
JOURNAL OF LATEX CLASS FILES, VOL. 23, NO. 1, APRIL 2024 1

Normalized Nonlinear Impedance Boundary Condition in
Anhysteretic Magnetic Material for Eddy Current Problems

Claudio Carretero1, Senior Member, IEEE, Jesus Acero2, Senior Member, IEEE,
and Jose M. Burdio2, Senior Member, IEEE

1Dept. Applied Physics. University of Zaragoza. 50009 Zaragoza (Spain).
2Dept. Electronic Engineering and Communications. University of Zaragoza. 50018 Zaragoza (Spain).

Numerical simulations of induction heating systems often assume that the properties of the induction load are linear. Thus, its
electrical behavior is described by an equivalent impedance which exhibits frequency dispersion but remains independent of the
excitation level. Although deriving such solutions is computationally complex, the use of the impedance boundary condition (IBC)
provides high-quality results for linear media. This boundary condition replaces the effects of media with rapidly varying fields
by a ratio between their tangential components at the surface. However, in typical induction loads, magnetic saturation of the
material causes phenomena of dependence of the properties on the current level. The precise formulation of such an IBC can only
be performed considering linear media. This paper proposes calculating a nonlinear excitation level-dependent IBC numerically,
considering the saturation dependence of the magnetic properties given by a Langevin function BH-loop. A normalized form of the
nonlinear IBC will be obtained from the equation governing this type of behavior, thereby reducing the computational cost of the
solution. The usefulness of the proposed nonlinear IBC will be validated by comparing it with results obtained from conventional
time domain simulations of a typical induction heating system.

Index Terms—Eddy currents, induction heating, home appliances, impedance boundary condition.

I. INTRODUCTION

EDDY currents are a common phenomenon encountered
in various problems. Induction heating (IH) is a par-

ticularly significant application of eddy currents, owing to
its widespread utilization in multiple technological domains.
However, efficient numerical solutions for eddy current prob-
lems pose significant challenges due to the complex behavior
of electromagnetic fields, which feature a combination of
smooth spatial variations and abrupt changes. Some analytical
solutions for simple geometries of this kind of problems can be
found in the literature, mainly for layered structures with axial
symmetry [1], [2], [3], or structures with cylindrical symmetry
[4], [5], [6], [7], [8]. However, the extension of the treatment
to more complex geometries requires the application of nu-
merical methods which involve high computational cost [9],
[10]. The application of numerical methods for the resolution
of eddy current systems has been an active field of work in the
past, as can be found in [11] to obtain an optimized pattern of
power dissipated in a metallic element, in [12] for cold crucible
melting processes, in [13] for the numerical simulation of
hardening by induction heating, in [14] for domestic induction
heating, in [15], [16] coupling electro-thermal effects and in
[17] for coupled electro-thermal automated induction heating
treatment of surfaces.

In an attempt to simplify the calculation process with an
acceptable reduction in accuracy, the use of the so-called
impedance boundary condition (IBC), which replaces the
penetration of electromagnetic fields into a conductive material
with a Robin boundary condition, is appropriate. The definition
of the most suitable IBCs for electromagnetic problems has

Manuscript received December 21, 2023; revised February 28, 2024 and
April 7, 2024; accepted April 22, 2024. Corresponding author: C. Carretero
(email: ccar@unizar.es).

been extensively studied for applications in the frequency
domain, both in the high-frequency regime, where systems
correspond to electromagnetic wave scattering problems [18],
and in the quasi-static regime [19], [20], [21].

