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Abstract

Let X and Y be complex Banach spaces with By denoting the open unit ball
of X. This paper studies various aspects of the holomorphic Lipschitz space
HLy(By,Y), endowed with the Lipschitz norm. This space consists of the func-
tions in the intersection of the sets Lip,(By,Y) of Lipschitz mappings and
H*®(Bx,Y) of bounded holomorphic mappings, from By to Y. Thanks to the
Dixmier-Ng theorem, HL,(By, C) is indeed a dual space, whose predual G,(By)
shares linearization properties with both the Lipschitz-free space and Dineen—
Mujica predual of H*(Bx). We explore the similarities and differences between
these spaces, and combine techniques to study the properties of the space of
holomorphic Lipschitz functions. In particular, we get that G,(By) contains a
1-complemented subspace isometric to X and that Gy(X) has the (metric) approx-
imation property whenever X has it. We also analyze when Gy(By) is a subspace
of Gy(By), and we obtain an analog of Godefroy’s characterization of functionals
with a unique norm preserving extension in the holomorphic Lipschitz context.
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1 | INTRODUCTION

Linearizing nonlinear functions is a typical procedure in infinite-dimensional analysis. Originating nearly 70 years ago
with Grothendieck [32] (and his research about linearization of bilinear mappings through the projective tensor product),
the practice of identifying spaces of continuous nonlinear functions with spaces of continuous linear mappings defined
on Banach spaces has proved to be a useful technique. Accordingly, the study of geometric and topological properties of
these linearizations has increasingly attracted interest.

Lipschitz functions (defined on pointed metric spaces) and holomorphic bounded functions (defined on the open unit
ball of a Banach space) are really different both as sets and as function spaces. However, when looking at their linearization
processes several similarities emerge. The purpose of this paper is to study, in light of these resemblances, the new set of
functions consisting of the intersection of the previous sets. Lipschitz holomorphic functions defined on the open unit ball
of a Banach space taking the value 0 at 0 will be our focus of attention. In the exploration of this set, we take advantage of
a result of Ng [41] concerning the existence of preduals and all the background about related linearization processes.

We begin with a brief review of important terms and concepts. General references for Lipschitz functions include [31, 46]
and a standard reference for holomorphic functions on finite- or infinite-dimensional domains is [40]. The linearization
process for bounded holomorphic functions was originally developed in [38]. A review of linearization procedures both for
Lipschitz functions and for bounded holomorphic functions appeared in the recent survey [27], while a general approach
to linearizing nonlinear sets of functions was settled in [18].

For a metric space (M,d) and a Banach space Y, let Lip(M,Y) be the vector space of all f : M — Y such that
[1f(x1) — f(x)ll £ Cd(x;,x,) for some C > 0 and for all x; # x, € M. The smallest C in the above definition is the Lips-
chitz constant of f, L(f). Let 0 € M denote an arbitrary fixed point. In order to get a normed space, we will be particularly
interested in the subspace Lip (M, Y) consisting of those f € Lip(M, Y) such that f(0) = 0. In this way, L(f) = 0 if and
only if f = 0, and so ||-|| = L(-) defines a norm on Lip,(M, Y).

For complex Banach spaces X and Y and open set U C X, denote by H*(U, Y) the vector space of all f : U — Y such
that f is holomorphic (i.e., complex Fréchet differentiable) and bounded on U, endowed with the supremum norm. In
both the Lipschitz and H* situations, if the range Y = [, then the notation is shortened to Lip,(M) and H*(U).

It is known that Lip (M) and H*(U) are dual spaces and that in some special situations, the predual is unique. The
construction of a (or, in some cases, the) predual follows the same lines for both the Lipschitz and H* situations: calling
X one of Lip, or H*, we consider those functionals ¢ € X* such that §0|EX is continuous when By is endowed with the
compact-open topology. Among such functionals are the evaluations f w 6(x)(f) = f(x) where x ranges over the domain
of f € X. In the case of Lip,(M), the closed span of the set of such ¢ will be denoted as 7*(M), while the analogous closed
span for H*(U) is G*(U). Each of these is a Banach space, being a closed subspace of Lip,(M)*, and H*(U)*, respectively.
Using a standard technique developed by Ng [41], it follows that 7(M)* = Lip,(M) and ¢*(U)* = H*(U).

Among the most important common features of Lip, and H* is linearization. In each of the two cases below, § is the
evaluation inclusion taking x w &(x). Also, for f in either Lip,(M,Y) or H*(U,Y), T is the unique linear mapping
making the diagram commute. Moreover, || f|| = |[T¢/l-

M—L oy v—_ -y
5 - 5 -
f f
F(M) G2 (U)

1.1 | Notation

X, Y will stand for complex Banach spaces. We denote by By (respectively Sy ) its open unit ball (respectively unit sphere).
L(X,Y) denotes the space of continuous linear maps from X to Y, and X* = £(X, C). P("X,Y) stands for the space of
continuous m-homogeneous polynomials, that is, those P : X — Y so that there exists a continuous m-linear symmetric
map P:Xx--xX - Y with P(x) = P(x, ..., x). We also write P("X) = P("X,C). We say that P € P("X,Y) is of
finite type if P(x) = Z;.l:l[x;.‘(x)]myj for certain x7 € X* and y; € Y. P;("X,Y) stands for the space of finite type
m-homogeneous polynomials. Moreover, we set P(X,Y) (resp. P;(X,Y)) to be the space of finite sums of continuous
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homogeneous polynomials (resp. homogeneous polynomials of finite type) from X to Y. Also, D(z,r) (resp. C(z,r))
denotes the open disc (resp. the circumference) in C centered at z with radius r, in particular D = D(0, 1).

Recall that X is said to have the bounded approximation property (BAP) if there is 4 > O such that theidentity I : X — X
can be approximated by finite-rank operators in AB(x x) uniformly on compact sets (equivalently, pointwise). If 1 = 1,
then X is said to have the metric approximation property (MAP). If X has 1-BAP and Y is A’-complemented in X, then Y
has A1’-BAP. Recall, also, the version of this notion without control of the norms: X has the approximation property (AP)
if the identity I : X — X can be approximated by finite-rank operators in £(X,X) uniformly on compact sets. We refer
the reader to [19] for examples and applications.

1.2 | Organization of the paper

Section 2 introduces the main space of interest, HL,(Bx,Y), consisting of those functions that are in both Lip,(Bx,Y)
and H*(By,Y), endowed with the Lipschitz norm. A number of properties of HLy(By, Y) are discussed and it is proved
that this space really differs from Lip (Bx,Y) and H*(Bx,Y) (in the sense that a nonseparable space can be injected
between them). Then, we focus on the predual Gy(Bx) of HLy(Bx) (where Y = C). Specifically, we will see that HL,(Bx)
has a canonical predual whose properties echo those of H*(Bx) and Lip(Bx). In Section 3, we deal with the (metric)
approximation property (AP) for Gy(Bx), again inspired by the results for G*°(By). The next two sections involve a closer
inspection of Gy(By) and its relationship with Gy(By-+). Section 4 begins by considering the interaction between Gy(Bx)
and Gy(By) when X C Y and then focuses on the case of X C X**. Section 5 studies a natural connection between Gy(By:+)
and Gy(Bx)** under the hypothesis of X** having the MAP. Among other things, this enables us to characterize, under
natural conditions on X and X**, when a function f € HL,(Bx) has a unique norm preserving extension to HLy(Bx).
Both Sections 4 and 5 make use of the concept of (Arens) symmetric regularity, which is reviewed in Section 4. The final
section is the Appendix which provides an alternative argument for the main result in Section 2.

2 | THE SPACE OF HOLOMORPHIC LIPSCHITZ FUNCTIONS AND ITS PREDUAL

In the case that the metric space M is By, the open unit ball of a complex Banach space X, and Y is another complex
Banach space, Lip,(By, Y) is the space of Lipschitz functions f : By — Y with f(0) = 0 and:

IFGo) = FIl
L(f)—sup{w : x;éyeBX}.

It is well known that L(-) defines a norm on Lip(Bx, Y) and (Lip(Bx, Y), L(-)) is a Banach space. Indeed, Lip,(Bx,Y)
is isometrically isomorphic to the space of operators L(F(By),Y), where F(By) denotes the Lipschitz-free space over By
(see, e.g., [29, 46], and [1] for the complex version).

Next, H*(By, Y) stands for the space of bounded holomorphic functions from By to Y, which is a Banach space when
endowed with the supremum norm. Analogous to the Lipschitz case above, we have that H*(By, Y) is isometrically iso-
morphic to L(G*(Bx), Y), where G*(By) is Mujica’s canonical predual of H*(By) [38] (we will review the space G*(By)
later in this section).

The parallel behavior of these Lipschitz and H* spaces was the authors’ motivation to introduce and study the following
space and its canonical predual:

HLy(Bx,Y) ={f € Lip,(Bx,Y) : f is holomorphic on By}.

We will also denote HLy(Bx) = HLy(Bx,C). Sometimes we will deal with holomorphic Lipschitz functions without
assuming f(0) = 0, and then we use the notation HL(By, Y) and HL(By).

Since both normed spaces H*(By,Y) and Lip,(By,Y) are complete (with their respective norms) and each f €
HLy(By,Y) satisfies || f|| o < L(f) we easily derive that HLy(By, Y) is a Banach space with norm L(-). Similar to Mujica’s
study we could define and study HLy(U,Y) for any open set U 3 0, but we have preferred to concentrate on, what is in
our opinion, the most interesting case U = By.
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If f : By — Y isaholomorphic function and x € By then f(x + h) = Z;‘::l P,,(x)(h) for h in a suitable neighborhood
of 0, where P,,(x) is an m-homogeneous polynomial. Recall that the first differential d f satisfies df(x)(h) = P1(x)(h)
for every h € X. Given f € H®(Bx,Y) such that df € H®(By, L(X,Y)) and f(0) = 0, by the mean value theorem, we
have that || f(x) — fO)Il < ldf]lllx — y|| for any x,y € Bx. Then, f € Lip,(Bx,Y) and L(f) < [|df||. Conversely, if /" €
HLy(Bx,Y) we know that d f € H(By, L(X,Y)). Also, for x,y € By,

‘f(X+hJ;l)—f(X)H

4GOI = Jim| < LI < L.
This means that d f belongs to H*(Byx, £L(X,Y)) and ||df|| < L(f).
This shows that there is another useful representation of our primary space of interest.

