000135328 001__ 135328 000135328 005__ 20240829112947.0 000135328 0247_ $$2doi$$a10.1002/mana.202300527 000135328 0248_ $$2sideral$$a138608 000135328 037__ $$aART-2024-138608 000135328 041__ $$aeng 000135328 100__ $$aAron, Richard 000135328 245__ $$aLinearization of holomorphic Lipschitz functions 000135328 260__ $$c2024 000135328 5060_ $$aAccess copy available to the general public$$fUnrestricted 000135328 5203_ $$aLet X and Y complex Banach spaces with denoting the open unit ball of . This paper studies various aspects of the holomorphic Lipschitz space , endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets of Lipschitz mappings and of bounded holomorphic mappings, from to . Thanks to the Dixmier–Ng theorem, is indeed a dual space, whose predual shares linearization properties with both the Lipschitz‐free space and Dineen–Mujica predual of . We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that contains a 1‐complemented subspace isometric to and that has the (metric) approximation property whenever has it. We also analyze when is a subspace of , and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context. 000135328 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E48-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C32$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C33$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-137294NB-I00 000135328 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000135328 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000135328 700__ $$aDimant, Verónica 000135328 700__ $$0(orcid)0000-0001-9211-4475$$aGarcía-Lirola, Luis C.$$uUniversidad de Zaragoza 000135328 700__ $$aMaestre, Manuel 000135328 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000135328 773__ $$g297, 8 (2024), 3024-3051$$pMath. Nachr.$$tMathematische Nachrichten$$x0025-584X 000135328 8564_ $$s426594$$uhttps://zaguan.unizar.es/record/135328/files/texto_completo.pdf$$yVersión publicada 000135328 8564_ $$s1851252$$uhttps://zaguan.unizar.es/record/135328/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000135328 909CO $$ooai:zaguan.unizar.es:135328$$particulos$$pdriver 000135328 951__ $$a2024-08-29-11:26:06 000135328 980__ $$aARTICLE