In general, the level of the electromagnetic fields is suffi-
ciently reduced to ensure the material properties are indepen-
dent of the excitation value. However, particularly in induction
heating applications, the fields at the material boundary often
reach high values and can magnetically saturate the material.
In this case, it is observed that the material properties depend
on the applied excitation, therefore the solutions in the fre-
quency domain are not totally correct because they are derived
based on the superposition principle. Some alternatives have
been proposed by various authors to include the nonlinear
magnetic properties in eddy current systems. In [22], the
problem is divided into two coupled methods: a 1-D approach
for handling the nonlinearity and a 3-D approach that works
on the aligned problem, although it has the disadvantage of
requiring a high computational cost and obtaining a rather
limited accuracy in the results. Achieving accurate results is
determined by an adequate characterization of the magnetic
properties of the material [23]. The number of proposals
inferring the expression of the impedance boundary condi-
tion for nonlinear magnetic material is remarkable because
this approach presents great advantages in the calculation of
approximate numerical solutions. The BH-loop describes the
magnetic characteristics of the material and constitutes the
starting point for any nonlinear impedance boundary approach.
The impedance boundary condition for the case of extreme
saturation with a step dependence of the BH-loop is provided
in [24], [25], [26] based on the analytical solution of the field
diffusion inside the material. An alternative expression for the
IBC of a nonlinear magnetic infinite half-space is also derived
in [27] based on the fitting of the BH-loop.
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Several authors have proposed to solve the 1-D equation
by numerical methods to obtain the nonlinear IBC under
different functional dependencies of the BH-loop curve. In
reference to BH-loops, various techniques have been proposed
for dealing with the nonlinear IBC. For instance, the finite
difference method based on the Frohlich-Kennelly relation is
explained in [28]. Additionally, a finite integration technique
extraction is provided in [29], whereas [30] proposes a finite
element method calculation that also considers the temper-
ature dependence of the material’s electrical conductivity.
Alternatively, some hybrid methods have been proposed that
combine the linear boundary impedance condition and the
boundary impedance condition for step-like dependence using
some weighting methods, as given in [31], [32], or for fitting
methods performed from the application of the finite difference
method [33].

The application of nonlinear IBC has been reported in
several recent works to reduce the computational cost in the
finite element method [34] and the boundary element method
[35], [36].

The design of IH systems is carried out by numerical
simulation of complex 3D geometries to capture the com-
plexity of their structure using commercial tool models. In
these models, the IBC is applied to reduce the computational
costs of the simulation. The nonlinear behavior of the load
is not well established and is sometimes modeled by an
equivalent complex relative permeability calculated from a
mean field approach, [37]. However, results are accurate for
conditions prevailing at operating frequencies and field levels
to deliver maximum power to the load, but inaccuracies appear
at different operational points. The objective of this work is
to propose a normalized nonlinear IBC in this hybrid regime
for the Langevin function BH-loop by applying numerical
methods.

The remainder of the paper is organized as follows: Section
II presents some basics on the modeling of IBC. In Section III
are described the main results to calculate the nonlinear IBC
for the proposed Langevin function BH-loop and the derivation
of the normalized form of the nonlinear IBC. Section IV is
dedicated to the practical application of the proposed form
for the nonlinear boundary condition to a reference system of
a typical induction heating system under different conditions.
Finally, some conclusion are drawn in the last section of the
paper.

II. IMPEDANCE BOUNDARY CONDITION

Regarding the numerical analysis of eddy current problems,
the IBC reduces the complexity and computational cost of
the harmonic solution. In this approach, the sharply varying
fields near the surface of the conductors are substituted by the
following relationship in the surface [38]:

n̂×E0 = ZL (n̂×H0)× n̂, (1)

where n̂ is the normal vector pointing outward the conductor
material, E0 and H0 are the electric field complex amplitude
and the magnetic field complex amplitude at angular frequency

ω, respectively, and ZL is the surface impedance for linear
materials at angular frequency ω.

The IBC modeling requires solving a simple numerical 1-
dimensional equation. The governing equations of the electro-
magnetic fields correspond to the time-dependent Maxwell’s
equations. Applying some manipulations to the preceding
equations for a transverse magnetic field plane-wave incident
to a magnetic and conductive half space beyond z = 0, they
can be reduced to the basic single expression [39]:

∂h

∂t
=

1

µσ

∂2h

∂z2
. (2)

where h (t) = H0 sin (ωt) is the time-dependent transverse
magnetic field, σ and µ are the conductivity and permeability
of the material, respectively.

