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Affine Multirobot Formation Control Based on a
Modular Team Structure

Miguel Aranda and Alejandro Perez-Yus

Abstract—We present a leaderless distributed controller for
driving a multirobot team in a planar workspace toward an
affine formation, i.e., an affine transformation of a nominal
configuration. Our central idea is to organize the team in
interlaced modules. Specifically, we define a module as a group
of four robots, and we consider two given modules interlaced
if they have three robots in common. For each module we
define a cost, based on least-squares affine alignment between
the positions of the four robots in the current and nominal
configurations. Our strategy for formation achievement is to
make the robots descend along the gradient of the sum of module
costs. Based on this strategy, we propose a distributed control
law considering the single-integrator dynamic model. Our main
contribution is that the proposed modular approach allows design
and reconfiguration to be done locally, i.e., involving only the
robots that belong to the modules being designed or reconfigured.
We present a formal stability study and an implementation
algorithm. To motivate the practical interest of the proposed
approach, we illustrate its usage in a multitarget enclosing and
tracking scenario. The approach is experimentally validated using
simulations and tests with physical unicycle robots.

Index Terms—Autonomous agents, distributed robot systems,
multi-robot systems.

I. INTRODUCTION

FORMATIONS are of interest in numerous scenarios
where a multirobot task requires, or benefits from, deploy-

ing the robots according to a desired orderly arrangement [1]–
[3]. These scenarios include target tracking [4], [5], collective
navigation [6]–[8] and transport of objects [9]–[11]. In this ar-
ticle, we study affine formations, which are a type of formation
actively explored in recent times [6], [12]–[21] starting from
formulations presented in [6], [12]. Affine formations allow
achieving a multirobot team arrangement equal to a nominal
configuration up to any combination of translation, rotation,
scaling, and shearing. Therefore, they are more flexible than,
e.g., translational [22], [23], rigid [1], [24], [25] or shape-
preserving [2], [26], [27] formations; hence, they make the
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team more capable of adapting its shape to the needs of a
given task.

The study [12] laid the foundations for distributed affine
formation control based on consensus-like algorithms. In [13],
affine team maneuvers were achieved via purposely designed
modifications of control weights. An approach enabling the
combined control of translational, shape-preserving and affine
formations was presented in [14]. The controllers in [12]–
[14] were leaderless, as was the affine controller proposed
in [15], where additional terms were used to also achieve
translational and rigid formations with the guidance of a set
of leader robots. The work [6] presented a setup where leader
robots dictate maneuvers for an affine formation, and provided
control algorithms for different dynamic models. A number of
later works built upon the formulation of [6]. For instance, the
study [16] considered high-order dynamics and studied the
coordination between leaders. The authors of [17] designed
controllers for high-order dynamics, using directed graphs to
model the robots’ interactions. In [18], directed graphs were
assumed too, in a multi-layer control approach for robots with
Euler-Lagrange dynamics. Such dynamics were also assumed
in [19] with an observer-controller type of approach. The
controller in [20] was based on the estimation of planar
formation parameters dictated by a single leader. In [21], the
focus was on achieving prescribed-time control convergence.
Most of these affine formation controllers assume the graph is
undirected, and have as a core element a stress matrix which
is computed at the design stage in a centralized manner. The
robots then use the coefficients of the matrix as the weights of
their distributed control algorithm. Some formulations, e.g., in
[12], [18], avoid such centralized computation. In [6], [12]–
[21], the conditions for convergence to an affine formation
are given as global properties of the formation’s nominal
configuration, the stress matrix, and/or the interaction graph.

This article takes a different perspective compared to the
studies above, proposing a novel modular approach for affine
formation control. We focus our attention on planar for-
mations, which are of widespread interest in many tasks.
Our approach is based on organizing the team in interlaced
modules. A module is a group of four robots such that each
can measure the relative state of the others in the group. Two
modules are considered interlaced if they share three robots.
We define a cost for each module based on least-squares affine
alignment between the four robots’ positions in the current
and nominal configurations, and we define a team cost as
the sum of module costs. Then, we show that, if any two
modules can be linked by a sequence of consecutive pairwise
interlacings, driving the team cost to zero implies achieving an

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This is the author’s version of an article published in IEEE Robotics and Automation Letters.
The publisher’s version and the citation information are available at https://doi.org/10.1109/LRA.2024.3396643



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

affine formation. Exploiting this fact, we propose a control law
for single-integrator robot dynamics based on gradient descent
on the team cost. We prove the convergence of the team to
an affine formation under this control law. We also present
an implementation algorithm, and validate the performance of
our approach using simulations and experiments with physical
robots having unicycle kinematics.

