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Resumen

Los objetos deformables son un elemento fundamental en incontables procesos industriales y
de otros ámbitos, como el doméstico o el sanitario. La automatización a través de platafor-
mas robóticas de aquellas tareas en las que se manipulan estos objetos resulta interesante no
solo desde el punto de vista de la mejora de la precisión y la eficiencia de los procesos, sino
también por los beneficios que trae consigo para los trabajadores humanos. Estos beneficios
surgen, principalmente, en la realización de tareas repetitivas, que conllevan movimientos
poco ergonómicos o en las que se manejan sustancias tóxicas o peligrosas. En este sentido, los
robots podrı́an llevar a cabo estas tareas de forma parcial o total, permitiendo con ello a los
operarios la realización de tareas más variadas y seguras.

Esta tesis doctoral tiene como objetivo el proponer, analizar y validar distintos sis-
temas multiagente para la percepción y el control de objetos deformables. Al considerar
múltiples sensores y manipuladores, obtenemos un sistema más eficaz, robusto y versátil que
el homólogo de un único elemento. Esto es especialmente cierto en el presente caso, donde el
sistema es altamente sub-actuado debido a los infinitos grados de libertad del objeto manipu-
lado.

En primer lugar, analizamos el estado del conocimiento en el ámbito de estudio. Tras
identificar los principales trabajos de este campo, los clasificamos de acuerdo a una serie de
criterios diferenciadores. A partir de esta clasificación, extraemos conclusiones en cuanto a los
aspectos comunes, principales problemas abiertos y lı́neas de investigación más importantes.

El siguiente aspecto que tratamos es la percepción de objetos deformables con un sistema
multicámara. Abordamos esta tarea como un problema de cobertura, en el cual el objetivo
se establece en términos de completitud y precisión del contorno percibido. Para definir un
objetivo de cobertura factible, estudiamos las propiedades de visibilidad máximas de formas
generales desde un enfoque geométrico. A continuación, proponemos dos métodos alterna-
tivos basados en optimización para resolver este problema, desde un punto de vista de infor-
mación global y local. Estos métodos son evaluados y comparados mediante la simulación de
distintos casos de aplicación.

Tras analizar la percepción, proseguimos con el cálculo de acciones útiles para manipular
objetos deformables. Concretamente, abordamos el transporte de objetos deformables medi-
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Resumen

ante sistemas multirobot. En este caso, proponemos un nuevo modelo de deformación basado
en la caja envolvente deformable del objeto manipulado. El modelo, con dinámica de doble
integrador y calculado a partir de un conjunto de medidas iniciales, relaciona la evolución
temporal en las dimensiones y orientación de la caja envolvente con la acción colectiva de los
manipuladores robóticos. Un conjunto de controladores nominales explota el modelo para lle-
var las dimensiones, orientación y posición del objeto al estado deseado. Dado que el control
nominal no tiene en cuenta la corrección del rumbo ante obstáculos, aumentamos el mismo
con una nueva función barrera de control que garantiza la evitación de colisiones. Validamos
el controlador integrado con la función barrera en simulaciones con obstáculos estáticos y
dinámicos.

El sistema anterior posibilita un control del objeto deformable limitado a su caja envol-
vente. Con el propósito de controlar la configuración del objeto de forma más precisa, pre-
sentamos un controlador de formaciones de robots alternativo para resolver el problema de
transporte de objetos deformables. Mediante un conjunto de controladores para robots con
dinámica de doble integrador, conseguimos controlar la forma, escala, posición y orientación
de la formación de manipuladores que sostiene el objeto. En esta propuesta, y a diferencia de la
anterior, no modelamos la deformación, sino que asumimos que el objeto es suficientemente
flexible y que la formación de robots representa adecuadamente la forma del objeto. Para
garantizar que el funcionamiento del controlador es el deseado, estudiamos en profundidad
sus propiedades en términos de desacoplamiento de las variables de la formación, estabilidad
y convergencia al estado objetivo. Además, proponemos un conjunto de funciones barrera
para evitar colisiones y sobreestiramientos en entornos con obstáculos estáticos y dinámicos.
Este nuevo controlador es aplicado satisfactoriamente en escenarios tanto simulados como
reales.

En las propuestas anteriores, consideramos que los objetos son suficientemente resistentes
como para poder ser agarrados utilizando métodos convencionales. En caso de que el objeto
manipulado sea fino y frágil, éste podrı́a resultar dañado al ser agarrado con una estrategia de
este tipo. Por ello, proponemos un sistema de manipulación secuencial basado en acciones de
empuje, sobre un plano en el que descansa el objeto. Mediante tales acciones, podemos con-
trolar la posición y orientación del objeto, al mismo tiempo que contenemos su deformación
dentro de un rango de seguridad. Utilizando regresión de procesos Gaussianos y optimización
Bayesiana, podemos modelar las propiedades del objeto sujeto al empuje, actualizar el modelo
resultante a lo largo del tiempo y calcular acciones efectivas en cada instante. Mostramos la
eficacia de esta propuesta en diferentes escenarios de simulación.

En conclusión, las contribuciones principales de esta tesis son las siguientes: hemos desa-
rrollado y validado nuevos métodos de percepción de objetos deformables con sistemas mul-
ticámara; hemos propuesto técnicas de modelado de deformación y control multirobot apli-
cadas a la tarea de transporte de objetos deformables; y hemos estudiado un método novedoso
para manipular objetos deformables frágiles y finos, sobre superficies planas.
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Abstract

Deformable objects are a paramount element in uncountable processes of industrial and other
domains, such as the domestic and the healthcare ones. Automation through robotic plat-
forms of those tasks where deformable objects are manipulated is interesting not only from
the perspective of improving the accuracy and efficiency of processes, but also for the benefits
this implies for the human workers. These benefits arise, mainly, when performing repetitive
tasks, that involve uncomfortable movements or in which toxic or dangerous substances are
handled. In this sense, robots could carry out partially or totally such tasks, bringing about
the possibility of performing more varied and safe tasks to the workers.

The present PhD thesis aims at proposing, analyzing and validating different multiagent
systems for perception and control of deformable objects. By considering multiple sensors
and manipulators, we obtain a system that is more effective, robust and versatile than the
single-element counterpart. This is particularly true in the present case, where the system is
highly underactuated due to the infinite degrees of freedom of the manipulated object.

Firstly, we analyze the state of the art in the field of this research. After the identification
of the main works in this area, we classify them according to a selection of differentiating
criteria. From this classification, we extract concluding remarks with respect to the common
aspects, main open problems and the most important research lines.

Next, we deal with the perception of deformable shapes by a multicamera system. We
tackle this task as a coverage problem, in which the objective is set in terms of completion and
accuracy of the perceived contour. With the purpose of defining a feasible coverage objective,
we study the maximum visibility properties of general shapes from a geometrical perspective.
Then, we propose to solve this problem with two alternative optimization-based methods,
from the point of view of global and local information. These methods are evaluated and
compared by means of simulations of different application cases.

After analyzing perception, we continue with the search of useful actions for manipulat-
ing deformable objects. In particular, we tackle the transport of deformable objects by mul-
tirobot systems. In this case, we propose a new deformation model based on the deformable
bounding box of the manipulated object. The model, with double-integrator dynamics and
computed from a set of initial measurements, maps the temporal evolution of the dimensions
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Abstract

and orientation of the bounding box with the collective action of the robotic manipulators.
A set of nominal controllers exploits the model for driving the dimensions, orientation and
position of the object to the desired state. Due to the fact that the nominal controller does
not take into account the path correction against incoming obstacles, we augment it with a
new control barrier function that guarantees collision avoidance. We validate the integrated
controller with the control barrier function in simulations with static and dynamic obstacles.

The previous system enables the control of the bounding box of a deformable object. With
the purpose of controlling the configuration of the object more accurately, we present an
alternative formation controller for solving the problem of transporting deformable objects.
By means of a set of controllers for robots with double-integrator dynamics, we are able to
control the shape, scale, position and orientation of the manipulators’ formation grasping the
object. In this proposal, and in contrast to the former one, we do not model deformation,
but we assume that the object is flexible enough and the robotic formation represents well
enough the shape of the object. For guaranteeing the desired performance of the controller,
we study its properties in depth in terms of uncoupling of the formation variables, stability
and convergence to the target state. In addition, we propose a set of control barrier functions
for collision and overstretching avoidance in environments with static and dynamic obstacles.
This new controller is successfully applied in simulated and real scenarios.

In the previous proposals, we consider the objects are resistant enough for being grasped
utilizing conventional methods. In case the manipulated object is thin and fragile, it could
be damaged when being grasped with such strategies. Therefore, we propose a sequential
manipulation system based on pushing actions, on a plane where the object lies. Through
such actions, we can control the position and orientation of the object, at the same time we
contain its deformation within a safety threshold. By applying Gaussian process regression
and Bayesian optimization, we can model the properties of the object under pushing, update
the resulting model over time and compute effective actions at every instant. We show the
performance of this proposal in different simulation scenarios.

In conclusion, the main contributions of this thesis are the following: we have developed
and validated new perception methods for deformable objects with multicamera systems; we
have proposed deformation modelling and multirobot control techniques applied to the task
of transporting deformable objects; and we have studied a novel method for manipulating
thin and fragile deformable objects, over flat surfaces.
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Chapter 1

Introduction

1.1 Motivation

S trictly speaking, all materials with practical interest exhibit some kind of deformation
when certain force is applied to them. In fact, almost every industrial product contains

parts that show macroscopical flexibility. This implies that not only the production, but also
the usage of these products involve manipulation tasks where deformation must be controlled
in some manner. Therefore, the importance and interest of automatizing those kinds of tasks
is notable in social, industrial and economical terms [56]. Traditionally, the objects manip-
ulated by robotic platforms were considered rigid. This has been likely due to the bounded
mechanical properties of some materials in common applications, e.g metals, that require
high forces for undergoing deformations. Besides, there are inherent difficulties that arise
when dealing with deformation: infinite degrees of freedom of the objects, different defor-
mation modes (traction, compression, torsion, etc.), time-varying mechanical properties and
non-fixed contact points, among others. Nowadays, the manipulation of rigid objects is still
an active research field with open issues, but there is a growing interest towards including
deformation as an additional parameter.

In the field of mechanics of materials, the deformation of a segment (or, more rigorously,
its elongation per unit length or strain) is defined as the ratio between the elongation divided
by the segment’s total length [51]. There are two different types of deformations: elastic and
plastic. Elastic deformations correspond to those that vanish when the applied load is released.
This behavior is the result of small changes in the interatomic spacing and the stretching of
interatomic bonds [24]. Examples of materials showing elastic deformations are most met-
als, for strains under 0.005, and elastomers. In contrast, plastic deformations remain after
releasing the acting force. They correspond to a rupture and subsequent re-forming of bonds
after a relative movement of a large number of atoms [24]. E.g., metals for strains over 0.005
and modeling clay exhibit plastic deformations. Yet simple in appearance, this basic notions
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Chapter 1. Introduction

are only the prelude of the complex physics that govern deformation in the general case. In
the framework of this thesis, the goal is not studying these complex mechanisms in detail,
but to understand and control them as required for manipulating a selection of paradigmatic
deformable objects, that can be found in common applications. For the purpose of robotic
manipulation, we deal with deformation as follows: by designing novel coverage strategies
for perceiving the contour of deformable objects over time; through new models that predict
deformation in real-time applications; with formation control methods that steer the manip-
ulated object to desired configurations; and developing manipulation strategies that maintain
deformation of fragile objects within a safe range.

These developments have been motivated mainly by project CoMManDIA, from the In-
terreg Sudoe european programme [72]. With the objective of enhancing the working con-
ditions of human operators and increasing the productivity and efficiency of industrial pro-
cesses, CoMManDIA aimed to develop new solutions for robotic manipulation of deformable
objects. In the industrial sector, robotic systems can help to reduce the risk of accidents, the
fatigue and improve the overall health and safety conditions of human workers by performing
tasks that are physically demanding, repetitive and hazardous. By doing so, human operators
can focus on tasks that require higher levels of cognitive processing, such as decision-making
and problem-solving ones. Furthermore, this allows reducing production defects, adapting
the manufacturing process to objects of different shapes and sizes and quickly reconfiguring
the work flow to changes in product design or demand. But the positive impact of robotic
solutions of this kind is not limited to the industrial field. By properly adapting the manip-
ulation methods, other sectors can obtain benefits in multiple areas. In this sense, robots
could deal with domestic tasks like cloth folding and cloth spreading, thus assisting people
in tedious efforts. Healthcare is another field that could implement robotic-based systems,
for procedures such as accurately manipulating tissues in surgical interventions and the trans-
port of patients. Overall, robotic solutions for manipulating deformable objects may lead to
changes in the nature of work for human operators in a broad variety of contexts.

Another key aspect of the thesis is that it is focused on multiagent systems. Considering
multiagent strategies for perceiving and manipulating deformable objects makes sense due
to the advantages they present versus the single-agent ones. Some of these advantages are the
possibility of dealing with highly complex tasks, the distributed nature of the system, a smaller
number of technical requirements in terms of capabilities of the units, higher robustness and
adaptability and higher scalability and flexibility [48].
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1.2 Objectives

As stated in the previous section, the main purpose of this thesis is to study new multiagent
systems for manipulating deformable objects in general-purpose applications. The first step
to tackle is the thorough study of the field of multirobot manipulation of deformable objects.
In this still emerging but rapidly growing area, such study would provide the knowledge foun-
dations for subsequent developments. A series of classification criteria should be proposed
and applied to analyze the main trends in deformation modeling, manipulated objects, con-
trol strategies and perception methods, among other characteristics. Then, the goal can be
decomposed in a series of objectives with specific sub-goals:

1. Perception of deformation. Before considering the manipulation task itself, it is needed
to find new flexible, versatile and effective procedures for measuring object deforma-
tion. Flexibility and versatility are required for the compatibility of the perception
system with the control one, as perception will be a key element of the subsequent de-
formation control approaches. In turn, the proposal should guarantee that deformation
is measured with enough accuracy and completeness. This will serve as an indicator of
the performance and quality of the manipulation process.

2. Transport with deformation control. With the purpose of driving an object grasped by
multiple robots to a target configuration (i.e. position, orientation and dimensions),
without collisions, novel solutions in terms of modelling and control should be investi-
gated. The information given by the measured deformation can be exploited to improve
the accuracy of the model, and to evaluate the performance of the system. Controlling
deformation will be of paramount importance for not damaging the object and achiev-
ing the task goals.

3. Non-prehensile deformation control. In case the manipulated object cannot be grasped
with standard methods, due to its fragility, alternative non-prehensile manipulation
strategies must be studied. For this kind of task, it is assumed that the object lies on
a supporting medium, and the goal is steering it to a target configuration by means
of multiple pushing actions. Such scenario requires inferring not only the structural
properties of the object under pushing, but also the effects over deformation of the
friction between the object and the supporting surface.
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1.3 Outline

The content of the present thesis is structured in seven chapters, that begin in Chapter 1 with
the introductory sections and end with the summary, closing remarks and tentative future
research in Chapter 7. In the remaining five thematic chapters, the different research blocks
are developed as follows:

• Chapter 2 reports the study of the state of the art in multirobot manipulation of de-
formable objects. The main approaches, at the time this thesis started, are identi-
fied and classified according to different criteria: modelling strategy, dimensionality
of the manipulated object, control method, perception system, type of manipulation
actions, practical application, and manipulation platform. Additionally, a selection
of multirobot control-related studies, which do not explicitly tackle manipulation of
deformable objects, is listed and described for their potential utility in this kind of
tasks. From this analysis, the active research lines, leading strategies and open issues
are identified and summarized.

• In Chapter 3 a multicamera system is proposed for coverage over time of deformable
shapes. The perception task is defined in terms of visibility and resolution of the shape’s
contour, parameters that quantify the completion and accuracy of the coverage, re-
spectively. A method for obtaining the maximum visibility and resolution limits of
the shape at a specific time instant, required for defining a feasible coverage objective,
is described. Afterwards, configurations that achieve the target coverage with minimal
sensors, over the expected deformation process, are obtained in an offline optimization
framework. Alternatively, an online variant is presented for fast updating the system
in real-time perception tasks. These methods are validated through different test cases,
in simulated and real-world setups.

• Chapter 4 shows a multirobot system for transport of deformable objects in 3D envi-
ronments. With the goal of translating the object without collisions to a target position,
a novel Deformable Bounding Box model is proposed. This model allows predicting the
dimensions and orientation of the bounding box that contains the object, under collec-
tive manipulation actions applied by the robots. The manipulation actions are regulated
by a set of nominal controllers for robots with double-integrator dynamics, which de-
form, rotate and translate the object as required in the task. Due to the fact that these
controllers do not consider collision avoidance explicitly, a Control Barrier Function
(CBF) is defined to act when the obstacles intersect with the nominal trajectories. In
the framework of a Quadratic Programming-based (QP) controller, the control action
is ultimately computed as the closest one to the nominal control action that satisfies
the constraints imposed by the CBF. Through simulated experiments, the performance
of the method is illustrated in different test cases.

• A different solution to the problem of transporting deformable objects with a team of
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robots is presented in Chapter 5. The method applies formation control in 2D with
a set of terms that steer the object to a target configuration, defined as the combina-
tion of shape, scale, centroid position and rotation of the formation. A rigorous formal
analysis of the controller proves the uncoupling between the formation parameters, as
well as the stability of the system and the convergence to the desired state. Similarly to
the method of the previous chapter, the robots are modelled with double integrator dy-
namics and collision avoidance is not explicitly accounted by the formation controller.
This is the reason why a set of new CBFs is proposed to avoid collisions with static
and dynamic obstacles. Given that the collision avoidance maneuvers could produce
undesired deformations, an additional CBF is implemented to avoid overstretching.
Again, the final control input is given by the QP as the closest one to the formation
control action that satisfies the constraints imposed by the CBFs. In contrast to the
previous method, the object deformation is not modelled, and it is assumed that the
object is flexible enough and its deformation states are bounded. A set of experiments
in simulated and real-world scenarios show the performance of the method in various
cases.

• Finally, the interest is directed towards thin fragile objects in Chapter 6. For the prob-
lem of manipulating this kind of objects to a target position and orientation, while
their deformation remains bounded, a novel manipulation strategy is described. This
strategy is based on applying a sequence of planar pushing actions on the edges of the
object, which lies on a flat supporting medium. With such procedure, it is possible to
infer through Gaussian process regression a probabilistic model that maps the pushing
actions with the state of the object over time, in terms of deformation and position of
the object’s centroid on the surface. Simultaneously, an Adaptive Bayesian Optimiza-
tion procedure determines pushing actions that are most likely going to decrease the
task errors. The solution space where to find the optimal pushes is restricted by a series
of adaptive constraints, which aim at accelerating the exploration process and obtain-
ing effective control actions. These developments are tested and verified in a realistic
simulation environment with the Pybullet simulator.
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1.4 Contributions and publications

The research works that integrate this thesis have been developed at the Engineering Research
Institute of Aragon (I3A), University of Zaragoza, in the Department of Computer Science
and Systems Engineering (DIIS). Additionally, some of them are part of two 3-month inter-
national collaborations with the Institut Pascal, Université Clermont Auvergne (France), and the
Institute of Robotics and Mechatronics, DLR German Aerospace Center (Germany). These
works are supported by a series of scientific publications in international journals and con-
ferences. In this section, the thesis contributions are reported jointly with the corresponding
references where they appear.

The identification and further analysis of the relevant works in the field of multirobot
manipulation of deformable objects represents the first survey about this specific topic, and
includes a novel classification that highlights differentiating properties of the methods. Be-
sides, the discussion and comparison of those properties among the analyzed studies generate
new insight about the current perspectives in this area of knowledge. The publication associ-
ated to these contributions [58] is:

1. R. Herguedas, G. Lopez-Nicolas, R. Aragues, and C. Sagues, “Survey on multi-
robot manipulation of deformable objects,” in IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Sep. 2019, pp. 977–984. doi:
10.1109/ETFA.2019.8868987.

Multicamera setup for perception of deformable shapes. For the purpose of perceiving a
deformable 2D shape over time, we analyze the visibility properties from a novel geometrical
perspective. As a result of this analysis, we propose a new technique that allows computing
the maximum visibility and resolution of the contour at a specific distance. Then, we describe
a novel formulation of the coverage task as a continuous-space optimization problem, and
we obtain two alternative solutions. The first solution provides a minimal set of cameras for
covering a target contour, over a prescribed deformation guideline and according to the cov-
erage objectives. In case the deformation process is unknown, we present a different technique
where the configuration of the cameras is quickly updated through local optimizations. These
contributions are featured in a national conference paper [60], two international conference
papers [59], [61] and a journal paper [63]:

2. R. Herguedas, G. Lopez-Nicolas and C. Sagues, “Sistema multi-cámara mı́nimo para
percepción de formas deformables,” in VIII Jornada De Jóvenes Investigadores del I3A, May
2019, doi: 10.26754/jji-i3a.003578.

3. R. Herguedas, G. Lopez-Nicolas and C. Sagues, “Multi-camera coverage of deformable
contour shapes,” in IEEE International Conference on Automation Science and Engineering
(CASE), Aug. 2019, pp. 1597-1602, doi: 10.1109/COASE.2019.8843053.

4. R. Herguedas, G. Lopez-Nicolas and C. Sagues, “Experimental multi-camera setup for
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perception of dynamic objects,” in Workshop ROMADO, IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Oct. 2020, pp. 11874-11878, ISBN: 978-1-
7281-6211-9.

5. R. Herguedas, G. Lopez-Nicolas and C. Sagues, “Coverage of deformable contour
shapes with minimal multi-camera system,” Measurement, vol. 190, 2022, pp. 110693,
doi: 10.1016/j.measurement.2021.110693.

Multirobot system for transport of deformable objects with DBB model. We formulate
a new Deformable Bounding Box (DBB) model for predicting the 3D shape and orientation
around the vertical axis of the bounding box of an object, under the collective action of a team
of manipulators. The DBB model is then exploited by a QP-based controller, which steers
the manipulated object to a specific configuration (position, orientation and shape) thanks
to a set of nominal controllers for manipulators with double-integrator dynamics. In this
optimization framework, collision and overstretching avoidance are guaranteed with novel
constraints based on CBFs and instantaneous differentiation. Two different research works
[62], [64] show the previous contributions:

6. R. Herguedas, G. Lopez-Nicolas and C. Sagues, “Collision-free transport of 2D de-
formable objects,” in 21st International Conference on Control, Automation and Systems
(ICCAS), Oct. 2021, pp. 430-435, doi: 10.23919/ICCAS52745.2021.9650027.

7. R. Herguedas, G. Lopez-Nicolas and C. Sagues, “Multirobot Transport of Deformable
Objects With Collision Avoidance,” IEEE Systems Journal, vol. 17, no. 2, pp. 3224-3234,
doi: 10.1109/JSYST.2022.3213972.

Formation control in transport tasks of deformable objects. The difficulties associated
to the deformation modelling are bypassed in a different approach, that leverages formation
control for steering a team of robots to a specific configuration. In this case, we assume that
the object grasped by the robots is flexible enough to follow the movement of the formation.
With a novel formulation for robots with double-integrator dynamics, which includes dif-
ferent terms for controlling the shape, scale, position and orientation of the formation, the
system achieves the desired configuration with full uncoupling of the formation parameters.
The properties of the controller in terms of uncoupling, stability and convergence are com-
prehensively analyzed. Then, we augment the formation controller with a set of new object-
to-obstacle and overstretching avoidance CBFs in a QP-based framework. As an alternative
for mobile manipulators with nonholonomic motion constraints, we also propose a control
method that allows transporting and simultaneously deforming an object to a goal shape. We
have published the former contributions in two international conferences [57], [91] and are
under review in a journal paper:

8. G. Lopez-Nicolas, R. Herguedas, M. Aranda and Y. Mezouar, “Simultaneous shape con-
trol and transport with multiple robots,” in IEEE International Conference on Robotic Com-
puting (IRC), Nov. 2022, pp. 218-225, doi: 10.1109/IRC.2020.00042.
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9. R. Herguedas, M. Aranda, G. Lopez-Nicolas, C. Sagues and Y. Mezouar, “Multirobot
control with double-integrator dynamics and control barrier functions for deformable
object transport,” in IEEE International Conference on Robotics and Automation (ICRA),
May 2022, pp. 1485-1491, doi: 10.1109/ICRA46639.2022.9812378.

10. R. Herguedas, M. Aranda, G. Lopez-Nicolas, C. Sagues and Y. Mezouar, “Double-
integrator multirobot control with uncoupled dynamics for transport of deformable
objects,” accepted in IEEE Robotics and Automation Letters, 2023.

Manipulation of thin fragile deformable objects. By means of a multirobot system and a
new technique based on sequential pushing and Adaptive Bayesian Optimization, it is possible
to manipulate thin fragile deformable objects to a specific position and orientation in 2D. At
the same time, the object deformation is controlled to remain within an admissible range.
The time-varying physics of deformation and friction are learned through Gaussian Process
Regression with information from the pushing actions. Then, we combine the resulting model
with new adaptive constraints that accelerate the process of finding effective actions at every
time step. A conference paper that develops these contributions is under preparation at the
present time:

11. R. Herguedas, A. M. Sundaram, G. Lopez-Nicolas, M. A. Roa and C. Sagues, “Adaptive
Bayesian optimization for robotic pushing of thin fragile deformable objects,” under
preparation.
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Chapter 2

State of the art in multirobot
manipulation of deformable
objects
In this chapter, we analyze relevant state-of-the-art approaches concerning manipulation of deformable
objects by multiple robots. Then, we classify them according to different specific criteria. As a result
of the analysis and classification, we identify the main trends, challenges and most important research
directions.

2.1 Introduction

I n the field of robotics, as previously mentioned, manipulation of deformable objects is still
an open problem. As opposed to the well-studied framework of rigid objects manipula-

tion, being able to predict how the object is going to behave under the effects of a certain
manipulation action is a crucial and challenging aspect when dealing with deformable mate-
rials. Production of clothes and footwear, food handling, toys manufacturing and surgery are
some of the applications involving these kinds of objects. One of the main interests of autom-
atizing some of these sector’s manipulation tasks is to reduce the health hazards for human
workers, who have to go through uncomfortable, unpleasant and even dangerous works.

When dealing with certain types of deformable objects one can find that they are too big,
too heavy, difficult to grasp, too fragile or too soft for being manipulated by a single robot.
Therefore, in order to improve the performance of the robotic systems in terms of accuracy,
computational cost and flexibility, multiple robotic manipulators with the same or different
roles must be considered to carry out the task. Previous surveys on the topic of autonomous
manipulation of deformable objects have been developed in the recent years [79], [76], and
in particular the reader is referred to the comprehensive survey performed by Sanchez et al.
[111] for a global understanding of the current state of the art in robotic manipulation of
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deformable objects. However, none of them is focused specifically on manipulation of de-
formable objects by multi-robot teams. We have studied, and subsequently classified accord-
ing to multiple criteria, recent approaches which are relevant in the field of manipulation of
deformable objects by multiple robots. The classification encompasses the following elements:
the deformation model they consider, the dimensionality of the deformable object, the con-
trol strategy they follow, the perception system they apply, the predominant manipulation
actions, the practical application they tackle and the type of robotic manipulators. Besides, a
selection of multirobot control systems is analyzed, for their potential utility in manipulation
tasks of deformable objects. After the analysis and classification, we summarize the leading
strategies, the common issues and the future research alternatives. We present Table 2.1 at the
end of the chapter as a summary of the surveyed and classified works of the state of the art. It
is worth mentioning that we consider dual-arm robots as a multi-robot manipulation system,
due to the fact that each arm represents an independent manipulation unit.

2.2 Classification according to the model

Due to the highly-dynamic behavior of deformable objects, correctly modelling deformation
is one of the main concerns when handling these kinds of objects. In the past, many stud-
ies that tackled manipulation of deformable objects were based on precomputed models, but
nowadays there is a clear tendency on exploiting methods which learn an online deformation
model. Moreover, there are others that do not consider any deformation model of the ob-
ject. This model-free perspective improves both robustness and generality of the methods. It
is important to remark that the following discussion only includes methods that are imple-
mented inside the manipulation algorithms. It does not consider models that represent the
deformable object in simulation tests.

2.2.1 Methods using precomputed models

Those approaches where a deformation model is computed offline, previously to the system
working in real time, are analyzed and compared in this section.

Mesh models, with either discrete (mass-spring-damper elements) or continuous (finite
element method) formulation, are common candidates to represent the deformable object.
Das and Sarkar [35] consider the problem of handling a 2D deformable object exhibiting rhe-
ological deformations (elasticity and viscosity properties) with a group of robotic manipula-
tors, or a robotic hand with multiple fingers. They model the deformable object by means
of a mass-spring-damper elements mesh, and deformation is controlled by applying an op-
timization technique over the mesh boundary nodes. Also Li et al. [86] utilize mesh models
for the purpose of manipulating deformable objects (clothes). They have built a precomputed
database which contains 3D mesh models of different kinds of garments, all of them simu-
lated under the effects of gravity and picked up in multiple poses. When a piece of clothing
is grasped for performing a manipulation task, the recognition system creates its 3D mesh
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model and extracts some relevant features to be compared with the ones of the precomputed
models from the database. After finding a correspondence, the algorithm obtains the optimal
manipulation trajectories leading to the desired state. Similarly to the previous approach, Jia
et al. [74] follow a strategy that is based on building a visual dictionary in an offline way and
using it afterwards to manipulate highly deformable materials. Their dictionary consists of
a set of vectors that store visual feedback data and end-effector velocities, whose mapping is
obtained by means of a training phase. Different goal configurations are computed at runtime
depending on the selected manipulation task, and using sparse linear representation the veloc-
ity of the controller is computed from the visual dictionary. Manipulation tasks like folding
and flattening of cloth pieces with varying material properties are performed in experimental
tests, with a dual-arm robot and the dual-arm robot in collaboration with a human. Higher
accuracy values may be obtained from finite element models in comparison with the mass-
spring-damper mesh models. Duenser et al. exploit these kinds of models in [42] for perform-
ing user-specified deformations over elastic parts by means of a dual-arm robot, under the
quasi-static system assumption. Their approach performs an efficient real-time optimization
in which the Jacobian relating the joint angles’ changes to the variations of the object’s shape
is continuously obtained. A different method is presented by Long et al. [89] for obtaining the
direct and inverse dynamic models of a group of two manipulators cooperatively carrying a
flexible object. This technique can be applied to rigid, articulated and flexible objects whose
deformation can be expressed with a normal distribution. While the object is modeled us-
ing the generalized Newton-Euler formalism, the robotic manipulators are modeled with the
rigid arm equations and the kinematic Jacobians, and the two subsystems are linked together
by the wrench applied at the end effector’s grasp.