Proposition 2.1. HLy(Bx,Y)={f €e H*By,Y): df € H*(Byx,L(X,Y)); f(0)=0}. Moreover, for every f &
HLy(Bx,Y), L(f) = lldfl; that is, L(f) = sup, p _ldf()Il.

Note that P|g, € HLy(Bx,Y) for every P € P(X,Y) such that P(0) = 0, a fact that will be useful later.
When Y = C, we can define a mapping

® : HLy(By) — H®(By,X*)
fedf

In general, ® is an isometry into H*(By, X*), although if X also equals C, then @ is onto. Indeed, in the one-dimensional
case, ® is surjective since every holomorphic function f on D has a primitive that is Lipschitz whenever f is bounded.
However, @ is not surjective for X # C. To see this, given P € P(*>X), we have that P| By € HLy(Bx)and dP € L(X,X")is
symmetric (i.e., dP(x)(y) = dP(y)(x) for every x,y € X). Note that df is linear only when f is a 2-homogeneous polyno-
mial. Hence, a non-symmetric element of £(X,X"™) (which always exists whenever the dimension of X is strictly bigger
than one) cannot be in the range of ®.

In particular, we see that

HLy(D) = {f € H¥(D) : f(0)=0and f' € H®(D)}.

A lot of research has been done on HLy(D) and on HL,(U) for certain domains U C C” such as the Euclidean ball. See,
for example, [2, 11-13, 15, 26, 42, 44], where this topic is approached from different viewpoints than what is done here.

Note that there are plenty of examples of non-Lipschitz functions in H*(D). For instance, given a sequence (b,) C
C\ {1}with |b,| = 1and b,, — 1,define f : {b,} U{1} - Cby f(1) = 0and f(b,)) = v/|b, — 1|. Then, the Rudin-Carleson
theorem provides an extension of f which lies in the disc algebra .A(D) (i.e., the space of uniformly continuous functions
in H*(D)) and has the same supremum norm, but it is not Lipschitz.

Our next goal is to show that HLy(By) is indeed much smaller than both H*(By) and Lip,(Bx). More precisely, we
will prove the following result, where we denote H;°(Bx) = {f € H*(Bx) : f(0) = 0}.

Theorem 2.2. Let X be a non-null complex Banach space. Then

(a) € isisomorphic to a subspace of H°(Bx) \ HLy(Bx) U {0}.
(b) € is isomorphic to a subspace of Lip,(Bx) \ HLy(Bx) U {0}.

We will provide a different proof of Theorem 2.2 (a) in the Appendix. There, we build an isomorphism into its image
F 1 ¢ — H>™(By) such that, additionally, its restriction to ¢, satisfies that F|. : ¢ — A,(Bx), the Banach algebra
of uniformly continuous holomorphic functions By — C.

Proof.
(a) For the case X = C, by a classical result, given (z;) an interpolating sequence in D there exists a topological into

isomorphism S : ¢, — H*(D) such that S(c)(z;) = ¢; for every j and every ¢ = (¢,) € ¢, We can also get that
S(c)(0) = 0.
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For this, see, for example, [28, Theorem VII.2.1 and applications, p. 285], where the assertion is made for t_he upper

half-plane H. This can be translated to our case by considering the Cayley transform ® : H - D, ®(z) = j—+i Asdis

a biholomorphic mapping, its associated composition operator Cq : H®(H) —» H*(D) is an isometric isomorphism
onto. Moreover, a sequence (z;) in D is interpolating if and only if the corresponding sequence (@7 (z i) in H is
interpolating. Thus, if T : €., — H®(H) is the isomorphism into such that for every ¢ = (c,) € €, T(c)(®(z )=
c;j for every j, then S = ToCy satisfies our claim.

Now, let z; — 1 and partition N into infinitely many disjoint infinite sequences N; = (n;);. For ¢ € ¢, define
X, € € by x.(n; ) = (—=1)'cy,andletY = {S(x.) : ¢ € £ }. Then, Y isasubspace of H*(D) isomorphic to ¢ ,,. Given
¢ # 0, we have ¢, # 0 for some k, so

1SCe) 2y ) = SO Z iy, I = Ik = (—ei)l = 2le]

for every i, while z; — 1. Thus, S(x,) cannot be uniformly continuous, and hence it is not Lipschitz.
For the general case, we fix x, € Sx and consider x* € X* such that x*(x,) = 1 = ||x*||. We define

¥ HO(D) — H®(By)

by ¥(f) = fox*. Clearly, ¥ is a well-defined linear mapping and since x*(Bx) = D we have that ¥ is an isometry onto
its image. Moreover, considering its restriction we have that

¥ : HL(D) — HL(By)
is again an isometry, now with the Lipschitz norms. Indeed, if f € HL(D) then
L(¥(f)) = L(fox™) < L(f)L(x*) = L(f).
Butif 1, u € D, then
Lf(D) = fFGol =fox*(Axo) — fox™(uxo)| = [¥(f)(Ax0) — ¥(f)(1xo)]
SLY(DIAx — puxoll = LA¥(DIA — ul,
and we get L(f) < L(¥(f)). Finally, due to the injectivity of ¥ we have that
W(HF (D) \ HL(D)) € H*(Bx) \ HL(Bx).
Now, the claim follows.
(b) First, we consider the one-dimensional case X = C.Letl : R — [0,1] be a C! function such that I(x) = 0 for x < 1/2,
lis strictly increasing on (1/2,1), and I(x) = 1 for x > 1. Define f : D — [0,1] as f(z) = I(|z]). Note that L(f) < L(I)

so f € Lip,(D). Now, we define T : HLy(D) — Lip,(D) as T(g) = f - g. We claim that T is an isomorphism onto its
image. Indeed, given g € HLy(D) and z,u € D,

|f(2)g(2) — fwgw)| < |f(2) — fl|g2)| + |fW)lIg(z) — gw)| < 2L(f)L(g)|z — ul.
Therefore, T is a continuous linear mapping with ||T|| < 2L(f).
We now check that T is bounded below. By continuity of I and I/, given 0 < ¢ < 1, there exists 0 < r < 1 such that

L(flp\/p) < € and if |z| > r then f(z) > 1 —¢. Thus, for g € HLy(D), we have L(g) = sup, g’ = SUPp\ |g’| by the
maximum modulus theorem. So, we may find z, u € D\rD with

18(2) — gl = (1 — e)L(g)]z — ul.
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Then,

|f(2)g(2) — fwgw)] = | f(2)] - 18(2) — gw)| — I8 - |f(2) — f(w)]
> (1—el’L(®)lz — ul = L(®ul - |z — u|

> ((1—¢)* —)L(g)|z — ul
and we get L(f - g) > ((1 — €)*> — ¢)L(g), for every 0 < ¢ < 1. As a consequence,
L(Tg) = L(f - 8) = L(8),

and T is bounded below. Moreover, T(g) = f - g is never holomorphic on D for any g € HL(D) \ {0}, since f vanishes on
D(0,1/2), and T(HLy(D)) is isomorphic to HLy(D) which in turn is isometric to H* (D) that has a subspace isomorphic
to € .-

The general case is a straightforward consequence of the above argument in the following natural way. Let X be a non-
null complex Banach space and take x* € Sx-. Defining R : Lip,(D) — Lip,(Bx) by R(h) = hox*, we have that R is an
isometry into. Hence, RoT : HLy(D) — Lip,(Bx) is an isomorphism into its image and we get that ¢, is isomorphic to
a subspace of Lip,(Bx). But if g € HLy(D) \ {0}, then RoT(g) = (f - g)x* is not a Gateaux holomorphic function since its
restriction to {zx : z € D} is not holomorphic. We conclude that ¢ , \ {0} C Lip,(Bx) \ HLy(Bx). O

In the rest of this section, we will focus our attention on the canonical predual of the space HL,(Byx) and show that it
shares many properties with the canonical preduals of H*(Bx) and Lip,(Bx).

Let us denote by 7, the compact-open topology on HLy(Bx). An easy argument using Montel’s theorem [22, Theorem
15.50] shows that EHLO(BX) is 7o-compact. In fact, on this ball, convergence in the topology 7 coincides with pointwise
convergence. Thus, the Dixmier-Ng theorem [41] says that HLy(Byx) is a dual space with predual given by

Go(Bx) :={p € HLy(Bx)* : is 7y-continuous}.

golEHLO(BX)
For x € By and f € HLy(By), denote §(x)(f) = f(x). Clearly §(x) : HLy(Bx) — C is linear and continuous, meaning
that §(x) € HLy(Bx)*. Also, 5(x)|§HL ® is 7p-continuous so §(x) € Gy(Bx).

0
Proposition 2.3. Let X be a complex Banach space.

(a) The mapping

§ : Bx = Go(Bx)

x - 8(x)

is holomorphic and ||6(x) — 8(y)|| = ||x — y|| for every x,y € By. In particular, § € HLy(Bx, Gy(Bx)) with L(6) = 1.
(b) Go(Bx) = span{d(x) : x € Bx}.
(¢c) For any complex Banach spaceY and any f € HLy(Bx,Y), there is a unique operator Ty € L(Gy(Bx), Y) such that the
following diagram commutes:
f

By ——=Y

The map [ — T defines an isometric isomorphism from HLy(Bx,Y) onto L(Gy(Bx), Y). These properties characterize
Go(Bx) uniquely up to an isometric isomorphism.
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(d) Abounded net(f,) C HLy(By) is weak-star convergent to a function f € HLy(By) ifand only if f,(x) = f(x) for every
X € BX
Proof.