The prior study most closely related to ours is [27], which
dealt with shape-preserving formations (i.e., translations, rota-
tions and uniform scalings of a nominal configuration), and
considered a team organized in three-robot modules (i.e.,
triads). Here, we exploit a similar strategy to the one proposed
in [27], applied on a different formation type (affine). This re-
quires substantial modifications: modules (which are now four-
robot), shape alignment costs, and conditions for interlacing
all differ from those considered in [27]. We use four robots per
module instead of three due to the higher number of degrees
of freedom of an affine transformation compared to a shape-
preserving one. While, to our knowledge, graphs formed by
four-robot modules have not been used previously in affine
formation control, other works [25], [28] used structures in
modules, i.e., graph cliques, for rigid formations (i.e., transla-
tions and rotations of a nominal configuration), a different type
of formation from the one we consider here. The study [29]
addressed the problem of achieving resilient consensus in a
robot swarm, grouping robots in modules that traversed closed
paths. Finally, the work [30] used affine shape alignment of
clusters of points to model a deformable object for computer
graphics applications. In this article, we use a similar shape
alignment strategy in our affine formation controller.

With the approach we propose, the final configuration
reached by the team is static and depends on the initial posi-
tions of the robots. Differently from a significant number of
existing works where leader robots are used [6], [15]–[21], our
approach is leaderless. This makes the system more adaptable
to external task constraints, as the team’s configuration is
not dictated by leader robots. Exploiting this adaptability, we
present a strategy that uses our approach for target enclosing
[4], [5], [31], which can have applications in, e.g., multitarget-
multisensor perception [32]–[34].

Contribution. We detail our contribution next. Compared
to previous work on affine formation control [6], [12]–[21],
our novel control approach is based on local shape alignment
at the level of each four-robot group (i.e., module) and local
interlacing of the modules, instead of on global properties
of the system. This modularity of our approach facilitates an
incremental design and reconfiguration of the system, which
can be done locally, i.e., involving only the robots in the
modules being designed or reconfigured. The approach we
propose does not need any centralized computation at the
design stage, unlike most existing approaches. Finally, we also
illustrate the use of our affine formation controller in a higher-
level task of multitarget enclosing and tracking.

A. Notation

The symbols ∥ · ∥, ⊗, In and 1n denote, respectively,
the Euclidean norm (i.e., Frobenius norm for matrices), the

Fig. 1. Left and center: Example of graph structure based on chained modules
and nominal configuration satisfying Assumptions 1 and 2: the modules Tl
and nominal positions ci with the graph edges of G as lines are shown.
Right: example of positions qi where T1 and T2 are each in a four-robot
affine formation with respect to ci. As the positions of the three robots they
share (2, 3, 4, in red) determine uniquely the affine transformation for each
individual module, this transformation is the same for both.

Kronecker product, the n × n identity matrix, and a column
vector of n ones. To translate a set of n points so that their
centroid is zero, we will use a symmetric centering matrix
denoted by Kn = In − (1/n)1n1

⊺
n ∈ Rn×n. We denote an

unordered set by {·}, and an ordered sequence by (·).

II. PROBLEM FORMULATION

We consider a team of n robots, where n > 3, and assign
each of them a different index in the set N = {1, . . . , n}.

Robot model. For each robot i, we define its current
position as a point qi ∈ R2, expressed in an arbitrary fixed
reference frame. A stack vector of these positions for the full
team is then denoted by q = [q⊺

1 , . . . ,q
⊺
n]

⊺ ∈ R2n. We assume
that the dynamic model of the robots is single-integrator, i.e.,
q̇i = ui, where ui ∈ R2 is the control input of robot i
and u = [u⊺

1 , . . . ,u
⊺
n]

⊺ ∈ R2n is the team control input
such that q̇ = u. Further details regarding our requirements
on the robots in terms of sensing, reference frames, and
communications are given in Sec. III-C.

Nominal configuration and affine formation. We consider
a nominal configuration [6] defined as a set of n positions, ci
∈ R2 for each robot i ∈ N , stacked in c = [c⊺1 , . . . , c

⊺
n]

⊺

∈ R2n. The nominal configuration is defined as constant.
Definition 1 (Affine formation): The team is in an affine

formation if q ∈ S , where S is the affine image of c [12],
defined by any of the following three equivalent expressions:

S = {q ∈ R2n :q= (In ⊗G)c+ 1n⊗ r, r∈R2,G∈R2×2}
(1)

={q ∈ R2n : qi = Gci + r, r ∈ R2,G∈R2×2,∀i ∈ N}
(2)

={q ∈ R2n : qi − qj = G(ci − cj),G∈R2×2,∀i, j ∈ N}.
(3)

This is the set of all configurations that can be expressed as
an arbitrary translation r and an arbitrary linear transformation
G applied on the nominal configuration c; i.e., the set of all
the affine transformations of c [6]. Note that, as in [6], [12]–
[21], we do not require G to be invertible.