The main disadvantage of the aforementioned methods is that the model has to be modi-
fied and recomputed each time the properties of the deformable object change, e.g., a T-shirt
of a different size, or different material, etc.

2.2.2 Methods using learned models

Instead of using a model with fixed parameters, the following approaches focus on learning
the deformation model parameters in an online manner.

With the aim of deforming 3D rheological objects, Higashimori et al. [65] propose a two-
phase strategy in which the parameters defining the behavior of the object model are obtained
previously to performing the desired deformation action. This approach is able to deform 3D
objects to a desired state but only in one direction, due to the fact that it relies on a 1D four-
element model (2 springs and 2 dampers) of the object. A more recent method in which a local
deformation model is approximated online, through an estimation-recalibration algorithm,
is proposed by Navarro-Alarcon and Liu [100] for the purpose of deforming 3D soft objects
into 2D desired contours. In this approach, one active and one or more passive grippers that
follow translational quasi-static movements are servo-controlled to deform the object. The
object’s 2D shape is represented with Fourier series, and its physical properties are completely
unknown. Also in [102] Navarro-Alarcon et al. describe a method for deforming 3D elastic
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objects with two robotic arms and achieve different positions and shapes by estimating the
Jacobian of the deformable object. Hu et al. [69] present a similar method with improved
properties in terms of convergence and dynamic behavior. They estimate the object’s defor-
mation by means of an algorithm called FO-GPR (Fast Online Gaussian Process Regression),
which obtains a nonlinear deformation function and updates it at each time step. In contrast
to the standard GPR methods, the FO-GPR removes uninformative observation data, which
allows to substantially decrease the computational cost of the algorithm and also improves the
accuracy of the model. Multi-robot low-level manipulation tasks, in which the deformation
function does not vary at different stages (rolled towel bending, towel folding, etc.), are suc-
cessfully performed with this technique in experimental tests, even in the presence of partial
occlusions. A different Jacobian-based strategy is developed by Berenson [20] in order to per-
form locally defined quasi-static manipulation tasks of 1D and 2D deformable objects, with
a single or multiple robotic manipulators. His algorithm exploits the concept of diminishing
rigidity (from the grasping point to the rest of the object) to compute an approximate Jaco-
bian of the object, which is corrected afterwards to include excessive stretching constraints.
This approach depends on manual tuning for setting an adequate evolution of rigidity, and it
cannot represent properly the properties of heterogeneous deformable objects. However, a re-
cent study by McConachie and Berenson [94] that is based on the MAB concept (Multi-Armed
Bandit) solves the problem of automatically selecting an appropriate deformation model. In
particular, their algorithm is called KF-MANDB, and extends the standard MAB technique
to consider a nonstationary, inter-dependent, Kalman-filtered framework. They consider a
set of grippers to perform a specific deformable object manipulation task, and they build a
model database with approximate Jacobian models tuned with different parameter values. At
the same time that the manipulation task is performed, the algorithm evaluates the utility
of each model (i.e. how accurate each model is for representing the deformation state) and
selects the one with the highest value.

Some additional methods that consider learning a deformation model are [84], in which
the stiffness matrix of a finite element model is obtained by probing the material, and [142],
in which the object’s shape is approximated by Fourier series. Also a combined deformation-
projection Jacobian is estimated online in [2].

2.2.3 Model-free methods

Even more flexibility can be attained, a priori, if the behavior of the soft object is not related
to a specific deformation model. Next methods take advantage of this and develop model-free
multi-robot techniques for manipulating deformable objects.

Indirect Simultaneous Positioning is a concept studied by Wada et al. in [130] with the
goal of controlling the position of a set of points lying within the contour of a 2D deformable
shape. They classify the interest points of the shape into manipulation points, to be grasped
by the grippers, and positioned points, whose position is to be controlled. Then, they show
two different PID control methods for achieving the control objective: a first one that relies
on an approximate deformation model, and a second one for small deformations in which the
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deformation model is not needed. Deformations are here restricted to the plane of the 2D
object. Another model-free approach proposed by Bai and Wen [16] deals with the problem
of flexible load transport from a formation control perspective. They have developed a decen-
tralized control method for the collaborative manipulation of a deformable object by a group
of robotic manipulators. Despite the fact that the geometry of the object and the position of
the grasping points have to be known in advance, no model of the object is considered. Some
assumptions made in this study are that the deformation of the object is small and only ap-
pears in a small area around the grasping points, and also that only translational movements
are performed. Within the field of robotic cutting of deformable objects, Long et al. [88]
follow a pressing and slicing strategy for separating soft parts without explicitly modeling the
object. Apart from the cutting robot, which is equipped with the cutting tool, a second robot
is considered to provide a pulling force (whose magnitude is obtained from experiments) that
reduces the necessary cutting force.

2.3 Classification according to the manipulated object

A different classification of the manipulation strategies can be performed from the perspec-
tive of the manipulated object. Real deformable objects are always lying on the 3D space, but
some of them are studied by omitting those dimensions which are of a much smaller mag-
nitude than the rest. For instance, a rope can be studied by considering it a 1D entity with
null cross section provided that its length is much larger than its thickness in both transver-
sal directions. Thus, the following subsections differentiate the multi-robot manipulation
approaches by the dimensionality of the deformable object.

2.3.1 Unidimensional objects

As reported before, ropes and also cables are typical examples of unidimensional objects. A
recent approach by Zhu et al. [142] tackles the problem of manipulating 1D flexible cables
to match a desired 2D contour, by means of a dual-arm robot equipped with special-purpose
grippers. Inspired by [100], they represent the cable’s shape with truncated Fourier series.
To reach a compromise solution between accuracy, computational cost and under-actuation,
only two harmonics of the series are accounted. As opposed to [100] this method considers
also rotational movements, but it is not capable of predicting whether a final shape is reach-
able or not. The challenging task of in-air knotting of 1D ropes is tackled by Kudoh et al. in
[82]. After extracting a set of hand motions with high reusability (skill motions), they develop
a specialized hardware system to perform the in-air knotting task. In particular, this system
consists of a dual-arm robot equipped with three-finger hands and an RGB-D camera, which
is utilized to achieve the initial grasping of the rope. Also in [125], [126] a 1D rope is deformed
to a target configuration by two robotic arms. The algorithm created by Tang et al. in [125]
is called TSM-RPM (Tangent Space Mapping-Robust Point Matching), and maps the evolu-
tion of the object’s curve tangents to reach the desired configuration between different initial
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configurations, by means of a non-rigid transformation function. The authors show in simu-
lations how the TSM-RPM algorithm outperforms the TPS-RPM (Thin Plate Spline-Robust
Point Matching) in terms of overstretching avoidance and fidelity of the final configuration
with respect to the desired one.

2.3.2 Bidimensional objects

The main examples of 2D deformable objects, in terms of the number of approaches consid-
ering them, are the cloth-like ones. This type of object is unable to withstand compression
forces, and usually shows high rigidity values when submitted to traction forces. Thin panels
of deformable materials can be considered as 2D objects too.

Alonso-Mora et al. [5] propose a hybrid centralized/distributed algorithm for the trans-
port of deformable objects by multiple robotic manipulators. While the centralized approach
is considered in order to provide a global guidance to the manipulators, the distributed one
enables the manipulators to move according to the global planning without explicit com-
munication between them. This algorithm includes collision avoidance with both static and
dynamic obstacles and shape preservation constraints. Three different 2D deformable objects
(a foam mat, a bed sheet and a towel) are collaboratively carried to a desired position by a
multi-robot team in experimental tests. Deformation is controlled here but only for the pur-
pose of maintaining the structural integrity of the object during the transportation. Focusing
also on 2D deformable objects collaborative manipulation, Langsfeld et al. [84] develop a
multi-robot system that allows to clean plastic parts with two fixed redundant robotic arms
of differentiated roles: the first arm cleans the part without deforming or breaking it while
the second one holds the object in a proper position. The object is assumed elastic and is
modeled with 1D finite elements whose elastic properties are updated as the cleaning task
proceeds. Regrasping actions are optimized in order to minimize the part deformation and
the cleaning time. A different collaborative situation in which a 2D deformable sheet is ma-
nipulated between a person (uncontrollable agent) and a dual-arm robot (controllable agent),
equipped with a Kinect camera, is studied by Kruse et al. [80]. Initially, the opposite ends of
a piece of fabric are grasped by the human and the robot, and the control goal is to minimize
the amount of wrinkles and local deformations produced when the human manipulator per-
forms local movements, that distort the initial undeformed state. Collaborative human-robot
tasks, besides robot-robot ones, are considered too by Jia et al. in [74] for cloth folding, cloth
flattening and cloth placing. The effectiveness of this method is affected by some limitations
in terms of illumination and relative colors of the clothes in the 2D images.

2.3.3 Tridimensional objects

Being probably the most challenging examples of deformable objects for robotic manipula-
tion, 3D objects range from soft foam pieces to food dough, and represent the most general
case in which all spatial dimensions are accounted.
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The problem of deforming 3D elastic foam parts to a desired state by multiple robots
is tackled by Navarro-Alarcon et al. in [101]. They propose a robust vision-based controller
which accounts for noise and uncertainty in the model estimation. The elastic properties of
the deformable object are unknown, and therefore the Jacobian matrix is estimated online
with the Broyden update rule [73]. They perform various experimental tests with one and two
active manipulators. 3D soft foam parts are also considered by Long et al. for a cutting process
in [88]. In this approach, experimental tests are carried out over the soft foam parts, that are
cut to a predefined cutting depth through sequential cutting actions. The cutting trajectory
is specified by a series of visual markers attached to the object. In [16] a lightweight 3D soccer
ball is collaborativelly manipulated by two fixed robotic arms, once fed by a human agent.
The manipulation task is divided in two steps: the first one implies statically holding and
squeezing the ball, and during the second one, linear or circular trajectories are performed.
All the previous approaches consider homogeneous objects whose material properties do not
vary across their volume. In [2], however, Alambeigi et al. propose a multi-robot method for
manipulating 3D compliant objects that show heterogeneous material properties. An online
estimation system, based on the Secant approximation and the Broyden’s method, obtains the
combined deformation-projection Jacobian which allows to predict in real time the deforma-
tion and the camera parameters. Thus, their method is able to work with uncalibrated vision
sensors. With regard to the control algorithm, a constrained optimization problem is solved
with the previously computed Jacobian to accomplish the predefined tasks in an environment
with potential disturbances.

2.4 Classification according to the control method

In contrast with the previous classifications, here the focus is on the control aspects rather than
in the modeling. The approaches that tackle multi-robot manipulation of deformable objects
depend usually on singular control laws and complex algorithms. This makes the control-based
classification heterogeneous, since a broad variety of approaches is available, and in some
cases the approaches cannot be directly assigned to an specific group due to its uniqueness.
However, we propose three different control groups in which several studied methods are
suitable for being included. Additional groups that can be considered include strategies based
on optimal, nonlinear or Jacobian-based control techniques too, but we only include this
information in Table 2.1 for brevity.

2.4.1 Classic control

As long as an approach follows at some level either a proportional or a PID control law, among
others, it can be treated as a classical control method. The most recent strategies tend to
relegate the classic control techniques to the low-level software layers.

A PD-position feedback controller with gravity compensation is adopted by Sun et al. in
[122]. This approach considers a general flexible payload whose position and orientation must
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be controlled by multiple robots, at the same time that vibrations at each contact are sup-
pressed. Deformation of the object is obtained from a finite element model, whose dynamics
are decomposed into rigid and flexible components that represent the original undeformed
shape and the change in shape due to deformation, respectively. Also Wada et al. develop the
core of their control strategy in [130] over a classic controller, that in this case is a simple PID
control law. They propose two different methods: a model-free PID control system, which is
valid only in the domain of small deformations, and a model-dependent PID controller, that
provides zero error convergence when the deformation is large. In the latter method a spring
mesh approximate model of the object is considered. As opposed to the previous approaches,
a classic control method can be found in [5] but at the low-level horizon. Here, velocities of
the individual manipulators are controlled by means of a PID control law. This controller may
introduce some additional errors in the system when dealing with some types of materials due
to a buildup in the integral term. It is important to remark that the use of the classic con-
trol law is secondary in this approach, and the main part of the control algorithm (high-level
control) is based on advanced planning strategies and convex optimization techniques.

2.4.2 Robust control

In robust control techniques, modeling errors and uncertainties are taken into account with
the aim of extending the controller’s validity. This type of control strategy is well suited when
dealing with deformation models due to the fact that uncertainties are always present in the
model parameters.

A robust control strategy is considered in [35], where each manipulator’s motion is driven
by an independent robust controller that is able to work in the presence of model parameters’
uncertainties. The global motion planner makes unnecessary any communication between
the system agents. Hu and Vukovich develop a shape control system in [68] derived also from
the robust control theory. This method aims to produce a desired out-of-plane deformation
on a flexible plate with embedded microactuators and sensors, which are represented as a
whole in an integrated mathematical model obtained from the Hamilton’s principle. In [101]
the authors propose a robust passivity-based controller that has into account the presence
of a time-varying disturbance in the deformation flow estimation, and in [110] the LMI (lin-
ear matrix inequality) optimization allows to identify the dynamic parameters of the robotic
structure and to define a robust control strategy. In spite of not being a formally developed
robust controller, the method proposed by Hu et al. in [69] emphasizes demonstrating the
robustness of several aspects it covers. One of these aspects is the selection of the state fea-
tures, in which task-relevant prior knowledge improves the robustness and effectiveness of
the control process. Robustness to moderate levels of occlusion, provided that no significant
or fast changes happen in the scene, is also achieved thanks to an online learning mechanism.
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2.4.3 Adaptive control

Uncertainties and errors in the model parameters are also assumed in adaptive control meth-
ods, and their values are allowed to change over time in order to adapt to the time-varying
systems. Learned deformation model methods are natural candidates for the adaptive control
strategies.

An example of the last statement is the adaptive control system by Navarro-Alarcon et
al. in [102] to estimate the object’s deformation parameters. For the arms to move in a co-
ordinated way, a saturated velocity controller is developed here. In the context of working
without deformation model, Bai and Wen propose in [16] two different control schemes: a
scheme where the robots velocity is predesignated and an adaptive control technique in which
the group velocity is estimated by each agent. A special case of the latter technique, in which
the group velocity is known by a single agent and the rest have to estimate it, is explained and
validated in experimental tests too. However, an adaptive control system can also be adopted
when a precomputed deformation model is present. Based on the Potential Field Method,
that creates an attractive force to the goal configuration and a repulsive one around obstacles,
the approach by Dang et al. [34] is focused on controlling the shape of a flexible surface. The
surface is modeled as a mass-spring-damper mesh, and a group of embedded microactuators
is considered to deform it. These actuators are divided into two different groups: absolutely
actuated points, in which information about desired point coordinates is provided, and rela-
tively actuated points, where relative distances to other neighboring points are set. Different
dynamic shape morphing adaptive control laws are designed for each group of microactuators
including parameters uncertainty.

2.5 Classification according to the perception system

As it can be inferred from the previous section, many different control algorithms are found
when analyzing the existing approaches in multi-robot manipulation of deformable objects.
In turn, each control method depends on different perception systems. This fact motivates the
perception-based classification that we present here, where three main groups are identified
in terms of the measured data.

2.5.1 Force-based perception

Perception systems focused on forces rely on the fact that interacting with deformable objects
necessarily implies a force exchange between all involved agents. For instance, in order to
grasp and raise an elastic foam part with a robotic gripper an initial grasping force is required
to prevent slipping during the lifting action. Afterwards, a second vertical force must be
applied to compensate the part’s weight and raise the part. By measuring and controlling
these forces, some deformable objects manipulation tasks can be successfully carried out.

This fact is shown in [16], where a force perception system is designed. Their decentral-
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ized control method considers the contact forces between the robotic manipulators and the
flexible load in order to describe the deformation of the soft object, and also to provide an
implicit way of communication to the manipulators. These contact forces are maintained by
the controller to avoid sliding of the object during the manipulation task. Delgado et al. also
consider contact forces by means of tactile sensors in [37], in order to develop an agile and
adaptable model-independent multi-robot system for dual-arm in-hand manipulation tasks.
They propose a novel representation of the tactile data based on tactile images, which are
obtained through a combination of dynamic Gaussians. This representation allows them to
design a manipulation controller that maintains and adapts the contact configuration accord-
ing to the task requirements.

2.5.2 Vision-based perception

As the manipulation process evolves, deformation appears and the shape of the object changes.
By monitoring these changes with a vision system, the relation between the motion of the
manipulators and the deformable object may be obtained, and afterwards the derived model
can be utilized by the control algorithm to produce the desired deformation.

Clear examples of vision-based perception systems are included in most of the methods
developed by Navarro-Alarcon concerning multi-robot manipulation of deformable objects,
like [101], where an energy-based dynamic-state feedback velocity controller is developed. In
this approach, deformation of the manipulated object is tracked by a visual feedback system,
in which the feedback points are treated with a nonlinear function to constitute a deforma-
tion feature vector. Four different types of deformation are defined for the control purposes:
point-based, distance-based, angle-based and curvature-based. Calibration of the vision sys-
tem is not needed here. In [102] the positions of multiple visual markers, which are placed over
the surface of the deformable object, are measured with the camera in order to obtain the po-
sition and shape errors. This approach can cope with uncalibrated kinematic transformations
too. Again, the Fourier-based controller in [100] constantly updates and recalibrates, if neces-
sary, the local deformation model using the vision sensor data. This perceived data also include
the full contour of the deformable part, that allows to compute the shape error. One require-
ment of this method is that a high contrast is needed between the manipulated object and the
image background. The recognition system by Li et al. in [86] is based on the Kinect sensor.
They perform a preliminary 3D segmentation, which obtains the masks of the garments on the
depth images, that is followed by the KinectFusion method invocation, which provides the
3D reconstruction. Binary features are extracted from the 3D reconstructed model in order
to make the comparison with the models from the database. The Kinect sensor is also utilized
by Tang et al. in [126] to obtain point clouds of a rope lying on a flat surface. With the aim of
manipulating the rope to get some desired configurations, they have designed a multi-robot
system based on the CPD (Coherent Point Cloud) non-rigid registration method, which ob-
tains a smooth transformation function from two different point clouds. This method shows
strong robustness under occlusions and allows to perform the next three sequential steps: state
estimation, task planning and trajectory planning.
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2.5.3 Force and vision-based perception

By combining the advantages of force and vision perception systems, a more robust and accu-
rate control method may be obtained. In some cases in which a specific tensional state must
be induced in the object for the force control to work, the vision system is the one in charge
of driving the object to that tensional state. This happens in [80], where a hybrid force-vision
controller is proposed. The vision system must drive the manipulated 2D sheet to a taut state,
so that the force controller can start to decrease the amount of wrinkles (the system is un-
able to measure force while the sheet is not taut), by either moving or applying traction to
the sheet to counteract the deformations created by the human manipulator. Also in [88] an
adaptive force-vision control system is utilized to separate deformable objects. Here, the force
controller prevents global deformation or damage in the area around the cut, and the vision
system updates online the trajectory according to the sensed deformation and the modeling
errors. A different strategy is followed in [5] with a low-level velocity controller that takes
into account the forces that are transmitted through the manipulated object. Despite the fact
that these forces cannot be sensed (i.e. they are virtual forces), they act in the decentralized
planner as an indirect communication channel which is complemented with an inter-agent
vision system. This vision system is implemented on each robotic manipulator, and obtains
the position and velocity of the neighboring agents. The force controller in [65], which regu-
lates the loading over the deformable object and obtains feedback data from a load cell, is also
complemented with a vision system that monitors the object deformation with a camera.

2.6 Classification according to the manipulation actions

Manipulation of deformable objects involves a sequence of different individual actions that
must be performed by the robotic system. These low-level basic actions can be classified into
two groups: deformation actions, which consist in inducing relative displacements of the
deformable object, and transport actions, which produce absolute displacements of the centre
of gravity of the object. Thus, this classification differentiates between methods where the
main contribution is provided either by deformation or by transport actions.

2.6.1 Deformation actions

Predicting and controlling deformation is usually the foremost concern when manipulating
deformable objects due to these reasons: manipulation tasks often require the object to be
deformed in an specific way, and also the “unstable” behavior they present may result in dam-
aging the manipulators or the objects themselves in case the deformation is not controlled.

An interesting study about deformation actions can be found in [28]. Cherubini et al. pro-
pose a vision-based method for deforming 3D materials exhibiting plastic deformation that
includes the following initial assumptions: a) it exists a finite set of deformation action types
(pushing, tapping and incising) and b) the deformation actions have a local influence into the
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object. A preliminary study with human participants is performed in order to validate these
statements, in which the participants are requested to form a certain shape with kinetic sand
in a sandbox, with one or both hands. This process is recorded with a fixed RGB-D camera, and
afterwards the output data are collected into a data set which is intended for training neural
networks. The study shows that the first assumption is valid, provided that mixed actions also
exist, and that the second one has to be relaxed, because actions may affect, in some cases,
to the entire state of the material. The assumption of a limited set of manipulation primi-
tives is considered also by Ruggiero et al. [110], in the framework of the RoDyMan project.
This project aims to develop new strategies in robotic nonprehensile dynamic manipulation
of deformable objects, with a dual-arm anthropomorphic robotic platform for performing
the challenging pizza-making process as the final demonstrator. The pizza-making process
includes various deformation subtasks, which they divide into two different nonprehensile
manipulation primitives: sliding and tossing. They show diverse results of the project that
include a method for real-time tracking of the manipulated object, in which an RGB-D sen-
sor is utilized for obtaining a point cloud that serves to create a finite element model of the
object. From a different perspective, Simon and Basri [116] develop a shape matching method
for finding a set of deformation actions such that the shape of an initially undeformed sur-
face is transformed into a specific deformed configuration. The initial shape is discretized to
a 2D linear elastic finite-element model, that is submitted afterwards to inner condensation
in order to reduce the mesh nodes to the ones of the contour, while retaining the physical
properties of the rest of the model. A non-linear optimization procedure allows to find the
contour forces that produce the desired elastic deformation. It is important to remark that the
method is locally defined, which makes it dependent on the source and target shapes initial
alignment.

2.6.2 Transport actions

Transport actions are necessary when the manipulation task requires the deformable object
to be placed on a position which differs from the initial one. High-level tasks usually imply
to perform these kinds of actions at some specific instants of the process.

As mentioned before, decentralized control techniques are proposed for transporting a
flexible payload by a multi-robot team in [16]. They limit deformation actions to the purpose
of providing the required grasping force, while the transport actions have the main role in
the tasks. Only the translational problem is considered, leaving the extension to the rota-
tional case open. Also in Alonso-Mora’s work the vast majority of the manipulation actions
are transport ones. In [5] the considered manipulation tasks relegate deformation actions to
avoiding obstacles and overstretching during the ensemble’s motion. The same idea is devel-
oped by McConachie and Berenson in [94], due to the fact that the purpose is to move the
object to a desired position while avoiding obstacles and maintaining the structural integrity
of the manipulated piece of fabric.
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2.7 Classification according to the application

Looking at the approaches from a more high-level point of view, a classification based on the
practical application they are explicitly intended for can be carried out. While some methods
develop general strategies that can be applied to many different purposes, others consist of
a group of specific tasks with a well defined interest. We show here four of those specific
applications to which some of the reviewed approaches can be associated.

2.7.1 Parts processing applications

Materials and parts processing is one of the most important applications in the industrial
field due to its economical impact. For instance, meat processing is tackled in [88] with the
aim of dividing large meat pieces into smaller ones. Manipulation of food products is also
considered in [35] from the perspective of manipulation with shape preservation. In the field
of electric and electronic components manipulation, one can find [142] and [14], where cable
and flexible circuit boards manipulation are respectively studied.

2.7.2 Medical applications

The interest in techniques related to medical processes (surgery, inspections, etc.) is clear.
These methods try to overcome some of the human limitations in terms of control, accu-
racy and accessibility to some parts of the body. Positioning and inserting elastic tissues in
surgery are some of the possible applications of the methods in [102], [100] and [101]. Also
in [2] heterogeneous phantoms are manipulated to perform surgery-related tasks, in dynamic
environments where the phantoms’ properties can change quickly.

2.7.3 Domestic applications

Assistive robotics is these days a source of robotic development that improves the perception
that the society has towards robots. In the near future, the combination of assistive robotics
with deformable objects manipulation will help people to perform some daily-life tasks, like
cloth folding or tablecloth spreading. These tasks are succesfully simulated in [20], and in [86]
cloth folding is complemented with garment type recognition. In [80] and [74] collaborative
human-robot cloth manipulation is considered, with a system that decreases the amount of
wrinkles produced by the human manipulator and a system that decreases the amount of
wrinkles from a random initial state of the cloth respectively. Finally, the method in [84]
could help people to perform cleaning tasks with delicate objects that require some amount
of force for the stains to be removed.
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2.7.4 Transport applications

There are some methods whose purpose is to move a deformable object from one place to
another, and in those approaches the transport actions (see Section 2.6.2) are usually the most
relevant ones. Mobile robots are well-suited for this kind of application, due to its ability
to perform manipulation tasks along broad areas. This characteristic is exploited by Alonso-
Mora et al. [5] to transport varied deformable objects in a wide space with obstacles. Bai and
Wen [16], in turn, consider fixed robotic arms in experimental tests to manipulate the object
in a very limited volume.

2.8 Classification according to the manipulator

In every manipulation strategy, a specific type of robotic manipulator must be selected to per-
form the involved tasks. This selection must be realized according to the method requirements
and the operational limitations of the robots. However, some approaches simplify the robotic
manipulators an treat them as grasped points, which move in a controlled way to accomplish
the tasks.

2.8.1 Point manipulators

The most basic manipulator model is a point or a set of points that represent the position
where the robot’s end effector is attached to the deformable object. In many cases, the prob-
lem of controlling a deformable object is formulated without considering the manipulator’s
dynamics, and therefore the control action is directly a dynamic output to the grasped point.
It may be useful to deal solely with the grasped points in the sense that substituting the robotic
manipulator should not affect to the rest of the system. This fact is confirmed in [35], when
the same approach is used to simulate a 2D shape control problem with multiple independent
point actuators and a shape preservation problem with a multi-fingered robotic hand. Never-
theless, additional work must be done to apply this type of algorithm to a real environment,
where the control outputs to the grasped points have to be transferred to the manipulator’s
own controller. Also in [130] a set of manipulation points is defined within the perimeter of
the discretized deformable object. According to the authors, the motion of these points is
controlled by a group of robotic fingers, but a priori the method would also be valid for the
case of independent robotic grippers. In [34] and [14] the manipulation points correspond
again to a predetermined set of nodes of the object model’s mesh. Due to the fact that the
method in [116] is designed to work within the context of computer vision and image recog-
nition, the hypothetical “manipulators” that deform the shape are not represented. However,
boundary forces are applied to the contour nodes of the finite element model of the object,
which could be ultimately considered as point manipulators.
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2.8.2 Fixed arm manipulators

Most of the reviewed methods consider standard robotic arms to perform the manipulation
tasks. A rough description of this standard design might be a fixed to the ground segmented
body, whose parts are linked by rotary joints and equipped with a gripping tool at its end
effector. Independent fixed robotic arms work in collaboration in the following approaches:
[102], [84], [16], [88] and [101].

When two fixed robotic arms are assembled into a common supporting structure, trying
to reproduce the human body configuration, the ensemble is treated as a single dual-armed
robot. These kinds of robots are utilized in [86], [74], [69], [142], [2], [80], [125] and [126].

2.8.3 Mobile arm manipulators

In general, a mobile arm manipulator consists in assembling a robotic arm on a wheeled plat-
form, which drastically extends the action range of the robots. This is a quite recent concept
of robot that contrasts with the widely adopted one of the confined fixed arm, and that is
the reason why there are still not many industrial applications that include them. In [5] some
robots of this kind are explicitly considered to carry out the manipulation process. Here, the
action area of the agents is clearly much wider than the one of the previous section methods,
and besides the robots can move over the floor in an omnidirectional manner thanks to the
Mecanum wheels. Also the dual-arm robotic platform in [110] is mounted on an omnidirec-
tional wheeled platform, so that it can perform the complex tasks involved in the pizza making
process. A more simplified version of mobile robot is shown in [133], where a group of small
low-cost manipulators move a box along the control points. Another interesting problem is
tackled by Sreenath and Kumar [119], where a box is held in the air through cables attached
to a group of quadrotors. The goal of the method is performing feasible trajectories with the
system (payload and quadrotors), which is modelled by means of a hybrid dynamic model.
They demonstrate that the hybrid system, which represents the behavior when all cable ten-
sions are positive or one of them is zero, is differentially flat, and show in experimental tests
the validity of the approach.

