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Resumen

Durante los últimos años, el campo de los interfaces cerebro-máquina (BMIs
en inglés) ha demostrado cómo humanos y animales son capaces de controlar
dispositivos neuroprotésicos directamente de la modulación voluntaria de sus
señales cerebrales, tanto en aproximaciones invasivas como no invasivas. To-
dos estos BMIs comparten un paradigma común, donde el usuario trasmite
información relacionada con el control de la neuroprótesis. Esta información
se recoge de la actividad cerebral del usuario, para luego ser traducida en co-
mandos de control para el dispositivo. Cuando el dispositivo recibe y ejecuta
la orden, el usuario recibe una retroalimentación del rendimiento del sistema,
cerrando de esta manera el bucle entre usuario y dispositivo.

La mayoría de los BMIs decodi�can parámetros de control de áreas cor-
ticales para generar la secuencia de movimientos para la neuroprótesis. Esta
aproximación simula al control motor típico, dado que enlaza la actividad
neural con el comportamiento o la ejecución motora. La ejecución motora,
sin embargo, es el resultado de la actividad combinada del córtex cerebral,
áreas subcorticales y la médula espinal. De hecho, numerosos movimientos
complejos, desde la manipulación a andar, se tratan principalmente al nivel
de la médula espinal, mientras que las áreas corticales simplemente proveen
el punto del espacio a alcanzar y el momento de inicio del movimiento.

Esta tesis propone un paradigma BMI alternativo que trata de emular
el rol de los niveles subcorticales durante el control motor. El paradigma
se basa en señales cerebrales que transportan información cognitiva asociada
con procesos de toma de decisiones en movimientos orientados a un objetivo,
y cuya implementación de bajo nivel se maneja en niveles subcorticales. A
lo largo de la tesis, se presenta el primer paso hacia el desarrollo de este
paradigma centrándose en una señal cognitiva especí�ca relacionada con el
procesamiento de errores humano: los potenciales de error (ErrPs) medibles
mediante electroencefalograma (EEG). En esta propuesta de paradigma, la
neuroprótesis ejecuta activamente una tarea de alcance mientras el usuario
simplemente monitoriza el rendimiento del dispositivo mediante la evaluación
de la calidad de las acciones ejecutadas por el dispositivo. Estas evaluaciones
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se traducen (gracias a los ErrPs) en retroalimentación para el dispositivo,
el cual las usa en un contexto de aprendizaje por refuerzo para mejorar
su comportamiento. Esta tesis demuestra por primera vez este paradigma
BMI de enseñanza con doce sujetos en tres experimentos en bucle cerrado
concluyendo con la operación de un manipulador robótico real.

Como la mayoría de BMIs, el paradigma propuesto requiere una etapa
de calibración especí�ca para cada sujeto y tarea. Esta fase, un proceso
que requiere mucho tiempo y extenuante para el usuario, di�culta la dis-
tribución de los BMIs a aplicaciones fuera del laboratorio. En el caso par-
ticular del paradigma propuesto, una fase de calibración para cada tarea es
altamente impráctico ya que el tiempo necesario para esta fase se suma al
tiempo de aprendizaje de la tarea, retrasando sustancialmente el control �nal
del dispositivo. Así, sería conveniente poder entrenar clasi�cadores capaces
de funcionar independientemente de la tarea de aprendizaje que se esté eje-
cutando. Esta tesis analiza desde un punto de vista electro�siológico cómo
los potenciales se ven afectados por diferentes tareas ejecutadas por el dispo-
sitivo, mostrando cambios principalmente en la latencia la señal; y estudia
cómo transferir el clasi�cador entre tareas de dos maneras: primero, apli-
cando clasi�cadores adaptativos del estado del arte, y segundo corrigiendo la
latencia entre las señales de dos tareas para poder generalizar entre ambas.

Otro reto importante bajo este paradigma viene del tiempo necesario
para aprender la tarea. Debido al bajo ratio de información transferida por
minuto del BMI, el sistema tiene una pobre escalabilidad: el tiempo de apren-
dizaje crece exponencialmente con el tamaño del espacio de aprendizaje, y
por tanto resulta impráctico obtener el comportamiento motor óptimo medi-
ante aprendizaje por refuerzo. Sin embargo, este problema puede resolverse
explotando la estructura de la tarea de aprendizaje. Por ejemplo, si el número
de posiciones a alcanzar es discreto se puede pre-calcular la política óptima
para cada posible posición. En esta tesis, se muestra cómo se puede usar la
estructura de la tarea dentro del paradigma propuesto para reducir enorme-
mente el tiempo de aprendizaje de la tarea (de diez minutos a apenas medio
minuto), mejorando enormemente así la escalabilidad del sistema.

Finalmente, esta tesis muestra cómo, gracias a las lecciones aprendidas en
los descubrimientos anteriores, es posible eliminar completamente la etapa de
calibración del paradigma propuesto mediante el aprendizaje no supervisado
del clasi�cador al mismo tiempo que se está ejecutando la tarea. La idea fun-
damental es calcular un conjunto de clasi�cadores que sigan las restricciones
de la tarea anteriormente usadas, para a continuación seleccionar el mejor
clasi�cador del conjunto. De esta manera, esta tesis presenta un BMI plug-
and-play que sigue el paradigma propuesto, aprende la tarea y el clasi�cador
y �nalmente alcanza la posición del espacio deseada por el usuario.



Abstract

Over the last years, the �eld of brain-machine interfaces (BMIs) has demon-
strated how humans and animals can operate neuroprosthetic devices directly
from a voluntary modulation of their brain signals, using both invasive and
non-invasive approaches. All these BMIs share a common paradigm, where
the user conveys a variety of information related to the operation of the
neuroprosthesis. This information is recorded from the user's brain activity,
and translated into control commands to operate a neuroprosthetic device.
Whenever the device executes a command, the user receives a feedback of
the system performance, closing this way the loop between user and device.

Most BMIs decode control parameters from cortical areas in order to
generate the sequence of movements for the neuroprosthesis. This approach
resembles normal motor control since it links neural activity to motor be-
havior or to motor execution. Motor control, however, is the result of the
combined activity of the cerebral cortex, subcortical areas and spinal cord.
In fact, many elements of skilled movements, from manipulation to walking,
are mainly handled at the spinal cord level with cortical areas providing just
goals and movement onset.

This thesis proposes an alternative BMI paradigm that tries to emulate
the role of subcortical levels during motor control. This paradigm is based on
human brain signals that carry cognitive information associated to decision-
making processes that arise during goal-directed movements whose low-level
implementation is handled at the subcortical and spinal cord level. Through-
out the thesis, we present the �rst step towards developing this paradigm by
focusing on a speci�c cognitive signal related to the user's error processing:
the electroencephalogram (EEG) error-related potentials (ErrPs). In this ap-
proach, the neuroprosthesis is actively performing a reaching task while the
user simply monitors the performance of the device by assessing the qual-
ity of its actions. These assessments �via the decoded ErrP signals� are
translated into feedback to the device, which uses this information within a
reinforcement learning context to improve its behavior. This thesis �rstly
demonstrates this teaching BMI paradigm in a series of three closed-loop
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experiments of increasing complexity involving twelve subjects, concluding
with the operation of a real robot manipulator.

As most BMIs, the proposed paradigm requires a calibration phase spe-
ci�c to each subject and task. This phase, which is a tiring and time-
consuming operation for the user, hinders the deployment of BMIs out of
the lab. In the particular case of the proposed paradigm, it would be im-
practical to calibrate the system for every task, as this time adds to the
task learning time and the device operation would be largely delayed. Thus,
it would be convenient to train classi�ers able to work irrespectively of the
learning task being performed. This thesis analyzes, from an electrophysiol-
ogy point of view, how the error-related potentials are a�ected by di�erent
tasks performed by a device, showing how the latency of the signals vary
depending on the task; and studies how to transfer learning between tasks in
two ways: �rstly applying state-of-the-art adaptive classi�ers, and secondly
correcting the latency between the signals of two tasks as a way to generalize
a classi�er among them.

Another important challenge under this paradigm comes from the time
needed to learn the task. Due to the low information transfer rate of a BMI,
the system has a poor scalability: The learning time grows exponentially
as the learning space increases, and thus it becomes impractical to obtain
the optimal motor behavior via reinforcement learning. However, this issue
can be solved by exploiting the learning task structure. For instance, a
discrete number of positions to reach can be exploited by computing their
correspondent optimal motor behaviors. In this thesis, we show how this
task structure can be used within the proposed BMI paradigm to greatly
reduce the time needed to learn the task (from tens of minutes to even half
a minute), greatly improving this way the scalability of the system.

Finally, this thesis show how, thanks to the lessons learned on the previous
�ndings, it is possible to completely remove the calibration phase of the
proposed paradigm by learning unsupervisedly the classi�er while the task is
being executed. The main idea was to compute a set of classi�ers based on
the task constraints previously used and choosing the most suitable one for
the signals. This way, this thesis presents a plug-and-play BMI that follows
the described paradigm, learns the task and the classi�er and �nally reaches
the desired position by the user.
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1 | Introduction

Brain-machine interfacing (BMI) is an emergent technology developed to
provide a communication channel between a human and a device using only
brain activity [1]. These systems have been successfully used in four di�erent
applications: communication and control, motor restoration, entertainment
and games, and motor rehabilitation [2]. The most signi�cant feature that
de�nes a BMI is the method used for the electrophysiological recordings
[3]. On one hand, invasive BMIs, such as single-neuron or multiple-neuron
recordings, or electrocorticography (ECoG), require surgical procedures as
they rely on intracranial electrodes for the signal acquisition, but provide a
high quality signal allowing a complex control of di�erent devices. On the
other hand, non-invasive BMIs, primarily the electroencephalography (EEG),
do not require any surgical intervention but usually su�er from low signal-
to-noise ratios. In applications involving motor control, these systems have
mainly focused on the operation of neuroprosthetic devices such as mobile
robots, robotic wheelchairs or robotic arms [2].

Over the last years, the �eld of BMI has witnessed impressive demon-
strations of how humans and animals can control the operation of the afore-
mentioned neuroprosthetic devices directly from a voluntary modulation of
their brain signals, using both invasive and non-invasive approaches [4�14].
All these BMIs share a common approach, namely the control paradigm (see
Figure 1.1). In this paradigm, the user conveys a variety of information
related to the operation of the neuroprosthesis, ranging from continuous ve-
locity/position [4, 8, 12, 14�19] and muscular activity [11] to rather discrete
states such as directions [5,10,13], targets [6, 9], hand opening/closing [4,7],
and self-initiation of movements [20�22]. This information is recorded from
the user's brain activity, and translated into control commands to operate
a neuroprosthetic device. Whenever the device executes a command, the
user receives a feedback of the system performance, closing this way the loop
between user and device [23].

Most of these BMIs decode control parameters from cortical areas in or-
der to generate the sequence of movements for the neuroprosthesis. This

1



2 Chapter 1. Introduction

DECODER

LOW-LEVEL
CONTROLLER

Control signals

Control commands

Brain commands

Feedback

Figure 1.1: Usual `control BMI' approach: the user delivers mental com-
mands that specify the next state of the neuroprosthesis.

approach closely resembles normal motor control in that it links neural ac-
tivity to motor behavior or to motor execution [24]. Motor control, however,
is the result of the combined activity of three di�erent levels: the cerebral
cortex, the brainstem, and the spinal cord [24]. The lowest level corresponds
to the spinal cord, which handles many elements of basic or stereotypical
movements, mainly via rhythmic and oscillatory outputs commonly known
as central pattern generators (CPGs) [25,26]. Following the spinal cord, the
brainstem is mainly responsible for the selection, enhancement or variation
of the di�erent patterns present on the lower levels [27]; �nally, the cere-
bral cortex represents the highest level, playing a wide range of roles such
as sensory-motor transformations, action understanding, and planning and
executing of goal-directed and skilled motor tasks [24,28,29]. Therefore, the
involvement of and communication between these three levels will vary to-
gether with the motor task being executed. In fact, many elements of skilled
movements, from manipulation to walking, are mainly handled at the spinal
cord level with cortical areas providing just goals and movement onset [24,26].

But, could a BMI also mimic this strategy? As mentioned before, some
studies have shown the feasibility to decode such a kind of cognitive informa-
tion associated to voluntary, goal-directed movements [6, 20�22, 30]. Never-
theless, this approach requires that the intelligent controller, emulating the
roles of the lower levels of motor control, knows how to (i) learn optimal
motor executions (i.e. optimal trajectories), and (ii) store and execute them
as needed.
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Figure 1.2: (Left) The device objective is to reach the target position
(marked with T), and executes either correct or wrong actions while the user
assesses them. (Right) Averaged error-related potential generated from the
user's assessments, together with their topographic scalp interpolation (red
is positive, blue is negative). The di�erence average (error minus correct av-
erages) are used to study these potentials to remove those e�ects common to
both potentials. This di�erence average is composed of three main compo-
nents: a negativity at around 250 ms, and two broader positive and negative
peaks at 350 ms and 500 ms respectively.

The main objective of this thesis is to propose and develop an alternative
BMI paradigm to neuroprosthetics that, instead of decoding and executing
low level control commands, makes use of higher-level cognitive information
related to the task being performed. This way, the intelligent controller of
the device could use this data as a way of dealing with the lack of information
from subcortical levels. In other words, the paradigm tries to emulate the
role of subcortical levels during motor control. However, entirely emulating
this role would require extracting a large amount of cognitive signals, each
one dealing with a speci�c piece of information about the task. In this the-
sis, we present the �rst step towards developing this paradigm by focusing
on a speci�c cognitive signal related to the user's error processing. Speci�-
cally, this thesis studies human brain signals that carry cognitive information
associated to decision-making processes that arise during goal-directed move-
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ments, and whose low-level implementation is handled at the subcortical and
spinal cord level. In this approach, the neuroprosthesis is actively performing
a task, while the user simply monitors the performance of the neuroprosthe-
sis by assessing the quality of its actions. These assessments are extracted
from the user's brain, and translated into feedback signals that help the in-
telligent controller of the neuroprosthesis how to solve the task. Thus, the
development of this new paradigm was guided by its two main modules: the
extraction and decoding of error signals from the user's brain, and the use of
this information as input for an intelligent controller associated to the device.

Regarding the cognitive signals used as feedback for the paradigm, this
thesis focuses on EEG signals related to the error processing system of the
brain. In the �eld of cognitive neuroscience, these event-related potentials
(ERP) are usually de�ned as a negative voltage de�ection elicited in the user's
brain around 200 ms after noticing his/her expected outcome di�ered from
the actual outcome. Several works have associated them to the dopamin-
ergic neural system [31�35], which is thought to be richly projected into
the anterior cingulate cortex (ACC) region of the brain [36]. This cortex
region would be in charge of conveying reinforcement learning signals (i.e.
rewards) about the ongoing events [31]. In fact, many works have linked
the dopamine, reinforcement learning and error processing as a single neural
framework [31,32,35,37�41].

A large number of works have demonstrated the existence of these signals
in very di�erent situations, always by averaging across hundreds of trials to
increase the EEG signal-to-noise ratio: when a subject performs a choice
reaction task under time pressure and realizes that he/she has committed
an error [42] (the so-called error-related negativity �ERN or Ne�, usually
followed by a sharp positivity, Pe); after a user is given feedback about a
performed task [43] (the feedback-related negativity, FRN); and when the
subject perceives an error committed by another person (observation ERN)
[44]. A few years ago, the �eld of BMI became interested in these signals [45]
�nding that a variant of them, the error-related potentials (ErrP), were also
present when the user delivered an order to the machine and the machine
executed another one [46] (interaction ErrP); or when a user observed a
device committing an error [47]. In spite of resembling a similar pattern to
the ERN and FRN potentials, the error-related potentials are always followed
by a sharp positivity (probably the Pe [42]) and by a second negativity, which
could be related to a visual semantic mismatch [48] (see Figure 1.2).

Despite the existence on average of these signals in controlled situa-
tions, detecting them on single trial poses a harder problem, due to the
non-stationary behavior of the EEG and its poor signal-to-noise ratio. Fur-
thermore, the event-related potentials have additional sources of variability
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that can a�ect the amplitude or the latency of their components, such as the
arousal [49], the probability of occurrence of the expected stimulus [50] or
the stimulus evaluation time (i.e., the amount of time required to perceive
and categorize a stimulus) [50, 51]. To solve this problem, the BCIs need a
calibration phase to train a classi�er prior to the device control. Recently,
several works have successfully decoded these signals online, and used them
to adapt the BMI classi�er [52�54] or to prevent the execution of missclassi-
�ed commands [55�60].

In this thesis, once these signals are decoded thanks to the calibration
phase, they can be used as feedback for an intelligent controller. Given that
these signals are allegedly related to a human reinforcement learning model,
the �eld of reinforcement learning (RL) [61] provides a natural decision for
the development of this module. In reinforcement learning, the goal of the
device is to learn a policy mapping from situations to actions that maximize
the expected reward [62]. Since its beginnings over twenty years ago, many
approaches have been proposed and demonstrated over a wide range of appli-
cations, either in discrete spaces [61], continuous spaces under virtual scenar-
ios [63�66], and for learning complex tasks in robotics [67, 68]. Throughout
this thesis, the reinforcement learning module played an important role for
the development of this paradigm, closing the BMI loop during the device
control. However, for this �rst attempt of the proposed BMI paradigm, the
closed loop worked in a di�erent way: rather than sending commands and
receving feedback from the device as in the control paradigm, the proposed
system sends feedback in both directions (user to device, and device to user),
allowing for a constant co-adaptation between the two. Once the paradigm
is de�ned in a general context, it presents the �rst challenge to resolve: it
is necessary to prove the advantages of the paradigm in realistic scenarios,
such as the real-time use of a neuroprosthetic device. In this thesis, we show
how can be achieve this objective.

A second challenge comes from the fact that, under this paradigm, the
device needs a certain amount of time to learn the task being executed.
Despite it would be desirable to have a system that is able to learn from
the beginning of the experiment, in practice it is also needed for each task
a calibration phase to train and detect online the EEG signals used, a time-
consuming operation that adds to the task learning time and hinders the
deployment of BMIs out of the lab. In the speci�c case of our paradigm,
it would be thus convenient to train classi�ers able to work irrespectively
of the learning task being performed. Many works have tried to reduce
this calibration time in several ways: Adapting the classi�er with supervised
techniques incorporating labeled examples of subsequent sessions [69, 70] or
with unsupervised techniques [71, 72]; initializing the classi�er model with
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data from a pool of subjects [73, 74]; or �nding time-invariant features of
the EEG to control the BCI [75, 76]. However, it is still unclear whether
(and how) the error-related potentials vary across di�erent tasks, and how
to create classi�ers able to generalize among di�erent tasks. In this thesis,
we study transfer learning across di�erent tasks as a way of reducing the
calibration time.

The third important challenge of the proposed paradigm is related to
scalability. Firstly, it is impractical to learn the behavior each time a task
has to be performed. Therefore, once optimal motor behaviors are learned,
it is necessary to store and execute them on demand similarly to human
motor control. In this way, learned behaviors are reused and can be part of
more complex behaviors. Indeed, learning more complex behaviors also pose
several problems for the proposed paradigm since BMIs have in general low
information transfer rates. As the learning time grows exponentially as the
task space increases, learning the optimal motor behavior via RL using brain
signals may require too much time and e�ort from the user. Instead, it would
be useful to pre-compute optimal motor behaviors rather than learning them
from the user's feedback. This pre-computation can be done by exploiting the
learning task structure (e.g. using external sensors to analyze the environ-
ment and localize tasks/objects of interest). The policies can be computed
from scratch or adapted from previously learned policies taking into account
the current context. In this thesis, this concept is illustrated using a reaching
task with a discrete number of possible �nal positions. The corresponding
optimal policies are computed o�ine, assuming that an optimal policy is the
one that reaches the target following the shortest path. Similar strategies
have been exploited by the so-called shared-control systems, where the de-
vice does not only execute the decoded commands, but is also involved in
performing the task [2] (e.g. by taking into account the environment while
reaching a target or avoiding an obstacle [9, 10]). The thesis shows how it
is possible to store a collection of motor behaviors, and choose among them
via the error potentials the one that most closely resembles the user expec-
tations. In other words, the user can exploit previously learned policies to
select which one has to be executed. An alternative interpretation is that
by reducing the task space to a set of prede�ned policies, the time needed
to learn and execute the task is drastically reduced (from tens of minutes to
even half a minute) and, more importantly, it improves the scalability of the
system to larger and more complex tasks.

Finally, given a su�ciently informative task structure, it could be possible
not only to learn the task, but also to learn online and unsupervisedly the
classi�er while the task is being executed [74, 77]. This way we will show
how, using all the lessons learned throughout the thesis, we can have a plug-
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and-play BMI that follows the described paradigm, learns the task and the
classi�er and �nally reaches the desired position by the user.
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1.1 Structure and publications

The contents of the thesis are organized as follows.
Chapter 2 focuses on the �rst objective of the thesis: the development

of an alternative paradigm for BMIs based on reinforcement learning and
brain-decoded reward signals. Speci�cally, this chapter demonstrates how
it is possible to learn optimal motor executions using users' brain feedback.
This chapter was presented in [78�81].

Chapter 3 performs a deep analysis of the brain signals used for the
paradigm: the error-related potentials. In this chapter, we demonstrate how
the error-related potentials vary from one experimental protocol to another,
and how this impedes the classi�er generalization among di�erent tasks. This
work has been presented in [82,83].

Chapter 4 shows how to reduce the calibration time of a given ERP
experimental protocol by compensating the ERP latency variations across
experiments so as to re-use data from previous experiments. This analysis
was performed in two di�erent ERPs: the error-related potentials and the
P300 potentials [84]; and presented in [85,86].

Chapter 5 extends and improves the paradigm presented in chapter
2 exploiting the task structure by choosing among a set of optimal motor
behaviors given the user feedback. These �ndings were presented in [87�89].

Chapter 6 presents a novel way of removing the calibration phase for
the proposed paradigm by estimating at the same time the optimal motor
behaviors and the EEG meanings, also exploiting the task structure. This
work is under review [90].

