or when there is no device and we are dealing with a Web service
invocation)

The result is stored in the context of the IG, for later use in case of need. Once
the interaction has been carried out, a new interface is generated (invoking the
Orchestrator method getInterface()). This new interface is generated to make
sure that it reflects the changes and latest state after the interaction with the device.

122 5. Industrial Case Study: An Interoperable Architecture

5.2.4 Back to Top Scenario

sd Back To Top

<<boundary>>
: UI

<<control>>
: Star!ngPoint

<<control>>
: Interac!onEnacter

<<control>>
: Servlet

<<control>>
: interfaceGenerator

<<control>>
: AMS

backToTop

initInterac!onEnacter()

requestProcess()

setAbsoluteLoca!on()inredis()

absoluteLoca!on
Perimeter Calcula!on

Interface Genera!on

getInterface()

interface

ack
finalInterface

ref

ref

<<gaCommStep>>

{hostDemand=(0.01,unit=ms,

statQ=mean,source=meas)}

<<gaCommStep>>

{hostDemand=(65.7,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>

{hostDemand=(23.5,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>

{hostDemand=(84.3,unit=ms,

statQ=mean,source=meas)}

<<gaStep>>

{hostDemand=(16.1,unit=ms,

statQ=mean,source=meas)}

<<gaCommStep>>

{msgSize=((value=$1,unit=B,statQ=min),

(value=$2,unit=B,statQ=max))}

Figure 5.9: UML Sequence Diagram representing the back-to-top process.

This process, illustrated in the SD of Figure 5.9, means going back to the device
initial interface.

As in the case of the navigation, the Interaction Enacter is the module that handles
the back to top process. It is so because this activity is considered a subclass of
the Device Interaction activity, as from a user perspective, the kind of buttons that
perform device interaction activities are the same as those that allow going back to
the device top interface. In order to keep all the information in the KB up-to-date we
begin updating the location of the device and we recalculate the information about
the user’s INREDIS perimeter. The next step is to generate top interface of the
device, which is made using the Interface Generation process that we have already
described in Section 5.2.2.

5.2.5 Assistive Software Selection Mechanism

Assistive technology is the hardware or software that is added or incorporated within
a system than increases accessibility for an individual, as defined in ISO (2011).

5.2. An Interoperable Architecture 123

Assistive Software (AS) is understood as a piece of software used to increase our
ability to manage some kind of information in a digital device. The Assistive Software
Selection Mechanism (ASSM) makes the environment able to automatically select
the most suitable AS for a given interaction with a specific electronic target device
taking advantage of the user’s context (user, controller device and target device) and
considering the possible discrepancies between the user and the environment, namely
in the case of functional diversity.

The ASSM uses different knowledge based on ontologies to achieve this goal, so this
process consists of five main activities, one of them split into six, see the UML Activity
Diagram in Figure 5.10. The complete AS selection mechanism (ASSM) is described
by Gómez-Mart́ınez et al. (2013b). The following is a summarized description of each
activity.

Detecting Discrepancies The first activity detects any accessibility issues that
might prevent the user from being able to use a controller. In order to detect discrep-
ancies we use a set of specific rules stored in the KB that compare the characteristics
of the interaction that the user is able to perform with those that the controller is
able to emit/receive. The complete catalogue of rules is specified by González-Cabero
(2010).

Checking Feasibility Each discrepancy found in the previous step, is analyzed to
determine whether mediation by the AS can enable the interaction. The following
activities are intended to ascertain which AS is most appropriate.

Matching by History Log When the user has already employed the system to
interact with the same target using the same context, it is possible to retrieve the
most suitable AS without further reasoning, just by querying the KB and retrieving
the matching set from the AS History.

Matching by Score This activity triggers the reasoning process where four subsets
of concepts are simultaneously queried in the KB using parallel activities. This activity
is divided into the next activities:

• Retrieve Standard Fulfillment. This activity performs an evaluation where the
best scoring AS will be those that follow worldwide accessibility standards es-
tablished by recognized accessibility entities.

• Retrieve Privacy. This activity checks that the AS complies with the data
protection measures issued by security bodies. It is important to note that,
according to many laws in different countries, when an AS complies with a data
protection act level, it also complies some data protection measures. This is
taken into account here via rules to assert those facts in the KB. This is the case
for e.g., Federal Data Protection and Information Commission of Switzerland
or Ley Orgánica de Protección de Datos in Spain.

124 5. Industrial Case Study: An Interoperable Architecture

Detec�ng discrepancies

Checking feasibility

List of AS AS

Matching by Historic Log

Sor�ng

Weighted Matching

Retrieve Standard Fullfillment

Retrieve Privacy

Retrieve Ballot

Retrieve Deploy Method

Retrieve Setup U�li�es

Matching by Score

Error

[>1]

[=1]error: [=0]

[not found]

[found]

<<gaStep>>
{prob=$p3}

<<gaStep>>
{prob=$p1}

<<gaStep>>
{hostDemand=($t4,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t5,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{prob=$p4}

<<gaStep>>
{prob=$p5}

<<gaStep>>
{hostDemand=($t6,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t7,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t8,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t1,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t2,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t9,unit=ms,

statQ=mean,source=est)}

<<gaStep>>
{hostDemand=($t10,unit=ms,

statQ=mean,source=est)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{prob=$p2}

<<gaStep>>
{hostDemand=($t3,unit=ms,

statQ=mean,source=est)}

<<gaScenario>>
{respT=(expr=$RT,unit=’s’,statQ=mean,source=req)}

<<gaWorkloadEvent>>
{pa"ern=(closed(popula�on = $NUser))}

Figure 5.10: UML Activity Diagram of the AS selection process

5.3. Applying the Assessment Methodology 125

• Retrieve Ballot. This activity increases the score for those AS with the best
user reviews. These reviews are drawn from all the system’s users but they are
not linked to any individual user, to maintain privacy about users’ functional
diversity.

• Retrieve Deploy Method. The scoring is the simplest, just to foster the use of
AS deployed as SaaS (Software as a Service).

• Retrieve Setup Utilities. This activity needs the output of Retrieve Deploy
Method, so it is not executed in parallel with the others. All of the concepts are
scored in this activity to take into account the ease of access and use of the AS.

• Weighted Matching. This is the final activity of matching by score. It focuses
on adapting the matching to the user’s preferences and the Domain Experts’
assumptions.

The user has been previously asked to state its level of importance by means
of the user profile stored in the KB. With the weighting system, all the roles
involved in the selection are taken into account (i.e., domain experts, the user,
and all system users at once using the reviews).

Sorting This is the final activity of the whole process. This activity orders the set
of AS products/services of the weighted matching activity in descending order.

The system is prepared to automatically provide the first AS in the list (i.e. the
most suitable AS for the given context). However, when the user rejects the highest-
scoring AS, the full set is presented to the user formatted as a descending-order list.
The weights used in the ASSM can evolve based on experience, while the overall of
the proposal remains fixed.

5.3 Applying the Assessment Methodology

In this section, we pursue performance results for assessing and eventually improv-
ing the INREDIS architecture. For achieving this objective, we have followed the
methodology proposed in Chapter 4 based on SPE principles (Smith, 1990).

In the following, we aim to apprise practitioners of the use of the methodology. We
offer advise by indicating how we actually applied the methodology in the INREDIS
project and which were our choices (e.g., which languages, performance models or
tools we used).

5.3.1 Performance-Oriented Design

The methodology begins by modeling the system architecture using UML diagrams.
We also address the behaviour of those scenarios of the system critical for performance.
Section 5.2 reported these two first tasks of this step for our software architecture
describing the UML design of the system. In particular, the architectural description

126 5. Industrial Case Study: An Interoperable Architecture

has a focus on the behavioural view, which is of primary importance for performance
assessment.

The overall architecture was presented in the UML Deployment Diagram in Fig-
ure 5.1. The IOD in Figure 5.2 defines a general system scenario made of four sub-
scenarios, each one describing a part of the system behaviour.

Following the methodology based on SPE principles, we now introduce the per-
formance view of the system. The usual way in SPE for introducing a performance
specification is by annotating the design diagrams. As mentioned in Chapter 4, we an-
notate the UML diagrams with MARTE profile, and use the VSL to define data-types
characterized by several properties. MARTE annotations appear as gray notes in the
UML diagrams we have presented. In the following, the most interesting annotations
are commented. They capture properties, measures and requirements of interest for
carrying out performance analysis. Section 4.2 details the performance annotations
considered in our methodology. In the following, we summarize some of them in the
INREDIS architecture:

• The response time has been specified in the IOD in Figure 5.2, in this case
using GaScenario annotation. In this case, response time is a measure to be
calculated during analysis as indicated by source=calc. The result will be gath-
ered in variable $RT . The unit of measurement are seconds and the statistical
measure is a mean.

• workload has been specified in the IOD in Figure 5.2 using GaWorkloadEvent
annotation. This is a closed workload, then specifying the number of concurrent
users in the system through variable $NUsers in VSL.

• Host demands represents the system duration of the activities. In our archi-
tecture, they have been measured in the testing phase by the software engineers.
Figure 5.3 offers some examples.

• An example of routing rates is depicted in Figure 5.4 by means of the prob
annotation in the GaStep attached to the alternative fragments.

• System resources can be expressed in MARTE as lifelines in the UML Se-
quence Diagrams. Annotations acqRes and relRes attached to GaCommStep
specify their acquisition and release. Figure 5.4 depicts several examples,
see one of them attached to the KB lifeline. For specifying the number of sys-
tem available resources, annotation resMult in the deployment (Figure 5.1) is
used. Variables (for example $pKB or $pAMS) will allow to perform sensitive
analysis parameterizing the system with different number of resources.

5.3.2 Performance Model

Following the methodology, we need to obtain a performance model for each criti-
cal scenario that we have previously annotated. As formalism, we use Generalized
Stochastic Petri Nets (GSPN) proposed by Ajmone Marsan et al. (1995). See Sec-
tion 2.4 for an introduction of Petri nets.

5.3. Applying the Assessment Methodology 127

ini_perimeterCalcula�on

ini_getIni�alInterfaceini_firstInterac�on

getIni�alInterface

askAT

getProfiles

chooseAdapta�onTransform

getTransforma�ons

adaptIni�alInterface

setAmbient

getServiceInfo

setServiceState

getState

setAbsoluteLoca�on

getUserPerimeterServices

setAbsoluteLoca�onKB

call_perimeterCalcula�on

end_getIni�alInterface

res_KB

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

end_perimeterCalcula�on

res_AMS

acq_KB

res_KB

acq_infoExternal

acq_KB

res_interopGateway

res_KB

acq_interpGateway

isUCH

acq_UCH

acq_AMS

acq_KB

res_KB

end_firstInterac�on

invokeUCH

res_UCH

acq_WS

isWS

invokeWS

res_WS

acq_KB
request_firstInterac�on

Interac�onEnacter

res_AMS

res_KB

acq_KB

getUserPerimeter

res_KB

applyATTransforma�on

pATS

pInfoExternal

pInteropGateway

$nUsers

pUCH pWS

pAMS

pKB

end_cycle

Figure 5.11: GSPN representing First Interaction scenario.

128 5. Industrial Case Study: An Interoperable Architecture

init_doNaviga�on ini_getInterface

doNaviga�on

request_doNaviga�on

adaptTargetDeviceInterface

getTransforma�ons

getProfiles

askAT

chooseAbstractInterface

applyATTransforma�on

chooseAdapta�onTransforma�on

getInterfaceend_cycle

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

res_KB

end_getInterface

pATS

pKB

$nUsers

Figure 5.12: GSPN representing Navigation scenario.

5.3. Applying the Assessment Methodology 129

pUCH pWS

pKB

pinteropGateway

ini_deviceInterac on

getInterface

askAT

getProfiles

chooseAbstractInterface

getTransforma ons

adaptTargetDeviceInterface

setServiceState

getState

end_getInterface

res_KB

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

acq_KB

res_interopGateway

res_KB

acq_interpGateway

isUCH

acq_UCH

end_cycle

end_deviceInterac on

invokeUCH

res_UCH

acq_WS

isWS

invokeWS

res_WS

acq_KB
request_deviceInterac on

servlet_deviceInterac on

$nUsers

res_KB

applyATTransforma on

pATS

ini_getInterface

Figure 5.13: GSPN representing Device Interaction scenario.

130 5. Industrial Case Study: An Interoperable Architecture

ini_perimeterCalcula�on

ini_getInterfaceini_backToTop

getInterface

askAT

getProfiles

chooseAbstractInterface

getTransforma�ons

adaptTargetDeviceInterface

setAmbient

getServiceInfo

setServiceState

getState

setAbsoluteLoca�on

getUserPerimeterServices

setAbsoluteLoca�onKB

call_perimeterCalcula�on

end_getInterface

res_KB

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

end_perimeterCalcula�on

res_AMS

acq_KB

res_KB

acq_infoExternal

acq_KB

res_interopGateway

res_KB

acq_interpGateway

isUCH

acq_UCH

acq_AMS

acq_KB

res_KB

end_cycle

end_backToTop

invokeUCH

res_UCH

acq_WS

isWS

invokeWS

res_WS

acq_KB
request_backToTop

Interac�onEnacter

$nUsers

res_KB

applyATTransforma�on

pATS

pInfoExternal

pWSpUCH

pInteropGateway

pAMS

pKB

Figure 5.14: GSPN representing Back To Top scenario.

5.3. Applying the Assessment Methodology 131

in
it

W
(t
)=
t1

in
i_
d
e
te
c
n
g

in
i_
ch
e
ck
in
g

e
xe
_
d
e
te
c
n
g

W
(t
)=
p
1

W
(t
)=
p
2

e
rr
o
r

re
tu
rn
_
A
S

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

W
(t
)=
t2

e
xe
_
ch
e
ck
in
g

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

W
(t
)=
p
4

re
tu
rn
_
A
S

in
i_
h
is
to
ri
c

W
(t
)=
p
3

W
(t
)=
t3

e
xe
_
h
is
to
ri
c

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

W
(t
)=
p
5

in
i_
so
r
n
g

W
(t
)=
t1
0

e
xe
_
so
r
n
g

fi
n
a
l

p
K
B

N
U
se
rs

in
i_
w
e
ig
h
t

W
(t
)=
t9

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

fi
n
a
l_
sc
o
re

in
i_
sc
o
re

in
i_
st
a
n
d
a
rd

W
(t
)=
t4

e
xe
_
st
a
n
d
a
rd

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

in
i_
p
ri
va
cy

W
(t
)=
t5

e
xe
_
p
ri
va
cy

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

in
i_
b
a
llo
t

W
(t
)=
t6

e
xe
_
b
a
llo
t

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

in
i_
d
e
p
lo
y

W
(t
)=
t7

e
xe
_
d
e
p
lo
y

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

in
i_
se
tu
p

W
(t
)=
t8

e
xe
_
se
tu
p

a
cq
_
re
s_
K
B

re
l_
re
s_
K
B

e
xe
_
w
e
ig
h
t

e
xe
_
w
e
ig
h
t

Figure 5.15: GSPN representing the ASSM.

132 5. Industrial Case Study: An Interoperable Architecture

To translate performance-annotated UML models into GSPN, we use ArgoSPE
which translated UML diagrams into GSPNs following the methods proposed
by Bernardi and Merseguer (2007) and Distefano et al. (2011). We translated each
critical scenario and obtained the structure of a GSPN, Figure 5.11 depicts the GSPN
for the First Interaction scenario. The rest of the GSPN models of Navigation, De-
vice Interaction and Back To Top scenarios, and the ASSM obtained from the design,
appear in Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15, respectively. The
translation, although automatic, required some additional effort. So, we had to in-
troduce the representation of some performance parameters manually. Section 5.4
discusses these issues. ArgoSPE internally calls GreatSPN tool (Chiola et al., 1995)
to analyse or simulate these GSPNs in order to obtain the performance metrics in the
following step of our methodology.

5.3.3 Performance Analysis

In this step, the software engineer reviews the performance objectives, which were
defined during the design step, and carries out the analysis of the performance model.
Performance objectives are quantitative measures that can be computed in the per-
formance models. There were two important objectives in the INREDIS project:
responsiveness and scalability.

Responsiveness is a property of primary importance for software systems, so we
can build the right system but if it does not meet the expected response time it will
not be useful from the user perspective. In general, people with special needs demand
software with response times equal to people without those needs, see discussion
below. However, there is a group not so demanding, those with intellectual disabilities,
for which INREDIS is also intended. In any case, being the scope of INREDIS people
with all kind of special needs, the adapted interfaces have to be timely created, for
the user not to lose the focus.

Regarding scalability INREDIS has to be deployed in very different environments,
e.g., building automation, urban, leisure or financial. The number of concurrent users
can vary considerably, even for the same kind of environment it changes by orders of
magnitude, for example, in the building automation case we could have smart homes,
asylums, hospitals or hotels. Considering that the architecture has to be the same for
all environments, it needs to scale accordingly.