(a) The map 6 is weakly holomorphic since for any f € Gy(Bx)* = HLy(Bx)we have that fod = f is holomorphic. Thus,
& is holomorphic (see [40, Theorem 8.12]). Also, given x,y € By, we have

16() =MWl = sup  [{f,6(x) =) = sup [f(x)—fOI<Ix—yl,

J€BuLy®y) fEBrry3x)

and equality holds since we may take f = x| where [[x*|| = 1 and x*(x — y) = [|x — y|l.
(b) Just observe that for every f € HLy(Bx) = Go(Bx)* we have that f = 0 whenever f/5(x): xep,} = 0
(c) First, note that an interpolation argument shows that the set {§(x) : x € By \ {0}} is linearly independent in
Go(Bx). Indeed, assume that 2';:1 1;8(x;) = 0 for different points x; € Bx \ {0} and 4; € C. Let x, = 0 and 4, = 0.
xl.*j(xi—x)

TR —E Then, f € HLy(Bx) and 0 =
I = |l

Take xl*J € Sy« with x;"j(xi —Xxj) = ”xi - xj” and define f(x) = E;LOA_J‘H
(X 480y = Xy 14512

Now, given f € HLy(Bx,Y), we define T;(6(x)) := f(x) for every x € Bx (this is the only possibility to get a
commutative diagram) and extend it linearly to span{6(x) : x € Bx}. Note that, given u = Z;Lzl A1;6(x;),

= sup [(u,y*of)]

Y*EBy=

sup
y*EBy=

7] = ‘ iﬁjf(xﬂ Zn;/lj(y*of)(xj)
j= =

<sup{L(y*of) : y* € By}llull = L(f)llull.

Thus, Ty extends uniquely to an operator Ty € L(Gy(B),Y) with “Tf” < L(f). Since L(8) = 1 and f = T 08, we get

that ”Tf“ = L(f).

Moreover, the map f + T is onto since given any T € L(Gy(Bx),Y), we have that f :=Tod is a holomorphic
Lipschitz map with f(0) =0and T = T.

The uniqueness of G, (By) follows from the diagram property and the fact that “T ¥ H = L(f).

(d) The ball B, Lo(By) 18 To-compact and the weak-star topology is coarser than 7, so they coincide on EHLO(BX). O
Proposition 2.4. For every complex Banach space X, we have that X is isometric to a I-complemented subspace of Go(Bx).

Proof. In the particular case of f = Id : By — X, differentiating the diagram in Proposition 2.3 and using that d(Id)(x) =
Id for all x € By, we obtain another commutative diagram where all the arrows are linear:

x M o x

ds(o
()l %

Go(Bx)
Moreover, d5(0) is an isometry. Indeed, given x € X and f € HLy(By) we have

i 4% t— f(0)

t—0

= = df ()(x)

(f,d8O)(x) = lim < 7. M>

and so

1d&0)Cl = sup{|df(O)(X)| & f € By, < 1.
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The other inequality is clear due to the commutative diagram:

IxIl = [ T1a0dS(0)(X)II < [[dS(0)(X)Il.
Finally, let P = d&(0)oT}4. Then, using that T140d8(0) = Id, we have
P? = d5(0)oT40d8(0)oT 4 = d5(0)oTy = P,
so P is a norm-one projection from G, (Byx) onto d5(0)(X). O

Note that this result also holds for G*(Bx) [38] but not in general for F(By). In [31], it is proved that this is true for
X separable although for nonseparable X it could even occur that 7(By) does not contain a subspace isomorphic to X.
Another useful property of Lipschitz-free spaces is the fact that they contain a complemented copy of ¢, [20]; the same
holds for Gy(Bx).

Proposition 2.5. Let X be a complex Banach space. Then, there is a complemented subspace of Gy(Bx) isomorphic to €.

Proof. ¢, is isomorphic to a subspace of H*(D), and the latter is isometric to HLy(D). Also, one can easily prove that
HLy(D)is complemented in H Ly(By) (anyway, we will show a stronger fact in Proposition 4.1) so we get that HLy(By) con-
tains a copy of € . It is a classical result (see [14, Theorem 4]) that this implies its predual Gy(Bx) contains a complemented
copy of ¢4. O

Next, we want to describe the closed unit ball of Gy(By). For that, we introduce some more notation. We denote by
conv (resp., I') the (resp., absolute) convex hull of a set. As usual in the Lipschitz world, for every x,y € By with x # y,

S(IT)_il(ly)' Also, for every x € By, y € X, and f € HLy(Bx), we denote e, ,(f) :=
e

= |lyll. Indeed, it is clear that

m, ,, stands for the elementary molecule

df(x)(y). Then, e, , € Go(Bx) with

€xy

exy | =sup{ldf()W)| : f € Burymy} < supllldfColl = f € Bur,a}yll < Iyl

Conversely, take x* € X* with x*(y) = ||yl and [|x*|| = 1. Then, x*|z, € HLy(Bx) and e, ,(x*|p,) = x*(y) = [|y||. This
shows that e, , belongs to HLy(Bx)" and the equality of norms. Finally, by a simple application of Cauchy’s integral
formula we derive that the restriction of e, ,, to EHLO(BX) is 7y-continuous and so it belongs to Gy(Byx).

Proposition 2.6. Let X be a complex Banach space. Then,

EQo(Bx) = f{mx’y : X,y €By, x # y} =convie,, : x €By,y € Sx}

Proof. By Proposition 2.3, we have that ”mx,y

| =1 for every x,y € By with x # y. Also,
L(f) = sup{|{f, mx,y)| I X,y € By, x # y}forall f € HLy(Bx).

Thus, {m,, : x,y € Bx,x # y} is I-norming for HL,(Bx). Equivalently, EQo(Bx) = f{mx’y I X,y € By, x # y}. Analo-
gously, we have that

L(f) = Ildfll = supilldf(ll = x € Bx} = supi|(f,exy)| : x € Bx,y € Sx}

and so EQO(BX) =T{e., : x € Bx,y € Sx}. But ey ;) 49y, = A€y, +7ey,, for every 4,n9 € C so actually EQO(BX) =
convie, , : x € Bx,y € Sx}. O

As a consequence, the density characters of X and G,(Bx) coincide. In particular X is separable if and only if Gy(Bx)
is separable.
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We will now relate Gy(By) with the Lipschitz-free space F(By) and Mujica’s predual G*(By) of H*(By). Note that
each element of F(By) can also be seen as an element of Gy(By), but maybe with a different behavior. For instance,
consider z € By \ {0} and u given by (u, f) = i /OZﬂ f(el'z)dt for f € Lip,(Bx). Then u # 0 in F(Bx) but (u, f) = 0 for
all f € HLy(Byx), so u = 0 when considered as an element of Gy(By). The next proposition formalizes this situation. We
say that an operator T : X — Y is a quotient operator if T is surjective and ||y|| = inf{||x|| : Tx = y} for every y € Y; this
implies that X / ker T is isometrically isomorphic to Y.

Proposition 2.7. Let X be a complex Banach space.
(a) The operator

7 . F(Bx) = Go(Bx)

8(x) = 8(x)

is a quotient operator with kernel HLy(Bx), ={u € F(Bx) : {(f,u) =0 forevery f € HLy(Bx)}. Thus, Gy(Bx) =
F(Bx)/HLy(By), isometrically.
(b) The operator

¥ 1 GX(Bx)®,X — Go(Bx)

(X))@ y ey
is a quotient map with ||¥|| = 1. In addition, the operator ¥ is injective if and only if X = C.
Proof.

(a) First note that the existence of such an operator 7 follows from the linearization property of Lipschitz-free spaces
applied to the 1-Lipschitz map By — Gy(Bx) given by x = &(x). Also, 7* : HLy(Bx) — Lip,(By) is just the inclusion
map since, for every f € HLy(By) and every x € By:

7 f(x) = (7" f,8(x)) = (f, 7(6(x))) = (f,6(x)) = f(x).

Thus, 7* is an isometry into. It is a standard fact that this implies that 7 is a quotient operator. Moreover, ker 7 =
m*(HLy(Bx))1 = HLo(Bx),.
(b) Consider the isometry into

o HLo(Bx) - Hoo(Bx,X*)
fedf

defined after Proposition 2.1. Recall that Q“(BX)(’X\)ﬂX is a predual of £(G®(Bx),X™) ~ H®(Bx,X™) (see, e.g., [45]).
Thus, if we restrict ®* to this predual we obtain ¥ = ®* | oo (By)® x> DOtE that ¥(6(x) ® y) = e, , € Go(Bx) forall x, y
and so W(QM(BX)@),TX ) C Gy(Bx). Then, ||¥|| =1 and ¥ is a quotient operator since ¥* = @ is an isometry into. In
the case X = C, we have indeed that ® : HLy(D) - H*(D) is an onto isometry, and thus W is also an isometry from
G*(D) onto Gy(D). However, W is not injective for X # C since @ is not surjective. O

Remark 2.8. We suspect, but cannot prove, that in general HLy(By) is not complemented in Lip,(By). The authors are
grateful to the referee for doubting an argument in an earlier version of this paper, and to Tommaso Russo for confirming
that the question may be more complicated than it first appears. Indeed, one can prove that 2(>X) is complemented in
HLy(Bx). Also, by a result of Hajek and Russo [33], P(?X) is not complemented in Lip,(Bx) in the real case. However, it
is not at all clear that their argument carries over to the complex case.
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It follows from Proposition 2.7 that Gy(D) is isometric to G*(D) (which is the unique predual of H*(D) [4]). We have
some immediate consequences.

