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A B S T R A C T

Among the geophysical surface processes, mud and debris flows show one of the most complex and challenging
behaviour for scientists and modellers. These flows consist of highly-unsteady gravity-driven movements of
water-sediment mixtures with non-Newtonian rheology where the solid concentration could be about 40%–
80% of the flow volume and which occur along steep and irregular terrains. Furthermore, the appearance
of dynamic pressures in the fluid filling the intergranular pores increases the complexity and dominates the
behaviour of the fluidized water-sediment material, leading to the appearance of significant density gradients
during the movement. The dynamic pressure in the pore-fluid changes the effective normal stress within
the mobilized material, affecting the frictional shear stress between grains and leading to the solid phase
dilation/contraction. This must be properly accounted for when developing realistic models for water-sediment
surface flows. In this work, a novel physically-based approach for modelling multi-grain dense-packed water-
sediment flows is presented. A novel closure formulation for the pressure distribution within the pore-fluid
during the movement of dense-packed water-sediment materials has been derived. This closure allows to relate
the appearance of shear-induced dynamic pore pressures to the contractive/dilative behaviour of the solid
aggregate. The resultant system of depth-averaged conservation laws includes continuity of the density-variable
water-sediment material and the different solid classes transported in the flow, as well as the linear momentum
equation for the fluidized bulk material, and it is solved using a well-balanced fully-coupled Finite Volume
(FV) method. The resultant simulation tool is faced to synthetic, laboratory and real-scale benchmark cases
to test its robustness and accuracy. The presence of dynamic pore pressures within the pore-fluid leads to the
appearance of a deviatoric contribution to the solid flux, which causes the shear-induced separation of the
solid and liquid phases and sustains the flow mobility for long distances, as it has been observed in real mud
and debris events.
1. Introduction

Landslides, debris aggregates, natural muds or mining tailings are
considered highly solid-laden fluids in which the solid phase can rep-
resent almost 80% of the volume and hence the bulk density of the
water-solid aggregate can be even twice or three times the water
density (Iverson, 1997). The origin, shape and size of the transported
solids might vary from large boulders and tree stumps to very fine
materials, such as fine clay or heavy metal particles. In debris flows,
coarse sediment fractions (sand, gravels and pebbles) predominate in
the solid phase whereas fine fractions, such as silt and clay, are typical
for mud flows. Furthermore, debris flows show plasticity index lower
than 5% and, contrarily, muddy slurries are usually characterized by
plasticity index larger than 5% (Hungr et al., 2001). The bulk water-
sediment mixture in motion is denoted as fluidized material all over the
text, regardless the nature, size and concentration of the solid phase.
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The presence of the solid phase, especially the fine sediments as silt
or clay, affects the rheological behaviour of the fluidized material. The
fluid filling the pores is composed of water and fine solid particles.
This intergranular fluid shows a critical yield strength which allows
that coarse solid particles, such as gravels or even pebbles, can be
suspended indefinitely in the flow column (Pierson, 2005; Calhoun and
Clague, 2018). Apparently, this fine material mixed in the pore-fluid
is responsible for the development and maintenance of an excess of
pressure in the intergranular fluid during the triggering and motion
of mud/debris flows, causing the actual liquefaction of the aggregate
material (Rodine and Johnson, 1976; Jakob and Hungr, 2005). Further-
more, typically the front of the debris wave contains most of the coarse
materials whereas the tail shows a more liquefied composition. Usually,
mud and debris flows mobilize from landslides due to an excess of in-
tergranular water, and this segregation of the material occurred during
vailable online 24 April 2024
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the movement is mainly caused by the dilation of the solid aggregate.
The transformation from solid to fluid behaviour is recognized in
saturated, contractive granular soils due to liquefaction (Sassa, 1984).
However, dominantly dilative transformation from solid landslide to
fluid debris flow has been reported (Fleming et al., 1989). Therefore,
the transformations from a contractive/dilative ‘‘solid like’’ material to
a fully developed mud/debris flow is a complex process where multiple
simultaneous phenomena occur but the persistence of pore-pressure
excess seems to be responsible for the dilation and segregation of the
coarser solid material, and for sustaining the movement of fluidized
material for long distances (McArdell et al., 2007; Iverson et al., 2010).

The mathematical modelling of this kind of surface flows of water-
sediment mixtures is a challenging topic due to the high uncertainty
associated to the varying solid-fluid composition. In the last decade,
an important effort has been paid to get insight into the physical be-
haviour of this kind of multi-phase continuum materials at small-scales,
specially for the study of submerged granular currents and debris flows.
Novel approaches have been proposed to model the complex 3D inter-
action and evolution of liquid and solid elements into the bulk material
motion, including coupled Lattice-Boltzmann and Discrete Element
methods for grain-scale interaction problems (Tsigginos et al., 2022;
Ding and Xu, 2018), Material Point Method applied to laboratory-
scale partially-saturated granular flows (Baumgarten and Kamrin, 2019;
Vicari et al., 2022) and continuum two-phase modelling for the failure
of submerged granular columns (Lee, 2021; Montellà et al., 2023). Spe-
cial mention should be given to recent advances in the mathematical
modelling of the particle segregation and diffusion in fluid-saturated
granular shear flows (Zhou et al., 2020; Cui et al., 2020, 2021, 2022).
However, most of the published models tested against large-scale events
use depth-averaged approximations derived from the vertical inte-
gration of the Navier–Stokes equations (Wu, 2007; Martínez-Aranda,
2021). At this point, it is worth distinguishing between the term ‘‘pore-
pressure excess’’ or ’’dynamic pore-pore-pressure’’, which denotes the
pressure deviation from its hydrostatic counterpart due to the rela-
tive movement between the solid and liquid phases, and the classical
‘‘non-hydrostatic contribution’’ in shallow water models due to the
vertical flow acceleration (Castro-Orgaz and Hager, 2017), which is not
considered in this work.

The simplest depth-averaged models assume a constant and uniform
bulk density (single-phase approach), neglecting the changing compo-
sition of the fluidized material in the shallow-flow equations (Brufau
et al., 2000; Murillo and García-Navarro, 2012; Luna et al., 2012;
Ouyang et al., 2015a,b). Some of these single-phase models solely
account for the effects of the pore-pressure in the frictional basal
resistance using the Terzaghi’s effective stress principle and including a
uniform/constant ratio between the total normal stress and the pressure
in the intergranular fluid (Hungr and McDougall, 2009; Martínez-
Aranda et al., 2021; Denlinger and Iverson, 2001; Lancaster et al.,
2003; Iverson and Denlinger, 2001; Pastor et al., 2015). A more realistic
approach considers that this pore-pressure ratio can be time dependent
due to the vertical self-consolidation of the aggregated material (Que-
cedo et al., 2004; Dewals et al., 2011). More complicated approaches
solve the system of depth-averaged equations for the mass and momen-
tum conservation of the liquid and solid phases separately (two-phase
models) and include coupling terms between the phases (Meng and
Wang, 2016; Li et al., 2018; Greco et al., 2019; Hess et al., 2019). The-
oretically, these models should capture automatically the solid phase
dilation phenomenon but there exists a high uncertainty in the estima-
tion of the coupling terms between phases. Moreover, the appearance of
numerical issues, mainly related to the loss of the hyperbolic character
of the system, have hindered the application of these complete two-
phase models to realistic debris flow problems (Pitman and Le, 2005;
Kowalski, 2008; Pelanti et al., 2008).

An alternative approach consists of encapsulating the differences
2

on the solid and fluid phases transport into the horizontal gradients
of the depth-averaged composition. A few versions of this mixing-
phase approach have been reported in last years (Fraccarollo et al.,
2003; Armanini et al., 2009; Xia et al., 2018; Martínez-Aranda et al.,
2021). George and Iverson (George and Iverson, 2011, 2014; Iverson
and George, 2014) proposed a complete mixing-phase model solving
the bulk mass and momentum equations of the fluidized material, sup-
plemented with the mass conservation equation for the solid material.
This model requires non-conservative coupling source terms between
the bulk mass and the solid mass equations accounting by the dilation
of solid volume fraction, which depends directly on the evolution of the
pore-pressure within the flow column. The George and Iverson model
provides a quadratic expression for the vertical distribution of pore-
pressure along the flow column but it requires an additional convective
equation for solving the basal pore-fluid pressure, including dissipation
and forcing terms. Kowalski and McElwaine (2013) derived a mixing-
phase model which includes the density changes into the convective
fluxes by algebraically coupling the pore-pressure component of the
stresses and the solid volume fraction, also differencing if there exists
net solid phase settling or entrainment. Recently, Meyrat et al. (2022)
proposed a mixing-layer approach computing the transport of one
aggregated water-solid bottom layer plus a free fluid layer above it.
This model coupled both layers using non-conservative source terms
which account for the dilation of the aggregated solid skeleton in
the bottom layer. Although the mixing-phase mathematical approach
involves important simplifications of the flow physics, it shows a stable
and controllable behaviour which represents a key feature to develop
efficient predictive models suitable for realistic large-scale events.

In this work, we propose a novel mixing-layer approach for mod-
elling the generation and persistence of shear-induced dynamic pres-
sure within the pore-fluid in realistic water-sediment surface flows,
and its influence on the dilation of the solid material and the flow
mobility. This paper is structured as follow: Section 2 is devoted to the
derivation and analysis of the governing equations for water-sediment
flow, including dynamic pore-pressure; in Section 3 the depth-averaged
2D system of conservation laws for multi-grain mud and debris flows
is introduced; the Finite-Volume numerical scheme used to solve the
system is reported in Section 4; in Section 5 the proposed model is
used to simulate synthetic test, laboratory experiments and real-scale
mud/debris flows involving contractive and dilative behaviours; finally,
the main conclusions are drawn in Section 6. As extra content, three
appendix have been attached: the detailed derivation of the dilation
term for the depth-averaged solid transport equation is included in
Appendix A; further details on the conservative Finite Volume method
are provided in Appendix B; and the fully-coupled Riemann solver
used to compute the intercell flux for the numerical resolution of the
equations is detailed in Appendix C.

2. Governing equations

In surface water-sediment flows, both solid and liquid phases are
considered incompressible. However, the bulk fluidized material shows
space and time variations depending on the local solid phase volumetric
concentration, i.e. it behaves as a ‘‘compressible’’ material with variable
density. Therefore, the local bulk density and the bulk linear momen-
tum of the saturated fluidized material can be separated into phase
contributions as

𝜌 = 𝜌𝑤(1 − 𝜙) + 𝜌𝑠𝜙 (1a)

𝜌𝐮 = 𝜌𝑤(1 − 𝜙)𝐮𝐰 + 𝜌𝑠𝜙𝐮𝐬 (1b)

being 𝜌𝑠 and 𝜌𝑤 the density of the solid particles and the intergranular
fluid respectively, 𝜙 the local volumetric solid concentration and (1−𝜙)
the volumetric liquid phase fraction, i.e. the porosity of the sediment
aggregate. The vector 𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is the local bulk velocity of the
fluidized material in the global 3D reference system (𝑥, 𝑦, 𝑧), with 𝐮𝐰 =
(𝑢𝑤𝑥, 𝑢𝑤𝑦, 𝑢𝑤𝑧) the velocity of the pore-fluid and 𝐮𝐬 = (𝑢𝑠𝑥, 𝑢𝑠𝑦, 𝑢𝑠𝑧) the

velocity of the sediment particles.
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The movement of the water-sediment fluidized material is governed
by the time-averaged Navier–Stokes equations for a density-variable
water-sediment mixture flow, written as
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0 (2a)
𝜕𝜌𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = 𝜌𝐠 − ∇𝑝 + ∇ ⋅ 𝝉 (2b)

where 𝐠 = (0, 0,−𝑔)𝑇 , is the gravity vector, 𝑝 denotes the pressure, 𝝉
accounts for the bulk deviatoric shear stress tensor, ∇ =

( 𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕
𝜕𝑧

)

is the 3D vector differential operator, and the time-averaged transport
equations for the solid and liquid phases, expressed as
𝜕𝜙
𝜕𝑡

+ ∇ ⋅ (𝜙𝐮𝐬) = 0 (3a)

𝜕(1 − 𝜙)
𝜕𝑡

+ ∇ ⋅
[

(1 − 𝜙)𝐮𝐰
]

= 0 (3b)

On the one hand, the convective solid transport in (3a) can be
elated to the bulk transport of the fluidized material as

⋅ (𝜙𝐮𝐬) = ∇ ⋅ (𝜙𝐮) − ∇ ⋅
[

𝜙(𝐮 − 𝐮𝐬)
]

(4)

where ∇ ⋅
[

𝜙(𝐮− 𝐮𝐬)
]

represents the local deviation of the solid velocity
with respect to the bulk flow velocity. This term is usually neglected in
both suspended sediment transport and quasi-single phase models but,
using (1a) and (1b), it can be rewritten as

∇ ⋅
[

𝜙(𝐮 − 𝐮𝐬)
]

= ∇ ⋅
(

𝜙
𝜌𝑤
𝜌
𝐪𝐰

)

(5)

being 𝐪𝐰 = (1 − 𝜙)(𝐮𝐰 − 𝐮𝐬) the volumetric flux of intergranular fluid
er unit area of bulk material, also referred to as specific discharge
r Darcy’s velocity in porous media theory (Haitjema and Anderson,
016).