Moreover, in our methodology, we include to analyse the utilization as perfor-
mance metric. Utilization appropriately measures the effect of software as it scales in
usage (Smith and Williams, 2002b).

Therefore, the important task in this step is the analysis of the performance mod-
els, according to the performance objectives, for obtaining results. Next, we discuss
implications of performance objectives in the project and how these measures are
computed in the GSPN models.

Computation of Measures in the GSPN Models. We compute all the measures
(response time, utilization and scalability) under steady state assumption. Steady

5.3. Applying the Assessment Methodology 133

state means that the system reaches an equilibrium, so, measures obtained will con-
tinue in the future, which is a more general assumption than transient state. In a
GSPN, steady state analysis can be carried out when the net is cyclical. However,
the translation of a UML Sequence Diagram produces an acyclical GSPN, it starts
with a resource place (see in Figure 5.11, place $nUsers) and ends with a transition
for the last scenario message (see in Figure 5.11, transition end cycle). Therefore, we
need to add an arc from this last transition to the starting place, then achieving a
cyclical net (see the red arc in Figure 5.11). Now, the scenario can be analyzed under
steady state assumption.

Responsiveness

In this step, firstly we should study who/what interacts with our system. In the
case of INREDIS project, it has a Human-Computer Interaction (HCI) system, being
potential users people with special needs. Therefore, from the user’s perspective, the
response time is the number of seconds required to response to a user request. The
Usability Engineering principles, proposed by (Nielsen, 1993) establish the response
time intervals for HCI systems. They are outlined in Section 4.4.1.

Although target audience in our system has special needs, the response times
must be similar to users without those needs1 if we do not consider the time spent
by the disabled people to operate the target device. Then, in our architecture, all
the expected response times should be within these intervals. Pragmatically, we will
assume quantities around ten seconds as acceptable response times. Nevertheless, we
know that response time may also depend on the kind of impairment the user has
and on the kind of target device or service the user wants to control. For example,
elderly people could request commands in their personal telecare device at a rate of
few seconds. However, for a blind person it could last much more time to operate for
instance the washing machine. On the other hand, it is important to note that slow
response times could prove frustrating for a person with cognitive disabilities, it also
has serious consequences for the system usability.

Scalability

As discussed at the beginning of Section 5.3.3, depending on the environment, the
number of potential users of the INREDIS architecture could be small (e.g. smart
home) or large (e.g. intelligent buildings, public banking). Furthermore, in an em-
bedded system, as our architecture, the scalability is not only conditioned by the
number of users but also for the internal demand of resources and services. As such,
the execution context is also crucial for scaling up the system. Note that differently
from other INREDIS modules, the ASSM is exclusively used by impaired people when
it works as a stand-alone service; otherwise, the ASSM is executed only once in the
context of INREDIS architecture.

1For example, blind people interact with tactile interfaces by means of an immediate audible
feedback.

134 5. Industrial Case Study: An Interoperable Architecture

Although implementations in large environments are not accomplished yet in
INREDIS, we strive for evaluating the scalability of the architecture also in these
contexts. On the other hand, our architecture considers not only physical devices,
but also software services available on the Internet. Therefore, to cover all these
cases, the system must support requests from a large number concurrent users. We
will parameterize such number through the system workload, taking into account
that currently around 10 per cent of the total world population live with a disability,
according to United Nations2.

Utilization

As mentioned in Section 4.4.3, resource utilization analysis detects resource saturation
and potential bottlenecks when the system is highly populated and consequently, it
permits to tune up the resource configuration. In our project, apart from detecting
bottlenecks, it is crucial an appropriate resource utilization, since the architecture
is planned to be deployed into cloud-based infrastructures, which imply pay-per-
use services. Being each new instance of a thread independently invoiced, resource
utilization must be optimized.

Empirical Results and Validation of the Performance Models

In order to validate the architecture for running prototypes, some pivotal pieces (mod-
ules) were implemented and tested within the INREDIS project. Tests considered
diverse users disabilities, preferences and profiles. Catalán and Catalán (2010) tested
the architecture experimentally, by using a set of user controlled tests. The main chal-
lenge was to measure the satisfaction of the user experience with diverse interaction
modes of services and devices for people with special needs. This level of satisfaction
included usability aspects as well as performance objectives. Additional experimental
results can be found in INREDIS Consortium (2010a).

As described in Section 5.2, the main modules making up the INREDIS architec-
ture are: Interface Generator, Knowledge Base, Assistive Technology Server (ATS)
and Adaptive Modelling Server (AMS). For experimental evaluation, only the Inter-
face Generator module was completely implemented. The Knowledge Base module,
which stores ontologies, was very low populated, only with basic knowledge mecha-
nisms, a minimum for experimentation. The ATS and the ASSM were implemented
to support only the users profiles and interaction modes required for the tests. Finally,
the basic functionality of the AMS was implemented. These modules were executed
to carry out the four system scenarios (First Interaction, Navigation, Back To Top
and Device Interaction), depicted in Figure 5.2. The experimental tests were targeted
to analyse the responsiveness and scalability of the system. The tests were mainly
focused on interoperability and usability. Figure 5.16 shows the measured average
response times of these key performance scenarios in this user testing phase.

However, the burden of real experimentation with complex interoperable archi-
tectures, elderly people, and people with special needs, raised quickly and it greatly

2http://www.un.org/disabilities/default.asp?id=18

5.3. Applying the Assessment Methodology 135

0

1

2

3

4

5

6

7

1 2 3 4 5

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac!on

Naviga!on

Device Interac!on

Back to Top

Figure 5.16: Empirical response times for a set of test users.

limited the evaluation. In this user testing phase, the number of concurrent users
never exceeded 5 due to the logistical difficulties of real experimentation, as Sainz
et al. (2011) described. On one hand, some of the users needed caregiver or ad-
ditional assistive products. On the other hand, some tests were made individually
to specifically study user interactions. Finally, the cost of the team for supporting
the experiments and the facilities (e.g. smart home) were also important issues for
carrying out more complex experimentations.

Hence, experimentation problems and limitations of real implementations advo-
cated the use of models, specially in these initial phases of the system life-cycle.
Models can represent the system in a variety of hypothetical situations and can per-
form analysis at a lower cost. SPE, as summarized in Section 4.5, offers techniques
and tools that can overcome these problems.

We then reproduced these experiments using the performance models obtained
by the second step of the methodology. We got the results in Figure 5.17. Note
that using models we obtained results for one hundred users, which was enough for
our purposes. We could have obtained results for larger populations using the same
GSPN models by changing the workload. Table 5.1 compares for each scenario the
results obtained in real experimentation (Real rows) with those obtained by our GSPN
models (Model rows). We appreciate that differences (Var. rows) between our models
and real experimentation are around a five percent in most cases, differences never
went beyond ten percent, except for the Device Interaction scenario in the case of
three concurrent users. In this latter case, we assume that the variation might be
caused by the accuracy level in the computation of the GSPN models. Moreover,
we observed that tendencies in the graphs were similar. So, we can assume that our
performance models can be useful to address experiments initially not feasible to carry
out with the real implementations.

136 5. Industrial Case Study: An Interoperable Architecture

0

10

20

30

40

50

60

70

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac!on

Naviga!on

Device Interac!on

Back to Top

Figure 5.17: Response times for concurrent users using models.

Table 5.1: INREDIS: Results in seconds for each performance scenario

Number of users

Scenario 1 2 3 4 5 10 50 100

First Real 1.983 2.644 3.966 5.287 6.609 NE NE NE

Interaction Model 1.841 2.674 3.776 4.912 6.210 7.212 28.229 58.231

Var. ≃ 5% < 5% ≃ 5% > 5% > 5% - - -

Navigation Real 0.945 1.260 1.891 2.521 3.151 NE NE NE

Model 0.875 1.130 1.684 2.338 2.793 3.109 3.520 4.470

Var. > 5% ≃ 10% ≃ 10% ≃ 10% ≃ 10% - - -

Device Real 1.732 2.310 3.465 4.619 5.774 NE NE NE

Interaction Model 1.808 2.351 2.994 3.937 3.380 4.752 11.114 17.648

Var. ≃ 5% ≃ > 10% ≃ 10% ≃ 10% - - -

Back to Real 1.596 1.679 2.519 3.359 4.199 NE NE NE

Top Model 1.497 2.121 2.745 3.369 3.993 6.488 27.013 54.093

Var. ≃ 5% ≃ 10% > 5% ≃ < 5% - - -

NE - The experiment could not be carried out

5.3. Applying the Assessment Methodology 137

Due to the fact that ASSM can work independent of the rest of the INREDIS
architecture, responding external requests, we also validate the analysis of its response
times before its implementation, examining the behaviour when the number of users
increased. Table 5.2 summarizes the probability rates, which are also annotated in
the UML Activity Diagram shown in Figure 5.10.

Table 5.2: Probability rates in the UML Activity Diagram of ASSM.

Parameter Probability

Checking feasibility = 0 p1 0.1

Checking feasibility = 1 p2 0.3

Checking feasibility > 1 p3 0.6

Matching by History Log = found p4 0.7

Matching by History Log = notfound p5 0.3

Figure 5.18 depicts the response times for the ASSM obtained in the user testing
phase. Remark that the knowledge base of the ASSM is populated with only ten AS,
we analyse this issue later in Section 5.3.4.

R
e

sp
o

n
se

 T
im

e
 (

m
s)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Number of users

ASSM

Figure 5.18: Empirical response times for the ASSM for a set of test users

The results of the simulation showed that for a large number of impaired peo-
ple concurrently using the ASSM the design behaves extremely well, responding in
less than two milliseconds. Furthermore, the results for one hundred users can be
considered a success since the response time is around six milliseconds. Figure 5.19
summarizes these results graphically. It is important here to remember that the ASSM
is executed only once in the context of INREDIS architecture. On the other hand,
these results directly depend on the underlying KB system, as observed by (Liang

138 5. Industrial Case Study: An Interoperable Architecture

et al., 2009).
R

e
sp

o
n

se
 T

im
e

 (
m

s)

0

1

2

3

4

5

6

ASSM

1 10 20 30 40 50 60 70 80 90 100

Number of users

Figure 5.19: Response times of the ASSM using performance models

These experimental results were later compared with those obtained with the real
implementation. As occurred with other INREDIS modules, differences accounted for
less than ten percent. Hence, we considered our performance model to be validated
and so it can be used to test the system in hypothetical situations in which it can
be difficult or expensive to carry out experiments. For example, now we can forecast
the behaviour of the ASSM when used by 1000 users, which could be a very difficult
experiment with the real system. Indeed, the deployed ASSM has been only proved
by 8 people simultaneously. For this case the response time obtained with GreatSPN
was 48 milliseconds.

Discussion of the Results: Performance View

First, we note that, as requested in Section 5.3.3, the experiments (both, real and
GSPN) did not consider the time spent by the disabled people, neither the time to
operate the target device or service. Note that this issue is not a limitation to evaluate
the architecture.

The discussion about what could be considered a good response time was intro-
duced in Section 5.3.3 from the Usability Engineering point of view (Nielsen, 1993).
Pragmatically, we decided that quantities around ten seconds could be considered as
acceptable response times. From results in Figure 5.17, we observe that both Device
Interaction and Navigation scenarios have acceptable response times. The Navigation
scenario never goes beyond six seconds, while the Device Interaction scenario is below
ten seconds until it reaches forty concurrent users. However, Back To Top and First
Interaction scenarios perform poorly. The reason is that both of them must calculate
the user context perimeter, which depends on the number of devices or services, and
their corresponding available operations. Therefore, our assessment loop, developed
in Chapter 4, concentrates on how to decrease response in these scenarios mainly.

5.3. Applying the Assessment Methodology 139

5.3.4 Performance Assessment

Alternatives discussed in our methodology, in Section 4.5, for improving responsive-
ness were: resource replication (using utilization resource analysis) and application of
performance patterns and antipatterns. In the following, we conduct the study follow-
ing these alternatives for getting an “optimal system configuration” for the INREDIS
Interoperable Architecture.

Resource Replication

Resource utilization analysis detects those resources/tasks, which would be potential
system bottlenecks. We recall that resources are represented: a) in the UML Se-
quence Diagrams by life-lines, b) in the GSPN by shared places, highlighted in red
in Figures. Section 4.4.3 explained how we compute utilization in the GSPNs. Our
analysis considered that some resources were shared between several scenarios (e.g.,
the Adaptive Modelling Server (AMS), which appears in the Back To Top and in the
First Interaction scenarios).

Then, for each of the four key scenarios, we obtained the utilization of all re-
sources involved. However, Figure 5.20 depicts only the utilization of some resources,
to avoid cluttering. As we can observe, in the First Interaction and Back To Top
scenarios, both Interoperability Gateway and AMS resources are highly saturated,
with maximum utilizations of 94% and 98% respectively.

We replicated resources (added threads) for the AMS and the Interoperability
Gateway and computed response times for the Back To Top scenario. Figure 5.21
presents results obtained for the case of 50 users (which is representative of all the ex-
periments we performed). We can observe that the response time does not improve, it
is around 30 seconds, same as in Figure 5.17 where no replication was introduced. We
thought that saturation could be caused not only because of these resources. There-
fore, we computed resource utilizations, for all the possible multithreading situations,
in the Back To Top scenario.

Figure 5.22 presents only a representative part of these results. It depicts the case
of 50 users, with a variable number of threads of the Interoperability Gateway and
the AMS, for the rest of the resources it considers one thread only. As observed, the
AMS and the Interoperability Gateway are no longer saturated. However, the Target
Service/Device becomes saturated. This resource, although not initially considered,
appears in different scenarios, e.g. Device Interaction (in Figure 5.8) or Perimeter
Calculation (in Figure 5.4).

We performed all the experiments again, from one to one hundred users, in the
Back To Top scenario. In this case, replicating threads for the AMS, the Interoper-
ability Gateway and the Target Service/Device. Figure 5.23 shows the results for the
case of 50 concurrent users. Now, the response time has reached an acceptable thresh-
old according to the usability principles, around 5 seconds in the best situations. We
perform experiments, although not depicted in the figure, and observed that, from 30
threads on, the system did not perform better.

Finally, once we had identified all critical resources (AMS, IG and Target Ser-

140 5. Industrial Case Study: An Interoperable Architecture

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U

liz
a

o

n

Number of Users

First Interac�on

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U

liz
a

o

n
Number of Users

Naviga�on

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U

liz
a

o

n

Number of Users

Device Interac�on

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U

liz
a

o

n

Number of Users

Back To Top

KB ATS AMS Interoperability Gateway Target Service/Device

Figure 5.20: Resource utilization of each key scenario.

vice/Device), we replicated them, according to our investigations, and computed re-
sponse times in all the scenarios. Figure 5.24 presents these results, it shows that the
response times have significantly improved.

Performance Patterns

Although the results obtained satisfied the usability principles, our objective, at this
stage, was to discover whether we could improve system responsiveness and scalability.
We then aim at applying some performance patterns to the architecture design. We
used the algorithm proposed by (Bergenti and Poggi, 2000) and applied it throughout
the architecture. As a result, we found that the Fast Path performance pattern could
be applied for improving the Perimeter Calculation process, one of the processes
most used in the system. In fact, this pattern caters to the centering principle, which
means to focus attention on the performance of the scenarios that are exercised the
most or have large performance impact. The Fast Path pattern was summarized in

5.3. Applying the Assessment Methodology 141

151015202530

5
10

15
20

25

0

5

10

15

20

25

30

AMS
threads

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Interoperability Gateway
threads

Figure 5.21: Response times when multithreading AMS and Interoperability Gateway.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
�

liz
a

�
o

n

Number of Threads

Knowledge Base

ATS

AMS

Interoperability

Gateway

Target Service/Device

1 5 10 15 20 25

Figure 5.22: Resource utilization when threading Interoperability Gateway and AMS.

Section 4.5.2.

Perimeter Calculation, depicted in Figure 5.4, is a process used by the First Inter-
action and Back To Top scenarios, which were compromising system responsiveness.
The perimeter represents the list of devices and services available and this process
updates the status of each device and service by consulting the Interoperability Gate-
way. This is shown by the two consecutive loops in the UML Sequence Diagram in

142 5. Industrial Case Study: An Interoperable Architecture

151015202530

0

5

10

15

20

25

30

5
10

15
20

25
AMS

threads

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Interoperability Gateway and WS
threads

Figure 5.23: Response times when multithreading AMS, Interoperability Gateway and

Target Service/Device.

0

1

2

3

4

5

6

7

8

9

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac!on

Naviga!on

Device Interac!on

Back to Top

Figure 5.24: Response times when multithreading AMS, Interoperability Gateway and

Target Service/Device for concurrent users.

Figure 5.4. Therefore, if the number of available devices is x and each of them has f
functionalities on average, the second loop is executed x× f times.

5.3. Applying the Assessment Methodology 143

The Fast Path can be applied here for providing an alternative execution path
which minimizes the steps of execution or dedicates more resources here than to
other scenarios. Consequently, response time should improve.