2.9 Multirobot control

For the purpose of developing new methods in manipulation of deformable objects by mul-
tiple robots, revising the general field of multirobot control can be undoubtedly helpful to
find the suitable motion planning or task management strategies. In the present section, we
analyze a brief selection of approaches that deal with multi-robot control problems, like robot
formation control and task management, without considering explicitly the manipulation of
deformable objects.

A distributed formation control technique is developed by Aranda et al. in [10]. The
method allows a group of robotic agents to reach an specific target formation in 2D without

39



Chapter 2. State of the art in multirobot manipulation of deformable objects

the need of a common reference orientation or a formation leader. Based on the minimization
of a Lyapunov function, the control law includes locally computed rotation matrices which
are obtained by each robot by measuring the relative distances to the formation neighbors in
its own local coordinate frame. Stability of the system is guaranteed by inducing an agents
network that belongs to a certain class of undirected rigid graphs in 2D. These results are
applicable to single-integrator and unicycle agents.

Alonso-Mora et al. propose a collaborative object transport strategy for dynamic envi-
ronments in [4] in which a specific formation is maintained by the robotic team as the task
proceeds. Two variants of the algorithm, which is scalable with the number of robots, are
presented: a local formation planning method, in which large obstacle-free convex regions
are obtained in the neighborhood of the robots, and a global path planning method, which
extends the previous approach by connecting successive obstacle-free convex regions when
a transition in formation is possible. The formation parameters (size, 3D-orientation, etc.)
are obtained by solving a constrained optimization problem via sequential convex program-
ming, and they are adjusted throughout the process in order to evade obstacles and avoid
collisions. Individual controllers, which account for the dynamic behavior of each agent, al-
low the robots to navigate according to the planned trajectory. This method is validated in
experimental tests, with a team of mobile ground manipulators, and also in simulations, with
a team of micro aerial vehicles.

In [18] a different motion planning method is developed by Basile et al. from the perspec-
tive of task management in a hyper-flexible multi-robot workcell. User-specified motion at
the workpiece level is provided to the global planner, which integrates a cooperative planner
and an arm planner. While the former defines the cooperative task-space trajectory in terms
of meaningful task variables, the latter translates the motion generated by the cooperative
planner into joint space outputs. The reference workcell consists of a group of robotic arms
that are divided in two different categories: positioners, which orient and displace the object,
and workers, which perform the necessary operations in the manipulated object. A set of in-
structions that extends classical programming languages for industrial robots to multi-robot
systems is derived from the developed formulation.

2.10 Discussion

From the analysis of the different methods that tackle the problem of manipulation of de-
formable objects by multiple robots, summarized in Table 2.1, some conclusions may be in-
ferred. Overall, autonomous manipulation of deformable objects is an important and complex
problem that is gaining attention in the recent years. It seems clear that using multiple robots
is a necessary condition in order to perform the manipulation tasks with flexibility and ro-
bustness guarantees, and also to extend the workspace.

Focusing now on the studied solutions, although model-based approaches can have some
advantages in terms of computational cost and accuracy, those approaches based on learning

40



2.10. Discussion

a deformation model in an online manner, or those that directly avoid considering a defor-
mation model, are far more flexible and robust. This flexibility is due to the fact that less
assumptions are made with respect to the nature of the object’s material and the manipula-
tion system. Concerning perception methods, hybrid force-vision systems should be chosen
to obtain a more complete state of the deformable object. However, depending on the strat-
egy or the system characteristics it may happen that only one type of feedback information is
available.

With respect to the issues that remain unsolved in this context, they include: a complete
and accurate perception of the deformable object, for any kind of shape; a complete integra-
tion between deformation control and transport of the object, with safety guarantees; and the
ability to manipulate fragile objects without damaging them. These are the topics we tackle
in this research work. Improving deformation sensing, the first of these aspects, is explored
in the next chapter through a multicamera system for coverage of deformable shapes.
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Table 2.1: Manipulation methods summary.

Reference Model Object Control Perception Actions Application Manipulator
Das et al. [35] Precomputed 2D Robust - Deform. Parts n point robots

(rheological) processing
Li et al. [86] Precomputed 3D - Visual Deform./trans. Domestic Dual-arm robot
Jia et al. [74] Precomputed 2D Classic Visual Deform./trans. Domestic Dual-arm robot

Duenser et al. [42] Precomputed 3D Optimal - Deform. Domestic Dual-arm robot
Long et al. [89] Precomputed 1D-3D - - - - n arms
Higashimori Learned 3D - Force-vision Deform. - mobile plate

et al. [65] (rheological)
Navarro-Alarcon Learned 2D,3D Adaptive Vision Deform. Medical cartesian robot

et al. [100] (elastic) and grippers
Navarro-Alarcon Learned 1D-3D Adaptive Vision Deform./trans. Medical 2 robotic arms

et al. [102] (elastic)
Hu et al. [69] Learned 1D,2D Nonlinear Vision Deform./trans. - Dual-arm robot
Berenson [20] Learned 1D,2D Jacobian - Deform./trans. Domestic 2 floating grippers

Mcconachie et al. [94] Learned 1D,2D Jacobian - Trans. Domestic 2 floating grippers
Langsfeld et al. [84] Learned 2D (elastic) - Force-vision Deform./trans. Domestic 2 robotic arms

Zhu et al. [142] Learned 1D - Vision Deform. Parts Dual-arm robot
processing

Alambeigi et al. [2] Learned 3D Optimal Vision Deform./trans. Medical n robotic arms
Wada et al. [130] Model-free 2D Classic - Deform. - n point robots

Bai et al. [16] Model-free 3D Adaptive Force Trans. Transport 2 or more
robotic arms

Long et al. [88] Model-free 3D Adaptive Force-vision Deform. Parts 2 robotic arms
processing

Kudoh et al. [82] Model-free 1D - Vision Deform. Domestic Dual-arm robot
Tang et al. [125] Model-free 1D - Vision Deform. - 2 robotic arms
Tang et al. [126] Model-free 1D - Vision Deform. - 2 robotic arms
Alonso-Mora Model-free 1D-3D Classic Force-vision Trans. Transport n mobile arms

et al. [5] (low-level)
Kruse et al. [80] Model-free 2D Jacobian Force-vision Deform. Domestic Dual-arm robot

and human
Navarro-Alarcon Learned 3D Robust Vision Deform. Medical 2 robotic arms

et al. [101] (elastic)
Sun et al. [122] Precomputed 3D Classic Pose-velocity Trans. - 2 robotic arms
Hu et al. [68] Precomputed 2D Robust Deformation Deform. Smart n piezoceramic

(elastic) structures actuators
Ruggiero et al. [110] Precomputed 3D Robust Force-vision Deform. Pizza making Dual-arm

mobile robot
Dang et al. [34] Precomputed 2D Adaptive Position & Deform. - n point robots

velocity
Delgado et al. [37] Model-free 3D Classic Force Deform./trans. Domestic Dual-arm robot
Simon et al. [116] Precomputed 2D (elastic) - Force-vision Deform. - n point robots

Sreenath et al. [119] Precomputed 1D Nonlinear - Trans. Transport n quadrotors
Mukadam et al. [99] Model-free 2D (elastic) Optimal - Deform. - n floating grippers

Asano et al. [14] Precomputed 3D - - Deform. Parts n point robots
processing

Tokumoto et al. [129] Precomputed 2D,3D - - Deform. - n point robots
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Chapter 3

Multicamera coverage of
deformable shapes
This chapter describes our method for performing perception coverage of the contour of an object along
a deformation process and according to a prescribed coverage objective, in terms of visibility and reso-
lution. We propose new techniques for guaranteeing feasibility of the coverage objectives, which include
the computation of the maximum visibility and resolution of the contour. Then, we solve an offline
constrained optimization problem to obtain the minimum number of limited field-of-view cameras that
achieve the coverage objectives. Alternatively, we describe an online technique that provides optimized
configurations when the object’s reference deformation is unknown. Our approaches are tested in sim-
ulated and real-world scenarios, in which our method achieves 100% of the target coverage.

3.1 Introduction

M easuring deformation of objects whose shape changes over time is, as outlined by the
previous analysis of the state of the art, an effective but challenging means for evaluat-

ing the quality and the level of execution of tasks where deformable objects are autonomously
manipulated. This is particularly true when dealing with objects that are large, fragile or that
show complex shapes or small deformations [126]. In these cases, control approaches require
a continuous and complete feedback of the object’s state [35], [110], which allows tracking the
object’s shape and evaluating the overall performance of the manipulation process. Such con-
trol and feedback systems usually employ multiple agents and sensing units [58], [27], [127].
Besides the industrial interest of these perception systems, medical applications related to
robot-assisted surgery also demand accurate and flexible sensing solutions [100], [3].

We focus our interest in industrial tasks where the shape of an object is deformed fol-
lowing a prescribed guideline. This is the case for manufacturing processes that transform
raw materials (cloths, plastics...) into objects with specific shapes. Guaranteeing a continu-
ous feedback of the object’s state in industrial environments may be challenging, taking into
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Chapter 3. Multicamera coverage of deformable shapes

account the highly dynamic and complex structure of deformable objects and the external per-
turbations. This is why our research problem consists in developing a multi-camera perception
system to cover an object whose shape changes over time, according to a set of prescribed re-
quirements. Coverage is defined in terms of completion and accuracy of the detected object’s
contour. We also want to optimize the performance of the perception system by minimizing
the number of sensing resources. The main properties we exploit to define the coverage task
are visibility, as a measure of coverage completion, and resolution, as an accuracy indicator.
A potential application of our system is the inspection of 3D printed parts, which are created
by stacking layers of material. Our techniques could be applied to cover the lateral surface of
the parts as they are built, to discover potential cracks and check the quality of the interlayer
bonding. The usefulness of this proposal is also significant with tasks involving objects of great
dimensions, such as the manipulation of large plastic containers, in which the lateral surface
of the contour must be continuously supervised for quality purposes. Other example applica-
tion would be the inspection of high precision machined parts during manufacturing. These
kinds of parts have critical cross sections whose lateral surfaces must be controlled carefully
to prevent defects. Our proposal could also be applied to monitor assembly tasks [61].

The perception of areas of interest, according to different requirements and constraints,
includes techniques that range from coverage to tracking. Depending on the type of deploy-
ment of the sensors, we can classify these approaches as static or dynamic. The deployment
criterium is closely related to whether the perceived environment is time-dependent or not.
Particularly, statically positioning the sensors is usually an appropriate strategy when there are
no substantial changes over time in the perceived environment. The well-known art-gallery
problem is essentially a static coverage strategy where the number of surveillance cameras
is minimized. Recent developments include variants of this problem for tracking of mobile
intruders with fixed and mobile guards [45]. In general, those studies based on the general
art-gallery problem do not include realistic models with sensing constraints [109]. This prob-
lem also shares some aspects with the one we tackle, but classical solutions to the art-gallery
problem are not directly applicable to our time-varying scenario. Other static perception
strategies with multiple sensors are selected for purposes like industrial inspection of 3D parts
[138], 3D reconstruction of pipelines for inspection [137], buildings exterior surveillance [120],
volume estimation of merchandise [13] and pose estimation in restricted space scenarios [39].
These kinds of works select the viewpoints with ad hoc criteria or from a predefined candi-
date set, which may be non-optimal, and have limited adaptability. In contrast, our approach
computes at every deformation instant the optimal set of cameras in the continuous space,
parameterized in polar coordinates (angle and radius).

Approaches where there is a single static sensing unit have been proposed for estimating
the deformation properties of deformable objects [52]. In other cases, dynamic deployment
may be necessary to obtain complete information of the area of interest. This happens in
coverage systems of 3D rigid parts for industrial inspection tasks [77] and in structure from
motion approaches [38]. Our target problem shares common points with the structure from
motion topic, but in that case the environment is static in general [54], not dynamic as ours.
Dynamic deployment of multiple sensing units may also be required for full perception at
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every time instant. This is the case in centralized approaches where small teams of robots
monitor 3D static environments [36] or enclose and track a mobile target [90], and also in
decentralized strategies where 2D static environments are monitored by large teams of robots
[113].

As for the active perception field [107], [17], works in this domain are dynamic in general.
Multi-camera centralized networks, where the position and orientation of each sensor are
optimized, are considered in studies of this field for shape recovery of moving deformable
objects [112], [104]. Compared to our approach, these works do not minimize the number of
cameras that are necessary to recover the shape of the object.

In an earlier version of this work [59], we have described a new technique for obtaining the
maximum visibility of a given shape from a certain distance to it. Besides, we proposed a new
formulation over a continuous search space, with safe and robust perception criteria, and the
minimization of the number of cameras required for the coverage task. The present chapter
improves and extends the previous work with the following main contributions: (a) a new
formulation of the optimization problems, which is less constrained and more efficient; (b) the
computation of the maximum angular resolution of a shape; (c) a fast coverage technique based
on local optimization of the cameras; and (d) a novel analysis of the geometrical visibility
properties of a shape. The improved system is evaluated with additional results and analyses
from different experiments, in both simulated and real scenarios.

3.2 Problem statement

3.2.1 Framework and assumptions

Let us consider an object that undergoes non-negligible deformations due to some specific
manipulation process. The object’s shape is defined by the 2D contour of the object’s vertical
projection onto the ground plane. For inspection purposes, the contour must be sampled at
each instant k (k = 1, ...,K) by a set of 3D cameras. These cameras ci(k) (i = 1, ..., C)
are able to position and orient themselves around the contour’s centroid g(k) (e.g. they are
mounted on mobile robots or robot arms). In particular, their degrees of freedom are the
following: (i) ψi(k), the angle around g(k) where the center of the camera is located, (ii)
di(k) (dmin ≤ di(k) ≤ dmax, ∀i), the distance between the camera center and g(k), and
(iii) ϕi(k), the camera orientation. We consider that the cameras’ movements obey single-
integrator kinematics, and no vision model is selected a priori. Instead, we focus on ray trac-
ing from the optical center of the cameras, and angular and range parametric constraints are
applied to the rays to approximate the restricted Field of View (FOV). This formulation is
compatible with any model based on ray tracing from an optical center, like laser-based sen-
sors, or even with tools like spray guns. Figure 3.1 shows the overview of the studied system.

The different assumptions we consider in the present study are reported next:

Assumption 3.1. Known data. We consider the following:
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Chapter 3. Multicamera coverage of deformable shapes

Figure 3.1: Overview of the system we consider. At the center of the figure, the 2D sampled contour
of the object is fully covered by six restricted FOV cameras. As the object deforms, the cameras will
synchronously move and rotate so that the coverage is guaranteed at all times. The global axes (X , Y )
and the local optical axes of camera i (xi, yi) are represented. In addition, we show the projection rays
that link the center of each camera to the contour vertexes.

1. Cameras can get accurate 2D point clouds of the environment.

2. We know the state of the cameras with respect to the object ci(k) = [ψi, di, ϕi] at any
time.

3. We know the desired deformation of the object. Therefore, we have at each instant k an
approximated shape of the 2D contour of the object, called reference contour, as well
as an approximated g(k).

Assumption 3.2. Slow deformations. We assume that the object’s deformations (i.e. contour
shape variations) between each two consecutive deformation instants k and (k + 1), ∀k, are
small. We assume, therefore, that the dynamics of the deformable object are as slow as to
allow the cameras to reach their required positions and orientations ∀k.

It is not unusual to consider reference models that complete missing information for re-
constructing complex setups [137] or deformable objects [9]. In our case, the reference contour
gives the desired shape of the object during the deformation process. For example, for inspec-
tion of 3D printed parts, the desired contour shape of the 2D layers, which is known a priori,
would represent the reference contour. Depending on the task, it does not need to be accurate
necessarily. If the purpose is, for instance, to inspect a large object, a rough approximation
of the contour may suffice. A collection of reference segments is obtained by sampling the
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reference contour, and the number and size of the reference segments sj(k) =
[
vj ,v(j+1)

]
(j = 1, ..., S) must be set according to the requirements of the inspection task and the com-
plexity of the contour shape.

For clarity purposes, we will omit in general the (k) term in the rest of the chapter.

3.2.2 Optimization objectives

We set the coverage objectives, in terms of visibility and resolution, from an optimization
point of view.

Definition 3.1. Visibility cost. We define the visibility cost

γv =

∑S
j=1 γvj∑S
j=1 ϑ

∗
j

, with γvj =

{
ϑ∗j − ϑj if ϑ∗j > ϑj

0 otherwise
. (3.1)

ϑj indicates the number of cameras that detect segment sj at the k instant, and ϑ∗j represents the
target number of cameras that must detect sj according to the requirements of the inspection task.

The visibility cost describes how far the system is from the objective of detecting the con-
tour segments as required, in terms of visibility. Note that detecting a segment with more
cameras than necessary does not contribute to decrease the value of the visibility cost.

Definition 3.2. Resolution cost. We define the resolution cost

γr =
1

β
∑S′

j=1 1/r
∗
j

S′∑
j=1

β − rj
r∗j

, (3.2)

where β is the cameras’ angle of view, rj indicates the maximum angular resolution of segment sj , r∗j
is the target angular resolution of sj and S′ is the number of visible segments with r∗j > 0.

The resolution cost allows to evaluate the angular resolution of the segments with respect
to the maximum resolution. The target resolution should take higher values in those areas
where more accurate perception is required, as it will drive the cameras towards front-facing
positions with respect to the segments. In case no specific resolution is required in an area,
the segments there should be assigned r∗j = 0.

As a consequence, the near-optimal configurations of the cameras c∗i = [ψ∗
i , d

∗
i , ϕ

∗
i ] are

the ones that reduce both costs to, at least, these values:

γ∗v = 0 , (3.3)

γ∗r (rj = r∗j if rj > r∗j ) = β

S′∑
j=1

(
1

r∗j

)
− S′ . (3.4)
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Then, the problem we tackle consists in configuring a minimal set of cameras in a near-
optimal manner so that they cover a 2D contour that deforms over time, as specified in terms
of visibility and angular resolution. Inter-camera collisions and occlusions must be avoided
to guarantee coverage in the whole deformation process. Note that placing a single camera
on top of the contour for inspection is not a valid solution in our case. This is due to the fact
that lateral views of the contour would not be obtained for inspection.

Properly defining the target visibility and angular resolution is crucial for obtaining the
desired behavior of the system. In the next section, some tools are proposed for defining the
target visibility and angular resolution with feasibility guarantees.

3.3 Maximum visibility and resolution

In order to define feasible objectives we need to identify the segments that are inevitably
occluded, and also the maximum angular resolution of each detected segment that a camera
placed around g can obtain.

Definition 3.3. Maximum visibility. The maximum visibility ϑmaxj of a segment is a value that
indicates the maximum number of cameras that detect sj from the distance d. If sj can be detected,
ϑmaxj > 0, and ϑmaxj = 0 otherwise.

The maximum visibility of convex contour shapes is known a priori in an obstacle-free frame-
work (ϑmaxj > 0, ∀j). However, when dealing with non-convex shapes non-visible zones may
appear due to auto-occlusions.

Previously to computing this property, we need a way to determine whether a segment sj
can be detected or not from certain camera position. For this purpose, we consider a system
based on bi-partite visibility graphs.

Definition 3.4. Bi-partite visibility graph. The bi-partite visibility graph

Gv = (CT ,Sref ,E) , (3.5)
CT = {c1, ..., ci, ..., cC}, Sref = {s1, ..., sj , ..., sS} , (3.6)

is the graph where an edge ei,j ∈ E connects the camera center ci with the vertex vj ∈ sj if the
virtual line that links them in the 2D space does not intersect any obstacle, i.e. if vj is visible from ci.
Each edge’s weight is equal to the Euclidean distance dE(ci,vj).

Then, if two edges ei,j and ei,j+1 exist, such that ei,j = [ci,vj ] and ei,j+1 =[
ci,v(j+1)

]
, we determine that segment sj =

[
vj ,v(j+1)

]
is visible from ci. Figure 3.2

shows a visible segment sj with its angular resolution rj . We formulate next the method to
compute the maximum visibility of a 2D discretized contour from a prescribed distance to g.

Proposition 3.1. Consider the bi-partite visibility graph of an scenario with no obstacles where
the object is surrounded by infinite omnidirectional cameras (C →∞) with unlimited FOV
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vj

vj+1

ci

sj

ei,j

ei,j+1

rj

vj−1

vj+2

β

sj−1

sj+1

Figure 3.2: Example of visible segment. Segment sj is visible from ci with angular resolution rj (in
green), under the angle of view β (in blue).

range. The cameras completely cover a circumference of radius d centered at g. In such situa-
tion, the graph provides exactly the number of segments that are visible from that circumfer-
ence, with ϑmaxj →∞ if sj is visible and ϑmaxj = 0 otherwise.

Proof. By definition 3.4, sj is visible from ci if its two vertexes, vj and v(j+1), are connected
by edges to ci. Thus, ϑmaxj of the setup described in Proposition 3.1 can be computed as
follows:

ϑmaxj =

C∑
i=1

(∃ei,j ∧ ∃ei,j+1) , (3.7)

where we treat the boolean outputs true and false as integers 1 and 0, respectively. Given that
every possible sensor location at a distance d around g is considered and that omnidirectional
cameras are able to detect in any possible direction, every possible valid edge will be deter-
mined. Therefore, every visible segment will be obtained with ϑmaxj → ∞, as well as the
occluded segments with ϑmaxj = 0.

Remark 3.1. Note that in practice the number of camerasC is a finite value. For this reason, an exact
accuracy for identifying occluded segments, when computing ϑmaxj , may not be achieved (infinite
positions for detection are not evaluated). Despite this, we obtain a useful measure: the closer ϑmaxj is
to C , the wider the range of possible locations from which sj can be detected. This measure allow us to
know the difficulty of detecting a segment compared to the rest.
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o

sj

g

Figure 3.3: Example of contour shape with a dovetail slot. Segment sj will be fully detected only by
those cameras that are placed within the blue dashed area.

Next Proposition includes additional reasoning about the maximum visibility, concerning
the distance from which this one is obtained.

Proposition 3.2. Consider a bi-partite visibility graph with infinite omnidirectional and un-
limited FOV range cameras, which are placed at a distance d from g. Then, by reducing the
distance d the visibility of the contour segments will remain constant or it will increase for
any possible shape, but it will never decrease.

Proof. If we consider the paradigmatic case of a contour that includes a dovetail shaped slot,
whose inner part consists of a single segment sj , only those cameras that are placed inside
an specific area in front of the slot will be able to detect the segment. This area is contained
between sj and the two adjacent lines that start at both vertexes of sj and intersect at the
point o (Fig. 3.3). Thus, only if d ≤ g o the segment sj will be detectable. In addition,
no geometric construction exists such that the opposite effect occurs: the area in which the
camera must be placed to detect the segment will always start at the segment, and it will
extend from there on.

Remark 3.2. An interesting observation arises when applying the test of Proposition 3.1 to a continuous
contour, e.g. given by a parametric curve {x(ψ), y(ψ)}. As long as the infinite cameras lie outside the
convex hull of the contour, ϑmaxj will remain constant for every segment independently of the distance
d. This is explained by the fact that when obtaining ϑmaxj , each edge connecting a camera center to
a contour vertex will determine a semi-infinite projection ray. These rays start at the contour vertexes
and have the direction of the edges, and their main property is that any camera placed on them will be
able to detect the contour vertex. Given that the cameras can be placed on any circumference outside the
convex hull centered atg, and that all projection rays cross the convex hull, any circumference of infinite
cameras will intersect all projection rays. Thus, ϑmaxj values will remain constant independently of d.
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Definition 3.5. Maximum resolution. The maximum resolution rmaxj of a segment is a value that
indicates the maximum angular resolution of sj that can be obtained from the distance d to g by a
camera. If sj can be detected, rmaxj > 0, and rmaxj = 0 otherwise.

The setup described in Proposition 3.1, which allows us to obtain the maximum visibility, is
also appropriate without modifications for obtaining the maximum resolution in the following
manner:

rmaxj = max
i

[
cos−1

(
ei,j · ei,j+1

∥ei,j∥2 · ∥ei,j+1∥2

)]
. (3.8)

Note that the shorter the distance d, the greater rmaxj values are.

The maximum visibility and the maximum resolution establish upper bounds that cannot be
surpassed in terms of visibility and resolution of the object’s contour. It is important to men-
tion that we consider point cameras when computing the maximum visibility and the maximum
resolution. This may imply that the real system, with physical constraints, cannot obtain the
maximum values for all the segments at the same time.

3.4 Offline optimization

3.4.1 Limits of the number of cameras

In addition to the maximum visibility and resolution, we are going to compute the lower and
upper bounds of the number of cameras to perform the required coverage. The minimum
number of cameras can be obtained with additional formulation from the setup described in
Proposition 3.1. Approaches dealing with coverage problems often include a visibility map or
visibility function, which relates the point of view of a sensor with the parts of the object it
is covering at certain time instant [120], [104]. From Proposition 3.1 we can also consider a
visibility matrix VS×C = [Vji] that indicates which segments are detected by each camera,
i.e. Vji = 1 means that segment sj is visible for the camera ci, and Vji = 0 otherwise. Then,
we define the following integer linear programming problem:

Given V, [ϑ∗1, ϑ
∗
2, ..., ϑ

∗
S ]
T

minimize
C∑
i=1

ϵi (3.9)

subject to V · [ϵ1, ϵ2, ..., ϵC ]T ≥ [ϑ∗1, ϑ
∗
2, ..., ϑ

∗
S ]
T ,

ϵi ∈ {0, 1}, ∀i ,

where ϵi = 1 activates the camera ci and ϵi = 0 deactivates it. The final cost, after solving (3.9),
represents the minimum number of omnidirectional cameras, with unlimited range, placed
at a distance d from g that achieve the target visibility. Here we only consider the visibility
objective, so that we get a more conservative solution than considering both visibility and
resolution.
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As for obtaining the upper bound of the number of cameras, we follow a conservative area
division strategy. We compute the maximum number of cameras as

truncation
(
d2max − d2min

d2c/4

)
≥ C , (3.10)

where radii dmin and dmax represent the space where the cameras are allowed to move, and
dc/2 is the radius of the minimum bounding circle of a camera. Essentially, we obtain with this
equation the maximum number of cameras fitting in the allowable space in an approximate
but conservative manner.

3.4.2 Minimization problem

Once we know how to set feasible ϑ∗j and r∗j , and also the range where to search the minimum
number of cameras, we can define the optimization problem at instant k we are interested in.

Firstly, we define a new type of bi-partite visibility graph with the purpose of including the
FOV constraints of the cameras into the problem.

Definition 3.6. Restricted visibility graph. The restricted visibility graph is a bi-partite visibility
graph where all edges connecting a camera with the contour vertexes are contained within the cameras
FOV limits β and Lmax.

This new graph is created by comparing the weight of each edge ei,j , given by the Eu-
clidean distance dE(ci,vj), with the cameras’ maximum rangeLmax, and the angle between
the edge and the camera’s local axis xi (Fig. 3.1) with the cameras’ angle of view β. If the
weight is greater than Lmax or the angle is greater than β/2, we consider that vj is not vis-
ible from ci, and therefore we remove the edge from the graph. After the comparison and
filtering, the intersections checking is applied to the remaining edges. In this case, the set of
obstacle segments includes not only the set of segments of the object Sref , but also the set of
camera segments. This is due to the fact that the FOV of a camera may be occluded by other
neighboring cameras. The set of camera segments is obtained by sampling the contour of the
geometric 2D camera model, which represents the 2D shape of the cameras.

With these new constraints for computing ϑj and rj , the optimization problem is defined
as follows:

Given CT ,Sref

minimize
CT

γ = F · γv + (1− F ) · γr + γσ (3.11)

subject to dE(ci, cl) ≥ dc ,
∀i, l = 1, ..., C, i ̸= l .

γ is the cost function of the problem, that includes a linear combination of γv and γr through
the interest factor F ∈ [0, 1]. F is a user-defined constant that regulates the relative con-
tribution of the visibility and resolution terms, as required by the specific coverage task. The
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remaining term, γσ , exploits the potential field approach to prevent collisions in those scenarios
that require two cameras to be close to each other:

γσ =
1

(2 min∀i,l, i̸=l{dE(ci, cl)}/dc − 1)w
(3.12)

where the ‘min’ operator selects the minimal distance between two neighboring cameras, dc
is the minimal safety distance between two neighboring cameras, and w is an exponent that
regulates the distance where γσ is effective. This exponent w > 0 is tuned according to
the safety requirements, so that w is small when large separations are demanded, and large
otherwise. Thus, the γσ term introduces flexibility for collision avoidance, with a positive
contribution that shows near zero values when the cameras are widely spread and near 1 values
when the distance between two of them approaches to dc. In addition to γσ , the set of non-
linear constraints that we include at the end of (3.11) prevents two cameras from getting closer
than dc under any circumstances. These constraints also avoid considering near-infinite values
of γσ that can lead to a malfunctioning of the pattern search optimizer.

We propose an iterative technique to solve (3.11) at the deformation instant k. In the
first iteration the problem is solved for the minimum number of cameras computed in (3.9),
and the values of γv and γr are checked. If values in (3.3) and (3.4) are satisfied, the process
stops, and the near-optimal configurations C∗

T and the near-optimal number of cameras C∗

are obtained. Otherwise, the problem is iteratively solved for C := C + 1 until equations
(3.3) and (3.4) are satisfied or the maximum number of cameras from eq. (3.10) is reached. We
solve (3.11) with the pattern search method [15], which is a derivative-free approach compatible
with our cost function γ. Although global optimality is not guaranteed, this method always
provides, at least, a local optimum.