Finally, chapter 7 presents the conclusions of this thesis and summarizes
some points of future work.



2 | Reinforcement learning using
brain signals

2.1 Introduction

In this chapter we introduce and demonstrate the alternative BMI paradigm
proposed in the introduction (see Figure 2.1). This paradigm is based on
human brain signals that carry cognitive information associated to decision-
making processes that arise during goal-directed movements whose low-level
implementation is handled at the subcortical and spinal cord level. One
of such brain cognitive signals is the error-related potential (ErrP), a time-
locked potential elicited from wrong decisions. Such ErrP is not only observed
in the grand averages of human electroencephalogram (EEG) signals, but can
also be detected in single trials [46, 47,56,79,91].

This BMI paradigm can exploit ErrP to teach an intelligent neuropros-
thesis how to acquire a correct control policy to achieve user's desired goals
through reinforcement learning (RL) [61]. Figure 2.1B illustrates this `teach-
ing BMI' paradigm. The user simply monitors the performance of the neu-
roprosthesis, assessing the quality of its actions. ErrP develops in subjects'
EEG whenever the neuroprosthesis executes an action that does not match
their expectations. This ErrP is decoded online and acts as a reward sig-
nal for a reinforcement learning algorithm that trains the neuroprosthesis
controller.

Here we demonstrate this teaching BMI paradigm in a series of three
closed-loop experiments of increasing complexity involving twelve subjects.
These experiments range from controlling the movements of a 1D cursor,
to a simulated robot, and, �nally, a real arm robot �both robots working
in a 2D space. In all cases, the subject monitors the performance of an
initially random controller while the online decoding of ErrP enables the RL
algorithm to rapidly acquire (quasi) optimal policies to reach desired targets
(see Fig. 2.1C). Furthermore, the simulated or real brain-controlled device

9
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is operational since the very �rst trial, improving performance steadily over
time and always reaching the desired target. Also, experiments with the real
arm robot show that initial control policies learned for a training target can
be easily re-acquired for other targets.

These experiments illustrate a number of appealing properties associated
to the use of ErrP as a brain signal to operate a BMI. First, like for other
event-related potentials, user's training time is minimal �a calibration ses-
sion is enough to model the user's ErrP decoder. Second, this paradigm
makes it possible to achieve tasks in a user-speci�c manner �the learned
control policy depends on the individual user's assessment. Third, single
trial decoding of ErrP does not need to be perfect to maneuver a neuropros-
thesis �it su�ces that the ErrP decoder performs statistically above random
to learn the control policy. Finally, and perhaps more importantly, ErrP is
rather independent of the task (e.g., target or action type) �making control
of neuroprostheses scalable to more complex tasks since the learning burden
is on the robot side.

2.2 Methods

2.2.1 Subjects and data recording

Twelve volunteers (four females) aged between 23 and 34 years old partic-
ipated in each of the three experiments. EEG signals were recorded using
a gTec system with 16 electrodes. The electrodes were located at Fz, FC3,
FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4
according to the 10/10 international system. The ground was placed on the
forehead (AFz) and the reference on the left earlobe. EEG was digitized at
256 Hz, power-line notch �ltered at 50 Hz, and band-pass �ltered at [1,10]
Hz.

2.2.2 Experimental setup

Each experiment lasted ∼ 2.5 hours and was recorded in a di�erent day. The
time elapsed between two consecutive experiments was 17.58 ± 10.09 days.
In all experiments, subjects were instructed to monitor the device while it
tried to reach a target (only known by subject) and to assess whether the
device actions were correct or incorrect. They were also asked to restrict
eye movements and blink at speci�c resting periods. Each experiment was
divided into two phases: training and reaching. Each phase was composed
of several runs, each run consisting of 100 actions performed by the device.
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Figure 2.1: [A] Usual `control BMI' approach: the user delivers mental
commands that specify the next state of the neuroprosthesis. [B] The novel
`teaching BMI' paradigm: the user assesses the actions performed by the
neuroprosthetic device as good or bad. This assessment is decoded from the
user's brain signals, and employed as a reward for a reinforcement learning
algorithm embedded in the neuroprosthesis controller. [C] Demonstration of
the `teaching BMI' paradigm with a real arm robot during a reaching task.
[C, Left] Initially, the robot explores the environment by performing random
actions, while it receives feedback from the user's brain signals. [C, Right]
After a short number of exploratory actions, the robot learns how to reach
the target through reinforcement learning using the ErrP as a reward signal.
See Supplementary Information for a video showing the whole process.
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Figure 2.2: [A] Experimental setup. In experiment 1, the device (blue
square) can perform two possible actions (move one position to the left or to
the right) across 9 possible states (positions) to reach a target (red square)
located either at the left- or right-most state. In experiments 2 and 3, the
robot moves across 13 states (orange squares). At each state, it can perform
four actions (move one position to the left, right, up, or down) to reach a
target (green square) located at the left-, right-, up- or down-most state. [B]
Grand average potentials (error, correct and error minus correct) at channel
FCz, over all subjects (N = 12). t = 0 ms is the moment when the device
starts the action. [C] ErrP online classi�cation accuracy. The x-axis and
y-axis represent the correct and error accuracies, respectively. Each dot
corresponds to a single run performed by each subject.
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During each run the target location remained �xed and, whenever the device
reached that location, its position was randomly reset to a location at least
two positions away from the target. The target location was randomly chosen
between runs.

The objective of the training phase was to build a classi�er able to detect
the error potentials. In the initial runs, the device performed erroneous
actions with a �xed probability (20%). After each run, all the collected data
was used to train the ErrP classi�er. Once the decoding accuracy was above
80%, or four runs were performed, an additional run was executed where
the output of the classi�er was used to adapt the device controller using
RL (see below). Thus, in this RL run the error probability was variable. If
the accuracy in this RL run was below random, the classi�er was retrained
with additional RL runs until the criterion was reached. All subjects needed
one RL run of this additional training for at least one experiment, and a
maximum of 3 RL runs were needed for one subject in one experiment. The
duration of the entire training phase was always shorter than 30 minutes.

In the reaching phase we assessed the performance of the proposed paradigm.
In this phase, the information decoded from the EEG (indicating whether the
subject considered the action as correct or erroneous) was used as a reward
signal to learn the state-action policy through RL. One run was performed
per target location (2 runs in the case of experiment 1, and 4 runs for experi-
ments 2 and 3). In the last two experiments we also tested the generalization
capabilities of the proposed approach by including target locations that were
not used in the training phase. In all RL runs, the device controller was
initialized to a random state-action policy. In the reaching task we also com-
puted the learning rate of the control policy, calculated as the number of
correctly learned actions across the number of actions in each run. At each
time, only those states already visited were considered in the estimation.

Experiment 1: Virtual Moving Square [47] (Fig. 2.2A, Top).
Participants faced a computer screen showing a horizontal grid with nine
di�erent positions (states), including one blue moving square (device), and
one red square (target position). The blue square could execute two actions:
move one position to the left or to the right. When the device was at the
boundaries (i.e., at the left- or right-most states), actions that moved the
square out of the state space were not allowed. The time between two con-
secutive actions was random and within the range [1.7,3.0] s. During the
whole experiment, the target was either the left-most or right-most state.

Experiment 2: Simulated Robotic Arm (Fig. 2.2A, Middle).
Subjects faced a computer screen displaying a virtual robot (device). We
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simulated a Barrett whole arm manipulator (WAM) with 7 degrees of free-
dom using the RobotToolkit framework (http://lasa.ep�.ch/RobotToolKit).
The robot could place its end-e�ector at 13 di�erent positions represented by
orange squares (states), with one position in green (target). It could perform
four actions: moving one position to the left, right, up, or down. As be-
fore, when the device was at a boundary state, actions that moved the robot
out of the state space were not allowed. In contrast to the �rst experiment,
the robot's movements between two states were continuous, lasting ∼ 500
ms. The time between two consecutive actions was random within the range
[2.5,4.0] s. For the training phase, the targets were the up- and down-most
positions. For the reaching phase, the up-, down-, left-, and right-most posi-
tions were tested as targets.

Experiment 3: Real Robotic Arm (Fig. 2.2A, Bottom). This
experiment followed the same design as experiment 2 but involving a real
robotic arm (Barret WAM). The robot was two meters away from the user
and was pointing at states in a Plexiglas transparent panel between the two.
The distance between two neighbor states in the panel was 15 cm.

2.2.3 Event-related potentials

The EEG waveform, amplitude and latency of the time-locked grand average
potentials for both conditions (erroneous and correct actions performed by
the device) were characterized using the signals from the training runs where
the probability of errors was constant. Statistical di�erences were evaluated
using a 3 (frontal, central or centro-parietal electrode locations) x 3 (left,
midline or right locations) x 3 (experiments) within-subjects ANOVA on the
peak amplitudes and latencies of the di�erence ERP for all electrodes (see
Supplementary Information).

Although the experimental protocols may induce eye movements, these
were not likely correlated to the erroneous or correct actions. Indeed, EEG
trials for each condition (error and correct) include movements in all possi-
ble directions, thus reducing the possibility that the classi�er accuracy was
in�uenced by saccadic movements. See Supplementary Information for a
more complete analysis supporting that ocular artifacts do not a�ect ErrP
decoding.

2.2.4 ErrP classi�er

The features for the classi�er were obtained from a subject-speci�c spatio-
temporal �lter [80]. For each training trial, a common-average-reference �lter
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was applied. Then, eight fronto-central channels (Fz, FCz, Cz, CPz, FC1,
FC2, C1, and C2) within a time window of [200,800] ms were downsampled
to 64 Hz and concatenated to form a vector x of 312 features per trial. These
vectors were normalized and decorrelated using principal component analy-
sis (PCA). A feature selection process based on the r2 score then retained
the f -most discriminant features, using a �ve-ten-fold cross validation. The
f features of all labeled trials were used to train a linear classi�er (linear
discriminant analysis, LDA), which mapped the input feature vector xf of a
given trial into a binary output y ∈ {-1,+1}. On average, 36 features were
selected across all subjects (± 13).

We report the online single-trial accuracies during the reaching task. To
assess the statistical signi�cance of the obtained accuracies, we compute the
chance levels according to the available number of trials using the binomial
cumulative distribution [30]. The estimated chance levels at α = 0.05 were
56% for Experiment 1 and 54% for Experiments 2 and 3.

2.2.5 Reinforcement Learning with ErrPs

The RL strategy [61] was modeled by a Markov decision process, denoted
by the tuple {S,A, r, γ} with S the state space (the possible positions of the
device), and A the action space (the possible actions of the device). The
reward function r : S × A → R represented the goodness of the executed
action at a given state. The goal of RL was to obtain a policy π : S → A
mapping the state space into the action space (i.e., which action had to
be performed at each state) so as to maximize the expected return R =∑∞

k=0 γ
krk+1 at time k. The RL implementation was the Q-learning iterative

algorithm [61]:

Qk+1(sk, ak) = Qk(sk, ak)+

α
[
rk+1(sk, ak) + γmax

a′∈A
Qk(sk+1, a

′)−Qk(sk, ak)
]

where k is the current step, γ is a discount factor, and α is the learning rate
(for the designed experiments, γ and α were set empirically to 0.4 and 0.1,
respectively). During the iterative process at time k, the device executed
an action ak from state sk to state sk+1, receiving a reward rk+1(sk, ak).
This reward was used to update the reinforcement learning policy after each
action. All the Q-values were set to zero at the beginning of each run (k = 0).
At the end of the run, the �nal policy π was computed as the policy that,
at each state s, always followed the action a′ with the maximum Q-value,
π = arg maxa′∈AQ

π(s, a′).
An ε-greedy policy was used to select the next action ak to be executed

at each step k of the iterative process. This policy selected the action with
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highest Q-value (best action) for (100−ε)% of the times in the state sk,
while a random action was selected the remaining times. The experiments
started with a completely exploratory behavior (ε =100%), and every time
an exploratory action was chosen ε was decreased by a small factor (5%) until
reaching a minimum value (20%) to always maintain a small percentage of
exploration.

The output of the ErrP classi�er at each step k was used as the reward
function rk+1: after an action was executed, the reward was -1 or +1 depend-
ing on whether or not an ErrP was detected.

2.3 Results

Figure 2.2A summarizes the three experiments executed by 12 subjects. Sub-
jects' task was to monitor the performance of a neuroprosthetic device that
had to reach a target. This target was known by the subject, but not by
the neuroprosthesis. Online operation of the closed-loop system was tested
on several runs where the goal is to repeatedly reach a �xed target location
from di�erent starting points. At the beginning of each run the device con-
troller was initialized to a random behavior (i.e., equiprobable actions for
all states). After each action the controller was updated by means of RL
based on the online decoding of the ErrPs. Each of the runs had a di�erent
target location which remained constant during its entire length (100 device
actions). Whenever the device reached the target, it was randomly reset to
a new location. On average (for all runs and targets), subjects reached the
target 12, 13 and 13 times for experiments 1, 2 and 3, respectively.

2.3.1 Analysis of error-related potentials

We analyzed variations in the grand average EEG potentials for both con-
ditions (see Fig. 2B and Fig. 2.3). To this end we performed a statistical
analysis on the di�erence ERP (error minus correct condition) for all elec-
trodes in the time window [-200, 1000] ms, t =0 ms being the instant when
the device starts to move. Only signals from the training runs �having a
constant error-rate (20%)� are used in this analysis. These runs yielded
between 200 and 400 trials for each subject.

A 3 (brain area: frontal, central or centro-parietal electrode locations) x
3 (left, midline or right locations) x 3 (experiments) within-subjects ANOVA
was performed on the peak amplitudes and latencies of the di�erence aver-
age [50]. Each group is summarized in Table 2.1. When needed, the Geisser-
Greenhouse correction was applied to assure sphericity. Pairwise post-hoc
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Figure 2.3: Topographic interpolation of the most prominent (A) positive
peak and (B) negative peak of the di�erence average for each experiment,
together with the time point of each peak (in milliseconds).
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tests with the Bonferroni correction were computed to determine the di�er-
ences between pairs of experiments.

Table 2.1: Electrode locations used as factors for the ERP statistical analysis.
Each row corresponds to the brain areas, while columns correspond to the
laterality.

Left Midline Right

Frontal FC3, FC1 Fz, FCz FC2, FC4
Central C3, C1 Cz C2, C4

Centro-parietal CP3, CP1 CPz CP2, CP4

We mainly found signi�cant e�ects on the latency but not the amplitude
of the di�erence potential. The type of experiment signi�cantly a�ected the
latencies of both the positive (F2,22 = 41.594, p = 3 × 10−8) and negative
peaks of the di�erence ERP (F2,22 = 7.522, p = 0.003). The brain area also
a�ected the latencies of the positive peak (F1.32,14.55 = 14.175, p = 0.001) but
not the negative one F2,22 = 0.911, p = 0.417). Similarly, the hemisphere
a�ected the latency of the positive peak (F2,22 = 5.279, p = 0.013), but not
the latency of the negative one (F2,22 = 1.711, p = 0.204). No signi�cant
interactions were found.

For the positive peak latencies, post-hoc pairwise tests revealed signif-
icant di�erences between experiments 1 and 2 (p = 0.0001), and between
experiments 1 and 3 (p = 0.0001), but not between experiments 2 and 3
(p = 0.068). For the negative peak latencies, there were signi�cant di�er-
ences between experiments 1 and 3 (p = 0.009), but not between experiments
1 and 2 (p = 0.357) nor experiments 2 and 3 (p = 0.122).

In contrast, the amplitude of the positive and negative peaks were not
signi�cantly a�ected by the experiment (F2,22 = 0.124, p = 0.884 and F2,22 =
2.304, p = 0.123, respectively) nor the brain area (F1.19,13.08 = 1.227, p =
0.737 and F1.32,14.47 = 0.071, p = 0.857). The laterality signi�cantly a�ected
the positive peak amplitude (F2,22 = 4.556, p = 0.022), but not the negative
peak (F2,22 = 3.425, p = 0.051). As in the case of the peak latencies, no
signi�cant interactions were found.

2.3.2 Analysis of ocular artifacts

We assessed the possibility of EEG signal contamination by movement-related
saccades. In this study, we compute the grand average ERPs (correct and
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Figure 2.4: Grand averages in channels FC3, Fz, and FC4 for correct and
error assessments (left and right respectively) of each movement direction
(left, right, up or down), averaged for all subjects (N = 12). Rows corre-
spond to each experiment. The results show that the averaged signals of the
same assessment (either correct or error) are very similar across all direc-
tions, reducing the possibility of having a systematic in�uence on the ErrP
classi�cation process.
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error) of all channels separately for each di�erent action (moving left, right,
up, or down). No substantial di�erences were found among these ERPs, sug-
gesting little in�uence of eye movements. This is illustrated in Figure 2.4
that show the averages of the three most frontal electrodes: FC3, Fz and
FC4. As can be seen, the di�erences among assessments (correct or error)
were larger than the di�erences among directions (left, right, up or down).
This is consistent with previous studies that found no in�uence of this type
for experiment 1 [46,47].

To evaluate the existence of statistical di�erences due to both assessments
and movement directions, we performed 2 (factor assessment: error or cor-
rect) x 4 (factor movement direction: left, right, up or down) within-subjects
ANOVAs on the values of the most prominent positive and negative peak
amplitudes of the grand averages (note that for experiment 1 the ANOVA
was 2 x 2 since there were only two possible movement directions). When
needed, the Geisser-Greenhouse correction was applied to assure sphericity.
The assessment and direction main e�ects and the assessment x direction
interaction were studied.

Regarding the main e�ects, statistical di�erences were found for the as-
sessment for all the experiments, for the positive (F1,11 = 17.277, p = 0.002,
F1,11 = 15.567, p = 0.002, and F1,11 = 14.202, p = 0.003 for experiments 1
to 3) and negative (F1,11 = 10.087, p = 0.009, F1,11 = 14.658, p = 0.003,
and F1,11 = 11.581, p = 0.006) peaks. On the contrary, no signi�cant dif-
ferences were found for the direction main e�ect (p > 0.1). Regarding the
assessment x direction interaction, signi�cant di�erences were found during
experiment 2 (F3,33 = 3.721, p = 0.02 and F3,33 = 3.903, p = 0.02 for the
positive and negative peak); and during experiment 3 for the negative peak
(F3,33 = 3.461, p = 0.03) but not for the rest of the cases (p > 0.35). These
results indicated that the largest di�erences on the potentials were due to
the di�erent assessments (error / correct), whereas the movement directions
of the device a�ected less the potentials.

To further discard the in�uence of artifacts on the assessments, data used
to train the classi�er included all possible movements for each class, thus
reducing the possibility that classi�cation was biased by their directions. For
instance, during experiment 1, both targets are used for the classi�er training,
thus the error and correct assessments are not likely to be correlated with left
or right eye movements. Moreover, results obtained in the generalization test
for experiments 2 and 3 further support the fact that classi�cation depends
on the movement evaluation and not on its direction. Indeed, the training
set contained samples where the target locations were Up and Down, while
the BMI was tested on targets Left and Right. Finally, to test whether the
trained classi�ers discriminated di�erent directions rather than assessments,
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we computed for each subject the accuracy of decoding the di�erent pairs
of movement directions (e.g. left versus right, up versus left, ...) from a
�xed assessment (either correct or erroneous) with the same features and
classi�er used during the experiments. The mean accuracies obtained were
of 52.16±5.22, 50.07±5.07, and 49.48±6.41 for experiments 1 to 3, and thus
did not reach the chance levels of 56%, 54% and 54% (see `ErrP classi�er'
in Materials and Methods), indicating that the classi�er was not trained to
distinguish saccadic artifacts, but user's assessments.

2.3.3 Event-related potentials and single-trial classi�ca-

tion

Figure 2.2B shows the grand average potential on electrode FCz elicited by
the user's assessment of both types of movements (correct and erroneous),
as well as the di�erence ERP (error minus correct). As reported by previous
studies [47, 78], the di�erence potential in the three experiments is mainly
composed of two prominent positive and negative peaks at around 300 and
500 ms, respectively.

A within-subject statistical analysis shows signi�cant e�ects of the ex-
periments on the latency but not the amplitude of the di�erence ERPs (see
Supplementary Information). Overall, this suggests that these signals re�ect
a common phenomenon (i.e., error-processing) across the three experiments,
where the complexity of the experimental protocol mainly a�ects the tempo-
ral characteristics of the brain response.

Online single-trial decoding of the ErrPs (error vs. correct) is shown in
Fig. 2.2C. Classi�er accuracy was comparable for all experiments. Perfor-
mance was above chance level (except for one subject in experiment 2) �a
necessary condition when using stochastic rewards for reinforcement learn-
ing [61]. This demonstrates the feasibility of extracting useful reward-related
signals from human brain activity.

2.3.4 Reaching task: Learning to reach the training tar-

gets

Figure 2.5A summarizes the reaching performance when the closed-loop sys-
tem is tested on the same target locations used for training the ErrP classi�er.
It shows the optimal action per state (arrow) and the number of subjects that
successfully learned those actions (dark red corresponds to all subjects). In
experiment 1, the optimal actions were learned in 94% of the cases indicating
that the users were able to teach the device a quasi-optimal control strategy.
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Figure 2.5: Online reinforcement learning. [A] Reaching the same targets
used to train the ErrP classi�er (Left and Right locations for experiment
1, and Up and Down for experiments 2 and 3). [B] Reaching new targets
(Left and Right for experiments 2 and 3). For each experiment the top rows
in [A] and [B] show, for each state, the optimal action (arrows), and the
number of subjects that correctly learned that action (color coded, dark red
corresponds to all subjects). Target locations are denoted by green squares.
The bottom row shows, in red traces, the percentage of correctly performed
actions (mean±SEM, straight±dashed lines, N = 12 subjects) as a function
of the number of performed actions within a run (100 actions, starting from
a random device controller). Blue traces correspond to chance performance
level calculated using random rewards (100 repetitions). [C] Percentage of
correctly performed actions (y-axis) versus the online ErrP decoding accuracy
(x-axis) at the end of each run, for the training (red circles) and new targets
(green squares). The straight lines show the best-�tting regression line for
training (red) and new (green) targets, and each point in the plot corresponds
to the mean accuracy of one subject.
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In experiment 2, where a more complex state-action space has to be
learned, the performance decreased. Nonetheless, 85% of the trajectory mo-
tion was learned. Interestingly, no major di�erences were found between the
performance in experiments 2 and 3. The correct actions were learned for
87% of the states in experiment 3.