One manner to apply the Fast Path pattern in the INREDIS architecture is to
request only those functionalities that will be displayed (e.g., if a user would like to
control the air conditioning, it would be not necessary to load leisure services). In
other words, the user’s context (or locality) must be taken into account in order to
calculate the perimeter. According to the deployment tested, which had a total of 30
target devices or services and each of them had about 2 or 3 functionalities, if the
Fast Path pattern is applied, then the number of times that loops are executed is
reduced around 60% on average, which significantly reduces the response time.

We applied the Fast Path pattern in our architecture design and obtained new
performance models for the First Interaction and Back To Top scenarios.

We carried out the whole set of experiments with the new performance models, but
without taking into account the multithreading discussed in previous section, since we
wanted to know how much, by itself, the performance pattern could improve system
responsiveness. Figure 5.25 shows these results. If we compare them with those
in Figure 5.17, we observe that response times, although not fitting the usability
principles yet, are less than half.

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac�on

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Back To Top

Ini!al Model

Applying the pa"ern

Figure 5.25: Comparison of response times when applying Fast Path pattern: baseline and

new results.

Performance Antipatterns

As mentioned in Section 4.5.2, we used the logical predicates defined by Cortellessa
et al. (2012) in order to systemize the identification of performance antipatterns in
our architecture. After applying all these logical predicates, we detected The Ramp
antipattern in the ASSM, detailed in Section 5.2.5. The problem arises since the
ASSM searches incrementally in the Knowledge Base. The ASSM was completely
developed in the INREDIS project, however it was populated with only ten AS in the

144 5. Industrial Case Study: An Interoperable Architecture

testing phase3. Figure 5.18 depicts the response times obtained in the testing phase.
As mentioned in Section 4.5.3, the Ramp antipattern occurs when processing time

increases as the system is used. (Cortellessa et al., 2012) formalized it as follows:

∃OpI ∈ O |
∑

1≤t≤n |FRT (OpI, t)− FRT (OpI, t− 1)|
n

> ThOpRtV ar (5.1)

∧
∑

1≤t≤n |FT (OpI, t)− FT (OpI, t− 1)|
n

> ThOpThV ar

where:

• OpI is an operation instance whose response time increases along n time slots,

• O represents the set of all operation instances in the system,

• FRT and FT are functions that respectively compute the mean response time
and throughput of an operation instance observed in a time slot,

• ThOpRtV ar and ThOpThV ar are thresholds for the response time and throughput,
respectively.

The Ramp occurs when the average response time and throughput of the operation
increases in n consecutive time slots and the increments overmatch some predefined
thresholds.

The critical operation, in the ASSM, is the incremental search in the Knowledge
Base. The ASSM process affects all four key performance scenarios since it is called by
two subscenarios, Initial Interface Generation and Interface Generation. The former
subscenario belongs to the First Interaction scenario, while the latter is present in the
Navigation, Device Interaction and Back To Top scenarios.

On the other hand, (Smith and Williams, 2002a) determined the following relation
in The Ramp:

RT =
i · dsdt · s

1−X · (i · dsdt · s)
(5.2)

where:

• RT is the response time of the operation,

• i is the number of items in the data set of the operation,

• s is the amount of service time required to process a single item,

• ds
dt is the slope of the ramp,

• X is the arrival rate of queries to the operation.

3According to EASTIN (www.eastin.eu), the principal Assistive Technology Information Network
in Europe, the number of Assistive Products available in the EU increased to more than 39.221
products in 2009.

5.3. Applying the Assessment Methodology 145

Combining equations 5.1 and 5.2, we get the response time for the operation:

RTOpI =
i · (FRT (OpI, t)− FRT (OpI, t− 1)) · FRT (OpI, 1)

1−X · (i · (FRT (OpI, t)− FRT (OpI, t− 1)) · FRT (OpI, 1))
(5.3)

Taking the experimental results obtained for the ASSM in Figure 5.18 and applying
equation 5.3, we calculated response times, in the four key scenarios, for 100 users.
As it can be observed in Figure 5.26, The Ramp antipattern greatly impacts in the
response times. The reader should note that estimated response times in Figure 5.17
did not take into account the effect of The Ramp, since the Knowledge Base was
very few populated, only with ten Assistive Software (AS) products. Therefore, we
detected the impact in this phase since the Knowledge Base was populated with
ten thousand AS products4. Consequently, the response times in Figure 5.26 are so
different from those in Figure 5.17.

0

500

1000

1500

2000

2500

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac!on

Naviga!on

Device Interac!on

Back to Top

Figure 5.26: Impact analysis of The Ramp antipattern in the response times of key scenarios

To solve this antipattern, both (Smith and Williams, 2002a) and (Dugan-Jr. et al.,
2002) propose to select another search algorithm more appropriate for large amount
of data. The ASSM is based on a simple filtered search in SPARQL. This search can
be improved by changing the recommender process and using a specific “recommend”
operator, as (Levandoski et al., 2011) suggest. Thus, the response time for a search
performs better in 33%, independently of the number of users. We then recalculate
response times for the scenarios considering the improvement in the search algorithm.
Figure 5.27 shows the results, which considerably improve those in Figure 5.26.

4From all the Assistive Products in the marketplace, we considered those that can be integrated
into the architecture, i.e., Assistive Software products.

146 5. Industrial Case Study: An Interoperable Architecture

0

10

20

30

40

50

60

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac!on

Naviga!on

Device Interac!on

Back to Top

Figure 5.27: Response time applying specific “recommend” operator in search algorithm

of ASSM.

5.3.5 Optimal Configuration

Once all the alternatives for improvement were analysed, we applied them to the
original configuration of the INREDIS architecture, in order to achieve an optimal
configuration. These improvements are summarized in the following:

• Utilization and Multithreading : We detected the AMS, the Interoperability
Gateway and the Target Service/Device resources as bottlenecks. They were
mitigated by adding threads as indicated in Figure 5.24.

• Performance patterns: Applying performance patterns helps to improve the
software design and the system performance. We identified the Perimeter Cal-
culation subscenario as candidate for the Fast Path pattern, then we refactorized
this scenario in order to apply the pattern.

• Performance antipatterns: We detected The Ramp antipattern using the log-
ical predicates in (Cortellessa et al., 2012). Then, we analysed its potential
consequences and changed the search algorithm in ASSM process.

Figure 5.28 depicts the response times when we applied all the aforementioned
alternatives for improvement. As it can be observed, all these improvements help
to meet performance objectives based on Usability Principles. Otherwise, another
iteration of the assessment loop would have been necessary.

5.3.6 Validation of the Performance Assessment

Once our assessment has produced an optimal design of the architecture, we are
committed to apply the improvements to our initial prototype. By doing so we want

5.3. Applying the Assessment Methodology 147

0

1

2

3

4

5

6

7

8

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac!on

Naviga!on

Device Interac!on

Back to Top

Figure 5.28: Response time for the optimal configuration of the INREDIS Interoperable

architecture.

to assess whether the results of the model match the results of the architecture. Next
we detail the important issues in the new prototype implementation:

• Resource replication: We fully applied to the initial prototype all the proposed
improvements. We replicated the resources and applied multithreading to over-
come all detected bottlenecks.

• Performance patterns: We satisfactorily applied the Fast Path pattern for
perimeter calculation, then modifying the location of services and target de-
vices. Hence, this assessment was also completely applied.

• Performance antipatterns: We could not apply this assessment in the prototype
since the update of the search algorithm was very complex and affected other
processes (out of scope of the INREDIS project). However, the effects of the
assessed antipattern were almost negligible in the results of the initial prototype
because the Knowledge Base was populated with only ten Assistive Products,
as previously explained.

Figure 5.29 (last line in the caption) plots the response times of this optimal
prototype. The prototype was deployed in the same servers as the initial one and
the experiments replicated in the same facility (automation house). As described in
Section 5.3.3, the experiments were very difficult to carry out due to several issues
(legal, logistic or user selection among others). We could involve three concurrent
users, hence the results were extrapolated for five users through a linear function. We
observe in Figure 5.29 that the results of our optimal model and those of the optimal
prototype are very similar. In some scenarios our model is slightly more optimistic

148 5. Industrial Case Study: An Interoperable Architecture

but slightly more pessimistic in others. As mentioned in Section 5.3.3, these low
variations between empirical and predicted results might be mainly caused by the
accuracy in the computation of the GSPN models.

Ini�al Prototype

Ini�al Model

Op�mal Model

First Interac�on

0

1

2

3

4

5

6

7

8

1 2 3 4 5

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Op�mal Prototype

Naviga�on

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Device Interac�on

0

1

2

3

4

5

6

7

1 2 3 4 5

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Back To Top

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Figure 5.29: Comparison between initial results (prototype and model) and results of the

optimal configuration (prototype and model).

5.3.7 Comparison of Results

Figures 5.29 and 5.30 have been introduced to depict a throughout comparison of
all the results obtained so far. Figure 5.29 plots for each performance scenario the
following information:

• The empirical results obtained with the initial prototype, i.e., it replicates the
information presented in Figure 5.16.

• The results we obtained using the initial model, i.e., it replicates the information
presented in Figure 5.17, but for five users only, due to the aforementioned
limitations of experimental user tests.

• The results we obtained using the optimal model -the model of the optimal

5.3. Applying the Assessment Methodology 149

Ini�al Model

Op�mal Model

0

10

20

30

40

50

60

70

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

First Interac�on

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Naviga�on

0

2

4

6

8

10

12

14

16

18

20

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Device Interac�on

0

10

20

30

40

50

60

1 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Number of users

Back To Top

Figure 5.30: Comparison between results of the initial and optimal models.

configuration-, i.e., it replicates the information presented in Figure 5.28, but
for five users only.

• The results obtained with the optimal prototype. The optimal prototype is the
initial prototype plus the improvements obtained by our assessment. Subsec-
tion 5.3.6 explained how we developed the optimal prototype.

Figure 5.29 shows, for all the four scenarios, that the results given by the optimal
model improves both, the initial empirical results and the initial model prediction.

The low differences between empirical and predicted results might be mainly
caused due to the accuracy in the computation of the GSPN models. Neverthe-
less, although empirical and predicted data have similar trend for almost all graphs,
it is observed that they differ for the Navigation and Device Interaction with the
initial prototype, particularly in the latter case. However, for the optimal prototype
the trend is the same in all scenarios. We guess that this could be due to impreci-
sions in gathering data during the testing phase session, -corresponding to the initial
prototype-, since there were great variabilities in all actions carried out by users.
However, for getting data from the models we do not express such variability since
we only used average execution times. All in all, in the first user testing phase, the

150 5. Industrial Case Study: An Interoperable Architecture

number of users involved was small but they had not any restriction to interact with
the system. However, tests with the optimal prototype were more controlled and
precise. Therefore, the quality, more than the quantity, of the empirical data used
determined the worth of the predicted results.

Figure 5.30 extends results in Figure 5.29 for 100 users, the information empirically
obtained with both prototypes is missing since it could be obtained only for 5 users.
Figure 5.30 shows that the results of the optimal model are far better than those
of the initial model. These figures clearly demonstrate that the changes, due to
the application of the SPE approach, have improved the models to the degree of
compliance with the performance requirements for a large number of users, in fact it
was our initial objective.

5.4 Discussion

The assessment of software architectures is a process that is acquiring increasing
importance in industrial practice. The work carried out allowed us to determine an
optimal configuration and, therefore, to improve the final product. In the following,
as suggested by (Runeson and Höst, 2009), we discuss the limitations of the results
obtained, the lessons learned and the issues disclosed while applying the assessment
process, and we also explain some of the consequences of all these matters.

The outcomes of this research can be interpreted from two perspectives. First, we
discuss the outcomes explicitly related to the assessment methodology. Second, we
analyse the collected data obtained by applying the methodology in order to achieve
an optimal configuration.

5.4.1 Concerning the Methodology

Our first objective was to carefully revise each step of the methodology to teach
practitioners how we applied these steps, but also to offer a blueprint of the INREDIS
project that could be used as a guide for practitioners in future applications.

We discuss issues of the methodology according to the evaluation criteria proposed
by Isa and Jawawi (2011), which consider: process related aspects and modeling
related aspects. Finally, we also consider issues related to the tools used.

Concerning the process for performance assessment, the SPE methodology is in-
tended to support general-purpose domains. The methodology explicitly influences
the development process by focusing on performance properties. In particular, the
assessment process manages the system performances from the requirements and anal-
ysis phases until the design phase by analyzing a set of key performance scenarios.
The methodology systematically defines all the steps needed to discover potential
performance problems and how to mitigate them.

Another aspect related to the process concerns to the tradeoffs that the engineer
needs to consider for achieving performance. Bass et al. (2005) defend that quality
attributes can never be achieved in isolation, the achievement of any one will have an
effect, sometimes positive and sometimes negative, on the achievement of others. In

5.4. Discussion 151

fact this happened when we applied the SPE methodology, the improvement of system
performance influenced other quality attributes, such as maintainability or cost, and
in the worst case, the improvement of performance decreased other quality attributes.
In particular, for improving performance we introduced performance patterns, in this
case the tradeoff positively influenced the maintainability of the system since it is
widely recognized the benefit of using design patterns for this quality of the system.
Regarding antipatterns we can say the same. They capture design errors, therefore, by
using them we not only gain in system performance but eventually in maintainability
and system testability. On the other hand, when we replicated resources, we incurred
in a cost, i.e., the influence of improving performance was negative. For example,
replication of CPU capacity implies a monetary cost, while multithreading implies a
software more difficult to test and maintain.

Concerning the modeling criterion, it analyses how the performance requirements
and system functionalities are specified and developed. Being the approach centered
on the architectural level, it perfectly captures the system structure model defini-
tion and the behavioural issues, then allowing assessment of the complete software
architecture. As mentioned, we used a simplified version of the PUMA methodol-
ogy (Woodside et al., 2005, 2013), which addresses a systematic performance mod-
eling with the support of UML, which allows annotations with MARTE profile for
the performance properties. Nevertheless, the application of the complete PUMA
approach we did of some performance modeling aspects is limited, mainly due to the
characteristics of the INREDIS project. One of these characteristics is the discrete
number of users and resources, thus, the workload identification only considers closed
ones with discrete values. A similar situation occurs with resources, since we did not
model some low level issues, such as random access memory, disk storage or cache
memory.

Concerning the tools, we used ArgoSPE (Gómez-Mart́ınez and Merseguer, 2006a),
an ArgoUML5 plugin, to partly automate the assessment process in a transparent
way for software architects. Unfortunately, performance annotations supported by
ArgoSPE are not in MARTE, but in (OMG, 2005) profile format. Thereby, we had the
choice of translating the annotations into UML-SPT or to introduce some performance
parameters in the GSPN manually. For example, the number of system resources, we
solved it looking at the GSPN places representing resources, such as pATS, pWS or
pKB in Figure 5.11, then populating them with as many tokens as resources indicated
in the MARTE annotation resMult (Figure5.1).

ArgoSPE internally calls GreatSPN (Chiola et al., 1995) to analyse or simulate
GSPNs. We used the simulation programs since the large size of the models pre-
vented the analysis programs. The problem stems from the reachability graph of the
GSPN. Simulation outcomes can be obtained almost immediately for simple samples.
However, the computation times for some of the results obtained in this chapter con-
sumed long time (several hours), even some of them lasted for a couple of weeks.
Concretely, those for which the number of concurrent users was greater than 50 and
some resources were multithreaded. To reduce the computation times, we decreased

5http://argouml.tigris.org/

152 5. Industrial Case Study: An Interoperable Architecture

the simulation default accuracy, i.e., the precision of the approximation in the pa-
rameters estimation. This reduction affected the response times, i.e, the results we
obtained, in the order of ±10 milliseconds. Although this significantly decreased the
computation times, few of the experiments lasted for two or three hours yet.

Furthermore, ArgoSPE lacks other plugins, such as tools for identifying perfor-
mance patterns and antipatterns automatically. Thus, we had to use external applica-
tions manually, as those developed by (Cortellessa et al., 2012). Therefore, ArgoSPE
is still a very limited tool for performance assessment, specially for complex case stud-
ies such as the INREDIS architecture. Consequently, we have detected the need for
developing a new framework which integrates all these functionalities: UML modeling,
GSPN simulation and analysis, patterns and antipatterns detection in a transparent
way to the user and efficient computation times. This framework could also include
assessment of other functional and non-functional properties, such as dependability,
security or model checking.

5.4.2 Concerning the Optimal Configuration

Our second objective tried to reveal how good the architecture proposed by the INRE-
DIS software engineers was, from the performance point of view exclusively. The per-
formance results demonstrated that the original architecture and configuration fitted
for limited environments with very few concurrent users. This usage scenario might
occur, for example, when users interact with electronic devices at smart homes or
students in a classroom. Nevertheless, our results disclosed that this configuration
performs poorly in contexts with several concurrent users. Thus, we systematically
assessed system performance by changing the software design and the configuration,
concretely adding threads and refactoring some components. These improvements
helped to meet performance objectives as well as to scale the system in more chal-
lenging performance usage scenarios, such as web services, urban networking, hospital
and/or retirement homes, where multiple users with different capabilities can simul-
taneously access the system.