3.4.3 Minimization problem of the complete deformation process

We extend the result obtained in the previous section, the minimum number of cam-
eras C∗(k) at the deformation instant k, to the complete deformation process. The first
step consists in solving (3.11) for a set of instants such that Assumption 3.2 is still satis-
fied at each two consecutive instants. When we have the solution for each selected k, we
compute the minimum number of cameras that are required to perform the coverage task
as C∗ = max∀k C

∗(k). This conservative measure improves the robustness against unex-
pected situations, although it may overfeed the system with unnecessary cameras at certain
instants. After that, the optimization is performed again withC(k) = C∗,∀k, and the refer-
ence positions and orientations are computed. The main steps involved in the minimization
of the number of cameras for the full deformation process, and the sequence in which they
are performed, are shown in Algorithm 3.1.

It is important to highlight that this process is offline, i.e. it is performed over the refer-
ence contours and before the real task takes place. If the evolution of the object’s deformation
is similar to the planned one during the real coverage task and the optimization objectives are
still achieved, these reference configurations are the ones the cameras will adopt. The target
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Algorithm 3.1 Compute C∗.

1: Set k ← 0
2: C∗ ← Cmin(k) # obtained from (3.9)
3: while k ≤ K do
4: Initialize γv > γvstop and γr > γrstop
5: C∗(k)← Cmin(k)− 1
6: while ((γv > γ∗v ) or (γr > γ∗r )) and (C(k)∗ < Cmax) do
7: # Cmax is obtained from (3.10)
8: C∗(k)← C∗(k) + 1
9: Minimize γ(k, ψi, di, ϕi) # defined in (3.11)

10: end while
11: if C∗ < C∗(k) then
12: C∗ ← C∗(k)
13: end if
14: k ← k + 1
15: end while
16: return C∗

visibility and resolution are evaluated online by comparing the detected segments with the
ones in Sref . During the real coverage task, if one of the points detected by the cameras, at
least, lies on an area containing a reference segment, we consider that the reference segment is
detected. The accuracy of the selected cameras determines the dimensions of this area. Then,
if equations (3.3) and (3.4) are satisfied at k, each camera will follow the shortest path from
ci(k) to ci(k + 1), while avoiding collisions with the neighboring cameras to reach the next
optimal configuration. In case deformation evolves in a different manner than the planned
one, we propose in the next section an online reactive strategy that improves the achievement
of the optimization objectives in a setup with high uncertainty.

3.5 Online optimization

During the real coverage task the object may undergo unexpected deformations. In order to
properly capture these deformations and continue to cover the object as required, the system
must be able to reconfigure itself in an online manner if necessary.

In case abnormal deformations (over a threshold) are detected, the object’s reference con-
tour is updated with the cameras data. Then, we propose an online repositioning technique
that performs local optimizations at the camera level, as opposed to the offline method, where
optimizations occur at the set level. This method provides near-optimal configurations of
lower quality than the global optimization, but much faster than the former one. According
to Assumption 3.2, deformations are small between k and (k+1), and therefore we consider
that ci(k) and ci(k+1) will be close. Then, we can restrict the values of the optimization pa-
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Figure 3.4: Flow chart including the main elements in the online optimization method.
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rameters and perform individual optimizations with each camera. The new local optimization
problem at the deformation instant (k + 1) is defined as follows:

Given CT , S

minimize
ci

γ = F · γv + (1− F ) · γr + γσ (3.13)

subject to dE(ci(k + 1), cl(k + 1)) ≥ dc ,
ci(k) · (1−m) ≤ ci(k + 1) ≤ ci(k) · (1 +m) ,
∀i, l = 1, ..., C, i ̸= l ,

where S is the set of detected segments andm is a user-defined threshold that sets the allowed
margin to perform the local optimization. It is worth mentioning that, despite the fact that
only the configuration of one camera is optimized each time, the complete visibility graph
with all the cameras is considered. The local optimizations can be solved in parallel, but
better results in terms of optimality can be obtained if the problem is solved sequentially for
each camera, at the expense of a higher computational cost. After each local optimization,
the visibility graph is updated with the newly computed configurations.

The local optimization method also allows to relax Assumption 3.1.3 as follows: The defor-
mation of the object is unknown, but an approximated shape of the 2D contour of the object,
called reference contour, as well as an approximated g(k) are known at the initial deformation
instant k = 1.

This means that we can utilize this technique even when the deformation evolution is
unknown a priori, provided that the initial contour shape is known. As long as the detection
of segments with coverage requirements (ϑ∗j > 0 or r∗j > 0) is maintained from k to (k +
1), the local optimization can be directly applied over the updated contour. At the initial
deformation instant we still need to apply the iterative optimization, in order to obtain the
set of C∗ minimal cameras with their initial near-optimal configurations. C∗ will remain
constant for the whole deformation process, as well as the target visibility and resolution. Note
that maintaining the target values over time requires tracking and matching of the contour.
We consider that the development of these techniques is out of the scope of this study, and
we assume they are given. Figure 3.4 shows a flow chart with the main processes of the online
optimization method.

It may happen that the local optimizations are not able to achieve the target visibility and
resolution at some k. In such situations, the global optimization, with the complete set of
cameras, can be executed online.

3.6 Experimental results

In this section, we present different experiments focused on validating the theoretical results
and techniques we have developed. We evaluate in Matlab® a general set of cases, with diverse
shapes and deformation processes. In the absence of a specific data set with 2D objects that
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undergo deformation, the 2D shapes we use in the simulations have been obtained from the
MPEG-7 data set [85]. This data set contains many different images in bitmap format. From
these images, we have extracted a sampled contour by using a regularly spaced grid. Firstly, we
will test the effectiveness of our methods for obtaining the desired results and behaviors, i.e.
how well they meet the expected operational requirements. Secondly, we will evaluate their
performance and utility for being applied on real perception tasks.

3.6.1 Maximum visibility and resolution tests

We will start by testing the effectiveness of our methods for obtaining the maximum visibility
and maximum resolution of contours from the data set. As we previously mentioned, this infor-
mation is needed for setting feasible coverage objectives, and it will be exploited in the next
sections. Given a 2D image from the data set, we extract and sample the contour to create
a set of reference segments Sref . Then, we cover the sampled contour with a set of evenly
spaced omnidirectional cameras with unlimited FOV range at a distance d from g, and af-
terwards we create and analyze bi-partite visibility graph. We have applied the method to the
1400 images of the MPEG-7 data set with the following common parameters, for uniformity
purposes: S = 200 segments,C = 500 cameras and d is equal to the greater side of each con-
tour bounding box. Figure 3.5 shows some examples that have been tested with our method,
including their visibility ratios vr , defined as

vr(%) = 100 · visible perimeter / total perimeter . (3.14)

The segments are colored depending on their maximum resolution rj with respect to rtop,
the absolute maximum resolution, in five different intervals. Figure 3.6 shows a box plot
of the vr values of all the images from the data set, grouped in six different categories ac-
cording to the total contour perimeter. Results seem reasonable for different reasons. As
expected, lower visibility ratios are obtained as the contour perimeter increases, since shapes
with longer perimeters in the data set are usually more complex. We can see also that as the
contour perimeter increases, so does scattering in the vr values. Besides, in Figure 5 the closer
to perpendicularity the segments are to the radii of the circumference where the cameras are
placed, the higher the rj values are. Additional statistical measures include an average visibil-
ity ratio of 96.98%, a 65.29% of the contours being fully visible, and a minimal visibility ratio
of 32.70% (Fig. 3.5(f)). As no previous analyses about visibility and resolution of 2D shapes
such as the one we present have been performed, this study may serve as a baseline for further
research.

3.6.2 Cost function tests

Now, we evaluate the effectiveness and performance of γ (3.11). Given a 2D object, we analyze
how the system is configured in different situations. In order to properly highlight the effects
of each individual term in γ, we perform the following simulations over a squared contour
shape:
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(a) Shoe. vr = 100.00% (b) Bat. vr = 99.73%

(c) Deer. vr = 98.07% (d) Lizzard. vr = 87.86%

(e) Spring. vr = 59.16% (f) Device. vr = 32.70%

Segment
color

rj = rtop

———— rj = 0.75 rtop

———— rj = 0.5 rtop

———— rj = 0.25 rtop

———— sj occluded

Figure 3.5: Shapes from the MPEG-7 data set [85] with their visibility ratios. Segments are colored
depending on their maximum resolution rj with respect to rtop, the absolute maximum resolution.
Occluded segments are depicted in red (best seen in color and with zoom). The dashed line circumference
indicates the distanced fromgwhere the omnidirectional cameras with unlimited FOV range are placed.
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Figure 3.6: Visibility ratios of the 1400 contours from the MPEG-7 data set [85], contained in a single
box plot. We can see that as the total perimeter increases, so does scattering, and also that the median
is near 1 (full visibility) in all categories.

a) γ = γv . Only visibility properties are analyzed. ϑ∗j = 1 for all contour segments,
which corresponds to a coverage task where we want the full contour to be inspected
by, at least, one camera.

b) γ = γr . Only resolution properties are analyzed. r∗j = rmaxj /2 for all contour seg-
ments, which corresponds to a coverage task where we want the full contour to be
detected with, at least, the half of the maximum resolution.

c) γ = (γv + γr)/2. The effects of combining the visibility and resolution terms are
studied. ϑ∗j = 1 for the segments of the top and bottom sides of the square, and ϑ∗j = 0
for the rest. r∗j = rmaxj /2 for the segments of the right and left sides of the square, and
r∗j = 0 for the rest. It corresponds to a coverage task where we want some parts of the
object to be simply inspected, while others must be inspected more accurately.

d) γ = (γv + γr)/2 + γσ . All terms are considered, including the γσ term. The target
visibility and resolution are set in the same manner as in statement c). It corresponds
to a coverage task similar to the one of the previous case, but here the cameras must be
more separated for safety reasons.

For these tests we set C = 4 cameras, S = 100 segments, β = 30°, Lmax = 400 units,
and the γσ exponent is set to w = 5. These cameras are radially constrained to the space
between the distances dmin and dmax, which have been set to 1.5 and 2.2 times the greater
side of the contour bounding box, respectively. Figure 3.7 shows the restricted visibility graphs
optimized at each simulation, and Table 3.1 contains the values each term of γ takes. We can
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(a) γ = γv (b) γ = γr (c) γ = (γv + γr)/2 (d) γ = (γv + γr)/2 + γσ

Figure 3.7: Four restricted visibility graphs resulting from different test with C = 4 cameras, over a
squared shape. ϑ∗

j = 1 in the thin orange line segments and ϑ∗
j = 0 in the rest, while r∗j = rmax

j /2 in
the thick orange line segments and r∗j = 0 in the rest.

see clearly how γv induces the cameras to move towards the radial limit dmax, so that the
FOV is exploited to the highest extent and the maximum number of segments are detected
(in fact, in Fig. 3.7(a) the yellow camera could be omitted without affecting the result). A
different tendency is driven by γr in Fig. 3.7(b), which pushes the cameras to be closer to
the object and as perpendicular as possible to the faces of the square, so that higher angular
resolutions are obtained. The combined effects of γv and γr reach the optimized state shown
in Fig. 3.7(c), which is modified in Fig. 3.7(d) when adding γσ to include wider separations
between the cameras.

Table 3.1: Evaluation of the terms of γ with the squared shape, at each one of the four simulations (Fig.
3.7).

Test F Fγv (1− F )γr γσ γ

Fig. 3.7 (a) 1 0 0 8.9956E-5 8.9956E-5
Fig. 3.7 (b) 0 0 9.5917E-1 1.0458E-4 9.5928E-1
Fig. 3.7 (c) 0.5 0 4.7290E-1 1.6684E-2 4.8958E-1
Fig. 3.7 (d) 0.5 0 4.7404E-1 8.1569E-4 4.7485E-1

Additionally to these tests, we study the influence of w in the effects that γσ produces.
The iterative optimization is applied to a circular contour with S = 100 segments, covered
by a set ofC = 6 cameras with FOV restricted to β = 45° andLmax = 800 units. The radial
constraints of the cameras are the same as in the previous case. In this example, we consider
a critical section of the contour that must be inspected by at least 4 cameras. Therefore,
the target visibility of 20 consecutive segments is set to ϑ∗j = 4, while for the rest of the
segments ϑ∗j = 1. This configuration produces a dense concentration of cameras. For better
understanding the simulation results, the user-defined factorF has been set to 1 to disable the
resolution term. Then, there are opposite effects produced by γv and γσ in such setup: while
the cameras tend to be close by the effect of γv and the achievement of the required coverage,
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(a) w = 5 (b) w = 4 (c) w = 3 (d) w = 2

Figure 3.8: Four restricted visibility graphs resulting from test cases with different values of w in the γσ
term, over a circular shape. Thick orange lines represent those segments that must be detected by 4
cameras (ϑ∗

j = 4).

γσ forces them to be separated. The balance here is modified by assigning decreasing values
to the w exponent. This extends the effective distance of γσ , which forces the cameras to be
more and more segregated.

Figure 3.8 shows the graphical results of these optimizations forw = 5, 4, 3, 2, and Table
3.2 summarizes, for eachw, the values the terms in γ take. It can be seen that at the beginning,
as w decreases, γv remains constant and γσ increases. Then, when w = 3, γv starts to grow
and γσ decreases, and finally for w = 2 both values increase.

Table 3.2: For each simulation with a different value of w, over the circular shape, values of the terms in
γ (Fig. 3.8).

Test γv γσ γ

w = 5 3.7500E-2 1.6720E-2 5.4220E-2
w = 4 3.7500E-2 3.8068E-2 7.5568E-2
w = 3 1.1875E-1 2.0267E-2 1.3902E-1
w = 2 1.5625E-1 5.2453E-2 2.0870E-1

These results show how adaptive the cost function is to different coverage tasks. By adjust-
ing the configuration parameters (namely, F and w) we can give preference to the visibility
goal over the resolution goal or vice versa, or favor greater separations between the cameras
in case higher levels of safety are needed.

3.6.3 Offline optimization tests

Our offline techniques for solving the minimization problem over a complete deformation
process, are evaluated next. In this case, we consider a bone shape taken from the MPEG-7
data set and we sample it in S = 100 segments. We model deformation by applying different
exponential distortion functions to the initial shape. Cameras’ FOV are here constrained to
β = 60° and Lmax = 600 units, the minimum radial limit dmin is equal to the greater side
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(a) k = 0 (b) k = 100 (c) k = 200 (d) k = 300

(e) k = 0 (f) k = 100 (g) k = 200 (h) k = 300

Figure 3.9: From (a) to (d), restricted visibility graphs at four different deformation instants, resulting
from the iterative optimization over a bone shape. The restricted visibility graphs resulting from the opti-
mization with a set of C∗ = 6 cameras, over the same shape and at the same four deformation instants,
are shown from (e) to (h). ϑ∗

j = 1 in the thin orange line segments and ϑ∗
j = 0 in the rest, while

r∗j = rmax
j /2 in the thick orange line segments and r∗j = 0 in the rest.

of the contour bounding box, and the maximum limit dmax = 1.3 dmin. With respect to
the optimization objectives, a combination of visibility and resolution is established: r∗j =
rmaxj /2 and ϑ∗j = 0 for the segments of the top and bottom straight sides of the bone, and
r∗j = 0 andϑ∗j = 1 for the rest. This definition simulates an inspection task where the top and
bottom sections of the bone must be detected more accurately than the rest, but full contour
coverage is still required. The coverage task could be applied, for instance, to a 3D printing
process where a precise quality control is needed. Then, Algorithm 3.1 is executed to obtain
the minimum number of cameras C∗ of the deformation process. Afterwards, the system is
optimized at each k with the already obtained C∗.

Figure 3.9 shows the restricted visibility graphs resulting from the iterative optimization at
different k (k = 0, 100, 200, 300) from (a) to (d), and from (e) to (h) the restricted visibility
graphs computed with C∗ = 6 cameras. Table 3.3 includes, for three different cases we have
selected for comparison, the values of each term in γ. The first row of Table 3.3 represents the
case where the cameras remain fixed at evenly spaced positions (0, 90, 180 and 270 degrees
around g(k = 0) and di = (dmax + dmin)/2, ∀i), oriented towards g(k = 0). The second
row shows the results of fixing the near-optimal configurations at k = 0, and the third one
contains the values of each term at the cases shown in Fig. 3.9, from (e) to (h). Even when the
system is overpopulated with more cameras than the strictly necessary at some k, it can be
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seen how the optimized solution with mobile cameras improves both resolution and visibility
results of the coverage task. The value of these results lies in the fact that the coverage task
is successfully executed by means of a minimal set of sensors. Therefore, we can state that
the system of offline near-optimal configured mobile cameras is useful for inspection tasks of
deformable objects whose prescribed deformation is approximately known.

Table 3.3: Values of each term in γ, at four deformation instants for comparison of three different setups.
The setup of the near-optimal configured mobile cameras corresponds to the cases (e)-(h) in Fig. 3.9.

k = 0 k = 100 k = 200 k = 300

γv 0 0 8.1818E-2 1.9231E-1
Evenly spaced fixed cameras γr 4.8683E-1 4.8559E-1 4.8389E-1 4.8221E-1
(ψi : 0°, 90°, 180°, 270°) γσ 1.1685E-5 1.1685E-5 1.1685E-5 1.1685E-5

γ 4.8684E-1 4.8560E-1 5.6572E-1 6.7453E-1
γv 0 1.7241E-2 1.1818E-1 1.9231E-1

Near-optimal configured γr 4.8485E-1 4.8339E-1 4.8151E-1 4.7997E-1
cameras fixed at k = 0 γσ 2.9585E-5 2.9585E-5 2.9585E-5 2.9585E-5

γ 4.8488E-1 5.0066E-1 5.9972E-1 6.7231E-1
γv 0 0 0 0

Near-optimal configured γr 4.8485E-1 4.8330E-1 4.8130E-1 4.7969E-1
mobile cameras γσ 2.9585E-5 3.8946E-5 4.7513E-5 5.6068E-5

γ 4.8488E-1 4.8334E-1 4.8135E-1 4.7975E-1

3.6.4 Online optimization tests

Now we test the local optimization method. In this case, we consider a turtle shape from the
MPEG-7 data set, with S = 50 segments, increasingly distorted to simulate deformation.
Deformation is modeled by applying exponential distortion and a total counter clockwise
rotation of 45 degrees. The cameras are modeled with β = 60° and Lmax = 2000 units,
the minimum radial limit dmin is set approximately equal to the greater side of the contour
bounding box, and the maximum limit dmax = 1.5 dmin. As for the optimization objectives,
the resolution term is omitted for simplicity (F = 1), and ϑ∗j = 1 for all the visible contour
segments. We execute the iterative optimization at the first deformation instant, that provides
C∗ = 4 cameras and the initial near-optimal configurations. Afterwards, we apply the local
optimization sequentially with each camera at each instant, for a maximum allowed relative
difference between ci(k) and ci(k + 1) of 0.05. Figure 3.10 contains the visibility graphs
of this test at eight different k (k = 0, 100, ..., 700). From (a) to (d) the entire contour is
successfully detected, and from (e) to (h) only two segments below the turtle’s tail are lost. In
comparison with a local optimization, which takes in this case 0.4 seconds on average to solve,
the last global optimization with four cameras is 7.5 times slower, taking around 3 seconds.
The relevance these results show is related to the achievement of the coverage objectives in a
much faster manner than the offline method, which is fast enough so that the approach can
reconfigure the system online, and also to the fact that deformation of the object over time is
unknown.
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(a) k = 0 , γv = 0 (b) k = 100 , γv = 0 (c) k = 200 , γv = 0 (d) k = 300 , γv = 0

(e) k = 400 , γv = 0.04 (f) k = 500 , γv = 0.04 (g) k = 600 , γv = 0.04 (h) k = 700 , γv = 0.04

Figure 3.10: Restricted visibility graphs at different deformation instants, with the corresponding values of
γv . After the iterative optimization at k = 0, local optimizations are performed with a set of C∗ = 4
cameras. ϑ∗

j = 1 and r∗j = 0 for all the visible contour segments.

(a) k = 0 , γv = 0 (b) k = 100 , γv = 0 (c) k = 300 , γv = 0.02 (d) k = 500 , γv = 0.1

(e) k = 0 , γv = 0 (f) k = 100 , γv = 0 (g) k = 300 , γv = 0 (h) k = 500 , γv = 0.08

Figure 3.11: Restricted visibility graphs at different deformation instants of a ‘C’ shape, with the corre-
sponding values of γv . ϑ∗

j = 1 and r∗j = 0 for all the visible contour segments. After the global
optimizations at k = 0 in (a) and (e), with C = 4 cameras, the results of applying local ((b)-(d)) and
global ((f)-(h)) optimizations are shown for comparison.
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3.6.5 Global and local optimizations comparison tests

We perform an additional test in order to compare the offline global and online local opti-
mizations in more detail. A ‘C’ shape, with ends that progressively approach to each other, is
sampled with S = 100 segments. The FOV of the cameras is set as in the previous test, as well
as the radial limits and the optimization objectives. Then, the same deformation sequence is
evaluated with the local optimization technique (see Fig. 3.11 (a)-(d)), with a threshold of the
5% of allowed deviation between ci(k) and ci(k + 1), and the global optimization one (see
Fig. 3.11 (e)-(h)). Results show that the global optimizations perform slightly better than the
local ones, with an improvement of 0.02 in γv at the last two deformation instants. However,
the computational cost is much higher: a global optimization takes 13.96 seconds on aver-
age to solve the system, while a local one takes just 1.04 seconds. Thus, we would select the
online strategy for those inspection tasks where the deformation of the object over time is
unknown. Otherwise, we would opt for the offline method, which is not as fast as the online
one but provides better quality results. It is worth mentioning that the order of the cameras
may change from k to (k+1) in the global optimization (e.g., from Fig. 3.11(f) to Fig. 3.11(h)
the blue camera changes twice its order into the cameras sequence). This does not represent a
problem, due to the fact that the near-optimal configurations are assigned to the cameras of
the real-world system so that the total traveled distance is minimized, while the angular order
of them is preserved.

3.6.6 Real experiment

Finally, we test the global optimization in a real setup. Figure 3.12 shows an experimental
setup where the goal is to perform full visibility coverage with three cameras, of a sole and
last assembly task. In this illustrative example, the evaluation of such setup may be performed
visually, but numerical analysis of the result cannot be provided accurately due to the com-
plexity of the shapes. Therefore, we propose an additional experimental setup to facilitate the
quantitative validation of the coverage system. A 21×21 [cm] paper structure is sequentially
folded to simulate a three-steps deformation process (Figure 3.13). This structure is horizon-
tally divided into 28 segments of 3 [cm] in length, which are imprinted and numbered in the
faces of the structure. Due to the fact that the object itself is segmented, we can perform the
coverage task with a standard color camera whose optical center’s position is known. With
the segments directly imprinted in the object, we also facilitate the interpretation of the re-
sults. In this case, we consider an Intel RealSense D435 module installed on a tripod, with a
color camera of 69±1 degrees horizontal FOV (β = 69°). We assume that there are no range
constraints in this setup (Lmax ← ∞). The optimization objective is set as r∗j = rmaxj /4
and ϑ∗j = 0 for the segments {1, 2, 3, 4, 12, 13, 14, 20, 21, 25, 26, 27, 28} and r∗j = 0 and
ϑ∗j = 1 for the rest, with F = 0.5. We execute algorithm 3.1 to obtain the minimum number
of cameras C∗ of the deformation process, and we obtain C∗ = 3. Then, the system is opti-
mized with C = 3 at every deformation instant, and we get the optimal configuration of the
cameras. Figure 3.14 shows the simulation results and the images taken by the Intel RealSense
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Figure 3.12: Views of three cameras (left to right) in a full visibility coverage experimental setup, where
we represent three steps (top to bottom) of a sole-last assembly task.

Figure 3.13: View of the real experiment setup. The Intel RealSense D435 module is on a tripod that is
positioned and oriented to get the different optimal configurations of the cameras.
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(a) Configuration of the cameras at the first deformation instant
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(b) Configuration of the cameras at the second deformation instant
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(c) Configuration of the cameras at the third deformation instant

Figure 3.14: Real experiment results. At the left, the first images correspond to the restricted visibility
graphs that result after executing the offline optimization for C = 3. The next three images at the right
side correspond to the views of the Intel RealSense color camera in the red, green and blue configurations
respectively.

color camera from the different optimal configurations at each deformation instant. We can
see that all segments are successfully detected, which means the visibility coverage is achieved.
Figure 3.15 shows the results concerning the angular resolution of the selected contour seg-
ments with r∗j ̸= 0 (the resolution of the rest of the segments is not measured). We measure
the angular resolution directly from the images, by mapping the horizontal resolution of the
segments in pixels to the corresponding section of the FOV (in this case, the horizontal res-
olution of the images is 640 pixels, which corresponds to the 69 degrees FOV of the color
camera). We see that the target resolution is achieved and improved in all segments, which
means that the resolution coverage is achieved. These results confirm the validity and utility
of the methods we propose for the application in real perception tasks.
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Figure 3.15: From top to bottom, we show the angular resolution results in the first, second and third
deformation instants of the real coverage task. The top dashed lines correspond to the maximum angular
resolution of the segments, the bottom dashed line to the target resolution and the continuous line to
the resolution measured from the images of the Intel RealSense cameras. We can see that the target
resolution is achieved and improved in all segments, even getting some results which are close to the
maximum values.
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3.7 Discussion

In this chapter, we have presented a multi-camera system for coverage of deformable contour
shapes, according to a prescribed objective in terms of visibility and resolution. Firstly, we
have developed a technique that allows obtaining the theoretical maximum visibility and res-
olution of a 2D shape at each deformation instant, with an infinite set of omnidirectional and
unlimited FOV range cameras. Afterwards, we have exploited this information to define feasi-
ble coverage objectives along deformation, and then we have applied an iterative optimization
technique that provides the minimum necessary number of cameras for the coverage task and
their near-optimal configurations. Therefore, by obtaining a minimal number of cameras we
are able to reduce the computational cost of the data processing, and also the synchronization
complexity. Finally, we have proposed a method based on local optimizations that outputs
near optimal configurations much faster than the global optimization. This method is also
applicable online in cases where deformation evolves in an unknown manner. We have tested
our approaches in different scenarios, and the results show they are effective and useful for
performing coverage tasks in a wide range of cases: for different shapes, deformation pro-
cesses, coverage objectives, safety conditions and spatial constraints. It is worth noting that
our optimization algorithms guarantee the achievement of the target coverage. However, de-
pending on the specific sensors that are considered for the real perception task, the final error
of the recovered object shape may vary. In this respect, it is important to properly define the
coverage task to obtain the required information of the object.

We go one step further into the problem of multirobot manipulation of deformable ob-
jects in the following chapter. After having dealt with deformation from the perception side,
we tackle the transport of deformable loads by means of a new deformation model. This
model is based on global deformation measurements, of the bounding box that contains the
transported object. In turn, the model is exploited in an optimization framework that is
constrained with a control barrier function, for achieving the target configuration without
collisions.
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Chapter 4

Multirobot transport of
deformable objects with DBB
model
In this chapter we present a multirobot approach for steering a large object to a target configuration,
in terms of object dimensions, orientation and position. We present a deformation model based on the
evolution over time of the dimensions and rotation of the object’s bounding box, for manipulators with
double-integrator dynamics. Then, we apply this model in a quadratic programming-based framework,
which includes a set of nominal controllers, for achieving the target configuration, and a control barrier
function for collision avoidance. We report simulation results to show the performance of this approach
in different test scenarios.

4.1 Introduction

P aradigmatic manipulation tasks of deformable objects involve their transport and si-
multaneous control of deformation, with different levels of complexity. This is the case

in industries such as the textile or the footwear manufacturing ones, where large fabric parts
are transported and progressively transformed between different working stations. Automa-
tion of these tasks requires to deal with different challenges, which range from measuring
deformation of the object to coordinating the different robots for achieving the manipula-
tion goals [141]. However, despite their complexity, autonomous systems for transport and
manipulation of deformable objects could improve the safety of workers and the efficiency
of processes. Sectors that could also obtain potential benefits from this approach include
construction and logistics. Modern construction techniques incorporate composite materials
that are reinforced with layers of fabric, which could be transported and applied by robotic
teams. As for the logistics sector, the capacity to handle deformable goods with autonomous
systems could increase the storage capacity and would reduce the cost of rigid packaging. In
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this chapter, we address the problem of transport tasks of large deformable objects that must
be steered to a target configuration, while avoiding collisions.

When manipulating deformable objects that are large, fragile, heavy or difficult to grasp,
multiple manipulators are usually required [58]. Multirobot systems extend the robustness
and resilience of the single agent methods, which are more sensitive to perturbations, but the
control actions must be tightly coordinated due to the nature of the task [114]. We refer to
robustness as the capability of a system to work under disturbances that do not cause struc-
tural changes on the system, and resilience as the ability of a system to autonomously recover
its original function from external and/or internal disturbances, which cause an interrup-
tion in the normal operation of the system [131]. Works dealing with multirobot transport
of deformable objects include a pioneer approach for nonholonomic manipulators based on
nonsmooth Lyapunov functions, with guaranteed collision avoidance [128]. In that proposal,
deforming the object is the means to avoid obstacles, but it is not a control goal by itself
and any feasible deformation state is expected. Another study describes the design of a ta-
ble with multiple actuators, with caterpillar locomotion-based mechanisms, for manipulation
and transport of delicate objects [40]. Simultaneous control of the shape, scale, rotation and
position of a formation of robots carrying a deformable object, is achieved with a formation
control method [11]. If some specific shape and scale is required, deformation of the object
in 2D can be explicitly controlled in that work. A different approach for simultaneous trans-
port and shape control was developed for robots with non-holonomic constraints [91]. Those
methods do not tackle the problem of explicitly controlling the deformation of the object in
3D, and they do not consider collision avoidance in their formulation. We can also find ap-
proaches based on Dynamic Movement Primitives (DMP) [31] or human-robot collaborative
systems for transport of highly deformable planar materials [81], which do not test collision
avoidance against dynamic obstacles.

