000135181 001__ 135181
000135181 005__ 20241220120718.0
000135181 0247_ $$2doi$$a10.1109/JLT.2024.3396221
000135181 0248_ $$2sideral$$a138498
000135181 037__ $$aART-2024-138498
000135181 041__ $$aeng
000135181 100__ $$0(orcid)0000-0002-4094-3826$$aSevillano, Pascual$$uUniversidad de Zaragoza
000135181 245__ $$aTime-expanded FOTDR based on Orthogonal Polarization Frequency Comb generation
000135181 260__ $$c2024
000135181 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135181 5203_ $$aPhase-sensitive Optical Time-Domain Reflectometry (ΦOTDR) has emerged as an effective and high-performance solution within the realm of Distributed Optical Fiber Sensing (DOFS) technologies, which has promoted its use in an ever-growing number of fields. The challenges arisen by new operation fields demand surpassing the historical trade-offs in this technology, specially aiming for higher resolution without jeopardizing the system simplicity and cost-effectiveness. In this context, time-expanded (TE-)ΦOTDR has been recently proposed as a DOFS solution delivering cm-range resolution with sub-MHz detection and acquisition bandwidths. It is based on the use of an interferometric scheme that employs a dual frequency comb (DFC), consisting of two mutually coherent optical frequency combs with dissimilar repetition rates. In this paper, we present a novel DFC generation scheme for TE-ΦOTDR that exploits the polarization orthogonality. In particular, our approach considerably increases the common path followed by the two frequency combs, thus reducing instability and noise as compared to the conventional generation scheme. Additionally, we employ an IQ modulation scheme with two PRBS generators that increases the scalability of the interrogator while severely reducing its cost and complexity. Results show a reduction in the noise amplitude spectral density especially at low frequency values, which corroborates the stability enhancement of this proposed architecture as compared to the conventional scheme.
000135181 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T20-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-114916RB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/DI-17-09169
000135181 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000135181 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135181 700__ $$0(orcid)0000-0001-5898-8777$$aPreciado-Garbayo, Javier
000135181 700__ $$0(orcid)0000-0002-4746-3139$$aIzquierdo, David$$uUniversidad de Zaragoza
000135181 700__ $$aSoriano-Amat, Miguel
000135181 700__ $$aMartin-Lopez, Sonia
000135181 700__ $$aGonzalez-Herraez, Miguel
000135181 700__ $$aFernández-Ruiz, María R.
000135181 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000135181 773__ $$g42, 8 (2024), 6476-6482$$pJ. lightwave technol.$$tJournal of Lightwave Technology$$x0733-8724
000135181 8564_ $$s1922311$$uhttps://zaguan.unizar.es/record/135181/files/texto_completo.pdf$$yVersión publicada
000135181 8564_ $$s3838147$$uhttps://zaguan.unizar.es/record/135181/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135181 909CO $$ooai:zaguan.unizar.es:135181$$particulos$$pdriver
000135181 951__ $$a2024-12-20-12:05:37
000135181 980__ $$aARTICLE