On the other hand, we define the local dilation rate of the solid
hase as the divergence of the solid particle velocity ∇ ⋅ 𝐮𝐬, which,

operating (3a), can be related to the temporal evolution of the local
solid volumetric concentration 𝜙 as

⋅ 𝐮𝐬 = − 1
𝜙
D𝜙
D𝑡

(6)

eing D𝜙∕D𝑡 = 𝜕𝜙∕𝜕𝑡+𝐮𝐬 ⋅∇𝜙 the material time derivative of the volu-
etric solid concentration (Iverson and George, 2014). Hence positive
ilation rate is associated to porosity creation states, i.e. intergranu-
ar pores enlarge and the solid concentration reduces, and contrarily
egative dilation rate is related to the contraction of the solid phase,
.e. increasing solid concentrations.

Furthermore, adding (3a) and (3b) allows to associate the local
ilation rate to the intergranular fluid flux per unit flow area, i.e the
pecific discharge 𝐪𝐰, as

⋅ 𝐮𝐬 = ∇ ⋅
[

(1 − 𝜙)(𝐮𝐬 − 𝐮𝐰)
]

= −∇ ⋅ 𝐪𝐰 (7)

ndicating that porosity creation (positive dilation rate) is accompanied
y a local influx of fluid which fills the enlarging pores and, contrarily,
orosity contraction (negative dilation rate) is balanced by a local
ntergranular fluid outflux, leading to a denser packed aggregated
aterial (Fig. 1).

In order to derive a reliable mathematical closure linking the dif-
erential movements of the intergranular fluid and the solid aggre-
ate, we combine two well-established concepts from the granular-flow
echanics and the porous media theory:

(a) Neglecting the self-consolidation due to normal stresses, the
granular-flow mechanics allows to estimate the shear-induced
dilation rate of the solid aggregate under quasi-steady shear
states as

∇ ⋅ 𝐮 = �̇� tan𝜓 (8)
3

𝐬 t
where �̇� is the macroscopic shear rate and 𝜓 accounts for the
shear-induced dilatancy, a state-dependent property of the gran-
ular aggregate usually expressed as an angle (−𝜋∕2 ≤ 𝜓 ≤
𝜋∕2).
Considering a steady shear state, i.e. �̇� = const ≠ 0, if the dila-
tancy angle 𝜓 is assumed constant in time, the closure relation
(8) causes the solid dilation rate remains also constant in time
and hence (6) leads to the unbounded evolution of the solid
concentration. This simple theoretical test demonstrates that
the shear-induced dilatancy angle 𝜓 cannot be constant and it
should evolve with the local conditions of the fluidized material.
Forterre and Pouliquen (2008) and Pailha and Pouliquen (2009)
proposed a linear dependency of the dilatancy tan𝜓 on the bulk
solid concentration 𝜙 as

tan𝜓 = 𝑘1(𝜙 − 𝜙𝑒𝑞) (9)

being 𝑘1 a positive tuning coefficient, which should be cali-
brated for each specific application, and 𝜙𝑒𝑞 an equilibrium value
of the bulk solid concentration that balances the local stress
and the shear rate. The equilibrium concentration 𝜙𝑒𝑞 reduces
monotonically as the normal stress decreases and the shear rate
increases (Iverson and George, 2014; Martínez-Aranda, 2021).
For the sake of simplicity, in this work 𝜙𝑒𝑞 is considered con-
stant, but to include its dependence with the local stress state is
retained as a future model improvement.

(b) Porous media theory relates the liquid-phase movement within
the granular aggregate to the local gradients of pore-fluid pres-
sure. Estimation of the intergranular fluid pressure distribution
along the flow column (𝑧) is a challenging task for modelling
multi-phase surface flows (Iverson, 1997; Iverson and Vallance,
2001; Jakob and Hungr, 2005), although its effects on the re-
duction of the effective shear stress between solid grains seem
to be demonstrated (Major and Iverson, 1999; Berti et al., 1999;
Berti and Simoni, 2005; McArdell et al., 2007; Iverson et al.,
2011). The intergranular fluid pressure can be separated into its
hydrostatic part 𝑝ℎ(𝑧) = 𝜌𝑤𝑔(𝑧𝑠−𝑧), with 𝑧𝑠 the flow free surface
level, plus a local pressure excess 𝑝𝑒(𝑧) (also known as dynamic
pore pressure), hence (𝑧) = 𝑝ℎ(𝑧) + 𝑝𝑒(𝑧). Following Denlinger
and Iverson (2001), Lancaster et al. (2003), Iverson et al. (2010)
and Ouyang et al. (2015a), the dynamic component 𝑝𝑒(𝑧) is here
expressed as a fraction of the hydrostatic pressure as

𝑝𝑒(𝑧) = 𝜌𝑤𝑔(𝑧𝑠 − 𝑧) (10)

being  positive for total pore pressure higher than the hydro-
static and negative when total pore pressure is lower than the
hydrostatic value. The Darcy Law relates the specific discharge
to the dynamic pressure gradients within the intergranular fluid
as

𝐪𝐰 = −𝜅
𝜇
∇𝑝𝑒 (11)

where 𝜅 is the hydraulic permeability of the solid aggregate
and 𝜇 denotes the molecular viscosity of the intergranular fluid.
Therefore, the Darcy Law indicates that, in a porous medium,
the intergranular fluid moves from high-pressure to low-pressure
zones with a relative velocity which depends on both the perme-
ability of the medium and the fluid viscosity (Whitaker, 1986).

Then, replacing (8) and (11) into (7) leads to

�̇� tan𝜓 = ∇ ⋅
(

𝜅
𝜇
∇𝑝𝑒

)

(12)

and assuming the shallow-flow scaling 𝐻 ≪ 𝐿, being 𝐻 the charac-
eristic flow depth and 𝐿 the characteristic horizontal length, allows to
ssess 𝜕2∕𝜕𝑥2 ≪ 𝜕2∕𝜕𝑧2, since 𝜕2∕𝜕𝑥2 scales with 1∕𝐿2 whereas 𝜕2∕𝜕𝑧2
cales with 1∕𝐻2 (Iverson and George, 2014). Therefore, the derivative
erms along the horizontal 𝑥- and 𝑦-coordinates can be neglected.
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Fig. 1. Balance of dilation rate and intergranular fluid flux for (left) porosity creation states and (right) solid-phase contraction states.
Furthermore, assuming that local 𝜅∕𝜇 value remains constant along the
vertical direction allows (12) to reduce to the second-order equation

𝜕2𝑝𝑒
𝜕𝑧2

=
𝜇
𝜅
�̇� tan𝜓 = const (13)

and integrating twice along the flow thickness leads to

𝑝𝑒(𝑧) =
𝜇
2𝜅
�̇� tan𝜓(𝑧 − 𝑧𝑏)2 + 𝐴(𝑧 − 𝑧𝑏) + 𝐵 (14)

being 𝐴 and 𝐵 two integration constants.
To impose boundary conditions to (14), we assume that the inter-

granular fluid pressure takes the atmospheric value at the free surface,
i.e. 𝑝𝑒(𝑧𝑠) = 0. Furthermore, we impose that the dynamic pressure
at the bed surface can be expressed as 𝑝𝑒(𝑧𝑏) = 𝑏𝜌𝑤𝑔ℎ, being 𝑏 a
dimensionless factor to express the basal dynamic pressure as a fraction
of the hydrostatic value. Moreover, we consider that the solid and fluid
velocities at the bed level are equal (non-penetration condition) and
hence the specific discharge 𝐪𝐰 throughout the bed surface is null.
Therefore, using (11), we can also impose 𝜕𝑝𝑒∕𝜕𝑧 = 0 at the bed surface
𝑧𝑏. Assuming these three boundary conditions, the dynamic component
of the intergranular fluid pressure along the flow column must satisfy
the quadratic expression

𝑝𝑒(𝑧) =
𝜇
2𝜅
�̇� tan𝜓(𝑧 − 𝑧𝑏)2 + 𝑏𝜌𝑤𝑔ℎ (15)

being �̇� = 2|𝐮|∕ℎ the depth-averaged macroscopic shear rate and 𝑏 the
basal dynamic pore-pressure parameter

𝑏 =
−𝜇ℎ
2𝜅𝜌𝑤𝑔

�̇� tan𝜓 (16)

This closure (15)–(16) indicates that the dynamic pressure within
the intergranular fluid depends on both the flow shear rate and the
dilatancy state of the solid aggregate. We can analyse the behaviour of
the pore-fluid pressure separately:

• First, considering a constant shear rate in the dilatancy rela-
tionship (9), the pore pressure distribution along the vertical
coordinate is hydrostatic for 𝜙 = 𝜙𝑒𝑞 , representing the null
dilatancy state. Then, as the actual solid concentration 𝜙 diverges
from the equilibrium lithostatic value 𝜙𝑒𝑞 , the pore pressure
distribution separates from the hydrostatic linear profile since the
positive/negative dilatancy tan𝜓 is enhanced. Solid concentra-
tions larger than the equilibrium 𝜙𝑒𝑞 lead to pore pressures lower
than the hydrostatic value, i.e. the granular behaviour dominates
the flow, whereas solid concentrations lower than 𝜙𝑒𝑞 cause the
pore pressure to increase over the hydrostatic value, leading to a
more liquefied behaviour.
4

Fig. 2. Normalized pore-fluid pressure ∗(𝑧) along the normalized flow depth 𝑧∗ as a
function of the solid volumetric concentration 𝜙, for a constant shearing-state setting
𝜇 = 10−3 Pa ⋅ s, 𝜅 = 10−8 m2 ℎ = 10m, �̇� = 6 s−1, 𝜙𝑒𝑞 = 0.6, 𝑘1 = 0.05, 𝜌𝑤 = 1000 kgm−3 and
𝑔 = 9.81ms−2.

Fig. 2 shows the evolution of the normalized pore-fluid pressure
∗(𝑧) = (𝑧)∕(𝜌𝑤𝑔ℎ) along the normalized flow depth 𝑧∗ = (𝑧 −
𝑧𝑏)∕ℎ as the solid concentration 𝜙 diverges from the 𝜙𝑒𝑞 value,
considering constant shear rate. Positive values of the dynamic
pore pressure 𝑝𝑒, i.e. an intergranular fluid pressure  higher than
the hydrostatic 𝑝ℎ, denote negative dilatancy states tan𝜓 < 0
and hence to porosity destruction processes. Contrarily, negative
value of the dynamic pore pressure 𝑝𝑒, i.e. an intergranular fluid
pressure  lower than the hydrostatic 𝑝ℎ, are related to positive
dilatancy states tan𝜓 > 0 and porosity creation processes.

• Second, (15) also indicates that the behaviour of the dynamic
pore pressure depends on the shear rate. Fig. 3 depicts the evo-
lution of the normalized intergranular fluid pressure ∗(𝑧) along
the normalized flow depth 𝑧∗ as the depth-averaged shear rate �̇�
increases, considering both positive and negative dilatancy states.
Note that the pore pressure is fully hydrostatic for the quiescent
lithostatic case �̇� = 0. For constant positive dilatancy tan𝜓 > 0,
the higher the shear rate, the larger the negative deviation of the
pore pressure (𝑧) respect to the hydrostatic profile. Contrarily,
under a constant negative dilatancy state tan𝜓 < 0, higher shear
rates lead to larger positive deviations of the pore pressure (𝑧)
respect to the hydrostatic linear profile.

The pore-pressure distribution along the vertical coordinate (𝑧) =
𝑝 (𝑧) + 𝑝 (𝑧), estimated using the closure relations (15)–(16), follows
ℎ 𝑒
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Fig. 3. Normalized pore-fluid pressure ∗(𝑧) along the normalized flow depth 𝑧∗ as a
function of the shearing-state, setting 𝜇 = 10−3 Pa ⋅ s, 𝜅 = 10−8 m2, ℎ = 10m, 𝑘1 = 0.05,
𝜌𝑤 = 1000 kgm−3, 𝑔 = 9.81ms−2, 𝜙𝑒𝑞 = 0.6 and assuming a constant solid concentration
𝜙 = 0.55 (negative dilatancy)–𝜙 = 0.65 (positive dilatancy).

the same behaviour as that reported by George and Iverson (George
and Iverson, 2011; Iverson and George, 2014). The closure relation-
ship (15)–(16) allows to estimate the dynamic pore pressure 𝑝𝑒(𝑧)
directly from the local flow features and the dilatancy state of the
solid aggregate. Contrarily, George and Iverson reported an almost
similar quadratic expression for the evolution of the pore-pressure (𝑧)
along the flow column, but their model required to solve an additional
advection–diffusion equation for the basal pore-fluid pressure value,
including dominant source terms, which increased the model complex-
ity and uncertainty. Furthermore, Bouchut et al. (2016) proposed also
an explicit expression for the excess of pore pressure depending on
the dilatancy angle 𝜓 of the solid phase and the shear strain �̇� of the
fluidized material. Bouchut et al. derived this dynamic contribution to
the hydrostatic pressure starting from the normal velocity differences
between the solid and liquid phases. They achieved an expression
which included terms depending on the depth-averaged horizontal
gradients of the normal velocity differences but with the same quadratic
behaviour as that reported here, ranging from a maximum basal dy-
namic pore-pressure value to a negligible pressure at the mixture top
surface. Pailha and Pouliquen (2009) also reported a relationship for
the excess of pore pressure depending on the dilatancy angle 𝜓 and the
shear strain �̇� for submerged granular avalanches which is a particular
case of the Bouchut et al. model.