Formation graph structure. We model robot interactions
via a constant simple undirected graph G = (V, E) where V
and E are the sets of nodes and edges, respectively. Every
node is associated with a robot, i.e., V = N . We use node
and robot as equivalent terms for all graph-related matters.
An edge {i, j} existing in E means robots i and j know their
relative positions in c and, at run time, each can measure the
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other’s current relative position. We denote by Ni ⊂ N the
set of neighbors of i in G. Next, we give our definitions of
two concepts used to specify the structure of G.

Definition 2 (Module): A module Tl = {li}4i=1, where li
∈ N ∀i, is a set of four different robots such that there is a
graph edge in E between every pair of robots in the set.

Note that, in graph terms, a module is a four-node clique.
We will consider that G is organized in modules. We assume
there are w distinct modules in G and, for simplicity, there
are no edges outside modules: i.e., if two robots are graph
neighbors, they are in a common module. Considering an
arbitrary indexing of modules, we denote the set of modules
by T = {T1, . . . , Tw}. We also denote, for a robot i, the set
of modules that i belongs to by Wi = {Tl ∈ T : i ∈ Tl}.

Definition 3 (Interlacing): We say any two different modules
Tl, Tm are interlaced if they have exactly three robots in com-
mon. Furthermore, we define a path of interlacings between
any two different modules Tl and Tm as an ordered sequence
of modules Plm = (Tl, . . . , Tm) such that every module is
interlaced with the next one in the sequence.

Assumptions. Using the above definitions, we make two
assumptions about the graph and the nominal configuration.

Assumption 1 (Structure of G): G is such that every robot
i ∈ N is in at least one module, and there exists a path of
interlacings between every pair of modules in T .

Assumption 2 (Positions in nominal configuration): There
are no two equal positions in c. Moreover, if three robots
i, j, k are neighbors in G, i.e., if {i, j} ∈ E , {j, k} ∈ E , {i, k}
∈ E , then the nominal configuration positions ci, cj and ck
do not form a straight line.

Let us emphasize that Assumption 2 refers to the constant
nominal configuration (c), not to the current configuration (q).
These two assumptions will guarantee that convergence of
every module to a partial four-robot affine formation implies
convergence of the full team to the n-robot affine formation.
Our control strategy relies on this guarantee, as we will show
later. The assumptions and an intuition behind our strategy are
visualized with an example in Fig. 1. A three-robot interlacing
makes two modules share the same affine transformation. This
is why we need at least four robots per module. While modules
with more robots could be used, we use minimum-size (i.e.,
four-robot) modules since this requires fewer graph edges and
allows for a simpler and more uniform system design.

Prior works, e.g., [6], [12] require universal rigidity of
the graph/framework. While this requirement can be achieved
with sparser (i.e., having fewer edges) graphs than those
satisfying Assumption 1, our graph structure still allows a
scalable distributed architecture, and has the advantage of
its modularity. For example, in Fig. 1, w = n − 3 and
|E| = 3(w+1) = 3(n−2). Hence, the number of edges grows
linearly with n, and is at most three per robot, which shows
that the structure is scalable. Note that this same growth pattern
(linear) occurs for rigid graphs, e.g., for Laman graphs [35].
Note, too, that prior works also considered assumptions about
the nominal configuration (e.g., it being generic [6], [12]), as
we do in Assumption 2. Being generic is a global property
that depends on the full nominal configuration, whereas our

Assumption 2 only defines positional restrictions for robots
that are graph neighbors.

Problem statement. Our goal is to design a control law
for ui ∀i ∈ N such that, under the described conditions, the
multirobot team converges to an affine formation.

III. MODULAR AFFINE FORMATION CONTROL STRATEGY

The core idea of the strategy we propose is to achieve an
affine formation for every module. Thanks to Assumptions 1
and 2, this will imply achieving an affine formation for the
full team, as will be shown in our analysis. Hence, we start
by presenting the control design for a module.