However, some limitations are still unsolved. First of all, in real implementations,
the Knowledge Base had not been fully populated with users preferences and capa-
bilities, Assistive Software products in the ASSM and interaction modes. Therefore,
a specific sensitivity performance analysis of the Knowledge Base and ASSM would
be desirable.

A more detailed study of the target devices or services would also be desirable,
since both their usage and their corresponding functionalities can affect the archi-
tecture. In this chapter, we have assumed that this time is negligible, since it is
independent of the architecture (e.g., the whole cycle time of a washing machine is
very different from a TV set), and obviously we have to take it as an external and
non-controllable part of our system. However, real implementations did not consider
increments in the number of devices or services in the user perimeter. Thus, as noted
in Sec. 5.3.4 through our experiments, the number of nested iterations in the Perime-
ter Calculation depends on the amount of available target devices and services and

5.5. Related Work 153

their functionalities.
Finally, as above mentioned, the architecture was implemented considering most

flexible and cutting-edge technologies at that moment. However, some of the commu-
nication protocols used had poor performance, such as the ESB (Enterprise Service
Bus) architecture designed by Chappell (2004) combined with services implemented
in SOAP (Liu et al., 2007). A similar situation can be found in the Knowledge Base

component, as observed by (Liang et al., 2009). Consequently, our performance mod-
els considered the measured times of these prototype implementations. In particular,
we used them as host demands for the Petri net transitions. However, it would be
feasible to include an additional stage in our performance assessment proposal, which
carries out sensitivity analysis to assess technological alternatives for implementation.

5.5 Related Work

Software architecture assessment constitutes an important stage in the software design
process, in order to guarantee non-functional requirements. Nevertheless, to the best
of our knowledge, there are very few initiatives to assess architectures based on SPE
principles at industrial level. An exception is the PASA (Performance Assessment of
Software Architectures) method, proposed by Williams and Smith (2002).

PASA, focussed on performance scenarios, is a performance-based software archi-
tecture analysis method that provides a framework for the whole assessment process.
PASA inspired us in order to automatically systematize the process to detect per-
formance issues, as well as to propose the corresponding potential solutions. As in
PASA, our methodology, carries out performance analysis considering responsiveness,
but also resource utilization and scalability. Moreover, we have included automatic
detection of performance patterns and antipatterns, by considering the work of Cortel-
lessa et al. (2012). As above stated, PUMA (Woodside et al., 2005, 2013) also guided
our work.

Pooley and Abdullatif (2010) defined Continuous Performance Assessment of
Software Architecture (CPASA). This method adapts PASA to the agile development
process. To the best of our knowledge, CPASA has not been applied to an industrial
case yet.

Regarding industrial experience reports that assess performance at architectural
level, we have found a few.

Kauppi (2003) conducted a case study using PASA for analyzing mobile commu-
nication software systems. They used Rate Monotonic Analysis and layered queuing
networks (LQN) (Woodside et al., 1995) instead of Petri nets for system analysis.
Results of improvements were not explicitly given due to the confidentiality of the
project.

Kozoliek et al. (2012) reported their experience on performance and reliability
analysis in a large-scale control system. They applied the method Q-ImPrESS (2009)
(Quality Impact Predictions for Evolving Service-oriented Systems), which is sup-
ported by an IDE that combines tools for creating and editing models, performing
predictions, and conducting a tradeoff analysis. LQNs were used for performance pre-

154 5. Industrial Case Study: An Interoperable Architecture

diction, results were impressive for throughput estimation since they deviated only
around 0.2 percent. The authors explain that such good results were obtained because
resources were not saturated.

Huber et al. (2010) described an industrial case study where they applied the
Palladio Component Model (Becker et al., 2009) to a storage system. A model was
firstly implemented, next they conducted several experiments on a prototype to derive
the resource usage of each model component and finally, the model was calibrated with
realistic resource demands and validated.

Kounev (2006) modelled a new industry-standard benchmark for measuring the
performance and scalability of J2EE hardware and software platforms. In this work,
Petri nets are used as performance model. The methodology is also based on SPE
principles, however they did not explicitly use patterns and antipatterns, as we do.
They could implement the system and the models accurately reflected the real system
performance.

The work of de Gooijer et al. (2012) re-architects a legacy system, for remotely
diagnose industrial devices, in ABB company. The goal was to improve system per-
formance and scalability. The problems addressed to re-architect a system for per-
formance are very different, although not easier, to those to design for performance
from scratch, as it was our case. They could start from real system measurements to
calibrate their models, which were constructed using the Palladio Component Model
and translated into LQNs. They used the PerOpteryx (Koziolek et al., 2011) tool to
find new architectural candidates, in contrast we used patterns and antipatterns.

Jin et al. (2007) developed an approach that combines benchmarking, monitoring
and performance modeling for database-centric legacy information systems. As in the
work previously analysed, important challenges relate to measuring the production
system to calibrate the model. They could not match their predictions with the
planned system since the implementation was not ready, but established an accuracy
of their models within 8%. This work uses a performance model different to ours, in
particular they use LQNs. Also different is the application domain, concretely they
target the approach towards “legacy systems” in the database field.

Concerning related work about adaptive interfaces for people with special needs,
as we have stated, the INREDIS architecture further develops the idea of Universal
Control Hub (UCH) proposed by Zimmermann and Vanderheiden (2007)(which is
also aligned with the initial ideas that Llinás et al. (2009) propose on how disabled
people can take advantage of adaptative interfaces from the ubiquitous computing
perspective).

Regarding to practical approaches for automatizing the interface adaptation and
assistive software selection processes, initially, the approach that we propose bares
similarity with the work done by Kadouche et al. (2009), namely the SMF (Semantic
Matcher Framework). But even though we share the use ontologies for representing
the elements (both implemented in the OWL (W3C, 2012) representation language),
on the one hand our approach makes the reasoning at a class level to reason with
taxonomies of concepts and relationships; and the other hand, we take into account
assistive software in our process whereas the SMF does not. Also related to the

5.6. Conclusions 155

presented work, since they use different Artificial Intelligence techniques for similar
tasks, Chi et al. (2012) provide a solution just for the problem of assistive software
selection based on a decision; Cortés et al. (2003) propose the use of a Multi-Agent
System to controlling and configuring a very specific assistive technology instance,
an electric wheelchair, and the intelligent environment that surrounds it; and finally,
Woodcock et al. (2012) propose a decision support system developed to assist in the
planning and evaluation of assistive technology, but not like our approach for end
users in usage scenarios, but for assistive technology market stakeholders decision
support.

Finally, to the best of our knowledge, there is no literature concerning the perfor-
mance of such architectures that realize adaptive interfaces for impaired people.

5.6 Conclusions

As conclusion, we have assessed the INREDIS architecture for performance. This
software architecture tries to provide a global solution for universal access to disabled
and elderly people with special needs. It automatically adapts user interfaces for both
UCH devices and web services, according to users’ needs and preferences, improving
their accessibility. In addition, an AS selection mechanism enabling to automatically
select the most suitable AS has been embedded.

The results of the external objective lead us to conclude that the SPE methodology
effectively helps the software architect to improve designs. Besides, UML and MARTE
are languages that can address performance specification challenges, however, tools for
specification and analysis are not mature enough. The integration of the specification
and analysis tools, to carry out the whole cycle, is also a weak point. The results of the
internal objective helped to improve the system response time by refactoring extensive
parts of the design. The initial design, proposed by INREDIS software engineers, only
met performance requirements in one out of the four main system scenarios. After
the refactoring process, all system scenarios met the required response time. For the
case of one hundred users, the better results were obtained in the First Interaction
and Back to Top scenarios. The former was reduced from 60 seconds to 6, while the
latter from 55 to less than 5 seconds.

We believe that the results gathered in this chapter are relevant for both, re-
searchers and SPE practitioners. From the research viewpoint, we provide evidence
that the ideas and theory behind SPE can be applied for assessing and improving a
large software architecture in an industrial project. SPE practitioners, which are the
target of our work, can use this industrial report as a blueprint, it can help them to
develop a strategy, for assessing the performance of a software architecture, according
to the needs of their projects. Furthermore, other target audience can be interested
in this paper, such as accessibility experts or user experience designers.

156 5. Industrial Case Study: An Interoperable Architecture

Chapter 6

The ArgoSPE Tool

A step forward for the application of the methodology, presented and applied in pre-
vious chapters, should be the development of tools that support it. The availability
of these tools is a necessary condition for the industry in order to apply the afore-
mentioned methodology and to discover the feasibility of the SPE research field. The
UML-SPT (OMG, 2005), being concerned about the problem, proposed the main
steps and modules that any SPE tool should follow.

In this chapter, we present ArgoSPE in (Gómez-Mart́ınez and Merseguer, 2006a),
a tool for the performance evaluation of software systems in the first stages of the de-
velopment process. It is based and implements most of the features given in (Bernardi
and Merseguer, 2007; Distefano et al., 2011). The system is modeled as a set of UML
diagrams, annotated according to the UML-SPT, which are translated into GSPN (Aj-
mone Marsan et al., 1995).

ArgoSPE has been used to model and analyse several software systems (Bernardi
and Merseguer, 2006; Gómez-Mart́ınez and Merseguer, 2006b; Gómez-Mart́ınez et al.,
2007; Gómez-Mart́ınez and Merseguer, 2010; Gómez-Mart́ınez et al., 2013a,b), as well
as the samples presented in Chapter 3 and the industrial case study described in
Chapter 5.

The rest of the chapter is organized as follows. Section 6.1 presents the most
interesting features of ArgoSPE, while Section 6.2 focuses on its software architecture.
Section 6.3 surveys those tools developed to analyse performance of software systems,
based on the UML-SPT. Finally, Section 6.4 gives some conclusions.

6.1 ArgoSPE Features

From the user viewpoint, ArgoSPE is driven by a set of “performance queries” that
s/he can execute to get the quantitative analysis of the modeled system. We under-
stand that a performance query is a procedure whereby the UML model is analysed
to automatically obtain a predefined performance index. The steps carried out in
this procedure are hidden to the user. Each performance query is related to a UML

157

158 6. The ArgoSPE Tool

diagram where it is interpreted, but it is computed in a GSPN model obtained by
ArgoSPE automatically. The UML diagrams used to obtain a performance model by
means of ArgoSPE are some of those considered in our process: statemachines (SM),
UML Activity Diagrams (AD) and interaction diagrams. The use case diagram is
taken into account in the process, but it has not been considered in ArgoSPE yet.
The class and the implementation diagrams (components and deployment) are used
to collect some system parameters (system population or network speed).

Moreover, the performance analyst, that has expertise in Petri net modeling and
analysis, can use the GreatSPN (Chiola et al., 1995) tool to compute domain specific
metrics using the GSPN models, that ArgoSPE generates automatically.

6.1.1 Queries in the Statechart Diagram

A statechart models the behaviour of a class. Figure 6.1 depicts an example of
statechart that models a Consumer class and a very simplified version of its GSPN
translation.

p9|Wai�ngForProducer_implicit_place

p6|e_Consume

p2|accept_Consume

t2|end_Consume

p7|ack_Consume

t1|Consume

p1|ini_Wai�ngForProducer

t5|end_lambda

p8|e_IsConsumed

t4|S_Producer_IsConsumed

p4|comp1_Consuming

p3|ini_Consuming

t3|DoConsume

p5

Wai�ngForProducer

Consuming

do/DoConsume

/Producer.IsConsumed()Consume()

<<PAstep>>{PArespTime=(3,’s’)}

Figure 6.1: Statechart and its corresponding GSPN.

The queries in the statechart diagram supported by ArgoSPE are the following:

• State population. This query computes the percentage of objects in each
state. For example, in Figure 6.1, the 40% of the objects could be Consuming

and the others WaitingForProducer.

The query can be useful to detect saturated software processes or to know how
an agent shares out its execution among different tasks (states). The state
population is obtained by dividing the number of objects in the state among
the mean number of objects that populate the class.

For instance, in the state WaitingForProducer, the State population is com-
puted by dividing the mean marking of place p9 among the initial marking of
the net in place p1.

• Stay time. Represents the mean time that the objects of a class spent in each
state. For each state, this value is computed by dividing the mean number of
objects in it among its throughput, therefore, applying the Little’s Law.

6.1. ArgoSPE Features 159

In the example of Figure 6.1, the Stay time of the state WaitingForProducer

represents the mean time that a Consumer spends waiting for consuming, and it
is computed by dividing the mean marking of place p9 among the throughput
of the transition t5.

• Message delay. When the sender and the receiver of a message reside in
different physical nodes, this query calculates the time spent by the message to
reach the receiver’s node. This value is straightforward calculated by dividing
the size of the message among the network delay (see Section 6.1.2).

6.1.2 Queries in the Deployment and Collaboration Diagrams

The UML Deployment Diagram specifies the execution architecture of a system.
Hardware resources are represented as nodes where software components can be de-
ployed. Moreover, the physical network connections are modeled as relationships
between nodes. A query in the UML Deployment Diagram is supported by ArgoSPE:

• Network delay. Calculates the network delay (bit rate) between two non
adjacent hardware resources (nodes). Given a system configuration, the network
delay is useful to find the node where a new software component could be
deployed, i.e., the node that minimizes the delay of the component’s messages.

The collaboration diagram is an interaction diagram that focuses on how objects
exchange messages. It describes the behaviour of the system in a specific context (sce-
nario). The following query in the collaboration diagram is supported by ArgoSPE:

• Response time. For a given collaboration diagram (system scenario), this
query computes its mean response time, i.e., the mean duration of a certain
system execution.

6.1.3 Performance Annotations

ArgoSPE uses as input a UML-SPT annotated model, i.e., UML models have to ex-
plicitly include performance characteristics. These performance annotations, defined
in the UML-SPT, are made by means of the UML extension mechanisms: stereotypes
and tagged values.

The stereotypes specify the main performance characteristics of the UML model
elements, while the tagged values specify the attributes of the stereotypes. As an
example, see the performance annotation in Figure 6.1, where the stereotype PAstep
means that DoConsume is a computation step, while the tagged value PArespTime

models its response time, three seconds.
The UML-SPT defines a Tag Value Language (TVL), a subset of the Perl language,

that allows to specify complex and parameterized expressions in the tagged values.
The annotations supported by ArgoSPE are those necessary to compute the pro-

posed performance queries, see Table 6.1.

160 6. The ArgoSPE Tool

Table 6.1: Performance annotations in ArgoSPE.

Annotation Stereotype Tagged
value

Unit Model ele-
ments and
Diagrams

Activity du-
ration

PAstep PArespTime ms, s, m, h Activities in the
SC and AD

Probability PAstep PAprob - Transitions in
SC and AD.
Messages in the
Coll.

Size PAstep PAsize b, B, kb, kB,
Mb, MB

Messages in the
SC and Coll.

Network
speed

PAcommu-
nication

PAspeed bps, Bps,
kbps, kBps,
mbps, MBps

Deployment

Population PAclosedLoad PApopulation - Class in Class
diagram

Initial state PAinitial-
Condition

PAinitialState $true or
$false

State in the SC
and AD.

Resident
classes

GRMcode - - Deployment

6.2 Software Architecture

ArgoSPE has been implemented as a set of Java modules, that are plugged into
the open source ArgoUML CASE tool (ArgoUML, 2013). It follows the architecture
proposed in the UML-SPT (OMG, 2005), see Figure 6.2.

The ArgoUML works as the Model Editor, while the ArgoSPE modules implement
and coordinate the Model Configurer and the Model Processor (Model Convertor,
Model Analyzer and Results Convertor) functions. Figure 6.3 depicts the ArgoSPE
menu inside the menu bar of ArgoUML.

6.2.1 Model Editor

The Model Editor is used to create and modify performance-annotated UML dia-
grams.

ArgoUML permits to model and to annotate the UML diagrams involved in the
translation process (Merseguer et al., 2002; Bernardi et al., 2002; López-Grao et al.,
2004). ArgoUML, as most CASE tools, exports UML models into XMI (OMG, 2011c)
files, allowing the standard exchange of information with another tools.

6.2. Software Architecture 161

Figure 6.2: Architecture proposed in the UML-SPT OMG (2005).

From the performance-annotated UML diagrams, ArgoSPE creates a parameter-
ized XMI file, that will be an input for the Model Configurer. This XMI file contains
the modeling and performance information of: the statecharts, describing the be-
haviour of the classes in the system; the UML Activity Diagrams, specifying the
activities of the statecharts; the UML Deployment Diagram, that gathers informa-
tion about physical nodes location and network transmission speed; the class diagram
with information about the system workload and the collaboration diagram.

6.2.2 Model Configurer

The Model Configurer functionality, see Figure 6.2, consists in converting a parameter-
ized UML model in XMI format, into a configured UML model using a configuration
data set. The main target is to substitute in the XMI file, the tagged values written
in TVL with parameterized expressions that represent the performance annotations,
for the equivalent evaluated expressions.

