Deep Learning-Based Energy Mapping of Chlorine Effects in an Epoxidation Reaction Catalyzed by a Silver–Copper Oxide Nanocatalyst
Resumen: Deep learning is poised to revolutionize the field of heterogeneous catalysis. In this study, we harness its potential to predict energy values across a catalyst surface, a task traditionally relegated to computationally intensive density functional theory (DFT). We propose a novel deep learning approach to construct an exhaustive energy map, pinpointing the optimal locations for adsorbed chlorine in the ethylene epoxidation reaction. Leveraging the power of trained neural networks, we achieved a staggering reduction in computational time, cutting down the duration of energy calculations by over 50 million times compared with traditional methods. This groundbreaking integration of artificial intelligence not only accelerates this process but also effectively surpasses the limitations of conventional methods. By highlighting the transformative potential of deep learning in catalysis, this research paves the way for future studies and stands to revolutionize efficiency in the chemical industry, fostering an urgent need to delve deeper into the implications and applications of this technology.
Idioma: Inglés
DOI: 10.1021/acs.jpcc.3c04308
Año: 2023
Publicado en: Journal of physical chemistry. C. 127, 44 (2023), 21534-21543
ISSN: 1932-7447

Factor impacto JCR: 3.3 (2023)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 82 / 178 = 0.461 (2023) - Q2 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 196 / 439 = 0.446 (2023) - Q2 - T2
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 79 / 141 = 0.56 (2023) - Q3 - T2

Factor impacto CITESCORE: 6.5 - Surfaces, Coatings and Films (Q1) - Electronic, Optical and Magnetic Materials (Q1) - Physical and Theoretical Chemistry (Q2) - Energy (all) (Q2)

Factor impacto SCIMAGO: 0.957 - Physical and Theoretical Chemistry (Q1) - Electronic, Optical and Magnetic Materials (Q1) - Surfaces, Coatings and Films (Q1) - Energy (miscellaneous) (Q2) - Nanoscience and Nanotechnology (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/T57-17R
Financiación: info:eu-repo/grantAgreement/ES/DGA/Q-MAD
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-110430GB-C22
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Óptica (Dpto. Física Aplicada)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-11-22-12:08:03)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-05-22, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)