2.1. Stress partition

The conventional stress partitioning in surface flow involving dense-
packed water-sediment aggregates considers that the 3 × 3 bulk de-
viatoric stress tensor 𝝉 in the momentum equation (2b) is composed
of a frictional tensor 𝝉𝒇 , accounting for the shear stress between solid
particles, plus a viscous tensor 𝝉𝒗, which accounts for the shear stress
in the intergranular fluid (Pastor et al., 2015). Therefore 𝝉 = 𝝉𝒇 + 𝝉𝒗
and, assuming a simple-shear flow within the column, it can be written
as

𝝉 =
⎛

⎜

⎜

⎝

0 0 (𝜏𝑓 + 𝜏𝑣) �̂�𝑥
0 0 (𝜏𝑓 + 𝜏𝑣) �̂�𝑦

(𝜏𝑓 + 𝜏𝑣) �̂�𝑥 (𝜏𝑓 + 𝜏𝑣) �̂�𝑦 0

⎞

⎟

⎟

⎠

(17)

where (�̂�𝑥, �̂�𝑦) denotes the components of the flow direction unit vector
along the horizontal 𝑥- and 𝑦-coordinates. The shear stress within the
pore fluid 𝜏𝑣(𝑧) is usually assumed pure viscous or turbulent for free-
surface mud/debris flows, whereas the frictional component 𝜏𝑓 (𝑧) is
here estimated by the Coulomb-Terzaghi relation as

𝜏𝑓 (𝑧) = 𝜎𝑒(𝑧) tan 𝛿𝑓 =
[

𝜎(𝑧) − (𝑧)
]

tan 𝛿𝑓 (18)

where 𝜎𝑒(𝑧) = 𝜎(𝑧) − (𝑧) is the effective normal stress within the
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solid aggregate, 𝜎(𝑧) denotes the total normal stress along the vertical
coordinate and 𝛿𝑓 is the effective friction angle of solid grains under
non-zero dilatancy (Jakob and Hungr, 2005). Estimating the vertical
profile of total normal stress as 𝜎(𝑧) = 𝜌𝑔(𝑧𝑠 − 𝑧), the shear stress
distribution along the flow column could be expressed as

𝜏(𝑧) =
[

(𝜌 − 𝜌𝑤)𝑔(𝑧𝑠 − 𝑧) − 𝑝𝑒(𝑧)
]

tan 𝛿𝑓 + 𝜏𝑣(𝑧) (19)

and hence the dynamic pressure in the intergranular fluid 𝑝𝑒(𝑧) changes
the frictional shear stress between the sediment grains, affecting the
macroscopic mobility of the fluidized material and the flow runout
distance. It is worth noting that, when the pore pressure exceeds
the total normal stress, i.e (𝑧) ≥ 𝜎(𝑧), the effective normal stress
𝜎𝑒(𝑧) becomes negligible and the material is fully-liquefied with null
frictional shear stress 𝜏𝑓 = 0.

More complex approaches can be found in literature to include the
effects of the solid phase dilation/contraction in the frictional shear
stress between grains. A widespread approach is based on considering
an additional contribution to the grain shear stress, hence the effective
state-dependent friction coefficient is expressed as tan 𝛿𝑒𝑓𝑓 = tan 𝛿𝑓 +
tan𝜓 (Pailha and Pouliquen, 2009; Bouchut et al., 2016; Heyman et al.,
2017). An alternative approach is to consider the dilatancy effects as
changes in the total solid-phase pressure, which depends on the visco-
elasto-plastic response of the material and takes into account the plastic
effects due to particle rearrangements (Montellà et al., 2021; Mari et al.,
2014; Lee, 2021).

3. 2D depth-averaged model for water-sediment shallow flows

The 2D model for density-variable water-sediment shallow flows
involves the integration along the flow depth of the 3D equations for
mass and linear momentum conservation of the bulk fluidized material,
(2a) and (2b). This leads to the continuity equation for the fluidized
mass
𝜕(𝜌ℎ)
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝜌ℎ𝑢
)

+ 𝜕
𝜕𝑦

(

𝜌ℎ𝑣
)

= 0 (20)

and the conservation laws for the bulk linear momentum along the 𝑥-
and 𝑦-coordinates, expressed as

𝜕(𝜌ℎ𝑢)
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝜌ℎ𝑢2 + 1
2
𝑔𝜌ℎ2

)

+ 𝜕
𝜕𝑦

(

𝜌ℎ𝑢 𝑣
)

= −𝑔𝜌ℎ
𝜕𝑧𝑏
𝜕𝑥

− 𝜏𝑏𝑥 (21a)

𝜕(𝜌ℎ𝑣)
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝜌ℎ𝑢 𝑣
)

+ 𝜕
𝜕𝑦

(

𝜌ℎ𝑣2 + 1
2
𝑔𝜌ℎ2

)

= −𝑔𝜌ℎ
𝜕𝑧𝑏
𝜕𝑦

− 𝜏𝑏𝑦 (21b)

being ℎ the vertical flow depth, 𝜌 the depth-averaged bulk density,
(𝑢, 𝑣) the depth-averaged flow velocity along the 𝑥- and 𝑦-coordinates,
𝑧𝑏 the bed layer elevation, 𝑔 the gravity acceleration and (𝜏𝑏𝑥, 𝜏𝑏𝑦) the
components of the basal resistance 𝝉𝒃 along the 𝑥- and 𝑦-coordinates.
Note that, for the sake of simplicity, the mass exchange between the
flow and the bed layer has been neglected in (20), as well as both the
dispersive and the turbulent depth-averaged stress terms in the momen-
tum equations (21). The detailed integration of these three conservation
laws along the flow depth can be found in Martínez-Aranda (2021).

In the work, the basal resistance 𝝉𝒃 is expressed as

𝝉𝒃 = (𝜏𝑏𝑥, 𝜏𝑏𝑦) = 𝜏𝑏 𝐧𝐮 (22)

being 𝜏𝑏 the basal shear stress, 𝐧𝐮 = (𝑛𝑢𝑥, 𝑛𝑢𝑦) = (𝑢, 𝑣)∕ the velocity
unit vector and  =

√

𝑢2 + 𝑣2 the modulus of the depth-averaged bulk
velocity.

To close, different hybrid formulations have been proposed for
the depth-averaged basal resistance term. Based on (19), the most
widespread strategy for granular turbulent flows, where the frictional
stress between grains dominates at low shear rates, consists of the
combination of the grain frictional stress and the turbulent Manning
roughness approach to estimate the total basal resistance as

𝜏 = 𝜏 + 𝜌𝑔
𝑛2𝑏  2

(23)
𝑏 𝑓𝑏 ℎ1∕3
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where 𝜏𝑓𝑏 is the frictional yield strength at the basal surface and 𝑛𝑏
the Manning roughness parameter (O’Brien et al., 1993; Juez et al.,
2014; Xia et al., 2018; Li et al., 2018; Martínez-Aranda et al., 2021).
The frictional yield strength 𝜏𝑓𝑏 is estimated using a Coulomb-Terzaghi
expression relating the grain frictional shear stress to the effective
normal stress at the basal surface as

𝜏𝑓𝑏 =
(

𝜌𝑔ℎ − 𝑏
)

tan 𝛿𝑓 (24)

where 𝛿𝑓 is the frictional angle for the solid phase and 𝑏 is the
pore-fluid pressure at the bed surface, written as

𝑏 ≡ (𝑧𝑏) = (1 + 𝑏)𝜌𝑤𝑔ℎ (25)

being 𝑏 the basal dynamic pore-pressure factor (16). It is worth
mentioning that, for the limiting case where the basal dynamic pore-
pressure factor satisfies 𝑏 ≥ (𝜌∕𝜌𝑤 − 1), the pore pressure 𝑏 balances
the total normal stress at the bed surface, i.e. 𝜌𝑔ℎ, hence the material
is fully-liquefied and the frictional resistance at the bed becomes null.

The solid phase is composed by multiple sediment classes with
different characteristic particle diameter 𝑑𝑠𝑝, solid density 𝜌𝑠𝑝 and
volumetric concentration 𝜙𝑝. Using (3a), (4) and (5), the 3D time-
averaged mass conservation equation for the 𝑝th sediment class can be
written as
𝜕𝜙𝑝
𝜕𝑡

+ ∇ ⋅ (𝜙𝑝𝐮) = ∇ ⋅
(

𝜙𝑝
𝜌𝑤
𝜌
𝐪𝐰

)

(26)

where the source term on the right hand side represents the drag effects
exerted by the specific discharge 𝐪𝐰 on the convective solid flux. The
transport equation (26) is also integrated along the entire flow column
using the Leibnitz’s rule (Martínez-Aranda, 2021), leading to

𝜕(ℎ𝜙𝑝)
𝜕𝑡

+ 𝜕
𝜕𝑥

(

ℎ𝑢𝜙𝑝
)

+ 𝜕
𝜕𝑦

(

ℎ𝑣𝜙𝑝
)

= ∫

𝑧𝑠

𝑧𝑏
∇ ⋅

(

𝜙𝑝
𝜌𝑤
𝜌
𝐪𝐰

)

d𝑧 (27)

where 𝜙𝑝 is the depth-averaged concentration of the 𝑝th sediment class
along the flow column.

The non-conservative source term on the right hand side of Eq. (27)
is associated to the porosity increase/decrease caused by the shear-
induced dilation of the solid aggregate during the movement of the
fluidized material (Iverson and George, 2014). Integrating this dilation
drag term along the flow depth requires to impose boundary conditions
for the specific discharge 𝐪𝐰 at the fixed bed surface boundary 𝑧𝑏
and at the flow free surface 𝑧𝑠, but allows to transform this non-
conservative source term into a conservative deviatoric contribution to
the convective solid flux depending on the pore-fluid pressure gradient.
The resulting depth-averaged transport equation for the 𝑝th sediment
class (27) reads

𝜕(ℎ𝜙𝑝)
𝜕𝑡

+ 𝜕
𝜕𝑥

(

ℎ𝑢𝜙𝑝 + 𝑥
𝜌𝑤
𝜌
𝜙𝑝

)

+ 𝜕
𝜕𝑦

(

ℎ𝑣𝜙𝑝 + 𝑦
𝜌𝑤
𝜌
𝜙𝑝

)

= 0 (28)

where 𝑥 and 𝑦 are the deviatoric dilation fluxes along the 𝑥- and
𝑦-coordinates, respectively, expressed as

𝑥 = 𝜅
𝜇

(

𝜕𝑒
𝜕𝑥

+ 𝑏𝜌𝑤𝑔ℎ
𝜕𝑧𝑏
𝜕𝑥

)

𝑦 =
𝜅
𝜇

(

𝜕𝑒
𝜕𝑦

+ 𝑏𝜌𝑤𝑔ℎ
𝜕𝑧𝑏
𝜕𝑦

)

(29)

being 𝑏 = −𝜇ℎ
2𝜅𝜌𝑤𝑔

�̇� tan𝜓 the basal dynamic pore pressure parameter

(16) and 𝑒 = −𝜇ℎ3
3𝜅 �̇� tan𝜓 the integral of the dynamic pore pressure

𝑝𝑒(𝑧) along the flow column (A.6). Details on the derivation of this solid
dilation flux can be found in Appendix A.

Therefore, the depth-averaged bulk density of the fluidized material
can be related to the multi-grain solid concentration as

𝜌 = 𝜌𝑤 +
NS
∑

𝑝=1
(𝜌𝑠𝑝 − 𝜌𝑤)𝜙𝑝 = 𝜌𝑤(1 + 𝜒) = 𝜌𝑤𝑟 (30)

where 𝜒 =
∑NS
𝑝=1(𝑟𝑠𝑝−1)𝜙𝑝 is referred to as the depth-averaged buoyant

solid concentration, being 𝑟𝑠𝑝 = 𝜌𝑠𝑝∕𝜌𝑤 the normalized solid density
for the 𝑝th sediment class, NS is the number of sediment classes and
6

Fig. 4. Main variables involved in the density-variable water-sediment flow.

𝑟 = 1+𝜒 is the normalized bulk density of the fluidized material along
the flow column. Fig. 4 shows a sketch with the main physical variables
involved in the governing equations used for modelling density-variable
water-sediment flows over fixed beds.

The resulting 2D system of equations is composed by four conserva-
tion laws accounting for the bulk mass (20), the bulk linear momentum
(21a)–(21b) along the 𝑥- and 𝑦-coordinates respectively, and the multi-
grain solid mass combining (28) and (30). The system can be recast in
vector form as
𝜕𝐔
𝜕𝑡

+ ∇ ⋅ 𝐄(𝐔) + ∇ ⋅ 𝐋(𝐔) = 𝐒𝐛(𝐔) + 𝐒𝝉 (𝐔) (31)

where 𝐔 is the vector of conservative variables

𝐔 =
(

𝑟ℎ, 𝑟ℎ𝑢, 𝑟ℎ𝑣, ℎ𝜒
)𝑇 (32)

and 𝐄(𝐔) =
[

𝐅(𝐔),𝐆(𝐔)
]

are the convective fluxes along the 𝑥- and
𝑦-coordinates

𝐅(𝐔) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ𝑢
𝑟ℎ𝑢2 + 1

2 𝑔𝑟ℎ
2

𝑟ℎ𝑢 𝑣
ℎ𝑢 𝜒

⎞

⎟

⎟

⎟

⎟

⎠

𝐆(𝐔) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ𝑣
𝑟ℎ𝑢 𝑣

𝑟ℎ𝑣2 + 1
2 𝑔𝑟ℎ

2

ℎ𝑣𝜒

⎞

⎟

⎟

⎟

⎟

⎠

(33)

being ∇ =
( 𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦

)

. It is worth noting that the normalized bulk density
𝑟, the flow depth ℎ, the flow velocity components (𝑢, 𝑣), and the bulk
buoyant solid concentration 𝜒 are coupled in the conservative variables
and conservative fluxes on the left hand side of (31).