Solving the preceding equation, the well-known expression
of the IBC for a linear material can be obtained:

ZL =

√
ωµ

σ
ei

π
4 =

1 + i

σδ
, (3)

where δ is the penetration depth.
The IBC presents a precise solution to eddy current prob-

lems within the medium frequency range of several hundred of
hertz to megahertz. In that case, the fields can be described by
diffusion equations and radiation terms can be neglected with-
out loss of generality. However, although the IBC approach is
suitable for solving a wide variety of eddy current systems
including conducting material, it gives inaccurate results for
material with nonlinear magnetic properties. In the past, many
works have focused on nonlinear behavior using a variety of
approaches. The first successful analytical description of a
nonlinearity in the magnetic properties of a material is given
by Agarwal in its celebrated work [25], for a step-like BH-
loop, giving the impedance boundary condition by:

Zsat = 1.34e−0.102πiZL (µm) . (4)

where µm = Bsat/H0 is the equivalent magnetic permeability
for a saturable material and ZL (µm) is the expression of the
linear IBC substituting the linear magnetic permeability by the
equivalent magnetic permeability for a saturable material.

III. NONLINEAR IMPEDANCE BOUNDARY CONDITION
FROM FINITE DIFFERENCE METHOD

A. Langevin function anhysteretic BH-loop

Magnetic properties of soft materials can be described by
the Langevin function, which is used to define anhysteretic
magnetization in the Jiles-Atherton model, as it is presented
as follows [40]:

Man (H) = Msat

(
coth

(
H

a

)
− 1

H/a

)
, (5)

where Msat is the saturation magnetization, the domain wall
parameter a is the factor governing the slope of the curve and
H is the magnetic field. The magnetic flux field is given by the
identity B = µ0Man (H)+µ0H , and the saturation B-field is
therefore defined as Bsat = µ0Msat.
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Fig. 1: Langevin function BH-loop for Bsat = 2 T at different
domain wall parameter a.

The differential relative permeability can be obtained by
applying the derivative of the magnetic flux field with respect
to the magnetic field µr,diff = 1

µ0
dB/dH , then, we have:

µr,diff (H) =
Bsat

aµ0

(
1− coth2

(
H

a

)
− 1

(H/a)
2

)
+ 1. (6)

The dependence of the magnetization field and differential
relative permeability for a material with the typical saturation
of magnetic steel, Bsat = 2 T, and electrical conductivity
σ = 1.12 · 107 S/m is shown in Figure 1. As can be seen, the
domain wall parameter a governs the dependence on these
parameters by resizing the different curves, in particular, the
maximum level is given as an initial permeability:

µr,ini =
Bsat

3aµ0
+ 1 ≈ Msat

3aµ0
. (7)

Therefore, considering the relationship a = Bsat

3(µr,ini−1)µ0
,

equation (6) can be rewritten as:

µr,diff (H) = 3 (µr,ini − 1)·

(
1− coth2

(
H

a

)
− 1

(H/a)
2

)
+1.

(8)
Considering the field dependence as F (H/a) =(
1− coth2

(
H
a

)
− 1

(H/a)2

)
, we have:

µr,diff (H) = 3 (µr,ini − 1)F (H/a) + 1. (9)

The impact of hysteresis is not taken into account in
this analysis because it increases complexity with reduced
additional explanatory power when dealing with soft materials,
as is often the case in eddy current problems.

B. Finite difference method applied to diffusion field equa-
tion

The finite difference method constitutes a good choice to
obtain the IBC of a nonlinear material due to its efficiency
and ease of implementation in general-purpose programming
languages. In this particular case, MATLAB®has been chosen

0 0.025 0.05 0.075 0.1

z (m)

Fig. 2: Unstructured 1-D mesh composed of an evenly spaced
grid at low z-coordinates and increasing spacing at higher z-
coordinates.

because facilitates the programming of the code for this appli-
cation. An implicit definition of the finite difference method is
selected because an unconditional stable algorithm can avoid
any additional problems in the simulation.