Corollary 2.9. A function f is an extreme point of By, Lo(D) if and only if f "is an extreme point of EHOO(D).

Corollary 2.10. A function f € HLy(D) attains its norm as a functional on Gy(D) if and only if f' € H*®(D) attains its
norm as a functional on G*(D).

Let us state one more consequence of Proposition 2.7.
Corollary 2.11. Let X be a complex Banach space and ¢ € Gy(Bx).

(a) There are sequences (x,), (¥,) C By with x, # ¥, and (a,) C €1 such that

o0
P = Z anmxn,yn'
n=1

Moreover, ||p|| = inf Z:;l |a,,| where the infimum is taken over all such representations of ¢.
(b) There are sequences (x,) C By, (y,,) C Sy, and (a,) C €, such that

(o)
¥ = Z Anx,,.y,-
n=1

Moreover, ||@|| = inf Z:;l |a,,| where the infimum is taken over all such representations of ¢.

Proof. Given € > 0, Proposition 2.7 (a) provides an element u € F(By) with 7(u) = ¢ and ||u|| < ||¢]| + €. It is known

(see, e.g., [3, Lemma 3.3]) that there are points x,,y, € By and (a,) C ¢; with u = Z:o_l anw and Z:o_l la,| <
- Xn—=Yn -

lull + € < |lll + 2¢ (here & denotes the canonical embedding & : By — F(Bx)). Then, ¢ = Z:ozl anﬂ(w) =

e llxp=ynll
Zl’l=1 anmxn9Yn '

Item (b) follows similarly using the corresponding property for projective tensor products (see, e.g., [45, Proposition
2.8]) and G*(By) [39, Theorem 5.1]. O

Another consequence of the linearization process shows that functions in HL, behave similarly to functions in
Lip,(Bx, By) that can be isometrically factored through the free-Lipschitz spaces 7*(Bx) and 7 (By). Given f € HLy(Bx,Y)
with f(By) C By we can easily obtain a commutative diagram:

f

BX%BY

5Xi \L5Y (2.1)

Go(Bx) ﬁ Go(By),

where T, . is linear and ||T5, o 7|l = L(f).

3 | APPROXIMATION PROPERTIES ON G,(By)

Following Mujica’s ideas [38], we devote this section to study the MAP and the AP for Gy(By) whenever X has the same
property. Beginning with the MAP, we prove the following result about approximation of elements in the closed unit ball
of the dual space. We first introduce the notation:
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* Py(X,Y): The vector space of polynomials P : X — Y such that P(0) = 0 endowed with the norm ||dP|| = L(P|3, ).
* Pro(X,Y): The subspace of Py(X,Y) consisting of finite-type polynomials.
Proposition 3.1. Let X and Y be complex Banach spaces. Then

— — 7o
(@) Burysy.y) =Bryxy) -
T0

(b) IfX has the MAP then EHLO(BX,Y) = Bpf‘O(XyY) .
Proof.

() If f EEHLO(BX,Y) then f € H®(By,Y) and f(0) =0. Consider the Taylor series expansion of f at 0: f(x)=
Zzozo PX£(0)(x). As in [38], for each m € N U {0}, we denote

Sf () = I;P"f(O)(x) and 0, f(0) = —— éskf(x).

Sincedf = Zzozo dP* f(0) € H®(By, L(X,Y)) it follows from [38, Proposition 5.2] that ,,, f (x) — f(x) forall x € By
and

ldonfIl = llon @)l < ldfll < 1.

This implies that f € BPD(X,Y)TO.
For the reverse inclusion, let f € HLy(Bx,Y) and (P,) C Bp,x,y) such that P.(x) — f(x) for all x € Bx. Then,

L(f) <1 and so f S BHLQ(Bx,Y)‘
(b) IfX has the MAP there is a net of finite rank operators (T,) C £(X,X)suchthatT,(x) - xforallx € X and ||T,|| <1
for every a. Given P € Bp (x,y) we have that PoT, belongs to Bp oY) (since L(PoT4|p,) < 1) and P(T,x) — P(x)

for every x. This means that P € Bp f’O(X’Y)TO. Finally, an appeal to (a) yields the result. O

Recall that, by definition, the image of each P € P (X, Y) is contained in a finite-dimensional space. We will use this
fact repeatedly in the following.

Theorem 3.2. X has the MAP if and only if Gy(Bx) has the MAP.
Proof. X being isometric to a 1-complemented subspace of G,(By) it is clear that X has the MAP when G,(Bx) has it.
Now, suppose that X has the MAP and consider the mapping & € By, (s, c,(8y))- BY Proposition 3.1, there exist a net

(P,) CBp 1 0(X.Go(Bx)) such that P, (x) — &(x) for all x € By. Applying a linearization as in Proposition 2.3 we obtain finite
rank linear mappings Tp_with norm bounded by 1, such that the following diagram commutes:

By ——=> Gy(By)

5
Ty,

Go(Bx)

Note that Tp_(6(x)) = Py(x) — 6(x) = Id(6(x)). Then, we have that Tp_ — Id on span{d(x) : x € Bx}. Since the net
(Tp,) is bounded the same holds for the closure. Hence, Gy(Bx) has the MAP. O

Note that our arguments cannot be adapted to the case in which X has the BAP since the approximations of the iden-
tity could send the unit ball Bx to a bigger ball (and, hence, we cannot control the Lipschitz norm of PoT,|p, as in

Proposition 3.1 (b)).

Question 1. Does G(By) have the BAP whenever X has the BAP?
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The same question for G*(By ) was posed by Mujica in [38]. As far as we know, this question is still open.

In contrast to this unknown case about the BAP, the analogous statement for the AP (approximation property—without
bounds) was successfully solved by Mujica [38] for G®(By). We now turn to this goal for our space Gy(By), following
Mujica’s scheme but somewhat simplifying the arguments.

Note that in the results about the MAP we used several times that a bounded net of linear operators converges uniformly
on compact sets if and only if it converges pointwise on a dense set. For the AP we cannot make use of this kind of
argument, so our first step will be to describe a locally convex topology 7, such that the following topological isomorphism
holds:

(HLy(Bx,Y), 7)) = (L(Gy(Bx),Y), Tp)- (3.1)

Remark 3.3. Note that for a topology 7, satisfying Equation (3.1), if (f,) is a bounded net in HLy(Bx, Y) which con-
T
verges pointwise to f € HLy(Byx,Y) then f, Ne f- Indeed, linearizing we obtain a bounded net (T, ) C £(Gy(Bx),Y)

T
which converges pointwise to T;. Then, T'y_ S ¢ implying that f, A f-
As a consequence, we derive from Proposition 3.1 (a) the following identity:

—_ T.
Biy3y,y) = Bryx,y) " 3.2)

In order to work with the 7,-topology in £(Gy(Bx), Y) it would be good to have a useful description of the compact sets
of the space G (By). For that, we appeal to the following variation of the classical Grothendieck description of compact
sets (which can be proved, for instance, by slightly modifying the proof of [43, Proposition 9, p. 134]):

Lemma 3.4. Let X be a Banach space and V C Sy such that By = I[(V). For each compact set K C X, there exist sequences
(@) € ¢y (with atj > 0 for all j) and (v;) C V such that K C T({tjv;}).

A direct consequence of this lemma, along with Proposition 2.6 is the following:

Corollary 3.5. Let K C Gy(Bx) be a compact set. Then, there exist sequences (a;) € ¢, and (x;,y;) C Bx X Bx (witha; > 0
and x; # y; for all j) such that K C f({ocjmxjyj}).

Now, we can introduce, as in [38, Theorem 4.8], a topology 7, satisfying Equation (3.2).

Theorem 3.6. Let 7, be the locally convex topology on HLy(Bx, Y) generated by the family of seminorms

I1fCx) = FQpll

(f) =supa;

PU) =S80y

forvarying (a;) € ¢y, 0 < a; <1, and (x;,y;) C Bx X Bx with x; # y; for all j. Then, the mapping
(HLO(BX7 Y)s 7"}/) - (‘E'(QO(BX)’ Y)! TO)

is a topological isomorphism.

Proof. If K C Gy(Bx) is a compact set, by the previous corollary there are sequences (a;) € ¢, (x;,y;) C Bx X Bx with
aj>0,x; #y;forall j,suchthatK C f({ocjmxjyj}). Then, for all f € HLy(Bx,Y),

W) = oI

sup ||T rul| < sup ||Ts(axim,.,.)|| =supa
sup [T ull < Sup T (ajmsy )| = sup oty =y

’

showing that the mapping f ~ T is 7, — 7, continuous.
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To prove the continuity of the inverse mapping note that for a seminorm p of 7,, the associated sequence (a jmxjyj)
converges to 0 in Gy(By). Thus, the set K = {ocjmxjyj} U {0} is a compact set in Gy(By) and p(f) = sup; ”Tf(ajmxjyj)“ =
sup, . IIT pull.

Although the corresponding result for Lipschitz-free spaces will not be used in this work, we include it here since it
may be of independent interest.

Theorem 3.7. Let M be a complete pointed metric space. Then

(i) Foreach compact subset K of (M), there exist sequences (¢« ;) € ¢y and (x;,y;) C M X M (with oj > 0 and x; # y; for
all j) such that K C T g mxjyj}).
(i) Given a Banach spaceY, let T, be the locally convex topology on Lip (M, Y') generated by the seminorms

_ ”f(xj)_f(yj)”
p(f) = s1]1,p ocj—d(xj,yj)

where (ocj) € ¢, (xj,yj) CMXManda;>0,x;#y;forall j. Then, the mapping
(Lipy(M, Y), 7)) = (L(F(M),Y), 7o)
feTy
is a topological isomorphism.
Now, we examine the relationship between the topologies 7, and 7 on HL(By,Y).