The term 𝐋(𝐔) =
[

𝐋𝐱(𝐔),𝐋𝐲(𝐔)
]

involves the deviatoric solid flux
caused by the shear-induced dilation of the sediment phase

𝐋𝐱(𝐔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

𝑥
𝜒
𝑟

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝐋𝐲(𝐔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

𝑦
𝜒
𝑟

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(34)

being (𝑥,𝑦) the dilation-induced deviatoric flux (29) along the 𝑥- and
𝑦-coordinate respectively.

The vector 𝐒𝐛(𝐔) denotes the momentum source term associated
to the pressure force variation on the bed interface, whereas the vec-
tor 𝐒𝝉 (𝐔) accounts for the momentum dissipation due to the basal
resistance term, written as

𝐒𝐛(𝐔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
−𝑔𝑟ℎ 𝜕𝑧𝑏𝜕𝑥
−𝑔𝑟ℎ 𝜕𝑧𝑏𝜕𝑦

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝐒𝝉 (𝐔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
− 𝜏𝑏
𝜌𝑤
𝑛𝑢𝑥

− 𝜏𝑏
𝜌𝑤
𝑛𝑢𝑦

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(35)

where 𝜏𝑏 is the frictional-turbulent basal shear stress (23). It is worth
noting that this model is specially designed for highly transient flows
of sediment-laden non-Newtonian materials with noticeable density
gradients, as occurs in real-scale densely-packed mud and debris flows

(Martínez-Aranda et al., 2021).
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̃

Fig. 5. Computational cells in unstructured meshes.

4. Finite volume method

In this section, the derivation of a Finite Volume (FV) numerical
scheme for 2D density-variable shallow flow is summarized. System
(31) is non-linear, time dependent, contains momentum source terms
and it belongs to the hyperbolic class. For the sake of clarity, the
upper bar over the depth-averaged variables is suppressed from now
on. Following the FV method, the spatial domain is discretized in
computational cells with an arbitrary number of edges, creating a fixed-
in-time computational mesh. Then, assuming piecewise uniform flow
variables at each cell and applying the Gauss theorem to the flux term,
system (31) is integrated in each cell 𝛺𝑖 as

d
d𝑡 ∫𝛺𝑖

𝐔d𝛺 +
NE
∑

𝑘=1
(𝐄 ⋅ 𝐧)𝑘 𝑙𝑘 =∫𝛺𝑖

𝐒𝐛(𝐔)d𝛺 + ∫𝛺𝑖
𝐒𝝉 (𝐔)d𝛺

−
NE
∑

𝑘=1
(𝐋 ⋅ 𝐧)𝑘 𝑙𝑘

(36)

being (𝐄 ⋅ 𝐧)𝑘 the normal conservative flux throughout the 𝑘th edge,
𝐧𝑘 and 𝑙𝑘 the corresponding outward unit normal vector and the edge
length, respectively, and NE the number of edges for the 𝑖 cell (Fig. 5),
which could be arbitrary.

At each edge, the local coordinates are defined following the normal
𝐧𝑘 = (𝑛𝑥, 𝑛𝑦)𝑘 and tangential 𝐭𝑘 = (−𝑛𝑦, 𝑛𝑥)𝑘 unit vectors, and the
system (36) is integrated ensuring that the rotation invariant property
is satisfied for all terms, including the non-Newtonian bed shear re-
sistance (Godlewski and Raviart, 1996; Toro, 1997; Martínez-Aranda
et al., 2022). Then, assuming a piecewise uniform value of the conser-
vative variables 𝐔 for the 𝑖 cell at each time 𝑡 = 𝑡𝑛 and using first-order
explicit temporal integration, the value of the conservative variables 𝐔
can be updated to the next time 𝑡 = 𝑡𝑛+1 as

𝐔𝑛+1𝑖 = 𝐔𝑛𝑖 −
𝛥𝑡
𝐴𝑖

NE
∑

𝑘=1
𝐑−𝟏
𝑘  ↓

𝑘 𝑙𝑘 (37)

being 𝐴𝑖 the discrete cell area, 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 the time step and 𝐑−𝟏
𝑘 the

inverse of the 4 × 4 rotation matrix 𝐑𝑘 at the 𝑘th cell edge. The vector
 ↓
𝑘 denotes the normal explicit upwind flux through the 𝑘th cell edge

 ↓
𝑘 = 𝑭 ↓−

𝑘 + 𝐋↓−
𝐧𝑘 (38)

including the augmented flux 𝑭 ↓−
𝑘 , consisting of the conservative edge

fluxes plus the bed-pressure contribution plus the basal resistance split
term, supplemented by the deviatoric dilation-related contribution to
the solid flux 𝐋↓−

𝐧𝑘 . Further details on the derivation of the Finite
Volume (FV) method for unstructured meshes, satisfying the rotation
invariant property for arbitrary number-of-edges cells, can be found in
Appendix B.
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4.1. Flux computation and flow features reconstruction

In this work, the augmented upwind flux 𝑭 ↓−
𝑘 is computed using

the approximate Riemann problem (RP) theory and a first-order Roe’s
solver for density-variable shallow flows. Details on the flux computa-
tion have been extensively reported in Martínez-Aranda et al. (2020),
Martínez-Aranda (2021) and Martínez-Aranda et al. (2021). For the
sake of completeness, a summary of the flux solver is included in
Appendix C. Therefore, 𝑭 ↓−

𝑘 at the 𝑘th cell edge is computed as

𝑭 ↓−
𝑘 = 𝐅(�̂�𝑛𝑖 ) +

∑

𝑚−

[

(𝜆𝑚𝛼𝑚 − 𝛽𝑚 − 𝜎𝑚) �̃�𝑚
]𝑛
𝑘 (39)

where the vector 𝐅(�̂�𝑛𝑖 ) denotes the homogeneous normal fluxes, being
�̂�𝑛𝑖 = 𝐑𝑘𝐔𝑛𝑖 the conservative variables expressed in local reference
system of the 𝑘th cell edge. The terms 𝜆𝑚,𝑘 are the wave celerities at
the edge, i.e. the eigenvalues of the Jacobian matrix of the RP, (�̃�𝑚)𝑘 are
the eigenvectors of the RP, 𝛼𝑚,𝑘 denote the wave strengths accounting
for the discontinuity on the conservative variables, 𝛽𝑚,𝑘 are the source
strengths which include the integrated bed pressure through the cell
edge and the coefficients 𝜎𝑚,𝑘 are the source strengths accounting for
the split basal resistance contribution at the cell edge. The subscript
𝑚− under the sums indicate that only the waves travelling inward the
𝑖 cell are considered, leading to the upwind computation of the flux at
the edge, whereas superscripts ̃ indicate edge-averaged quantities of
the variables.

The deviatoric solid dilation contribution to the intercell flux at the
𝑘th edge, 𝐋↓−

𝐧𝑘 , is computed using a first-order upwind approximation
as

𝐋↓−
𝐧𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0

̃𝑛𝑘
(𝜒
𝑟

)𝑛

{𝑢𝑝𝑤}

⎞

⎟

⎟

⎟

⎟

⎠

with ∶

{

{𝑢𝑝𝑤} = 𝑖 if  {1}↓
𝑘 ≥ 0

{𝑢𝑝𝑤} = 𝑗 if  {1}↓
𝑘 < 0

(40)

being ̃𝑛𝑘 the edge-averaged value of the deviatoric dilation-relation
contribution at the 𝑘th cell edge, computed as

̃𝑛𝑘 =
[

𝜅
𝜇

(

𝛥𝑒
𝑑𝑛

+ ̃𝑏𝜌𝑤𝑔ℎ̃
𝛥𝑧𝑏
𝑑𝑛

)]

𝑘
(41)

with 𝛥𝑒 and 𝛥𝑧𝑏 accounting for the discontinuity of the integrated
dynamic pore pressure and the bed level at the edge respectively, 𝑑𝑛
denoting the normal-distance between cell centres and the superscripts

indicating edge-averaged quantities of the variables. It is worth noting
that  {1}↓

𝑘 = 𝑭 {1}↓−
𝑘 = (𝑟ℎ𝑢𝑛)

↓
𝑘 represents the equilibrium bulk mass

flux through out the intercell edge, i.e. without dilation contribution.
Furthermore, the numerical method is able to deal with subcritical
and supercritical wet-dry fronts, ensuring robust conservation for the
solid and liquid phases and without requiring additional time step
restrictions (Martínez-Aranda et al., 2020).

The stability of the explicitly computed numerical solution is ad-
dressed by the dynamical limitation of the global time step using a
CFL condition (see Appendix C). The local time step allowed for each
𝑘 edge is estimated here assuming that the absolute maximum of the
eigenvalues 𝜆𝑚,𝑘 corresponds to the fastest wave celerity. Hence the
global time step 𝛥𝑡 is limited by the minimum of the local time steps,
i.e. the more restrictive instantaneous local flow features.

Finally, once the conservative variables have been updated to the
next time 𝐔𝑛+1𝑖 using (37), it is necessary to compute separately the
flow depth ℎ, bulk density 𝜌, depth-averaged velocity (𝑢, 𝑣) along 𝑥-
and 𝑦-coordinates and the solid concentration of each sediment class
𝜙𝑝 composing the fluidized material. The updated flow depth and bulk
density of the fluidized material can be directly calculated as

ℎ𝑛+1𝑖 = 𝐔{1}𝑛+1
𝑖 − 𝐔{4}𝑛+1

𝑖

𝜌𝑛+1𝑖 = 𝜌𝑤
𝐔{1}𝑛+1
𝑖
𝑛+1

(42)
ℎ𝑖
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being 𝐔{⋅}𝑛+1
𝑖 the {⋅}th component of the updated conservative variables

vector at each cell 𝐔𝑛+1𝑖 . The velocity field is directly computed as

𝑢𝑛+1𝑖 =
𝐔{2}𝑛+1
𝑖

𝐔{1}𝑛+1
𝑖

𝑣𝑛+1𝑖 =
𝐔{3}𝑛+1
𝑖

𝐔{1}𝑛+1
𝑖

(43)

4.2. Multi-grain solid phase updating

Furthermore, ensuring solid mass conservation in multi-grain water-
sediment flows requires that the volume fraction of each 𝑝th sediment
class, (ℎ𝜙𝑝)𝑖, must be updated separately as follows

(ℎ𝜙𝑝)𝑛+1𝑖 = (ℎ𝜙𝑝)𝑛𝑖 −
𝛥𝑡
𝐴𝑖

NE
∑

𝑘=1
(𝑠𝑝)

↓
𝑘 𝑙𝑘 (44)

where (𝑠𝑝)
↓
𝑘 is the upwind solid flux for the 𝑝th sediment class at the

𝑘th edge, computed as

(𝑠𝑝)
↓
𝑘 =

[

(𝑟ℎ𝑢𝑛)
↓
𝑘 + ̃𝑛𝑘

]

(𝜙𝑝
𝑟

)𝑛

{𝑢𝑝𝑤}

with ∶

{

{𝑢𝑝𝑤} = 𝑖 if (𝑟ℎ𝑢𝑛)
↓
𝑘 ≥ 0

{𝑢𝑝𝑤} = 𝑗 if (𝑟ℎ𝑢𝑛)
↓
𝑘 < 0

(45)

being (𝑟ℎ𝑢𝑛)
↓
𝑘 the intercell bulk mass flux throughout the 𝑘th cell edge.

Then the volumetric concentration of the 𝑝th sediment class in the flow
column at the next time step 𝑡 = 𝑡𝑛+1 is updated as

(𝜙𝑝)𝑛+1𝑖 =
(ℎ𝜙𝑝)𝑛+1𝑖

ℎ𝑛+1𝑖

(46)

It is worth noting that complex specific sediment-class processes,
such as the bed material exchange, the sediment settling or the solid
particle interactions, have been neglected in this work for the sake of
simplicity. Nevertheless, these terms could be included easily for each
sediment class as new source terms on the specific transport equation
(44).

5. Numerical tests

5.1. Test A: One-dimensional dambreak over steep-bed of a frictional fluid

The aim of this synthetic test is to assess the influence of the
shear-induced solid phase dilation on the flow dynamics. The one-
dimensional dambreak of a pure-frictional fluidized mass over a dry
steep 5% slope is simulated, being ℎ0 = 30.5m the initial depth of the
fluidized material for 0 ≤ 𝑥 ≤ 305m. This material consists of a mix
of clear water and one sediment class with density 𝜌𝑠 = 2518 kg∕m3

and initial volumetric concentration 𝜙 = 0.55, leading to a uniform
bulk density 𝜌 = 1835 kg∕m3. The characteristic diameter of the solid
particles is 𝑑𝑠 = 1 mm and the permeability of the solid aggregate
is estimated as 𝜅 = 10−8 m2 (Iverson and George, 2014). The density
and viscosity of the intergranular fluid are 𝜌𝑤 = 1000 kg∕m3 and
𝜇 = 10−3 Pa ⋅ s respectively. Considering the dilatancy formula (9),
the dilatancy constant is set to 𝑘1 = 0.1 and the equilibrium solid
concentration 𝜙𝑒𝑞 is varied to enable three different initial dilation
states, summarized as

Positive dilatancy: 𝜙𝑒𝑞 = 0.50 tan𝜓 > 0
Equilibrium state: 𝜙𝑒𝑞 = 0.55 tan𝜓 = 0
Negative dilatancy: 𝜙𝑒𝑞 = 0.60 tan𝜓 < 0

The basal resistance is here considered pure-frictional, hence 𝜏𝑏 =
𝜏𝑓𝑏 =

(

𝜌𝑔ℎ − 𝑏
)

tan 𝛿𝑓 (24) with the basal pore-pressure 𝑏 = (1 +
𝑏)𝜌𝑤𝑔ℎ, leading to

𝜏𝑏 = (𝑟 − 1 − 𝑏)𝜌𝑤𝑔ℎ tan 𝛿𝑓 (47)

being 𝑟 = 𝜌∕𝜌𝑤 the normalized bulk density and with a basal frictional
stability angle 𝛿𝑓 = 6◦. The spatial domain is discretized using a 2D
mesh width a single row of 104 square cells with 𝛥𝑥 = 0.5m, the final
8

Fig. 6. Test A – Temporal evolution of the flow free surface for the equilibrium state
tan𝜓 = 0.