As it was previously mentioned, impedance boundary mod-
eling requires a simple numerical 1-dimensional simulation
based on time-dependent Maxwell’s equations. Rearranging
the preceding equations under the conditions exhibited in
nonlinear eddy current problems, it can be obtained the basic
single expression [39]:

∂h

∂t
=

∂2h
∂z2

µ0σ
(
1 + ∂M

∂h

) . (10)

where M is the magnetization at the magnetic field level h (t)
and µ0 is the vacuum permeability. Alternatively, the preceding
expression can be rewritten including the definition of relative
differential permeability, as shown as follows:

∂h

∂t
=

∂2h
∂z2

µ0σµr,diff (h)
. (11)

The preceding expression can be easily solved by the finite
difference method for the harmonic excitation at z = 0 of
the form h (t) = H0 sin (ωt), and assuming vanishing fields
at z → ∞. In the case under study, a discretization for
an unstructured mesh is applied because a finer sampling is
considered for the rapidly varying fields near to z = 0 and a
coarser mesh is applied at a higher z position where the field
tends to be almost zero, as can be seen in Figure 2

The spatial derivative of the magnetic field can be derived
from the Taylor’s expansion:

∂2h

∂z2

∣∣∣∣n
i

=
2∆zLi
DLR

i

hn
i−1 +

2
(
∆zLi +∆zRi

)
DLR

i

hn
i +

2∆zRi
DLR

i

hn
i+1,

(12)
where superscript n represent the time sampling number, sub-
script i represent the z-coordinate sampling number, ∆zRi =
zi+1−zi and ∆zLi = zi−zi−1 are the upward and downward
sampling distances, respectively, and DLR

i = ∆zLi
(
∆zRi

)2
+(

∆zLi
)2
∆zRi normalizes the expression.

Time discretization is performed in a standard manner as
follows:

∂h

∂t

∣∣∣∣n
i

=
hn+1
i − hn

i

∆t
, (13)
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where ∆t is the increase of time selected for the discretization.
The discretization of equation (11) can be achieved using an

explicit algorithm where the spatial derivative is evaluated at
instant n. However, this approach may result in unstable output
values despite being computationally efficient. To improve the
stability of the solution, an implicit type algorithm will be
used to estimate the spatial derivative at the n + 1 instant.
Additionally, to avoid the use of iterative solution algorithms,
the value of the relative magnetic permeability, µr,diff , will
be calculated at instant n. Therefore, equation (11) can be
expressed as:

∂h

∂t

∣∣∣∣n
i

=
1

µ0σµr,diff (hn
i )

∂2h

∂z2

∣∣∣∣n+1

i

. (14)

Substituting (12) and (13) into (14), we obtain:

hn+1
i

−hn
i

∆t = 1

µ0σµr,diff(hn
i )

·
[
2∆zL

i

DLR
i

hn+1
i−1 +

2(∆zL
i +∆zR

i )
DLR

i

hn+1
i +

2∆zR
i

DLR
i

hn+1
i+1

]
.

(15)
Rearranging the expression, we have:

hn
i = hn+1

i − ∆t

µ0σµr,diff(hn
i )
·[

2∆zL
i

DLR
i

hn+1
i−1 +

2(∆zL
i +∆zR

i )
DLR

i

hn+1
i +

2∆zR
i

DLR
i

hn+1
i+1

]
.

(16)

The preceding relationship establishes a system of equa-
tions to be solved. By defining the column vector h̄n =[
hn
1 · · ·hn

i · · ·hn
ns

]T
, it can be expressed as:

B
n
· hn+1

= h
n
. (17)

where B
n

is a matrix of elements bnij .
The upper-diagonal elements bni(i+1) are defined as:

bni(i+1) = − 2∆zRi ∆t

µ0σµr,diff (hn
i )D

LR
i

, (18)

the diagonal elements bnii are defined as:

bnii = 1−
2
(
∆zLi +∆zRi

)
∆t

µ0σµr,diff (hn
i )D

LR
i

, (19)

the lower-diagonal elements bni(i−1) are defined as:

bni(i−1) = − 2∆zLi ∆t

µ0σµr,diff (hn
i )D

LR
i

, (20)

otherwise, if. j′ ̸= i− 1, j′ ̸= i and j′ ̸= i− 1, then bij′ = 0.
¯̄B
n

is a tridiagonal matrix with non-zero
values only on the main diagonal and the
diagonals immediately above and below it:

B
n
=



bn11 bn12 0 0 0 0 0 0 0
bn21 bn22 bn23 · · · 0 0 0 0 0 0
0 bn32 bn33 0 0 0 0 0 0

...
. . .