A. Control strategy for a module

Consider a given module Tl = {l1, l2, l3, l4}. We choose
an arbitrary ordering of the robots in the module: e.g.,
(l1, l2, l3, l4), and group current and nominal robot positions
in matrices of size 2× 4, as

Ql = [ql1 ,ql2 ,ql3 ,ql4 ], Cl = [cl1 , cl2 , cl3 , cl4 ]. (4)

Our goal is to define a controller to make the positions Ql

equal to an affine transformation of the positions Cl. For this,
we exploit least-squares affine shape alignment, as described
next. Considering an affine transformation defined as a linear
transformation plus a translation (see Definition 1), we seek
to find Fl ∈ R2×2 and tl ∈ R2 for which

∥Ql − FlCl − 1⊺
4 ⊗ tl∥ (5)

is minimum. For the translation part, it can be seen that this
expression is minimized with tl = 0 when the centroids
of Ql and Cl coincide. Hence, for convenience, we will
remove tl and make the centroids of the two sets equal to
zero. Specifically, let us define the centroids of Ql and Cl as
gq
l = (1/4)Ql14 and gc

l = (1/4)Cl14, respectively. We then
define centered versions of Ql and Cl as

Qlb = [ql1 − gq
l ,ql2 − gq

l ,ql3 − gq
l ,ql4 − gq

l ] = QlK4,

Clb = [cl1 − gc
l , cl2 − gc

l , cl3 − gc
l , cl4 − gc

l ] = ClK4. (6)

We can now reformulate the optimization problem as finding

Gl = argmin
Fl

∥Qlb − FlClb∥. (7)

As is well known, the problem (7) can be solved using the
Moore-Penrose inverse C+

lb by choosing

Gl = QlbC
+
lb. (8)

The robot positions in Clb do not form a straight line, by
Assumption 2. Therefore, the two rows of Clb are linearly
independent. Hence, the 2 × 2 matrix ClbC

⊺
lb has rank two,

i.e., it is invertible, and we can express

C+
lb = C⊺

lb(ClbC
⊺
lb)

−1. (9)

Note that C+
lb is constant. Let us now use Gl to define the

following cost for the module:

γl = (1/2)∥Qlb −GlClb∥2. (10)
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Substituting Qlb = QlK4, (8), and (9), we can write

γl = (1/2)∥QlK4 −QlK4C
⊺
lb(ClbC

⊺
lb)

−1Clb∥2. (11)

Notice that K4 is symmetric and idempotent, i.e., K2
4 =

K4K4 = K4. Hence, the term K4C
⊺
lb in (11) is

K4C
⊺
lb = (ClbK4)

⊺
= (ClK4K4)

⊺
= (ClK4)

⊺
= C⊺

lb.
(12)

With these developments, we can now express γl as follows:

γl = (1/2)∥QlEl∥2, (13)

where

El = K4 −C⊺
lb(ClbC

⊺
lb)

−1Clb ∈ R4×4. (14)

Observe that El is symmetric. Next, we will express the
above in a vectorized formulation. For this, we define ql =
vec(Ql) = [q⊺

l1
,q⊺

l2
,q⊺

l3
,q⊺

l4
]
⊺ ∈ R8 and

Bl = El ⊗ I2 ∈ R8×8. (15)

Note that Bl is constant and symmetric. It is direct to see that,
due to the symmetry of El, the entries of the 8×1 vector Blql

are equal to the entries of the 2× 4 matrix QlEl. Hence, we
have ∥QlEl∥ = ∥Blql∥. Notice as well that E2

l = El and
B2

l = Bl. Therefore, ∥QlEl∥2 = ∥Blql∥2 = q⊺
l B

⊺
l Blql =

q⊺
l Blql. Hence, from (13), we reach

γl = (1/2)q⊺
l Blql. (16)

Note that γl ≥ 0 by definition (see, e.g., (13)). Therefore, Bl

is symmetric positive semidefinite.
Next, we express γl in terms of the full stack vector q, using

a selection matrix. Recalling that the ordering we considered
in (4) for the four robots in Tl is (l1, l2, l3, l4), we define
P̄l ∈ R4×n as a matrix with ones in the positions P̄l[1, l1],
P̄l[2, l2], P̄l[3, l3], P̄l[4, l4], and zeros anywhere else. Then,
we define our selection matrix as Pl = P̄l ⊗ I2 ∈ R8×2n.
Notice then that ql = Plq and that we can write

q⊺
l Blql = q⊺P⊺

l BlPlq = q⊺Alq, (17)

with Al = P⊺
l BlPl. Observe that Al ∈ R2n×2n is constant

and symmetric. Using (17), γl in (16) can be expressed as

γl = (1/2)q⊺Alq. (18)

Note that Al is positive semidefinite. This expression of γl
as a function of the stack-form state q will be exploited for
defining and analyzing our proposed controller. From (10), if
the robots in the module Tl move in a way that drives γl to
zero, this makes Qlb = GlClb; which implies, from (2), that
Tl is in an affine formation. Therefore, we propose to control
the full team to make γl = 0 for all l, as seen in Sec. III-B.

Remark 1: Note that, among all possible affine formations
for the robots in Tl, we make the robots move toward the
one that minimizes (5) (i.e., is closest to the current robot
positions Ql in least-squares sense). This is interesting as it
means the formation can be reached faster and with shorter
traveled distances, i.e., more efficiently.