For all experiments and runs we observe a steady acquisition of a suitable
control policy. As shown in Fig. 2.5A(bottom), the device quickly learns the
correct action after visiting a state (see Methods). For experiment 1, the
number of actions correctly learned was always signi�cantly above chance
level (one-tailed unpaired t-tests, p < 0.05). The number of actions correctly
learned consistently increased as more actions were performed (correlation
between time and actions learned of r = 0.70, p < 1× 10−8). For experiment
2 and 3, the convergence was slower due to the higher number of states and
actions. However, after 9 and 6 actions (for experiment 2 and 3, respectively)
the results were signi�cantly above the chance level (one-tailed unpaired t-
tests, p < 0.05). In both experiments performance does not appear to have
reached asymptotic values after 100 actions. This suggests that given more
time, the device would have been able to learn the entire policy. There
was also a high correlation between time and learned actions (r = 0.79, p <
1× 10−8 for both experiments).

The number of actions correctly learned was signi�cantly correlated with
the mean performance of the ErrP classi�er (Fig. 2.5C). In particular, for
experiments 2 and 3 (r = 0.75, p = 2×10−5 and r = 0.76, p = 1×10−5, respec-
tively). A lower correlation was found in experiment 1 (r = 0.13, p = 0.54),
indicating that learning the 1D policy is less sensitive to misclassi�cation of
the error-related signal.

2.3.5 Reaching task: Learning to reach new targets

The system was also able to rapidly learn suitable policies to reach target
locations not used during the training phase (Fig. 2.5B). For both experi-
ments 2 and 3, no signi�cant di�erences in the number of correctly performed
actions were observed with respect to the training targets (paired t-test,
p = 0.26 and p = 0.65, respectively). In experiments 2 and 3, 81% and 85%
of the actions were learned, respectively. This shows that the ErrP does not
depend on targets, as the ErrP classi�er does not need to be retrained for
unseen targets.

As before, the number of actions correctly learned across time for the new
targets (Fig 2.5B) was above chance level after the �rst movements (one-
tailed unpaired t-tests, p < 0.05), and increased along the entire run. Fur-
thermore, the correlation between time and the number of correctly learned
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actions was also very high (r = 0.70, p < 1 × 10−8 for both experiments).
When comparing the acquisition of the control policy across time between
training and new targets, the learning rate was signi�cantly equal for more
than 19 and 8 actions for experiments 2 and 3, respectively (two-tailed un-
paired t-tests, p > 0.05).

As before, the number of actions correctly learned across time for the new
targets (Fig 2.5B) was above chance level after the �rst movements (one-
tailed unpaired t-tests, p < 0.05), and increased along the entire run. Fur-
thermore, the correlation between time and the number of correctly learned
actions was also very high (r = 0.74, p = 3× 10−5 and r = 0.78, p = 8× 10−6

for experiments 2 and 3, respectively). When comparing the acquisition of
the control policy across time between training and new targets, the learning
rate was signi�cantly equal for more than 19 and 8 actions for experiments
2 and 3, respectively (two-tailed unpaired t-tests, p > 0.05).

There was also a high correlation between the mean classi�er accuracy and
the number of actions correctly learned (Fig. 2.5C) (r = 0.74, p < 1 × 10−5

and r = 0.78, p < 1 × 10−5 for experiments 2 and 3, respectively), with
no signi�cant di�erences between the accuracies of training and new targets
(paired t-test, p = 0.90 and p = 0.85 for experiments 2 and 3, respectively).

2.4 Discussion

This paper describes an alternative and complementary BMI paradigm to
neuroprosthetics that decodes cognitive brain signals associated to decision-
making processes relevant for achieving goals. This new approach is demon-
strated with a BMI where the subject monitors the robot actions, and it
decodes the brain correlate of the subject's assessment of those decisions (er-
roneous or correct). This cognitive signal is exploited by an RL algorithm to
learn which is the sequence of actions that solves a task.

In the experiments reported here, it is assumed that the neuroprosthesis
owner wishes to initiate a voluntary, goal-directed movement whose low-
level execution is delegated to subcortical, spinal cord and musculoskeletal
structures. In our case, this lower level of motor control is emulated by an
intelligent controller. But, where do the movement goal and onset come
from? This kind of information can be decoded from the subject's cortical
activity [6,20�22]. As a result, the combination of all these sorts of cognitive
brain signals would be su�cient for the operation of any neuroprosthesis,
no matter its complexity and number of degrees of freedom. Indeed, as the
experimental results reported in this paper illustrate, the burden of learning
the (quasi) optimal trajectories is on the controller side rather than on the
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human.
A full integration and demonstration of this cognitive BMI approach,

however, remains to be proven and has a high priority in the research agenda
of neuroprosthetics. Besides, further research will uncover additional cogni-
tive brain sigwnals that will enrich this initial basic set, thus enlarging the
repertoire of decision-making processes available for natural, intuitive con-
trol of neuroprostheses to perform goal-directed movements. An immediate
candidate is anticipatory signals [92] that indicate the subject is preparing
to execute a new action at the arrival of relevant future events, which can be
decoded at the single-trial level [93,94].

2.4.1 Error-related potentials and reinforcement learn-

ing

ErrPs have been previously explored in BMI research. Recent work has shown
how detection of ErrPs in response to the outcome of the BMI can improve
the BMI performance by correcting the BMI output [56�58]. Additionally,
several authors have discussed how ErrPs could be utilize to adapt the BMI
decoder [46, 91]. In our preliminary works we explored ErrPs as a teaching
signal in simple 1D virtual scenarios [47,78]. This paper uni�es and extends
them under an RL framework. Furthermore, here we demonstrate how the
BMI teaching paradigm scales to neuroprosthesis with a complexity similar
to state-of-the-art BMIs.

Scalability is indeed a crucial property of the BMI teaching approach.
The main reason is that, as the experimental results demonstrate, the ErrP is
rather independent of the task (e.g., target and/or action) and re�ects a com-
mon error processing mechanism in the brain [31,42,95]. Importantly, similar
ErrPs waveforms can be observed on human EEG, ECoG and intracranial
recordings [91,96]. Such an ErrP can then be combined with a wide range of
RL techniques that deal with large or continuous state-action spaces [61,97]
and that have demonstrated to acquire complex robotic skills [67, 98]. It is
also worth noticing that in this BMI teaching paradigm the neuroprosthesis
is operational as soon as the accuracy of the ErrP decoder is above chance
level �which usually takes just minutes as reported in this paper� and keeps
adapting inde�nitely, as it is the case of human motor control.

Although we have simply combined ErrPs and RL algorithms, there seems
to exist a physiological relationship between the two [31, 32]. In particular,
the midbrain dopaminergic neurons encodes a reward prediction error that
guides adaptive behavior in a way similar to RL [40, 99]. Access to this
dopaminergic system could provide richer reward signals than the binary
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ErrP signal presented in this paper. Similarly, one could exploit error-related
components to measure the quantitative di�erence between the expected and
the actual outcome [32] or to model habituation to the stimulus [50].

RL has also been incorporated in BMI to drive co-adaptation between
the BMI and the robot [100]. In this case, the feedback provided to the BMI
decoder was derived from external sensors that measured how well the robot
performed a reaching task. This feedback, however, could also be the ErrP,
the activity of dopaminergic neurons, or signals from other brain reward areas
such as the nucleus accumbens. [101] reports a �rst attempt to exploit the
latter in a BMI co-adaptive framework.



3 | Task-dependent signal variations
in EEG error-related potentials

3.1 Introduction

As we have seen in the introduction, brain-computer interfaces always rely
on the fact that the user performs a mental task, which presents associated
brain patterns that are measured on the EEG and decoded to obtain the in-
tention of the user (see Figure 1.1). Subsequently, these intentions are used
to operate a device performing given operational tasks, which can be related
or not to the decoded mental task. A major di�culty of BCIs is to deal with
the non-stationary behaviour and noise of the EEG [102,103]. Most of e�orts
in this context have been devoted to those BCIs where the mental task and
the operational task are not related [69�72, 75, 76]. On the other hand, sev-
eral BCIs make use of mental tasks that are related to the operational task
being performed. One such BCI is the paradigm presented in the previous
chapter (see Figure 2.1), where the mental task (the error-related potential)
is associated to the operational task (the device performing actions). On
these kinds of BCIs, there could exist task-dependent signal variations hin-
dering the transfer learning of classi�ers among di�erent operational tasks.
As a result, the BCI paradigm presented in the previous chapter needed a
calibration phase for each speci�c task performed (experiments 1 to 3, see
Figure 2.2).

A great portion of the existing BCIs rely on mental tasks whose associ-
ated brain patterns are independent of operational tasks. For instance, many
BCIs have used: (i) self-regulation of rhythms' amplitudes in the temporal
domain (e.g., slow cortical potentials [104]); (ii) changes in frequency power
spectrum (such as µ and β-rhythms [15], motor imagery of body limbs [105],
or performance of cognitive mental tasks [5]); or (iii) attendance to visual
stimuli (e.g., visual P300 potentials [84], or steady-state visual evoked po-
tentials [106]). In the aforementioned BCIs, the mental task is decoupled

27
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from the operational task and the signal variations are assumed to be inde-
pendent of the device operation [71]. Consequently, these BCIs generalize
among di�erent operational tasks. For instance, slow cortical potentials have
been used for spelling devices or controlling 2D cursors, [104, 107]; motor-
imagery BCIs have been used to operate 2D cursors, wheelchairs or mobile
robots [10, 15, 105]; and P300 BCIs have been used to operate spelling de-
vices, wheelchairs or mobile robots, among others [9,84,108]. However, even
though the signal variations are independent of the operational task, the
time-dependent non-stationarities of the EEG lead to changes in the features
distributions and thus on the performance of the BCI [71]. The di�culty
is to achieve a robust classi�cation from the calibration phase to the feed-
back phase, along the feedback phase, and/or between di�erent sessions. The
techniques developed to date focus on the feature extraction or the classi�-
cation process: either relying on �nding time-invariant features of the EEG
to control the BCI [75, 76]; or adapting the classi�er with supervised tech-
niques incorporating labeled examples of subsequent sessions [69,70] or with
unsupervised techniques [71,72].

However, in other types of BCIs the mental task is coupled with the
operational task, such as those based on the error-related potentials (see
previous chapter). The principle of these BCIs is to detect in the brain
patterns the occurrence of an error during the device operation. Although
these BCIs are rather insensitive to time-dependent non-stationarities [47,
109], the operational task-dependent signal variations are natural in this
context, as the monitoring of di�erent devices or processes leads to di�erent
error-related potentials (e.g., user's own errors [42], interaction errors [46],
feedback errors [32, 109], or observation errors committed either by another
person [44] or by virtual or real devices [47, 78, 79], namely the observation
error-related potentials). In previous studies, the latter potentials have been
studied by their di�erence average, and characterized by three main ERP
components (an N2, a P3 and an N4) [46]. These BCIs always require re-
calibration as, depending on the size of the variation of the error-related
potentials, they might not generalize between small variations of the task or
among di�erent tasks. This is a large drawback for the practical deployment
of these BCIs as calibration is a boring, tedious and tiring process that could
last approximately 30-45 minutes before using the BCI [47,78,79].

This chapter studies the presence of signal variations in observation error-
related potentials, where the mental task is coupled with the operational task.
The analysis spanned the three design steps of BCIs: an electrophysiology
study to characterize the existence of these variations; a feature analysis
that showed how these variations a�ect the features distributions; and a
classi�cation analysis to measure the impact on the �nal BCI performance.
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3.2 Methods

3.2.1 Data recording

The EEG signals were recorded with a gTec system (2 synchronized gUS-
Bamp ampli�ers) with 32 electrodes distributed according to an extended
10/20 international system (FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7,
P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1, FC2, CP5, CP6, CP1, CP2,
Fz, FCz, Cz, CPz, Pz and Oz), with the ground on FPz and the reference on
the left earlobe. The EEG signals were digitized with a sampling frequency
of 256Hz, power-line notch-�ltered, common-average-reference (CAR) �ltered
and band-pass �ltered at [0.5, 10] Hz. The data acquisition was developed
under the BCI2000 platform [110].

3.2.2 Experimental design

Ten subjects (eight males and two females, mean age 27.20±4.08 years) par-
ticipated in the experiments. The participants were comfortably seated one
meter away of a computer screen displaying all the information related to the
experiments. Two experimental protocols were designed. In each protocol
the subject monitored the execution of a task where a virtual device had
to reach a given goal. The motion of the device could be correct (towards
the goal) or erroneous (away from the goal). Each task (denoted operational
task, OT) consisted of a set of subtasks where the goal location changed but
the device movements were �xed (see Figure 3.1). The subjects were asked
to assess the device movements as erroneous or non-erroneous. The partic-
ipants were allowed to freely move their eyes, while blinking and muscular
movements were constrained to the resting periods. Each experiment took
place in one session, and the time period between sessions was 3± 6 days.

Operational Task 1 (OT1, Figure 3.1a)

The screen displayed the virtual device as a blue circle in the centre of the
screen (rest position), and also three rectangles indicating possible destina-
tions, arranged in a triangle-like shape equidistant to the rest position. The
goal was marked with a green rectangle. The device could perform three pos-
sible actions: move over one of the three rectangles. After the motion, the
device returned to the rest position. The users were instructed to assess the
actions as non-erroneous when it moved to the goal (green rectangle), or as
erroneous otherwise. The three subtasks corresponded to the three possible
goal locations (denoted subtasks OT1.Up, OT1.Left and OT1.Right). The
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OPERATIONAL TASK 1 (OT1)
OT1.UP

OT1.LEFT OT1.RIGHT

OPERATIONAL TASK 2 (OT2)

OT2.LEFT OT2.RIGHT

OT2.UP

OT2.DOWN

Erroneous actionNon-erroneous action Non-erroneous action Erroneous action

Figure 3.1: Schematic illustration of the operational tasks (OTs). Each
operational task consisted of a virtual device (blue circle or blue square) that
had to move to the goal location (marked in green). For each operational
task, subtasks were de�ned by changing the goal location. Examples of non-
error and error movements are shown for each task.

session was recorded in 36 runs. Each run consisted of 50 actions with the
goal �xed at one position, with a 20% probability of not moving to the goal.
For each subtask 120 error and 480 non-error potentials were acquired, i.e.,
a total of 360 errors and 1440 non-error potentials for the operational task.
This session lasted 3 hours.

Operational Task 2 (OT2, Figure 3.1b)

The screen displayed the virtual device as a blue square and the goal location
as a green square, located on a horizontal or vertical grid composed of 20
positions. The device could perform two possible actions: move one position
left or right in the horizontal grid, or up or down in the vertical grid. The
users were instructed to assess the actions as non-erroneous when the de-
vice moved towards the green square and as erroneous when it moved in the
opposite direction. When the device reached the goal, the goal was moved
three positions away along the grid (randomly left or right for the horizontal
grid, or up or down for the vertical grid). The four subtasks corresponded to
the relative position of the goal location with respect to the virtual device:
OT2.Left, OT2.Right, OT2.Up and OT2.Down. The session was recorded in
24 runs. Each run consisted of 50 actions with a �xed grid (either the hori-
zontal or the vertical grid), with a 20% probability of not moving towards the
goal. For each subtask, 60 error and 240 non-error potentials were acquired,
i.e., a total of 240 errors and 960 non-error potentials for the operational
task. The session lasted 2 hours. The protocol was based on [46].
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3.2.3 Analysis of error-related potentials and their task-

dependent variations

The de�nition of the observation error-related potentials encompasses the ap-
pearance of three main and distinct components on the di�erence (error mi-
nus correct) average: an N2, a P3, and an N4 component [46]. Regarding the
N2 and P3 components, several studies suggest that they may actually be the
error-related negativity (ERN or Ne) and the following positivity (Pe) [42],
but there is still an open discussion about it [111]. Regarding the N4 compo-
nent, previous studies have suggested that its generation could be due to a
visual semantic mismatch [48]. Nonetheless, for the observation error-related
potentials, the three components are originated in the anterior cingulate cor-
tex (ACC, Brodmann Areas 24 and 32) and the pre-supplementary motor
area (pre-SMA, Brodmann area 6) [46], suggesting an activation of an error-
processing system on the brain [32].

The electrophysiology of the error-related potentials and their associated
variations were studied through the analysis of the raw EEG, and with a
�ltered EEG where those components not originated in the brain sources
involved in the error-related potentials were removed. The �lter eliminated
several types of artefacts, including electromyographic activity (such as that
provoked by scalp and neck muscles), ocular activity (such as eye movements
and blinks) and brain activity not originated within the error processing
brain sources [112] (such as spatial attention components [113]). The �lter
is constituted by two main steps: (i) application of independent component
analysis (ICA) [114]; and (ii) isolation of the independent brain components
related to error processing, with a posterior re-projection of this information
to the sensor space. Note that while ICA techniques have been widely used for
the characterization of brain sources [115�117] and the removal of artefacts
[118], the �lter proposed herein focused on the isolation of the brain process
of interest (see [119] for a similar approach for P300 classi�cation).

The ICA spatial �lter is a statistical model de�ned as x = As, where
x are the input data, and A and s are the mixing matrix and independent
components estimated by maximizing the temporal independence among the
components. Each column vector ai of A is the spatial pattern associated
with the component si. While there are many ways to compute the ICA
model [114], its computation has two di�culties in the EEG context: the
number of independent components to estimate [117] and the non-reliable
nature of the estimation process [120]. The number of components d was
estimated using m-fold cross-validation principal component analysis (PCA)
in the sensor space [121] (the number of folds was �xed to m = 5 in the
experiments, leading to d ' 15 dimensions retained from the original 32
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channels). The ICASSO technique was used to address the non-reliability
of ICA [120]. ICASSO estimates N ICA �lters using the FastICA algo-
rithm [114] under changes of the initial conditions, and then performs clus-
tering on the obtained estimations (N was �xed empirically to 100). Once
the ICA model was computed, the DipFit source localization [117] was used
to estimate the neural source of each component. Those independent compo-
nents whose brain source was in the ACC or the pre-SMA were selected, as
these areas are believed to be the main generators of error-processing brain
activity [32,42,116]. For each subject and task/subtask, the number of com-
ponents selected was between one and four, which were re-projected back to
the sensor space to obtain the �ltered data.

The analysis of the shape and timing of the potentials (with and without
the �lter) for each task and subtask was carried out through the computa-
tion of time-locked averaged potentials for the error and non-error poten-
tials in channel FCz, through the di�erence average (error minus non-error
averages) [46, 79] and by an r2 discriminability test [1]. A topographic in-
terpolation of the potentials was obtained at the time of the main peaks
of the di�erence average. A source localization analysis was also performed
with sLoreta [122] at the N4 component of the error averages of each op-
erational task [46]. Additionally, the peak amplitudes and latencies of the
most prominent negativity were extracted from single-trial signals as the
minimum value within the time window [320, 600] ms in channel FCz. The
latency-sorted single-trial potentials were plotted as a colour-encoded image
with a smoothing window of 50 trials.

Finally, to assess the statistical di�erences among tasks/subtasks of the
error-related potentials, one-way within-subjects ANOVAs (factor: tasks or
subtasks) were conducted over the latencies and amplitudes of each compo-
nent (N2, P3 and N4) of the di�erence average, averaged from channels Fz,
FCz and Cz [50, 123]. When needed, the Geisser-Greenhouse correction was
applied to the data to assure sphericity.

3.2.4 Analysis of the impact of task-dependent signal

variations

Once the existence of signal variations was studied, its impact on BCI perfor-
mance was analyzed at two levels: (i) changes in the features distributions
used for error detection and (ii) the corresponding classi�cation accuracy.
This analysis was performed using the �ltered EEG data to avoid the in-
�uence of activity not originated in the error-processing brain areas (i.e.,
artefacts).
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Feature extraction

Previous studies have demonstrated that amplitude values of the error-related
potentials from several fronto-central channels are suitable features for their
discrimination (error vs non-error) [46, 47, 79]. In this study, features are
constructed as linear combinations of amplitudes of channels and time points
that best separate these two classes [80]. Given a set of n labelled trials of the
two classes, for each trial, eight fronto-central channels (Fz, FC1, FCz, FC2,
C1, Cz, C2, and CPz) within a time window of [200, 800] ms were subsampled
to 64 Hz and concatenated as a vector of 312 features. The feature vectors of
all trials were normalized, and then decorrelated using PCA, retaining 95%
of the explained variance. The k-most discriminant features were selected
based on a robust variant of the Fisher score [72]:

FS(f i) =
|med(f i1)−med(f i2)|
medad(f i1) +medad(f i2)

, (3.1)

with med(f ij ) and medad(f ij ) being the median and the median absolute
deviation of feature f i for class j ∈ {1, 2}. The number of features to retain
k was determined by a ten-fold cross validation.

The e�ect of signal variations was measured by the statistical signi�cance
between the features distributions for each class, between operational tasks
(inter-task) and between subtasks (intra-task). One-way within-subjects
ANOVAs (factor: tasks or subtasks) were conducted on the single-trial fea-
tures of each class to assess the statistical signi�cance. In addition, the
inter/intra-task similarity of the features' distributions was quanti�ed by the
Kullback-Leibler (KL) divergence. The KL divergence from P ∼ N (µP ,ΣP )
to Q ∼ N (µQ,ΣQ) is:

DKL(P ||Q) =
1

2

(
tr(Σ−1Q ΣP ) + vTΣ−1Q v − ln

( |ΣP |
|ΣQ|

)
− k

)
(3.2)

with v = (µQ − µP ). High values of DKL(P ||Q) entail large di�erences
between distributions. The KL divergences were computed using the k =
10 most discriminant features (according to equation 3.1) to compare the
intra/inter features distributions.