Despite being challenging, modeling deformation is a fundamental step in manipulation
of deformable objects. There are many available approaches for this purpose, ranging from
the well-known finite element method to the more recent deep learning-based developments
[136]. One of the main differences between our proposal and the deep learning methods,
which are very popular nowadays, is the required amount of information. Compared to our
approach, they require more data for being trained to accomplish the desired task, and it is
more difficult to predict the behavior of neural networks. In our work, we choose a geometric
model based on a deformable bounding box of the object. Different variants of this concept
have been exploited in the past. A 2D version, called outlined rectangle, has been considered to
obtain a convenient shape of the multirobot transportation system in previous studies [25],
[75]. Similarly, the 2D deformable box is adopted in a motion planning strategy for approxi-
mating the shape of a team of manipulators and the transported rigid payload [124]. Another
study about probabilistic roadmap motion planning for deformable robots obtains the de-
formation of the robot from a deformed bounding box [23]. A deformable bounding box
with variable width is also utilized to describe the shape of an hexapod robot for navigation
through confined spaces [22]. None of these previous works obtains a deformable bounding
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box model in 3D as the one we propose. Our approach allows predicting the evolution of the
three dimensions of the bounding box under a specific set of control actions.

Guaranteeing a safe operation under uncertainties and unexpected events constitutes one
of the greatest concerns in robotics. Collision avoidance is a classical safety problem, which
has been solved with different optimization techniques, such as sequential convex program-
ming [4], [6] and model predictive control (MPC) [21], [124], to name a few. Control barrier
functions (CBFs) represent a powerful tool for keeping the state of a system in the safe region.
CBFs can be applied to restrict the outputs from the nominal controller of a system, which
potentially can induce unsafe behaviors (e.g. collisions). Collision avoidance systems based
on this technique have been developed for systems of multiple mobile robots [132] or UAVs
[55], [118].

The method we propose builds upon our previous proposal for multirobot transport of
deformable objects with minimal motions [62]. In this work, we presented the deformable
bounding box (DBB) paradigm, and we described how to obtain a DBB model applying maxi-
mization of observability indexes. The navigation task was solved as an optimization problem,
in which collision avoidance was achieved with minimal motions of the grippers. In contrast
to this former study, the 3D deformable bounding box model is now built in terms of accel-
erations. Even though the new model has the same structure, the dynamics of the grippers
are significantly different with respect to the single integrator alternative. Also in [62] the
model was not exploited to have direct control over the shape and orientation around the
vertical axis of the object’s BB. Another difference is that in the former study the motion of
the transported object was constrained to a given route, but in the present work the route
is computed online by the QP controller. Additionally, our new collision avoidance system
based on the CBF is more robust and effective than the previous system, in which a nonlinear
optimization was developed. The new system allows transporting a deformable object in 3D
environments to a desired position, without collisions, while simultaneously deforming and
rotating it to the desired dimensions and orientation, without overstretching the object dur-
ing the process. Our main contributions in the present chapter are the deformable bounding
box model for mobile manipulators with double-integrator dynamics, the CBF formulation
for collision avoidance between the deformable object and static or dynamic obstacles, and
the quadratic programming (QP) controller, which integrates the nominal controllers with
the CBF and additional safety constraints.

4.2 Problem statement

Let us consider a deformable object to be transported in a 3D environment byN ≥ 3 mobile
robots, which move on the floor following double-integrator dynamics. Each robot mounts
a rotational-free gripper that grasps a set of points pi ∈ R3, i = 1, ..., N in the object
boundary (see Fig. 4.1). We model the object shape by its ground-parallel bounding box, defined
as follows [62]:

Definition 4.1. Ground-parallel bounding box. The ground-parallel bounding box (BB) is a box that
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Figure 4.1: Elastic sheet (blue mesh), held by four grippers (large spheres), and its bounding box, formed
by the red lines that intersect between them. The main parameters of the bounding box (BB) are: the
centroid c, the dimensions dx, dy and dz , and the rotation around the vertical axis θ. A grasping point
pi and the BB x-y-z reference frame in c are also depicted.

contains the object and whose top and bottom faces are parallel to the ground plane. It is defined by its
centroid c ∈ R3, the box dimensions d = [dx, dy, dz]

⊺ and the box orientation around the vertical
axis θ = [0, 0, θ]⊺. d and θ are expressed in the BB reference frame, with origin in c and whose
axes are perpendicular to the BB faces.

This structure is oriented around the main plane of motion in our problem, and therefore
considers the rotations with greater impact in the transport task. Note that the rotations
around the remaining axes, with much lower impact, are not included as a design criterion to
reduce the dimensionality of the problem. However, we will show that 4 degrees of freedom
(x, y and z dimensions and rotation around z) add flexibility to avoid obstacles in 3D, while
offering a wide range of possible control configurations. We obtain the BB of the object from
a set of points vm, m = 1, ...,M measured on its surface, by means of range sensors or
fiducial markers. We do not need these points to be accurate, as long as they represent an
approximate shape of the transported object.

We consider that there are obstacles in the environment, described by a set of points
qj ∈ R3, j = 1, ..., J and detected by the system with onboard range sensors, up to a limit
distance R.

The task we envision consists in steering the BB of the grasped object without collisions to
a target configuration, defined as the combination of position, dimensions, and orientation.
This can be understood as a conventional transport process (i.e. translating the object from
one place to another) with additional control over the shape and orientation of the object
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along translation. We propose the following errors to assess the completion of this task:

ec = c− ct , (4.1)
ed = d− dt , (4.2)
eθ = θ − θt , (4.3)

where ct ∈ R3 is the target position of the BB centroid, which is set in the 2D plane (the z
coordinate is ignored), dt ∈ R3 are the target dimensions of the BB and θt is the target BB
orientation around the vertical axis.

4.3 Deformable bounding box model

4.3.1 Model description

In this section we define the object deformation model considered in our study. The model is
based on the deformable bounding box paradigm, which extends the concept of BB (Definition
4.1) with new properties.

Definition 4.2. Deformable bounding box. The deformable bounding box (DBB) is the BB whose
dimensions and rotation change over time when certain actions are applied to the object. These actions
are traction/compression accelerations in the horizontal plane G̈ = [G̈x, G̈y, 0]

⊺ and vertical
rotation acceleration ϕ̈ = [0, 0, ϕ̈]⊺. As the object deforms, the DBB evolves smoothly between
consecutive time instants.

The process for obtaining this kind of BB starts by computing the ground-parallel mini-
mal bounding box of the object. The ground-parallel minimal bounding box is equivalent to
the extrusion of the 2D minimal bounding box of the object along the object’s height. Then,
we obtain the BB reference frame with origin in c whose axes are perpendicular to the BB
faces. Note that the bounding box this model requires does not correspond to the ground-
parallel minimal bounding box, whose dimensions and orientation may present sharp changes
over time. Therefore, the next step involves applying Principal Component Analysis (PCA)
to the collection of vectors vbm = vm − c, ∀m. These vectors are stacked in the ma-
trix Vb ∈ RM×3, which after applying the PCA yields Vb = USV⊺. We can obtain the
principal direction in the horizontal plane of the points in the global reference system as
φ = atan2(V2,1, V1,1), where the subscripts denote the corresponding elements of the ma-
trix. In this case, the principal direction of the points in 2D constitutes a line that minimizes
the distance to them. In the following deformation instants the angles between the principal
direction and the horizontal axes of the BB reference will be preserved, which means that the
orientation of the BB around the vertical axis will follow the evolution of the principal di-
rection of the object in the horizontal plane. The principal direction represents a convenient
reference for orienting the BB, due to the fact that it varies as smoothly as the object points
do. Then, the orientation of the BB can be computed as θk = θ0 − φ0 + φk . Finally, the
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dimensions d of the BB are computed from the maximum and minimum coordinates of the
points vm in the new BB reference frame.

We build the object deformation model upon Definition 4.2 in the following manner:

[
d̈⊺, θ̈

]⊺
= J

[
G̈x, G̈y, ϕ̈

]⊺
=


k11 k12 k13
k21 k22 k23
k31 k32 k33
k41 k42 k43


 G̈x
G̈y
ϕ̈

, (4.4)

where

d̈k =
(
ḋk − ḋ(k−1)

)
/ ∆t , (4.5)

ḋk =
(
dk − d(k−1)

)
/ ∆t , (4.6)

θ̈k =
(
θ̇k − θ̇(k−1)

)
/ ∆t , (4.7)

θ̇k =
(
θk − θ(k−1)

)
/ ∆t . (4.8)

∆t = tk − t(k−1) is the time interval between instants k and k − 1. The interaction matrix
J in (4.4) maps the input accelerations to the deformation d̈ and rotation θ̈ accelerations of
the DBB by means of 12 parameters. Nine of them vary depending on the object’s mechanical
properties and the grippers’ configuration. We consider that the rotation accelerations are
small, and therefore centrifugal effects can be neglected. This makes DBB deformations inde-
pendent from DBB rotations, i.e. k13 = k23 = k33 = 0. The intuition behind this proposal is
that the dynamics of deformation can be approximated with sufficient accuracy by this linear
model. Given that the dimensions of the BB and, therefore, the dimensions of the object are
constrained, as we describe in Section 4.4.3 the set of deformation states is bounded.

Once we have described the main aspects of the model, we need to connect it with the ac-
tuators that produce the required inputs. Next equations show how the grippers accelerations
in the global reference are computed from G̈x, G̈y and ϕ̈:

p̈i = R
(
c̈BBt + ϕ̈× pBBi + ϕ̇× (ϕ̇× pBBi )

+ 2ϕ̇× ṗBBi +
G̈ ◦ sgn(pBBi )

2

)
, (4.9)

pBBi = R⊺(pi − c) , (4.10)

R =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 , (4.11)

where c̈BBt ∈ R3 is the target horizontal acceleration of the BB centroid in the BB reference
(c̈BBtz = 0, by convention), R ∈ SO(3) is the rotation matrix from the BB to the global coor-
dinate systems, ‘×’ is the cross product operator, ‘◦’ is the element-wise product operator and
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pBBi is the position of gripper i in the BB reference. Equation (4.9) represents the accelera-
tion of the grippers as if they were connected to a rigid BB (see [30, eq. (6.10)] about the linear
acceleration of a manipulator according to the rigid body dynamics). However, the last term
corrects the resulting acceleration with the deformation inputs to the DBB [62]. The main idea
behind this correction term is to preserve the action-counteraction balance of the system (see
Remark 4.1). This balance allows preventing global displacements of the BB, when deforming
it, by applying the half of the traction/compression inputs from opposite directions, at each
of the two horizontal axes of the BB reference frame.

One of the most prominent advantages of this model, in contrast with the 2D counterpart,
is that it does not only allow to predict horizontal deformations and rotation around z from
the inputs G̈ and ϕ̈, but also the vertical deformation of the object’s BB. Besides allowing to
achieve specific configurations of the BB in 3D, this kind of deformation control can be useful
for collision avoidance. For instance, if an obstacle in height is encountered and the imposed
constraints are satisfied, the system can surmount the obstacle instead of going around it,
and reduce the traveled distance. However, in case a more conservative behavior is sought,
in which the bounding box never goes over the incoming obstacles, the user can increase the
safety distance or constrain the minimum vertical dimension as we will explain later (see
Sections 4.4.2 and 4.4.3).

Remark 4.1. Note that at least one positive and one negative component of the element-wise multipli-
cation G̈ ◦ sgn(pBBi ) must exist for the two non-zero components of G̈. If this condition is satisfied,
the action-counteraction balance is preserved for each BB horizontal axis.

Next proposition provides the general rule for guaranteeing the action-counteraction bal-
ance as described in Remark 4.1.

Proposition 4.1. Consider a set of N ≥ 3 grippers carrying a deformable object. These grippers are
positioned so that they are separated less than π radians from each of the neighboring ones, around
the object’s BB centroid c. With this setup, the action-counteraction requirement is met at each BB
horizontal axis for any possible orientation of the BB reference frame and the rotated inputs.

Proof. According to Remark 4.1, the positive and negative contributions of the non-zero com-
ponents of G̈ must be performed by, at least, one gripper each. If the grippers are separated
less than π radians from each of the neighboring ones, three quadrants of every possible BB
reference frame will always include a gripper. Therefore, the action-counteraction require-
ment will always be met.

4.3.2 Model identification

In this section, we describe the model identification problem in terms of accelerations, with
additional details and further analysis with respect to our previous work [62]. As we men-
tioned in the previous section, 9 parameters of the DBB model vary according to the particu-
lar object that is transported, the number of grippers and the relative position of the grippers
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with respect to the object. This implies that they must be obtained for each case. The most
basic identification strategy consists in taking 3 different measurements of d̈ and θ̈ from ran-
domly chosen input actions G̈ and ϕ̈. Then, an estimate of the model parameters would be
obtained by solving the system of equations. However, this method is highly sensitive to errors
coming from the sensing devices and the specificity of the measurements set, and in general
produces low quality results. An ordinary least-squares approach improves the quality of the
previous solution by linearly adjusting the parameters from a set of S > 3 measurements:

[k11, k12, ..., k43]
⊺ = (A⊺ A)−1A⊺ b , (4.12)

A = blkdiag(

 G̈x1 G̈y1
...

G̈xS G̈yS

,

 G̈x1 G̈y1
...

G̈xS G̈yS

,

 G̈x1 G̈y1
...

G̈xS G̈yS

,

 G̈x1 G̈y1 ϕ̈1
...

G̈xS G̈yS ϕ̈S

) , (4.13)

b = [d̈x1, d̈x2, ..., d̈xS , d̈y1, ..., d̈yS , d̈z1, ..., d̈zS , θ̈1, ..., θ̈S ]
⊺ , (4.14)

with A ∈ R4S×9 and b ∈ R4S .

Although this technique is able to diminish the errors coming from sensor noise and local
effects, created by some measurements, the particular choice of measurements and its quan-
tity still affect the accuracy of the resulting DBB model. We obtain a convenient selection of
measurements by applying the observability index maximization technique. Observability in-
dexes derive from the alphabet optimalities, and they provide statistical information about
the numerical conditioning of the model and its variance [66]. The field of robot calibration
covers most of the approaches that have exploited the observability index maximization, for
purposes like improving the robustness of calibration to sensor noise [33] or for selecting the
index that yields the most accurate robot calibrations [78], among other applications.

Let us denote σr ≤ σr−1 ≤ ... ≤ σ1 the r singular values of the regressor matrix A. The
five observability indexes we study are computed as [78]: O1 = (σr σr−1 ... σ1)

1/r/S1/2,
O2 = σr/σ1, O3 = σr , O4 = σ2

r/σ1 and O5 = (
∑r
i=1 1/σi)

−1. O1 represents the volume
of a hyperellipsoid in which the singular values correspond to the length of the axes. It is an
indicator of the data scatter, i.e. the exploration of the parametric space. Instead of measuring
the size of the hyperellipsoid,O2 quantifies the ratio between the shortest and the largest axes.
In other words, it shows how well explored some of the parameters are in comparison with
the rest. O3 indicates the least explored parameter (worst case). O4 is the combination ofO2

and O3, and O5 is the harmonic mean of the singular values divided by the number of model
parameters.

In order to maximize these indexes we apply Algorithm 4.2, which is based in the DET-
MAX algorithm [96]. First, we generate a set of candidate inputs η with different combi-
nations of G̈x, G̈y and ϕ̈. Starting with an initial experiment design of S random input
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combinations from η, the algorithm maximizes an observability index by continuously ex-
changing inputs (rows of A) between the experiment design and η. The process stops when
the index converges to a maximum value, up to a user-defined tolerance. Then, we obtain an
optimal matrix A and, by applying the input combinations it contains to the system, the ma-
trix of measurements b. Finally, we compute from (4.12) the parameters of the DBB model.
In contrast to Mitchell’s proposal, our algorithm considers a constant experiment size, and
instead of obtaining D-optimal experiment designs we optimize the design by maximizing an
observability index.

Algorithm 4.2 Maximize an observability index O.

1: Odiff ←∞
2: O−1 ← 0
3: optimStop← tolerance
4: exp← S random inputs from η
5: while Odiff > optimStop do
6: Oprev ← 0
7: for i = 1, ..., size(η) do
8: newExp← [exp, ηi]
9: O ← computeIndex(newExp)

10: if Oprev < O then
11: κ← i # auxiliary variable
12: Oprev ← O
13: end if
14: end for
15: exp← [exp, ηκ] # add input that maximizes O
16: for j = 1, ..., S + 1 do
17: newExp←

[
exp1, ..., expj−1, expj+1, ..., expS+1

]
18: O ← computeIndex(newExp)
19: if Oprev > O then
20: κ← j
21: Oprev ← O
22: end if
23: end for
24: exp←

[
exp1, ..., expκ−1, expκ+1, ..., expS+1

]
# remove input that less diminishes O

25: O ← computeIndex(exp)
26: Odiff ← (O −O−1)
27: O−1 ← O
28: end while
29: return O, exp

This technique allows obtaining suitable DBB models from a reduced set of measurements,
which we select in advance to the model identification and the task execution. A comparative
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analysis of the different observability indexes, in terms of utility and performance, is shown
in Section 4.5. In that section we also study how the experiment size S affects the DBB model
accuracy, and we justify the selection of O1 for obtaining the most appropriate DBB mod-
els. In the studied test cases, we have realized that a DBB model with constant parameters,
identified before performing the task, performs well the transport objectives. Even if not con-
sidered here, it could also be interesting to study the effects of updating the model along the
manipulation.

4.4 Controller for deformable object transport

4.4.1 Nominal control system

The control actions must steer the system to the desired configuration, reducing to zero the
errors ec (4.1), ed (4.2) and eθ (4.3). We propose the following set of nominal controllers for
mobile manipulators with double-integrator dynamics:

G̈ =− k1d ed − k2d ḋ , (4.15)

ϕ̈ =− k1r eθ − k2r θ̇ , (4.16)

c̈BBt =R⊺(−k1t ec − k2t ċ) , (4.17)

where k1d, k2d, k1r , k2r , k1t and k2t are control gains. We aggregate the nominal control
inputs in a single column vector

un = [G̈x, G̈y, ϕ̈, c̈
BB
tx , c̈BBty ]⊺ . (4.18)

Note that these controllers are centralized in order to drive the system with tightly coor-
dinated actions, required in manipulation tasks as the ones we tackle.

4.4.2 Obstacle avoidance with control barrier funcion

Since collision avoidance is not explicitly accounted by the nominal controllers, we introduce
a flexible, minimally invasive and robust solution to prevent collisions with obstacles in the
environment. In particular, we consider an optimization method based on a CBF, which
regulates the nominal control inputs so that the system is always in a safe state. We adopt
a modified version of the centralized approach proposed by Wang et al. [132], where multiple
robots with intersecting trajectories are able to reach target positions while avoiding robot-to-
robot and robot-to-obstacle collisions. In our case, the transported deformable object makes
collision avoidance more challenging to be guaranteed, as we must also consider object-to-
obstacle collisions. Besides, we do not deal explicitly with robot-to-robot collisions, since
they are implicitly avoided by constraining the minimum BB dimensions, as we will describe
in the next section.
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Firstly, we define a set of virtual points pvl ∈ R3, l = 1, ..., L uniformly distributed
over the faces of the BB. The dynamics of these points are linked to the DBB as

p̈vl = c̈BBt + θ̈ × pvl + θ̇ × (θ̇ × pvl) + 2θ̇ × ṗvl

+ (pvl − [0, 0, dz/2]
⊺) ◦ d̈⊘ d . (4.19)

where ‘⊘’ is the element-wise division. Note that the top face of the BB is constant in height,
due to the fact that the grippers move in the 2D plane. This is the reason why we include the
−[0, 0, dz/2]⊺ term, that shifts the zero vertical movement plane to the top face of the BB.
Then, we can write an affine system

ẋl = f(xl) + g(xl)u , (4.20)

where xl = [pvl, ṗvl]
⊺ and f(xl) and g(xl) are locally Lipschitz continuous functions. We

propose the following criterion for collision avoidance of the system (4.20):

∥pvlj∥+
∫ tf

t0

ṗ⊥vlj(t)dt ≥ Dmin
lj , (4.21)

where pvlj = pvl − qBBj , qBBj = R⊺(qj − c),

ṗ⊥vlj =
p⊺
vlj

∥pvlj∥
ṗvlj (4.22)

is the relative velocity between pvl and qBBj projected in the normal direction, ṗvlj = ṗvl−
q̇BBj , q̇BBj = R⊺(q̇j − ċ) and

tf =
ṗ⊥vlj(tf )− ṗ⊥vlj(t0)

αl
+ t0 . (4.23)

At time tf the points completely stop (ṗ⊥vlj(tf ) = 0) when applying the maximum deceler-
ation αl = ∥p̈vl∥∞, and Dmin

lj is the minimum allowed distance between the virtual point
pvl and the obstacle qBBj . Note that we take equations (4.20), (4.21), (4.22) and (4.23) as pro-
posed by Wang et al. [132]. By substituting (4.23) and (4.22) in (4.21) and solving the definite
integral, we obtain the candidate CBF

hlj = 2αl (∥pvlj∥ −Dmin
lj )− ṗ⊥2

vlj . (4.24)

According to its definition [7], hlj is a suitable CBF if the following expression is satisfied:

sup
u

[Lfhlj(xl) + Lghlj(xl)u] ≥ −ε(hlj(xl)) , (4.25)

where L stands for the Lie derivative, u ∈ R5 similarly to (4.18) is the control input and ε
is an extended class K∞ function. Then, we apply this definition to our candidate CBF to
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obtain the set of linear constraints

p⊺
vljṗvlj

p⊺
vlj

∥pvlj∥
dMJextu ≤

∥pvlj∥
2

ε(hlj(xl)) + αlp
⊺
vljṗvl

− p⊺
vljṗvlj

p⊺
vlj

∥pvlj∥
(θMpvl + θMV ṗvl) , (4.26)

where

dM =

 pvlx

dx
0 0 −pvlx 1 0

0
pvly

dy
0 pvlx 0 1

0 0 pvlz

dz
− 0.5 0 0 0

 , (4.27)

Jext =

[
J 04×2

02×3 I2×2

]
, (4.28)

θM =
[
−θ̇2,−θ̇2, 0

]
I3×3 , (4.29)

θMV =

 0 −2θ̇ 0

2θ̇ 0 0
0 0 0

 . (4.30)

These equations constraint the system to maintain a safety distanceDmin
lj with every obstacle

point qj . Therefore, obstacles are treated as spheres of radius Dmin
lj , but only for collision

avoidance. The function ε determines how close the system will remain to the safety boundary
when avoiding collisions.

4.4.3 Quadratic programming controller

The nominal control inputs un must be modified to avoid collisions when obstacles intersect
with the desired route. We achieve the collision-free configurations by means of a quadratic
programming-based (QP) controller, which includes the CBF:

Given un,pvl, ṗvl,q
BB
j ,J,d, θ̇, Dmin

lj , αl, ∀l, j

minimize
u

ξ =

5∑
i=1

kwi(ui − uni)2 (4.31)

subject to:
Alju ≤ blj , ∀l, j, l = 1, ..., L, j = 1, ..., J ,
∥u∥∞ ≤ αl, i = 1, ..., N
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where kwi > 0,∀i are control weights that satisfy
∑5
i=1 kwi = 1,L is the number of virtual

points on the BB, J is the number of points describing the obstacles,

Alj =p⊺
vljṗvlj

p⊺
vlj

∥pvlj∥
dMJext , (4.32)

blj =
∥pvlj∥

2
ε(hlj(xl)) + αl p

⊺
vljṗvl

− p⊺
vljṗvlj

p⊺
vlj

∥pvlj∥
(θMpvl + θMV ṗvl) . (4.33)

The kwi constants allow regulating the effects of the QP controller over the nominal con-
troller. For instance, if we take higher values of kw1 and kw2 than those of kw3, kw4 and kw5,
nominal rotations and global displacements will have preference over nominal deformations
for being modified.

We can also implement additional constraints in this structure to avoid overstretching
the object and also to limit the rotation and translation velocities. If we assume uniform
accelerations between instants k and k + 1, the linear inequalities 2

(
(dmax − dk)/∆t

2 − ḋk/∆t
)

(θ̇max − θ̇k)/∆t
(ċmax − [ċkx, ċky]

⊺)/∆t

 ≥ Jext u , (4.34)

 2
(
(dmin − dk)/∆t

2 − ḋk/∆t
)

(θ̇min − θ̇k)/∆t
(ċmin − [ċkx, ċky]

⊺)/∆t

 ≤ Jext u , (4.35)

guarantee thatd, θ̇ and ċwill be bounded between a set of maximum (dmax, θ̇max, ċmax) and
minimum (dmin, θ̇min, ċmin) defined limits. Note that the constraint over the BB vertical
dimension can also prevent the object from touching the ground, since the grippers travel at
constant height.

By means of this controller, we obtain the closest control input to the nominal one that
satisfies the constraints from the CBF and the linear inequalities (4.34) and (4.35). The pro-
posed centralized formulation induces tightly coordinated motions of the robots that aim at
preserving the deformable object without damages. In addition, we consider a small number
of mobile manipulators in the studied practical cases. Therefore, the centralized version of
the CBF and the QP controller seems appropriate for the current state of the method.
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4.5 Results

4.5.1 Observability indexes analysis

In this section, we will identify the observability index that provides the most appropriate
DBB model from a reduced set of measurements, for different grippers configurations and
materials. We evaluate the quality of a model from its mean squared error, which is computed
as

MSE =
1

S

S∑
i=1

([d̈i, θ̈i]− [
˜̈
di,

˜̈
θi])

2 , (4.36)

where [˜̈di,
˜̈
θi] are the outputs predicted by the model.

Then, we start by creating a pool of 104 random combinations of G̈x, G̈y and ϕ̈z . We
divide this pool in four sets of 2500 input combinations, and we apply each set to a different
configuration of the system:

1. The first configuration consists in a rectangular (2× 3 [m]) mesh of mass–spring–damper
elements (similar to the one in Fig. 4.1), with 77 nodes and stiffness, damping and nodal
mass of 20 [N/m], 0.5 [N s/m] and 0.025 [kg] respectively. This object is held by four
grippers at the corners of the rectangle.

2. The second configuration includes the same object than in the first one, but it is held
by three grippers located as follows: two of them grasp the corners of one of the 3 [m]
side, while the remaining one grasps the node in the middle of the opposing 3 [m] side
of the mesh.

3. The third configuration includes the same object, but it is held by five grippers: four
of them grasp the corners of the mesh, while the remaining one grasps the node in the
middle of one of the 3 [m] side of the mesh.

4. The fourth configuration is the same than the first one except for the object: the stiffness
of the mesh elements is set to 200 [N/m].

After that, the outputs d̈x, d̈y , d̈z and θ̈ are obtained. The system configurations included
in the pool of inputs and outputs provide sufficient depth for the analysis, since we consider
similar cases in the next sections. The next step consists in creating an initial set of S ≥ 3
inputs, by taking random samples from the pool. Algorithm 4.2 is then executed to maximize
each observability index, by iteratively adding and removing inputs from the experiment de-
sign. Once the algorithm converges (tolerance = 10−3 is chosen), the model is obtained
from the selected inputs and the resulting outputs with least-squares.

Figure 4.2 shows the results of experiment designs in the range 3 ≤ S ≤ 50. Due to the
fact that the index optimization algorithm is affected by local maxima, the presented values
are the mean of 20 maximization executions with different initial designs. Note that O2, O3,

84



4.5. Results

Figure 4.2: Comparison between the maximization of indexes O1 (blue ‘+’), O2 (orange ‘∗’), O3 (yellow
‘◦’), O4 (purple ‘□’) and O5 (green ‘×’), for experiment designs of increasing size S. In the upper plot,
the mean observability index values of 20 simulations with different initial designs are depicted. In the
lower plot, the mean values of the resulting models MSE, from the previous simulations, are shown.

O4 and O5 present monotonically increasing values, while O1 first increases up to 0.81, for 7
measurements, and then shows a slight continuous decay, hardly noticeable due to the scale.
The mean squared errors of the resulting models are also depicted. It can be seen that the
errors obtained with theO1 maximization are lower than the ones obtained withO2,O3 and
O4 in the interval 3 ≤ S ≤ 20 (which is, in practice, our range of interest in the number of
measurements), and very similar to the ones of O5 at some points. In addition, the error of
the model with O1 follows the opposite direction to the evolution of the index values. This
is the behavior we seek: the O1 value evolution indicates when to stop taking measurements
for getting a representative model with minimal error.

An additional test is carried out for verifying the effectiveness ofO1 and the maximization
algorithm. Figure 4.3 represents the value of O1 (thick dashed line) and the mean squared
error of the resulting DBB model (thick blue line) after 20 index maximizations, which are
executed with different initial experiment designs of size S = 7. For comparison, the values
ofO1 (thin dotted line) and the mean squared error (thin dashed line) of 20 different random
experiment designs with S = 7 are shown. The index-error pairs are sorted into increasing
values of the error. We can see that the models obtained through index maximization are
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Figure 4.3: Comparison of 20 different experiments of size S = 7, created by maximizing the observ-
ability index O1 (thick lines) and selecting random inputs (thin lines). The index values (orange) and
the mean squared error of the models (blue) are shown, sorted into increasing values of the error.

much more homogeneous and more accurate. In addition, the system is explored in higher
depth and, therefore, better characterized, as the observability index values indicate.