B. Proposed control law

We define an aggregate cost for the full team as

γ =

w∑
l=1

γl = (1/2)q⊺Aq, (19)

where, from (18), the matrix A has the form

A =

w∑
l=1

Al ∈ R2n×2n. (20)

Notice that A is constant and symmetric. It is also positive
semidefinite, as γ ≥ 0. As said above, our idea is to drive γl
to zero for all l. To this end, our strategy is to move q along
the negative gradient of γ. Notice that this equals the sum of
negative gradients for all γl. Therefore, from the perspective
of a given robot i, this strategy is equivalent to computing a
negative gradient vector for every module Tl that i is a part of,
and adding these vectors up. This is explained in more detail
in Sec. III-C. The negative gradient of γ has the form

−∇qγ = −Aq. (21)

The proposed control law, where κ > 0 is a scalar gain, is

u = −κAq. (22)

Remark 2: We will use the full-team control expression
(22) for our analysis (Sec. IV). However, let us emphasize
that knowledge of matrix A is not needed for using our
approach. Our developments above show how to obtain the
specific form of this matrix, which ultimately depends on the
nominal configuration and the module-based graph structure.
One can see that A can be expressed as A = Ā ⊗ I2,
it is symmetric positive semidefinite, and its kernel is the
affine image of the nominal configuration (as will be shown
in Proposition 1). Hence, Ā is the equivalent of the stress
matrix used in the control design of other works, e.g., [6],
[13]–[16], [20], [21]. The key difference is that, by exploiting
modularity, our approach does not use at any stage of its design
or implementation the values or properties of A. The next
section demonstrates this by explaining how each robot can
implement our approach.

C. Implementation of the controller

We describe a possible implementation procedure for a
given robot i in Algorithm 1. In the algorithm, a superindex i
is used for variables used internally by robot i, i.e., variables
whose values do not need to be known by other robots or
agreed upon with other robots. qi

j in the algorithm denotes
the measured position of j in the reference frame of i. It can
be shown that the reference frame of i can be completely
independent from the reference frames of the other robots.
This property is common to other affine formation control
approaches (see, e.g., [6, Sec. V-A.1]) and it provides the
important advantage of facilitating the use of onboard sensors,
e.g., cameras, by the robots.

In the Control execution phase, robot i uses only the
identities and relative positions of the robots in the modules
that i belongs to. Therefore, the approach is distributed and
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global information is not needed. Another important fact is
that the robots do not need to share any measurements: i.e.,
communications are not required in this phase. A funda-
mental advantage of the proposed modular approach is that
the Design/reconfiguration phase can be performed locally.
Indeed, it is possible to design the formation control system
module-by-module, by simply defining the needed connections
(i.e., interlacings) between modules. The same strategy can
be used for reconfiguration: i.e., if the task requires local
changes in the graph, the nominal configuration, or the num-
ber of robots, this can be handled locally by the involved
robots, unlike with approaches that rely on global system
properties or centralized designs. Communication-based ini-
tialization/reconfiguration procedures have to be used allowing
robots to coordinately switch between phases. Needing such
procedures is common in formation control and their specifics
exceed the scope of the problem addressed in this article.

Algorithm 1 Implementation of the controller by robot i ∈ N
Design/reconfiguration phase:
Determine Ni and Wi

for Tl ∈ Wi do
Choosing arbitrarily an order for the other three robots
in Tl, define the ordering (li1, l

i
2, l

i
3, l

i
4) with li1 = i

Determine, from relative positions clij − clik for j, k in
{1, . . . , 4}, Ci

lb (6), compute Bi
l (15), and store the first

two rows of Bi
l as matrix Bi

l2 of size 2× 8
end for
Control execution phase:
while Control task is running do

Define di
i = [0, 0]

⊺

Measure qi
j , ∀j ∈ (Ni ∪ i)

for Tl ∈ Wi do
Form qi

l = [qi⊺
i , qi⊺

li2
, qi⊺

li3
, qi⊺

li4
]
⊺

Compute di
il = −Bi

l2q
i
l

Update di
i = di

i + di
il

end for
Apply control ui

i = κdi
i

end while

IV. STABILITY ANALYSIS

We first establish, in Proposition 1, the link between affine
formation achievement and the kernel of matrix A.

Proposition 1 (Affine formation condition from A): Under
Assumptions 1 and 2, the multirobot team is in an affine
formation if and only if Aq = 0.