... . . .
...

0 0 0 bn(i−1)(i−1) bn(i−1)i 0 0 0 0

0 0 0 · · · bni(i−1) bnii bni(i+1) · · · 0 0 0

0 0 0 0 bn(i+1)i bn(i+1)(i+1) 0 0 0
... . . .

...
. . .

...
0 0 0 0 0 0 bn(ns−2)(ns−2) bn(ns−2)(ns−1) 0

0 0 0 · · · 0 0 0 · · · bn(ns−1)(ns−2) bn(ns−1)(ns−1) bnns(ns−1)

0 0 0 0 0 0 0 bnns(ns−1) bnnsns



(21)

The calculation of the next-step magnetic field h
n+1

can be
obtained by applying:

h
n+1

=
(
B

n)−1

· hn
. (22)

Obviously, the inversion of the matrix B
n

is responsible for
the majority of the procedure’s computational cost.

C. Nonlinear impedance boundary from FDM results

The boundary conditions to be applied to obtain the transient
solution of the magnetic field in the material are listed as
follows: the magnetic field at the boundary between the media,
the value of the magnetic field at the initial instant and the
magnetic field at the latter spatial point.

In the first case, the excitation to be applied is a discretized
harmonic type signal at tn = (n− 1)∆t. Therefore, the
condition at the boundary is:

hn
1 = H0 · sin (2πf (n− 1) t) where n ∈ [0, N ] . (23)

where the spatial subscripts indicate the position z = 0.
The initial value of the field inside the magnetic medium

can be set to zero, or to a different value derived from a
previous simulation. Null values imply a larger simulation to
reach steady-state configuration, but it constitutes the simplest
constraint to start the procedure, as it is given as follows:

h1
i = 0 where i ∈ [0, ns] . (24)
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Fig. 3: Electric field at the boundary of a magnetic anhysteretic material of conductivity σ = 1.12 · 107 S/m, Bsat = 2 T and
a = 560 A/m , at two different excitation frequencies for equal magnetic field amplitude at the boundary.
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Fig. 4: First harmonic IBC dependence with respect to the magnetic field amplitude for a material with σ = 1.12 · 107 S/m,
Bsat = 2 T and a = 560 A/m (continuous line), and linear IBC for the initial magnetic permeability (circular symbols), at
different excitation frequencies.

The magnetic field vanishes at larger distances from the
boundary of the magnetic medium, lim

z→∞
h(z, t) → 0, thus:

hn
ns

= 0 where n ∈ [0, N ] . (25)

Starting by (23), expression (22) is iteratively applied to ob-
tain h

(n+1)
, but elements h(n+1)

1 and hn
ns

would be substituted
by applying (23) and (25), respectively.

The accuracy of the results depends on the discretization
conditions. As it was mentioned, the proposed algorithm
admits non-uniform spatial sampling. The first samples are
equally spaced, due to the linear decay of the magnetic field
when the material is in deep saturation. In the remaining ones,
corresponding to greater depths in the material, an exponential
spacing has been applied, because the field presents this
dependence.

IBC extraction implies a relationship between the electric
field and magnetic field complex amplitudes at the boundary

position. The time-domain tangential electric field is related
to the tangential magnetic field by considering its relationship
with the electrical current in a conductive media and the
Ampere’s law establishing, thus:

e (t, z = 0) =
1

σ

∂h

∂z

∣∣∣∣
z=0

. (26)

An accurate numerical derivative is obtained by using
a multiple-sample value scheme, which requires a uniform
sampling ∆z in the first samples, as it is given as follows:

∂h

∂z

∣∣∣∣n
z=0

=
−3hn

1 + 4hn
2 − hn

3

2∆z
, (27)

where hn
1 , hn

2 and hn
3 are the solutions for the magnetic fields

at the boundary position z1 = 0, position z2 = ∆z and
position z3 = 2∆z, respectively. Higher order formulation can
be considered but less precision can be achieved due to the
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nonlinear spatial variation of the fields. By combining both
equations, we have:

e (t, z = 0) =
−3hn

1 + 4hn
2 − hn

3

2σ∆z
, (28)

Finer meshing close to the transition boundary at z ≈ 0
contributes to a precise numerical calculation of the electric
component because fields exhibit a rapid decay inside the
conductive medium.