4.5.2 Test with static obstacles

We evaluate our proposal in two different simulation scenarios in Matlab®. The first scenario
includes three static obstacles, and allows us to compare the QP controller with our previous
method for agents with single integrator dynamics [62]. We deploy a team of N = 4 robots
grasping a 2×3 [m] rectangular sheet by its four corners, at 1.7 [m] height. The sheet is modeled
with a mesh of mass-spring-damper elements of 20 [N/m] stiffness, 0.5 [N·s/m] damping and
77 nodes with a 0.025 [kg] nodal mass. Note that these properties are not known by the
system. Instead, we obtain the DBB model by maximizing the O1 index from a set of S = 7
measurements. The control parameters are set as follows: k1d = 0.4, k2d = 1, k1r = 1,
k2r = 2.5, k1t = 0.01, k2t = 0.3, ε = 0.5hlj , αl = 10 [m/s2], Dmin

l1 = 0.55 [m],
Dmin
l2 = 0.95 [m], Dmin

l3 = 0.65 [m], kw1 = kw2 = 0.2, kw3 = 0.1, kw4 = kw5 = 0.25
and R = 4 [m]. The limit values to avoid overstretching and excessive velocities are set
as dmax = [4, 6, 1.5] [m], dmin = [0.5, 1, 0.1] [m], θ̇max = −θ̇min = π [rad/s] and
ċmaxx = ċmaxy = −ċminx = −ċminy = 0.5 [m/s]. It is worth noting that fine tuning of these
parameters is not needed to successfully complete the task. In addition, we define L = 488
evenly distributed virtual points over the BB faces. The goal of the task is to transport the sheet
without collisions to a target position in [12, 5] meters, while getting the initial dimensions and
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Figure 4.4: The goal is to steer, without collisions, the object (blue mesh) from the initial position at [0, 0]
meters to the target position at [12, 5] meters. Images at the left side correspond to our previous method
[62], while at the right side we show the new method with the QP controller. The top and middle images
show the top and side views of the test circuit, with the grippers at the corners of the sheet and their
trajectories in orange. The bounding boxes of the object over time (blue boxes), the obstacles (brown
spheres), the sensors range (orange circumference) and the ideal transport route (green dashed line) are
also depicted. The bottom images show the absolute minimum distances between the mesh nodes and
the nearest obstacle center. We subtract the radius of the nearest obstacle to check whether the node
is inside (negative distance) or outside the obstacle (positive distance). We can see that our previous
method is unable to avoid collisions at some instants, and we have no control over the shape and the
orientation of the object. In contrast, the proposed method prevents collisions with the obstacles and
preserves the initial dimensions and orientation of the box.

orientation of the BB at the end of the test. Figure 5.2 shows the performance of our method
in the referred task compared with the previous work. We can see that the QP controller is
able to achieve the desired configuration of the object without collisions, while our previous
approach fails in the latter purpose and it does not allow controlling the shape and orientation
of the object. The bottom plots, which display the minimum distance between any mesh node
and the nearest detected obstacle, illustrate the failure of the previous method and the success
of the new one. When the value is negative, it means the node has penetrated that distance
inside the volume of the obstacle. From this test we see that the impact of the imposed route in
our previous method is drastically reduced in the current proposal, with a much more flexible
and robust formulation.
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Figure 4.5: From top to bottom and left to right, we show six instants (t = 0,10,40,60,80,150 [s]) of the
second test. The system reaches the position [12, 5] meters while avoiding collision with two dynamic
and one static obstacles (see the video for full sequence).

Figure 4.6: At the top, absolute minimum distances between the mesh nodes and the nearest obstacle,
at different time instants in the second test case. At the bottom, values of the deformation, orientation
and position control errors. Note that the position error ed is scaled by 0.1.
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Figure 4.7: From top to bottom and left to right, we show four instants (t = 0,100,150,450 [s]) of the sim-
ulation with realistic conditions. We can see that the virtual object is driven to the desired configuration
while avoiding collisions with the static robot, placed between the initial and the final position.

4.5.3 Test with dynamic obstacles

In the second test scenario we evaluate the system’s performance under dynamic obstacles.
Again, a team ofN = 4 robots grasps a deformable sheet with the same mechanical properties
than in the previous test, but in a different configuration. The DBB model is obtained follow-
ing the same procedure, and the control parameters are equal except k1d = 1.0, k2d = 2.0,
k1r = 1.5, k2r = 3.0, αl = 15 [m/s2]. With these changes we get a faster behavior of the
nominal controller, and the system reacts better to the incoming obstacles. The goal is to
transport the sheet without collisions to the target position in [12, 5] meters, while simultane-
ously reducing a 20% the vertical y-dimension of the BB, increasing a 20% the x-dimension and
getting a 0 degrees orientation of the BB. In this case, we consider two dynamic and one static
obstacles. Figure 5.3 shows six different snapshots, while Fig. 4.6 shows the absolute minimum
distances between the mesh nodes and the nearest obstacle as well as the control errors. De-
spite the small bounces starting at 50 [s] and stopping around 70 [s], when the second obstacle
approaches the system, we can see that the object reaches the desired configuration without
collisions. Note that the robots stop detecting obstacles at t = 84 [s], which is the reason why
the minimum distances plot shows no values from there on. The average computational time
of the algorithm is 0.016 [s], which seems fast enough for a wide range of practical cases with
real time response. This fact is verified with the results we show in the next section.
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Figure 4.8: At the top, absolute minimum distances between the nodes representing the object and the
obstacle, at different time instants in the realistic case. At the bottom, components of the deformation,
orientation and position errors. The position error ed is again scaled by a 0.1 factor.

4.5.4 Test with realistic conditions

Next we tackle a transport task in a scenario with realistic conditions. The goal of the task
consists in transporting a 0.40× 0.55 [m] rectangular cloth-like object by its four corners to
a specific position, preserving the initial orientation of the BB and expanding a 20% its x-y
dimensions. We add random noise in the position of the robots, with 0.01 [m] amplitude,
and the robots’ linear velocities are saturated to 0.05 [m/s]. The algorithm also runs with real-
time measurements. It is worth to mention that the robots follow unicycle kinematics in this
case, instead of double-integrator ones. Therefore, we integrate the acceleration outputs and
then transform the resulting velocities to the unicycle model by means of a diffeomorphism
[134]. An agent acting as a static obstacle is placed between the initial and the goal positions.
The control parameters are set in the following manner: k1d = 0.02, k2d = 0.5, k1r =
0.01, k2r = 0.3, k1t = 0.0005, k2t = 0.06, ε = 5000h3lj , αl = 0.05 [m/s2], Dmin

l1 =
0.14 [m], kw1 = kw2 = kw3 = kw4 = kw5 = 0.2 and R = 5 [m]. The limit values to
avoid overstretching and excessive velocities are set as dmax = [0.6, 0.9, 1] [m], dmin =

[0.15, 0.15, 0.01] [m], θ̇max = −θ̇min = 1.8 [rad/s] and ċmaxx = ċmaxy = −ċminx =

−ċminy = 0.05 [m/s]. In addition, we define L = 152 evenly distributed virtual points over
the BB faces.
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Figure 4.7 shows four different time instants of the simulation. We can see that the robots
are able to drive the virtual deformable object from the initial position, at the bottom left
side, to the final position at the top right side of the arena, avoiding the brown area (with
0.14 [m] radius) around the obstacle robot in the process. Figure 4.8 shows the minimum
node-obstacles distances, always above cero, and the control errors, which tend to zero over
time. These results confirm that the proposed DBB model is valid and useful for computing
the dimensions, orientation and position of the BB under the control actions. Also the QP
controller we present exploits the model successfully to achieve the control goal in all the
tested cases.

4.6 Discussion

We have presented a method for achieving a desired configuration of a large deformable object
in terms of position, dimensions and orientation of its bounding box, without collisions. Our
approach is based on a 3D deformable bounding box model for mobile robots that manip-
ulate the object with double-integrator dynamics. It allows predicting the object evolution
in shape and orientation under specific control inputs. We exploit this model to formulate a
set of nominal controllers, which steer the object to the target configuration. Then, we pro-
pose a control barrier function that guarantees collision avoidance by means of an integrated
quadratic-programming controller. This controller includes additional linear constraints that
limit the control inputs, so that the bounding box dimensions and the translation and ro-
tation velocities remain in the admissible ranges. Simulation results show that our method
successfully completes different kinds of transport tasks, in which the objects are steered to
specific configurations in environments with static and dynamic obstacles.

Modelling deformation is challenging. The control strategy may be limited if it relies on
a model that is not accurate, and the manipulators could show erratic behaviors. In the next
chapter, we apply formation control to the multirobot system that handles the deformable ob-
ject. By doing so, we can define the goal configuration based on the properties of the robotic
formation (shape, scale, position and orientation), thus bypassing the issues related to mod-
elling deformation. Besides, we show that the resulting controller offers strong guarantees in
terms of uncoupling of the formation parameters, stability and convergence.
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Chapter 5

Formation control for transport
tasks of deformable objects
We present in this chapter a formation controller that allows manipulating deformable objects, by
means of a team of mobile robots modelled with double-integrator dynamics. The manipulation task is
defined as reaching a target configuration consisting of a desired shape, scale, position and orientation
of the formation in 2D, while preserving the integrity of the object. We provide a set of controllers,
whose formal analysis is covered in depth, designed to allow the uncoupled control of the variables
that define the task. Besides, we include control barrier functions to enforce collision and excessive
stretching avoidance. The performance of the method is illustrated in simulation and in experiments
with real robots.

5.1 Introduction

S ubject to manipulation, real objects show a wide variety of mechanical behaviors, partic-
ularly in terms of deformation. This means that finding general deformation models is,

indeed, a challenging task. In addition, as previously stated, multirobot systems for manipu-
lation of deformable objects require accurate and tightly coordinated motions of the involved
robotic platforms. Our proposal for solving both issues is a formation controller that avoids
deformation modelling.

Formation control methods seem an appropriate basis for consideration, since they put
the focus in controlling the global behavior of a team of robots, for achieving a common goal.
Being one of the most actively studied topics in the area of multirobot systems, formation
control covers a wide variety of approaches [106]. These methods can be classified depend-
ing on the dynamic model of the robots they consider. Aranda et al. exploited a formation
controller for robots with single-integrator dynamics, for performing manipulation tasks of
deformable objects [11]. In this work, the control goal is defined as the combination of shape,
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orientation, centroid and distances between robots. The distributed pipeline by Lusk et al.
also considers the single-integrator model, for flying units in collision-free formations [93].

Other studies develop formation controllers for robots with higher-order models. Nec-
essary and sufficient conditions for stability of an affine formation controller are provided
by Lin et al. [87]. This method, formulated for robots with single-integrator dynamics
and extended to robots with second-order dynamics, allows reaching a configuration where
collinearity and ratios of distances with respect to a reference configuration are preserved.
A different study by Fathian et al. proposes a distributed control strategy where the robots
are modeled with single-integrator and higher-order holonomic dynamics [46]. In their work,
communication between the robots or a common reference for orientation are not needed.
This idea is further developed for robots with higher-order and non-holonomic dynamics,
with a distributed barycentric-coordinate-based controller for the purpose of collision-free
formation control. Dimarogonas and Kyriakopoulos proposed a formation controller for
robots with single-integrator and unicycle models and analyzed the connection between for-
mation infeasibility and velocity alignment [41]. Steering the robots to a desired geometric
pattern and achieving desired collective maneuvers is the goal of the work proposed by Zhao
[139]. The control laws he presents, based on stress matrices and with leader-follower ar-
chitecture, are formulated for robots with single-integrator, double-integrator and unicycle
models. Another study by Zhao et al. shows a general approach for coordinating multiple
robots with motion constraints, in two and three dimensions by means of a gradient-descent
control law [140]. A transportation strategy for robots with double-intergrator dynamics,
with graph-based path planning and model predictive control (MPC), is showed by Ebel et
al. [44]. Their method is compatible with variable numbers of robots in the formation, and
includes a memory functionality for finding exit paths in maze-like environments.

Different works have accomplished tasks where deformable objects are manipulated. A
switching control strategy for differential drive mobile robots is proposed by Felix-Rendon
et al. for the purpose of controlling the shape of a deformable object [47]. Shape servoing is
a well-known alternative for manipulation of deformable objects. This area of study includes
a method based on the As-Rigid-As-Possible (ARAP) model [115], where previous informa-
tion about the mechanical properties of the object is not needed. Planning strategies have
also been developed for manipulating deformable objects with multiple manipulators. In this
field, we can find hybrid centralized-distributed approaches with high-level global guidance
and receding horizon local planners, for collision avoidance and shape maintenance [5]. Also
the problem of towing a rigid load with cables attached to multiple quadrupedal robots has
been solved with a centralized-distributed planner [135]. Alternating planning and control by
means of a deadlock prediction system is another proposal to solve the problem of manipu-
lating deformable objects [95]. The problem of transporting a rigid object with a deformable
sheet, held by multiple mobile manipulators, has received attention in the last years [67], [71].
Gripper positioning in shape control tasks of deformable objects is an interesting problem
that has been recently tackled, through optimization of an importance metric [32].

Finally, different alternative systems for transporting deformable objects to goal configu-
rations have been previously proposed. A system for simultaneous shape control and transport
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of a 2D deformable object is proposed by Lopez-Nicolas et al. for robots with non-holonomic
motion constraints [91]. In this work, smooth admissible trajectories are followed so that the
integrity of the object is preserved, but collision avoidance is not tackled. The object defor-
mation is obtained from a Deformable Bounding Box model (DBB) in another method for
transporting deformable objects to a goal configuration [64]. In contrast to the present strat-
egy, the configuration parameters are limited to the dimensions, rotation and position of the
DBB, and the stability and convergence of the method are not formally analyzed.

We build this chapter upon a previous study [57]. In the previous work, we proposed a
novel formation controller for robots with double integrator dynamics, with a set of CBFs
that allow avoiding overstretching, robot-to-robot, robot-to-obstacle and object-to-obstacle
collisions. This work was based, in turn, in a formation controller for robots with single-
integrator kinematics by Aranda et al. [11]. The extension of this work to robots with double-
integrator dynamics was interesting for different reasons. Despite the technical challenges
of this extension (more complex structure of the controllers, more difficult analysis of the
control properties and integration of the system), it allowed including inertial effects to the
system, which are important in many practical scenarios. It also brought about the potential to
control the robot-object contact forces. Besides, we augmented the system with the CBFs for
collision avoidance, where controlling accelerations is a key aspect [132], and overstretching
avoidance. The main contributions we present here, with respect to the previous studies,
are a new control term that guarantees full uncoupling between the controlled formation
parameters and a comprehensive formal analysis of uncoupling, stability and convergence of
the proposal. New simulations and experimental results allow us to illustrate the performance
of our method.

5.2 Problem statement

Let us consider a deformable object that is carried by a formation of N robots in R2. The
object is connected to the robots by a set of points P = [p1,p2, ...,pN ] ∈ R2×N , where
pi = [pix, piy]

⊺, i = 1, ..., N denotes the center of robot i. We model the robot-object
links as free rotating joints. The formation centroid is g = 1

NP1N , with 1N being a column
vector ofN ones. s and θ denote the scale and orientation of the formation, respectively. We
consider the double-integrator model to describe the robots’ dynamics:[

ṗi
p̈i

]
=

[
0 I2×2

0 0

][
pi
ṗi

]
+

[
0

I2×2

]
ui , (5.1)

where xi = [p⊺
i , ṗ

⊺
i ]

⊺ is the state of robot i and ui = [uix, uiy]
⊺, i = 1, ..., N is its control

input.

The goal task consists in driving the deformable object to a target configuration, under-
stood as a specific combination of shape, scale, position and orientation of the robotic for-
mation. We adopt a strategy to solve this problem such that the configuration of the object is
not controlled explicitly. Instead, the controllers we propose act over the formation of robots
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that manipulate the object. Our method is especially suited for highly deformable objects,
whose structure is able to follow closely the shape of the formation. The goal configuration of
the formation is encoded by a set of variables. We define the desired shape of the formation
as the matrix Pd = [pd1,pd2, ...,pdN ] ∈ R2×N , where pdi = [pdix, pdiy]

⊺, i = 1, ..., N
are the positions of the robots in the desired shape. Using the desired formation scale sd and
the desired formation orientation θd, we can express the target configuration as

PT = sdRd(θd)(Pd − gd1
⊺
N ) + gd1

⊺
N , (5.2)

where Rd(θd) ∈ SO(2) is the 2D rotation matrix corresponding to the angle θd. Without
loss of generality we consider that the desired shape is centered around the desired formation
centroid gd =

1
NPd 1N , and θd = 0.

Due to the fact that we consider an environment with obstacles, reaching the target con-
figuration requires robot-to-obstacle and object-to-obstacle collision avoidance.

5.3 Formation control for robots with double-integrator dy-
namics

For controlling the variables of interest in our problem, we present a set of controllers for
robots modelled with double-integrator dynamics. The control design is such that every con-
trol term is focused on a specific variable, trying not to affect the rest.

5.3.1 Shape control

First, we will describe the controller we propose for achieving the desired shape of the for-
mation. This controller is based on a cost function that defines the shape error of the robotic
formation relative to the desired shape [11]:

γ =
1

2
∥Pb −HPdb∥

2
F =

1

2
tr
(
(Pb −HPdb)

⊺(Pb −HPdb)
)

. (5.3)

where ∥ · ∥F denotes the Frobenius norm and tr denotes the trace. The matrix H ∈ R2×2 in
(5.3), assumed ̸= 0, is defined as H = [(h1, h2)

⊺, (−h2, h1)⊺]. where

h1 =
tr(PbP

⊺
db)

tr(PdbP
⊺
db)

, h2 =
tr(Pb(SPdb)

⊺)

tr(PdbP
⊺
db)

, (5.4)

whereS = [(0, 1)⊺, (−1, 0)⊺]. Note thatS is a 2D rotation matrix ofπ/2 radians. The matrix
H aligns the matrices Pb and Pdb by performing rotation and uniform scaling. Pb and Pdb

represent, respectively, the current and desired shape of the formation with zero centroid,
and are defined as

Pb = P− g 1⊺
N = PKb , (5.5)

Pdb = Pd − gd1
⊺
N = PdKb , (5.6)
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with Kb = IN×N − (1/N)1N1⊺
N . Observe that Kb is a centering matrix that satisfies

K⊺
b = Kb, Kb1N = 0 and KbKb = Kb. We also define Eγ ∈ R2×N as the matrix of the

position errors relative to the desired shape:

Eγ = Pb −HPdb. (5.7)

Therefore, we can also express γ as follows:

γ =
1

2
tr(E⊺

γ Eγ). (5.8)

Then, we build the controller from (5.3) as the linear combination of the negative gradient
of γ and the time derivative of the negative gradient of γ:

UH = −k1H∇Pγ − k2H
d(∇Pγ)

dt
=

= k1H(HPdb −Pb) + k2H(ḢPdb − Ṗb) , (5.9)

beingk1H and k2H positive control gains. Inspired by the control scheme proposed by Fathian
et al. [46, eq. (22)], this controller aims at optimally driving the formation so that the cost
function and its time derivative are reduced. This implies a direct reduction of the difference
in shape between Pb and Pdb. Due to the fact that there is no direct control over the transi-
tion from Pb and Pdb, if the difference between them is large, UH may temporarily reorder
the robots around the object. For example, if the formation consists of three robots following
a clockwise ordering {1, 2, 3}, UH may modify the sequence to {2, 1, 3} or {1, 3, 2}. This
reordering could fold or twist the object that is being manipulated by the formation, caus-
ing undesired deformations or structural damage. For avoiding these undesired effects, we
formulate a correcting term

UG = k1G(PbP
+
dbPdb −Pb) + k2G(ṖbP

+
dbPdb − Ṗb) , (5.10)

where

P+
db = P⊺

db(PdbP
⊺
db)

−1 (5.11)

represents the Moore-Penrose pseudoinverse of matrixPdb and k1G and k2G are positive con-
trol gains. This term is based on an optimal affine transformation that aligns Pdb with Pb in
a least-squares manner. UG steers the system towards PbP

+
dbPdb, which is the optimal affine

deformation of Pdb. We denote by G ∈ R2×2 the matrix that expresses this deformation:

G = PbP
+
db. (5.12)

Therefore, UG can also be expressed as

UG = k1G(GPdb −Pb) + k2G(ĠPdb − Ṗb) . (5.13)
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For numerical reasons, UG is compatible with desired shapes different from a straight
line, and it limits the movements of the robots to those that produce the deformation modes of
stretch and shear [11]. Note that it is still possible to manipulate rope-like objects in straight-
line configurations with the method we propose, and this control term would be unnecessary.
We define another variable to use in our analysis: EGH ∈ R2×N , which measures the differ-
ence between the configurations that result from applying the two transformation matrices
G and H:

EGH = GPdb −HPdb. (5.14)

We combine the previous controllers in

Uγ = αHUH + αGUG . (5.15)

The positive control weights αH and αG regulate the contribution of each term, so that αG
should be greater than αH if there is a large difference between Pb and Pdb. Otherwise, the
convergence speed can be increased with a greater value of αH . As shown in Section 5.5, this
shape controller steers γ to zero. This makes the team acquire the shape of Pd.

5.3.2 Scale control

Scaling the shape of the formation consists in uniformly driving the robots closer or further
to the formation centroid. Just like Uγ , this process creates deformations over the object,
since it modifies the relative positions of the robots that grasp it. The formation scale can be
obtained as s = ∥H∥2. For getting s = sd, we propose the controller

Us = −k1ses(1/s)HPdb − k2sṖb , (5.16)

where es = s− sd represents the scale error and k1s and k2s are positive control gains. This
controller produces a uniform scaling of the goal shape HPdb, which is proportional to the
scale error and the velocity of the robots.

Assumption 5.1. We assume scale s > 0 initially (t=0). As we will show later, we can control the
dynamics of s independently from the rest of the variables with Us. Therefore, by selecting the control
gains appropriately, we can guarantee s > 0,∀t ≥ 0, with a monotonic convergence to sd. Note that
this requirement is necessary for the orientation of the formation θ to be defined at all times.

5.3.3 Translation and rotation control

Translation and rotation of the robotic formation consist in driving the formation rigidly
from one place to another and rotating the shape around the formation centroid, respectively.
We can obtain the orientation of the formation as θ = atan2(h2, h1) ∈ (−π, π], where the
atan2 operator represents the four quadrant inverse tangent. Note that θ can be assumed to
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5.4. Invariance and uncoupling under the proposed control terms

always remain differentiable in terms of h1 and h2, as done in [11]. The controllers we apply
to get these transformations are

Ug = −k1geg1⊺
N − k2gṖ , (5.17)

Uθ = −k1θeθSHPdb − k2θṖb , (5.18)

with eg = g − gd being the translation error, eθ = θ − θd being the orientation error, and
k1g , k2g , k1θ and k2θ being positive control gains.

5.3.4 Full formation controller

The full formation controller consists in a linear combination of the shape, scale, translation
and rotation controllers for robots with double-integrator dynamics (Uγ + Us + Ug +
Uθ). This control law provides suitable performance. However, when using it, the dynamic
evolution of the variables s and θ is coupled. The underlying reason for this coupling can
be found by computing the dynamics of these variables as a function of h1 and h2. Using
standard manipulations and also the facts that h1 = s cos θ and h2 = s sin θ, we get:

ṡ =
h1ḣ1 + h2ḣ2

s
, s̈ =

h1ḧ1 + h2ḧ2
s

+ θ̇ 2s. (5.19)

θ̇ =
h1ḣ2 − h2ḣ1

s2
, θ̈ =

h1ḧ2 − h2ḧ1
s2

− 2ṡθ̇

s
. (5.20)

The second addends in the second-order time derivatives of s and of θ cause the coupling.
Specifically, it turns out that s is not invariant when using Uθ , as we analyze in Section 5.4.
To remove this coupling, we define a control term Uu having the following form:

Uu = −θ̇ 2HPdb + (2ṡθ̇/s)SHPdb . (5.21)

The first addend of Uu aims at modifying the dynamics of Us, while the second one does
that for Uθ . The full control law we apply is, then:

U = Uγ +Ug +Us +Uθ +Uu . (5.22)

As we show in Section 5.5, Uu will cancel out the coupled dynamic terms. Then, under the
control (5.22), we will obtain uncoupled dynamics for all the variables (γ, θ, g and s).

5.4 Invariance and uncoupling under the proposed control
terms

Uncoupling is a desired property for the controller we propose. When it applies, it is possible
to control each variable independently. This results in flexible solutions, which can be adapted
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Chapter 5. Formation control for transport tasks of deformable objects

to different manipulation tasks. It is also possible to study other control properties of every
term separately (e.g., stability), if uncoupling between them exists. To study uncoupling, we
analyze in this section the invariance of each variable (γ, g, θ and s) under the proposed
controllers. Note that we analyze the role ofUu to fully uncouple the control of the formation
variables in Section 5.5. In our analysis we will assume the system is at rest initially, i.e.,
Ṗ(t = 0) = 0. At the end of this section (Remark 5.1), we will summarize the results of our
invariance study.

Proposition 5.1. The shape variable γ is invariant under Ug , Us and Uθ .

Proof. We will use the time derivative of γ, which has the following expression:

γ̇ = tr
(
P⊺
b Ṗb −P⊺

dbH
⊺Ṗb −P⊺

dbḢ
⊺Pb +P⊺

dbḢ
⊺HPdb

)
. (5.23)

We will now find a simpler expression for this derivative. First, we know from Aranda et al.
[11] that

HPdb = h1Pdb + h2SPdb , (5.24)

and hence

ḢPdb = ḣ1Pdb + ḣ2SPdb . (5.25)

Using these two identities, the definitions (5.4), and applying the property tr((SA)A⊺) =
tr((SA)⊺A) = 0 with A ∈ R2×N for A = Pdb, we find the identity

tr(P⊺
dbḢ

⊺HPdb) =

= tr
(
(ḣ1Pdb + ḣ2SPdb)

⊺(h1Pdb + h2SPdb)
)

= h1ḣ1tr(PdbP
⊺
db) + h2ḣ2tr(P⊺

dbS
⊺SPdb)

= h1 tr(Ṗ⊺
bPdb) + h2 tr(Ṗ⊺

bSPdb) = tr(P⊺
dbH

⊺Ṗb) . (5.26)

Using this on (5.23), we reach the simpler expression

γ̇ = tr(P⊺
b Ṗb −P⊺

dbḢ
⊺Pb) . (5.27)

We present the study for each controller next.

1) γ is invariant underUg .

With P̈ = Ug , we have P̈b = P̈Kb = UgKb = −k1geg1⊺
NKb − k2gṖb. Since

1⊺
NKb = (Kb1N )⊺ = 0 and assuming initial rest (i.e., Ṗ(t = 0) = 0), we see that P̈b =

Ṗb = 0 ∀t. Hence, Ḧ = Ḣ = 0 ∀t. Substituting Ṗb = 0 and Ḣ = 0 in (5.27), we obtain
γ̇ = 0.

2) γ is invariant underUs.
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We will show that, under Us, it holds that

tr(P⊺
b Ṗb) = tr(P⊺

dbḢ
⊺Pb) , (5.28)

which implies, from (5.27), the invariance of γ. Notice

P̈b = UsKb = −k1s(1− sd/s)HPdb − k2sṖb . (5.29)

We can use this to compute

ḧ1 =
tr
(
(−k1s(1− sd/s)HPdb − k2sṖb)P

⊺
db

)
tr(PdbP

⊺
db)

= −k1s(1− sd/s)h1 − k2sḣ1 , (5.30)

where we used h1 = tr(HPdbP
⊺
db)/tr(PdbP

⊺
db) [11]. Since an analogous equation holds for

ḧ2, we get

ḧ+ k2sḣ+ k1s(1− sd/∥h∥)h = 0 . (5.31)

where we defined h = [h1, h2]
⊺, with ∥h∥ = s. Starting from rest (ḣ(t = 0) = 0), we see

that the dynamics of this equation must remain proportional to h; i.e., h(t) = κ(t)h(t = 0)
with κ(t) being a scalar. Note that κ(t) ̸= 0 because κ(t) = 0 would imply s(t) = 0, which
is ruled out by Assumption 5.1. We can directly write for H:

H(t) = κ(t)H(0) . (5.32)

where H(0) is H at time zero. By reorganizing (5.29) and substituting (5.32), we get

P̈b + k2sṖb + k1s(1− sd/s)κ(t)H(0)Pdb = 0. (5.33)

Defining a constant matrixPdbo = H(0)Pdb, we express the above as a first order differential
equation in Ṗb:

P̈b + k2sṖb + κ1(t)Pdbo = 0 , (5.34)

for some scalar κ1(t). Starting from rest (Ṗb(t = 0) = 0), the solution to this equation has
the form

Ṗb = κ2(t)Pdbo = κ2(t)H(0)Pdb = µ(t)HPdb, (5.35)

with κ2(t), µ(t) scalars such that µ(t) = κ2(t)/κ(t). Hence

ḣ1 =
tr(ṖbP

⊺
db)

tr(PdbP
⊺
db)

=
µ(t) tr(HPdbP

⊺
db)

tr(PdbP
⊺
db)

= µ(t)h1 , (5.36)

101



Chapter 5. Formation control for transport tasks of deformable objects

where we have used tr(HPdbP
⊺
db) = tr(PbP

⊺
db), which can be deduced from (5.24). Note

ḣ2 = µ(t)h2 holds too. Using this, (5.35) and (5.24) in (5.28) we get:

tr(P⊺
b Ṗb) = µ(t) tr(P⊺

b (HPdb))

= µ(t)h1 tr(P⊺
bPdb) + µ(t)h2 tr(P⊺

bSPdb)

= ḣ1 tr(P⊺
bPdb) + ḣ2 tr(P⊺

bSPdb)

= tr(P⊺
b ḢPdb) = tr(P⊺

dbḢ
⊺Pb) . (5.37)

Therefore, (5.28) holds. Hence, γ is invariant under Us.