The first task is to parse the XMI file, obtaining a tree structure, called Document
Object Model (DOM) (W3C, 2009). This one is visited recursively from its root
node into their children nodes to search for performance annotations. So, a list of
XMI identifiers with known stereotypes is extracted. For each element in that list,
a TVL expression is obtained, some of them with variables, that will be evaluated,
then modifying the tree. At the same time, a symbol table is created containing the
performance annotations. Finally, the tree is serialized to an XMI file.

Since the TVL expressions can contain variables, ArgoSPE prompts the user to
choose a configuration file containing a configuration data set. An example of this

162 6. The ArgoSPE Tool

ArgoSPE

Performance
annotation

Figure 6.3: ArgoSPE menu inside ArgoUML.

kind of file is depicted in Figure 6.4.

ArgoSPE evaluates this file by invoking a Perl interpreter to get the actual
value for variables and expressions. Then, for a performance annotation like
<<PAstep>>{PArespTime=($value,’s’)} the variable $value will be evaluated and
replaced according to the configuration file (e.g. the one in Figure 6.4), so the evalu-
ated expression will be <<PAstep>>{PArespTime=(5,’s’)}. Multi-valued expressions
are supported by ArgoSPE.

6.2.3 Model Processor

The Model Processor turns the configured model, obtained from the Model Config-
urer, into an analyzable model (GSPN model), analyses it and returns the results.
These tasks are respectively addressed by the Model Convertor, the Model Analyzer
and the Results Convertor.

6.2. Software Architecture 163

#A very simple configuration file written in Perl

$value=5;

$value2=10;

$value3=($value<40)?100-$value2:100;

Figure 6.4: A configuration file example for ArgoSPE.

Model Convertor

The Model Convertor module encapsulates the translation process from the configured
model into the target performance formalism. Therefore, in ArgoSPE this is a heavy
process that implements the translation theory proposed in (Merseguer et al., 2002;
Bernardi et al., 2002; López-Grao et al., 2004; Merseguer, 2003). The GSPN models
are obtained in the GreatSPN file format (Chiola et al., 1995).

The high-level algorithm implemented in the tool for the Model Convertor is il-
lustrated in Algorithm 1. Note that it needs as inputs not only the configured XMI,
as proposed in the UML-SPT, also the symbol table, that allows to speed up the
translation process, but it increases the module coupling.

Lines 2 to 14 correspond to the translation process of the statecharts and its
associated UML Activity Diagrams. Then, a GSPN, called SysGSPN, that models the
whole system behaviour is obtained by merging the Petri nets of the classes (line 26).
The translation of the collaboration diagrams is described from lines 17 to 24. The
result is a set of GSPNs, ScenarioiGSPN, each one modeling the scenario specified by
the collaboration diagram i.

Model Analyzer

The Model Analyzer implements the performance queries described in Sec-
tions 6.1.1 and 6.1.2. Concretely, the queries for the statecharts are computed using
the SysGSPN net. While the Response time query for a collaboration diagram i is
computed in the ScenarioiGSPN net.

The Model Analyzer invokes the GreatSPN programs to get the answers to the
queries. ArgoSPE currently uses the GreatSPN programs that implement analyti-
cal/numerical techniques. The use of GreatSPN simulation techniques will be con-
sidered to complement the results.

Results Convertor

The main function of the Results Convertor is to convert the results of the analysis
back to the UML Model Editor, in a way that a software engineer can interpret them
easily.

In the current version of ArgoSPE, the returned results are directly displayed by
the Model Editor in a simple message window, then not directly in the UML models.

164 6. The ArgoSPE Tool

Algorithm 1 Model Convertor

Require: A configured XMI file and a symbol table
Ensure: A set of GreatSPN models (SysGSPN, ScenarioiGSPN)
1: UML diagrams ← XMI file
2: for all class c ∈ Class diagram do
3: if c has Statechart then
4: node ← Locate node in UML Deployment Diagram(c)
5: A ← Activity diagrams associated with c
6: for all Activity ac ∈ A do
7: pa ← Annotations associated with ac ∈ symbol table
8: acGSPN[j] ← TranslateToGSPN(ac,pa)
9: end for

10: sc ← Statechart associated with c
11: pa ← Annotations associated with sc ∈ symbol table
12: scGSPN ← TranslateToGSPN(sc,pa,node)
13: clGSPN[k] ← Merge(scGSPN, acGSPN[])
14: end if
15: end for
16: SysGSPN ← Merge(clGSPN[])
17: for all class c ∈ Class diagram do
18: C ← Collaboration diagrams associated with c
19: for all Collaboration co ∈ C do
20: pa ← Annotations associated with co ∈ symbol table
21: coGSPN[i] ← TranslateToGSPN(co,pa)
22: ScenarioiGSPN ← Merge(SysGSPN,coGSPN[i])
23: end for
24: end for

6.3 Related Work

A number of performance evaluation tools based on Petri nets have been developed in
the last decade, such as Möbius (Clark et al., 2001), GreatSPN (Chiola et al., 1995)
or TimeNET (Zimmermann et al., 2000). But in this chapter, we only revise and
compare those tools that focus on the SPE field.

DSPNexpress-NG (Lindemann, 1995), proposed by Lindemann et al., constitutes
a framework that can evaluate both discrete-event systems specified as Petri nets and
UML system models. It uses UML statecharts which are not annotated according
to the UML-SPT, and transforms them into deterministic and stochastic Petri nets
(DSPNs) to obtain numerical solutions.

Distefano et al. (2004) developed a performance plug-in for ArgoUML. Following
the UML-SPT, they focus on use cases, deployment and UML Activity Diagrams and
introduce an intermediate model, which is used to gather performance information.
This intermediate model is transformed into SPN and analysed with a web-based

6.4. Conclusions 165

non-markovian Petri net tool.
Using formalisms different from Petri nets, Petriu and Shen (2002) proposed an

algorithm to transform UML Activity Diagrams into LQN models. They obtained
the XML files from existing UML tools, and changed them by hand in order to
add performance annotations to the different model elements. The tool of Gilmore
and Kloul (2003) uses ArgoUML to compile statecharts and collaboration diagrams
through a process algebra language. D’Ambrogio (2005) introduced a framework to
automatically translate LQN models from annotated activity and UML Deployment
Diagrams. Cortellessa et al. (2004) proposed a tool that in two phases gets a param-
eterized QN from use cases, UML Sequence Diagrams and UML Deployment Dia-
grams. Marzolla and Balsamo (2004) transformed annotated use cases, deployment
and UML Activity Diagrams into a discrete-event simulation model.

6.4 Conclusions

Petri nets are recognized as a useful modeling paradigm for the performance eval-
uation of a wide range of systems. Nevertheless, most software engineers do not
feel comfortable far from their pragmatic (non formal) modeling languages, such as
UML. Moreover, engineers find easier and more productive to use only one modeling
paradigm for all the project stages. Since ArgoSPE obtains GSPNs as a “by-product”
of the software life-cycle, software engineers can use their UML models to assess sys-
tem performance properties.

A number of new features can improve the tool: First, the more system properties
assessed the more useful the tool become. New performance queries have to be imple-
mented. Second, a standard format, PNML (ISO/IEC, 2011a), could be the target
file format, then gaining the possibility to use other Petri net analysers.

166 6. The ArgoSPE Tool

Chapter 7

Final Conclusions and Future
Work

At the beginning of our efforts, it was demonstrated the necessity to systematically
analyse performance of distributed software architectures in order to obtain the foun-
dations for the early detection of potential performance issues and the subsequent
assessment to improve those architectures. In addition, the performance assessment
should be obtained as a “by-product” of the development life-cycle and their analysis
results back to the design model.

To the best of our knowledge, there are very few initiatives to assess architectures
based on SPE principles hitherto. An exception is PASA (Williams and Smith, 2002).
Nevertheless, this methodology relies some steps of the process, such as architectural
style or detection of performance antipatterns, on skills and experience of the soft-
ware analyst. Moreover, the interpretation of results of performance analysis and the
feedback generation is hard, since they are represented in the performance model.
CPASA (Pooley and Abdullatif, 2010) is an adaptation of PASA to the agile develop-
ment process, but it does not solve these issues. Moreover, these methodologies have
been applied in examples or academic studies, but not in an industrial setting. Thus,
the results and conclusions could be limited.

7.1 Achievements

The aim of this dissertation thesis is to devise a methodology for systematically en-
hancing performance assessment of software architectures. In order to accomplish
this objective, we have analyzed diverse software architectures using SPE techniques
and interpreted the obtained performance results, as well we have studied the impact
of some technological decisions. Once we achieved a deep insight in the performance
analysis of software architectures and a certain knowledge on closing the “assessment
loop” by interpreting the performance results, we have devised our methodology for

167

168 7. Final Conclusions and Future Work

assessing performance of software architectures. A list of the main scientific contri-
butions of this thesis is given in the following.

• The application of SPE techniques for the performance analysis of
diverse software architectural styles. We have applied SPE techniques,
concretely the PUMA approach (Woodside et al., 2005, 2013), for the perfor-
mance analysis of diverse software architectural styles: mobile agents platforms,
web service-based applications and a remote console framework. The interpreta-
tion of the obtained performance results, as well as the detection of performance
issues, have allowed us to gain insight in the performance evaluation of hypo-
thetical situations, beyond the real implementation. Moreover, the performance
analysis allows us to exploit potential improvements in the aforementioned soft-
ware architectures.

These performance analyses are detailed in Chapter 3. The outcome of this ac-
quired knowledge has permitted us to devise the methodology proposed in Chap-
ter 4. This research has been published in (Gómez-Mart́ınez and Merseguer,
2006b; Gómez-Mart́ınez et al., 2007; Gómez-Mart́ınez and Merseguer, 2010).

• A methodology for performance assessment of software architectures.
We have developed a scenario-based methodology to apply SPE principles and
techniques to assess software architectures. The proposed methodology is a part
of the software development life-cycle in early stages, being the performance
assessment a “by-product”. It tries to automatize the expertise achieved in
the previous contribution regarding software performance: evaluation, issues
detection and assessment to attain an optimal configuration.

This methodology is described in Chapter 4 and it is obtained as a deep insight
in the performance analysis of diverse case studies presented in Chapter 3. The
methodology is applied for the performance assessment of an industrial case
study in Chapter 5. This research has been accepted to publication (Gómez-
Mart́ınez et al., 2013a).

• An interoperable architecture for people with special needs. We have
designed and implemented an interoperable architecture to adapt interfaces (de-
vice controllers or web services) according to the capabilities or preferences of
people with special needs.

The main components of this industrial case study are described in Chapter 5.
This research has been accepted to publication (Gómez-Mart́ınez et al., 2013a)
and submitted to (Gómez-Mart́ınez et al., 2013b) and some of the components
have been published in (Gómez-Mart́ınez and Merseguer, 2010; Iglesias-Pérez
et al., 2010; Murua et al., 2011).

• The application of the methodology in an industrial case. We have
systematically applied the above mentioned methodology for the performance
assessment of the previous interoperable architecture in order to obtain its op-
timal configuration. Moreover, the theoretical performance results have been

7.2. Scientific Results 169

validated against the experimental ones obtained in the user testing phase. In
addition, other hypothetical situations have been studied.

Chapter 5 details the application of the methodology for performance assess-
ment of this interoperable architecture. This research has been accepted to
publication (Gómez-Mart́ınez et al., 2013a).

• Development of a tool for performance evaluation based on SPE prin-
ciples. A tool for the automation of the performance evaluation of software
systems in the first stages of the development process has been developed. It is
based and implements most of the features given in (Bernardi and Merseguer,
2007; Distefano et al., 2011). This tool permits to expedite the performance
analysis of software systems.

The tool, named ArgoSPE, has been implemented as a set of Java modules,
that are plugged into the open source ArgoUML CASE tool (ArgoUML, 2013).
It follows the architecture proposed in the UML-SPT (OMG, 2005).

ArgoSPE was used for the performance evaluations carried out in Chapter 3
and Chapter 5 and it is detailed in Chapter 6. This research has been published
in (Gómez-Mart́ınez and Merseguer, 2005, 2006a).

This thesis also reported the first performance evaluation based on SPE techniques
and patterns to analyse and assess an industrial case study, concretely an interoperable
architecture for impaired people. In addition, SPE practitioners, which are the target
of our work, can use this industrial report as a blueprint, it can help them to develop
a strategy, for assessing the performance of a software architecture, according to the
needs of their projects in future applications.

7.2 Scientific Results

The work of this thesis has produced the following papers, being the author of the
present dissertation thesis the principal contributor in all of them (except for 5).

1. Journal paper :
Elena Gómez-Mart́ınez, Rafael González-Cabero and José Merseguer. Perfor-
mance Assessment of an Architecture with Adaptative Interfaces for People with
Special Needs. Empirical Software Engineering. Accepted for publication. 2013

2. Journal paper :
Elena Gómez-Mart́ınez, Marino Linaje, Fernando Sánchez-Figueroa, Andrés
Iglesias-Pérez, Juan Carlos Preciado, Rafael González-Cabero and José
Merseguer. Interacting with inaccessible smart environments: Conceptualiza-
tion and evaluated recommendation of Assistive Software. Submitted. 2013

3. Conference paper :
Ane Murua, Igor González and Elena Gómez-Mart́ınez. Cloud-based Assis-
tive Technology Services. Proc. of the 3rd Workshop on Software Services:

170 7. Final Conclusions and Future Work

Semantic-based Software Services (WoSS’11) at the Federated Conference on
Computer Science and Information Systems (FedCSIS 2011). Pages 985-989.
2011

4. Conference paper :
Elena Gómez-Mart́ınez and José Merseguer. Performance modeling and analysis
of the Universal Control Hub. Proc. of the 7th European Performance Engi-
neering Workshop (EPEW 2010). Lecture Notes in Computer Science (Vol.
6342). Pages 160-174. 2010.

5. Conference paper :
Andrés Iglesias-Pérez, Marino Linaje, Juan-Carlos Preciado, Fernando Sánchez-
Figueroa, Elena Gómez-Mart́ınez, Rafael González-Cabero, José A. Mart́ınez-
Usero. A Context-Aware Semantic Approach for the Effective Selection of As-
sistive Software. Proc. of the 4th Symposium of Ubiquitous Computing and
Ambient Intelligence (UCAmI 2010) Garceta. Pages 51-60. 2010.

6. Conference paper :
Elena Gómez-Mart́ınez, Sergio Ilarri and José Merseguer. Performance Analysis
of Mobile Agent Tracking Approaches. Proc. of the 7th International Workshop
on Software and Performance (WOSP 2007). ACM. Pages 181-188. 2007.

7. Conference paper :
Elena Gómez-Mart́ınez and José Merseguer. Impact of SOAP Implementations
in the Performance of a Web Service-based Application. Proc. of the Workshop
on Middleware and Performance (WOMP 2006) at the International Conference
on Frontiers of High Performance Computing and Networking (ISPA 2006).
Lectures Notes in Computer Science (Vol. 4331). Pages 884-896. 2006

8. Conference paper :
Elena Gómez-Mart́ınez and José Merseguer. ArgoSPE: Model-based software
performance engineering. In Proc. of the 27nd International Conference On
Application And Theory Of Petri Nets And Other Models Of Concurrency
(ICATPN 2006). Lectures Notes in Computer Science (Vol. 4024). Pages
401-410. 2006

9. Conference paper :
Elena Gómez-Mart́ınez and José Merseguer. A Software Performance Engineer-
ing Tool based on the UML-SPT. Tool demonstration. In Proc. of the 2nd
International Conference on Quantitative Evaluation of Systems (QEST 2005).
IEEE Computer Society. Pages 247-248. 2005.

10. Short Technical Report :
Elena Gómez-Mart́ınez. Performance Analysis of Web Applications. Technical
Report, July 2005. 15 pages. Universidad de Zaragoza.

7.2. Scientific Results 171

Other scientific papers produced during the realization of this dissertation thesis
are the following.

1. Conference paper :
Clara Benac Earle, Elena Gómez-Mart́ınez, Stefano Tonetta, Stefano Puri, Sil-
via Mazzini, Jean-Louis Gilbert, Olivier Hachet, Ramón Serna Oliver, Cecilia
Ekelin and Katiusca Zedda. Languages for Safety-Certification Related Proper-
ties. Special Session to present Work in Progress at 39th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA 2013). 2013

2. Journal paper :
Horacio Saggion, Elena Gómez-Mart́ınez, Esteban Etayo, Alberto Anula, Lorena
Bourg. Text Simplification in Simplext: Making Text More Accessible. Revista
de la Sociedad Española de Procesamiento de Lenguaje Natural (SEPLN). Vol.
47. Pages 341-342. 2011

3. Short Technical Report :
Elena Gómez-Mart́ınez. Secure software design. Technical Report, July 2005,
15 pages. Universidad de Zaragoza.