Single-trial classi�cation

The classi�er used in the analysis was a regularized version of the linear dis-
criminant analysis (LDA) [124]. The LDA discriminant function D(f) is the
hyperplane that maximally separates the feature distributions corresponding
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to two classes: D(f) = wT f + b, where f is the feature vector to be classi�ed,
and w and b are the normal vector to the hyperplane and the corresponding
bias computed by: µ̂ = 1

2
(µ̂1+ µ̂2), w = Σ̃−1(µ̂2− µ̂1), b = −wT µ̂; where µ̂j is

the sample mean of class j, µ̂ the sample global mean, and Σ̃ the regularized
sample covariance matrix (shared for both classes).

Regularization aims to minimize the covariance estimation error E =
|Σ − Σ̃|, with Σ being the real covariance matrix, by penalizing very large
and very small eigenvalues. The regularized covariance matrix was computed
by: Σ̃ = (1 − γ(n))Σ̂ + γ(n)νI; where n was the number of trials used for
training, γ(n) ∈ [0, 1] the regularization factor (whose value can be computed
numerically [124]), Σ̂ the sample covariance matrix, and ν = tr(Σ̂)/k the
average eigenvalue of Σ̂, with k being the number of diagonal elements of Σ̂.

To tackle the signal variations, the classi�er was adapted based on a
sequential process in which labelled examples of the new task were used to
modify the discriminant function of the LDA classi�er [72]. Namely, given a
new example of class j at time t, fj(t), the mean µ̂j was updated using an
exponential moving average:

µ̂j(t) = (1− α)µ̂j(t− 1) + αfj(t). (3.3)

α ∈ [0, 1] is the update parameter (�xed to α = 0.05 [72]) and the initial
values for µ̂j were obtained using data of another task or subtask. The
corresponding discriminant function was recomputed using the new mean µ̂j
to update the w and b parameters accordingly.

The impact of signal variations was analyzed �rstly without adaptation,
and then with the supervised adaptation. Firstly, the classi�er was trained
with examples of one task and tested with another one (inter-task) or trained
with examples of one subtask and tested with the other subtasks (intra-
task). The results were then compared with the performance of the baseline
classi�er computed using a ten-fold cross-validation scheme for each task
(subtask) separately. Secondly, the adaptation was evaluated against the
baseline classi�er performance as a function of the number of trials used to
train/adapt the classi�er (i.e., calibration time). The adaptive classi�cation
results were obtained using the train-test sets, as follows: the classi�er was
initially trained using the train dataset and then, the test dataset was split
into two subsets (D1 with 300 examples and D2 with the remaining). For
each trial at time t, the classi�er was updated using equation 3.3 and tested
on the D2 dataset. The results were then compared with the performance
of baseline classi�ers built using trials [1 . . . t] of D1 and tested on D2. This
process was repeated 10 times to reduce variability in the results for adaptive
and baseline classi�ers while shu�ing trial positions, and then averaging the
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obtained accuracies.

3.3 Results

3.3.1 Electrophysiology of potentials their signal varia-

tions

The analysis comprises the raw EEG data along with the �ltered EEG data
(see subsection 3.2.3). The proposed �lter eliminated 90% of the ICA com-
ponents that were not estimated within ACC or pre-SMA. The majority of
these components were ocular artefacts such as eye movements (estimated in
frontal areas such as Brodmann areas 10, 11 or 38) and brain activity esti-
mated either in parieto-occipital/occipital areas (Brodmann areas 17, 18 and
19) or the posterior cingulate cortex (PCC, Brodmann areas 23 and 31). Al-
though these components contributed to the EEG, they were not originated
in the main error-processing areas and thus were eliminated by the �lter.
Artefact correlation with the subtasks but not with the tasks is an e�ect
worthy of mention, which might a�ect feature extraction and classi�cation
analysis of the generalization study. Figure 3.2 displays an example with
the raw and �ltered EEG for the subtask OT1.Right. Without �ltering, a
signed r2 discriminability test indicated that the most discriminant features
were on frontal channels (originated by lateral eye movements); on the other
hand, after �ltering, the most discriminant features were due to fronto-central
activations (originated by error-related potentials). Note that without �lter-
ing, the most discriminant features may greatly discriminate the potentials
within the subtask OT1.Right (due to the lateral eye movements), but would
not generalize for the other subtasks or task as they involved di�erent eye
movements.

For both operational tasks and subtasks, the average di�erence of the
raw/�ltered potentials for both conditions presented a small negative de�ec-
tion approximately at 250 ms (an N2 component) and prominent positive
and negative peaks (P3 and N4 components) at approximately 300 ms and
500 ms (in agreement with the r2 test, �gure 3.3). The topographical scalp
maps at these last two peaks showed fronto-central activations for the two
operational tasks.

When not �ltering the data, source estimations for OT1 (at 500 ms of the
error average) were in the paracentral lobule (Brodmann Area 5), whereas for
OT2 (at 450 ms of the error average) were in the ACC (Brodmann area 24).
On the contrary, when �ltering the data the potentials from both operational
tasks were estimated within the ACC, agreeing with previous studies on
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Figure 3.2: Signed r2 discriminability test of non-error versus error, per-
formed on the subtask OT1.Right, when not �ltering the signal (Left) and
when �ltering the signal (Right). The x-axis represents the time (from 0 to
1000 ms) and the y-axis represents each recorded EEG channel. Topographic
interpolation of the r2 is shown at 350 and 500 ms. The solid boxes mark
the position of fronto-central channels, whereas the dashed boxes mark the
position of frontal channels. When not �ltering the signals, most of the dis-
criminability comes from frontal channels with the sign reversed on the left
and right hemispheres. When �ltering the signals, most of the discriminabil-
ity comes from fronto-central channels.
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error-related potentials [46, 47, 78, 116]. These results indicated that the use
of the ICA �lter was advisable for the isolation of the error-processing brain
activity.

Regarding the inter-task analysis, visual inspection revealed that the
shape of the averaged potentials di�ered between the two operational tasks
(Figure 3.3). In OT1, the averaged error-related potentials presented two
positive peaks at 200 and 300 ms, whereas in OT2 the �rst positive peak
was smaller, with a more prominent peak at 280 ms. This di�erence was
also appreciated in the sorted single-trial error-related potentials. Addition-
ally, the ANOVA analyses reported statistical di�erences on the latency of
the three main components both for the raw (F1,9 = 9.574, p = 0.01; F1,9 =
24.469, p = 0.001; and F1,9 = 48.442, p = 1 ·10−4 for the N2, P3 and N4 com-
ponents) and �ltered data (F1,9 = 7.789, p = 0.02; F1,9 = 24.970, p = 0.001;
and F1,9 = 28.809, p = 0.0005). For the amplitude of the components, sta-
tistical di�erences were found only for the N4 component of the �ltered data
(F1,9 = 15.66, p = 0.003). These results indicated the existence of signal
variations in the error-related potentials between operational tasks a�ecting
mainly the latency of their main components.

Regarding the intra-task analysis, visual inspection revealed that the
shape of the averaged potentials was very similar among subtasks (Figure
3.3). The ANOVA analyses reported no statistical di�erences (p > 0.05)
except for the N2 component of OT1 for the raw data (F2,18 = 12.021, p =
0.0005). These results indicated that on average, the components did not
change among subtasks of the same task.

3.3.2 Features analysis

Regarding the inter-task analysis, visual inspection of the features showed
that only the best feature (f 1) re�ected similar patterns between OT1 and
OT2, whereas the other features presented di�erent spatio-temporal com-
binations (see Figure 3.4 Top-Middle for representative examples). In the
intra-task case, the features were very similar between subtasks. For in-
stance, the best features (f 1 to f 3 in the �gure) were almost equal among
subtasks while the worst feature f 10 presented greater variations.

For each class (non-error and error), feature distributions were signi�-
cantly di�erent for inter- and intra-tasks (ANOVA test, p < 0.001 in all
the cases). For the inter-task case, KL divergences were 0.64 ± 0.34 and
1.71 ± 0.46 for non-error and error respectively, while for the intra-tasks of
OT1 and OT2 the divergences were 0.64±0.51 and 1.06±0.28, and 0.44±0.19
and 1.92 ± 0.60. For all tasks and subtasks, the non-error KL divergences
were signi�cantly lower than the error KL divergences (unpaired one-tailed
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Figure 3.3: Time-locked grand averaged signals for the raw EEG data (left)
and after data �ltering (right) on channel FCz (averaged for all subjects) for
OT1 (top), OT2 (down) and averages of each subtask for the raw data (cen-
tre). The time range is [−200, 1000] ms with 0 being the onset of the action.
Error and non-error potentials are in red and blue respectively, and the dif-
ference averages (error minus non-error averages) are in dashed lines. The r2

discriminability test [1] between error and non-error potentials is below each
plot, where dark colours indicate high values (i.e., large di�erences) between
the potentials in both conditions. The spatial location of each peak of the
di�erence average is displayed as topographical scalp maps, as well as the
source location of the error grand average at the most prominent negativity
(500 ms and 450 ms for OT1 and OT2). The single-trial potentials sorted
by the negative peak latencies are shown below the source localization as a
colour encoded image (red and blue indicate amplitudes higher and lower
than 0 µV respectively).
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Figure 3.4: (Top-Middle) Representative examples of the feature extrac-
tion process for each operational task. The r2 metric (Left) was used to
choose the time window of [200, 800] ms in fronto-central channels and then
extract the initial features, as in [79]. These features were the inputs to the
spatio-temporal �lter, whose outputs were the k-most (k = 10 for the fea-
tures analysis) discriminant features, each of them encoding combinations of
time points and channels. The weights of some features for each task and
subtask are shown as a colour encoded image (blue and red indicate negative
and positive weights, respectively). (Lower part of �gure) Bar plots of the
KL divergences (mean ± SEM) between the features distributions for the
inter-task and intra-task conditions (blue and red for the non-error and error
distributions).
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Figure 3.5: Mean ± std classi�cation accuracies averaged for all the sub-
jects, for the (Left) inter-task and their baseline and (Right) intra-task and
their baseline. Blue and red bars indicate accuracies for non-error and error
potentials respectively.

t-test, p < 1 · 10−4). The inter and intra-task KL divergences of the er-
ror distributions for OT1 were signi�cantly di�erent (unpaired two-tailed
t-test, t38 = 5.36, p = 4 · 10−6), but the inter/intra-task divergences of the
non-error distributions were not (t38 = 0.04, p = 0.97). For OT2, inter/intra-
task KL divergences were signi�cantly di�erent for the non-error distribu-
tions (t68 = 2.69, p = 0.01), but no signi�cant di�erences were found for the
inter/intra-task divergences of the error distributions (t68 = −1.05, p = 0.30).
In summary, feature distributions changed signi�cantly between tasks and
among subtasks, and the error distributions changed signi�cantly more than
the non-error distributions. Furthermore, the features varied signi�cantly
more when changing the task, than when changing the subtask.

3.3.3 Classi�cation

Analysis without adaptation

The ten-fold accuracies of non-error and error potentials were, on average,
89.29% and 78.00% for OT1 and 86.64% and 73.00% for OT2; and 89.38%
and 77.97% for subtasks of OT1, and 84.06% and 72.33% for subtasks of
OT2 (see Figure3.5). All baseline classi�ers were above the chance level.

Regarding the inter-task generalization results (Figure 3.5,Left), when
training with OT1 and testing with OT2 there was signi�cant average in-
crease of 6.76% (one-tailed paired t-test, t18 = 1.86, p = 0.04) in the de-
tection of non-error potentials, but a signi�cant decrease of 21.54% (t18 =
−4.19, p = 0.0003) for error potentials. As can be seen, the standard de-
viation was also increased compared to the ten-fold accuracies. This indi-
cated that the accuracy drops varied substantially from subject to subject,
with subjects having large drops, and others having almost no accuracy de-
crease. When training with OT2 and testing with OT1, the accuracies pre-
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sented signi�cant decreases of 6.44% and 12.44% (t18 = −1.83, p = 0.04 and
t18 = −2.75, p = 0.007), respectively. As with the previous case, the standard
deviations increased, and thus the drops varied substantially from subject to
subject.

Regarding the intra-task generalization results (Figure 3.5,Right), there
was a general decrease in classi�cation accuracy with respect to the ten-fold
accuracy. For the subtasks of OT1, signi�cant average decreases of 5.99% and
5.58% (t18 = −1.84, p = 0.04 and t18 = −2.42, p = 0.01) were identi�ed for
non-error and error potentials. For the subtasks of OT2, average decreases of
1.65% and 5.84% were obtained, but they were not signi�cant (p > 0.05) (see
the supplementary materials for the accuracies obtained for each subject).

Analysis with adaptation

For the operational tasks, the baseline accuracies reached maximum mean
accuracies of 81.26% and 78.30% for OT1 and OT2 after 300 trials. For
the subtasks, the baseline reached maximum mean accuracies of 81.51% and
77.63% for OT1 and OT2 after 300 trials. Note that the accuracy convergence
was fast, since only few examples were needed to reach high accuracies. For
instance, the baseline classi�er obtained accuracies of 79.49% and 76.63%
(tasks) and 79.09% and 74.56% (subtasks) with 100 trials (approximately 5
minutes of EEG recording, see Figure 3.6, black lines).

The adaptive classi�er started with the mean accuracies obtained with
the classi�ers of the previous subsection (c.f. Fig. 3.5), and as more examples
were available, the accuracy of the adaptive classi�er increased (see Fig. 3.6).
After 300 trials (examples), the mean accuracies were 74.07% and 78.33%
for the inter-task cases, and 78.26% and 74.22% for the intra-task cases.
This increase in performance was due to a reduction in accuracy di�erences
between the two classes, more relevant in the inter-task case.

In the inter-task analysis (training with OT1 and testing with OT2 and
viceversa), the adaptive classi�er started with better accuracies than the
baseline classi�er but: (i) after 66 trials and 32 trials, the baseline classi�er
outperformed the adaptive classi�er; and (ii) after 300 trials the adaptive
classi�er presented accuracies 4.23% and 2.93% lower than the baseline (Fig.
3.6, �rst and second columns). The intra-task analysis showed similar re-
sults (Fig. 3.6, third and fourth columns): The adaptive classi�er presented
worse accuracies than the baseline after 51 and 65 trials for OT1 and OT2
respectively, and a lower accuracy compared to the baseline, with drops of
3.25% and 3.41% after 300 trials.

In summary, the supervised adaptation achieved high accuracies from
the beginning of the new task/subtask that were improved as more exam-
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Figure 3.6: Mean ± SEM classi�cation (solid ± dashed lines) accuracies
averaged for all subjects, for the baseline and adaptive classi�ers across trials.
The results are shown for the inter-task (two left columns) and intra-task (two
right columns) conditions. For each plot, the x-axis indicates the number of
trials used to adapt the previous classi�er (adaptive classi�er, shown in red
lines), or the number of trials used to train the classi�er (baseline classi�er,
shown in black lines), and the y-axis represents the single-trial accuracy.

ples were available. The baseline classi�er (calibrating from scratch the new
task/subtask) started with lower accuracies than supervised adaptation but
rapidly outperformed the latter as the number of examples used to train
the baseline classi�er increased. In all the situations, less than 100 examples
(�ve minutes of EEG recording) were su�cient to calibrate the BCI to obtain
better accuracies than adaptation.

3.4 Discussion

This paper studied and showed the presence of signal variations in error-
related BCIs, where the mental task was coupled with the operational task.
The electrophysiology analysis presented statistical di�erences mainly in the
latencies of the three error-related potential components. There is previous
evidence that the error-related potentials remain very similar between di�er-
ent days [109] or even months and years [47]. Thus, the authors understand
that the variations of these potentials were due to the di�erence of opera-
tional tasks and not to the fact that the experimentation was performed in
di�erent days.

The study analyzed the raw EEG as well as a �ltered EEG signal that
retained only EEG information whose origin was estimated in the brain areas
involved in the generation of the error-related potentials. This �lter played
a crucial role in the analysis as, while the grand averages showed that the
most prominent activity was due to errors, an r2 test revealed the presence
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Table 3.1: Inter-task accuracies (Mean ± std). Features comparison.

Ten-Fold OT1 Ten-Fold OT2

Features as
in [46,47,79]

Features used in
this work

Features as
in [46,47,79]

Features used in
this work

Non-error 90.91± 4.05 89.29± 4.62 86.21± 8.38 83.64± 9.67
Error 79.31± 4.95 78.00± 3.57 73.46± 7.42 72.96± 8.23

Train OT2 - Test OT1 Train OT1 - Test OT2

Features as
in [46,47,79]

Features used in
this work

Features as
in [46,47,79]

Features used in
this work

Non-error 84.43± 9.22 82.85± 10.11 91.72± 5.61 90.40± 6.25
Error 64.39± 11.89 65.56± 13.87 50.87± 15.84 51.42± 14.04

of artefacts within subtasks of activity not associated to the error-related po-
tentials, but correlated to the erroneous/non-erroneous actions of the device.
This a�ected the intra-task feature extraction and classi�cation process, in
such a way that the artefactual information helped to improve the ten-fold
intra-task classi�cation (with information not related to the error-processing,
i.e., artefacts) but it did not generalize for other subtasks of the same task.
For instance, when using raw EEG data from the separated OT1 subtasks,
the ten-fold classi�cation accuracy was 92.03%/82.86% for non-error and er-
ror potentials respectively, while using the �ltered EEG signal the accuracy
was 89.38%/77.97%, respectively. However, when generalization of the clas-
si�ers was tested on the other subtasks of OT1, the accuracy of the raw EEG
dropped a 17.00%/13.83% for error and non-error responses, while for �ltered
data the decrease was only of 5.99%/5.58%.

The signal variations a�ected signi�cantly the distributions of the features
selected for classi�cation and the �nal performance of the trained classi�ers.
The quantitative analysis (KL divergences) con�rmed that the features di�er-
ences were greater for error than for non-error responses. When generalizing
among operational tasks and subtasks, there was a decrease in accuracy with
respect to the baseline, which was more pronounced in the inter-task than in
the intra-task and more pronounced for error potentials than for non-error
potentials (the decrease was not always symmetric for error and non-error
potentials). Further studies might focus on understanding whether this e�ect
was either due to the error and non-error event-related activity, or depen-
dent on the experimental procedure (as the dataset presented an unbalanced
number of examples for each class).

Feature analysis and classi�cation results depend on the type of features,
which in this study were computed based on a spatio-temporal �lter that
decorrelated signals to maximize the di�erence between classes. A possible
question that arises is whether such feature extraction introduces di�erences
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Figure 3.7: Mean ± SEM classi�cation (solid ± dashed lines) accuracies
averaged for all the subjects, for the baseline and adaptive classi�ers across
trials using the feature extraction method as in [46,47,79], for the inter-task
case.

with respect to the use of EEG amplitudes in the selected channels and time
windows, as it is a widespread procedure in these BCIs [46,47,79]. Table 3.1
compares the results obtained using both types of features computed after
�ltering the EEG for the inter-task generalization (results of the intra-task
study were similar). The classi�cation accuracies presented no signi�cant
di�erences neither in the ten-fold baseline case nor in the generalization one,
with only slight decreases in the accuracies of around 1% when using the
proposed features. Nonetheless, in the performed experiments the proposed
feature extraction presented an important advantage over the use of EEG am-
plitudes in terms of calibration time. The use of a lower number of features
(an average of 25 features versus 312) reduces substantially the dimension-
ality of the classi�er's hypothesis space, simplifying the learning process and
reducing the calibration time. On the contrary, for higher dimensional spaces
(as with EEG amplitudes with no feature selection) the calibration time is
much higher and adaptation pays o�. Figure 3.7 displays, for the EEG am-
plitudes, the same comparison between adaptation and calibration shown in
Figure 3.6 for the inter-task case. The selection of a set of decorrelated fea-
tures proposed herein reduces calibration time considerably and achieves a
better performance than adaptation in less than �ve minutes (i.e., less than
100 examples).

In this study, the features were �xed and adaptation was performed only
on the classi�er. The choice of a di�erent set of features could help reduce
the impact of signal variations. For instance, several works have proposed
feature extraction methods to �nd time-invariant features to deal with time-
dependent non-stationarities [75], which could be extrapolated to �nd task-
invariant features. However, this would require data from multiple tasks,
thus increasing the calibration e�ort for these BCIs. Other approaches could
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be used to adapt the classi�er to a new task without using labels (i.e., during
the device operation), for instance those based on a maximum likelihood
estimation of the distribution parameters [125] or on predicted labels [126].
Future work by the authors will consider the possibility of combining both
paradigms to jointly adapt the classi�er and the features for new tasks, as
a way to increase the performance of BCIs for new operational tasks while
reducing or removing the calibration e�ort.
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4 | Latency correction of event-
related potentials between
di�erent experimental protocols

4.1 Introduction

The previous chapter has shown that error-related potentials are a�ected by
the task being performed, changing up to the point of preventing a classi-
�er to generalize or adapt among di�erent tasks. This result was expected,
as many neurophysiological studies have shown that event-related potentials
(to whom error-related potentials belong) are a�ected by aspects related to
the task performed [50]. In this chapter, we further study the reasons be-
hind this drop in the classi�cation performance. The chapter focuses on two
widely studied ERPs: the error-related potentials and the P300 [84]. This
requires characterizing the ERPs by the acquisition of enough trials to build
a reliable model represented by their grand averages [50]. This is due to the
poor signal-to-noise ratio of the EEG as well as several sources of variabil-
ity that may a�ect the amplitude or the latency of the ERP components.
For instance, the early ERP components (appearing within 200 ms from the
stimulus presentation) are a�ected by application-speci�c factors such as the
spatial attention [113] or the stimuli contrast [50]; as well as user-speci�c
factors such as arousal or valence [49]. In turn, late ERP components (oc-
curring later than 200 ms) are a�ected by application-speci�c factors such
as the probability of occurrence of the expected stimulus [50] or the inter-
stimulus interval [127]; user-speci�c factors such as the age and the cognitive
capabilities [128,129]; or application- and user-speci�c variability such as the
stimulus evaluation time (i.e., the amount of time required to perceive and
categorize a stimulus) [50,51].

