000135330 001__ 135330
000135330 005__ 20240522124406.0
000135330 0247_ $$2doi$$a10.1109/TMAG.2024.3395924
000135330 0248_ $$2sideral$$a138618
000135330 037__ $$aART-2024-138618
000135330 041__ $$aeng
000135330 100__ $$0(orcid)0000-0001-7901-9174$$aCarretero, Claudio$$uUniversidad de Zaragoza
000135330 245__ $$aNormalized nonlinear impedance boundary condition in anhysteretic magnetic material for eddy current problems
000135330 260__ $$c2024
000135330 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135330 5203_ $$aNumerical simulations of induction heating systems often assume that the properties of the induction load are linear. Thus, its electrical behavior is described by an equivalent impedance which exhibits frequency dispersion but remains independent of the excitation level. Although deriving such solutions is computationally complex, the use of the impedance boundary condition (IBC) provides high-quality results for linear media. This boundary condition replaces the effects of media with rapidly varying fields by a ratio between their tangential components at the surface. However, in typical induction loads, magnetic saturation of the material causes phenomena of dependence of the properties on the current level. The precise formulation of such an IBC can only be performed considering linear media. This paper proposes calculating a nonlinear excitation level-dependent IBC numerically, considering the saturation dependence of the magnetic properties given by a Langevin function BH-loop. A normalized form of the nonlinear IBC will be obtained from the equation governing this type of behavior, thereby reducing the computational cost of the solution. The usefulness of the proposed nonlinear IBC will be validated by comparing it with results obtained from conventional time domain simulations of a typical induction heating system.
000135330 536__ $$9info:eu-repo/grantAgreement/EUR/AEI/CPP2021-008938$$9info:eu-repo/grantAgreement/EUR/AEI/TED2021-129274B-I00$$9info:eu-repo/grantAgreement/ES/ISCIII/PI21-00440$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PDC2021-120898-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103939RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-136621OB-I00
000135330 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000135330 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135330 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000135330 700__ $$0(orcid)0000-0002-9655-5531$$aBurdio, José M.$$uUniversidad de Zaragoza
000135330 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000135330 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000135330 773__ $$g23, 1 (2024), [11 pp.]$$pIEEE trans. magn.$$tIEEE TRANSACTIONS ON MAGNETICS$$x0018-9464
000135330 8564_ $$s2256128$$uhttps://zaguan.unizar.es/record/135330/files/texto_completo.pdf$$yVersión publicada
000135330 8564_ $$s3532520$$uhttps://zaguan.unizar.es/record/135330/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135330 909CO $$ooai:zaguan.unizar.es:135330$$particulos$$pdriver
000135330 951__ $$a2024-05-22-10:17:19
000135330 980__ $$aARTICLE