Steady-state electric fields are represented in Figure 3(a) for
the linear regime and in Figure 3(b) for the highly saturation
regime, respectively. At the magnetic amplitude level of 1000
A/m, the time dependence of the electric field is almost a
sinusoidal signal for both excitation frequencies due to the
maximum level does not reach the saturation of the material.
However, at large signal levels, as shown in Figure 3(b),
the waveform of the electric field becomes distorted due to
saturation of the material. It tends to the Agarwal model for
extreme magnetic saturation.

The harmonic extraction of the steady-state signal is re-
quired to calculate the IBC at the ratio between the electric
field and the magnetic field at z = 0. The harmonic nh of the
transverse magnetic field is defined as:

Ĥ (nh) =
ω

2π

∫ 2π
ω

0

h (t) ejωnhtdt. (29)

In this approach, the nonlinear IBC ZNL (H0) is derived
from the first harmonic of the transverse magnetic field am-
plitude Ĥ (1):

ZNL (H0) =
∂Ĥ(1)
∂z

σĤ (1)

∣∣∣∣∣
z=0

. (30)

The first harmonic IBC ZNL (H0) depends on the peak level
of the magnetic field applied at the transition media H0, as
shown in Figure 4. The magnitude of the IBC decreases at
higher field level, whereas, the phase of the complex value
of the impedance boundary condition also reduces. However,
the primary conclusion drawn from Figure 4 is about the
self-similarity of the IBC dependencies concerning frequency.
The magnitudes appear to be proportional between them at
different frequencies, and the phase seems to be independent
of the excitation frequencies.

D. Normalized form of nonlinear impedance boundary con-
dition

The nonlinear IBC for a material whose magnetization curve
obeys the anhysteretic Langevin function BH-loop can be
normalized by taking advantages of the mathematical char-
acteristics of the aforementioned differential equation (11).

Normalization to the frequency f0 can be performed by
rescaling time variable t′ = (f/f0) t in the excitation applied
at z = 0:

h′ (t′) = H ′
0 sin (2πf0t

′) . (31)

Therefore, the left-hand side of (11) becomes:

∂h

∂t
=

∂h′

∂t′
∂t′

∂t
=

f

f0

∂h′

∂t′
, (32)

Due to the properties of the anhysteretic magnetization
curve, the differential permeability possesses an approximated
self-similarity dependence on the saturation magnetic flux field
Bsat = µ0Msat and domain wall density a, as it can be derived
from (7):

µr,diff (Bsat, a, h) =
Bsat

3aµ0
F

{
h

a

}
+ 1, (33)

but maybe approximated by:

µr,diff (Bsat, a, h) ≈
Bsat

3aµ0
F

{
h

a

}
. (34)

Applying the substitution h/a = h′/a0, i.e., H0/a =
H ′

0/a0 because the time dependence is the same at z = 0,
and therefore, the excitation amplitude obeys:

H0 =
a

a0
H ′

0. (35)

Then, equation (34) can be rearranged as follows:

µr,diff (Bsat, a, h) ≈
Bsat

Bsat,0

a0
a

Bsat,0

3a0µ0
F

{
h′

a0

}
. (36)

Therefore:

µr,diff (Bsat, a, h) ≈
Bsat

Bsat,0

a0
a
µr,diff (Bsat,0, a0, h

′) . (37)

Substituting (37) and (32) into equation (11):

∂h′

∂t′
=

(
f0
f

σ0

σ

Bsat,0

Bsat

a

a0

) ∂2h′

∂z2

µ0σ0µr,diff (Bsat,0, a0, h′)
. (38)

Normalizing the spatial variable z′ as follows:

z′ = z

√
f

f0

σ

σ0

Bsat

Bsat,0

a0
a
. (39)

The equation (37) is transformed into its normalized ver-
sion:

∂h′

∂t′
=

∂2h′

∂z′2

µ0σ0µr,diff (Bsat,0, a0, h′)
. (40)

The nonlinear boundary impedance condition from the
solution of the above equation can be obtained by rearranging
(30) in the following form:

ZNL (H0) =
σ0

σ

∂z′

∂z

∂Ĥ′(1)
∂z′

σ0Ĥ ′ (1)

∣∣∣∣∣
z=0

=
σ0

σ

∂z′

∂z
Z ′

NL (H
′
0) .