Typically, experiments are designed in a well-controlled manner to reduce
the ERP variability. In consequence, it is not clear whether the obtained

47
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Latency

MODEL
GENERALIZATION

MODEL
GENERALIZATION

Latency compensation

X
EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 1 EXPERIMENT 2

Figure 4.1: (Left) Example of the latency between two grand averaged
event-related potentials elicited from di�erent experimental protocols. Such
di�erence prevents from having classi�ers that generalize among protocols.
(Right) By estimating and removing the latency of the two ERPs, the clas-
si�er would be able to work under di�erent experimental protocols.

model also re�ects the same neural phenomena under di�erent performed
tasks. This is of particular importance for practical BCI applications where
decoding algorithms are expected to keep their performance level irrespective
of external factors. Moreover, BCIs often exploit the same brain processes
in di�erent applications where changes are introduced in the used stimuli,
the feedback modality or the controlled device (e.g., see [45, 47, 83, 130] for
di�erent applications based on error-related processing). In the ideal case,
these systems should be able to generalize across di�erent operating BCIs
independent of the controlled device. In practice, however, there is a need
for training a model for each new experimental protocol or session, which is
a time-consuming operation and a major issue when deploying BCIs out of
the lab. To address this issue, previous researches have tried to reduce this
calibration time either by using adaptive classi�ers [71,83], or by initializing
the model with data from a pool of subjects [73,74].

Although previous studies have described the e�ect of variations in the
ERP amplitudes [47] and latencies [131] within the same BCI experimental
protocol, the e�ect of these variations among di�erent protocols remains un-
clear. We hypothesize that it could be possible to build or re-adjust models
that compensate for these variations by using information from previous ex-
perimental protocols, thus enabling generalization of existing BCI decoders
to di�erent protocols or applications. In fact, the previous chapter has shown
that this is the case for a speci�c ERP, the error-related potentials (see section
3.3.1). The main idea is depicted in Figure 4.1 Left, where two experimen-
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tal protocols elicit the same ERP with similar waveforms and amplitudes
but di�erent latencies. If we could estimate the latency variations between
the two experimental protocols, previous models could be used in the new
protocol after compensating for the latency shift (see Figure 4.1 Right).

In this chapter, we analyze the e�ect of ERP amplitude and latency vari-
ations among di�erent experimental protocols based on the same cognitive
process. We also present a method to analyze and compensate for the latency
variations in BCI applications. Two widely used signals were analyzed: the
P300 evoked potentials [9,50,84] and the observation error-related potentials
(ErrP) [42, 45, 47]. For each kind of ERP, three di�erent experimental pro-
tocols with di�erent levels of di�culty were designed. The latencies between
protocols were studied from two points of view: the characteristics of the
ERPs and the single-trial classi�cation. The results illustrate (i) how the
experimental protocols signi�cantly a�ect the latency of the recorded poten-
tials but not the amplitudes, and (ii) how the use of latency-corrected data
allows for the generalization of BCI decoders, reducing this way the calibra-
tion time when facing a new experimental protocol. This work extends our
previous work [85] with a more robust technique to compensate the latencies
and shows its application to ERPs of di�erent nature.

4.2 Experimental methods

We focus on two types of ERPs: the P300 evoked potentials and the obser-
vation error-related potentials (ErrP). For each of these signals, three types
of experimental protocols were designed (i.e., three di�erent ways of evoking
the P300 and the ErrPs).

4.2.1 Data recording and experimental setup

EEG was recorded with a gUSBAmp ampli�er (gTec medical engineering,
Schiedelberg, Austria) with 16 active electrodes, with the ground and refer-
ence placed on the forehead and the left earlobe. Di�erent montages were
made for the P300 and ErrP protocols (see details below). The EEG was dig-
itized at 256 Hz, power-line notch �ltered at 50 Hz, and zero-phase band-pass
�ltered at [1, 10] Hz. Participants were seated on a comfortable chair facing
the visual displays of the protocols approximately one meter away. During
all experiments participants were asked to restrict eye movements and blinks
to speci�c resting periods.
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Figure 4.2: Experiments performed for the (Top) P300 potentials and (Bot-
tom) observation error potentials (from left to right: experiments 1 to 3).

P300 experimental protocols

For these protocols we recorded EEG signals with the BCI2000 framework
[110] from 16 active electrodes located at Fp1, Fp2, Fz, FC1, FCz, FC2, Cz,
CP1, CPz, CP2, P3, Pz, P4, O1, Oz and O2 according to the 10-10 system.
Five participants (one female, mean age 27.80± 2.49 years) took part in the
study. We synchronized the onset of visual stimuli with the EEG by means
of an optical trigger placed on the monitor [132]. This removed latencies
introduced by the protocol implementation and thus the latency variations
across experiments were restricted to the user side [51].

Three experimental protocols were used to evoke the P300 potentials
(Figure 4.2, Top), with di�erent types of stimuli. The stimulation process
followed the oddball paradigm [84], where subsets of potential targets (e.g.
an entire row or column) are sequentially highlighted in random order. The
stimulus (row or column) remained highlighted for 125 ms on the screen,
and the inter-stimulus interval was random within the range [1.7, 3.0] s. The
participants were instructed to observe the stimulation process �xing their
attention to a given target, and to count the times the target was highlighted
while ignoring the other targets. All participants executed the experiments
in the same order, each experiment lasting ≈ 1.5 hours and with a time
between experiments of 1.10± 0.81 days.

Experiment 1, 2D Simulated Wheelchair (Figure 4.2 Left, Top) [9]
The visual display showed a virtual environment with 20 possible targets
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to drive a wheelchair, located in 2D in a 4x5 matrix. For the stimulation
process, the rows and columns were highlighted showing a blue dot over each
possible target position. The probability of target appearance was 22%. For
each subject, all possible target positions were recorded, obtaining 144 target
(P300) and 720 non-target responses respectively.

Experiment 2, 2D Speller (Figure 4.2 Middle, Top) [84] The visual
display showed a matrix of 36 possible letters to spell represented in 2D as
a 6x6 matrix. The stimulation was made by illuminating the corresponding
row or column. The probability of target appearance was 17%. For each
subject, all possible target positions were recorded, obtaining 200 and 700
target and non-target responses respectively.

Experiment 3, 3D Augmented Reality Protocol (Figure 4.2 Right,
Top) The display showed a gray background and 27 possible targets located
in 3D in a 3x3x3 matrix. The stimulation was made by illuminating rows,
columns, and depths. To facilitate the user's distinction among the three
depths, each depth was illuminated with a di�erent colour (green, blue or
red). The probability of target appearance was 33%. For each subject, all
possible target positions were recorded, obtaining 273 and 610 target and
non-target responses respectively.

Error potentials experimental protocols

We recorded ErrPs with a custom C++ framework using 16 active electrodes
located at Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1,
CPz, CP2, and CP4 according to the 10-10 system. Six participants (one
female, mean age 27.33± 2.73 years) took part in the study. In these exper-
iments, the use of an optical trigger was not possible since one experiment
involved a real robotic device instead of visual stimuli on the screen (see
Experiment 3). Thus, latency variations could be originated by both the
subject and the implementation (i.e. the amount of time of receiving and
executing the delivered command).

The experimental protocols designed to elicit error potentials (Figure 4.2,
Bottom) had di�erent setups (and devices), where in all cases the goal of the
device was to reach a target from di�erent starting points. The device exe-
cuted random movements with approximately 30% probability of performing
an erroneous movement. The time between two movements was random
within the range [1.7, 4.0] s. The target position was randomly changed after
100 actions. The participants were instructed to observe the device move-
ments and evaluate them as correct when there was progress towards the
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target position, and as incorrect otherwise. Each participant executed the
experiments in the same order, each experiment lasting ≈ 2.5 hours and with
a time between experiments of 17.58± 10.09 days.

Experiment 1, Virtual Moving Square (Figure 4.2 Left, Bottom)
[47] The visual display showed a one-dimensional space with 9 possible
positions (marked by a horizontal grid), a blue square (device) and a red
square (target). The device could execute two discrete actions: move one
position to the left or to the right. For each subject, the left- and right- most
positions were tested as targets, and around 250 and 600 error and non-error
potentials were recorded.

Experiment 2, Simulated Robotic Arm (Figure 4.2 Middle, Bot-
tom) The display showed a simulated robotic arm (Barrett WAM) with
7 degrees of freedom (device) [133] moving within a two-dimensional space
with 13 possible positions (marked in orange), and a target location (green
square). The robot was situated behind the squares pointing at one position,
and could perform four possible actions: moving one position to the left,
right, up, or down. The robot actions were continuous, with each displace-
ment lasting ≈ 500 ms. For each subject, the left-, right-, up- and down-most
positions were tested as targets, and around 300 and 700 error and non-error
potentials were recorded.

Experiment 3, Real Robotic Arm (Figure 4.2 Right, Bottom) This
experiment followed the same con�guration of Experiment 2 but using a real
Barret WAM robotic arm (Barret Technology Inc.). The user was seated two
meters away from the robot, and between them there was a transparent panel
to mark the positions (the distance between two neighbor positions was 15
cm). For each subject, the left-, right-, up- and down-most positions were
tested as targets, and around 300 and 700 error and non-error potentials were
recorded.

4.2.2 Analysis of Event-Related Potentials

We assessed protocol-dependent variations in the latency and amplitude of
the ERPs for each of the experimental protocols. First, the grand averaged
signals were computed for each condition (target and non-target trials for the
P300; error and correct trials for the ErrP), for the time window [−200, 1000]
ms, being 0 ms the stimulus/action onset. Following previous studies, we
analyzed the activity over parietal areas from the target average [50] for the
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P300, and over fronto-central areas from the di�erence average (error minus
correct averages) for the ErrPs [47]. A one-way within-subjects ANOVA
was performed separately for each type of signal (P300 or ErrP), where the
factor was the experiment (three levels corresponding to each experiment),
and two dependent variables were tested: the peak amplitudes and the peak
latencies. For the P300 experiments, the peak amplitudes and latencies were
measured from the P3 component (most prominent positive peak) of the
target average from the parieto-occipital channels. For the ErrP experiments,
the amplitudes and latencies were measured from the P3 and N4 components
(most prominent positive and negative peaks) of the di�erence average from
the fronto-central channels. When needed, the Geisser-Greenhouse correction
was applied to data to assure sphericity [50]. Pairwise post-hoc tests (t-tests
with the Bonferroni correction) were computed to determine the di�erences
between pairs of experiments.

4.2.3 Estimation and evaluation of latencies among dif-

ferent protocols

The �rst goal is to estimate the temporal variations between two experimen-
tal protocols, which can be achieved using the cross-correlation. The cross-
correlation has been used in the past for the detection and analysis of brain
signals with successful results [131,134,135]. In order to assure the best esti-
mations, the input to the cross correlation (for each channel) were the grand
averages of the condition of interest, with the time window narrowing to
the event-related potential elicitation. For the P300 experimental protocols,
the average ERP for target stimuli within the time window [50, 400] ms was
used; for the ErrP experimental protocols, the error average within the time
window [0, 500] ms was used. The outputs of the cross-correlation were the
maximum correlation value of the two grand averages and the latency varia-
tion between them (i.e. the shift that yields the maximum cross-correlation).

We then assessed whether the main ERP change was due to the latency
variation and whether this variation could be compensated for. To do so, the
latency variation across two protocols was estimated as described above using
all the available data. Let Ei and Ej be the datasets from two experiments
i and j, we compensate for the variation by shifting the trials in Ej by the
estimated latency shift between them, dEiEj . Then, we computed the same
ANOVA test for the peak latencies performed in subsection 4.2.2.

We performed further analysis on how sensitive the latency estimation was
with respect to (i) the number of trials used to compute the grand average for
experiment j, and (ii) the channel used to perform the estimation. Assuming
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that data from a previous experiment i is available, we computed the latency
variation using training data, ETr

j , from the new experiment (ETr
j ⊆ Ej). We

assessed the estimation using di�erent sizes of the training dataset (ranging
from 10 to 200 trials with increments of 10). For each size, we perform 10
repetitions and report the average of the maximum cross-correlation value,

max(C
ETrj
Ei

), and the average latency variation, dEiETrj . In each repetition the

training subset ETr
j was randomly drawn from Ej, keeping the proportion

of target/non-target and error/correct trial. The analysis was performed
independently for each recorded channel.

The latency variations were computed in a pair-wise manner among the
three experiments for each of the signals of interest. The combinations of
experiments tested were E1E2, E1E3, and E2E3 for both the P300 and the
ErrPs. For each pair of experiments a within-subjects two-way ANOVA
(factors: number of trials and repetitions) was performed on the latency
estimations. The ANOVA results served to study the latency variations by
the number-of-trials main e�ect, to determine whether the amount of trials
used from Ej led to di�erent latency estimations; and by the number of trials
x repetitions interaction, to determine whether di�erent data from a �xed
number of trials a�ected the latency estimations.

As a sanity check, we also evaluated the method by computing the latency
variation among datasets from the same experiment (dE1

i E
2
i
), with the two

datasets E1
i and E2

i mutually exclusive. Therefore, this baseline latency
computation should give correlations close to one for latencies near to 0 ms.

4.2.4 Single-trial classi�cation of latency-corrected ERPs

The objective of the single-trial classi�cation study was to determine whether
it is possible to reduce the calibration time of a new experiment by re-using
latency-corrected data from a previous experiment. The same combination
of experiments detailed before served as the basis of the study. The process
of the latency estimations used the number of trials and repetitions tested
in the previous subsection. All the classi�cation parameters (including the
latency estimations) were learned using only the training sets.

Feature extraction and classi�cation

Feature extraction was based on a spatio-temporal �lter [80]. The �lter
input was a dataset with labeled trials, and worked as follows: Firstly, the
EEG data were common-average-reference (CAR) �ltered and downsampled
to 64 Hz. For each trial, the features were extracted using a combination of
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channels and time points. For the P300, eight centro-parietal and occipital
channels (Cz, CPz, P3, Pz, P4, O1, Oz, and O2) were used within a time
window of [100, 700] ms. For the ErrP, eight fronto-central channels (Fz, FC1,
FCz, FC2, C1, Cz, C2, and CPz) were used within a time window of [200, 800]
ms. For both cases, this resulted in a feature vector of 312 features per trial.
Then, the features were normalized, and decorrelated using PCA retaining
95% of the explained variance, leading to an average of 45 ± 10 features.
Single-trial classi�cation was carried out using a linear discriminant analysis
(LDA) [124].

Analysis of the single-trial classi�cation

We compared the accuracies of three di�erent classi�ers (see Figure 4.3).
The �rst one, denoted baseline classi�er, followed the standard calibration
approach of current BCIs, where the classi�er for Ej was trained using only
the data from ETr

j . The size of the training data was increased as in the
previous subsection to assess the accuracy of the classi�er for di�erent cal-
ibration times. The second and third classi�ers were both trained using all
the data from Ei and the data from the new experiment ETr

j . The di�er-
ence between them is that in the latter one the latency of dataset Ei was
corrected for each channel used for classi�cation, c.f. subsection 4.2.4. These
three classi�ers were tested on a left-apart �xed subset of Ej (denoted ETe

j ),
composed of 400 trials (see Figure 4.3). Additionally, the performance of
the three classi�ers was also compared to the result of performing ten-fold
cross-validation (CV) using all the data from Ej.

For each pair of experiments (E1E2, E1E3, and E2E3), two metrics are re-
ported: (i) the mean accuracy ( target_acc+non_target_acc

2
and error_acc+correct_acc

2

for the P300 and ErrP experiments respectively); and (ii) the accuracy bias
(|target_acc−non_target_acc| and |error_acc−correct_acc| for the P300
and ErrP experiments). To assess statistical di�erences among the classi�-
cation results, two-tailed paired t-tests were computed, where the p-values
were adjusted with the false discovery rate (FDR) procedure [136].

4.2.5 Reducing calibration time during online sessions

of experiments

Finally, the latency estimation method was used for real online experiments.
For this analysis, 6 new subjects (two females, mean age 27.17± 4.07 years)
performed the error-related potentials experiments where the calibration time
was reduced using latency-corrected data from the previous experiment. For
E1, the standard calibration was followed. On the other hand, during E2 the
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Not used

Training set

Testing set

Baseline Classi�er
Ei Ej

Classi�ers when not correcting 
or correcting the latency

Variable size

Tr Ej
Te

400 trials

Figure 4.3: Training and testing datasets used for each classi�er. For the
baseline classi�er, the training dataset from the new experiment ETr

j was
used to train the classi�er. When information from a previous experiment
Ei was available, it was used as part of the training set, either not correcting
or correcting the latency dEiEj . To correct the latency, the training datasets
Ei and ETr

j were fed to the latency correction algorithm, and then the latency
from Ei was corrected. To assess the accuracies for di�erent calibration times,
the number of trials of ETr

j was variable (from 10 to 200 trials with increments
of 10 trials), while the testing set ETe

j remained �xed to 400 trials.

data from E1 was latency-corrected using a few trials from E2. Similarly,
during E3 the data from E2 was used. The latency between experiments
was estimated using the di�erence average of channel FCz within the win-
dow [0, 500] ms. The groups of subjects were denoted control group (the
subjects present in this work, where they followed a standard calibration ap-
proach) and experimental group (latency-corrected calibration). The calibra-
tion phase �nished whenever a ten-fold mean accuracy of 75% was obtained
in the training data. Then, both groups of subjects performed the online
experiment presented in chapter 2, which was use to extract the mean online
accuracy obtained.

Mixed two-way ANOVAs (within factor: experiments; between factor:
group of subjects) were performed to test whether (i) the number of cali-
bration trials in the experimental group decreased from E1 to E2 and from
E2 to E3; (ii) the number of calibration trials was signi�cantly di�erent be-
tween groups; and (iii) the mean online accuracies of both groups were not
di�erent. In order to �nd the underlying signi�cances, post-hoc one-tailed
Bonferroni-corrected t-tests were performed.

4.3 Results

4.3.1 Analysis of Event-Related Potentials

Figure 4.4 shows the ERP grand averages of all experiments. In the P300
experiments, as in previous studies [9,50,84], a clear sharp positive peak (P3)
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Figure 4.4: Grand averages of each experiment for the (Left) P300 poten-
tials at channel Pz, and (Right) error potentials at channel FCz. Time 0 ms
indicates when the stimulus was presented on the screen (P300), or when the
device started the action (ErrPs). For the P300, the topographic interpola-
tion of the most prominent positive peak of the target average is shown. For
the ErrPs, the topographic interpolation of the most prominent positive and
negative peaks of the di�erence average are shown.



58 Chapter 4. Latency correction of event-related potentials

appears on parietal channels after presentation of the target stimuli. For the
ErrP experiments, the di�erence grand averages (error minus correct) are
also consistent with the literature [47], with two early positive and negative
peaks in fronto-central sites, followed by two larger positive and negative
peaks (P3 and N4).

Regarding the P300 experimental protocols, the amplitude of the P3
component showed no statistical di�erences among the three experiments
(p = 0.123). In contrast, its latency does exhibit statistical di�erences
(F2,8 = 22.924, p = 0.0005). Post-hoc tests revealed signi�cant di�erences
between experiments 2 and 3 (p = 0.032), and between experiments 1 and 3
(p = 0.01), but not between experiments 1 and 2 (p = 1.0).

Similarly, no di�erences were found for the P3 and N4 amplitudes of the
ErrPs (p = 0.510 and p = 0.391 respectively). Interestingly, signi�cant di�er-
ences were found on the latencies of both the P3 (F2,10 = 29.422, p = 0.00006)
and the N4 component (F2,10 = 6.979, p = 0.013). For the former, post-hoc
tests showed signi�cant di�erences between experiments 1 and 2 (p = 0.018),
and between experiments 1 and 3 (p = 0.003), and nearly signi�cant dif-
ferences between experiments 2 and 3 (p = 0.053). For the N4 component,
there were signi�cant di�erences between experiments 1 and 3 (p = 0.006),
but not between experiments 1 and 2 (p = 0.472) nor between experiments
2 and 3 (p = 0.492). Thus, the main di�erences on the elicited ERPs across
the experiments were due to latency variations of the components, while the
amplitudes remained similar.

4.3.2 Analysis of latency estimations

The ANOVA analysis yielded no signi�cant di�erences in latency after per-
forming the correction for the P300 (p = 0.12 for the P3 component), nor for
the ErrP experiments (p = 0.67 and p = 0.17 for the P3 and N4 components,
respectively). Thus, the latency correction algorithm successfully removed
the latency variations among experiments.

Figures 4.5 and 4.6 (Top) show the maximum correlation (see section
4.2.3) for all electrodes when di�erent numbers of trials from Ej are used.
Unsurprisingly, correlation values increase until they converge to an upper
value as more trials are used to compute the grand average. ERPs elicited
in the P300 experiments (Figure 4.5, Top) show high correlation (≥ 0.8) in
parieto-occipital channels when more than 50 trials are used. In turn, the
ErrPs (Figure 4.6, Top) required at least 100 trials to yield correlation values
higher than 0.8, always over fronto-central channels. These locations, as for
the P300, agree with the locations reported as more discriminant for these
phenomena.