3) γ is invariant underUθ .

By recovering once again the expression for ḧ1 and substituting P̈b = UθKb, we get

ḧ1 =
(

tr(PdbP
⊺
db)
)−1

tr
(
(−k1θeθSHPdb − k2θṖb)P

⊺
db

)
= −k1θeθ

(
tr(PdbP

⊺
db)
)−1

tr
(
S(h1Pdb + h2SPdb)P

⊺
db

)
− k2θḣ1 = k1θeθh2 − k2θḣ1 , (5.38)

where we used that SS = −I2×2. Similarly, we find ḧ2 = −k1θeθh1− k2θḣ2. Then, we can
obtain:

Ḧ+ k2θḢ+ k1θeθSH = 0 . (5.39)

On the other hand, we can rewrite UθKb as

P̈b + k2θṖb + k1θeθSHPdb = 0 . (5.40)

If we post-multiply (5.39) by Pdb and we subtract the result from (5.40), we obtain

(P̈b − ḦPdb) + k2θ(Ṗb − ḢPdb) = 0 . (5.41)

Assuming the system initially at rest, i.e., Ṗb− ḢPdb = 0 at t = 0, clearly P̈b = ḦPdb and
Ṗb = ḢPdb ∀t. Then, the equality (5.28) is satisfied and (5.27) equals zero. Hence, γ̇ = 0.
This indicates that γ is invariant under Uθ .

Proposition 5.2. The formation variable g is invariant under Uγ , Us and Uθ .

Proof. Notice that every addend in Uγ , Us and Uθ can be expressed as UiKb. Therefore, for
every such addend the dynamics of g is g̈ = 1

N P̈ 1N = 1
NUi Kb1N . Since Kb1N = 0,

g̈ = 0. Assuming the system is initially at rest (i.e., ġ(t = 0) = 0), we conclude ġ = 0
∀t.

Proposition 5.3. The formation variable θ is invariant under Uγ , Ug and Us.
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Proof. We start with Uγ . As θ = atan2(h2, h1), we study the dynamics of h1 and h2. Under
Uγ , P̈ = Uγ . From the properties of Kb, we have UγKb = Uγ and therefore P̈b =

P̈Kb = UγKb = Uγ . We can then write:

ḧ1=
(

tr(PdbP
⊺
db)
)−1

tr(P̈bP
⊺
db)=

(
tr(PdbP

⊺
db)
)−1

tr(UγP
⊺
db)

=
(

tr(PdbP
⊺
db)
)−1

tr
(
αH(k1H(HPdbP

⊺
db −PbP

⊺
db)

+ k2H(ḢPdbP
⊺
db − ṖbP

⊺
db))

+ αG(k1G(PbP
⊺
db(PdbP

⊺
db)

−1PdbP
⊺
db −PbP

⊺
db)

+ k2G(ṖbP
⊺
db(PdbP

⊺
db)

−1PdbP
⊺
db − ṖbP

⊺
db))

)
. (5.42)

Since (PdbP
⊺
db)

−1PdbP
⊺
db = I2×2, the term multiplied by αG is zero. Besides, it holds that

tr(PbP
⊺
db) = tr(HPdbP

⊺
db), as noted above; and, taking the time derivative, tr(ṖbP

⊺
db) =

tr(ḢPdbP
⊺
db). If we apply these relations in (5.42), we get ḧ1 = 0. By following the same

procedure for ḧ2, we obtain ḧ2 = 0, which yields Ḧ = 0. Assuming that the system is at rest
at t = 0, i.e., Ṗ(t = 0) = 0, we determine that Ḣ = 0. Hence, θ is invariant under Uγ .

Under Ug , P̈b = UgKb = −k1geg1⊺
NKb − k2gṖb. As 1⊺

NKb = 0, and assuming
Ṗb(t = 0) = 0, we have P̈b = Ṗb = 0 ∀t. Hence, Ḣ = 0 ∀t, and θ is invariant.

Under Us, we know from (5.32) that H(t) = κ(t)H(0) with κ(t) being a scalar. There-
fore, h2/h1 is constant. If h1 = 0 initially, then h1 = 0 ∀t, and h2/h1 is always of infinite
magnitude. In conclusion, θ is invariant.

Proposition 5.4. The formation variable s is invariant under Uγ and Ug . It is not invariant under
Uθ .

Proof. In Proposition 5.3 we concluded that Ḣ = 0 under Uγ and under Ug . Hence, s =
∥H∥2 is invariant under Uγ and under Ug .

UnderUθ , the third term of (5.39), which includesSH, generates the rotation movement.
With dynamics of this form, s = ∥H∥2 is not constant in the general case.

Remark 5.1. The strong invariance properties that we have proven for γ, g and θ are favorable for
achieving a fully uncoupled control. The scale variable s is not invariant under Uθ (Proposition 5.4),
which creates an undesired coupling that was already expected from the dynamics (5.19), (5.20). Despite
this, through the use of the term Uu we will achieve fully uncoupled control of all the variables (γ, g,
θ and s), as shown in the next section.

5.5 Stability and convergence underU

The following is our main formal result, which establishes the stability and convergence of
the proposed controller, and provides the dynamics of the variables.
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Theorem 5.1. The multirobot system under the action of U (5.22) is stable and the robot positions
P converge asymptotically to the target configuration PT . Moreover, each variable (γ, g, θ and s)
evolves according to linear dynamics uncoupled from the dynamics of the other variables.

Proof. We will first compute the dynamics imposed by the control law U (5.22) for P, h1 and
h2, and then we will use this to obtain the dynamics of the formation variables. We start by
computing P̈:

P̈ = αHk1H(HPdb −Pb) + αHk2H(ḢPdb − Ṗb)

+ αGk1G(GPdb −Pb) + αGk2G(ĠPdb − Ṗb)

− k1geg1⊺
N − k2gṖ− k1ses(1/s)HPdb − k2sṖb

− k1θeθSHPdb − k2θṖb − θ̇ 2HPdb +
2ṡθ̇

s
SHPdb. (5.43)

Let us define k2f = k2g + k2s + k2θ and

η = k1s
es
s

+ θ̇ 2, ρ = k1θeθ −
2ṡθ̇

s
. (5.44)

We then have these expressions for ḧ1 and ḧ2:

ḧ1 =− k2gḣ1 − k1s(es/s)h1 − k2sḣ1 + k1θeθh2 − k2θḣ1

− θ̇ 2h1 −
2ṡθ̇

s
h2 = −k2f ḣ1 − ηh1 + ρh2. (5.45)

ḧ2 =− k2gḣ2 − k1s(es/s)h2 − k2sḣ2 − k1θeθh1 − k2θḣ2

− θ̇ 2h2 +
2ṡθ̇

s
h1 = −k2f ḣ2 − ηh2 − ρh1. (5.46)

Recall that the control term Uγ produces ḧ1 = ḧ2 = 0, which is why it does not appear in
(5.45) and (5.46). We can now obtain the error dynamics of each variable.

1) Error dynamics of γ. Note γ itself is an error variable with respect to its desired value
γ = γd = 0. To analyze γ we will compute the dynamics of the variables Eγ and EGH . To
this end, we first write the expression for P̈b from (5.43), using that 1⊺

NKb = 0:

P̈b = αHk1H(HPdb −Pb) + αHk2H(ḢPdb − Ṗb)

+ αGk1G(GPdb −Pb) + αGk2G(ĠPdb − Ṗb)

− k2f Ṗb − ηHPdb − ρSHPdb. (5.47)

We compute from (5.45) and (5.46) the dynamics of H:

Ḧ = −k2fḢ− ηH− ρSH. (5.48)
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For G, from (5.47) and using PdbP
+
db = I2×2 we obtain

G̈ = P̈bP
+
db = −k2fĠ− αHk1H(G−H)− αHk2H(Ġ− Ḣ)− ηH− ρSH. (5.49)

Notice that

G̈− Ḧ = −αHk1H(G−H)− (αHk2H + k2f )(Ġ− Ḣ). (5.50)

Now, using P̈b − ḦPdb = P̈b − G̈Pdb + (G̈ − Ḧ)Pdb, we can directly get, substituting
equations (5.47) to (5.50):

Ëγ = P̈b − ḦPdb = −(αHk1H + αGk1G)Eγ − (αHk2H + αGk2G + k2f )Ėγ

+ αGk1GEGH + αGk2GĖGH , (5.51)

ËGH = G̈Pdb − ḦPdb = −αHk1HEGH − (αHk2H + k2f )ĖGH .

Notice that this forms a linear system for each of the 2N components (i.e., position coor-
dinates) of Eγ and EGH . Every one of these systems has the same dynamics. Therefore, it
suffices to study one of them. Let us take an arbitrary i ∈ {1, ..., 2N} and call eγ ∈ R and
eGH ∈ R the components of Eγ and EGH , respectively, corresponding to that i. We can
then write 

ėγ
ëγ
ėGH
ëGH

 =


0 1 0 0
a21 a22 a23 a24
0 0 0 1
0 0 a43 a44


︸ ︷︷ ︸

Ae


eγ
ėγ
eGH
ėGH

, (5.52)

where a21 = −(αHk1H + αGk1G), a22 = −(αHk2H + αGk2G + k2f ), a23 = αGk1G,
a24 = αGk2G, a43 = −αHk1H , a44 = −(αHk2H + k2f ). We compute the characteristic
polynomial of Ae:

|λI−Ae| = (λ2 − a22λ− a21)(λ2 − a44λ− a43). (5.53)

As a22, a21, a44 and a43 are all strictly negative, from the Routh-Hurwitz criterion the eigen-
values of Ae have negative real parts, and hence the system is stable. Therefore, Eγ , Ėγ ,
EGH and ĖGH are all bounded and they converge to zero asymptotically. Notice, then, that
γ = (1/2)tr(E⊺

γEγ) is bounded and converges to zero asymptotically. Moreover, the dynam-
ics of Eγ are fully determined by the initial configuration and matrix Ae: therefore, γ does
not depend on the other variables being controlled (g, s, θ).

2) Error dynamics of g. We substitute (5.43) in g̈ = (1/N)P̈1N . Note that every addend
ending in a b in (5.43) is being post-multiplied by Kb. Then, since Kb1N = 0 and 1⊺

N1N =
N , we directly find: g̈ = −k1geg − k2gġ. Therefore, we have:

ëg = −k1geg − k2gėg. (5.54)
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We can define eg = [egx, egy]
⊺, and then for each component j (j ∈ {x, y}) we have a linear

system ẋegj = Agxegj on the state xegj = [egj , ėgj ]
⊺. The characteristic polynomial of Ag

is λ2 + k2gλ + k1g . As k1g and k2g are positive, from the Routh-Hurwitz criterion eg and
ėg are bounded and stable, converging to zero over time. Hence, the centroid g converges to
the desired one, gd.

3) Error dynamics of s. Substituting (5.45) and (5.46) in the second equation of (5.19) and
applying h1ḣ1 + h2ḣ2 = ṡs (5.19) and h21 + h22 = s2, we find s̈ = −k1ses − k2f ṡ, i.e.:

ës = −k1ses − k2f ės. (5.55)

We define a linear system ẋes = Asxes on the state xes = [es, ės]
⊺. The characteristic

polynomial of As is λ2 + k2fλ+ k1s. As k1s and k2f are positive, from the Routh-Hurwitz
criterion es and ės are bounded and stable, converging to zero over time. Hence, s converges
to the desired scale, sd.

4) Error dynamics of θ. Substituting (5.45) and (5.46) in the second equation of (5.20) and
applying h1ḣ2 − h2ḣ1 = θ̇s2 (5.20) and h21 + h22 = s2, we find θ̈ = −k1θeθ − k2f θ̇, i.e.:

ëθ = −k1θeθ − k2f ėθ. (5.56)

We now have a linear system ẋeθ = Aθxeθ on the state xeθ = [eθ, ėθ]
⊺. The characteristic

polynomial of Aθ is λ2 + k2fλ+ k1θ . As k1θ and k2f are positive, from the Routh-Hurwitz
criterion eθ and ėθ are bounded and stable, converging to zero over time. Thus, the angle θ
converges to the desired one, θd.

Now, from 2), 3) and 4), it is clear that the evolutions of g, s and θ are determined by the
initial configuration and the matrices Ag , As, and Aθ , respectively, which depend only on
the chosen control gains. Hence, during the task each variable evolves independently from
the others.

Convergence to the target configuration. Notice from the dynamics above that ||Pb−HPdb||
and ||Ṗb − ḢPdb|| are bounded. In addition, s, θ, ṡ and θ̇, which represent the value and
dynamics of the norm and angle of H, are also bounded. This implies that ||Pb|| and ||Ṗb||
are bounded. Since ||g|| and ||ġ|| are also bounded, we infer that ||P|| and ||Ṗ|| are bounded.
The convergence is to a static configuration, i.e., Ṗ = 0. This is because Ḣ converges to zero
(as ṡ and θ̇ converge to zero), and therefore, Ṗb = ḢPdb converges to zero. Given that ġ
also converges to zero, Ṗ converges to 0.

Recall the target configuration is PT = sdRd(θd)Pdb + gd1
⊺
N . Let us use a subscript c

to denote the configuration that the system converges to, and its variables. This configuration
satisfies PcKb = HcPdb (due to γ = 0), i.e., Pc = scRcPdb + gc1

⊺
N . As es = 0

and eθ = 0, we have sc = sd and θc = θd. As eg = 0, we have gc = gd. Therefore,
Pc = PT .
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5.6 Safe control with CBFs

5.6.1 Collision avoidance

Due to the fact that the previous controller does not take into account explicitly collision
avoidance, we need an additional strategy to complement the formation controller U. Col-
lisions may occur: between two agents (agent-to-agent), between an agent and an obstacle
(agent-to-obstacle) and between the object and an obstacle (object-to-obstacle). In contrast
to other multirobot systems, where the agents are not linked by a solid structure, collision
avoidance is more challenging in our case: the robots are grasping the object, and their ma-
neuvers must always respect the admissible deformation states of the object. Control barrier
functions (CBFs) provide a robust, flexible and minimally invasive solution to this issue. We
adapt and extend the centralized formulation proposed by Wang et al. [132], for collision
avoidance in a team of robots that are assigned different position goals. Our system can be
written in the affine form

ẋij = f(xij) + g(xij)uij , (5.57)

where xij = [pij , ṗij ]
⊺, pij = pi − qj , uij = ui −wj and f(xij) and g(xij) are locally

Lipschitz continuous functions, which describe how the agents are coupled with each other
via the controller. Note that qj and wj are the position and control input, respectively, of
agent j, which can be a robot of the formation (and then qj = pj , wj = uj) or an obstacle.
In the latter case, we must set wj = 0 (obstacles cannot be controlled). Then, we propose
the following condition for collision avoidance, which restricts the distance between i and j
to a minimum value:

∥pij∥+
∫ tf

t0

ṗ⊥ij(t)dt ≥ Dmin
ij , (5.58)

where

ṗ⊥ij =
p⊺
ij

∥pij∥
ṗij (5.59)

is the normal component of the relative velocity ṗij ,

tf =
ṗ⊥ij(tf )− ṗ⊥ij(t0)

αi + αj
+ t0 (5.60)

for ṗ⊥ij(tf ) = 0 is the time instant after having applied the maximum braking accelerations
αi and αj (∥p̈i∥∞ = αi), and Dmin

ij is the minimum allowed distance between i and j. If j
is an obstacle, αj = 0. After manipulation of the previous equations, and taking t0 = 0, we
get the candidate CBF for i and j

hij = 2(αi + αj)(∥pij∥ −Dmin
ij )− ṗ⊥2

ij , (5.61)

which is defined in R for both the safe and the unsafe regions. By definition [7], we know that
hij(xij) is a CBF if there exists an extended class K∞ function ε(hij(xij)) such that

sup
uij

[Lfhij(xij) + Lghij(xij)uij ] ≥ −ε(hij(xij)) , (5.62)
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𝐔1

𝐔𝑉2 𝐔2
𝐔𝑉1

Figure 5.1: Two real agents (green and red circles) and two virtual agents (orange ‘×’) in the formation
edge that links P1 and P2. In this case, their control inputs are computed as Uv1 = 2/3U1+1/3U2

and Uv2 = 1/3U1 + 2/3U2.

whereL represents the Lie derivative. By using this definition and substituting our candidate
CBF (5.61), we obtain a set of linear constraints with respect to uij :

p⊺
ijṗij

p⊺
ij

∥pij∥
uij ≤ (αi + αj)p

⊺
ijṗij +

∥pij∥
2

ε(hij) . (5.63)

These constraints guarantee that the system will maintain a minimal distance of Dmin
ij

between the center of agent i and the center of agent/obstacle j. This implies that agents and
obstacles are circles with regard to collision avoidance. However, if ∥pab∥ ≥ Dmin

ac +Dmin
bc ,

where a and b are neighboring agents and c an obstacle, c could penetrate into the formation.
This behavior is undesired in the present case, because it would result in an object-to-obstacle
collision.

The strategy we propose to solve this issue consists in deploying a set of virtual agents
pvk = [pvkx, pvky]

⊺
, k = 1, ..., V over the contour edges of the formation polygon (Fig.

5.1). These virtual agents add new distance constraints with respect to the obstacles, and their
virtual inputs are computed as the linear combination

uvk = (1− ν)ui + ν uj , (5.64)

where ν = ∥pvk − pi∥/∥pj − pi∥ and pvk is the position of the virtual agent in the edge
i j. This strategy preserves the desired safety distance Dmin

ij . In addition, the computational
cost of the system does not increase substantially, since no new control inputs are added (the
virtual inputs are computed from the ones of the real agents).

5.6.2 Overstretching avoidance

Yet minimally invasive overU, the collision avoidance system may separate two agents beyond
the deformation limit of the carried object. We can write the condition to avoid overstretch-
ing the object as a restriction on the maximum distance between i and j:

∥pij∥+
∫ tf

t0

ṗ⊥ij(t)dt ≤ Dmax
ij , (5.65)
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where

tf =
ṗ⊥ij(t0)

αi + αj
− t0 (5.66)

andDmax
ij is the maximum allowed separation between i and j. Note that this distance can be

set differently for each pair of agents, so that more fragile parts of the object are constrained to
a higher extent than the rest. The following CBF candidate integrates the previous equations
as

h′ij = 2(αi + αj)(D
max
ij − ∥pij∥)− ṗ⊥2

ij . (5.67)

By substituting (5.67) in (5.62) we get the new set of constraints

p⊺
ij

∥pij∥
ṗijp

⊺
ijUij ≤ −(αi + αj)p

⊺
ijṗij +

∥pij∥
2

ε′(h′ij) . (5.68)

These constraints prevent stretching the object more thanDmax
ij between every pair of agents

i and j.

5.6.3 Quadratic programming-based controller

Finally, we introduce the previous constraints into a Quadratic Programming-based (QP)
controller, which outputs the safe control inputs UB = [u⊺

B1,u
⊺
B2, ...,u

⊺
BN ]

⊺ ∈ R2N :

Given U,P, Ṗ, Dmin
ij , Dmax

ij , αi, αj

minimize
UB

ξ =

N∑
i=1

∥uBi − ui∥22 (5.69)

subject to:
AijUB ≤ bij , ∀i ̸= j, i = 1, ..., N, j = 1, ..., N +M ,
AkjUB ≤ bkj , k = 1, ..., V, j = 1, ...,M ,
A′
ijUB ≤ b′ij , ∀i ̸= j, i = 1, ..., N, j = 1, ..., N ,

∥uBi∥∞ ≤ αi, i = 1, ..., N

where M is the number of obstacles, Aij , Akj and A′
ij are defined as

A∗∗ = [0, ...,p⊺
∗∗ṗ∗∗

p⊺
∗∗

∥p∗∗∥
, ...,−p⊺

∗∗ṗ∗∗
p⊺
∗∗

∥p∗∗∥
, ..., 0] , (5.70)
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being subscript ∗∗ the corresponding indexes and the first non-zero terms in the ith/kth
position and the second in the jth position,

bij = (αi + αj)p
⊺
ijṗij +

∥pij∥
2

ε(hij) , (5.71)

bkj = ((1− ν)αi + ν αj)p
⊺
kjṗkj +

∥pkj∥
2

ε(hkj) , (5.72)

b′ij = −(αi + αj)p
⊺
ijṗij +

∥pij∥
2

ε′(h′ij) . (5.73)

The QP controller computes, for each agent, the closest control input uBi to the nominal
Ui that satisfies the collision and overstretching avoidance constraints.

5.7 Implementation details

5.7.1 Design of control gains

As can be seen from the error dynamics presented above, we can control in an independent
manner the specific time evolutions ofg, s and θ. This is another advantage of our new control
law relative to the one in [57].

Commonly, it can be desirable to avoid overshooting; to this end, we can choose the gains
in the overdamped region, i.e., k2j ≥ 2

√
k1j , for j ∈ {H,G, g}. In the case of s and θ,

their dynamics share the coefficient k2f (see (5.55) and (5.56)); then, to avoid overshooting,
one option is to fix k2f and then define k1s ≤ k22f/4, k1θ ≤ k22f/4. The choice of αH and
αG can be made on the basis of how large the deformations are during execution. When large
deformations are required, a largeαG is useful as it can keep these deformation close to affine.
Note, finally, that the actual time evolutions of the variables will also be determined by the
safety constraints imposed via the CBFs.

5.7.2 Handling of measurement noise

In implementation scenarios with significant measurement noise, the accuracy of the con-
trol term Uu estimated from the measurements will be particularly affected. Some practical
actions that can be taken to reduce this effect are:

• The term −θ̇ 2 in Uu always has the same sign and hence the noise associated with
it can create a steady-state negative offset in es. A way to reduce this effect without
significantly impacting the overall control performance is to dampen this term when
some measure of error, de, is below a small chosen value, dn < 1; e.g., by using:

Uu = −de θ̇ 2HPdb +
2ṡθ̇

s
SHPdb, if de < dn. (5.74)
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A suitable choice is, e.g., de = κθ|eθ| for a κθ ≥ 0.

• Choosing θd = 0 can help as it may lower the magnitude of noise in practice. Note
that it is always possible for us to choose θd = 0, by defining Pd appropriately.

• Filtering measurements or estimations over a time window, e.g. by means of the average
value, can also decrease the effect of noise.

The adjustments above should be made while ensuring that the team can still react fast enough
to satisfy the safety constraints.

5.8 Experimental validation

5.8.1 Full controller simulation tests

We start by testing U, i.e. the full formation controller with the uncoupling term Uu, in two
different simulation scenarios. The first one consists in an obstacle free circuit, in which a
squared sheet is to be transported to a different location and deformed into a regular hexago-
nal shape. A formation of N = 6 robots grasps the sheet, modelled in 3D with the As-Rigid-
As-Possible (ARAP) technique [117]. Only the 2D projection of the model on the horizontal
plane is considered by the control algorithm. Then, the control input U is applied to the
robots with the following parameters: k1H = 4, k2H = 2, k1G = 4, k2G = 2, αH = 1,
αG = 10, k1s = 3, k2s = 1, k1g = 0.2, k2g = 1, k1θ = 3, k2θ = 1, sd = 1, θd = 0 and the
control time step is 0.01 [s]. Figure 5.2 shows the top view of the test case and the evolution
of the formation parameters. We can see that there is a smooth transition from the initial to
the goal configuration, that is achieved with control inputs and control errors that tend to
zero. Note that the robots do not permute their positions in the process, preventing in this
manner undesired deformations of the object.

In the next test case we include three obstacles of 1 [m] radius, two static and one dynamic,
which must be avoided to reach the goal configuration. Given that the formation controller
does not consider explicitly collision avoidance in the formulation, we apply UB through the
QP-based algorithm. The QP controller is configured with the same control parameters than
in the previous case, and the additional ones that follow: ε = 3hij , ε′ = h′ij , αi = 10 [m/s2],
Dmin
ij = 0.5+ dr [m] for the robot-to-robot collision avoidance CBFs, where dr = 0.35 [m]

is the diameter of the robots, Dmin
ij = 1 + dr [m] for the robot-to-obstacle and object-to-

obstacle collision avoidance CBFs, and Dmax
ij = 5 [m] ∀i ̸= j. We also include 18 virtual

robots, evenly distributed in the formation contour edges. We see in Fig. 5.3 that the goal
configuration is successfully reached without collisions, since the minimum distance between
the mesh nodes and the nearest obstacle is always above the obstacles radius (1 [m]).
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Figure 5.2: From left to right and from top to bottom, top view of the test scenario at t = 25 [s], control
errors plot, full controller inputs plot and robot 1 control inputs plot (the control inputs plots of the
remaining robots are similar). In the first plot, the deformable object (blue mesh) is transported by
N = 6 robots, from a square to the hexagonal goal formation at the bottom right corner of the plot.
It can be seen that the desired shape, scale, rotation and position of the formation are reached with a
smooth transition from the initial state, and the control inputs tend to zero over time.
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Figure 5.3: From left to right and from top to bottom, four top-view snapshots (t = 0 [s], t = 2 [s],
t = 8 [s], t = 30 [s]) of the second test scenario with two static and one dynamic obstacles, errors
plot and minimum distances plot. This last plot indicates the minimum distance between the mesh
nodes and the nearest obstacle. It can be seen that the goal configuration is achieved without collisions
between the object and the obstacles (the minimum distance is always above 1 [m]).
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5.8.2 Experimental tests

The performance of the proposed controller in real scenarios is tested in two different setups,
without and with obstacles. We consider the Robotarium system for these real-world exper-
iments [134]. This system consists in a 3.2 × 2 [m] arena with up to 20 GRITSBot X robots
available, which are coordinated by a central unit. A motion capture system provides the posi-
tion and orientation of the agents at a frequency of 30Hz. Once our system is validated in the
Robotarium simulator for Matlab, the software is sent to the real platform through the web
application. Is it worth to mention that the robots of this system follow unicycle kinemat-
ics, instead of double-integrator ones. Therefore, we integrate the acceleration outputs and
then transform the resulting velocities to the unicycle model by means of a diffeomorphism
(provided by the Robotarium software).

A 0.6× 0.75 [m] deformable virtual sheet (real objects are not available for testing in the
Robotarium) is transported in the first test case by six robots, one at each corner and the other
two in the middle of each one of the longer edges. The goal configuration is a rectangle with
gd = [−0.75, 0.15]⊺ [m] (the origin of coordinates is at the center of the arena), sd = 1 and
θd = 0 [rad]. We configure the controllerUwith the following parameters in the overdamped
region (see Subsection 5.7.1): k1H = 0.1, k2H = 0.65, k1G = 0.1, k2G = 0.65, αH = 4,
αG = 2, k1s = 0.1, k2s = 0.3, k1g = 0.02, k2g = 0.3, k1θ = 0.1, k2θ = 0.3 and the
control time step is 0.033 [s]. Figure 5.4 shows the results of this test. It can be seen that PT

is reached with near-zero errors, despite the noise and perturbations coming from the real
setup (conversion of the control inputs from the double-integrator model to the unicycle one,
measurement and actuation errors, etc).

In the second test, the idea is to represent a realistic manipulation scenario in which a
rectangular deformable sheet is transported, without collisions with the obstacles present in
the environment, to a deformed configuration. A virtual sheet of 0.45 × 0.56 [m] is grasped
by four robots at its corners and must be transported to a target configuration. The target
configuration is a trapezoid with gd = [−0.8, 0.25]⊺ [m], sd = 1 and θd = 0 [rad]. Two
obstacles of 0.16 [m] radius, one static and one dynamic, are considered. We configure the
controller UB with the following parameters: k1H = 0.1, k2H = 0.2, k1G = 0.05, k2G =
0.2, αH = 4, αG = 2, k1s = 0.05, k2s = 0.3, k1g = 0.01, k2g = 0.3, k1θ = 0.05,
k2θ = 0.2 and the control time step is again 0.033 [s]. In turn, the CBFs are configured with:
ε = 30hij , ε′ = h′ij , αi = 20 [m/s2], Dmin

ij = 0.3 [m], and Dmax
ij = 5 [m] ∀i ̸= j. We

include 12 virtual robots, evenly distributed in the formation contour edges. Figure 5.5 shows
the results from this test. Note that the task errors converge to a near-zero value and the goal
configuration is reached. Note also that the minimum distance between a node of the object’s
mesh and the center of an obstacle is always above 0.16 [m], which indicates that the object
does not collide with the obstacles. We provide additional results in the attached video.
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Figure 5.4: From left to right and from top to bottom, top view of the test scenario initially and at
t = 165 [s], control errors plot, unicycle linear velocities plot and unicycle angular velocities plot. The
top-view plots are displayed rotated by 90 [deg]. In the two first plots, a large deformable object is
transported and deformed by N = 6 robots, from the rectangular initial formation seen in the first
plot to a scaled and rotated rectangle seen at the top of the second plot. It can be seen that the desired
shape, scale, rotation and position of the formation are reached up to near-zero errors.
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Figure 5.5: From left to right and from top to bottom, four top-view snapshots (t = 0 [s], t = 15 [s],
t = 22 [s], t = 165 [s]) of the second test scenario in the Robotarium, with one static and one dynamic
obstacles, control errors plot and plot of minimum distances between the mesh nodes and the nearest
obstacle. The top-view plots are displayed rotated by 90 [deg]. It can be seen that the errors evolve to a
stationary near-zero value. The minimum distances are always above 0.16 [m], the radius of the obstacles,
which indicates that no collisions occur between the object and the obstacles.
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5.9 Discussion

The presented formation controller allows steering a deformable object to a specific config-
uration in 2D, by means of a team of robots. It includes different terms that modify the
shape, scale, position and orientation of the robotic formation to the desired ones. We have
demonstrated the existing uncoupling between the problem variables and the stability and
convergence of the system. The performance of our proposal has shown successful results in
simulated and real scenarios, without and with obstacles.