(41)
Applying the substitutions provided in (35) and (39), we

obtain:

ZNL (H0) =

√
f

f0

σ0

σ

Bsat

Bsat,0

a0
a
Z ′

NL

(
H0

a0
a

)
. (42)
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Fig. 5: Comparison between the IBC dependence with respect to the magnetic field amplitude for a material with σ =
1.12 · 107 S/m, f = 50 kHz and Bsat = 0.5 T, at different domain wall parameter a (continuous lines) and the derived values
from the scaled normalized impedance (circular symbols).
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Fig. 6: Comparison between the IBC dependence with respect to the magnetic field amplitude for a material with σ =
1.12 · 107 S/m, f = 50 kHz, and domain wall parameter a = 560 A/m, at different magnetic saturation values Bsat

(continuous lines) and the derived values from the scaled normalized impedance (circular symbols).

where Z ′
NL (H

′
0) is the normalized nonlinear boundary im-

pendence condition. Expression (42) is not exact due to the
approximation taken from (33) to (34), but gives accurate
results if the initial permeability of the BH-loop is higher than
µ0.

Figure 5 shows the comparison between the impedance
boundary condition absolute values and phases with respect to
the field level amplitude at different domain wall parameters
a obtained from a numerical calculation and the derived value
given by the equation (42), for the reference IBC Z ′

NL (H
′
0)

at f0 = 10 kHz, σ0 = 1.12 · 107 S/m and Bsat,0 = 2 T.
As it can be seen in Figure 5(a), the accuracy of the derived
absolute values is good at the different excitation magnetic
field level under analysis, whereas the phase of the impedance
boundary condition remains invariant with respect to the field
level, as it is shown in Figure 5(b). In this case, the change
in the parameter a also implies escalating the excitation

magnetic field amplitude, thus, the range derived from the
reference IBC ZNL,0 (H0) is proportional to the relationship
between the domain wall parameter a and the reference value
a0 = 560 A/m.

In addition, the comparison of the IBC values between cal-
culated data and the derived from (42) for different magnetic
saturation values Bsat are represented in Figure 6, where the
good agreement between the values derived from Z ′

NL (H
′
0)

and the simulation results for the whole set of parameters is
evident.

IV. PRACTICAL APPLICATION OF THE IMPEDANCE
BOUNDARY CONDITION

The IBC is extensively employed in the numerical simu-
lation of electromagnetic systems which involve conductive
and magnetic components in the quasi-static regime. For
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Fig. 7: 2D-axisymmetric model of IH system with nonlinear
load.

illustrative purposes, the usefulness of the nonlinear IBC
will be demonstrated for a simple induction heating system
structure composed of a spiral coil placed between two half-
space media. This structure captures, in a general form, the
behavior of an induction cooker whose load operates at the
boiling temperature of the water. The proposed geometry
possesses axial symmetry which will reduce the computational
cost of solving the system. The system fields arise from the
impressed current density which models the coil. The upper
medium is a ferromagnetic and conductive material, i.e., the
system load, which is replaced by the nonlinear IBC, and the
lower material is a perfect magnetic material whose purpose
is to increase the magnetic coupling between the coil and the
system load. The preceding structure corresponds to a simple
induction heating, IH system characterized by its equivalent
coil impedance, Zcoil, [41], [42].

TABLE I: Geometry of the reference eddy current system.