4.3. Results 59

E1E2 E1E3

0.5

0.6

0.7

0.8

0.9

Trials used from new experiment
20 40 60 80 100 120 140 160 180 200

 1.Fp1 
 2.Fp2 
 3.Fz  

 4.Fc1 
 5.Fcz 
 6.Fc2 
 7.Cz  

 8.Cp1 
 9.Cpz 

10.Cp2 
11.P3  
12.Pz  
13.P4  
14.O1  
15.Oz  
16.O2  

Trials used from new experiment
20 40 60 80 100 120 140 160 180 200

 1.Fp1 
 2.Fp2 
 3.Fz  

 4.Fc1 
 5.Fcz 
 6.Fc2 
 7.Cz  

 8.Cp1 
 9.Cpz 

10.Cp2 
11.P3  
12.Pz  
13.P4  
14.O1  
15.Oz  
16.O2  

Trials used from new experiment
20 40 60 80 100 120 140 160 180 200

 1.Fp1 
 2.Fp2 
 3.Fz  

 4.Fc1 
 5.Fcz 
 6.Fc2 
 7.Cz  

 8.Cp1 
 9.Cpz 

10.Cp2 
11.P3  
12.Pz  
13.P4  
14.O1  
15.Oz  
16.O2  

S1 S2 S3 S4 S5 mean
−20

0
20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

 

 

20 trials
100 trials
200 trials

S1 S2 S3 S4 S5 mean
−20

0
20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

 

 

20 trials
100 trials
200 trials

S1 S2 S3 S4 S5 mean
−20

0
20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

 

 

20 trials
100 trials
200 trials

E2E3

S1 S2 S3 S4 S5 mean
−20

0
20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

 

 

Fz
P3
Pz
Oz

S1 S2 S3 S4 S5 mean
−20

0
20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

 

 

Fz
P3
Pz
Oz

S1 S2 S3 S4 S5 mean
−20

0
20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

 

 

Fz
P3
Pz
Oz

P300 EXPERIMENTS

M
ax

 c
or

re
la

ti
on

La
te

nc
y  va

ry
in

g 
#t

ri
al

s  
La

te
nc

y  va
ry

in
g 

ch
an

ne
ls

Figure 4.5: Latency results computed for each pair of experiments EiEj
(from left to right, E1E2, E1E3, and E2E3) for the P300 experiments. For
each pair of experiments, the results represent: (Top) Colour encoded image
of the maximum correlation values (averaged for all subjects), when varying
the number of trials used from ETr

j (x-axis) and the channel used for the
latency computation (y-axis). The topographic interpolation of the correla-
tion values is shown when using 20, 100, and 200 trials from ETr

j (for the
sake of simplicity, the topographic plot is shown only within the �eld of the
recorded channels). (Middle) Mean ± SEM latency estimations (in ms) of
each subject, and subject-wise average latency for channel Pz while varying
the number of trials used (20, 100 and 200 trials), and (Bottom) Mean ±
SEM latency estimations (in ms) of each subject, and subject-wise average
latency for 200 trials while varying the channels (Fz, P3, Pz and Oz). Figure
is best viewed in colour.
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Figure 4.6: Latency results computed for each pair of experiments EiEj for
the ErrP experiments. (Top) Maximum correlation values. (Middle) Latency
estimations for channel FCz while varying the number of trials (20, 100 and
200 trials) and (Bottom) Latency estimations for 200 trials while varying the
channels (FC1, FCz, Cz, and CPz).
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When we computed the correlation using data from the same experiment,
in the case of the P300 signal we obtained correlations above 0.8 when more
than 40 trials were used. In contrast, correlations computed in the ErrP
protocols required more than 70 trials to exceed this value. Thus both cases
needed comparable number of trials to reach similar correlations values as
when generalizing among experiments.

Figures 4.5 and 4.6 (Middle) show the latency values of each subject com-
puted for di�erent number of trials in ETr

j (20, 100 and 200 trials). We show
the latency calculation for channels Pz and FCz for the P300 and ErrP exper-
iments respectively, since they had high correlation values and are commonly
used for studying this signals [47,50]. For the P300 experiments (Figure 4.5,
Middle), the baseline latencies (i.e. computed on the same experiment) after
200 trials from ETr

i were −1.17±14.01 ms, −3.90±7.69 ms, and −3.13±13.87
ms for experiments 1 to 3 respectively. The latency between E1 and E2 using
200 trials was of 0.16±9.36 ms. This agrees with the previous results, where
no statistical di�erences in the latencies were found between these experi-
ments (c.f. Section 4.3.1). For the E1E3 and E2E3 cases, larger latencies
were estimated (on average 55.54± 37.51 and 29.45± 5.16 ms, respectively).
No statistical di�erences were found in the computed latencies as the number
of trials varied (p > 0.05 for the three combinations of experiments). Simi-
larly, no signi�cant interactions between the number of trials and repetitions
was found (p > 0.05). These results suggest that the latency estimation is
rather robust to the number of trials used for their computation, and that
the speci�c trials used (i.e. repetition) did not a�ect the latencies obtained.

For ErrPs (Figure 4.6, Middle), the baseline latencies after 200 trials were
5.40 ± 5.62, 12.96 ± 21.77, and 2.02 ± 4.80 ms for experiments 1 to 3. On
the other hand, the latency variations across experiments were larger than
those obtained for the P300: 60.42± 25.24, 108.85± 22.86 and 41.02± 12.95
ms for the E1E2, E1E3, and E2E3 pair of experiments. Larger inter-subject
variability was also observed. There were statistical di�erences in the latency
computation as the number of trials increased for the E1E2 and E2E3 cases
(F19,95 = 3.329, p = 0.0001, and F19,95 = 2.249, p = 0.005, respectively), but
not for the E1E3 (p > 0.4). On the other hand, no signi�cant interactions
between number of trials and repetitions were found for any case (p > 0.05).
This indicates that the latency estimation was robust when estimated using
di�erent trials. However, the latency estimation was a�ected by the number
of trials used from Ej.

Figures 4.5 and 4.6 (Bottom) show the latency values of each subject
computed for di�erent channels. The number of trials remained �xed to 200.
For the P300 experiments (Figure 4.5, Bottom), using frontal channels (e.g.
Fz in the plot) for the latency calculation led to di�erent results and higher
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standard deviations than using parietal channels (e.g. P3 and Pz). Regarding
the ErrP experiments (Figure 4.6, Bottom), the latency estimations were
more uniform across channels. Nonetheless, higher standard deviations and
lower correlation values were obtained when using parietal channels, except
for the E2E3 case, where similar results were obtained.
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Figure 4.7: (Top) Mean accuracy and (Bottom) classi�er bias when cor-
recting the latency from E1E2, E1E3 and E2E3 for the P300 experiments.
The x-axis represents the number of trials of the training dataset ETr

j . Blue-
dashed, green-dotted and red-solid lines represent, respectively, the results
for the baseline classi�er, the classi�er trained when not correcting the la-
tency, and the classi�er trained when correcting the latency. Horizontal black
lines mark the ten-fold cross-validation accuracies of the Ej experiment.

4.3.3 Single-Trial classi�cation of latency-corrected ERPs

P300 potentials

Figure 4.7 shows the mean classi�er accuracy and bias for all experiments
and tested conditions (see Figure 4.3). In the E1E2 case the mean accuracy of
the baseline classi�er (i.e. trained only with data from the new experiment)
increased as more examples were added, reaching 70.15% after 200 trials. In
contrast, using data from the previous experiment (E1) signi�cantly improved
(two-tailed paired t-test, p < 0.0001) the accuracy, both when correcting the
latency (reaching 72.74% after 200 trials) and when not correcting the latency
(73.46% after 200 trials). In these cases, only 10 trials from E2 were enough
to improve the accuracies with respect to the baseline classi�er. Additionally,
these two classi�ers had better accuracies than the ten-fold CV with more
than 50 trials from E2. Thus, re-using data from a previous experiment
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Figure 4.8: (Top) Mean accuracy and (Bottom) classi�er bias when correct-
ing the latency from E1E2, E1E3 and E2E3 for the ErrP experiments.

allowed for an improvement both in the classi�er accuracy and calibration
time. However, at least 90 trials were required for the latency correction
method to perform as well as the no correction approach, seemingly due to
errors in the latency estimation. The baseline classi�er showed large bias
when few trials are available. This bias decreased as more trials were added
reaching 23.85% after 200 trials. In contrast, re-using data from the previous
experiment yielded a low bias since the beginning, both when correcting and
not correcting the latency (15.70% and 13.70% after 200 trials, respectively).
These values were similar to the ten-fold CV. As with the accuracy, the
baseline classi�er bias was always signi�cantly worse than the results obtained
with the other two classi�ers (p < 0.0001).

Compared to the previous case, going from E1 to E3 resulted in lower
accuracies for all types of classi�ers (c.f. Figure 4.7 central column), al-
ways lower than the CV accuracies. After 200 trials the accuracies were
of 59.33%, 58.89% and 56.48% for the baseline, latency-corrected and la-
tency non-corrected classi�ers, respectively. When the latency was not cor-
rected, signi�cantly lower accuracies were obtained with more than 100 trials
(p < 0.05). No signi�cant improvement was found when correcting the la-
tency with respect to the baseline (p > 0.05). This suggests a smaller e�ect of
re-using data from the previous experiment. Furthermore, the baseline clas-
si�er exhibited signi�cantly lower bias (p < 0.0001) than the other classi�ers,
reaching 12.67% after 200 trials, versus 26.60% and 28.59% when correcting
and not correcting the latency, respectively.

In the last case (E2E3, c.f. Figure 4.7 right), the latency correction mech-
anism yielded signi�cantly higher accuracies (p < 0.05) than the baseline or
no correction approaches (63.09%, 59.85%, and 60.31% after 200 trials, re-
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spectively), converging to the accuracy of the 10-fold CV. These di�erences
appeared even when a small number of trials were available. Thus, the use
of latency-corrected data allowed for a signi�cant improvement in the ac-
curacies. Moreover, although after 200 trials the bias level was similar for
all approaches (around 12%), not correcting the latency yielded signi�cantly
higher bias than the other two classi�ers in almost all the cases (p < 0.05).
No signi�cant di�erences were found between the latency-corrected and the
baseline bias.

Error potentials

Results for the error potential protocols are shown in Figure 4.8. In the �rst
case, E1E2, the accuracy of the baseline classi�er reached 72.05% after using
200 trials for training. The latency-corrected classi�er showed better perfor-
mance of 74.27%, similar to the ten-fold CV accuracy. Notably, the latter
always performed signi�cantly better than the baseline (two-tailed paired t-
test, p < 0.0001). In contrast, the use of previous data without correcting
the latency led to signi�cantly lower accuracies than the other classi�ers for
less than 120 trials (p < 0.05), reaching 62.81% after 200 trials. Furthermore,
despite its high accuracy, the baseline classi�er had signi�cantly higher bias
than the other classi�ers (p < 0.0001), whereas the latency correction yielded
to a signi�cantly lower bias than the classi�er when not correcting the latency
(p < 0.0001).

In the second case, E1E3, the latency-corrected classi�er signi�cantly out-
performed the baseline when a small number of trials were used (p < 0.05,
with less than 100 trials). These classi�ers performed similarly after 200 tri-
als (with accuracies of around 73%), without reaching the accuracy of the
ten-fold CV. Again, the classi�er using not corrected data always performed
signi�cantly worse than the others (p < 0.0001), with an accuracy of 62.37%
after 200 trials. Similarly, the bias of the latency-corrected classi�er was sig-
ni�cantly lower than the bias of the other two classi�ers when less than 160
trials are used (p < 0.05).

In the last case (E2E3, c.f. Figure 4.8 right), the baseline classi�er was
always signi�cantly worse than the latency-corrected one (p < 0.0001). After
200 trials, the baseline classi�er reached a 73.10% of mean accuracy versus
a 76.60% when correcting the latency, comparable to the ten-fold CV classi-
�er. The latter classi�er was also signi�cantly better than the non-corrected
classi�er with 20 trials or more (p < 0.0001). Finally, the latency-corrected
classi�er obtained signi�cantly lower biases than those obtained with the
baseline classi�er for less than 130 trials (p < 0.05).

To summarize, apart from one case �generalization from the P300 ex-
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periments E1 to E3� the latency-correction mechanism improved the classi-
�cation performance in all the analyzed cases. It allows signi�cantly higher
accuracies and/or lower bias than the baseline condition when a small num-
ber of trials from the new experiment are available.
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Figure 4.9: (a) Mean ± SEM calibration trials needed for the control group
(red) and experimental group (blue), for each experiment. Signi�cant di�er-
ences (p < 0.05) between pairs are marked with a star. (b) Mean classi�er
accuracy during the online control phase for each group and experiment.

4.3.4 Online results

Figure 4.9a shows the number of calibration trials needed for each group of
subjects and experiment. The ANOVA test revealed a signi�cant interac-
tion between the experiment and group (F2,20 = 8.65, p = 0.002). Post-hoc
tests showed that signi�cant di�erences were found between groups in ex-
periments 2 and 3 (one-tailed unpaired t-tests, p < 0.05), and also signi�-
cant di�erences within the experimental group between experiments 1 and
2 (one-tailed paired t-test, p = 0.004), and between experiments 1 and 3
(p = 0.004), see Figure 4.9a. On the other hand, the accuracies was signif-
icantly similar for all the experiments and subjects (p > 0.85) (see Figure
4.9b). These results indicate that, given data from previous experiments, the
latency correction algorithm allowed for a reduction in the calibration time
of error-related potentials.

4.4 Discussion

A practical issue in the study of event-related brain activity and its use for
BCI applications is the time required to acquire su�cient data to have a
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reliable model or a usable classi�er of the EEG signals. In general, each
protocol is treated as a completely new experiment even if they are tapping
into similar cognitive processes. Besides the increase in the required time and
resources, this also provides little information about how similar responses
are across experimental conditions. Using several protocols on two well-
studied signals, we showed that the experimental design mainly a�ected the
ERP latencies. Moreover, we proposed a simple, yet powerful mechanism
to compensate for these changes allowing to generalize BCI classi�ers across
experiments using a reduced amount of new data.

Although previous studies have reported modulations on the P300 and
ErrP amplitude depending on the target or error probability [47, 50], vari-
ations in our protocols did not result in statistically signi�cant amplitude
di�erences across experiments. In contrast, ERP latencies were found to be
di�erent across several experiments (c.f. Section 4.3.1). In the P300 experi-
ments, signi�cant variations appeared when changing from experiments 1 or
2 to the third experiment. Interestingly, this experiment had the most com-
plex visual stimuli (a three-dimensional grid), seemingly requiring the subject
longer time to evaluate the stimulus. This is supported by neurophysiolog-
ical studies suggesting that the P300 is related to the stimulus evaluation
time [51,137].

Regarding the error potentials experiments, the latency changes were
larger for both peaks (P3 and N4) than for P300 when changing the ex-
perimental conditions. The selected protocols were designed so as to have an
increased level of complexity both in the number and type of possible actions:
changing from two to four possible actions at each state (from E1 to E2 and
E3); changing from 1D to 2D (from E1 to E2 and E3); and changing from a
simulated to a real device with a wider �eld of view needed (from E2 to E3).
Accordingly, increasingly longer latencies were found from protocols E1 to
E3. However, it should be noticed that part of the measured latencies may
be also due to implementation issues (e.g. the time it takes to the robot to
actually start moving once the control command has been issued). Nonethe-
less, the use of a simple technique such as the cross-correlation allowed to
signi�cantly remove these latency jitters among experiments, as presented
by the ANOVA results after correcting the latencies.

As expected, the latency estimation improves when more data is available.
Nonetheless, 100 trials proved to be su�cient to obtain a reliable estimation
with correlations higher than 0.8 as seen on Figures 4.5 and 4.6. In this work,
the latency was estimated and corrected separately for each channel. How-
ever, in principle more reliable estimations �and higher correlation values�
should be obtained in those areas where the ERP is generated. This in-
formation could be combined to study protocol-dependent spatio-temporal
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variations of a given brain process.
Focusing on applications of brain-computer interfacing, we propose a sim-

ple latency correction mechanism to re-use data from previous experiments
when building classi�ers for new experiments on a related phenomenon. This
yields a reduction in the calibration time as a smaller number of trials is re-
quired to achieve similar classi�cation performance (in terms of accuracy and
bias) than if a new classi�er is built from scratch (c.f. Figures 4.7 and 4.8).
Moreover, in those cases where the experimental change has little e�ect on the
ERP latencies, the e�ect of the latency correction mechanism does not have
a negative e�ect on the classi�cation performance (e.g. moving from P300
experiment E1 to E2). In a similar way, Thompson et al. [131] also found
that the latency variations among trials but within the same experimental
protocol were one of the main problems for the classi�cation performance,
and proposed the use of within-experiment latency variations as a predictor
of online BCI accuracies. The authors also argued that a brute-force method
(i.e. testing a classi�er for each possible latency and taking the classi�er with
maximum accuracy) could be used to estimate these latencies.

The latency variations have been assessed on two di�erent ERPs (P300
and observation error potentials), showing their e�ect on the single-trial clas-
si�cation. In the future, the generalization of BCI decoders across protocols
can be assessed for other ERPs, such as those generated during rapid visual
processing [138], or the N2 evoked component [139]. Moreover, additional
studies of event-related potentials in controlled and non-controlled applica-
tions may yield new �ndings. The proposed method could be used to eluci-
date common patterns across conditions, not only in BCI applications but
also in neurophysiological studies, e.g. comparing latency variations between
error-related activity in choice reaction tasks [42], and in feedback tasks [32].

Furthermore, more sophisticated techniques could be tested to cope with
the latency variations such as dynamic time warping [140,141]. Finally, one
disadvantage of the proposed approach is that it relies on the assumption
that there are only temporal changes in the ERPs, whereas the spatial con-
tributions remain �xed among experiments. However, this assumption may
be wrong. Thus, a more complete approach could be designed by performing
a spatio-temporal compensation of the ERP variations.
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5 | Shared-control BCI for a two
dimensional reaching task us-
ing error-related potentials

5.1 Introduction

Chapter 2 presented an alternative BMI paradigm where the user was able to
teach a device how to solve a task. Besides the calibration phase needed prior
to the control phase (addressed in chapters 3 and 4, and further studied in
chapter 6), the bottleneck of the proposed paradigm is the scalability of the
system. Due to the reinforcement learning framework, the device needed to
explore the entire state space to learn the optimal behavior for each position.
Furthermore, although ErrPs provide feedback about the device actions, the
amount of information conveyed by them is limited. In particular, as shown
in the previous chapters, the decoders do not contain any information about
direction or magnitude, and have a non-negligible number of misdetections.
As a result, the system presented in chapter 2 required more time to con-
verge as the task space increased its state-action complexity (e.g. the system
proposed needed more time to converge in experiments 2 and 3 than in ex-
periment 1, see section 2.3). One way of solving these issues is to further
increase the controller intelligence. In this sense, recent approaches started
to explore shared-control strategies where the device does not only execute
the decoded commands, but is also involved in executing the task [2] (e.g.
taking into account the environment while reaching a target or avoiding an
obstacle [9, 10]).

In this chapter, we propose the use of a shared-control scheme to greatly
reduce the time needed to solve a task in the BMI paradigm proposed in chap-
ter 2, by exploiting the intrinsic constraints of the task being performed. In
this work, we present a 2D reaching task of a cursor over a discrete grid
of possible targets (similar to the experiments performed in chapter 2 but
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with greater complexity), using error-related potentials as supervision sig-
nals. Under this control scheme, the user has to evaluate whether the cursor
is correctly moving towards the goal or is making wrong movements. Based
on this signal, the device estimates which is the desired target while moving
towards it based on the optimal motion policies for each of the possible goals.
The results show that all users were able to reach prede�ned and self-selected
goal locations in around 23 actions (about 19 seconds of EEG signal). The
use of this scheme has several interesting advantages with respect to the
paradigm presented previously. First, it is possible to learn the entire mo-
tor behavior space using much less actions, and at the same time reach the
desired target; secondly, it o�ers a natural way of not only learning motor
behaviors, but also choosing among a set of previously stored ones; third,
within a shared-control strategy it can be combined with other brain signals
to correct decoding failures or recover from wrong or ambiguous decisions of
the device.

5.2 Methods

5.2.1 Data Recording

Electroencephalographic (EEG) and electrooculographic (EOG) activity were
recorded using a gTec system (3 synchronized gUSBamp ampli�ers). For
the EEG, 32 electrodes were recorded, distributed according to an extended
10/20 international system (FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7,
P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1, FC2, CP5, CP6, CP1, CP2,
Fz, FCz, Cz, CPz, Pz and Oz), with the ground on FPz and the reference on
the left earlobe; for the EOG, 6 monopolar electrodes were recorded (placed
above and below each eye, and from the outer canthi of the left and right
eyes [142]), with the ground on FPz and the reference on the left mastoid.
The EEG and EOG signals were digitized with a sampling frequency of 256
Hz, power-line notch �ltered, and band-pass �ltered at [0.5, 10] Hz. The
EEG was also common-average-reference (CAR) �ltered. Additionally, the
horizontal, vertical, and radial EOG were computed as in [142] to remove the
EOG from the EEG using a regression algorithm [143]. The data acquisition
and online processing was developed under a self-made BCI platform.

5.2.2 Experimental Protocol

Four subjects (mean age 26± 2 years) participated in the experiments. The
participants were seated on a comfortable chair one meter away of a computer
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(a) (b) (c)

Figure 5.1: (a) Experimental protocol designed. The protocol showed a
5x5 grid with a virtual cursor (green circle) and a goal location (shadowed
in red). The up-left-most position is the [1 1] (row and column). (b) The
cursor could perform �ve di�erent actions (from top to bottom, move one
position up, down, left or right, or performing a goal-reached action). (c)
Correct actions (i.e. optimal policy) from each state for the goal exempli�ed
on (a).

screen that displayed all the information related to the experiment. The
experimental protocol is shown in Fig. 5.1. The protocol consisted of a 5x5
squares grid, a virtual cursor (green circle), and a goal location shadowed
in red. The cursor performed �ve di�erent instantaneous actions: move
one position left, right, up or down; and a goal-reached action, represented
as concentric blue circumferences (see Fig. 5.1b). The time between two
actions (inter-action interval) was random within the range [3, 3.5] s. The
role of the subjects was to assess the cursor actions as correct when the cursor
performed (i) a movement towards the goal position, or (ii) a goal-reached
action over the goal position; and as incorrect otherwise (see Fig. 5.1c). The
users were instructed not to move their eyes during the cursor actions, and
to restrain blinks only to the resting periods.