Fig. 7. Test A – Runout at 𝑡 = 100 s for positive dilatancy tan𝜓 > 0, nil dilatancy
tan𝜓 = 0 and negative dilatancy tan𝜓 < 0 states.

time simulated is 𝑡 = 100 s and the CFL is set to 1. Fig. 6 shows the
temporal evolution of the flow free surface for the equilibrium state
tan𝜓 = 0 case.

First, the effects of the solid-phase dilation over the flow mobility
are assessed by neglecting the deviatoric term ̃𝑛𝑘 (41) in the intercell
solid flux (45), hence leading to a nil dilation flux contribution 𝐋↓−

𝐧𝑘 = 0
(40). This implies that the solid concentration in the flow remains con-
stant and uniform (𝜙 = 0.55 = const), as it is seen below, demonstrating
the well-balance behaviour of the model. Fig. 7 shows the runout
distance of the flow at 𝑡 = 100 s for the three material states considered.
For the equilibrium state, tan𝜓 = 0, the pore pressure is hydrostatic and
the frictional basal resistance reduces to 𝜏𝐻𝑠𝑡𝑏 = (𝜌 − 𝜌𝑤)𝑔ℎ tan 𝛿𝑓 .

Positive dilatancy states, tan𝜓 > 0, are related to a solid concen-
tration larger than the equilibrium value 𝜙𝑒𝑞 . Under this condition, the
pore pressure is smaller than the hydrostatic, leading to a negative basal
dynamic pore-pressure factor 𝑏 < 0 and increasing the frictional basal
resistance 𝜏𝑏 > 𝜏𝐻𝑠𝑡𝑏 . Therefore, solid concentrations larger than the
equilibrium value (dense packed mixtures) are associated to a lower
flow mobility (see Fig. 7). Contrarily, negative dilatancy states (tan𝜓 >
0) are associated to a solid concentration smaller than the equilibrium
value and pore pressures larger than the hydrostatic. Hence, for these
states, the basal pore pressure excess factor is positive 𝑏 > 0 and
reduces the frictional basal resistance hence 𝜏𝑏 < 𝜏𝐻𝑠𝑡𝑏 . Therefore, loose
packed mixtures (liquefied slurries) with concentrations lower than the
equilibrium value are related to larger runout distances (see Fig. 7).

Second, the effects of the shear-induced dilation on the solid phase
distribution within the flow is analysed. In this case, the frictional basal
resistance is considered always hydrostatic 𝜏𝑏 = 𝜏𝐻𝑠𝑡𝑏 in order to have
similar runout distances regardless of the dilation state. Fig. 8 depicts
the temporal evolution of the integrated dynamic pore-pressure 𝑒 and
the basal dynamic pore-pressure factor 𝑏 for the positive dilatancy
tan𝜓 > 0 simulation. Note that the lowest integrated pore-pressure
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Fig. 8. Test A – Temporal evolution of (left) the integrated pore pressure excess 𝑒 and (right) the basal pore pressure excess factor 𝑏 for positive dilatancy tan𝜓 > 0 states.
Fig. 9. Test A – Temporal evolution of (left) the integrated pore pressure excess 𝑒 and (right) the basal pore pressure excess factor 𝑏 for negative dilatancy tan𝜓 < 0 states.
excess 𝑒 corresponds to the centre region of the flow wave whereas
the lowest basal pore pressure excess factor 𝑏 are associated to the
flow head and tail regions.

Conversely, when the solid aggregate undergoes negative dilation
states with tan𝜓 < 0 (see Fig. 9), the highest integrated dynamic
pore pressure 𝑒 appears at the centre region of the flow, but it is
lower at the tail and head regions of the flow. The basal pore pressure
excess factor 𝑏 reaches its maximum at the wave front and decreases
progressively along the centre and tail of the dambreak wave.

It is worth noting that, regardless of the dilation state, the integrated
dynamic pore-pressure reaches its maximum values during the first
stages of the dambreak flow and relaxes progressively with time as the
flow moves downstream. Nevertheless, the basal dynamic pore-pressure
factor 𝑏 shows a more persistent behaviour but increases slightly as
the flow moves downstream. The spatial distribution of the solid phase
within the dambreak wave is a consequence of the balance between the
gradient of the integrated dynamic pore-pressure 𝜕𝑒

𝜕𝑥 and the contribu-
tion of the basal pressure excess 𝑏𝜌𝑤𝑔ℎ

𝜕𝑧𝑏
𝜕𝑥 , resulting in the deviatoric

dilation-related contribution to the solid flux ̃𝑛𝑘 (41). Fig. 10 shows
the solid phase distribution at 𝑡 = 100 s along the dambreak wave for
the positive dilation, negative dilation and equilibrium states.

For the equilibrium state, tan𝜓 = 0, the pore pressure is hydrostatic
and the solid particles move with the mixture velocity. There do not
exist differences between the solid and liquid phases and hence the
solid concentration remains constant, maintaining the initial uniform
9

value. When positive or negative dilation occur, pore pressure gradients
appear within the flow and hence the solid particles move with a
velocity different from the liquid phase velocity. Generally, the pore-
fluid flows from high pressure to low pressure zones. Therefore, the
sediment fraction in low pore pressure regions (𝜙 ≫ 𝜙𝑒𝑞) undergoes a
porosity creation process, decreasing the solid concentration in those
regions. Contrarily, high pressure regions (𝜙 ≪ 𝜙𝑒𝑞) suffer an outlet
liquid flow and the solid phase undergoes a contraction process, hence
increasing its concentration. Both dilation states lead to the bulk solid
concentration 𝜙 converging to the equilibrium value 𝜙𝑒𝑞 with time.

This simple reasoning explains the solid distribution shown in
Fig. 10, taking into account that this benchmark case is designed for
enhancing the dependence of the solid phase dilation on the gradients
of the integrated pore pressure 𝑒, following Eqs. (28)–(29). On the one
hand, for positive dilation states (𝜙 > 𝜙𝑒𝑞 and tan𝜓 > 0), the lowest
values of the integrated pore pressure 𝑒 appear at the centre region of
the wave (see Fig. 8) and cause the pore-fluid to migrate from the head
to the centre region. Therefore, the solid concentration at the centre
region slightly decreases (𝜙 → 𝜙𝑒𝑞), whereas the solid concentration at
the head undergoes a marked increase. Note that the slight decrease on
the solid concentration at the centre of the wave is balanced by a high
increment of the solid concentration in the head region due to the lower
flow depths at the wave front. This behaviour is a direct consequence
of the fully conservative character of the numerical method for the
solid and liquid phases. On the other hand, for negative dilation states
(𝜙 < 𝜙 and tan𝜓 < 0), the centre region of the wave shows a
𝑒𝑞
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Fig. 10. Test A – Spatial distribution of the solid concentration at 𝑡 = 100 s for positive dilatancy tan𝜓 > 0, equilibrium tan𝜓 = 0 and negative dilatancy tan𝜓 < 0 states.
Fig. 11. Test B – Sketch of the USGS debris dambreak experiments.
higher integrated pore pressure 𝑒 than the wave head (see Fig. 9).
This creates a pore-fluid outflow from the centre region to the wave
head. Consequently, the solid concentration slightly increases at the
centre zone (𝜙 → 𝜙𝑒𝑞), whereas it shows a remarkable decrease at the
head because of the lower flow depths at the wave front.

5.2. Test B: USGS debris dambreak over rigid steep bed

In this benchmark case, the proposed density-variable model includ-
ing the effects of the shear-induced solid phase dilation is validated
using data from large-scale experiments consisting of dambreak debris
flows over a steep fixed bed. The experiment was carried out in the
USGS large-scale debris-flow flume and data from two repetitions,
called run I (date 12/9/2006) and J (date 19/6/2007), were reported
by Iverson et al. (2011). The USGS debris-flow flume is a straight
rectangular concrete channel 95m long, 2m wide and 1.2m deep with
a vertical headgate placed 12.5m downstream the channel beginning,
which retains the static debris material until the experiment initial
time. Fig. 11 shows a schematic representation of the USGS debris-flow
flume for these fixed-bed experiments. All the longitudinal distances 𝑠
taken along the experimental flume floor are referred to the headgate
10
position. The channel had an 31◦ uniform slope until 𝑠 = 74m, where
the flume began to flatten following a catenary curve and evolving to
a 4◦ slope at 𝑠 = 82.5m. Then, the flume debouched onto a 15m long,
8m wide and 2.4◦ slope concrete runout surface.

The initial features of the debris aggregate were previously reported
in Iverson et al. (2010). The initial debris volume was 6m3, composed
by a fully saturated mixture of water and gravel, sand and mud grains
with 60% bulk solid concentration. For the sake of simplicity, a unique
bulk sediment class is considered here, with an equivalent characteristic
diameter 𝑑𝑠 = 6.9 mm and solid density 𝜌𝑠 = 2700 kg∕m3, leading to
an initially uniform bulk density 𝜌 = 2020 kg∕m3. Table 1 shows the
main parameters used in the simulations for characterizing the debris
mixture. The pore-fluid is considered clear water (𝜌𝑤 = 1000 kg∕m3

and 𝜇 = 0.001 Pa ⋅ s) and the uniform solid-aggregate permeability is
set to 𝜅 = 10−8 m2 (Iverson and George, 2014). In order to reduce the
number of setup parameters involved in the simulations, a constant
shearing-equilibrium concentration 𝜙𝑒𝑞 = 0.65 is considered. This value
is slightly higher than the actual initial solid concentration, since an
extra water amount was added to the debris mixture before the experi-
ment beginning, but lower than the lithostatic deposition concentration
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Table 1
Test B – Characteristic values used for the simulation setup.

Debris volume 6 m3

Initial solid concentration 𝜙0 0.60
Debris water content 40%
Bulk debris density 𝜌 2020 kg∕m3

Solid particles diameter 𝑑𝑠 6.9 mm
Solid density 𝜌𝑠 2700 kg∕m3

Shearing-equilibrium concentration 𝜙𝑒𝑞 0.65

Pore-fluid density 𝜌𝑤 1000 kg∕m3

Pore-fluid viscosity 𝜇 0.001 Pa ⋅ s
Porous media permeability 𝜅 10−8 m2

Table 2
Test B – Characteristic of the computational meshes used for the convergence analysis
and final runout distance.

Mesh Cell area Number of cells Comp. time Runout distance

Mesh 1 800 cm2 7132 2.23 s 82, 71 m
Mesh 2 400 cm2 14259 3.50 s 82, 61 m
Mesh 3 200 cm2 28388 5.12 s 82, 56 m
Mesh 4 100 cm2 57212 12.01 s 82, 56 m

𝜙𝑚𝑎𝑥 = 0.73 estimated with the Wu (2007) empirical relation for deposit
porosity.

In the experiments, once the headgate was opened, the debris
dambreak wave accelerated over the uniform-slope rigid bed region
of the flume until it reached the catenary-slope zone and the runout
surface where it stopped. For each run of the experiment, Iverson et al.
(2011) tracked the wave-front location during the flow advance using
image techniques and video frames. The wave-front velocity was also
measured between 𝑠 = 60m and 𝑠 = 70m from the video frames, as well
as the final runout distance after flow detention. Moreover, video files
of both experiments are available in https://pubs.usgs.gov/of/2007/
1315/.

The simulations are performed using an unstructured triangular
mesh, with CFL = 0.95, for a simulated time (25 s) enough to ensure
full detention at the runout surface. Following Li et al. (2018), the
basal resistance is modelled using the frictional–turbulent closure (23),
setting a frictional stability angle for the solid phase 𝛿𝑓 = 40◦ and
a Manning’s roughness parameter 𝑛𝑏 = 0.018 sm−1∕3 for the rigid
flume bed. Note that these values for the resistance estimation have
not been calibrated but directly taken from the original experimental
data (Iverson et al., 2010). First, a mesh convergence analysis is carried
out, setting the dilatancy tuning parameter 𝑘1 = 0 (i.e. tan𝜓 = 0) and
decreasing the averaged area of the computational cells from 800 cm2

to 100 cm2 progressively. Table 2 summarizes the characteristics of the
computational meshes, the computational effort required to perform
each simulation and the final runout distance predicted. Furthermore,
Fig. 12 depicts the flow depth profile along the steep channel at
different times for all the meshes used in the convergence analysis.
Both the flow evolution as the wave progresses downstream and the
final runout distance show low dependence on the mesh refinement.
Also, the model performance is almost 12 times faster-than-real-time
(FTRT) for the most coarse mesh and 2 times FTRT for the finest mesh.
From now on, the rest of simulations are performed using Mesh 3, with
𝐴 = 200 cm2 and almost 28400 triangular cells.