Proposition 3.8. Let X and Y be complex Banach spaces. Then, t,, is finer than Ty on HLy(Bx, Y), and these topologies are
equivalent on P("X,Y) for each m € N.

Proof. If K C By is a compact set, then §(K) C Gy(By) is compact. By Corollary 3.5, there exist sequences («;) € ¢y and
(xj,¥j) C Bx X By (with ¢ > 0 and x; # y; for all j) such that §(K) C f({ocjmxjyj}). Hence, for all f € HLy(By,Y),

1f ) = fpl
“xj_yj”

>

sup [[f(X)]| < supa;
xeK Jj

proving the first assertion.

For the second statement, take a seminorm p that generates 7,: p(f) = sup K ]W
Xj=Yj

Bx X By, a; > 0and x; # y; for all j. For a homogeneous polynomial P € P("'X,Y), we have:

’Wlth (a]) € Co, (x]5y]) -

IPGe)) = PO IIP(a}/mxj) - P(oc}/my,-)ll

”xj_yj” j ”xj_yj”

p(P) = supa;
J

]2,’!;1 ()P ()™ ey = 0 "y )

= Su
P %, — ;1
k
1/m
m a/"(x; —y;)
m ] J J ]/m m—k
= sup ( )P 1, @y
,-,;1 k llx; — y;l1M/k ;o
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Note that there exist compact sets K; and K, in X such that {ocjl./ m%} C K; and {ocjl./ "y j} C K, (since both
Xj=Yj

sequences go to 0). Then,

m
m ~
(P) < sup  [|P(a, b 9).
p I;l ( k ) aek; ,bp€K2

Using the polarization formula, for each k € {1, ..., m},

k m
P/(ak’bm_k)z 2m1 ' Z gl...ng<<ZEi>a+( Z Ei)b>.
m: g==+1 i=1 i=k+1

Taking into account that the following set is compact

k m
C(K,,K,) = {(2 £i>a + < 2 £i>b :a€K,beK, kef{l,..,m}e = il}

i=1 i=k+1

and that

« _ 1
sup ||P(a¥, b M) < —  sup  [IP@)I,
aeK;,bek, M yeck, Ky)

we derive the intended inequality:

m _

2 1
p(P) < —

sup  [[P(w)]|.
UeC(K,.K,) O

We can now combine all the pieces of our study of the topology 7, to obtain the following.

T
Proposition 3.9. If X has the AP, for a given f € HLy(Bx,Y) there exists a net (P,) C Py (X, Y) such that P, A f

Proof. 1t is enough to consider f € EHLO(BX!y). Moreover, taking into account the equality (3.2) we just need to prove
the result for each homogeneous polynomial P € P("X,Y) (for any m). Applying [38, Lemma 5.3] (or composing the
polynomial with the approximations of the identity supplied by the AP of X)) we obtain a net (P,) C Py ((X,Y) such that

T
P, 3P Now, Proposition 3.8 implies that P, - P, which completes the proof. |
Finally, we are in position to prove the announced result:
Theorem 3.10. X has the AP if and only if G,(Bx) has the AP.

Proof. One implication is clear because X is isometric to a complemented subspace of Gy(By).

T
For the other, take § € HLy(Bx, Go(Bx)). By Proposition 3.9 there exists a net (P,) C Py (X, Gy(Bx)) such that P, -6
By the linearization process, appealing to the isomorphism (3.1), we obtain that (Tp, ) C L(Gy(Bx), Go(Bx)) is a net of finite

rank linear mappings satisfying Tp_ 3 1d. d

We finish this section with some comments about HL(By, Y) (i.e., the space of all holomorphic Lipschitz functions). It
is easy to check that this is a Banach space with the norm || f||z;;, = max{|| f(0)||, L(f)}.

Note that || f|lo < 2||f|l3 for any f € HL(By, Y). Also, it is plain to see that HLy(By, Y) is a 1-complemented subspace
of HL(Bx,Y). Moreover, motivated by a similar result for Lip -spaces (see [46, Theorem 1.7.2]) we get:
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Proposition 3.11. Let X,Y be complex Banach spaces. Then, HL(Byx,Y) is isometric to a 1-complemented subspace of
HLy(Bxg,c>Y)

Proof. Consider @ : HL(Bx,Y) — HLy(Bxg,c,Y) given by ®f(x,4) = f(x) + (4 —1)f(0). It is easy to check that ®f is
Lipschitz with L(®f) < || fl;,,, for every f € HL(Bx,Y). Note that

v@p > sup { LRS00 sy e =1
and also
Lopz IWODZ QN _ ),

so we actually have L(®f) = || f|l;,- Thus, ® is an isometry into.
Now, consider T' : HLy(Bxg,c,Y) = HL(Bx,Y) given by Tg(x) = g(x,0) + g(0, 1). One can easily check that || T|| <1
and To® = Iy (g, v). Therefore, P = ®oT is a norm-one projection from HLy(Bxg,¢c,Y) onto ®(HL(Bx, Y)). O

With the same procedure as at the beginning of the previous section, we can produce a canonical predual G(By) of
HL(Bx) made up of elements of HL(Bx)* which are 7y-continuous when restricted to the closed unit ball. The facts
that HLy(By) is a 1-complemented subspace of HL(By) and that the projection from HL(Byx) onto HLy(By) is Ty — T
continuous allow us to derive that G,(By) is isometric to a 1-complemented subspace of G(Bx). Moreover, Proposition 3.11
actually shows that G(Bx) is 1-complemented in Gy(Bx g, ¢) since, for Y = C, @ is the adjoint of the map given by 6(x, 1) —
8(x) + (1 —1)8(0) and T is the adjoint of the one given by §(x) — 8(x,0) + 6(0, 1).

With standard adaptations most of the results of this and the previous sections can be stated for G(By) instead of Gy(Bx).
That is the case of Propositions 2.3, 2.4, 3.1, and Theorem 3.2. The version of Proposition 2.6 for G(Bx) requires the addition
of §(0) to both considered sets. This addition has impact in Corollary 3.5 and Theorem 3.6, which in turn affects the proofs
of Propositions 3.8 and 3.9 and Theorem 3.10. All these results are valid for G(By) after the mentioned modifications.
Alternatively, this also follows from the fact that G(Bx) is isometric to a 1-complemented subspace of Gy(Bxg, c) (just note
that the map @ in Proposition 3.11 is the adjoint of the linearization Tr of the map F(x,4) = §(x) + (1 — 1)6(0)). Also,
note that the square diagram (2.1) can be made for G(By), but there is no equality between the norms of T5, . and f.

4 | RELATION BETWEEN G,(By) AND G,(B,) WHEN X C Y

Recall that, given metric spaces M, N with 0 € M C N, the (real) Lipschitz-free space F(M) canonically identifies with
a subspace of 7(N). This follows from the McShane extension theorem asserting that for every f € Lip, (M, R) there is
fe Lip,(N, R) with fly = f and L(f) = L(f), see, for example [46, Theorem 1.33]. Note in passing that in the complex-
valued case all extensions can have a larger Lipschitz constant. This is why our next goal is to analyze the corresponding
relation between Gy(Bx) and Gy(By) when X C Y. Then, By C By and the restriction mapping has norm one:

HLy(By) = HL(Bx)
fef |BX-
Then, the following mapping also has norm one:
p i Go(Bx) = Go(By)
g2

where §(f) = ¢(f1p,)-
Whenever p is an isometry, we write Gy(By) C Gy(By). Then, by the Hahn-Banach theorem, every element of H L (By)

would have a norm preserving extension to HLy(By). Since there exist polynomials which cannot be extended to a larger
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space it is not always true that Gy(Bx) C Gy(By). Moreover, the previous argument can be clearly reversed, so: Gy(By) C
Go(By) if and only if every f € HL(Bx) has a norm preserving extension to HLy(By).

We study some situations where this norm preserving extension occurs. All are cases where we have an extension
morphism. The simplest occurs when X is 1-complemented in Y. Here, the complementation also spreads to Gy(Bx).

Proposition 4.1. If X is I-complemented in Y then p is an isometry and Gy(By) is a I-complemented subspace of Gy(By ).

Proof. Letm : Y — X be anorm-one projection. Given f € HLy(By) the mapping fox belongs to HLy(By) with L(for) <
L(f) and (for)|p, = f. Now, for each ¢ € Gy(By),

lell= sup lp(Nl= sup [@(fom)| <[Il.

JFE€BuLyBY) fEBuLyBY)

Thus, ||¢]| = |||, meaning that p is an isometry. Finally, we derive that G,(By) is 1-complemented in Gy(By ) through the
following projection:

Go(By) = Go(Bx)
Y e [f = P(fom)]. O

Jung has proved recently that G*°(By ) does not have the Radon-Nikodym property (RNP) for any X [35]. Here we obtain
the same result for G,(By).

Corollary 4.2. The space Gy(By) fails to have the Radon-Nikodym property for every complex Banach space X.

Proof. The space G*(D) fails to have the RNP since its unit ball does not have extreme points [4]. Thus, by the isometry
presented in Proposition 2.7, the same holds for Gy(D). Since C is 1-complemented in X, Proposition 4.1 yields that G,(D)
is a subspace of Gy(Bx) and we are done. O

Another situation in which we have an extension morphism is when Y = X**. Recall that, given f € H*(Byx), we can
consider its standard, canonical extension f € H*(By.) [7]. This extension, which defines an isometry from H*(By) to
H*®(Bx) [21], is a topic widely developed in the literature. For instance, it is essential in the description of the spectrum
(or maximal ideal space) of the Banach algebra H*(Byx). Another ingredient that usually appears associated with this
extension and its properties is the notion of symmetrically regular space. Both these concepts have their origin in the study
initiated by Arens [5, 6] about extending the product of a Banach algebra to its bidual, which we now review.