The experiment consisted of two phases: the training phase used to cali-
brate a classi�er able to distinguish between correct and error user's assess-
ments; and the control phase, where the user controlled the cursor to a goal
position. During the control phase, two di�erent groups of goal locations
were tested: (i) the �rst group was �xed for all the subjects, and consisted of
�ve prede�ned goals and initial cursor positions (see table 5.1); (ii) for the
second group, each user was asked to freely choose �ve di�erent initial cursor
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Figure 5.2: Likelihoods of each policy πi after performing di�erent actions:
(a) correct movement with p(ct = 1|xt) = 0.2 (b) incorrect movement p(ct =
1|xt) = 0.8 (c) or a goal-reached action p(ct = 1|xt) = 0.2. The goal position
is marked with a capital G.

positions and goals to reach. During this group of goals, the goal position
was not shadowed in red, since it was the user who chose it.

Table 5.1: Initial and goal positions for the �xed group of goals

Run 1 Run 2 Run 3 Run 4 Run 5

Initial position [1 1] [2 3] [1 2] [1 4] [3 3]
Goal position [5 5] [3 1] [3 3] [4 1] [3 3]

5.2.3 Calibration of error potentials

For the calibration of the error potential detection, a training phase was �rst
executed to acquire su�cient examples of potentials while the user assessed
the device actions. During this phase, the virtual cursor performed random
actions, with a 20% of probability of performing an erroneous action. This
phase lasted for 30 minutes, acquiring around 80 correct and 320 erroneous
trials.

Once the training data was acquired, features were extracted from eight
fronto-central channels (Fz, FC1, FCz, FC2, C1, Cz, C2, and CPz) within a
time window of [200, 800] ms downsampled to 64 Hz, forming a vector of 312
features. The feature vectors of all trials were normalized and decorrelated
using PCA, retaining those that explained 95% of the variance. Finally, a
regularized linear discriminant (LDA) [124] classi�er was trained using the
retained features. The classi�er output has the form y(x) = w′x + b, where
y(x) ≥ 0 is classi�ed as a correct assessment (class 1), and y(x) < 0 as
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Figure 5.3: Device control simulation for the goal shown in Fig. 5.1a ([2 2],
marked with letter G). At each step t, the device was on a state st and exe-
cuted an action at (shown over each individual plot). Each state i is colour-
encoded as the probability of the goal being at that state i, p(π∗i |at...1, st...1).
The classi�er was ideal, with its output p(c = 1|x) = 0.8 for correct actions,
and p(c = 1|x) = 0.2 for incorrect actions. Initially, all the probabilities
were equiprobable. While more steps were executed several policies were dis-
carded, whereas others increased their probability. After 11 steps, the policy
convergence criterion was reached, and the device learned the goal position.

an error assessment (class 0). This output y(x) was transformed into the
probability that a trial x belonged to the correct class, p(c = 1|x) = 1

1+e−y(x)

[144].

5.2.4 Shared-control for a reaching task

This section describes the proposed shared-control strategy with error poten-
tials. Although these potentials provide feedback about the device actions,
the amount of information conveyed by them is limited. In particular, the
decoder of Section 5.2.3 does not contain information about direction or
magnitude. Furthermore, it has a non-negligible number of misdetections.
Therefore, the proposed shared control uses memory to accumulate evidence
about possible goals while executing a trajectory. The proposed approach
consists of two phases. The �rst one computes o�ine optimal trajectories
(i.e. policies) for each potential target, while the second one ranks them
during execution using error potentials elicited for wrong actions.

O�ine policies computation

The o�ine phase was used for the computation of the optimal motion policies
(see Fig. 5.1c) for all possible goal locations. Let π∗i (s) be the optimal
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Figure 5.4: (a) Action-locked averages from channel FCz (error, correct
and di�erence in red, blue and black respectively), together with the color-
encoded topographic interpolation of the three most prominent peaks of the
di�erence average. Time 0 ms indicates when the cursor executed an action.
The source localization for the most prominent negative peak of the di�erence
average is also shown. (b) Color encoded r2 discriminability test for each time
point (x-axis) and channel (y-axis), including the 6 monopolar EOG channels
recorded (denoted as E1 to E6).

policy for reaching the goal position i from the state s, whose output is
the best action to compute in s (see Fig. 5.1c for a representation of the
optimal policy when the goal location was [2 2]). The optimal policies can
be represented with their associated Q-values Q∗i (s, a), which represents the
value of executing the action a in state s when the goal location is i. These Q-
values were converted into probabilities, following a soft-max normalization
[61]:

Q̂∗i (s, a) =
eQ
∗
i (s,a)/τ∑

b e
Q∗i (s,b)/τ

, (5.1)

where τ is denoted the temperature (�xed to τ = 0.3 for the current
experiment). This parameter served as a degree of reliability of the observed
information (classi�er output). For the designed protocol, the Q-values for
all the possible goal locations can be computed o�ine prior to the control
phase using the Q-learning reinforcement learning algorithm [61].
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Online control

The online cursor control was performed by updating the probabilities of
having the goal location on a state i p(π∗i ), which where initially equiprob-
able (see Figure 5.3, step 0). At each time step t, the device performed
an action at from state st. This action was assessed by the user, and the
EEG classi�ed following the procedure described in subsection 5.2.3, obtain-
ing p(c = 1|x, at, st). This probability was used to update p(π∗i ) for each goal
location i (see Figure 5.3, steps 1 to 10). Finally, the execution �nished when
a probability p(π∗i ) reached a convergence criterion, pc = 0.9 (see Figure 5.3,
step 11). At time t, the probability of each policy i being the correct one
given an action at executed in a state st is:

p(π∗i |(a, s,x)1...t) ∝ p(at|π∗i , (s,x)t) · p(π∗i |(a, s,x)1...t−1), (5.2)

where the likelihood is computed as:

p(at|π∗i , (s,x)t) = p(c = 1|x) · Q̂∗i (st, at) + p(c = 0|x) · (1− Q̂∗i (st, at)), (5.3)

Notice that the �rst term of the likelihood represents how we should in-
crease the policy π∗i if the user's assessment was correct, while the second
term penalized the policy π∗i weighted by the probability of having and in-
correct user's assessment (see Figure 5.2). Fig. 5.3 shows an example of the
device control when reaching the goal shown in Fig. 5.1a.

Table 5.2: Results of the reaching task for the �xed goals

s1 s2 s3 s4 mean ± std

] Targets reached (out of 5) 5 5 5 5 5 ± 0
] Actions 16 ± 2 43 ± 9 23 ± 12 17 ± 5 25 ± 13

Net time (s) 12.96 ± 1.91 34.56 ± 7.10 18.40 ± 9.73 13.60 ± 4.38 19.88 ± 10.75
Total time (s) 52.65 ± 7.76 140.40 ± 28.83 74.75 ± 39.54 55.25 ± 17.80 80.76 ± 73.68

Accuracy correct / error (%) 82.46 / 79.17 60.98 / 78.49 82.43 / 63.41 71.19 / 76.92 74.27 ± 10.32 / 74.50 ± 7.45

Table 5.3: Results of the reaching task for the freely chosen goals

s1 s2 s3 s4 mean ± std

] Targets reached (out of 5) 5 5 5 5 5 ± 0
] Actions 23 ± 9 21 ± 7 16 ± 6 23 ± 11 21 ± 8

Net time (s) 18.08 ± 7.37 16.48 ± 5.84 12.96 ± 5.10 18.08 ± 8.44 16.40 ± 6.61
Total time (s) 73.45 ± 29.93 66.95 ± 23.73 52.65 ± 20.73 73.45 ± 34.29 66.63 ± 26.85

Accuracy correct / error (%) 75.00 / 72.97 75.00 / 83.87 83.93 / 84.00 70.37 / 76.19 76.08 ± 5.67 / 79.26 ± 5.56
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Figure 5.5: States visited by all the subjects, for each of the �ve runs
executed with the �xed goals (from left to right, runs 1 to 5). Darker colors
indicate more visited states. The range was normalized from 0 to 1 according
to the most visited state for each run. The initial and goal positions are
marked with an S and a G respectively.

5.3 Results

5.3.1 Electrophysiology analysis

Fig. 5.4a shows the error, correct and di�erence grand averaged potentials
(error minus correct averages) in channel FCz, averaged for all the subjects.
The di�erence grand average was characterized by three components: a neg-
ative de�ection at around 250 ms, a positive de�ection at around 400 ms,
and a another negative component at around 500 ms. The topographic inter-
polations of the two broader peaks of the di�erence average showed that the
signals were generated mostly in fronto-central channels. These results were
in agreement with previous studies using error potentials [46]. The sLoreta
source localization [122] was applied to the most prominent negativity of the
di�erence average, con�rming that the signals were generated in the anterior
cingulate cortex (ACC, Brodmann area 24), which is the area thought to be
the main generator of error-processing brain activity [46]. Fig. 5.4b shows
the r2 discriminability test of the signals obtained. The test revealed two
main zones of discriminability between correct and error signals, at around
350 and 500 ms, agreeing with the two broader peaks appearing in the dif-
ference average. Furthermore, no discriminable information was found on
the EOG channels (E1 to E6 in Fig. 5.4b), thus indicating that no EOG
activity was contaminating the recorded potentials, and that the EOG was
not involved in the device control.

5.3.2 Control phase analysis

For each group of goals (�xed and freely-chosen), �ve metrics were evaluated:
(i) Number of goals reached; (ii) number of actions needed to reach the goal,
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(iii) EEG seconds needed to reach the goal (net time); (iv) total time needed
to reach the goal; and (v) classi�er accuracy, measured as the percentage of
detection of correct and erroneous signals.

Table 5.2 shows the results for each subject (averaged for goals). The
�rst result was that the device was able to reach all the target location,
independently of their relative location. The users needed 25± 13 actions to
reach the goal. With the proposed inter-action interval (around 3.25 s), the
total time needed to reach the goals was of 80.76± 73.68 s. Nonetheless, the
net time (i.e., the seconds of EEG signal used for decoding) was of 19.88 ±
10.75 s. Note that the di�erence between the net and total times was the
seconds belonging to inter-action intervals, which could be easily removed.
The mean classi�er accuracy across subjects was of 74.27± 8.94 and 74.50±
6.45 for correct and erroneous actions respectively. As expected, there was
a signi�cant negative correlation between the classi�er mean accuracy and
the time needed to reach the task (r = −0.47, p = 0.038). Notice that
a random walk strategy that selected random actions at each step would
require around 150 actions for a 5x5 grid size. Fig. 5.5 shows the states
visited for the �ve runs performed. As can be seen, not all the states needed
to be visited to reach the goal. For instance, during run 3, mostly all the
central states were visited, whereas the peripheral states were not. This
is an interesting property of the proposed control scheme, since it allows
for a better scalability of the system, due to the fact that each step of the
trajectory provides information for multiple goals simultaneously. As a result,
the percentage of visited states would decrease for larger state spaces.

Table 5.3 shows the results for each subject. As with the �xed goals,
all the targets were correctly reached by the device. The number of actions
needed to reach the goal was 21 ± 8, with a total time of 66.63 ± 26.85 s,
and a net time of 16.40 ± 6.61 s, and thus slightly better than the results
with �xed goals. However, these di�erences were not signi�cant (paired t-
test, t19 = 1.05, p = 0.31). Regarding the classi�er accuracy, the detection
rate was better in this case: 76.08 ± 5.67 and 79.26 ± 5.56 for correct and
erroneous actions. The error accuracy was signi�cantly better than the one
obtained for the �xed goals, (paired t-test, t19 = −2.27, p = 0.04), but the
correct accuracy was not (paired t-test, t19 = −1.12, p = 0.28). The fact of
this slight increase of accuracy could be due to a protocol habituation, since
the users always executed the free goals after the �xed ones. Again, there
was a signi�cant negative correlation between the mean accuracy and the
time needed to reach the task (r = −0.79, p = 3 · 10−5).
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5.4 Conclusions and future work

In this work, we have presented a shared-control BCI for a 2D virtual cursor
based on error potentials. Most of the intelligence of the system was moved to
the device side by comparing optimal trajectories with the executed one based
on the detected error potentials (actions perceived as wrong by the user).
The proposed approach compensates the low information transfer rate of
error potentials by exploiting the structure of trajectories. The experimental
results showed that, for a 5x5 grid, the system reached any goal after only
23 actions on average (less than a minute in our protocol). Indeed, this was
a large improvement compared to the results obtained in chapter 2. For
experiments 2 and 3 (see Figure 2.2), the total number of possible states and
actions was 13 and 22 respectively; whereas for the proposed approach was
of 25 states and 105 actions. Furthermore, in the previous approach, the
subjects needed 100 actions to learn around an 80% of the optimal motor
behavior, whereas in this chapter the subjects needed a 75% less actions to
learn the entire optimal motor behavior and at the same time reach (stop at)
the target.

The proposed shared-control BCI might scale to more complex scenarios
because: i) it is not necessary to explore every single trajectory or potential
goal; and ii) the user only has to monitor the device actions and evaluate
if they are right or wrong. The authors are currently applying this BCI
approach to real devices (e.g. mobile robots or manipulators) with larger
and continuous state-action spaces.



6 | Zero-calibration BMIs for sequen-
tial tasks using error-related po-
tentials

6.1 Introduction

Previous chapters have shown how it is possible to teach a device how to
solve a task following the proposed teaching paradigm. As for all non-invasive
BMIs, this paradigm needed a decoder trained after a calibration phase that
translated the error-related potentials into feedback for a device. Despite
we have seen how this calibration phase can be reduced thanks to re-using
data from previous experiments, several examples from the new task were
always needed to train the decoder. Furthermore, these examples needed to
be acquired in open loop, that is, where the user is not performing the task.
This is a key problem for the paradigm developed throughout this thesis,
since the time needed to learn the decoder adds to the time needed to learn
the task as such, greatly delaying the �nal device operation and hindering
the deployment of the BMI out of the lab.

This chapter addresses the problem of removing the calibration phase
in the BMI paradigm proposed in chapter 2 and extended in chapter 5.
Here, we show how it is possible to fuse both the calibration and the task
learning phases in a single closed-loop phase that learns the classi�er and
the task at the same time and in an unsupervised manner. The main idea
is the same as the one presented in the previous chapter: to exploit the
task constraints. The previous chapter showed how these constraints allowed
to estimate all the possible optimal policies (one for each target) while a
recursive �lter estimated which target was the correct one. Similarly, it is
possible to compute all the possible signal labels (i.e. whether the current
EEG is generated from a wrong or correct assessment) associated to each
optimal policy, and use a recursive �lter that learns which labels best �t the

79



80 Chapter 6. Zero-calibration BMI using error-related potentials

EEG signals.

Related work on this domain is very limited. This idea was addressed in a
similar way by Kindermans et al. for P300 signals by exploiting the fact that
these ERPs usually require of multiple visual stimulations [74, 77]. Thus, a
recursive �lter was able to unsupervisedly estimate the optimal labeling for
the signals. Furthermore, it was possible to further increase the convergence
speed by using prior information from a pool of subjects. In invasive BCIs,
Orsborn et al. [145] learned from scratch in closed loop a decoder for known
targets using pre-de�ned policies to each target. However, the approach
needed for a warm-up period of around 15 minutes.

The main contribution of this chapter is a method that simultaneously
calibrates the feedback decoder and executes in closed loop a task only known
by the user. Our method exploit the described task constraints, namely op-
timal policies, to hallucinate virtual labels for the feedback signals. Using
these labels, it is possible to compute the expected classi�cation rate of the
decoder of the task. Since the right task will assign the right labels to the
EEG signals, the expected classi�cation rate is also a good measure to iden-
tify the user's intended task. Furthermore, we show that it is possible to
use model-based planning based on the uncertainty about the task and the
feedback signals to explore the space e�ciently while learning. The method
has been evaluated performing online experiments where four users directly
controlled an agent on a 2D grid world to reach a target. The results show
that the proposed method is able to learn good feedback models and solve
the task e�ciently without any calibration. O�ine experiments show that
our unsupervised trained decoder has the same accuracy as a standard one
and illustrate the bene�ts of our active strategy.

6.2 BCI-feedback Based Control Without Ex-

plicit Calibration

6.2.1 Experimental protocol

The experimental protocol followed the same reaching task as the one de-
scribed in the previous chapter (see subsection 5.2.2), where a device was
placed in a 5x5 grid world and whose objective was to reach a target position.
The user goal was to assess the device actions (thus generating error-related
potentials) and teach it to reach the desired position (see Figure 5.1).
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T T

Class 0
Class 1

T

Figure 6.1: Task labels for a 1-D grid world. For the represented example, the
arrows indicate for each state what action should elicit a positive feedback
to reach the target position shadowed in blue (i.e., the optimal policies). 2D
Gaussian distributions of binary feedback signals for three possible targets
are shown below. While for the correct target the distributions shows a large
separability (Left), the overlaps increases as the believed target moves away
from the real one (Middle, Right).

6.2.2 Simultaneous Estimation of Task and Signal Model

In a common BCI scenario, the EEG signals are usually trained in open loop,
where the user has no control whatsoever over the device (see for instance
subsection 5.2.3). Whenever the calibration is done, the user performs the
closed loop experiment, where it controls (or teaches) the device. In this
chapter, we faced the question of whether it is possible to estimate at the
same time the task being performed (reach a target position) and the signal
model (binary classi�er trained with ErrP signals).

The main idea of this work is depicted in Fig. 6.1 for a toy 1D example
with 7 possibles targets to reach (i.e. 7 possible tasks). The user wants
the device to reach the right-most state. However, neither the target nor
the signal model are known. The feedback signals (ErrPs) are generated as
a response to the execution of an action a in state s according to the true
unknown task the user wants to solve. The key point is that these signals are
generated from an underlying model that for binary signals has two di�erent
classes. Given su�cient feedback signals, it is possible to build the underlying
distributions for each possible target. Only the right task will provide the
right meanings (or labels) to each of the feedback signals (Fig. 6.1 Left),
while the other tasks will gradually mix both classes as the task gradually
di�ers more to the original task (Fig. 6.1 Middle-Right), up to the point of
almost mirroring the labels when the target is mirrored. If we extrapolate
this to the proposed protocol, it is clear to see that there are 25 possible tasks
(one for each possible target). In the remainder of this section we show how
this property can be exploited to estimate the task and the model generating
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the feedback signals.
Let ei ∈ Rn be the EEG measurements e obtained after the execu-

tion of action ai in state si. The meaning (or label) zi ∈ {c, w} of each
feedback signal belongs to one of two classes (correct or wrong). Follow-
ing the literature [124] and the previous chapters, the EEG signals are
modeled using independent multivariate normal distributions for each class,
N (µc,Σc),N (µw,Σw). Let θ be the set of parameters {µc,Σc, µw,Σw}.

Regarding the tasks, the system has access to a set of task hypotheses
ξ1, . . . , ξT which includes the task the user wants to solve1. We do not make
any particular assumption on how the task is represented given that for
each particular task ξ we are able to compute a policy π which represents
the probability of choosing a given action a in state s, πξ(s, a) = p(a|s, ξ).
As mentioned above, these are the policies that, conditioned on the task,
provide meanings to the feedback signals of an action-state pair. (e.g. in the
proposed reaching task, progressing towards the goal will generate correct
answers while moving apart from it will generate wrong ones).

Our goal is to learn which task ξ̂ the user wants to solve based on the
assessment of the user extracted from EEGmeasurements collected while exe-
cuting actions. Thus collected data are in the form {(ei, si, ai), i = 1, . . . , N},
this is, a sequence of states, actions and teaching signals triplets. Following
the discussion of Fig. 6.1, a straightforward option to estimate the task ξ
is to measure the coherence of the signal model for each possible task using
the virtual meanings provided by the target policy. In other words, the best
(ξ, θ) pair should provide the lowest predictive error (perr) on the observed
signals p(e|s, a, ξ, θ). One possible way of solving this problem is to maximize
the expected predictive classi�cation rate:

ξ̂, θ̂ = argmaxξ,θEe (δ(z(s, a, ξ), z(e, θ))) (6.1)

where δ() is an indicator function, z(s, a, ξ) is the label (wrong or correct)
corresponding to the execution of action a in state s under task ξ and z(e, θξ)
is the label provided by the Gaussian classi�er with parameters θξ. The
expected predictive error can be explicitly written dependent on the task
and decoder model:

Ee (δ(z(s, a, ξ), z(e, θ))) =
∑
l=c,w

p(z = l|s, a, ξ)p(z = l|e, θ) (6.2)

where p(z = l|s, a, ξ) represents the probability of the user assigning label l
when assessing task ξ. We add a noise term to cope with those situations

1If this is not the case, the system will �nd the most suitable task.
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were the user assessment may be wrong. The model is then

p(z = l|s, a, ξ) =

{
1− α, a = argmaxa πξ(s, a)

α, otherwise
(6.3)

with α modeling error rate of the user. The term p(z = l|e, θξ) is just the
probability of the meaning under the Gaussian model provided by θξ

p(z = l|e, θ) =
p(e|z = l, θ)p(z = l)∑

k=c,w p(e|z = k, θ)p(z = k)
=

N (e|µl,Σl)p(z = l)∑
k=c,wN (e|µk,Σk)p(z = k)

(6.4)

Note that the optimization process has be factored using the fact that
given the task, the estimation of θ under the Gaussian model is trivial. It
basically requires to compute the maximum-likelihood estimate θML

ξ for each
target ξ. Using the labels of target ξ, the estimation of θ under the Gaussian
model described above simply accounts for computing the posterior mean µz
and covariance Σz. In order to avoid numerical problems when estimating the
covariance for a low number of examples, a regularization term was applied
to penalize very large and very small eigenvalues [146]:

Σz = (1− λ)Σz + λ
trace(Σz)

n
In, (6.5)

with n the feature dimension, In the identity matrix of size n, and λ = 0.5
the regularization term.

The second part of the optimization requires to estimate the expected
classi�cation rate to select the best target. Possible solutions are use cross-
validation or bootstrapping methods to estimate the classi�cation rate us-
ing the available data up to time i. However, for small amounts of data,
these methods result in estimates with high variance (see also the discussion
in [147] about the variance of cross-validation estimators) and have a high
computational cost.