In addition to publication, the work carried out in this thesis has been part of the
following research projects:

• nSafeCer (Safety Certification of Software-Intensive Systems with Reusable
Components).
Reference: ART Call 2011 295373

• pSafeCer (pilot Safety Certification of Software-Intensive Systems with
Reusable Components).
Reference: ART Call 2010 269265

• SIMPLEXT (Sistema automático de simplificación de textos).
Reference: TSI-020302-2010-84

• ATIS4all (Assistive Technologies and Solutions for All).
Reference: ICT-PSP 270988

• INREDIS (INterfaces de RElación entre el entorno y las personas con DIS-
capacidad).
Reference: CDTI CEN-2007-2011

• Desarrollo de una herramienta para predicción de QoS del software
Reference:IBE2005-TEC-10

• Evaluación de prestaciones de Sistemas de Información haciendo uso
de UML y Redes de Petri (Fase II)
Reference: TIC2003-05226.

172 7. Final Conclusions and Future Work

7.3 Future Research

This thesis is not a closed work and many research efforts can still be done. The main
issues that we can address in the future to improve our approach are the following.

1. Methodology related improvements. The methodology would improve in the
following aspects:

• Process related aspects. In this thesis, we only focus on performance as-
sessment. Nevertheless, the process can be augmented to include other
features relevant to software architectures, such as dependability.

• Modelling related aspects. We populate the performance scenarios only
with closed workloads with discrete values. Therefore, we do not model
open or bursty workloads, such as web servers. Applying the proposal
of Pérez-Palacin et al. (2012), we can model bursty workloads with marko-
vians processes. A similar situation occurs with resources, since we do not
model some low level issues, such as random access memory, disk storage
or cache memory, among others. Thus, by modeling these features, as well
as other contemplated in the GRM (a sub-profile of MARTE), would per-
mit to obtain a more precise performance analysis and, therefore, a better
performance assessment.

2. Tool related improvements. As we realized while analyzing performance of the
industrial case study with ArgoSPE, this tool should be improved with the
following features.

• Concerning performance annotations. ArgoSPE should support them in
MARTE, currently only in SPT. In addition, we should include other pa-
rameters related to resources that we manually modify in GSPN.

• Concerning the GSPN solver. Currently, we use GreatSPN to analyse or
simulate GSPNs. Nevertheless, we have demonstrated that, in complex
systems, the problem stems from the reachability graph of the GSPN. We
can offer to the user tool option to automatically modify the simulation
accuracy in order to decrease the computation times.

• Concerning other new features. ArgoSPE lacks other plugins, such as tools
for identifying performance patterns and antipatterns automatically.

As mentioned in previous chapters, we have detected the need for developing a
new framework which integrates all these functionalities: UML modeling, GSPN
simulation and analysis, patterns and antipatterns detection in a transparent
way to the user and efficient computation times. This framework could also
include assessment of other functional and non-functional properties, such as
dependability, security or model checking.

Bibliography

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster,
J. E. (1999). UIML: An Appliance-Independent XML User Interface Language.
Computer Networks, 31(11-16):1695–1708.

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1995).
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Comput-
ing. J. Wiley, 1st edition.

Ajmone Marsan, M., Conte, G., and Balbo, G. (1984). A Class of Generalized Stochas-
tic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM
Trans. Comput. Syst., 2(2):93–122.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services: Concepts,
Architectures and Applications. Data-Centric Systems and Applications. Springer.

Alvargonzález, M., Etayo, E., Gutiérrez, J. A., and Madrid, J. (2010). Arquitectura
orientada a servicios para proporcionar accesibilidad. In Actas del V Jornadas
Cient́ıfico-Ténicas en Servicios Web y SOA (JSWEB’10). Editorial Garceta.

Apache Software Foundation (2010a). Xerces Java Parser. Specification available at:
http://xerces.apache.org/xerces-j/. Version 1.0.

Apache Software Foundation (2010b). Xerces2 Java Parser. Specification available
at: http://xerces.apache.org/xerces2-j. Version 2.0.

ArgoUML (2013). The ArgoUML project. Tool available at:
http://argouml.tigris.org. Version 0.26.

Aridor, Y. and Oshima, M. (1999). Infrastructure for Mobile Agents: Requirements
and Design. In Proc. 2nd Int. Workshop on Mobile Agents (MA’98), pages 38–49.
Springer.

Balsamo, S. and Marzolla, M. (2003a). Simulation Modeling of UML Software Archi-
tectures. In Proc. 17th European Simulation MultiConf. (ESM’03), pages 562–567.
SCSEuropean Publishing House.

173

174 BIBLIOGRAPHY

Balsamo, S. and Marzolla, M. (2003b). Towards Performance Evaluation of Mobile
Systems in UML. In Proc. 17th European Simulation MultiConf. (ESM’03), pages
61–68. EUROSIS-ETI.

Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M. (2009). Discrete-Event
System Simulation. Prentice Hall, 5th edition.

Bass, L., Clements, P., and Kazman, R. (2005). Software Architecture in Practice.
SEI Series in Software Engineering. Addison-Wesley.

Baumeister, H., Koch, N., Kosiuczenko, P., Stevens, P., and Wirsing, M. (2003).
UML for Global Computing. In Proc. IST/FET Int. Workshop on Global Com-
puting. Programming Environments, Languages, Security, and Analysis of Systems
(GC’03), volume 2874 of Lecture Notes in Computer Science, pages 1–24. Springer.

Bäumer, C. and Magedanz, T. (1999). Grasshopper - A Mobile Agent Platform for
Active Telecommunication. In Intelligent Agents for Telecommunication Applica-
tions (IATA’99), pages 19–32. Springer.

Becker, S., Koziolek, H., and Reussner, R. (2009). The Palladio Component Model
for Model-Driven Performance Prediction. J. Syst. Softw., 82(1):3–22.

Bergenti, F. and Poggi, A. (2000). Improving UML Designs Using Automatic De-
sign Pattern Detection. In In Proc. 12th. Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE’00), pages 336–343.

Bernardi, S., Donatelli, S., and Merseguer, J. (2002). From UML Sequence Diagrams
and Statecharts to analysable Petri Net models. In Proc. 3rd Int. Workshop on
Software and Performance (WOSP’02), pages 35–45. ACM.

Bernardi, S. and Merseguer, J. (2006). QoS Assessment via Stochastic Analysis. IEEE
Internet Computing, 10(3):32–42.

Bernardi, S. and Merseguer, J. (2007). Performance evaluation of UML design with
Stochastic Well-formed Nets. J. Syst. Softw., 80(11):1843–1865.

Bernardi, S., Merseguer, J., and Petriu, D. C. (2012). Dependability modeling and
analysis of software systems specified with UML. ACM Comput. Surv., 45(1):2.

Berthelot, G. (1987). Transformations and Decompositions of Nets. In Advances
in Petri Nets, volume 254 of Lecture Notes in Computer Science, pages 359–376.
Springer.

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. (2001). Queueing Networks
and Markov Chains. John Wiley & Sons, Inc.

Bracchi, P., Cukic, B., and Cortellessa, V. (2004). Performability Modeling of Mobile
Software Systems. In Proc. 15th Int. Symposium on Software Reliability Engineering
(ISSRE’04), pages 77–88. IEEE Computer Society.

BIBLIOGRAPHY 175

Brown, W. J., Malveau, R. C., McCormick, H. W., and Mowbray, T. J. (1998).
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. John
Wiley, 1st edition.

Cabrera-Umpiérrez, M. F., Rodŕıguez Castro, A., Azpiroz, J., Montalvá Colomer,
J. B., Arredondo, M. T., and Cano-Moreno, J. (2011). Developing Accessible Mo-
bile Phone Applications: The case of a Contact Manager and Real Time Text
Applications. In Universal Access in Human-Computer Interaction. Context Di-
versity, volume 6767 of Lecture Notes in Computer Science, pages 12–18. Springer.

Campos, J. (1998). Performance Models for Discrete Event Systems with Synchroni-
sations: Formalisms and Analysis Techniques, chapter Performance Measures and
Basic Properties, pages 285–304. Editorial KRONOS.

Campos, J., Colom, J. M., Jungnitz, H., and Silva, M. (1994). Approximate
Throughput Computation of Stochastic Marked Graphs. IEEE Trans. Softw. Eng.,
20(7):526–535.

Campos, J., Donatelli, S., and Silva, M. (1999). Structured Solution of Asyn-
chronously Communicating Stochastic Modules. IEEE Trans. Softw. Eng.,
25(2):147–165.

Campos, J., Sánchez, B., and Silva, M. (1991). Throughput Lower Bounds for Marko-
vian Petri Nets Transformation Techniques. In Proc. Int. Conf. on Petri Nets and
Performance Models (PNPM’91), pages 322–331. IEEE Computer Society Press.

Card, S. K., Robertson, G. G., and Mackinlay, J. D. (1991). The information visu-
alizer: An information workspace. In Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI’91), pages 181–186. ACM.

Catalán, E. and Catalán, M. (2010). Performance Evaluation of the INREDIS
framework. Technical report, Departament d’Enginyeria Telemàtica, Universitat
Politècnica de Catalunya.

Catley, C., Petriu, D. C., and Frize, M. (2004). Software Performance Engineering
of a Web service-based Clinical Decision Support infrastructure. In Proc. 4th Int.
Workshop on Software and Performance (WOSP’04), pages 130–138. ACM.

Chandrasekaran, S., Miller, J. A., Silver, G. A., Arpinar, I. B., and Sheth, A. P.
(2003). Performance Analysis and Simulation of Composite Web Services. Elec-
tronic Markets, 13(2).

Chappell, D. A. (2004). Enterprise Service Bus: Theory in Practice. O’Reilly Media,
Inc.

Chi, C.-F., Tseng, L.-K., and Jang, Y. (2012). Pruning a Decision Tree for Selecting
Computer-Related Assistive Devices for People With Disabilities. IEEE Trans on
Neural Systems and Rehabilitation Engineering, 20(4):564–573.

176 BIBLIOGRAPHY

Chiola, G., Franceschinis, G., Gaeta, R., and Ribaudo, M. (1995). GreatSPN 1.7:
GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets. Perform
Eval, 24:47–68.

Chung, L. and Prado Leite, J. C. (2009). On Non-Functional Requirements in Software
Engineering, pages 363–379. Springer.

Clark, A., Gilmore, S., Hillston, J., and Tribastone, M. (2007). Stochastic Process
Algebras. In Formal Methods for Performance Evaluation, volume 4486 of Lecture
Notes in Computer Science, pages 132–179. Springer.

Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J. M., Sanders,
W. H., and Webster, P. (2001). The Möbius Modeling Tool. In Proc. 9th Int.
Workshop on Petri Nets and Performance Models (PNPM’01), pages 241–. IEEE
Computer Society. https://www.mobius.illinois.edu/.

Clements, P., Kazman, R., and Klein, M. (2002). Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley.

Colom, J. M., Teruel, E., and Silva, M. (1998). Performance Models for Discrete Event
Systems with Synchronisations: Formalisms and Analysis Techniques. Editorial
KRONOS.

Cortellessa, V., Di Marco, A., and Inverardi, P. (2011). Model-Based Software Per-
formance Analysis. Springer.

Cortellessa, V., Di Marco, A., and Trubiani, C. (2010). Performance Antipatterns
as Logical Predicates. In Proc. 15th IEEE Int. Conf. on Engineering of Complex
Computer Systems (ICECCS’10), pages 146–156. IEEE Computer Society.

Cortellessa, V., Di Marco, A., and Trubiani, C. (2012). An approach for modeling
and detecting software performance antipatterns based on first-order logics. Softw
& Syst Modeling, pages 1–42.

Cortellessa, V., Gentile, M., and Pizzuti, M. (2004). XPRIT: An XML-Based Tool
to Translate UML Diagrams into Execution Graphs and Queueing Networks. In
Proc. 1st Int. Conf. on the Quantitative Evaluation of Systems (QEST’04), pages
342–343. IEEE Computer Society.

Cortellessa, V. and Mirandola, R. (2002). PRIMA-UML: a performance validation in-
cremental methodology on early UML diagrams. Sci. Comput. Program., 44(1):101–
129.

Cortés, U., Annicchiarico, R., Vázquez-Salceda, J., Urdiales, C., Cañamero, L., López,
M., Sànchez-Marrè, M., and Caltagirone, C. (2003). Assistive technologies for the
disabled and for the new generation of senior citizens: the e-Tools architecture. AI
Commun., 16(3):193–207.

BIBLIOGRAPHY 177

Coulouris, G., Dollimore, J., and Kindberg, T. (2005). Distributed Systems: Con-
cepts and Design (Int. Computer Science). Addison-Wesley Longman, 4th rev. ed.
edition.

Crimson (2005). The Crimson Java Parser. Specification available at:
http://xml.apache.org/crimson/. Version 1.1.

CSM2PN (2013). The CSM to GSPN Translator. Tool available at:
http://webdiis.unizar.es/~jmerse/csm2pn.html.

D’Ambrogio, A. (2005). A model transformation framework for the automated build-
ing of performance models from UML models. In Proc. 5th Int. Workshop on
Software and Performance (WOSP’05), pages 75–86.

Datla, V. and Goševa-Popstojanova, K. (2005). Measurement-based Performance
Analysis of E-commerce Applications with Web Services Components. In Proc.
IEEE Int. Conf. on e-Business Engineering (ICEBE’05), pages 305–314.

Davis, D. and Parashar, M. P. (2002). Latency Performance of SOAP Implementa-
tions. In Proc. 2nd IEEE/ACM Int. Symposium on Cluster Computing and the
Grid (CCGRID’02), pages 407–412.

de Gooijer, T., Jansen, A., Koziolek, H., and Koziolek, A. (2012). An Industrial Case
Study of Performance and Cost Design Space Exploration. In Proc. 3rd ACM/SPEC
Int. Conf. on Performance Engineering (ICPE’12), pages 205–216. ACM.

de Miguel, M. A. (2003). General framework for the description of QoS in UML. In
Procs. of the 6th IEEE Int. Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’03), pages 61–70. IEEE Computer Society.

de Miguel, M. A., Briones, J. F., Silva, J. P., and Alonso, A. (2008). Integration of
safety analysis in model-driven software development. Software, IET, 2(3):260–280.

Del Rosso, C. (2006). Continuous Evolution through Software Architecture Evalua-
tion: a case study: Practice Articles. J. Softw. Maint. Evol., 18(5):351–383.

Delatour, J. and de Lamotte, F. (2003). ArgoPN: a CASE Tool Merging UML and
Petri Nets. In Proc. 3rd Int. Workshop on New Developments in Digital Libraries
and the 1st Int. Workshop on Validation and Verification of Software for Enterprise
Information Systems (NDDL/VVEIS’03), pages 94–102. ICEIS Press.

Distefano, S., Paci, D., Puliafito, A., and Scarpa, M. (2004). UML Design and Soft-
ware Performance Modeling. In Proc. 19th Int. Symposium Computer and Infor-
mation Sciences (ISCIS’04), volume 3280 of Lecture Notes in Computer Science,
pages 564–573. Springer.

Distefano, S., Scarpa, M., and Puliafito, A. (2011). From UML to Petri Nets: The
PCM-Based Methodology. IEEE Trans. Softw. Eng., 37(1):65–79.

178 BIBLIOGRAPHY

Donatelli, S. and Franceschinis, G. (1996). The PSR Methodology: Integrating Hard-
ware and Software Models. In Proc. 17th Int. Conf. on Application and Theory
of Petri Nets (ICATPN’96), volume 1091 of Lecture Notes in Computer Science,
pages 133–152. Springer.

Dugan-Jr., R. F., Glinert, E. P., and Shokoufandeh, A. (2002). The Sisyphus Database
Retrieval Software Performance Antipattern. In Proc. 3rd Int. Workshop on Soft-
ware and Performance (WOSP’02), pages 10–16. ACM.

Elfwing, R., Paulsson, U., and Lundberg, L. (2002). Performance of SOAP in Web
Service Environment Compared to CORBA. In Proc. 9th Asia-Pacific Software
Engineering Conf. (APSEC’02), pages 84–96. IEEE Computer Society.

Erl, T. (2007). SOA Principles of Service Design. Prentice Hall PTR.

Espinoza, H., Dubois, H., Gérard, S., Pasaje, J. M., Petriu, D. C., and Woodside, M.
(2005). Annotating UML Models with Non-functional Properties for Quantitative
Analysis. In Procs. of the 2005 Int. Conf. on Satellite Events at the MoDELS,
volume 3844 of Lecture Notes in Computer Science, pages 79–90. Springer.

Eurostat (2013). Statistical Office of European Union.
http://epp.eurostat.ec.europa.eu.

Florin, G. and Natkin, S. (1989). Necessary and Sufficient Ergodicity Condition for
Open Synchronized Queueing Networks. IEEE Trans. Software Eng., 15(4):367–
380.

Fowler, M. (2000). UML distilled-a brief guide to the Standard Object Modeling Lan-
guage. Addison-Wesley-Longman.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison–Wesley.