Proof: (Necessity) Suppose the team is in an affine
formation. Hence, from (1), there exist a G ∈ R2×2 and an r
∈ R2 such that q = (In ⊗ G)c + 1n ⊗ r. Consider a given
module Tl. Expressing the robot positions in Tl in 2×4 format,
we have Ql = GCl + 1⊺

4 ⊗ r. Post-multiplying by K4 gives
Qlb = GClb+(1⊺

4 ⊗ r)K4 where, as 1⊺
4 ⊗ r = [r, r, r, r] and

K4 = I4 − (1/4)141
⊺
4 , (1⊺

4 ⊗ r)K4 is equal to 0.
Hence, we have Qlb = GClb. Substituting this expression

of Qlb in the definition of Gl (8) and using (9), we obtain

Gl = QlbC
⊺
lb(ClbC

⊺
lb)

−1 = GClbC
⊺
lb(ClbC

⊺
lb)

−1 = G,

which holds for all modules l. Therefore, as G = Gl, it holds
that Qlb = GlClb ∀l, and consequently, from (10), γl = 0 ∀l.
Hence, from (19), γ = 0, i.e., q⊺Aq = 0. As A is real sym-
metric positive semidefinite, there exists a real matrix F such
that A = F⊺F. Therefore q⊺Aq = q⊺F⊺Fq = ∥Fq∥2 = 0,
which implies Fq = 0 and hence Aq = 0.

(Sufficiency) Now, suppose Aq = 0. This implies γ = 0
from (19), which in turn implies γl = 0 ∀l. Therefore, due to
(10), we have Qlb = GlClb ∀l, where Gl is the transformation
corresponding to module l. Let us take two of the robots in Tl:
for example, l1 and l2. Notice from (6) that we have ql1−gq

l =
Gl(cl1 − gc

l ) and ql2 − gq
l = Gl(cl2 − gc

l ). Subtracting these
two equations, we get the expression

ql1 − ql2 = Gl(cl1 − cl2). (23)

Note that an analogous expression holds for every pair of
robots in every module. Consider two interlaced modules r
and s, and call the three robots they share i, j and k. As
Qrb = GrCrb and Qsb = GsCsb, applying (23) we get

qi − qj = Gr(ci − cj) = Gs(ci − cj),

qi − qk = Gr(ci − ck) = Gs(ci − ck). (24)

Let us define cij = ci− cj , cik = ci− ck, qij = qi−qj and
qik = qi − qk. Notice that we have

[qij ,qik] = Gr[cij , cik] = Gs[cij , cik]. (25)

Recall that there are no two equal positions in c per As-
sumption 2, i.e., we have cij ̸= 0, cik ̸= 0. Observe that
det([cij , cik]) can only be zero if cij = βcik for some β ∈ R,
i.e., if the positions i, j and k in the nominal configuration c
form a straight line. This is not possible, due to Assumption
2. Therefore, [cij , cik]−1 exists and hence Gr, Gs are unique
and identical, satisfying Gr = Gs = [qij ,qik][cij , cik]

−1.
Therefore, Gr = Gs for any two interlaced modules r

and s. By induction, as any two modules can be joined by
successive interlacings due to Assumption 1, we conclude that
there is a G such that Gl = G ∀l. Therefore, Qlb = GClb

∀l. As shown earlier in the proof via (23), this implies, for
every module, that qi − qj = G(ci − cj) for every pair
i, j in the module. Then, Assumption 1 also implies that
module interlacings create a path in G between every pair
of nodes i, j ∈ N which ensures, again applying induction,
that qi − qj = G(ci − cj) holds for every pair i, j ∈ N .
Therefore, from (3), the team is in an affine formation.

As seen in the proof, γ = 0 ⇔ Aq = 0 as A is symmetric
positive semidefinite. This gives the following corollary.

Corollary 1: Under Assumptions 1 and 2, the multirobot
team is an affine formation if and only if γ = 0.

Remark 3: The reason why we assume three-robot interlac-
ings is clear from the proof of Proposition 1, and visualized in
Fig. 1: under Assumption 2, if a module forms an affine trans-
formation of the nominal configuration, three robot positions
determine uniquely the transformation. Hence, for any two
modules, if 1) each forms an affine transformation individually
and 2) the two have three robots in common, then the affine
transformation is the same for both. This is not true if there
are only two common robots.
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Next, we show the convergence of our control law.
Theorem 1 (Convergence to affine formation): Using the

control (22) the multirobot team converges asymptotically to
a static affine formation. Moreover, the centroid is preserved,
and q(t → ∞) is equal to the orthogonal projection of the
initial configuration q(t = 0) onto the kernel of A.

Proof: Under (22), the dynamics is q̇ = −κAq. As A
is symmetric positive semidefinite, from well-known results
(see, e.g., [14, Lemma 1]) q converges asymptotically to the
kernel of A; in particular, to a static configuration equal to
the orthogonal projection of the initial configuration q(t = 0)
onto the kernel of A. Therefore Aq → 0 as t → ∞. From
Proposition 1, the team converges to an affine formation.