We have assumed in this chapter that the manipulated object is resistant enough under
standard grasping techniques. However, if the object is fragile we should develop alternative
manipulation methods for avoiding damages. In the next chapter, we consider thin fragile de-
formable objects lying on a flat surface. Then, we propose a new manipulation strategy based
on sequential planar pushing, which enables object-compliant manipulation of materials with
unknown mechanical properties.
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Chapter 6

Multirobot pushing of thin fragile
deformable objects
For the goal of driving a thin fragile deformable object to a target position and orientation, we propose in
this chapter a manipulation method based on executing planar pushing actions on the object edges with
a team of robotic arms. Firstly, we obtain a probabilistic model through Gaussian process regression,
which represents the time-varying deformation properties of the system. Then, we exploit the model
in the framework of an Adaptive Bayesian Optimization (ABO) algorithm to compute the optimal
pushing action at each instant. The exploration of the solution space is accelerated by means of a novel
set of constraint adaptation techniques, designed to find effective pushing actions. We illustrate the
performance and validity of our proposal in different simulation scenarios.

6.1 Introduction

O bjects that can easily be damaged when manipulated by robotic platforms, due to their
fragile structure or the manipulation strategy, are common in certain areas. Examples

of deformable fragile objects include fish and meat portions, food dough, unfired ceramic
pieces and plastic parts at high temperatures. The field of manipulation of fragile deformable
objects has gained attention in the last years, with solutions for grasping delicate objects by
exploiting the environmental constraints [123] and for cleaning deformable parts with fragile
sections [83], among others. For such fragile materials, the control actions must be limited
and the manipulation strategy must be carefully designed, so that their integrity is not com-
promised in the process. In this chapter, we propose a new method to manipulate thin fragile
deformable objects based on a sequence of planar pushing actions. These actions aim at driv-
ing the object to a specific configuration (position in 2D and orientation around the vertical
axis), while preserving its shape within an admissible range of deformation. In contrast to
the standard prehensile manipulation of rigid or semi-rigid objects, pushing is less invasive
and, therefore, more suitable for manipulating thin fragile objects that can be damaged when
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Object in the initial 

configuration

Camera

Transparent 

surface

Object in the desired 

configuration

Robotic 

manipulator

Figure 6.1: System overview: A fragile thin deformable object is pushed by multiple robotic manipula-
tors to a desired configuration through object-compliant actions that preserve its integrity. The input
information (object contour) to the Adaptive Bayesian Optimization-based method is provided by a
camera under the transparent surface that supports the object.

grasped with robotic tools. It is also advantageous in this context to consider multiple ma-
nipulators, for avoiding reachability issues.

Manipulation of rigid objects by pushing is a mature topic in robotics [121]. A key work
is based on Variational Heteroscedastic Gaussian processes (the amount of noise introduced
by the system depends on the action) to model planar pushing interaction [19]. An uncali-
brated image-based controller is considered in another study for parking objects by pushing
[92]. The problem of pushing objects with unknown center of mass is tackled in a recent work
by finding a suitable two-edge-contact configuration [50]. However, the number of solutions
for robotic non-prehensile manipulation of deformable objects is still limited. Some works in
this context include the results of the RoDyMan project, focused on dynamic non-prehensile
manipulation of rigid and deformable objects with robotic platforms [110]. Modeling the de-
formation of an object under pushing has been addressed by offline learning with integration
of visual and force information [12]. Different studies tackle non-fixed contact manipula-
tion configurations by means of optimization-based methods for contact adjustment [70] and
contact point selection [53]. Recently, a strategy for object rearrangement based on planar
pushing has been analyzed and validated [26]. In comparison with our proposal, these works
only consider partially and not fully deformable objects.

Our proposed method is based on a Bayesian Optimization algorithm. Bayesian-
Optimization methods are focused on finding the optimum value of an unknown function,

120



6.2. Manipulation task overview

in a small number of iterations. In each iteration of the algorithm, a probabilistic model
(typically a Gaussian Process) is updated through Bayesian inference, with data selected by
means of an acquisition function. A pioneer work solves the problem of robotic motion plan-
ning in environments with deformable objects by means of Gaussian Process Regression [49].
Safe and robust robotic grasping is tackled in another study by haptic exploration and un-
scented Bayesian optimization [103]. With respect to the manipulation of deformable objects,
a solution has been proposed based on servo control and a deformation model learned with
fast online Gaussian process regression [69]. Another study considers Bayesian inference and
deep learning for solving real-to-sim problems of deformable objects manipulation [8]. Other
applications of Bayesian optimization include non-rigid structure from motion [1] and soft
landing control of reluctance actuators [97].

Our proposal contributes in different ways to the current state of the art. For the first
time, we apply the technique of sequential pushing to fully deformable objects, with pushing
actions that are computed by means of an Adaptive Bayesian Optimization-based algorithm.
This algorithm takes into account the temporal evolution of the object, that deforms after
every pushing action, and learns a policy to drive the object to a planar goal configuration.
In addition, we propose a novel set of techniques for adapting the problem constraints that
improve the model learning process, in terms of speed and accuracy.

6.2 Manipulation task overview

The manipulation setup is equipped with multiple robotic arms and consists of a flat horizon-
tal surface in which a thin fragile deformable object lies. A camera is placed in the environ-
ment so that the 2D contour of the object is detected without occlusions. In this case, the ob-
ject contour corresponds to the projection in the horizontal surface along the vertical axis, and
it is defined by the ordered sequence of contour points Vc = [vc1,vc2, ...,vcM ] ∈ R2×M .
We consider that the state of the object is determined by the contour centroid c ∈ R2, the
orientation of the contour around the vertical axis θ ∈ [0, 2π) and the shape of the contour
represented as a binary mask γ .

The goal is to perform object-compliant actions that transport and rotate the object to
a goal position. Due to the thin and fragile structure of the object, it cannot be grasped and
lifted, and its deformation must be bounded along the process. We define three different
errors to assess the task completion:

ec = ∥(c− cd)∥/∥cd∥ , (6.1)
eθ = (θ − θd)/π , (6.2)
eγ = Σ(γ ⊕ γd)/Σγd , (6.3)

where ∥ · ∥ is the 2-norm operator and the parameters with d subscript refer to the user-
defined target values. The contour centroid is computed as c = 1

MVc1M , with 1M being a
column vector of M ones. We apply Principal Component Analysis (PCA) to the set Vb =
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Vc − c 1⊺
M = USV⊺ ∈ R2×M , and we obtain the orientation of the contour as θ =

atan(V2,1, V1,1), where the subscripts refer to the corresponding elements of V.

Equation (6.3) represents a ratio, where the numerator corresponds to the difference in
pixels between the current γ and the desired γd shapes of the object. γ is the binary mask
of R(−θ)Vb, where R(−θ) is the rotation matrix of−θ radians, and γd is the binary mask
of the desired contour with centroid at the origin and whose principal direction is aligned
with the x axis. The difference is obtained as the summation of the non-zero pixels resulting
from the boolean XOR operation (⊕ symbol) between γ and γd. In turn, the denominator
is the sum of non-zero pixels of the desired shape (γd). Note that γd is not necessarily an exact
shape we seek, but a shape in which the deformation of the object is bounded.

Then, the total task error is

eT = kc ec + kθ |eθ|+ kγ eγ , (6.4)

where kc, kθ and kγ are positive weights and | · | is the absolute value operator. Note that
eT ≥ 0.

The method we propose for completing the manipulation task consists in executing a
sequence of pushing actionsu = (κ, d) via the end-effector of the arms. These pushing actions
aim at reducing the task error eT over time, while preserving the integrity of the object. Two
distinct parameters determine the actions: κ ∈ [0, 1], defined as the object contour ratio, and
d ∈ [dmin, dmax], which stands for the pushing distance. The contour ratio is a fraction of
the effective contour Ve ⊂ Vs, where Vs is the augmented contour with

vsi = vi + do vbi/∥vbi∥ , (6.5)

where vbi = vi − c and do is a safety offset to take into account the width of the pushing
tool. Therefore, κ represents the position of the effective contour between the first effective
point ve1(κ = 0) and the last point veMe

(κ = 1), where Me is the number of points of the
effective contour. d is always applied perpendicularly to the contour segment. Note that the
robotic arm that will perform the pushing action at every time instant will be the one closest
to the pushing point.

6.3 Optimization problem

We can express the manipulation task at the time instant k as the following optimization
problem:

Given Vc, cd, θd, γd, f(x)

minimize
u

ξ = eT (k+1)(f(x))− eTk (6.6)

subject to: κmin ≤ κ ≤ κmax ,
dmin ≤ d ≤ dmax ,
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where x = (u, t) = (κ, d, t) ∈ R3, f(x) is an unknown function that maps κ and d with
eT , over time. Therefore, we want to find at every instant k the action that most decreases
the error with respect to the previous instant and satisfies the existing constraints.

Different physical effects are integrated in f . The ones with greater impact on the develop-
ment of the task are the deformation modes of the object and the friction between the object
and the manipulation surface. In general, fragile deformable objects may show deformations
that disappear when the acting force is released (elastic) or deformations that remain after-
wards (plastic). Besides, the manipulation actions may create compression, traction, shear or
torsion among other deformation modes. With respect to friction, we can differentiate be-
tween static friction, which happens when the object is not globally in motion, and dynamic
friction, which acts during global motion. The transition between these modes determines
the difference between actions that induce local motions only (deformations) and the actions
that produce both local and global motions (deformation and displacement).

These effects and their interactions are complex to model, and their variability is high.
This is the reason why obtaining f for each manipulation case seems appropriate. The method
we propose is based on the Adaptive Bayesian Optimization (ABO) technique [105]. While
a standard Bayesian Optimization (BO) approach allows obtaining the global optimum of
an unknown time-invariant function, ABO allows to track the minimum of a time-varying
function over time. This method can be divided in three main steps:

1. Constraints adaption. In order to improve the performance of the system, in terms of
accuracy and speed, the optimization constraints are adapted according to the state of
the object.

2. Data acquisition. At the beginning of the process, the parameter space (delimited by the
constraints) is randomly sampled for obtaining an initial model. Then, the acquisition
process modulates to sampling points that raise the highest probability of improve-
ment.

3. Model update. The model is updated with new data after every sampling. This allows
refining the knowledge about the underlying physics and the evolution of the system
over time.

In the present case, sampling requires pushing and detecting the contour afterwards. Push-
ing modifies not only the state of the object, but also its deformation and friction properties,
which may vary due to local stiffening, creasing and other effects.

6.4 Gaussian process regression

The method we propose requires a prior regression model. Under the assumption that the vari-
ability of the unknown model of our system, in space and time, can be predicted by a Gaussian
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probability function, we consider a spatiotemporal Gaussian Process (GP) as the required sur-
rogate model. GPs are likely the most popular regression models for BO, and they represent
the generalization of the Gaussian probability distribution [108]. This model is specified by a
mean function µ0(x) and a covariance function, or kernel, k(x,x′) as f(x) ∼ GP(µ0, k).
We assume that µ0 = 0 for convenience, and we consider the kernel to be stationary, separa-
ble and of the form

k(x,x′) = ks(u,u
′) · kt(t, t′) , (6.7)

where ks and kt are the spatial and temporal kernel functions, respectively [105]. We consider
kernel functions of the Matérn 52 form:

kM52(x,x
′) =

∑
i

(
σ2
f +

√
5∥xi − x′i∥2

ρi

+
5∥xi − x′i∥22

3ρ2i
exp

(
−
√
5∥xi − x′i∥2

ρi

))
, (6.8)

where σ2
f is the characteristic variance and ρi is the length scale of every dimension (with

i ≡ κ, d, t).

For updating the model with the sets of S measurements Y = [ξ1, ξ2, ..., ξS ] ∈ R1×S

and X = [x⊺
1 ,x

⊺
2 , ...,x

⊺
S ] ∈ R3×S we must compute the posterior Gaussian distribution

f |X,Y,x = N (µ, σ) , (6.9)

where µ and the variance σ2 are computed with the Sherman-Morrison-Woodbury formula
as

µ = k⊺K−1Y , (6.10)

σ2 = k(x,x)− kK−1k . (6.11)

K ∈ RS×S is the covariance matrix with Kij = k(Xi,Xj) and k is defined with ki =
k(Xi,x), ∀i, j ≤ S.

As mentioned before, we want to track the minimum of ξ over time. For efficiently getting
a good estimate of this value, the variability of the solution search space must be represented
well enough in the initial model. We apply the Latin Hypercube Sampling (LHS) technique,
that allows covering the search domain in a near-random manner with S0 initial samples.
Algorithm 6.3 reports the main steps involved in getting the initial model.

6.5 Constraints adaption

Learning to compensate three different kinds of errors (position, orientation and shape) at
the same time with a single manipulator is a challenging task, even for BO-based techniques.

124



6.5. Constraints adaption

Algorithm 6.3 Get initial model f(x)

Require: S0,Vc, cd,θd,γd
1: U← LHS(S0) # set of random pushing parameters
2: S ← 0
3: while S < S0 do
4: u← U(S)
5: Vc,X,Y ← applyPushingAction(u)
6: S ← S + 1
7: end while
8: return f(x)← updateModel(X,Y),Vc

This is due to the fact that, at some point, decreasing one of the errors may imply that another
one is increased. E.g., when rotating the object for correcting its orientation, the object could
deform increasing the shape error. Besides, despite the fact that exploring the solution domain
is a necessary step in ABO, we want to minimize the number of pushing actions that, for the
sake of exploration, increase eT .

Therefore, to avoid learning inefficient policies that can lead to undesired loops, we apply
the criterion of delimiting the search to those parameter subspaces that are likely going to
yield appropriate responses. Note that due to the dynamic nature of our problem, it is required
to modify the constraints according to the state of the object at every time step. We describe
next the different adaption strategies that we apply to the constraints of our system.

6.5.1 Effective contour

The pushing direction should be as close as possible to the error direction in order to minimize
the cost of pushing an object to a target location. Based on this fact, we propose to obtain
the effective contour ve, i.e. the fraction of the contour we consider for pushing, according
to the following logistic function:

a =
amax − amin

1 + exp
(
ra (ec − ecm)

) + amin , (6.12)

where amax is the function supremum, ra is the growth rate, ecm is the midpoint of the
function and amin is the offset. a represents the angle of a circular sector that covers the
region of vs from which we want to extract ve. This kind of logistic function is convenient
because it provides a soft transition between the minimum and maximum angles amin and
amax, respectively. As it can be seen in Fig. 6.2, the total angle is computed as 2πa, is measured
around c and is divided in half in the direction of −(c − cd)/∥cd∥. The purpose of this
constraint is to limit the search of pushing points to those that are likely going to reduce ec.
At first the angle is sharp, and as ec decreases it opens more and more, until most of it is
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Figure 6.2: The effective object contour is computed as a fraction of the circular sector of 2πa radians.
As depicted, this section is placed around c with a total angle of 2πa radians, and is divided in half by
the direction −(c− cd)/∥cd∥.

considered when the error is close to zero. This allows considering more tentative points for
decreasing eθ and eγ .

6.5.2 Maximum pushing

Coming back to the notions of static and dynamic friction, it can be inferred that for globally
translating the object we must counteract the resistance to motion static friction exerts. This
can be done with long pushes, that deform but also translate the object. However, for the shape
and orientation correction, short pushes that do not produce global motion are generally
sufficient. In order to guide the learning process into a coarse/fine mode shift, we can modify
the maximum pushing length dmax according to ec as follows:

b =
1− bmin

1 + exp
(
− rb (ec − ecm)

) + bmin . (6.13)

We can see that this function is designed similarly to (6.12). Consequently, 1 and rb are the
function supremum and the growth rate, respectively. In this case, we consider dmax = b ·
d̂max, where d̂max is the absolute maximum. Note that b evolves from 1, when ec − ecm
is high, to a minimum bmin, when the error is close to zero. This ensures that the absolute
maximum pushing length is considered in the search space at the beginning, and it decreases
as ec does in a transition towards a fine-mode manipulation.
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6.5.3 Rotation error compensation

The last constraint adaption technique that we propose aims at improving the orientation
correction learning. First, we define the function λ(w1,w2) for two generic vectors w1 and
w2 as

λ(w1,w2) = ⋆(w1 ∧w2) , (6.14)

where ‘∧’ denotes the 2D wedge product and ‘⋆’ is the Hodge star operator. This function gives
us the direction of the angular error around the vertical axis. Then, we propose to obtain κmin
and κmax from the longer section of the effective contour in which the following identity
holds ∀i:

sign(θ − θd) = sign
(
λ(ni, (ve(i+1) + vei)/2− c)

)
, (6.15)

where ni is the normal vector of segment si = [vei,ve(i+1)], pointing outside the contour.
This identity indicates that a pushing action applied perpendicularly to segment si is likely
going to rotate the object so that the rotation error decreases.

While this constraint adaption maximizes the probability of correcting the rotation error
at every pushing attempt, it is also more restrictive than the previous ones. Depending on the
deformation state of the object and the length of the effective contour, the considered section
[κmin, κmax] might be too short to include good candidates for correcting the position error.
This is why we set the condition ec < ecf to decide when to apply this constraint adaption,
where ecf is a threshold.

6.6 Acquisition function

One of the key aspects of ABO is that it allows tracking the minimum of f(x) through suc-
cessive trials or acquisitions where the value the search criterion yields is maximum. The
acquisition step, in our case, should consider a balance between exploration and exploitation.
Once the algorithm finds a suitable pushing action, this action should be exploited until its ef-
fectiveness decreases. In that moment, the algorithm should explore the solution search space
to find a better pushing action candidate.

The dynamic acquisition function we consider is based on the Lower Confidence Bound
(LCB) [29]:

LCB(x) = µ(x)− wσ(x) , (6.16)

where w ≥ 0 is a constant that regulates the confidence level. According to this function,
the lower the LCB value the more promising a sample is. We look for a minimum LCB by
optimizing the function under the problem constraints κmin, κmax, dmin and dmax. The
Adam optimization algorithm provides a suitable solution by means of exponential moving
averages of the gradient and the squared gradient of the function. At every iteration of the
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method the search space boundaries are checked, and the evaluated point is saturated to the
limits in case the constraints are violated. After a user-defined number of iterations, the best
solution is selected as the candidate pushing action for the next time step.

It is worth mentioning that, in contrast to other applications of ABO, we do not optimize
the time step in which we sample/push the system. This is due to the fact that the temporal
evolution of the system is conditioned to the pushing step. Then, we are interested in applying
the pushing actions as soon as possible, so that the operation time is minimized. We show the
complete structure of our pushing method in Algorithm 6.4.

Algorithm 6.4 Find optimal pushing action u at time t.

Require: X,Y,Vc, cd,θd,γd, µ, σ
1: c← 1/M Vc1M
2: θ ← PCA(Vc)
3: γ ← binaryMask(Vc)
4: ec ← ∥(c− cd)∥/∥cd∥
5: eθ ← (θ − θd)/π
6: eγ ← Σ(γ ⊕ γd)/Σγd
7: while (ec ≥ estopc ) & (eθ ≥ estopθ ) & (eγ ≥ estopγ ) do
8: κmin, κmax, dmin, dmax ← constAdaption(eT )
9: u← acquisition(µ, σ)

10: Vc,X,Y ← applyPushingAction(u)
11: f(x)← updateModel(X,Y)
12: c← 1/M Vc1M
13: θ ← PCA(Vc)
14: γ ← binaryMask(Vc)
15: eT ← computeTotalError(c,θ,γ)
16: end while
17: return eT ,X,Y,Vc

6.7 Simulation results

We evaluate our method by means of two different simulation scenarios in the Pybullet en-
vironment, a module in Python language focused on sim-to-real transfer [43]. Note that, for
simplicity, only one arm is considered in these tests, but the method we propose is valid for
other configurations with multiple manipulators.

In the first test, we consider a 0.2×0.1×0.02 [m] (length× width× depth) flat rectan-
gular deformable object, modelled with the finite element method (FEM). The object is placed
over a transparent table, and it is detected by a virtual camera beneath the table. We extract
the contour of the object by means of the OpenCV library, by color thresholding in the HSV
space. The manipulator model is a Kuka iiwa arm attached to the table at a certain distance
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6.7. Simulation results

Figure 6.3: Sequence of four bottom-view snapshots for two scenarios, a rectangular deformable object
(top row) and a non-regular shaped deformable object (bottom row). The snapshots are acquired at
k = {0, 10, 18, 53} and k = {0, 10, 26, 39}, respectively. The deformable object, in blue, is pushed
towards the target rectangle, in yellow. Note that the red dot, which indicates the next pushing point,
is separated from the contour to compensate the gripper width.

from the object. The goal of the task is to push the object to a target position while preserving
its initial shape and orientation. For obtaining the initial model, we apply the space filling
technique LHS [98], with S0 = 10 initial samples. Figure 6.3 (top) shows four snapshots of
the first experiment, at the initial time and after the 10th, 18th and 53th pushing actions. Fig-
ure 6.4 (top) depicts the evolution of the task errors (left), and the evolution of the pushing
parameters and the cost function along the task (right). In the latter, the left axis corresponds
to the values of the pushing parameters κ and d, while the right axis indicates the values of ξ .
Note that after the first 10 pushes, an initial model is learnt, and the position error decreases
fast. As we have set the threshold ecf = 0.15, the adaptive rotation error compensation is
active after k = 18. We can see its impact in the errors trend: while the rotation error de-
creases, the other two start to increase. However, once the model learns to push under the
new constraints, the errors start to decrease until they reach the stop values. With respect to
the pushing actions, we can see that the system exploits those pushing actions that reduce eT
with respect to the previous instant until they stop being effective. Then, the system iterates
to find the pushing action that is most likely going to reduce the error at the current state of
the system.

In the second scenario, we place a non-regular shaped object of 0.13×0.2×0.01 [m] over
the table, with different deformation properties than the previous one. The task consists in
pushing the object to a target place, by maintaining a compact configuration and preserving
the initial orientation. For maintaining a compact configuration, we define a rectangular goal
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Figure 6.4: Errors and actions plots for the first test scenario (top row) and second test scenario (bottom
row). In the first example, ec decreases fast until the adaptive rotation error compensation activates.
After that, the system learns to push under the new constraints, and eventually the errors decrease to the
final values. Note how the pushing parameters (left vertical axis) vary when eT increases with respect
to the previous instant, until the pushing actions start to decrease ξ (right vertical axis) again. In the
second example, ec decreases fast at the beginning. After some time, when the system learns to push
under the new constraints, the errors finally decrease to the final values. Note that in this case the system
is forced to explore more than in the previous one. When the pushing actions stop being effective and
ξ increases, the pushing parameters change until ξ starts to decrease again.
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shape with aspect ratio close to 1. Note that γd can be seen as a deformation constraint for
the algorithm. We set S0 = 10, and due to the fact that longer pushes are required to move
this object, we increase dmin and dmax with respect to the previous case. Figure 6.3(bottom)
shows the bottom view of the system at four different pushing instants. Figure 6.4(bottom)
depicts the evolution of the task errors, the pushing actions and the cost function. In this
example, the error decreases fast at the beginning thanks to the effective contour constraint
adaption. There is a second fast improvement that stops when ec reaches threshold ecf and
the rotation error compensation activates. After that, the errors continue to decrease with
some small oscillations, and finally they reach the stop values. As for the pushing parameters
and the cost function values, the same behavior than in the first scenario is shown: the system
exploits the actions that decrease ξ until they stop being effective, and then it explores to find
new parameters. We include a video as additional multimedia material with the complete
pushing sequence of the second experiment.

6.8 Discussion

Manipulating deformable objects is a challenging task for robotic systems due to the large va-
riety of deformations that can appear in the object, which demand specific techniques highly
dependent on the material properties. Unlike other kinds of deformable objects, any force
applied to a fragile deformable object may alter its shape to the extent that the structural
integrity is compromised. Despite the challenges, it is a crucial skill required for robots to
manipulate this materials in household and industrial environments. In the present chapter,
an algorithm based on Bayesian optimization has been proposed to achieve robotic pushing
of thin fragile deformable objects. The proposed approach has multiple advantages. First, the
temporal evolution of the object is considered and a policy is learnt to perform a series of
pushes on the object to move it from one location to another in a plane. By doing so, the
shape of the deformable object is also actively controlled in order to maintain it within an
admissible range. Second, in comparison to modeling techniques such as finite element meth-
ods, where a precise knowledge of the material property is required, our approach relies on a
probabilistic model that is computed in few trial iterations and updated over time to make
better predictions. Similarly, in comparison to approaches based on deep learning, the pro-
posed probabilistic model is generic and works well for unknown deformable objects without
the need for huge new training data. Third, a novel set of rules to speed up the probabilis-
tic model learning process and its performance are proposed. The approach is successfully
validated in simulation with objects of different shapes and properties.

After having dealt with deformable objects of different kinds in a variety of manipulation
tasks, we address the final conclusions in Chapter 7. In addition, we summarize the tentative
future lines of work we have identified along the previous research topics.
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Chapter 7

Conclusions
For the goal of manipulating deformable objects with multiagent systems, we have proposed and val-
idated in this thesis a series of methods that focus on particular tasks. After a comprehensive study
of the state of the art, we have covered the perception, transport and deformation control problems of
general and more specific manipulation scenarios. We report the main conclusions and tentative future
research lines derived from these works in this last chapter.

7.1 Summary and conclusions

N umerous aspects related to the topic of multiagent manipulation of deformable objects
have been explored in this thesis. This kind of objects has unquestionable impact in

industrial, medical and domestic domains. Through the different chapters, we have shown
the interest and potential benefits of automatizing tasks in these areas. Starting with per-
ception, we have described how to perform coverage of deformable objects over time, with
minimal multicamera systems. After analyzing the visibility properties of general shapes, we
have studied this task in an optimization framework. Then, we have learned about the differ-
ent optimal results we achieve in global and local solution spaces. It is worth mentioning that
our formulation is flexible, and can be applied to different kinds of sensors and configurations
with spatial constraints without significant modifications.

After this, and following the natural sequence perception-action, we have investigated the
problem of transporting deformable objects with multiple robotic manipulators in obstacle-
populated environments. We have explored two different approaches, with and without de-
formation model. As one of the main contributions of this thesis, we have proposed and
validated a model based on the deformable bounding box of the transported object. By reach-
ing a balanced compromise between complexity and accuracy of the represented physics, we
have achieved a versatile model that is well suited for real-time transport applications. The
alternative method also represents one of the most relevant contributions of this work. It con-
sists in a formation controller that enables the system to reach a target configuration in terms
of shape, scale, position and orientation of the robotic formation that grasps the object. We
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have formally proven the existing uncoupling between the formation variables under the pro-
posed controller, as well as the stability and convergence of the system. In both cases, we have
augmented the nominal controllers with control barrier functions, for guaranteeing safety re-
quirements. They have proven to be a powerful and minimally-invasive tool for keeping the
system’s state within the safe region of performance at all times.

Finally, the last research work of this thesis aims at advancing in the solution to the prob-
lem of manipulating thin fragile deformable objects. These objects, not considered in the
previous developments, cannot be grasped with standard methods. Instead, we assume they
lie on a flat surface, and we propose a new manipulation strategy based on a sequence of
planar pushing actions exerted by multiple robotic arms. With this technique we are able
to translate and rotate the object, while limiting the applied deformation, until it reaches a
target position and orientation in the surface. By means of Gaussian process regression and
Adaptive Bayesian Optimization, we obtain a probabilistic model that we utilize to find the
most effective pushing action at every time instant. A set of adaptive constraints accelerates
the process by restricting the solution search space to the region where the best solutions are
more likely going to be found.

7.2 Future research lines

Despite the advancements acquired in this thesis, there is still room for improvement. In
this section, we briefly present some tentative lines of research that we think are promising
for contributing to the general problem of manipulating deformable objects with multiagent
systems.

• Measuring the state of deformable objects under manipulation, with multiple sensors,
is a research field with numerous interesting alternatives: exploring techniques that
combine different kinds of information; applying redundancy by measuring the same
properties with different sensors; and developing sensing techniques that adapt their
configuration according to the state of the sensed object or the environmental condi-
tions, among others. Note that all these ideas have the common goal of improving the
information that is obtained by either increasing the quantity or the quality of the data.

• Modelling is another dimension of the problem with possible extensions that include:
applying new modeling techniques for real-time predictions; obtaining models from
different data types; including statistical methods for quantifying uncertainty of the
modelled physics; developing models robust to measurement noise; extending general-
ity through versatile formulations; and exploring approaches that integrate modelling
and control (e.g. deep learning-based strategies). I. e., the objective is to improve the
accuracy, robustness and efficiency of the models.

• Controlling manipulation systems that include deformable objects is a field with po-
tential improvements that may come from different sources: designing controllers for
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7.2. Future research lines

manipulators with more complex dynamic models; formulating robust controllers un-
der measurement noise and disturbances; exploring control techniques with adaptive
capabilities in time-varying scenarios; applying mathematical analysis tools for guaran-
teeing stability and convergence of the proposed methods, etc. Similarly to the case of
modelling, accuracy, robustness, efficiency and versatility are the main guiding notions
for the development of new control approaches.
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