Garlan, D. and Shaw, M. (1993). An Introduction to Software Architecture. In
Advances in Software Engineering and Knowledge Engineering, pages 1–39. World
Scientific Pub.

Gilmore, S., Haenel, V., Kloul, L., and Maidl, M. (2005). Choreographing Secu-
rity and Performance Analysis for Web Services. In Proc. European Performance
Engineering Workshop and Int. Workshop on Web Services and Formal Methods
(EPEW/WS-FM’05), pages 200–214. Springer.

Gilmore, S. and Hillston, J. (1994). The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling. In Proc of the 7th
Int. Conf. on Computer Performance Evaluation, Modeling Techniques and Tools,
volume 794 of Lecture Notes in Computer Science, pages 353–368. Springer.

Gilmore, S. and Kloul, L. (2003). A Unified Tool for Performance Modelling and Pre-
diction. In Computer Safety, Reliability, and Security (SAFECOMP’03), volume
2788 of Lecture Notes in Computer Science, pages 179–192. Springer.

BIBLIOGRAPHY 179

Giménez, R., Pous, M., and Rico-Novella, F. (2012). Securing an Interoperability
Architecture for Home and Urban Networking: Implementation of the Security
Aspects in the INREDIS Interoperability Architecture. In Proc. 26th Int. Conf.
on Advanced Information Networking and Applications Workshops (WAINA’12),
pages 714–719. IEEE Computer Society.

Glinz, M. (2007). On Non-Functional Requirements. In Proc. 15th IEEE Int. Conf.
on Requirements Engineering (RE’07), pages 21–26. IEEE.

Gokhale, S. S. and Trivedi, K. S. (2002). Reliability prediction and sensitivity analysis
based on software architecture. In Procs. of the 13th Int. Symposium on Software
Reliability Engineering (ISSRE’03), pages 64–75.

Goldratt, E. M. and Cox, J. (1992). The Goal: A process of Ongoing Improvement.
North River Press.

Gomaa, H. (2000). Designing Concurrent, Distributed, and Real-Time Applications
with UML. Addison-Wesley Longman Publishing Co., Inc., 1st edition.

Gómez-Mart́ınez, E., González-Cabero, R., and Merseguer, J. (2013a). Performance
Assessment of an Architecture with Adaptative Interfaces for People with Special
Needs. Empir Softw Eng. Accepted for publication.

Gómez-Mart́ınez, E., Ilarri, S., and Merseguer, J. (2007). Performance Analysis of
Mobile Agents Tracking. In Proc. 6th Int. Workshop on Software and Performance
(WOSP’07), pages 181–188. ACM.

Gómez-Mart́ınez, E., Linaje, M., Iglesias-Pérez, A., Sánchez-Figueroa, F., Preciado,
J. C., González-Cabero, R., and Merseguer, J. (2013b). Interacting with Inacces-
sible Smart Environments: Conceptualization and evaluated recommendation of
Assistive Software. Submitted to publication.

Gómez-Mart́ınez, E. and Merseguer, J. (2005). A Software Performance Engineer-
ing Tool based on the UML-SPT. In Proc. 2nd Int. Conf. on the Quantitative
Evaluation of Systems (QEST’05), pages 247–. IEEE Computer Society.

Gómez-Mart́ınez, E. and Merseguer, J. (2006a). ArgoSPE: Model-based Software
Performance Engineering. In Proc. 27th Int. Conf. on Applications and Theory
of Petri Nets and Other Models of Concurrency (ICATPN’06), volume 4024 of
Lecture Notes in Computer Science, pages 401–410. Springer. Tool available at:
http://argospe.tigris.org.

Gómez-Mart́ınez, E. and Merseguer, J. (2006b). Impact of SOAP Implementations
in the Performance of a Web Service-Based Application. In Proc. Workshop on
Middleware Performance (WOMP’06) at the Int. Conf. on Frontiers of High Per-
formance Computing and Networking (ISPA’06), volume 4331 of Lecture Notes in
Computer Science, pages 884–896. Springer.

180 BIBLIOGRAPHY

Gómez-Mart́ınez, E. and Merseguer, J. (2010). Performance Modeling and Analysis
of the Universal Control Hub. In Proc. the 7th European Performance Engineering
Workshop (EPEW’10), volume 6342 of Lecture Notes in Computer Science, pages
160–174. Springer.

González-Cabero, R. (2010). A Semantic Matching Process for Detecting and Re-
ducing Accessibility Gaps in an Ambient Intelligence Scenario. In Proc. 4th Int.
Symposium of Ubiquitous Computing and Ambient Intelligence (UCAmI’10), pages
315–324. IBERGACETA Publicaciones.

Grand, M. (1998). Patterns in Java, volume 1: a catalog of reusable design patterns
illustrated with UML. John Wiley & Sons, Inc.

Grand, M. (2001). Java Enterprise Design Patterns: Patterns in Java Volume 3.
John Wiley & Sons, Inc.

Grassi, V., Mirandola, R., and Sabetta, A. (2004). UML based modeling and per-
formance analysis of mobile systems. In Proc. 7th Int. Symposium on Modeling
Analysis and Simulation of Wireless and Mobile Systems (MSWiM’04), pages 95–
104. ACM.

Head, M. R., Govindaraju, M., Slominski, A., Liu, P., Abu-Ghazaleh, N., van Enge-
len, R., Chiu, K., and Lewis, M. J. (2005). A Benchmark Suite for SOAP-based
Communication in Grid Web Services. In Proc. ACM/IEEE Conf. Supercomputing
(SC’05), page 19.

Hermanns, H., Herzog, U., and Katoen, J. P. (2002). Process Algebra for Performance
Evaluation. Theoretical Computer Science, 274(1-2):43–87.

Hillston, J. and Ribaudo, M. (2004). Modelling Mobility with PEPA Nets. In Proc.
19th Int. Symposium Computer and Information Sciences (ISCIS’04), volume 3280
of Lecture Notes in Computer Science, pages 513–522. Springer.

Huber, N., Becker, S., Rathfelder, C., Schweflinghaus, J., and Reussner, R. H. (2010).
Performance Modeling in Industry: a Case Study on Storage Virtualization. In
Procs. of the 32nd ACM/IEEE Int. Conf. on Software Engineering (ICSE’10),
pages 1–10. ACM.

IEEE (2010). Std 1901-2010 for Broadband over Power Line Networks: Medium
Access Control and Physical Layer Specifications.

Iglesias-Pérez, A., Linaje, M., Preciado, J. C., Sánchez-Figueroa, F., Gómez-Mart́ınez,
E., González-Cabero, R., and Ángel Mart́ınez-Usero, J. (2010). A Context-Aware
Semantic Approach for the Effective Selection of an Assistive Software. In Proc. 4th
Int. Symposium of Ubiquitous Computing and Ambient Intelligence (UCAmI’10),
pages 51–60. IBERGACETA Publicaciones.

BIBLIOGRAPHY 181

Ilarri, S., Trillo, R., and Mena, E. (2006). SPRINGS: A Scalable Platform for Highly
Mobile Agents in Distributed Computing Environments. In Proc of the 4th Int.
Workshop on Mobile Distributed Computing (MDC’06). IEEE Computer Society.

INREDIS Consortium (2010a). Deliverable-78.2.1. Final Guide to a Generic Platform
Deployment.

INREDIS Consortium (2010b). INterfaces for RElations between Environment and
people with DISabilities. Project website. http://www.inredis.es/.

Isa, M. A. and Jawawi, D. N. A. (2011). Comparative Evaluation of Performance
Assessment and Modeling Method for Software Architecture. In Software Engi-
neering and Computer Systems, volume 181 of Communications in Computer and
Information Science, pages 764–776. Springer.

ISO (2011). 9999:2011-Assistive products for persons with disability–Classification
and terminology.

ISO/IEC (2008). 24752-1:2008-Information technology–User interfaces–Universal re-
mote console–Part 1: Framework.

ISO/IEC (2009). 24756:2009-Information technology–Framework for specifying a
common access profile (CAP) of needs and capabilities of users, systems, and their
environments.

ISO/IEC (2011a). 15909-2:2011-Systems and software engineering–High-level Petri
nets–Part 2: Transfer format.

ISO/IEC (2011b). 25010:2011-Systems and software engineering–Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE)–System and software quality
models.

ISO/IEC (2012). 19505-1:2012-Information technology–Object Management Group
Unified Modeling Language (OMG UML)–Part 1: Infrastructure.

ISO/IEC/IEEE (2010). 24765:2010-Systems and software engineering–Vocabulary.

ISO/IEC/IEEE (2011). 29148:2011-Systems and software engineering–Life cycle pro-
cesses –Requirements engineering.

ISO/IEC/IEEE (2011). 42010:2011-Systems and software engineering–Architecture
description.

Jain, R. K. (1991). The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. Wiley profes-
sional computing. John Wiley.

Jin, Y., Tang, A., Han, J., and Liu, Y. (2007). Performance Evaluation and Prediction
for Legacy Information Systems. In Proc. 29th Int. Conf. on Software Engineering
(ICSE’07), pages 540–549. IEEE Computer Society.

182 BIBLIOGRAPHY

Kadouche, R., Abdulrazak, B., Giroux, S., and Mokhtari, M. (2009). Disability
Centered Approach in Smart Space Management. Int. Journal of Smart Home,
3(3):13–26.

Kastidou, G., Pitoura, E., and Samaras, G. (2003). A Scalable Hash-Based Mobile
Agent Location Management Mechanism. In Proc. 1st Int. Workshop on Mobile
Distributed Computing (MDC’03), pages 472–478.

Kauppi, T. (2003). Performance Analysis at the Software Architectural Level. Tech-
nical Report 512, VTT Technical Research Centre of Finland.

Kerth, N. L. (1995). Pattern languages of program design. ACM Press/Addison-
Wesley Publishing Co.

Kounev, S. (2006). Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. IEEE Trans on Softw Eng, 32(7):486–
502.

Koziolek, A., Koziolek, H., and Reussner, R. (2011). PerOpteryx: Automated Appli-
cation of Tactics in Multi-Objective Software Architecture Optimization. In Proc.
7th Int. Conf. on the Quality of Software Architectures (QoSA’11), pages 33–42.
ACM.

Kozoliek, H., Schlich, B., Becker, S., and Hauck, M. (2012). Performance and relia-
bility prediction for evolving service-oriented software systems. Empir Softw Eng,
pages 1–45.

Lange, D. B. and Oshima, M. (1999). Seven Good Reasons for Mobile Agents. Com-
mun. ACM, 42(3):88–89.

Lange, D. B., Oshima, M., Karjoth, G., and Kosaka, K. (1997). Aglets: Program-
ming Mobile Agents in Java. In Proc. Int. Conf. on Worldwide Computing and
Its Applications (WWCA’97), volume 1274 of Lecture Notes in Computer Science,
pages 253–266. Springer.

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984). Quantitative
System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall.

Lea, D. (1999). Concurrent Programming in Java. Second Edition: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc., 2nd edition.

Levandoski, J. J., Ekstrand, M. D., Ludwig, M., Eldawy, A., Mokbel, M. F., and Riedl,
J. (2011). RecBench: Benchmarks for Evaluating Performance of Recommender
System Architectures. PVLDB, 4(11):911–920.

Liang, S., Fodor, P., Wan, H., and Kifer, M. (2009). OpenRuleBench: an Analysis
of the Performance of Rule Engines. In Proc. 18th Int. Conf. on World Wide Web
(WWW’09), pages 601–610. ACM.

BIBLIOGRAPHY 183

Lindemann, C. (1995). DSPNexpress: A Software Package for the Efficient Solution
of Deterministic and Stochastic Petri Nets. Perform. Eval., 22:15–29.

Liu, Y., Fekete, A., and Gorton, I. (2004). Predicting the Performance of Middleware-
based Applications At The Design Level. In Proc. 4th Int. Workshop on Software
and Performance (WOSP’04), pages 166–170. ACM.

Liu, Y., Fekete, A., and Gorton, I. (2005). Design-Level Performance Prediction of
Component-Based Applications. IEEE Trans. Softw. Eng., 31(11):928–941.

Liu, Y., Gorton, I., and Zhu, L. (2007). Performance Prediction of Service-Oriented
Applications based on an Enterprise Service Bus. In Proc. 31st Annual Int. Com-
puter Software and Applications Conf. (COMPSAC’07), pages 327–334. IEEE Com-
puter Society.

Llinás, P., Montoro, G., Garćıa-Herranz, M., Haya, P., and Alamán, X. (2009). Adap-
tive Interfaces for People with Special Needs. In Proc. 10th Int. Work-Conf. on
Artificial Neural Networks: Part II: Distributed Computing, Artificial Intelligence,
Bioinformatics, Soft Computing, and Ambient Assisted Living (IWANN’09), pages
772–779. Springer.

López-Grao, J. P., Merseguer, J., and Campos, J. (2004). From UML Activity Dia-
grams to Stochastic Petri Nets: Application to Software Performance Engineering.
In Proc. 4th Int. Workshop on Software and Performance (WOSP’04), pages 25–36.
ACM.

Mani, N., Petriu, D. C., and Woodside, M. (2011). Towards Studying the Performance
Effects of Design Patterns for Service Oriented Architecture. In Proc. 2nd joint
WOSP/SIPEW Int. Conf. on Performance Engineering (ICPE’11), pages 499–504.
ACM.

Margetis, G., Antona, M., Ntoa, S., and Stephanidis, C. (2012). Towards Accessibility
in Ambient Intelligence Environments. Ambient Intelligence, 7683:328–337.

Marzolla, M. and Balsamo, S. (2004). UML-PSI: The UML Performance Simulator.
In Proc. 1st Int. Conf. on the Quantitative Evaluation of Systems (QEST’04)),
pages 340–341. IEEE Computer Society.

Mena, E., Royo, J. A., Illarramendi, A., and Goñi, A. (2002). Adaptable Software
Retrieval Service for Wireless Environments Based on Mobile Agents. In Proc. Int.
Conf. on Wireless Networks (ICWN’02), pages 116–124. CSREA Press.

Menascé, D. A. (2004). Composing Web Services: A QoS View. IEEE Internet
Computing, 8(6):88–90.

Menascé, D. A. and Almeida, V. A. F. (2001). Capacity Planning for Web Services:
metrics, models, and methods. Prentice Hall PTR.

184 BIBLIOGRAPHY

Merlin, P. M. and Farber, D. J. (1976). Recoverability of Communication Protocols:
Implications of a Theoretical Study. IEEE Trans on Communications, 24(9):1036–
1043.

Merseguer, J. (2003). Software Performance Engineering based on UML and Petri
nets. PhD thesis, University of Zaragoza, Spain.

Merseguer, J., Bernardi, S., Campos, J., and Donatelli, S. (2002). A Compositional
Semantics for UML State Machines Aimed at Performance Evaluation. In Proc.
6th Int. Workshop on Discrete Event Systems (WODES’02), pages 295–302. IEEE
Computer Society.

Merseguer, J., Campos, J., and Mena, E. (2003). Analysing Internet Software Re-
trieval Systems: Modeling and Performance Comparison. Wirel. Netw., 9(3):223–
238.

Miller, R. B. (1968). Response time in Man-Computer Conversational Trans. In Proc.
AFIPS Fall Joint Computer Conf. (AFIPS’68), volume 33, pages 267–277.

Milojičić, D., Douglis, F., and Wheeler, R. (1999). Mobility: Processes, Computers,
and Agents. ACM Press/Addison-Wesley Publishing Co.

Milojičić, D., LaForge, W., and Chauhan, D. (1998). Mobile Objects and Agents
(MOA). In Proc. 4th USENIX Conf. on Object-Oriented Technologies and Systems
(COOTS’98). USENIX.

Molloy, M. K. (1982). Performance Analysis Using Stochastic Petri Nets. IEEE Trans
on Computers, 31(9):913–917.

Monroe, R. T., Kompanek, A., Melton, R., and Garlan, D. (1997). Architectural
Styles, Design Patterns, and Objects. IEEE Softw., 14(1):43–52.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proc. IEEE,
77(4):541–580.

Murphy, A. L. and Picco, G. P. (2002). Reliable Communication for Highly Mobile
Agents. Autonomous Agents and Multi-Agent Systems, 5(1):81–100.

Murua, A., González, I., and Gómez-Mart́ınez, E. (2011). Cloud-based Assistive
Technology Services. In Proc. 3rd Workshop on Software Services: Semantic-based
Software Services (WoSS) at the Federated Conf. on Computer Science and Infor-
mation Systems (FedCSIS’11), pages 985–989.

Natkin, S. O. (1980). Les réseaux de Petri stochastiques et leur application à
l’évaluation des systèmes informatiques. PhD thesis, Conservatoire National des
Arts et Métiers (CNAM), Paris, France.

Newell, A. F. (2008). Accessible Computing–Past Trends and Future Suggestions:
Commentary on “Computers and People with Disabilities”. ACM Trans. Access.
Comput., 1(2):9:1–9:7.