In order to analyse the influence of the shear-induced dynamic pore-
pressure on the flow mobility, the dilatancy tan𝜓 of the solid phase
is controlled by varying the tuning parameter 𝑘1 in the range 0 ≤
𝑘1 ≤ 0.15 (9). It is worth highlighting that 𝑘1 should be calibrated for
each case depending on the specific features of the water-solid mixture.
Fig. 13 shows the depth of the debris deposit after the flow detention
(𝑡 = 25 s). Note that the distances are expressed in the horizontal 𝑥-
coordinate. The red rectangle at 𝑥 ≈ 82m (𝑠 ≈ 93m) indicates the wave
front detention in the experimental runs. After the flow initialization,
11
Fig. 12. Test B – Deposit depth ℎ after the flow detention (𝑡 = 25 s) with Mesh 1
(𝐴 = 800 cm2), Mesh 2 (𝐴 = 400 cm2), Mesh 3 (𝐴 = 200 cm2) and Mesh 4 (𝐴 = 100 cm2).

the dambreak wave progresses downslope rapidly until it reaches the
runout surface, where it stops.

Analysing the model behaviour, the debris material undergoes in-
creasing shearing states as it accelerates over the steep slope. These
shearing states are associated to positive pore pressures throughout
the flow column, since the solid phase is initially under a negative
dilatancy state tan𝜓 < 0. This dynamic pore-pressure modifies the
basal resistance against the movement and induces the separation of
the solid and liquid phases. As the tuning parameter 𝑘1 is increased
from the equilibrium state 𝑘1 = 0 to the maximum dilation considered
(𝑘1 = 0.15), the mobility of the debris flow grows and leads to larger
runout distances. This enhanced mobility is explained by the reduction
of the frictional yield strength as the basal value of the positive dynamic
pore-pressure increases.

Fig. 14 shows the basal dynamic pore-pressure factor 𝑏 records as
the dambreak wave passes the probe section 𝑥 = 56.6m (𝑠 = 66m). First,
the recorded values of 𝑏 increase as the parameter 𝑘1 grows, i.e. as
the dilatancy tan𝜓 increases. However, the relation between the shear-
induced basal dynamic pore pressure and the hydrostatic basal pore
pressure (only related to the flow depth ℎ) is clearly non-linear and
non-monotonic, showing a relative hysteresis phenomenon regardless
of the value of the dilatancy parameter 𝑘1 > 0 considered.

Therefore, as the dilatancy tuning parameter 𝑘1 is increased, the
positive basal pore pressure excess factor 𝑏 also increases for equal
values of flow density, depth and velocity, reducing the effective nor-
mal stress 𝜎𝑒 at the bed-flow interface. This reduction of the effective
normal stress leads directly to the reduction of the basal frictional
yield strength 𝜏𝑓 and hence to lower basal resistance stresses against
the dambreak wave advance over the steep flume. Fig. 15–(a) depicts
the numerical wave-front location along the experimental channel as
time progresses, compared with experimental data. As the dilatancy
tuning parameter 𝑘1 is increased, the acceleration of the front advance
along the uniform-slope region of the flume also increases. Hence, the
numerical wave-front location tends to adapt to the observed data when
the shear-induced pore pressure is enhanced. Nevertheless, marked
differences with the laboratory data appear along the runout region,
probably due to the self-consolidation process of the fluidized material,
which is not considered in the model.

The velocity of the dambreak advance is clearly observed in Fig. 15–
(b), where the numerical wave-front velocity has been depicted against
the experimental data. Iverson et al. (2011) reported a unique front
velocity value at 60m < s < 70m of 12.5 m∕s for the experimental
run I and 7.1 m∕s for the experimental run J (grey rectangle) but the
velocity evolution can be derived from the experimental front location
data. Increasing the dilation state of the solid phase, i.e. increasing 𝑘1,
leads to a better prediction of the wave-front velocity compared with
those of the equilibrium state (tan𝜓 = 0) simulation. Note that for 𝑘1 ∈
[0.10, 0.15] the computed front velocity agrees with the experimental

https://pubs.usgs.gov/of/2007/1315/
https://pubs.usgs.gov/of/2007/1315/
https://pubs.usgs.gov/of/2007/1315/
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Fig. 13. Test B – 2D deposit depth ℎ after the flow detention (𝑡 = 25 s) with values of the dilatancy tuning parameter 𝑘1 = 0 (equilibrium), 𝑘1 = 0.05, 𝑘1 = 0.10 and 𝑘1 = 0.15
(maximum dilation).
Fig. 14. Test B – Basal dynamic pore-pressure factor 𝑏 at the probe section 𝑥 = 56.6m
(𝑠 = 66m) with values of the dilatancy tuning parameter 𝑘1 = 0 (equilibrium), 𝑘1 = 0.05,
𝑘1 = 0.10 and 𝑘1 = 0.15 (maximum dilation).

data all over the dambreak progression along the constrained channel
but differences arise for the flow detention at the catenary and runout
zones.

Fig. 16 shows the depth-averaged density distribution after the
flow detention at 𝑡 = 25 s. As the dilatancy tuning parameter 𝑘1 is
increased, the positive pore pressure excess also increases and leads to
the separation of the solid and liquid phases throughout the dambreak
wave. In the numerical simulations, as the dambreak progresses along
the constrained channel (𝑠 < 82.5m), a liquefied wave-head is predicted
with a lower solid concentration and high dynamic pore-pressure which
enhances the debris mobility. Once the main dambreak wave reaches
the runout surface, the velocity decreases and the induced pore pressure
12
Fig. 15. Test B – Temporal evolution of the dambreak wave-front: (a) Time vs. Location
and (b) Location vs. Velocity.
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Fig. 16. Test B – 2D deposit density ℎ after the flow detention (𝑡 = 25 s) with values of the dilatancy tuning parameter 𝑘1 = 0 (equilibrium), 𝑘1 = 0.05, 𝑘1 = 0.10 and 𝑘1 = 0.15
(maximum dilation).
excess dissipates at the flow head, increasing the frictional stresses in
the solid phase and stemming the wave-front finally. This liquefied
head becomes more marked as the dilatancy tuning parameter 𝑘1 is in-
creased and can be observed in the video recording of the experiments.

Nevertheless, although the main wave is stopped at the runout
surface, the movement of the material at the steep slope region contin-
ues generating rolling waves which reach progressively the detention
zone. Fig. 17 shows the cross-section averaged value of the basal
pore pressure excess factor 𝑏 at times 𝑡 = 6, 12, 15 and 18 s for
the simulation with dilatancy tuning parameter 𝑘1 = 0.15. The fully-
liquefied flow head is observed for 𝑡 = 6 s whereas the main wave
detention occurs at 𝑡 = 12 s approximately. Secondary rolling waves
associated to increments of the shear-induced basal pore pressure are
developed for 12 ≤ 𝑡 ≤ 22 along the steep slope and stop at the catenary
region and at the beginning of the runout surface, increasing the final
deposit head in these regions. These secondary rolling waves behind
the main flow front can also be observed in the video recording of
the experiments. This behaviour is known as surge dynamics and is
one of the mean features of the debris flows, mainly associated to the
appearance of non-uniform shear stresses along the debris flow.

5.3. Test C: Mine tailings dam failure in Brumadinho

We assess in this section the performance of the shear-induced
dilation model for simulating a real large-scale and highly unsteady
mud flow, including multiple sediment classes composing the fluidized
material. The real event occurred on January 25th, 2019, at 9 km
North-East of Brumadinho city (Minas Gerais, Brazil). A mine dam
containing iron waste tailings suffered a sudden catastrophic failure,
causing an extremely rapid mud flow which travelled downstream
more than 10 km. This catastrophic event caused more than 260 deaths,
13
Fig. 17. Test B – Longitudinal profile of the basal pore pressure excess factor 𝑏 at
times 𝑡 = 6, 12, 15 and 18 s for the simulation with dilatancy tuning parameter 𝑘1 = 0.15.

as well as massive environmental and economic losses. The mining
tailings inside the dam were 12 ⋅ 106 m3 approximately, with a height
of almost 80m near the contention dyke and covering a terrain area of
4.2 ⋅ 105 m2. The structural collapse of contention dike was complete in
less than 10 seconds and most of the mine tailings became a fluidized
material which flowed out the dam during the first 5 minutes after the
dike collapse. This material, highly loaded with heavy metal particles,
progressed downstream and created a high-speed large-height mud
wave which travelled 8.5 km downstream in less than 45 minutes,
reaching the Paraopeba River (see Fig. 18).

Tailings consisted of water, mineral sand (38%) and fine solids
(62%), including mineral silt-clay and heavy metals particles. Be-
fore the dam collapse, the water content in the tailings material
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Fig. 18. Test C – Map of the area affected by the mud wave after the dam failure. The mine tailings dam is at the north east and the Paraopeba river is located at the south
west.
was estimated around 50% by volume, with 24 kN∕m3 bulk specific
weight (Robertson et al., 2019). For these simulations, six different
solid classes (mineral sand, mineral silt, iron, aluminium, manganese
and titanium) are considered, satisfying the initial condition for the
bulk solid concentration 𝜙 =

∑NS
𝑝=1 𝜙𝑝 = 0.5. The permeability of

the solid aggregate was estimated as 𝜅 = 10−8 m2, the equilibrium
lithostatic concentration was set to 𝜙𝑒𝑞 = 0.65 and a dilatancy tuning
parameter 𝑘1 = 0.5 was considered. The effective friction angle for the
basal frictional shear stress was set to 𝛿𝑓 = 5◦, whereas a uniform
Manning roughness parameter 𝑛𝑏 = 0.065ms−1∕3 was estimated since
the previous land use downstream the dam was mainly forest and
agriculture. A spatial domain of almost 12 km2 was discretized using an
unstructured mesh with almost 0.6 millions triangular cells, refined at
the near-dam region. The duration of the simulated event was 3 hours
and the model performance ranged between 15 and 8 times FTRT,
depending on the selected dilation parameters.

First, the sensitivity of the model to the basal pore-pressure was
tested in terms of flow mobility. For the sake of simplicity, the dila-
tion of the solid phase was neglected in this set of simulations but
a uniform/constant value for the basal dynamic pore-pressure factor
𝑏 was set manually. The value of 𝑏 was increased gradually from
𝑏 = 0.9 (reduced pore-pressure effect on the basal resistance) to 𝑏 →
∞ corresponding to a fully-liquefied mixture which undergoes null
frictional shear stresses. Fig. 19 shows the location of the wave-front
downstream the dam as time progresses. The grey rectangle indicates
the observed time required by the mud wave to reach the Paraopeba
river 8.5 km downstream the dam. As the value of 𝑏 is increased, the
basal resistance term is reduced and the flow mobility is boosted. A
uniform/constant 𝑏 = 1.05 is required to achieve the same arriving
time interval to the Paraopeba River as it was observed during the
real event (32-47 min). For larger values of 𝑏 the fluidized material
shows even larger mobility, with an arrival time of 28 min for the
fully-liquefied case (dashed line).

Then, the dilation of the solid phase is included in a second set
of simulations, computing its effects on both the shear-induced pore-
pressure and the basal resistance. This second set of simulations aims
14
Fig. 19. Test C – Runout distance of the mud wave neglecting solid dilation and
depending on the (constant) basal dynamic pore-pressure factor 𝑏.

to test the sensitivity of the model to the intergranular fluid viscosity.
Fig. 20 shows the runout distance of the flow as time progresses for
different values of the pore-fluid viscosity between 𝜇 = 0.001 Pa ⋅ s
(clear water) and 𝜇 = 0.0025 Pa ⋅ s (low-plasticity muddy slurry). A
higher intergranular fluid viscosity leads to the development of larger
shear-induced dynamic pressures, reducing the frictional shear stress
between solid grains and hence increasing the mobility of the flow.
Considering a viscosity value twice the clear water viscosity, i.e. 𝜇 =
0.002 Pa ⋅ s, allows to predict the observed arrival time of the mud
wave to the Paraopeba river (32–47 min). However, in this case, the
wave-front advance along the valley thalweg is not as gradual as in
the above case with uniform/constant 𝑏 and several ’’stop & go’’
events can be observed in the numerical results. These ’’stop & go’’
events are mainly caused by the coupling of the shearing state and
the dynamic pore pressure when the shear-induced dilation of the solid
aggregate is considered. The arrival of secondary waves to the wave-
front zone, which is almost stopped, causes the appearance of dynamic
pore pressures and the reduction of the frictional shear stress between
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Fig. 20. Test C – Effects of the intergranular fluid viscosity on the runout distance of
the mud wave including solid dilation.

sediment grains, leading to the reactivation of the whole fluidized
material at the wave-front.

Fig. 21 shows the evolution of the mud wave for the case 𝜇 =
0.002 Pa ⋅ s at 5, 15, 30 and 45 minutes after the dam failure. The left
column shows the depth-averaged flow velocity, which can be larger
than 10 m∕s in some regions, especially at the first stages after the dam
failure. Note that, if a uniform/constant value of the basal dynamic
pore pressure factor 𝑏 is set and the dilatancy effects are neglected, the
front celerity decreases progressively as the wave moves downstream
(see Fig. 19). The pure Newtonian turbulent behaviour is here indicated
by the curve 𝑏 → ∞ and, as 𝑏 decreases, the frictional shear stress
grows and boosts the velocity reduction. Nevertheless, if the shear-
induced dilation of the solid phase is included into the model (see
Fig. 20), the flow mobility can be maintained at longer distances and
larger durations since the dynamic pressure in the intergranular fluid
is enhanced even far way downstream the initial dam location. These
persistent dynamic pressures in the pore-fluid have been observed in
real debris flow phenomena (McArdell et al., 2007). Focusing on the
flow behaviour at the region close the confluence with the Paraopeba
river (8.5 km downstream the dam), first the mud wave front almost
stops at 𝑡 ≈ 30min, but then it reactivates and increases its velocity
suddenly at 𝑡 ≈ 45min.