The centroid of the team can be defined as gq = (1/n)(1n⊗
I2)

⊺
q. We can then obtain the dynamics of the centroid under

the action of the control (22) as

ġq = (1/n)(1n ⊗ I2)
⊺
q̇ = (−κ/n)(1n ⊗ I2)

⊺
Aq. (26)

Following [14, Lemma 3], we notice that ((1n ⊗ I2)
⊺
A)

⊺
=

A(1n ⊗ I2) = [A(1n ⊗ [1, 0]
⊺
),A(1n ⊗ [0, 1]

⊺
)]. Clearly,

q = 1n ⊗ [1, 0]
⊺ and q = 1n ⊗ [0, 1]

⊺ are affine formations,
as they satisfy (1) by choosing G = 0 and, respectively, r =
[1, 0]

⊺ and r = [0, 1]
⊺. Therefore, from Proposition 1, [A(1n⊗

[1, 0]
⊺
),A(1n ⊗ [0, 1]

⊺
)] = 0 and we can conclude from (26)

that ġq = 0, i.e., the centroid is preserved.
Remark 4: Centroid preservation and convergence to the

orthogonal projection of the initial configuration are interesting
properties for motion efficiency. Having affine formations
where all robots are in the same position (G = 0 in Definition
1) is theoretically possible in degenerate cases. In practice,
this possibility is excluded, e.g., by control design via leader
robots or leaderless maneuvers [6], [12], [13], [16], [20],
[21] or by inherent constraints of a higher-level mission, e.g.,
target enclosing. As the law (22) does not control specifically
the values in G and r of Definition 1, these parameters are
adaptable during a mission.

V. MULTITARGET ENCLOSING AND TRACKING
EXPLOITING MODULAR AFFINE FORMATION CONTROL

In this section, we propose to apply our modular affine
formation controller to the task of multitarget enclosing and
tracking. This task is important for scenarios such as tracking
of human subjects [33], [34] and has been addressed with
formation-based approaches [4], [5], [31], [32]. We will intro-
duce an additional control action to enclose a set of moving
targets, while trying to keep an affine formation via the control
approach presented above. This approach is a good choice for
an enclosing task due to the adaptability of the parameters
in G and r, and the higher flexibility of affine formations
compared to other formation types. For an enclosing task,
natural nominal configurations include mainly circular (i.e.,
regular polygons) or other polygonal formations. We assume
there are m point targets in the workspace and a target can be
perceived by a robot if it is located within a detection radius
ρ. At any instant, every robot i has a set of mi targets within
a ρ radius; we denote their positions by xi = {x1i, . . . ,xmi}
and their centroid by x̄i. These sets of targets can be time-
varying. We propose to achieve enclosing by exploiting the

convex hull of xi, denoted by Xi. We enlarge this convex hull
by extending every vector from the centroid to every vertex a
predefined distance, and denote the enlarged convex hull by
X e

i . The enclosing action we define for each robot i has two
possibilities:

1) If qi is outside X e
i , the robot moves toward the closest

point in X e
i .

2) If qi is inside X e
i , the robot moves away from x̄i along

the line that joins qi to x̄i, trying to leave X e
i .

The idea of this strategy is to fully enclose all targets by
continuously moving the robots toward the enlarged convex
hulls. The strategy is more reactive when the enclosing is lost,
i.e., item 2) above. The strategy is distributed as each robot
only considers those targets within its perceptual range. We
enlarge the convex hull to give the robots more space to react
to escaping motions by the targets, and to prevent robot-target
collisions. We assume the velocities of the targets are not larger
than the achievable robot velocities, which is reasonable in the
context of a tracking mission.

The described strategy generates an enclosing control vector
de
i for every robot i. To combine this with the affine formation

control action, we use a weighted sum of the two. Concretely,
the total control action, ut

i, for a robot i is

ut
i = κp(wadi + wed

e
i ), ∀i ∈ N , (27)

where wa, we = 1−wa are non-negative scalar weights, κp is
a positive scalar gain, and di is the control vector from Sec.
III-B, defined in Algorithm 1. While we do not offer formal
performance guarantees for the controller in (27), we verify
its practical usefulness experimentally in the next section.

VI. EXPERIMENTAL VALIDATION

We start by presenting results from simulations, all run
in MATLAB. First, we report on two tests of the modular
affine formation controller, with results illustrated in Fig. 2.
In both cases we implement Algorithm 1. Notice that in
the two tests γ → 0, i.e., the robots converge to an affine
formation. In the first test, we use 10 robots. The nominal
configuration consists of square-shaped modules forming an
open chain as in Fig. 1, with c1 = [0, 0]

⊺, c2 = [0, 1]
⊺ in

meters. At the final configuration shown in the x-y plot the
matrix in (3) is G = [[0.381,−0.056]

⊺
, [0.281, 0.241]

⊺
] and

the initial centroid is preserved. Hence, the final configuration
is the result of translating, rotating, scaling, and shearing the
nominal one. The second test is with 15 robots, a circular
nominal configuration, and modules forming a closed chain.
The centroid is preserved and the team achieves an ellipse.