BIBLIOGRAPHY 185

Ng, A., Chen, S., and Greenfield, P. (2004). An Evaluation of Contemporary Com-
mercial SOAP Implementations. In Proc. 5th Australasian Workshop on Software
and System Architectures (AWSA’04), pages 64–71.

Nielsen, J. (1993). Usability Engineering. Morgan Kaufmann.

OASIS (2005). Universal Description Discovery and Integration (UDDI). Specification
available at: http://uddi.xml.org/. Version 3.0.2.

OMG (2005). UML Profile for Schedulabibity, Performance and Time Specification
(UML-SPT). Specification available at: http://www.uml.org. Version 1.1.

OMG (2008). UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QoS & FT). Specification available at:
http://www.omg.org/spec/QFTP/. Version 1.1.

OMG (2011a). A UML profile for Modeling and Analysis of Real Time Embedded Sys-
tems (MARTE). Specification available at: http://www.omgmarte.org/. Version
1.1.

OMG (2011b). Unified Modeling Language (UML). Specification available at:
http://www.omg.org/spec/UML/2.4.1/. Version 2.4.1.

OMG (2011c). XML Metadata Interchange (XMI). Specification available at:
http://www.omg.org/spec/XMI/. Version 2.4.1.

Pérez-Jiménez, C. J. (2002). Técnicas de aproximación de throughput en redes de
Petri estocásticas. PhD thesis, Universidad de Zaragoza, Spain.

Pérez-Palacin, D., Merseguer, J., and Mirandola, R. (2012). Analysis of Bursty
Workload-Aware Self-Adaptive Systems. In Proc. 3rd ACM/SPEC Int. Conf. on
Performance Engineering (ICPE’12), pages 75–84. ACM.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR.

Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Universität Ham-
burg, Germany.

Petriu, D. B. and Woodside, M. (2007). An Intermediate Metamodel with Scenarios
and Eesources for Generating Performance Models from UML designs. Softw &
Syst Modeling, 6(2):163–184.

Petriu, D. C., Alhaj, M., and Tawhid, R. (2012). Software Performance Modeling. In
Formal Methods for Model-Driven Engineering-12th Int. School on Formal Methods
for the Design of Computer, Communication, and Software Systems (SFM’12),
volume 7320 of Lecture Notes in Computer Science, pages 219–262. Springer.

186 BIBLIOGRAPHY

Petriu, D. C. and Shen, H. (2002). Applying the UML Performance Profile: Graph
Grammar-Based Derivation of LQN Models from UML Specifications. In Proc. 12th
Int. Conf. on Computer Performance Evaluation, Modelling Techniques and Tools
(TOOLS’02), volume 2324 of Lecture Notes in Computer Science, pages 159–177.
Springer.

Petriu, D. C. and Woodside, M. (2002). Software Performance Models from System
Scenarios in Use Case Maps. In Proc. 12th Int. Conf. on Computer Performance
Evaluation, Modelling Techniques and Tools (TOOLS’02), volume 2324 of Lecture
Notes in Computer Science, pages 141–158. Springer.

Phanouriou, C. (2000). UIML: A Device-Independent User Interface Markup Lan-
guage. Technical report, Virginia Polytechnic Institute and State University.

Pooley, R. J. and Abdullatif, A. A. L. (2010). CPASA: Continuous Performance
Assessment of Software Architecture. In Proc. 17th IEEE Int. Conf. and Workshops
on the Eng of Computer-Based Systems (ECBS’10), pages 79–87. IEEE Computer
Society.

Pous, M., Serra-Vallmitjana, C., Giménez, R., Torrent-Moreno, M., and Boix, D.
(2012). Enhancing accessibility: Mobile to ATM case study. In Proc. IEEE Con-
sumer Communications and Networking Conf. (CCNC’12), pages 404–408. IEEE
Computer Society.

Prud’hommeaux, E. and Seaborne, A. (2006). SPARQL Query Language for RDF.
Specification available at: http://www.w3.org/TR/rdf-sparql-query/.

Q-ImPrESS (2009). Q-ImPrESS Consortium: Project website.
http://www.q-impress.eu.

QoSA (2005-2013). Int. ACM Sigsoft Conf. on the Quality of Software Architectures.
SIGSOFT.

Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets. PhD thesis, Massachusetts Institute of Technology (MIT).

Reisig, W. and Rozenberg, G., editors (1998). Lectures on Petri Nets I: Basic Mod-
els, Advances in Petri Nets, volume 1491 of Lecture Notes in Computer Science.
Springer.

Ross, S. M. (1983). Stochastic Processes. John Wiley.

Rumbaugh, J. E., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Addison-Wesley-Longman.

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empir Softw Eng, 14(2):131–164.

BIBLIOGRAPHY 187

Sainz, F., Casacuberta, J., Dı́az, M., and Madrid, J. (2011). Evaluation of an Acces-
sible Home Control and Telecare System. In Proc. 13rd Human-Computer Interac-
tion (INTERACT’11), volume 6949 of Lecture Notes in Computer Science, pages
527–530. Springer.

SAX (2004). Simple API for XML (SAX). Specification available at:
http://www.saxproject.org/. Version 2.0.2.

Scarpa, M., Villari, M., Zaia, A., and Puliafito, A. (2002). From client/server to
mobile agents: an in-depth analysis of the related performance aspects. In Proc.
7th IEEE Symposium on Computers and Communications (ISCC’02), pages 768–
773. IEEE Computer Society.

Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects. John Wiley
& Sons, Inc., 2nd edition.

Schmietendorf, A. and Scholz, A. (2001). Aspects of performance engineering-An
overview. In Performance Engineering. State of the Art and Current Trends, volume
2047 of Lecture Notes in Computer Science, pages IX–XII. Springer.

Sereno, M. and Balbo, G. (1997). Mean Value Analysis of Stochastic Petri Nets.
Perform. Eval., 29(1):35–62.

Shaw, M. (1990). Toward higher-level abstractions for software systems. Data &
Knowledge Engineering, 5(2):119–128.

Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall.

Sifakis, J. (1979). Use of Petri nets for Performance Evaluation. Acta Cybernetica,
4(2):185–202.

Silva, A. R., Romão, A., Deugo, D., and Silva, M. M. D. (2001). Towards a Reference
Model for Surveying Mobile Agent Systems. Autonomous Agents and Multi-Agent
Systems, 4(3):187–231.

Silva, M. (1985). Las redes de Petri en la Automática y la Informática. AC.

Slominski, A. (2004). XML Pull Parser (XPP). Tool available at:
http://www.extreme.indiana.edu/xgws/xsoap/xpp/.

Smith, C. U. (1981). Increasing Information Systems Productivity by Software Per-
formance Engineering. In Proc. 7th Int. Conf. Computer Measurement Group
(CMG’81), pages 5–14.

Smith, C. U. (1990). Performance Engineering of Software Systems. Addison–Wesley.

188 BIBLIOGRAPHY

Smith, C. U. and Williams, L. G. (2000). Software Performance Antipatterns. In
Proc. 2nd Int. Workshop on Software and Performance (WOSP’00), pages 127–
136. ACM.

Smith, C. U. and Williams, L. G. (2001). Software Performance AntiPatterns; Com-
mon Performance Problems and their Solutions. In Proc. 27th Int. Conf. Computer
Measurement Group (CMG’01), pages 797–806.

Smith, C. U. and Williams, L. G. (2002a). New Software Performance AntiPatterns:
More Ways to Shoot Yourself in the Foot. In Proc. 28th Int. Conf. Computer
Measurement Group (CMG’02), pages 667–674.

Smith, C. U. and Williams, L. G. (2002b). Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software. Addison–Wesley.

Smith, C. U. and Williams, L. G. (2003). More New Software Antipatterns: Even
More Ways to Shoot Yourself in the Foot. In 29th Int. Conf. Computer Measurement
Group (CMG’03), pages 717–725.

Sosnoski, D. (2001). XML and JAVA technologies: Document models, Part 1: Per-
formance.
http://www-128.ibm.com/developerworks/xml/library/x-injava/.

Sosnoski, D. (2002). XMLBench Document Model Benchmark.
http://www.sosnoski.com/opensrc/xmlbench.

Spyrou, C., Samaras, G., Pitoura, E., and Evripidou, P. (2004). Mobile agents for
wireless computing: the convergence of wireless computational models with mobile-
agent technologies. Mobile Networks and Applications, 9(5):517–528.

Stephanidis, C. (2001). Adaptive Techniques for Universal Access. User Modeling
and User-Adapted Interaction, 11:159–179.

Tribastone, M. and Gilmore, S. (2008). Automatic Translation of UML Sequence
Diagrams into PEPAModels. In Proc. 5th Int. Conf. on the Quantitative Evaluation
of Systems (QEST’08), pages 205–214. IEEE Computer Society.

Trubiani, C. and Koziolek, A. (2011). Detection and solution of Software Performance
Antipatterns in Palladio Architectural Models. In Proc. 2nd joint WOSP/SIPEW
Int. Conf. on Performance Engineering (ICPE’11), pages 19–30.

URC Consortium (2005). Universal Remote Console. Specification available at:
http://myurc.org.

URC Consortium (2010a). iPhone client for UCH (iUCH). Specification available at:
http://myurc.org/tools/iPhone/. Version 1.1.

URC Consortium (2010b). Universal Control Hub for C++ (UCHe). Specification
available at: http://myurc.org/tools/UCHe/.

BIBLIOGRAPHY 189

URC Consortium (2010c). Universal Control Hub for Java (UCHj). Specification
available at: http://myurc.org/tools/UCHj/.

Verdickt, T., Dhoedt, B., Gielen, F., and Demeester, P. (2005). Automatic Inclusion
of Middleware Performance Attributes into Architectural UML Software Models.
IEEE Trans. Softw. Eng., 31(8):695–711.

Vernadat, F., Dicesare, F., Harhalakis, G., Proth, J. M., and Silva, M. (1993). Practice
of Petri-nets in manufacturing. Chapman and Hall.

W3C (2001). Web Services Description Language (WSDL). Specification available
at: http://www.w3.org/TR/wsdl. Version 1.1.

W3C (2004). Web Services Architecture. Specification available at:
http://www.w3.org/TR/ws-arch/.

W3C (2007). Simple Object Access Protocol. Specification available at:
http://www.w3.org/TR/soap. Version 1.1.

W3C (2009). Document Object Model (DOM). Specification available at:
http://www.w3.org/DOM/.

W3C (2010). eXtensible HyperText Markup Language. Specification available at:
http://www.xhtml.org/. Version 1.0.

W3C (2012). OWL 2 Web Ontology Language. Specification available at:
http://www.w3.org/TR/owl2-overview/.

Williams, L. G. and Smith, C. U. (2002). PASASM : A Method for the Performance
Assessment of Software Architectures. In Proc. 3rd Int. Workshop on Software and
Performance (WOSP’02), pages 179–188. ACM.

Woodcock, A., Fielden, S., and Bartlett, R. (2012). The user testing toolset: a decision
support system to aid the evaluation of assistive technology products. Work: A
Journal of Prevention, Assessment and Rehabilitation, 41:1381–1386.

Woodside, M., Franks, G., and Petriu, D. C. (2007). The Future of Software Perfor-
mance Engineering. In Future of Software Engineering (FOSE’07), pages 171–187.
IEEE Computer Society.

Woodside, M. and Menascé, D. A. (2006). Application-Level QoS. IEEE Internet
Computing, 10(3):13–15.

Woodside, M., Neilson, J. E., Petriu, D. C., and Majumdar, S. (1995). The Stochas-
tic Rendezvous Network Model for Performance of Synchronous Client-Server-like
Distributed Software. IEEE Trans. Computers, 44(1):20–34.

Woodside, M., Petriu, D. C., Merseguer, J., Petriu, D. B., and Alhaj, M. (2013).
Transformation challenges: from software models to performance models. Software
and Systems Modeling. In Press.

190 BIBLIOGRAPHY

Woodside, M., Petriu, D. C., Petriu, D. B., Shen, H., Israr, T., and Merseguer,
J. (2005). Performance by Unified Model Analysis (PUMA). In Proc. 5th Int.
Workshop on Software and Performance (WOSP’05), pages 1–12. ACM.

Zimmermann, A., Freiheit, J., German, R., and Hommel, G. (2000). Petri Net Mod-
elling and Performability Evaluation with TimeNET 3.0. In Proc. 11th Int. Conf.
Computer Performance Evaluation: Modelling Techniques and Tools (TOOLS’00),
volume 1786 of Lecture Notes in Computer Science, pages 188–202. Springer. Tool
available at: http://www.tu-ilmenau.de/sse/timenet/.

Zimmermann, G. and Vanderheiden, G. (2007). The Universal Control Hub: An Open
Platform for Remote User Interfaces in the Digital Home. In Proc. 12th Int. Conf.
Human-Computer Interaction. Interaction Platforms and Techniques (HCI’07), vol-
ume 4551 of Lecture Notes in Computer Science, pages 1040–1049. Springer.

Zimmermann, G. and Vanderheiden, G. (2008). Accessible design and testing in
the application development process: considerations for an integrated approach.
Universal Access in the Information Society, 7(1-2):117–128.

Index

Activity (diagram), 11
performance annotations, 85
performance role, 76

Agents
mobile, 9, 42
SPRINGS platform, 42

Antipatterns, 100, 104, 143
ArgoSPE (tool), 88, 132, 157

architecture, 160
features, 157
limitations, 151
model analyser, 163
model configurer, 161
model convertor, 163
model editor, 160
model processor, 162
performance annotations, 159
results convertor, 163

CDSS, 26
performance analysis, 29
performance improvements, 33
service, 28

Class (diagram)
performance annotations, 85

CSM, 2, 18, 29, 48, 105

Deployment (diagram), 10
performance annotations, 85
performance role, 76
queries in ArgoSPE, 159

Design patterns, 96
DOM, 161

fix-it later (approach), 13, 16

GSPN, 21

Host demand
performance annotation, 83

Interaction Overview (diagram), 11
performance annotations, 85
performance role, 76

Interoperable Architecture, 109
performance analysis, 132
performance assessment, 139
performance improvements, 146
performance model, 126
performance results, 134

MARTE, 11, 12, 126
NFP, 12, 80
VSL, 12, 80, 126

Mobile agents, 9, 42

NFP, 9, 12, 82

Performance
analysis, 22, 89
antipatterns, 104
assessment, 9
evaluation tools, 84, 157
models, 14, 84
patterns, 97

Performance antipatterns, 100, 143
Performance Methodology

assessment, 94
performance analysis, 89
performance annotations, 85, 86
performance design, 76
performance model, 84
performance objectives, 89
resource replication, 95

191

192 INDEX

responsiveness, 91
scalability, 92
utilization, 93

Performance patterns, 96, 140
Petri net, 19

analysis, 22
GSPN, 21
place/transition net, 19
reachability, 20
steady state, 23, 24, 89
stochastic, 20
token game, 20
transient state, 24, 89

PUMA, 16, 29, 48, 61, 74, 105
CSM, 18

Queueing Network, 14
extended (EQN), 14
layered (LQN), 15

Resources
performance annotation, 83
replication, 95, 139
utilization, 14, 93, 139

Response time, 13, see Responsiveness
computation, 92
performance annotation, 83

Responsiveness, 14, 91

Scalability, 14, 92
computation, 92

Sequence (diagram), 11
performance annotations, 85
performance role, 76

Simulation models, 15
SOA, 7
SOAP, 8, 26, 36
Software

architectures, 5
performance engineering (SPE), 12

Software architecture
assessment, 9
mobile agents, 9
Service-Oriented (SOA), 7
styles, 6

SPE, 13
antipatterns, see Performance an-

tipatterns
assessment methodology, 73, 74, 125
performance measures, 22
performance models, 14
performance objectives, 13
performance patterns, see Perfor-

mance patterns
performance scenarios, 13
process, 16
PUMA, 16
workload, 13

SPRINGS, 42
architecture, 43
performance analysis, 46, 48
performance improvements, 55
performance results, 54
scalability, 55
tracking, 44

State Machine (diagram), 11, 158
performance annotations, 85
performance role, 77
queries in ArgoSPE, 158

Steady state, 23, 24, 89
Stereotype, 80
Stochastic

Petri net (SPN), 20
process algebra (SPA), 15

Tag value, 80
Throughput, 13
Transient state, 24

UCH, 60, 109
architecture, 60
performance analysis, 66
performance improvements, 71
performance models, 61
scalability, 68

UDDI, 8, 26
UML, 10

diagrams, 10
MARTE, 12
profiles, 11

INDEX 193

SPT, 12, 18, 29, 46, 159
URC, 59, 60
Usability principles, 91, 133
Use Case (diagram), 11

performance role, 76
Utilization, 14, 93, 134

computation, 94

VSL, 12, 80, 126

Web Services, 7
performance issues, 26
SOAP, 8, 36
UDDI, 8
WSDL, 8
XML, 34

Workload, 13
performance annotation, 83

WSDL, 8, 26

XMI, 160, 161
XML, 8, 60

deserialization, 27
parsers, 34
serialization, 27