The right column in Fig. 21 shows the spatial distribution of the
basal dynamic pore-pressure factor 𝑏 at 5, 15, 30 and 45 minutes
after the dam failure. At zones with nil velocity, the pore-pressure is
purely hydrostatic, leading to lithostatic stresses in the flow column
and causing the basal pore-pressure factor 𝑏 = 0. Nevertheless, at
zones where the flow velocity is high, the fluidized material undergoes
large shear rates and important dynamic pore pressures, leading to
high values of the basal pore-pressure factor 𝑏. At the first stages
after the dam failure, high values of the basal dynamic pore-pressure
factor are computed for the head, centre and tail regions of the mud
flow. However, as the wave progresses downstream, the basal pore-
pressure at the head region of the mud wave starts to reduce, causing
higher frictional stresses and lower mobility (see 𝑏 distribution 30 and
45 minutes after the dam failure). Contrarily, the basal pore-pressure
factor 𝑏 at the wave centre/tail region remains high even 45 minutes
after the dam failure. In these regions, the material is fully-liquefied
during most of the mud wave movement and the basal resistance
associated to the frictional stress in the solid aggregate is almost null,
leading to a high flow mobility.

Furthermore, the dilation of the solid aggregate causes not only the
appearance of dynamic pore-pressured but also the separation of the
solid and liquid phases as the mud wave moves downstream. The left
column in Fig. 22 shows the computed height of the mud wave for the
case 𝜇 = 0.002 Pa ⋅ s at 5, 15, 30 and 45 minutes after the dam failure.
The total area that was affected by the mud wave has also been plotted
15
here for comparison (green polygon). The depth of the mud flow can be
up to 16m in some zones, even far way downstream the dam location,
indicating the destructive energy of this event. The agreement between
the observed affected area and the numerical results at the arrival time
𝑡 = 45min can be highlighted.

Finally, Fig. 22-right depicts computed spatial distribution of the
bulk solid phase concentration 𝜙 at the same times after the dam
failure. Initially, the solid concentration in the tailings inside the dam
is uniform, i.e. 𝜙 = 0.50, but a liquefied front appears in the mud
wave once the flow starts, with a bulk solid concentration around
𝜙 ≈ 0.40 (see 𝑡 = 5min). Then, as the mud wave moves downstream, the
solid material accumulates progressively at the wave-front due to the
dynamic pressure gradients within the intergranular fluid induced by
shearing of the solid aggregate. A highly concentrated front appears
as the mud wave progresses, with 𝜙 ≈ 0.70, leading to lower basal
pore-pressures and hence increasing the frictional resistance at the
wave-front (see 𝑡 = 30min and 𝑡 = 45min). Contrarily, the solid con-
centration at the wave-tail evolves to lower values, with 𝜙 ≈ 0.45–0.50,
indicating also a more liquefied behaviour (lower basal resistance) of
the flow at this zone. This separation process of the solid material
from the liquid phase has usually been observed in real mud/debris
flows (Jakob and Hungr, 2005) but it cannot be achieved by the
classical quasi-single phase models, which should compute constant
solid concentrations in this case.

6. Conclusions

This work is concerned with the mathematical and numerical mod-
elling of densely packed water-sediment surface flows, such as mud and
debris flows, where the fluidized material is composed by a heteroge-
neous mix of water and multiple solid phases, which moves rapidly
over complex steep topographies. These physical features increase the
complexity of the mathematical modelling for these kind of surface
flows. Among all this complexity, probably the most challenging and
unknown process is the development and persistence of high pressures
within the intergranular fluid filling the pores. When the solid particles
are transported throughout the entire flow column, the liquid and
solid phases might have different velocities and hence might lead to
the separation of the solid and liquid phases and the development of
dynamic pressures in the pore-fluid. In this paper, for the first time from
the authors knowledge, a closure relation for the shear-induced inter-
granular fluid pressure distribution during the movement of densely
packed solid–liquid mixtures has been obtained and analysed. This
pore pressure affects the effective normal stress along the flow column,
leading to a modification of the frictional shear stress between solid
particles respect to the hydrostatic condition and changing the basal
resistance, hence affecting the flow mobility. Moreover, using this new
pore pressure distribution, the effects of the sediment particles dilation
have been included into the depth-averaged solid transport equation,
leading to a novel formulation for the advective solid fluxes which
includes the shear-induced separation of the solid aggregate from the
pore liquid phase.

The resulting 2D shallow-type system of equations for contrac-
tive/dilative multi-grain water-sediment flows have been solved using a
Finite Volume (FV) method, supplemented with the upwind resolution
of the intercell fluxes using a fully-coupled augmented-Roe solver.
The proposed method ensures the robust and accurate computation of
the intercell fluxes for any type of steady and transient flow regime,
even involving highly transient density interfaces, as well as the well-
balanced behaviour of the solution in quiescent and steady states.
The effects of the shear-induced solid phase dilation on the pore-
fluid pressure have been also included into the intercell solid flux
by a deviatoric contribution. Two important differences arise here in
comparison with the classical quasi-single-phase approach: first, the
separation of the solid aggregate from the pore-fluid movement within
the flow is caused by a shear-induced deviatoric contribution to the
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Fig. 21. Test C – Temporal evolution of (left) the flow velocity  =
√

𝑢2 + 𝑣2 and (right) the computed basal dynamic pore-pressure factor 𝑏 at 5, 15, 30 and 45 minutes after
the dam failure with pore-fluid viscosity 𝜇 = 0.002 Pa ⋅ s.
solid flux at the edges which ensures the continuity equations of the
system maintain their conservative character; second, it is possible to
estimate a local value for the basal pore-pressure excess depending on
the mixture packed state. Therefore, under the same flow conditions,
dense packed mixtures are associated to a lower flow mobility whereas
liquefied slurries are related to larger runout distances.

The proposed model is faced to a synthetic test, the widespread
USGS debris dambreak experiments and the real-scale catastrophic
mining tailings dam failure occurred in Brumadinho (Brazil,2019). In
16
all these tests, the proposed approach reported physically-substantiated
results, approaching the behaviour observed in this kind of flows.
Especially, the model is able to replicate the separation of the solid
aggregate from the pore-fluid phase during the movement and the
persistence of high pressures within the pore-fluid. This sustains the
flow mobility far way from the initialization zone and increases the
runout distances. This novel mixing-layer model offers a promising
starting-point for the development of robust, accurate and efficient
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Fig. 22. Test C – Temporal evolution of (left) the computed flow depth ℎ and (right) the bulk solid concentration 𝜙 at 5, 15, 30 and 45 minutes after the dam failure with
pore-fluid viscosity 𝜇 = 0.002 Pa ⋅ s.
simulation tools for these complex geophysical surface flows, able to
be used in a predictive hazard system.
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Appendix A. Depth-integration of the dilation drag term on the
solid transport equation

In order to integrate the dilation drag term on the right hand side
of Eq. (27) along the flow depth, boundary conditions for the specific
discharge 𝐪𝐰 = (𝑞𝑤𝑥, 𝑞𝑤𝑦, 𝑞𝑤𝑧) must be imposed. At the fixed bed surface
oundary 𝑧𝑏 = 𝑧𝑏(𝑥, 𝑦), the solid grains and intergranular fluid move
ith the same velocity (non-penetration condition), leading to

𝑞𝑤𝑥)𝑏 = (𝑞𝑤𝑦)𝑏 = (𝑞𝑤𝑧)𝑏 = 0 (A.1)

whereas, at the flow free surface 𝑧𝑠, we assume the kinematic condition

(𝑞𝑤𝑥)𝑠
𝜕𝑧𝑠
𝜕𝑥

+ (𝑞𝑤𝑦)𝑠
𝜕𝑧𝑠
𝜕𝑦

− (𝑞𝑤𝑧)𝑠 = 0 (A.2)

implying a common free surface for both the solid and fluid phases
which move with the flow free surface 𝑧𝑠 = 𝑧𝑠(𝑡, 𝑥, 𝑦). Then, applying
the Leibnitz integration rule, imposing (A.1)–(A.2) and considering the
Darcy Law (11) to relate the specific discharge 𝐪𝐰 to the dynamic pore
pressure gradient ∇𝑝𝑒, the depth-averaged source term on the right
hand side term of (27) can be rewritten as

∫

𝑧𝑠

𝑧𝑏
∇ ⋅

(

𝜙𝑝
𝜌𝑤
𝜌
𝐪𝐰

)

d𝑧 = − 𝜕
𝜕𝑥 ∫

𝑧𝑠

𝑧𝑏

(

𝜙𝑝
𝜌𝑤
𝜌
𝜅
𝜇
𝜕𝑝𝑒
𝜕𝑥

)

d𝑧

− 𝜕
𝜕𝑦 ∫

𝑧𝑠

𝑧𝑏

(

𝜙𝑝
𝜌𝑤
𝜌
𝜅
𝜇
𝜕𝑝𝑒
𝜕𝑦

)

d𝑧
(A.3)

Applying again the Leibnitz rule to each term on the right hand side
f (A.3) and assuming the approximation 𝜙𝑝∕𝜌 = 𝜙𝑝∕𝜌, for the sake of

simplicity, leads to

∫

𝑧𝑠

𝑧𝑏

(

𝜙𝑝
𝜌𝑤
𝜌
𝜅
𝜇
𝜕𝑝𝑒
𝜕𝑥

)

d𝑧

= 𝜙𝑝
𝜌𝑤
𝜌
𝜅
𝜇

(

𝜕
𝜕𝑥 ∫

𝑧𝑠

𝑧𝑏
𝑝𝑒 d𝑧 − (𝑝𝑒)𝑠

𝜕𝑧𝑠
𝜕𝑥

+ (𝑝𝑒)𝑏
𝜕𝑧𝑏
𝜕𝑥

)

= 𝜙𝑝
𝜌𝑤
𝜌
𝑥 (A.4a)

∫

𝑧𝑠

𝑧𝑏

(

𝜙𝑝
𝜌𝑤
𝜌
𝜅
𝜇
𝜕𝑝𝑒
𝜕𝑦

)

d𝑧

= 𝜙𝑝
𝜌𝑤
𝜌
𝜅
𝜇

(

𝜕
𝜕𝑦 ∫

𝑧𝑠

𝑧𝑏
𝑝𝑒 d𝑧 − (𝑝𝑒)𝑠

𝜕𝑧𝑠
𝜕𝑦

+ (𝑝𝑒)𝑏
𝜕𝑧𝑏
𝜕𝑦

)

= 𝜙𝑝
𝜌𝑤
𝜌
𝑦 (A.4b)

here we have defined the deviatoric dilation fluxes along the 𝑥- and
-coordinates, 𝑥 and 𝑦 respectively, as

𝑥 = 𝜅
𝜇

(

𝜕𝑒
𝜕𝑥

+ 𝑏𝜌𝑤𝑔ℎ
𝜕𝑧𝑏
𝜕𝑥

)

𝑦 =
𝜅
𝜇

(

𝜕𝑒
𝜕𝑦

+ 𝑏𝜌𝑤𝑔ℎ
𝜕𝑧𝑏
𝜕𝑦

) (A.5)

being 𝑒 the integral of the dynamic pore pressure along the flow
column, written as

𝑒 ≡ ∫

𝑧𝑠

𝑧𝑏
𝑝𝑒 d𝑧 = −𝜇ℎ3

3𝜅
�̇� tan𝜓 (A.6)

and 𝑏𝜌𝑤𝑔ℎ the value of the dynamic pore pressure at the underlying
bed surface, with 𝑏 the basal dynamic pore pressure parameter defined
n (16).
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Note that using (A.4) allows to transform the non-conservative
dilation source term (A.3) for the 𝑝th sediment class into a conservative
deviatoric contribution (𝜙𝑝 𝜌𝑤∕𝜌𝑥, 𝜙𝑝 𝜌𝑤∕𝜌𝑦) to the convective solid
flux depending on the pore-fluid pressure gradient. Hence, the depth-
averaged solid phase transport equation for the 𝑝th sediment class (27)
finally reads

𝜕(ℎ𝜙𝑝)
𝜕𝑡

+ 𝜕
𝜕𝑥

(

ℎ𝑢𝜙𝑝 + 𝑥
𝜌𝑤
𝜌
𝜙𝑝

)

+ 𝜕
𝜕𝑦

(

ℎ𝑣𝜙𝑝 + 𝑦
𝜌𝑤
𝜌
𝜙𝑝

)

= 0 (A.7)

ppendix B. Finite volume method derivation for density-variable
hallow flows with solid dilation terms

To integrate the system (36) across the computational mesh, at
ach cell edge the local coordinates are defined following the normal
𝑘 = (𝑛𝑥, 𝑛𝑦)𝑘 and tangential 𝐭𝑘 = (−𝑛𝑦, 𝑛𝑥)𝑘 unit vectors to the

cell edge. On the left hand side of (36), also called homogeneous
part, the conservative flux matrix 𝐄(𝐔) satisfies the rotation invariant
property (Godlewski and Raviart, 1996; Toro, 1997) and hence

(𝐄 ⋅ 𝐧)𝑘 =
[

𝐅(𝐔) 𝑛𝑥 +𝐆(𝐔) 𝑛𝑦
]

𝑘 = 𝐑−𝟏
𝑘 𝐅(𝐑𝑘𝐔) (B.1)

where the 4 × 4 rotation matrix 𝐑𝑘 for the 𝑘th cell edge, and its inverse
matrix 𝐑−𝟏

𝑘 , are defined as

𝐑𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 𝑛𝑥 𝑛𝑦 0
0 −𝑛𝑦 𝑛𝑥 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠𝑘

𝐑−𝟏
𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 𝑛𝑥 −𝑛𝑦 0
0 𝑛𝑦 𝑛𝑥 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠𝑘

(B.2)

and 𝐑−𝟏
𝑘 denotes the inverse of the rotation matrix at the 𝑘th cell

edge. The set of local conservative variables �̂� ≡ 𝐑𝑘𝐔 and the local
homogeneous flux vector 𝐅(�̂�)𝑘 ≡ 𝐅(𝐑𝑘𝐔) at the cell edge are defined
as

�̂� ≡ 𝐑𝑘𝐔 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ
𝑟ℎ𝑢𝑛
𝑟ℎ𝑣𝑡
ℎ𝜒

⎞

⎟

⎟

⎟

⎟

⎠

𝐅(�̂�)𝑘 ≡ 𝐅(𝐑𝑘𝐔) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ𝑢𝑛
𝑟ℎ𝑢2𝑛 +

1
2 𝑔𝑟ℎ

2

𝑟ℎ𝑢𝑛𝑣𝑡
ℎ𝑢𝑛𝜒

⎞

⎟

⎟

⎟

⎟

⎠𝑘

(B.3)

where 𝑢𝑛 = 𝐮 ⋅ 𝐧 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 and 𝑣𝑡 = 𝐮 ⋅ 𝐭 = −𝑢𝑛𝑦 + 𝑣𝑛𝑥 are the flow
velocity components in the local edge-framework, referred to as normal
and shear velocity respectively.