Alternatively, we propose another approximation of the expected estima-
tion error: the Bhattacharyya coe�cient. This coe�cient has been related
to the classi�cation error of Gaussian models [148]. Although there is no
analytical relation between the coe�cient and the classi�cation rate, it is
possible to derive bounds and good empirical approximations [149]. Under
the Gaussian model, the Bhattacharyya coe�cient ρ between the distribu-
tions of the signals, associated to each meaning, N (µc,Σc),N (µw,Σw), is
simply ρ = e−DB where DB is the Bhattacharyya distance:

DB(θ) =
1

8
(µc − µw)t(Σc + Σw)−1(µc − µw) +

1

2
ln

(
det(Σc + Σw)√

detΣcΣw

)
. (6.6)
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6.2.3 Estimation of Task and Online Re-Estimation of

Signal Model

The use of the Bhattacharyya coe�cient provides a simple and e�cient way
to estimate the target when the number of examples is small and avoids the
problems of cross-validation. However, when changing to a new target, the
signal model does not change and does not have to be re-learned from scratch.
Indeed, once the system has correctly identi�ed a task, it has access to cor-
rectly labeled data and so it is possible to train a classi�er as in usual BCI
calibration approaches. To achieve this, we factorize the joint distribution

p(ξ, θ | Di) ∝ p(ξ | Di)p(θ | ξ,Di)

= p(ei | ξ, (s, a)i, Di−1)p(ξ | Di−1)p(θ | ξ,Di), (6.7)

where Di contains the triplets (ei, si, ai) up to time i associated to its labels.
The factorization makes explicit that given the target the distribution p(θ |
ξ,Di) can be easily evaluated using the labels of each target. We approximate
this posterior using the maximum likelihood point estimate θ̂ML

ξ per target.
For the term p(ξ | Di), we use a recursive Bayes �lter

p(ξ = t, | Di) ∝ p(ei | ξ = t, (s, a)i, Di−1)p(t | Di−1)

≈ p(ek | θ̂ML
ξ=t )p(ξ = t | Dk−1). (6.8)

Notice that we are keeping a di�erent symbol model θ̂ML

D
ξt
i−1

for each possible

target ξt, the maximum likelihood estimation needs to be done in relation
to a dataset Dξt

i−1 corresponding to the expected labels of target ξ up to
time i− 1. Whenever a task is identi�ed, its labels are transferred to all the
triplets of the other tasks to correct the prior for the next step with the right
labels. This scheme performs a long term adaptation of θ to accommodate
slight variations of EEG such as non-stationarities or variations induced by
the task.

6.2.4 Action planning

The previous algorithm is able to acquire the needed knowledge but it is not
explicit on the process it uses to acquire the data. The goal of the device is
to ful�ll the task desired by the user but, as it has to simultaneously estimate
which is the task, it has also to explore regions that allow to disambiguate
among di�erent tasks. There are several e�cient model-based reinforcement
learning exploration methods that besides using the task reward function to



6.2. BCI-feedback Based Control Without Explicit Calibration 85

plan for actions, add an additional exploration bonus for states that might
provide more learning gains. Several theoretical results show that these ap-
proaches allow to learn tasks e�ciently [150, 151]. We de�ne an uncertainty
measure and use model-based planning to select sequences of actions that
guide the agent to states that better identify the desired task.

The proposed planning method is based on reducing the expected pre-
diction error of the label corresponding to each brain signal. If we choose an
action in a given state, given each possible task, we can predict to receive
a correct or wrong label. Such label is linked to a signal generation model
which di�er from task to task, and to the optimal action at that particu-
lar state. A state-action where the optimal actions and the signal model is
the same for all the hypothesis will be less informative that any other state-
action where either actions or models di�er. Thus, our measure of global
uncertainty U(s, a) will be higher when, for a given state-action there is an
high incongruity between either actions or signal models. For this we com-
pute a similarity matrix S where each element Sij(s, a) corresponds to the
similarity of the distributions of the signals of the expected label according
to tasks i and j if action a is performed in state s. In order to improve
computation e�ciency we do not rely on a precise metric between distribu-
tion and only consider the similarity between the mean of the distribution
(empirical tests did no show a signi�cant impact on the results). The �nal
uncertainty value U(s, a) can be computed as the sum of the upper diagonal
of the similarity matrix.

This measure is then used as a classical exploration bonus method by
summing the task reward and the uncertainty measure. As the world dy-
namics is known we can plan actions that maximize the surrogate reward
function R(s, a) = (1 − β)Rtask(s, a) + βU(s, a). We can, for instance, use
value iteration and then follow the optimal policy. The reward function R
includes a parameter β that provides a gain schedule of exploration versus
exploitation. We can either tune this parameter or switch to a pure exploita-
tion approach after reaching the desired con�dence level on the task model.
Interestingly the same approach can be used either in the case of known or
unknown signal models. As the uncertainty function combines task and sym-
bol uncertainty, when former is known, the latter becomes the sole source of
ambiguity.

6.2.5 Methods for the online experiments

The objective of the online evaluation was to determine whether a user was
able to teach the virtual device how to reach a target while learning at
the same time the classi�er. For this purpose, we followed the algorithm
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presented in the previous subsections. For the executed experiments, EEG
and EOG signals were recorded following the same con�guration as in the
previous chapter (see subsection 5.2.1). Four subjects (aged between 25 and
28) performed the online experiments. Each subject completed 5 runs of
learning from scratch how to reach a randomly chosen target. A run was
stopped whenever a task model had more than 99% of the probability of
being the correct one, according to Eq. 6.8.

During the online execution of the experiments, the device performed
actions while the user assessed them. After each action, the device updated
its knowledge about the environment and the task following the proposed
algorithm (section 6.2.2), and using several features from the user's EEG.
These features were extracted from two fronto-central channels (FCz and
Cz) within a time window of [200, 700] ms (being 0 ms the action onset of
the agent) and downsampled to 32 Hz, leading to a vector of length 34.

6.2.6 Methods for the o�ine experiments

Additionally to the online experiments, further o�ine experiments were ex-
ecuted. For this analysis, a larger dataset was used to ensure that the re-
sults obtained were statistically signi�cant. Speci�cally, we used the datasets
acquired from ten subjects during the experiments described in chapter 3,
namely OT1 and OT2. For each subject and each dataset, we simulated
twenty runs of 400 steps following the control task by sampling a signal from
the data.

The objectives of the o�ine analysis were: (i) study the impact of the
exploration approach proposed in section 6.2.4; (ii) evaluate whether the
classi�er learned during the �rst phase of the algorithm (section 6.2.2)) has
similar decoding capabilities to classi�ers trained with standard calibration
approaches; (iii) the advantages of using a classi�er rather than the Bhat-
tacharyya coe�cient during the second phase of the algorithm; and (iv) the
number of tasks (targets) that can be learned depending on the dataset ten-
fold accuracy.

6.3 Results

6.3.1 Online experiments

The �rst result obtained was that, for all the subjects, the device was able
to reach the correct target while learning the signal model at the same time.
Table 6.1 shows for each subject and run the number of steps needed to
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Table 6.1: Number of steps needed to reach the correct target.

Run 1 Run 2 Run 3 Run 4 Run 5 mean ± std

Subject 1 95 62 56 60 64 67 ± 16
Subject 2 89 77 98 60 62 77 ± 17
Subject 3 68 80 118 76 157 100 ± 37
Subject 4 98 142 57 142 47 97 ± 45

learn the correct task. Despite there was no su�cient information to perform
statistical tests, no substantial di�erences were found among subjects or runs.
On average, the number of steps needed to reach the task was of 85 ± 32.
Notice that, in the previous chapter, the time needed to reach a target was
23 steps on average. However, the previous protocol required of a calibration
phase of 400 actions on average, whereas in this approach the signal model
was also learned during operation.

Figure 6.2 shows the evolution of the probability of the correct task,
averaged for all subjects and runs (Fig. 6.2a), and separated for each subject
and run (Fig. 6.2b). Despite on average the probability function is increasing
continuous, there were some runs were the probability had a more erratic
behavior, especially on subjects 3 and 4. This indicated that, initially, there
were other tasks which were increasing their probability. Thus, the algorithm
needed more time to converge to the correct task.
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Figure 6.2: Evolution of the probability of the correct task (a) averaged across
subjects and runs (the shadowed area indicates the standard deviation); and
(b) for each separate subject and run.
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6.3.2 O�ine experiments

Planning Methods: We compared the average number of steps (with maxi-
mum values of 400 steps) needed to identify the �rst task (section 6.2.2) when
learning from scratch with di�erent planning methods. Figure 6.3 shows the
results averaged across subjects, runs and the two datasets. Notice that the
large standard deviations are mainly due to the large variations in classi�ca-
tion accuracy across subjects and datasets. Several planning methods were
able to correctly estimate the tasks. On the other hand, a greedy exploration
(i.e. always trying to follow the most probable task) does not allow the sys-
tem to explore su�ciently, and at least some random exploration is necessary
to allow a correct identi�cation of the task (e.g. ε-greedy). The proposed
planning method based on expected signal uncertainty (section 6.2.4), leads
the system to regions that improve disambiguation among hypotheses in a
faster way. Compared to assessing uncertainty only on the meaning space,
the proposed algorithm performs better as such methods do not take into
account the signal to meaning uncertainty inherent to the problem to solve.

Online re-estimation of classi�er: After identifying the �rst task, the
second phase of the algorithm was training and adapting a classi�er (see sec-
tion 6.2.3). The quality of the classi�er learned with the proposed method
can be measured according to the percentage of labels correctly learned (ac-
cording to the ground truth label), see Figure 6.4. Notice how this percentage
varied with the ten-fold accuracy of a given subject and dataset. In general,
having accuracies higher than 75% guaranteed that more than 90% of the
labels were correctly learned. This result shows that our algorithm could
also be used to collect training data for calibrating any other state-of-the-art
error potentials classi�er, but has the important advantage of controlling the
device at the same time.

Figure 6.5a demonstrate the advantage of training a classi�er after the
�rst reached task instead of keeping the estimation given by the Bhattacharyya
coe�cient. Indeed, the Bhattacharrya coe�cient works very well for small
amounts of data because it directly compares model parameters. On the
other hand, when there are su�cient data, training a classi�er allows for
a faster adaptation since the classi�er makes a much harder decision when
evaluating a new EEG signal. Finally, �gure 6.5b shows the number of tasks
identi�ed with respect to the accuracy of the dataset, and the number of
tasks wrongly identi�ed. Notice how the number of identi�ed task is corre-
lated to the quality of the dataset. Importantly, the algorithm was able to
identify on average 20 tasks in 400 steps on average without the need for a
calibration procedure.
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Figure 6.3: Number of steps needed to reach the �rst task following di�erent
exploration methods. Note that, if no task was learned after 400 steps the
simulated run was considered a failure.
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Figure 6.5: (a) Bhattacharrya versus empirical estimate of the predictive
error during reuse as a function of the dataset ten-fold accuracy. (b) Number
of tasks identi�ed in 400 steps as a function of the dataset ten-fold accuracy
(correctly and incorrectly identi�ed in red and blue respectively).

6.4 Conclusions

In this work, we introduced a novel method for BCI based control of sequen-
tial tasks with feedback signals that do not require any calibration process.
As a by-product, the method provides an unsupervised way to train a de-
coder with the same performance as state-of-the-art supervised classi�ers,
while keeping the system operational and solving, with a lower performance
during the �rst steps, the unknown task. The algorithm has been tested with
online experiments, showing that the users were able to guide from scratch an
agent to a desired position. Furthermore, the system quickly learns the feed-
back signal model and in 400 steps (a reasonable number of trials needed for
a typical supervised calibration [47, 79]), solved 20 tasks on average (where
the maximum, in the presence of a perfect decoder, would be 30 times).

To improve the e�ciency of the algorithm, we introduced a new planning
method that uses the uncertainty in the decoder-target estimation. This
planner is inspired by exploration methods with exploration bonuses that
allow guiding to reduce the uncertainty in an e�cient way. We showed that
trying to follow the best hypothesis does not explore the space signi�cantly
to reduce uncertainty and thus identify the correct task. Only through an
approach that plans how to reduce the uncertainty multiple steps ahead are
we ensure that the agent will reach states that can only be explained by the
correct hypothesis. A critical case is when there are many hypothesis that
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can be explained by almost symmetric hypotheses, by planning we are sure
to go to the parts of the state space where they di�er. To solve this issue, it
is mandatory at least one action that disambiguate among hypothesis (e.g.
the goal-reached action for the proposed protocol).



92 Chapter 6. Zero-calibration BMI using error-related potentials



7 | Conclusions

In this thesis, we have presented an alternative brain-machine interface paradigm
to neuroprosthetics that makes use of high-level cognitive signals associated
to the task being performed by the device. The core idea is to delegate part
of the intelligence to the device controller, emulating the role of subcorti-
cal levels during motor control. Speci�cally, this thesis has presented the
�rst steps towards the development of this paradigm by making use of a
non-invasive cognitive signal related to the user's error processing: the error-
related potentials. Throughout the thesis, we have shown the feasibility of
the proposed paradigm by illustrating how di�erent devices can learn how to
perform a task driven by the brain feedback given by the users, and given a
set of these behaviors choose one among them. As the results showed, this
BMI paradigm has several advantages: the paradigm can scale to di�erent
tasks and protocols, as long as the signal used (the error potentials) can be
elicited; it allows to perform complex tasks thanks to the intelligent con-
troller; it has a potential to adapt not only to what the user wants to do, but
also how to do it (i.e. learn the user preference for a given task).

As most BMIs, the proposed paradigm requires a calibration phase to
build a online detector of the ErrPs. For the proposed paradigm, this is-
sue is of key importance as this calibration time adds to the task learning
time greatly delaying the device operation. Thus, it would be convenient
to have classi�ers able to work irrespectively of the learning task being per-
formed. This thesis has deeply studied this issue by designing �ve di�erent
experimental protocols (plus other two that were not presented here [78,79]),
characterizing the cognitive signals used for the paradigm and their stability
across di�erent tasks. In fact, the thesis has shown how the latency of the
error-related potentials is a�ected by the task being performed by the device,
a problem well-known to be present in other ERPs such as the P300. To cope
with this problem, the thesis has studied two di�erent ways of re-using infor-
mation among di�erent tasks to generalize classi�ers among di�erent tasks.
The �rst one uses state-of-the-art adaptive classi�ers with proven utility in
other BMI approaches, and the second one exploits the knowledge acquired

93



94 Chapter 7. Conclusions

during the neurophysiology analyses (i.e., that the latency of the ERPs is
a�ected by the task) to correct the ErrP and P300 variations among tasks.
Despite the adaptive classi�ers were slower than calibrating each a new task
from scratch, correcting the ERP latency among tasks proved to be of great
utility as a way of generalizing classi�ers among tasks.

As in the case of human motor control, the proposed paradigm must not
only learn new policies, but it also has to store them so that they can be
executed later on demand. The thesis demonstrates this second step using
the same type of cognitive signals as feedback to select among a set of stored
policies. Interestingly, the policy selection does not require that the stored
policies have been learned using brain signals. In fact, in Chapter 5, the
stored policies corresponded to optimal reaching trajectories to some prede-
�ned goals and the user simply selected among them. Pre-computing optimal
policies is an interesting option, especially when the task to be learned is too
complex for self-exploration or requires changes based on the scenario. In-
deed, it is easy to incorporate context into the paradigm. For instance, the
system could analyze the scene using computer vision techniques to create a
set of active policies based on the environment and let the user choose among
them (e.g. having detected a cup, a door and a switch, the set of policies
will contain drinking from a cup, opening a door or turning a light on). The
policy repertoire could also be a mix of learned policies and pre-computed
ones, or even adapt previously learned ones to the current situation.

7.1 Future work

This thesis has shown the potential use of an alternative paradigm for current
BMI systems. The results obtained here open the door to future develop-
ments, and pose several questions from both the BMIs and the neuroscience
point of view. We will �rst discuss these questions in the context of cognitive
neuroscience, and then dissertate about the paradigm in relation to BMIs.

One of the major di�culties of error-related potentials (shared with all
ERPs), is the fact that these signals are a response to an event that elic-
its them. Indeed, there is no study in the literature of error potentials in
which the event marking the onset of the potential is not clearly de�ned
and measured. Consequently, this work has presented results using only dis-
crete setups where the actions can be instantaneously evaluated as wrong
or correct. However, real world applications (such as performing a complex
trajectory with a robotic arm) imply the use of continuous actions where the
error could appear at any moment of the trajectory being executed and not
only at the beginning. Furthermore, being the error potential a cognitive
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process, its elicitation will depend on the subjective evaluation of each user.
Thus, an important question is to evaluate whether there is any measurable
assessment information in the user's brain during continuous movements per-
formed by a device; and the feasibility of detecting these signals online. Our
preliminary works with two subjects have shown that these potentials do
exist during continuous motions of a virtual device, and we can detect them
on single trial using frequency information [152]. Furthermore, these �ndings
have also been studied in a realistic task with a mobile robot, where prelim-
inary results suggested that it is feasible to teach devices under continuous
spaces following the proposed BMI paradigm [88].

Despite this thesis presented a deep analysis of the error potentials under
constrained conditions, it is still unclear what are the mechanisms underlying
the generation of these signals. In fact, there is still a debate on the �eld of
psychophysiology about whether the error-related negativity encodes a quan-
titative reward predictive error signal (RPE) or valence [41] (the di�erence
between expected and received outcome), or rather the absolute value of this
RPE [35]. According to some authors, the latter would imply that the ERN
actually encodes the surprisingness of an event. In the speci�c case of ErrPs,
several works have shown that this signal is also present under situations
where the percentage of errors is very high (40%− 50%) but with a decrease
in amplitude [47, 153]. In this thesis we showed that, during the beginning
of any run of the teaching paradigm, there is a high percentage of errors (up
to 70%) due to the device exploring the task space. Even so, the ErrP was
present and we were able to detect it online. After a certain number of ac-
tions, this percentage of errors decreased drastically to 10% when the device
learns the policy. Nonetheless, what would happen under situations where
there is always a large number of errors for a large amount of time? It could
happen that the user �nds the errors the expected outcome, being the correct
task execution an unexpected outcome. Some of these situations are present
when performing very demanding tasks, e.g. hitting a ball with a baseball
bat. Thus, designing and performing experiments would be necessary to
address this issue.

Even after understanding the relationship between surprise, expectance
and error potentials, there is still another open question linking error poten-
tials and cognitive neuroscience: To what extent are the error-related po-
tentials the same phenomenon that the error-related negativity? As stated
in the introduction, the error-related potentials are characterized by three
main peaks: N2, P3 and N4, whereas the ERN (and the FRN) is a single
component appearing at around the same timing that the N2. There has
been works comparing the N2, the FRN and ERN under similar experimen-
tal conditions [111], but what about the other ErrP components? In order
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to answer this question, a reasonable option would be to perform experi-
ments with simultaneous recordings of EEG and fMRI [154] to determine
the underlying generation of the ErrPs. In fact, a recent work showed the
e�ectiveness of this experiment to understand the brain mechanisms gener-
ating the feedback-related negativity [35].

The presented paradigm strongly relies on the fact that a feedback signal
can be extracted from the brain. In the instances presented throughout the
thesis, this feedback encoded binary information about the actions wellness.
However, no study was performed to understand up to what point the feed-
back given by the users encode the wellness about long term goals. Recently,
Knox et al. suggested that the feedback given by humans could actually
be encoded as the expected return in the long term, rather than a binary
reward of the current action performed by a device [155�157]. In principle,
this �nding should be the case also for the error-related potentials. However,
more studies would be needed to address this question.

From the point of view of brain-machine interfaces, the future work is
associated to further study the proposed paradigm. This framework has
shown how the users are able to teach a device by giving feedback. Thus, the
device can adapt to the user's preferences. But, at the same time, the user is
implicitly adapting to the device since this device provides a visual feedback
of the task to the user. This term is usually known as co-adaptation between
user and machine, and it is well known in the non-invasive and invasive
BMI community [72, 100, 145], demonstrating that co-adaptation improves
the �nal decoding performance that can be obtained with the BMI decoder.
Despite a co-adaptation seemed to be present in the proposed paradigm, this
characteristic has not be explicitly addressed. In which sense and how the
user adapts to the machine (e.g. how the ErrPs vary in shape throughout
time) is still an open question that needs to be studied.

In the introduction, a broad de�nition of the proposed paradigm was
given (i.e. use cognitive signals and plug them into intelligent device con-
trollers). On the contrary, throughout this thesis only a speci�c instance
of this paradigm (error potentials + reinforcement learning) has been pre-
sented. Thus, the proposed paradigm has room for many improvements as
there are many other instances of this paradigm that could be either work
independently or together with the proposed instance. In non-invasive BMIs,
there are several cognitive signals that could help in improving the paradigm,
ranging from anticipatory signals encoding goal direction or movement in-
tention [22]; to user's (c)overt attention to increase or decrease the device
learning rate [113, 158]. For instance, thanks to the combination of goal-
oriented cognitive signals (such as the target or hand direction), it would be
possible to use the proposed system as a complementary paradigm �tting the
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approach into a two-step system: �rst decide where to go, then how to go.
On the other hand, in principle this paradigm could also work using inva-
sive BMIs, where richer information can be extracted from the brain. Several
works have already reported that it is possible to measure single-neuron �ring
rates associated to error processing, and encoding it as rewards [101]. The
use of invasive approaches would allow to obtain more informative rewards,
that could be use to �nely adapt the device to the user's preferences.

Finally, this paradigm was only tested in laboratory conditions. Thus, the
natural next step of this thesis would be to apply the paradigm in realistic ex-
periments so as to demonstrate its feasibility to work in out-of-the-lab scenar-
ios. Indeed, the last two chapters solved two key problems of the paradigm:
the calibration phase and the large amount of learning time. Thanks to these
improvements, several experiments could be designed involving daily-life ac-
tivities, such as drinking from a glass using a neuroprosthetic device. In the
given example, this robotic device would learn from a set of optimal policies
and adapt to the user's preferences without the need of any calibration phase.
Once these experiments were designed, the proposed approach would be one
step nearer to restore or replace the motor execution of limbs as a way of
improving the daily life with real patients. Thus, performing experiments
with patients would be the last and more demanding improvement of the
current thesis.
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