Table I shows a comparative evaluation of traveled Eu-
clidean distances until formation convergence (determined via
an error threshold) for the 7-robot nominal configuration in [6,
Fig. 3]. We test the stress-matrix-based leaderless approach
mentioned after Eq. 12 of [6], and our approach with three
graph structures (S1, S2, S3) where S1 is chained and S2,
S3 are not. We compute mean and standard deviation over all
robots using 104 runs from random initial positions uniformly
distributed in a 5 × 5m2 area. The results show that the
differences among the four approaches are not major.
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Fig. 2. Simulation results of affine formation control. Top part: 10-robot test.
Bottom part: 15-robot test. In the x-y plots, robots move from initial (red
hollow circles) to final (black full circles) positions following paths shown as
blue lines. Final positions are at t = 50 s (top) and t = 20 s (bottom). The
evolutions of γ and of the velocity norms are also shown.

TABLE I
TRAVELED DISTANCE TO REACH THE AFFINE FORMATION

Method Mean (m) St. dev. (m) Modules
Stress [6] 1.509 0.171 –

S1 1.611 0.183 {1,2,3,4},{2,3,4,5},{3,4,5,6},{4,5,6,7}
S2 1.455 0.143 {1,6,7,2},{1,6,7,3},{1,6,7,4},{1,6,7,5}
S3 1.547 0.153 {1,4,5,3},{1,4,5,6},{1,4,5,7},{4,5,7,2}

Next, we test the multitarget enclosing and tracking ap-
proach of Sec. V. We use a circular nominal configuration
and a closed chain of modules. We report on two tests, with
(wa = 0.9, we = 0.1) and without (wa = 0, we = 1) the
affine formation control action in (27). In these two tests
we use saturation of the robot velocities. Some snapshots
are shown in Fig. 3, and the complete execution is shown
in the supplementary video. When using the affine control
action, the robots can acquire and maintain a suitable enclosing
configuration. Targets initially outside of the team’s perimeter
can get eventually enclosed. The team adapts to the varying
shape formed by the set of targets and tracks persistent target
displacements, with the robots being properly distributed. In
contrast, when the affine control action is turned off, robots
maintain a more irregular shape and leave some targets not
enclosed, and multiple robots converge to the same position
(observe the reduction in the number of black circles in the top
row of Fig. 3). Note that we do not implement any collision
avoidance mechanism. The values of γ indicate that with
the affine control action, the team stays closer to an ellipse,
which has the effect of deploying the robots more evenly. The
approach in (27) should be considered a proof of concept,
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Fig. 3. Simulation results of multitarget enclosing and tracking, with 20 robots
(black full circles) and 30 targets (blue crosses). We show three snapshots for
two tests, without and with our proposed affine formation control, in the first
and second row respectively. In both simulations, initial robot positions and
target movements are the same. In the first column (iteration 1000), initial
positions and robot paths are shown. γ in m2 for each snapshot is also
displayed. The cells in the plotted grid have size 1× 1m2.

suitable for simplified scenarios; it may not provide a suitable
enclosing in more challenging scenarios.

We finally discuss two tests done with physical robots
in the Robotarium [36], illustrated in Fig. 4. As the robots
have unicycle kinematics, we compute the single-integrator
control (22) and use built-in conversion routines to generate
the linear and angular unicycle velocity commands. In the first
test we use 9 robots, the nominal configuration is a square
inside a regular pentagon, and the modules form a closed
chain. The robots converge to a static affine formation as
illustrated by the final image and the curves of the velocities
and γ. In the second test, we implement multitarget enclosing
and tracking with 10 robots, a circular nominal configuration
and a closed chain of modules. The robots manage to keep
the moving targets enclosed, with the affine control action
maintaining the team’s shape close to an ellipse throughout
the execution. These real-world experiments show that our
control strategies, designed for single integrators, perform
robustly when implemented on different dynamics (unicycles),
and are applicable under non-ideal conditions, e.g., imperfect
measurement and actuation.

VII. CONCLUSION

The modular multirobot controller proposed in this article
allows achieving affine formations with a simple design pro-
cess. Among the possible extensions and improvements of
the presented approach, we are interested in 1) controlling
the convergence time, 2) considering collision avoidance, and
3) taking further steps in the integration of affine formation
control within multitarget perception tasks.
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