In order to ensure a well-balanced formulation in steady flow
states, the homogeneous flux through the 𝑘th cell edge 𝐅(�̂�)𝑘 can be
augmented with the non-conservative contribution of both the bed-
pressure term 𝐒𝐛 and the basal resistance term 𝐒𝝉 (Castro et al., 2009;
Murillo and Navas-Montilla, 2016), discretized as

∫𝛺𝑖
𝐒𝐛(𝐔)d𝛺 =

NE
∑

𝑘=1
𝐑−𝟏
𝑘 𝐇(�̂�)𝑘 𝑙𝑘 (B.4a)

∫𝛺𝑖
𝐒𝝉 (𝐔)d𝛺 =

NE
∑

𝑘=1
𝐑−𝟏
𝑘 𝐓

(

�̂�
)

𝑘 𝑙𝑘 (B.4b)

here 𝐇(�̂�)𝑘 is the integrated bed pressure through the edge (Murillo
nd García-Navarro, 2010) and 𝐓(�̂�)𝑘 is the split contribution of the
ntegrated basal resistance to the momentum at the 𝑘th cell edge
Martínez-Aranda et al., 2022), computed as

(�̂�)𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0
−𝑔𝑟ℎ 𝛥𝑧𝑏

0
0

⎞

⎟

⎟

⎟

⎟

⎠𝑘

𝐓(�̂�)𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0
−
𝜏𝑏
𝜌𝑤

(𝛥𝑥 𝑛𝑢𝑥 + 𝛥𝑦 𝑛𝑢𝑦)

0
0

⎞

⎟

⎟

⎟

⎟

⎠

𝑘

(B.5)

being (𝛥𝑥, 𝛥𝑦) the discrete horizontal distance and 𝛥𝑧𝑏 the discrete bed
level difference between the 𝑖–𝑗 cell centres.

http://www.hydronia.com
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Using (B.1), (B.4a) and (B.4b), the integral Eq. (36) is expressed as

d
d𝑡 ∫𝛺𝑖

𝐔d𝛺 +
NE
∑

𝑘=1
𝐑−𝟏
𝑘 𝐅(�̂�)𝑘 𝑙𝑘 =

NE
∑

𝑘=1
𝐑−𝟏
𝑘

(

𝐇(�̂�) + 𝐓(�̂�)
)

𝑘
𝑙𝑘

−
NE
∑

𝑘=1
(𝐄 ⋅ 𝐧)𝑘 𝑙𝑘

(B.6)

allowing to define the augmented numerical flux 𝑭 (�̂�)𝑘 for the 𝑘th cell
edge as

𝑭 (�̂�)𝑘 =
[

𝐅(�̂�) −𝐇(�̂�) − 𝐓(�̂�)
]

𝑘
(B.7)

Furthermore, the term in (B.6) related to the solid-phase dila-
ion 𝐋(𝐔) (34) satisfies the rotation invariant property and hence this
eviatoric flux contribution can be expressed as

𝐄 ⋅ 𝐧)𝑘 =
[

𝐋𝐱(𝐔) 𝑛𝑥 + 𝐋𝐲(𝐔) 𝑛𝑦
]

𝑘 = 𝐑−𝟏
𝑘 𝐋𝐧(�̂�)𝑘 (B.8)

ith

𝐧(�̂�)𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0

𝑛
𝜒
𝑟

⎞

⎟

⎟

⎟

⎟

⎠𝑘

(B.9)

eing 𝑛𝑘 the dilation-induced deviatoric flux throughout the 𝑘th cell
edge, expressed as

𝑛𝑘 =
[

𝜅
𝜇

(

𝜕𝑒
𝜕�̂�

+ 𝑏𝜌𝑤𝑔ℎ
𝜕𝑧𝑏
𝜕�̂�

)]

𝑘
(B.10)

where �̂� is the local unit normal vector to the cell edge. Using the
augmented flux (B.7) and the deviatoric dilation flux (B.9), the integral
Eq. (B.6) can be finally rewritten as

d
d𝑡 ∫𝛺𝑖

𝐔d𝛺 = −
NE
∑

𝑘=1
𝐑−𝟏
𝑘

(

𝑭 (�̂�) + 𝐋𝐧(�̂�)
)

𝑘 𝑙𝑘 (B.11)

Assuming piecewise uniform conservative variables 𝐔 for the 𝑖 cell
at each time 𝑡 = 𝑡𝑛 and using first-order explicit temporal integration,
the value of the conservative variables 𝐔 at the cells can be updated as

𝐔𝑛+1𝑖 = 𝐔𝑛𝑖 −
𝛥𝑡
𝐴𝑖

NE
∑

𝑘=1
𝐑−𝟏
𝑘  ↓

𝑘 𝑙𝑘 (B.12)

eing 𝐴𝑖 the discrete cell area, 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 the time step and  ↓
𝑘 =

↓−
𝑘 + 𝐋↓−

𝐧𝑘 the explicit (upwind) flux throughout the 𝑘th cell edge,
ncluding the augmented flux (conservative fluxes plus bed-pressure
ontribution plus basal resistance split term) supplemented by the
eviatoric dilation-related contribution to the solid flux.

ppendix C. Augmented upwind flux computation

In this work, this augmented flux vector is computed using the ap-
roximate Riemann problem (RP) theory and a first-order Roe’s solver
or density-variable shallow flows. Details on the flux computation have
een extensively reported in Martínez-Aranda et al. (2020), Martínez-
randa (2021) and Martínez-Aranda et al. (2021) but, for the sake of
ompleteness, a summary is included here. The augmented flux vector
𝑘 at the 𝑘th edge between the left cell 𝑖 and the right cell 𝑗, including

he conservative fluxes and the non-conservative bed-pressure and
asal resistance momentum terms, is expressed as

𝑘 = 𝐅(�̂�𝑛𝑖 , �̂�
𝑛
𝑗 )𝑘 −𝐇(�̂�𝑛𝑖 , �̂�

𝑛
𝑗 )𝑘 − 𝐓(�̂�𝑛𝑖 , �̂�

𝑛
𝑗 )𝑘 (C.1)

nd its computation is based on the conservative Jacobian 𝐉𝑘(�̂�𝑛𝑖 , �̂�
𝑛
𝑗 ),

efined as

�̃� =
(

𝜕𝐅(�̂�)
𝜕�̂�

)

𝑘
=

⎛

⎜

⎜

⎜

⎜

0 1 0 0
1
2 𝑔ℎ̃(1 + �̃�) − �̃�

2
𝑛 2�̃�𝑛 0 − 1

2 𝑔ℎ̃�̃�
−�̃�𝑛 𝑣𝑡 𝑣𝑡 �̃�𝑛 0

/ /

⎞

⎟

⎟

⎟

⎟

(C.2)
19

⎝

−�̃�𝑛 𝜒 �̃� 𝜒 �̃� 0 �̃�𝑛 ⎠𝑘
where the ℎ̃ is the edge-averaged flow depth, �̃� is the edge-averaged
bulk density, 𝜒 is the edge-averaged buoyant solid concentration and
(�̃�𝑛, 𝑣𝑡) are the edge-averaged normal and tangential velocity, respec-
ively, to the 𝑘th cell edge.

The approximate matrix 𝐉𝑘 (C.2) has four different real eigenvalues

𝜆1,𝑘 = (�̃�𝑛 − 𝑐)𝑘 𝜆2,𝑘 = (�̃�𝑛)𝑘 𝜆3,𝑘 = (�̃�𝑛 + 𝑐)𝑘 𝜆4,𝑘 = (�̃�𝑛)𝑘

(C.3)

being 𝑐𝑘 the edge-averaged celerity, defined as

�̃� =

(
√

1
2
𝑔ℎ̃

(

1 + �̃� − 𝜒
)

)

𝑘

(C.4)

and allowing to diagonalize the matrix as 𝐉𝑘 = (�̃��̃��̃�−1)𝑘, where �̃�𝑘
is a diagonal matrix containing the eigenvalues 𝜆𝑚,𝑘, the matrix �̃�𝑘 =
(�̃�1, �̃�2, �̃�3, �̃�4)𝑘 contains the orthogonal basis of eigenvectors (�̃�𝑚)𝑘 and
�̃�−1
𝑘 denotes its inverse matrix.

According the Roe linearization, the numerical frictionless flux at
the 𝑘th cell edge 𝑭 ↓

𝑘 is provided by a discontinuous flux function
constructed by defining appropriate Rankine–Hugoniot (RH) relations
across each moving wave 𝜆𝑚,𝑘. The upwind value of the frictionless flux
vector for the 𝑖 cell can be computed as

𝑭 ↓−
𝑘 = 𝐅(�̂�𝑛𝑖 ) +

∑

𝑚−

[

(𝜆𝑚𝛼𝑚 − 𝛽𝑚 − 𝜎𝑚) �̃�𝑚
]𝑛
𝑘 (C.5)

here the subscript 𝑚− under the sums indicate waves travelling
nward the 𝑖 cell. The coefficients 𝛼𝑚,𝑘 denote the wave strengths
ccounting for the discontinuity on the conservative variables between
ell centre, �̂�𝑛𝑗 − �̂�𝑛𝑖 , the coefficients 𝛽𝑚,𝑘 are the source strengths which
nclude the integrated bed pressure through the cell edge, 𝐇(�̂�𝑛𝑖 , �̂�

𝑛
𝑗 )𝑘,

and the coefficients 𝜎𝑚,𝑘 are the source strengths accounting for the split
basal resistance contribution at the cell edge, 𝐓(�̂�𝑛𝑖 , �̂�

𝑛
𝑗 )𝑘, all of them

satisfying

�̂�𝑛𝑗 − �̂�𝑛𝑖 =
4
∑

𝑚=1
(𝛼𝑚�̃�𝑚)𝑛𝑘 (C.6a)

𝐇(�̂�𝑛𝑖 , �̂�
𝑛
𝑗 )𝑘 =

4
∑

𝑚=1
(𝛽𝑚�̃�𝑚)𝑛𝑘 (C.6b)

(�̂�𝑛𝑖 , �̂�
𝑛
𝑗 )𝑘 =

4
∑

𝑚=1
(𝜎𝑚�̃�𝑚)𝑛𝑘 (C.6c)

The deviatoric solid dilation contribution to the intercell flux
hroughout the 𝑘th edge can be expressed as

𝐧𝑘 = 𝐋𝐧(�̂�𝑛𝑖 , �̂�
𝑛
𝑗 )𝑘 (C.7)

nd it is computed using a first-order upwind approximation as

↓−
𝐧𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0

̃𝑛𝑘
(𝜒
𝑟

)

{𝑢𝑝𝑤}

⎞

⎟

⎟

⎟

⎟

⎠

with ∶

{

{𝑢𝑝𝑤} = 𝑖 if  {1}↓
𝑘 ≥ 0

{𝑢𝑝𝑤} = 𝑗 if  {1}↓
𝑘 < 0

(C.8)

here ̃𝑛𝑘 is the edge-averaged value of the deviatoric dilation-relation
ontribution at the 𝑘th cell edge, computed as

�̃�𝑘 =
[

𝜅
𝜇

(

𝛥𝑒
𝑑𝑛

+ ̃𝑏𝜌𝑤𝑔ℎ̃
𝛥𝑧𝑏
𝑑𝑛

)]

𝑘
(C.9)

being 𝑑𝑛 the normal-distance between cell centres.
Finally, the stability of the explicitly computed numerical solution

is ensured by imposing that the time step is small enough to avoid
the interaction of waves from neighbouring Riemann problems. The
maximum local time step allowed at the 𝑘th edge, 𝛥𝑡 , is estimate here
𝑘
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by assuming that the fastest wave celerity corresponds to the absolute
maximum of the eigenvalues of the Jacobian 𝐉𝑘 (C.2) as

𝛥𝑡𝑘 =
min(𝐴𝑖, 𝐴𝑗 )

𝑙𝑘 max
(

|𝜆1,𝑘|, |𝜆3,𝑘|
)

(C.10)

and the global time step 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 is limited using the minimum of
the local time steps and the Courant–Friedrichs–Lewy (CFL) condition

CFL = 𝛥𝑡
min𝑘(𝛥𝑡𝑘)

(C.11)

ith CFL < 0.5 for square-orthogonal grids and CFL < 1 for both
riangular topology and 1D-mesh cases.
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