For an n-linear mapping A : X X --- XX — Y the canonical extension A : X** x --- X X™* = Y** is given by
consecutive weak-star convergence in the following way:

AT, xy)O) = lim L lim y* (A(xg s -5 Xy, )
ay ap

where each (x;,) C X is a net which is weak-star convergent to x;* and y* € Y. Now, the canonical extension of a

homogeneous polynomial P € P("X,Y) is given by P € P("X**,Y**) which is defined, for x** € X**, in the expected

way:

P(x*) = P(x*, ..., x*5).
This provides a method to canonically extend bounded holomorphic functions f € H*(By,Y) w f € H®(Bys, Y**)and
we know from [21] that this extension is an isometry: || f|| = || f]I.
Recall that X is said to be regular if every continuous bilinear mapping A : X X X — C is Arens regular. That is, the

following two extensions of A to X** x X** — C coincide:

liortn lién A(xg,yg) and lién li;n A(Xq,Yp)
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where (x,) and (yg) are nets in X converging weak-star to points x;* and y;* in X**. The space X is symmetrically regular if
the above holds for every continuous symmetric bilinear form. Equlvalently, X is (symmetrically) regular if any continuous
(symmetric) linear mapping T : X — X* is weakly compact. Several equivalent characterizations of this notion can be
seen in [9, Theorem 8.3] and some interesting properties appeared in [10, Section 1]. As examples of non-reflexive regular
(and hence, symmetrically regular) Banach spaces we have, for instance, those that satisfy property (V) of Pelczynski, like
cp, C(K) or H*(D), while typical non symmetrically regular spaces are ¢; and X @ X*, for any non-reflexive space X.
Also, Leung [37, Theorem 12] provided an example of a symmetrically regular space that is not regular and in [10] it is
shown that c,(¢) is regular but its bidual ¢ ,,(¢"") is not symmetrically regular.

We now want to work with the canonical extension of elements in HLq(By). For f € HLy(By), in order to compute the
Lipschitz constant of f we need to deal with the differential of the extension, d f, which belongs to H(Byx, X***). Now,

N
we do know the norm of the extension of the differential d.f € H®(Bx--,X™), Fortunately, on symmetrically regular
spaces they coincide:

Proposition 4.3. If X is symmetrically regular and f € HLy(By), then df =df .

Proof. If f=Y,  P‘f(0) then the series expansion of df at 0 is given by df =,  dP*f(0). Thus,
/\/

N _ 0 Kk B P . P
df = Lo (AP*F(0) On the other hand, f = ¥°° PEf(0) and so df = ¥ d(PEf(0)). o

Therefore, the result is proved once we show that for any given m € N and any P € P("X), dP = dP. Note that in this
case P € P("X**), dP € P("™1X, X*) while both dP and dP belong to P("- 1X** , X,

When X is symmetrically regular, it follows from [9 Theorem 8.3] that P = P. The argument is now complete because,
for each x**, y** € X** we have dP(x**)(y**) = mP(x**, ..., x**,y**) and dP(x**)(y**) = mP(x*“ , X Y. O

A generalization of this procedure (which, however, uses the canonical extension in its definition) is when there exists an
isometric extension morphism s : X* — Y*. This happens, for instance, when X is an M-ideal in Y. More generally, if X C
Y then the existence of an isometric extension morphism s : X* — Y* is equivalent to X** being 1-complemented in Y**.
Actually, the existence of an isometric extension morphism s : X* — Y* is equivalent to X being 1-locally complemented
in Y (see the definition in the next section and the comment before Corollary 5.5).

Note that s(x*)(x) = x*(x) for all x € X, x* € X* and that ||s(x*)|| = ||x*||. This extension transfers to H*(By) in the
following way:

f = fos*oiy,

where iy : Y — Y** is the canonical inclusion.
The mapping 5 is an isometric extension from H* (By) to H*(By ). Now, we can show that the canonical extension and
the mapping s are isometric on HLy(Bx) when X is a symmetrically regular Banach space.

Proposition 4.4. If X is symmetrically regular, then the extension mapping
E : HLy(By) — HLy(By+)
fe7
is an isometry. If, in addition, X C 'Y and there is an isometric extension morphism s : X* — Y* then
5 1 HLy(Bx) = HLy(By)
fe fos*oiy

is an isometric extension.
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Proof. 1f f € HL(By) then its norm is given by [|df|l. By [21], ldf Il = Ildf Il. Also, by the previous proposition we know

that df = df So, we obtain that ||df]| = ||df]|, meaning that f does indeed belong to HLy(By++) and that the mapping
f + fis an isometry.

To prove the second statement, note that for any P € P("X) we have that 5(P) € P("Y) and d(5(P)) € P(""Y,Y*).
Now, for y, z € By,

AGP)Y)@) = MEP)Y, ..., y,Z) = MP(s* (iy (), .., 5* (iy (1)), 5*(iy (2)))
= dP(s* (iy O))(s*(iy (2))) = (i3, 05" 0dPos*oiy )(»)(2).

This says that d(s(P)) = i;‘,os**odﬁos*oiy for every polynomial P € P(™X). Then, the same equality holds for every
f € HLy(Bx):

dGs(f)) = i;‘,os**odfos*oiy.

Since X is symmetrically regular, the first part of the proof shows that ||d(s(f))|| < lldf]l = lldf]l. Also, note that for
X € By, we have s*oiy(x) = ix(x). This implies that d f(s*(iy (x)) = ix=(df(x)). Therefore,

d(s(f)(x) = iyos™ (ix+(df(x))) = s(df(x)).

This equality and the fact that s is an isometry allow us to derive the other inequality:
AU = sup 1A = sup [Is(df )l
XEBy XEBx

= sup [|df ()l = lldf],

XEBy

which concludes the proof. O

In the previous result, symmetric regularity is used to obtain that df =df . Actually we only need the identity of their
norms: l4f Il = 1A f1l. We do not know if this equality holds in general.

Corollary 4.5. If X is symmetrically regular, then Gy(Bx) C Go(Bx+). If, in addition, X C Y and there is an isometric
extension morphism s : X* — Y*, then Gy(Bx) C Go(By).

Note that in the above corollary the hypothesis of symmetric regularity is not a necessary condition: X = ¢; is not
symmetrically regular and by Proposition 4.1, Gy(B;,) C QO(BK;:*).

4.1 | Dual isometric spaces

Itis known that there exist non-isomorphic Banach spaces with isomorphic duals. Attending to that, Diaz and Dineen [23]
posed the following question: if X and Y are Banach spaces such that X* and Y* are isomorphic, under which conditions
isit true that P("X) and P("™Y) are isomorphic for every m > 1? That is, if X* and Y* are isomorphic (i.e., the spaces of 1-
homogeneous polynomials are isomorphic) does it imply that the spaces of m-homogeneous polynomials are isomorphic
for every m? They also gave a partial answer to this question. Later, a relaxation of the conditions was independently
obtained by Cabello-Sanchez et al. [16, Theorem 1] and Lassalle and Zalduendo [36, Theorem 4]], who proved that the
answer is affirmative whenever X and Y are symmetrically regular. We present here a version of this result for holomorphic
Lipschitz functions on the ball. Since we need to remain inside the ball when changing the space we have to restrict
ourselves to the case of isometric isomorphisms.
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Proposition 4.6. If X and Y are symmetrically regular Banach spaces such that X* and Y* are isometrically isomorphic
then HLy(Bx) and HLy(By) are isometrically isomorphic as well.

Proof. Let us denote by s : X* — Y* the isometric isomorphism and consider the mapping s : HLy(Bx) — HLy(By) as
in Proposition 4.4. By the proof of that proposition we derive that s is continuous and [|s|| < 1. Since Y is symmetrically
regular, we can use the same procedure for the mapping s—! : HLy(By) — HLy(Bx) leading to ||s~1|| < 1. Finally, appeal-
ing to [36, Corollary 3] we obtain that s—los(P) = P for every homogeneous polynomial P on X and, hence, s—Lo5( N=f
forevery f € HLy(Bx). Indeed, if 2;’:0 P¥ is the Taylor series expansion of a given f € HLy(By), then f(z) = ZI:O Pk(2)
for every z € By«. Thus,

S(NO) = fs* iy G = ) PA(s* iy ) = Y 5P,
k=0 k=0
for every y € Y. From here

STIEE) = SN ix()) = X 5ER) (57 (ix (x))
k=0

= ) s IGEP)x) = Y PK(x) = f(x),
k=0 k=0
for every x € X. Analogously, one can check that EosTl( f) = f forevery f € HL(By). |

4.2 | Mapping between G,(By) and G,(By)

Any linear mapping between X and Y produces a mapping between G,(Bx) and Gy(By ) by a canonical procedure (actually,
two canonical procedures depending on the norm of the mapping).

(i) Lety : X — Y be alinear mapping with ||| < 1. Note that L() = ||¢|| in this case. Since $(By) C By we can define
the canonical mapping with norm < 1:

HLy(By) — HLy(Bx)
[ foy.
Thus, the following also has norm < 1:
Ts,0p * Go(Bx) = Go(By)
PP
where (f) = ¢(fop).
(i) When ||3|| > 1 the previous construction does not work but we can appeal to a linearization plus differentiation

process (as we used to show that X is a 1-complemented subspace of Gy(Byx)).
Let® € L(X,Y) so that §|p, € HLy(Bx,Y). We have the usual commutative diagram:

Plny
By — > >Y

@J{ / ldaym)
P

Go(Bx) Go(By)

where Ty € L(Gy(Bx), Y).
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Applying the differential at O to the equality §|p, = Tyodx we get the commutative diagram:

d5x(0)l / idaym)

Go(Bx) ——= Gy(By).

ddy(0)oTy

Note that the linear mapping ddy(0)oTy : Gy(Bx) — Go(By) has norm less than or equal to |||

5 | LOCAL COMPLEMENTATION IN THE BIDUAL

In this section, we are interested in the relationship between Gy(Bx+) and Gy(Bx)™* under the hypothesis of X** having
the MAP, in the spirit of what is done in [17].
We begin with a result about a special approximation behavior in the case that the bidual space has the MAP.

Proposition 5.1. Let X,Y be Banach spaces such that X** has the MAP. For each f € HLy(Bx«,Y) with L(f) = 1, there
exists a net (Qy) C Py o(X,Y) with L(Qq|p, ) < 1 satisfying Q(x*) = f(x™) for all X** € By

Proof. By Proposition 3.1, it is enough to consider f = P € Py(X**,Y) with L(P|p,...) < 1. If X** has the MAP we can

appeal to [17, Corollary 1] to obtain a net of finite rank mappings (f,) C L(X,X™) with ||t,]| <1 and ¢*(x**) - x** for
all x** € X**. Now, we define Q, = Pot,, which clearly belongs to P ,(X, Y). Note that, for any x, y € By,

1Qa(x) = QW = IP(t(x)) = P(ta WDl < L(P|y.. )t llllx = Y1l < llx = pll.

Then, L(Q|p,) < 1. Since ¢, is a finite rank mapping, we have that t;* € £(X™*, X**). Hence, Qu = Pot* = Pot}*. Asa
consequence, Q,(x**) = P(t:*(x**)) = P(x**) for all x** € Byus. I

For a symmetrically regular space X, we consider the following mapping:
© : By — Go(Bx)™ = HLy(Bx)"
b [f € HLy(Bx) = f(x*™)].
Proposition 5.2. If X is symmetrically regular then © belongs to HLy(Bx+, Go(Bx)*) with L(©) = 1.

Proof. If X is symmetrically regular, by Proposition 4.4, the canonical extension is an isometry from HLy(By) into
HLy(Bx+), so © is well defined. For any f € HLy(By), we have ©(-)(f) = f, meaning that © is weak-star holomorphic,
and thus it is holomorphic. Also, ®(0) = 0 and for any x**, y** € By, once again by the symmetric regularity of X we
have

IO0Gx™) =0 )l = sup IfG™) = FO™II < ™ =yl

JE€BuLy5x)
This means that ® € HLy(By+«, Go(Bx)**) with L(®) < 1. On the other hand,

10(x*) = O™ )l = sup [x™(x") —y™(x*)| = [[x™ —y™|l.

X*EBy

Therefore, L(0©) = 1. O
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As a consequence of the previous proposition, if X is symmetrically regular we can linearize the mapping ©:

5**
Xi /

Go(Bx++)

This produces a linear mapping Tg € L(Gy(Bx++), Go(Bx)™*) with || Tg|| = L(®) = 1.
Motivated by the principle of local reflexivity, Kalton [34] introduced the following definition.

Definition 5.3. Given Banach spaces X C Y we say that X is 1-locally complemented in Y if for every € > 0 and every
finite-dimensional subspace F of Y there exist a linear mapping T : F — X such that ||T|| <1 + ¢ and T(x) = x for all
x €FnX.

Note that the principle of local reflexivity says that X is 1-locally complemented in X**, for any Banach space X.

Theorem 5.4. If X is symmetrically regular and X** has the MAP then Tg embeds Gy(Bx=+) as a 1-locally complemented
subspace of Go(Bx)**. In particular, T is an isometry.

Proof. We know that the mapping Sx«+ belongs to HLy(By:+,Gy(Bx+)) With L(8x«) = 1. Thus, we can apply
Proposition 5.1 to get a net (Qg) C P (X, Go(Bx=+)) with L(Q4|p, ) < 1 such that Qo (x*) = Sy (x™*) for all x** € By
Consider the following two commutative diagrams:

Qallf GaIB ok
Bx — Go(Bx+) By — Go(Bx++)
Sx l - Sy J/ 4
Go(Bx) Go(Bx+)

Note that, since X is symmetrically regular we have

ITo, Il = L(Qulp,) = L(Qalp,) = ITg, Il < 1.

For each a, since Ty, is a finite rank operator we have that Tg‘ belongs to L£(Gy(Bx)**, Go(Bx+)). Thus, we have the
a
following diagram:

To

Go(Bx-+) Go(Bx)™

k%

Go(Bx-)

The space Gy (By:+) has the MAP witnessed by the net (T@a) thanks to (the proof of) Theorem 3.2. Appealing to [17, Lemma
4], the proof will be completed once we check that the previous diagram is commutative. For this, it is enough to prove
that T, (Oxnr (X)) = TE; oTg(8x=(x**)) for every x** € By.

On the one hand, we know that T, (Sx++ (x*)) = Qqu(x**). On the other hand, Té; oTg(8x(x**)) = Tg; (O(x*)). In
order to understand this element of G,(By:+), let us see how it acts on any f € HL(Bx:+):

(T (O(™)), ) = (O(™), T (). (51)
Now, Taa (f) belongs to HL,(Byx) and, for any x € By, Tga (f) satisfies

T, (X)) = (T, (),6x(x)) = (f,Tq,(8x(x)) = (f,Qu(x)) = (ToQc)(x).
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Then, T(*2 (f) = TyoQq. Replacing this equality in Equation (5.1) and using the definition of ® and the fact that the range
of Q is contained in Go(By-++) we derive

(T (@(x™), f) = (O(x*), TroQq) = TyoQ_(x**) = T*0Qu(x*)
= T5(Qa(x™)) = (Qu(x™), f), forall f € HLy(Bx).

Therefore, Tg* (O(x*)) = Q (x**) and thus Tg* oTg(Exx(x**)) = T@a(éX** (x**)) for every x** € Bx««, which com-
pletes the proof. O

It is known (see, for instance, [17, Lemma 3] or [34, Theorem 3.5]) that X is 1-locally complemented in Y if and only
if X* is 1-complemented in Y* (with projection being the restriction mapping). This is also equivalent to X** being 1-
complemented in Y** (under the natural embedding).

Corollary 5.5. If X is symmetrically regular and X** has the MAP then H Ly(By+) is isometric to a I-complemented subspace
OfHLo(Bx)**

Under the same conditions as the previous results, we can also obtain a version for holomorphic Lipschitz functions of
the following characterization of unique norm preserving extensions to the bidual, proved by Godefroy in [30].

Lemma 5.6. Let X be a Banach space and x* € X* with ||x*|| = 1. The following are equivalent:

(i) x* has a unique norm preserving extension to a functional on X**.
(ii) The function Idﬁx* : (Bx«, w*) —> (Bxx, W) is continuous at x*.

Aron et al. [8] gave a version of this result for homogeneous polynomials. Later, other extensions appeared (for instance,
in [25] for ideals of homogeneous polynomials and in [24] for bilinear mappings in operator spaces).
Now, the statement of the theorem in our setting is the following:

Theorem 5.7. Suppose X is symmetrically regular and X** has the MAP. Consider a function f € HLy(Bx) with L(f) = 1.
Then, the following are equivalent:

(1) f has a unique norm preserving extension to HLq(Bx:+).
(i) The canonical extension from (B, (g, ), W*) 10 (Byr,(Byss), W*) is continuous at f.
(iii) Ifthenet (f,) C EHLO(BX) converges pointwise to f, then (f,) C EHLO(BX**) converges pointwise to f.

Proof. (i) = (ii) Let (fy) C EHLO(BX) be a net which weak-star converges to a function f € EHLO(BX). By the weak-star
compactness of the ball By, Lo(By++) there is a subnet (fﬁ) which is weak-star convergent to a function g € By, Lo(Byss)- SINCE
for each x € By, fa(x) = fa(x) = f(x) we derive that g|p, = f. Also, since L(g) < 1 = L(f), it followithat L(g) = L(f),
which means that g is a norm preserving extension of f. By (i) and Proposition 4.4 we obtain that g = f. Now, a standard
subnet argument shows that the whole net (f.) must converge weak-star to f.

(ii) = (iii) It is clear due to Proposition 2.3 (d).

(iii)=> (i) Letg € EHLO(BX**) be a norm preserving extension of f. By Proposition 5.1, there is a net (Q) C Ps(X,Y)
with L(Qu|g, ) < 1 satisfying Q,(x**) —>~g'(x**) for all x** € By««. But for any x € By we have Q,(x) = Q.(x) = g(x) =
f(x). Now, (iii) clearly implies that g = f. O

All the numbered results of Sections 4 and 5 have easily adapted analogous versions for G and HL instead of G, and
HL,.
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5.1 | Extensions of H*(By) and G*(By)

The arguments of this section can be canonically translated to prove analogous results for the case of G* instead of G,
(and H* instead of HL). Moreover, for this case the hypothesis of symmetrical regularity is unnecessary. Let us state the
results without proofs, since they are similar to the previous arguments.

Theorem 5.8. If X** has the MAP then G*®(Bx-«) is isometric to a 1-locally complemented subspace of G*(Bx)** and
H®(By=«+) is isometric to a 1-complemented subspace of H*(Bx)**.

The following question is posed in [17]: When X** has the BAP, is it true that H*° (B ) is isomorphic to a complemented
subspace of H*°(Bx)**? Note that the previous theorem affirmatively answers this open question for the case X** having
MAP.

Theorem 5.9. Suppose X** has the MAP. Consider a function f € H®(By) with ||f|| = 1. Then, the following are
equivalent:

(1) f has a unique norm preserving extension to H* (Bx ).
(i) The canonical extension from (Bye (), W) 10 (Byeo(By ), W*) IS cOntinuous at f.
(iii) Ifthe net (f,) C EHoo(BX) converges pointwise to f, then (f) C EHoo(Bx**) converges pointwise to f.
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APPENDIX A

Finally, we will prove the following result as promised in Section 2.

Theorem A.1. There exists an isomorphism into F . € ., — H°(D) such that F(¢ ,, \ {0}) C Hy°(D) \ HLy(D) and F(c, \
{0}) c A(D) \ HLy(D).

Note that one can easily prove a version for holomorphic functions on By for any X using the same ideas as in the proof
of the second part of Theorem 2.2(a).
In what follows, we will use the function ¢, : C — C given by

Az +1

pi(2) = 3
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It is standard that
P, =1, |pi(z)| <1forallze D\ {A}. (A1)

We also need the following technical lemma, which in particular provides another example of a non-Lipschitz function
in the disc algebra A(D).

Lemma A.2. Fix 1 € Cwith |1| = 1and define f; : C —» C by

B 1+(Iz—1)e1/(zz‘1) ifz#2
f/l(Z)—{1 -

Then

(@) faisholomorphicin C \ {1}.

(b) The restriction of f; to D belongs to A(D) \ HL(D).

(© |f1(z)| £3forallz € D.

(d) If0 < s <1, then |fj1(z)| < %forallz € D such that |z — 1| > s.
(e) Givenk € Nand0 < 6 < 1, we have that

/
sup  |(fa-@¥) (@) = +c0.
zeD(A,5)ND

Proof. A standard computation shows that (a) holds. Now, to prove the rest of the claims it is enough to consider the case
A =1.Denote f = f; and take z = a + ib € D \ {1}, with a, b € R. We have that

R 1 a—1
=e e; = e(a—1)2+b2 < eO =1.

ez-1

1
Hence f, defined as f(z) = 1 + (z — 1)ez-1 is holomorphic on C \ {1} and continuously extends to D. Further | f(@)] <3
foreveryz € D. Let us show that f is not a Lipschitz function. For that, it is enough to check that f” is not bounded on D.
Taking a null sequence (6,,),0 < 6,, < 1, and setting z,, : = cos 8,(cos 6, + isin 6,,), we obtain that the sequence (z,)) C D
converges to 1 and

Z,—2
———le7L

Z, — 2] Re(—*
Z: _1|e (zn—l) =

|f'(z)] =

z,—1

Consequently, lim,,_, , o, | f'(z,)| = +o0. Thus far we have proved (a), (b), and (c). Let us check (d). We have

1
ez-1

<1+ ,
- |z —1]

rel ==

for all z € D. Hence, if 0 < s < 1 and z € D with |z — 1| > s we have that | f/(z)| < %
Finally, (e) is a consequence of (f¢*)' (z) = f'(2)¢*(z) + f(2)(¢*) (z) forall z € C \ {1} O

Proof of Theorem A.1. To begin with, we choose a sequence (1,)) C C \ {1} convergent to 1 with |1,| = 1 and 4,, # 4,, for
every n # m. Consider the functions ® : C> - Cand ¢, : C - C, ¢,(z) := ®(z,1,,) defined as

Iz+1
2

d(z, 1) =
and, for each p € N, the compact subset of C?

K, ={(4p,4,) : n€N,n # ptu{(1,, D}
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We have |<I>(z, /1)| < 1 for every (z,4) € K, by Equation (A.1), and @ is continuous on C2. Hence, there exists 0 < s, <1
such that |®(z, )| < 1 for every (z,1) € K, + D((0, 0), sp). In particular,

lpn(2)| = |®(2,4,)| < 1, (A.2)

forall z € D(4,,s,) and all n # p.

Now, since the sequence (4,,) is convergent to 1 we can find a sequence of positive numbers (r,,) that tends to 0 such
that 0 < 2r, < s, for all n € N and such that D(4,, 2r,,) N ﬁ(/lp, 2rp) = @, for all n # p. Moreover, as (r,,) converges to 0,
for each n € N the set

L, := | D@p,2r,) ufll,
p#n

is also a compact subset of C, (although it is not a subset of D) and lpn(2)| < 1forall z € L,. Since |p,,| is continuous on
C we obtain that

max{|p,(z)| : zeC,UL,} <1,

for all n, where C,, = ﬁ\ D(4,,r,). As a consequence, for each n the sequence (go’,j);:o: | converges uniformly to 0 on

C, UL, and we can find a k,, € N such that
ky, ry
lon" (@D < 7 (A3)

3n+1’

foreveryz € C,, UL,.
We denote f, := f, ,forn € Nand we define F : ¢, — H*(D) by

o0 ,
P(an) = }:‘lnfn¢n'
n=1

For each (a,) € ¢ ., the series F(a,)(z) is convergent for each z € D. To see this, we first suppose that

(a) z e D \ (U:;l ﬁ(/ln, rn)>. In that case, by Equation (A.3) and Lemma A.2. (c),

o0 kn o0 r 1
21 |anfa(2)pn" (2)] < 213|an| o7 < 5@l (A.4)
n= n=

Hence, F(a,)(z) converges. Moreover, the series F(a,) converges absolutely and uniformly on the open set D\
(U:’:l ﬁ(/ln, rn)>. Thus, F(a,,) is holomorphic in that open set.
If (a) does not occur, then it must be that we have:
(b) There exists a unique n, € N such that z € D(4,,, 2r,, ). By Equation (A.3), for every u € D(4,,, 2r,,) we have that

fn_ _ laal
3n+1 3n

|anfn(u)¢§n(u)| < 3la,|

for all n # ng and

ki
@y fry WP, W < 3lay,|.

Hence,

> lanfa(@en @) < 4ll@) s (A5)
n=1
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and we have obtained that for every z € D(4,,, 2r,,), F(a,)(z) exists and in fact |F(a,)(z)| < 4[(a,)|l«- But our
argument shows that the series F(a,) is absolutely and uniformly convergent in the open disc D(4,,, 2r,, ). Hence,
F(a,) is holomorphic on D U U:’:l D(A,,2r,)and F : € — H*®(D)is a continuous linear mapping since ||F(a,)|| <
4)|(a)ls for all (a,) € € .

Now, we check that F is bounded below. We already know that for each (a,) € €, the function F(a,) is holomorphic on
Du UZO=1 D(4,, 2r,,) and bounded on D. Thus, using Equation (A.3) and the fact that 1, € D, we get

r
IF(a,)ll = sup [F(a,)(2)| > sup [F(a,)(A,)| > sup { EAEDY 3|an|3n—’11}
zeD peN

PeN n#p
a a
N sup{|ap| CHIE } _ @l
peEN

for every (a,) € € .
Let us check that if (b,,) € ¢y, then F(b,) belongs to A(D). Given € > 0, there exists n; € Nsuch that |b,| < %, for every

n > ny. Thus,ifz € D.

D bafu@en (@] <3¢ Y lpn (). (A.6)

n=ny n=m

'n

Nowif,ze€ D\ (U:o:l D(A,,, rn)), then by Equation (A.3), |§D§” (2)| < . Hence, by Equation (A.6),

3n+l

> buf a2 <.

n=nj;

Otherwise, ifz € D n <UZ°:1 D4, rn)>, there is a unique n, € N such that z € ﬁ(/lno, rp,) and

s ©
kn r
Y bafu@e @] <et Y, el <2
n=n; n=ny
n#ng

Consequently, the series ZZO=1 b,.f n(z)q:ﬁ" (z) converges absolutely and uniformly on D and F lco - €0 — A(D) is a well-
defined continuous linear mapping.
Consider (a,) € € \ {0}. There exists n, such that a,, # 0. We are going to show that F (a,)'(z) is not bounded on

D(Any> =) N D.
By the Weierstrass theorem,

+0o0 ’
ki
F@)@ = Y, a(fagi) @),
n=1
foreveryz € DU U;ozl D(A,, 2ry,). If n # ngy, then by the Cauchy integral formula

k
ko) 1 @' ()
P ) (2) == / du,
( n 27i Cllng ) (u —z)?

for every z € D(4,,, r%). Thus, by Equations (A.2) and (A.3), we obtain

! r
ky, n ky, 9 r 1 1
sup |(§0n ) @) < 5— sup |, (W) < Fg,n:l-l <—z
ZED(A"O”%) (grno)z e o no
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and we get
/
kn ! kn kn 1 1 1 1
(fo9") @1 < 11N @1+ @@ @< 35+ -5

where in the second inequality we have applied, Equations (A.2), (A.3), and the properties of f, and f], given in
Lemma A.2. Hence,

IF(@) @] 2 lan,||(Fr,n”) @) = u<an>nm<§ r e )

2y,

for every z € D(4,,, %). Finally, by Lemma A.2.(e), we have that F(a,)" is unbounded on D(4,,, %) N D and hence,
F(a,) does not belong to HL(D).

To conclude, if we define F; : €, — H°(D) by F1(a,)(2) := zF(a,)(z) for (a,) € {, and z € D, it is clear that F; is
an isomorphism onto its image and that F; (€, \ {0}) C H;°(D) \ HL(D). O

Finally, we note that if we are only interested in .A(D), then there are known results related to Theorem A.1. Indeed,
in three relevant papers [11-13], Bernal et al. have obtained many results on the existence of large subspaces of functions
that belong to .A(D) \ HL(D) u {0}. In particular, in [11, Theorem 4.1.c] the authors show that there exists an infinite-
dimensional Banach space X contained in .4(D) such that any non-null function in X is not differentiable on any point of
a fixed dense subset of T. Also, in [13, Theorem 3.4], the authors prove that there exists an infinite-dimensional Banach
space X, contained in .A(D), (which, however, is endowed with a stronger norm than the one inherited from .A(D)) such
that if f € X, then the restriction of f to T is nowhere Holder on T.
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