Parameter value
Coils internal radius 10 mm
Coils external radius 30 mm

Coil’s tickness 4 mm
Coil number of turns 48

Coil-load distance 4 mm
Coil-ferrite distance 1 mm

The geometrical parameters of the reference IH system
are listed in Table I. The current amplitude Icoil driven by
each turn of the coil is associated with the current i (t) =
Re
(
Icoile

jωt
)
, therefore, the coil is modeled as a uniform

impressed current density of value Jcoil,φ = nIcoil
Scoil

, where
the cross-sectional area is equal to Scoil = (rext − rint) t. On
the one hand, the coil is placed at the distance df = 1 mm
above the ferrite medium characterized by an extremely high
magnetic permeability modeled by the boundary condition
of perfect magnetic material. On the other hand, the coil is
located at dl = 4 mm below the load material. Solving of fields
involved in the system will be performed in a commercial
tool, in this case, COMSOL®, due to the numerical model
of the IH system can be constructed in a simple way and
incorporates the possibility of using an impedance boundary
condition dependent on the excitation level. The schematic
representation of the geometry is shown in Fig. 7: coil is drawn
in purple, load, air, and ferrite are colored in orange, yellow,
and grey, respectively. Linear IBC is included in the COMSOL
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Fig. 8: Reference equivalent relative permeability µ′
r,eq for

a0 = 560 A/m and Bsat,0 = 2 T.

model providing the relative permeability and conductivity of
the load. The nonlinear IBC can similarly be included by
defining the equivalent relative permeability at each excitation
level H0, as follows:

µr,eq (H0) =
2σ

ωµ0

(
ZNL (H0)

1 + j

)2

. (43)

The real and imaginary components of the reference relative
permeability µ′

r,eq (H
′
0) for a0 = 560 A/m and Bsat,0 = 2T

calculated at f0 = 10kHz and σ0 = 1.12·107 S/m by applying
(43) are depicted in Figure 8. The FEA tool internally obtains
the equivalent permeability for the corresponding configura-
tion by applying the following expression derived from (42)
and (43) :

µr,eq (H0) =
Bsat

Bsat,0

a0
a
µ′
r,eq

(
H0

a0
a

)
, (44)

Therefore, the reference permeability only needs to be calcu-
lated on one occurrence and the corresponding permeability is
derived for each configuration internally by the FEA tool.

The induced voltage in the coil can be obtained in a simple
way from the solution of the fields, according to the expression
Vcoil = −n⟨2πrEφ⟩Scoil

where r is the radial distance to the
axis of the system reference, Eφis the electric field carried out
from the simulation and ⟨⟩Scoil

is the spatial mean operator in
the cross-section area of the coil. The key figure of merit of the
IH system is the complex coil impedance Zcoil = Vcoil/Icoil.
The induced voltage in a non-loaded coil is in quadrature with
respect to the coil current, therefore, at any frequency, the
phase of the coil impedance is 90o. However, the insertion of
linear magnetic and conductive media near the coil produce a
frequency dependence of the phase of the coil impedance, but
the coil impedance remains unchanged under the current level
variation.

The coil impedance, Zcoil, is calculated from frequency-
domain simulations by using ZNL (H0) to model the load. The
performance assessment of the proposed nonlinear impedance
boundary condition will be given by comparison with results
obtained by time-domain simulation. In the first place, the
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Fig. 9: First harmonic impedance IH system with respect to the excitation current at f = 50 kHz for a load of material with
σ = 1.12 · 107 S/m and Bsat = 2 T, varying a (continuous lines: data using ZNL; circular symbols: first harmonic extraction
from time domain simulation).

system fields will be solved using a time-domain simulation
with a Langevin function BH-loop load. From the time de-
pendence of the induced voltage, the first harmonic of the coil
voltage Vcoil,1 is extracted and the coil impedance is derived
from the ratio to the current amplitude Zcoil,1 = Vcoil,1/Icoil.
The main drawback of the time-domain simulation is the
requirement of very fine meshing in the load surface, where
exponential discretization is recommended due to the rapid
variation of the fields. On the contrary, simulation utilizing
the nonlinear IBC ZNL constitutes a cost-effective solution
because no discretization is required for the load, thus, high
computational savings are achieved with this approach.

Fig. 9 shows the comparison between the coil impedance
calculated using the nonlinear boundary condition modeling
the load and the first harmonic coil impedance carried out from
time domain simulation. The data depicted in these figures
corresponds to the variation of the domain wall parameter
a, with constant frequency, load conductivity, and saturation
magnetic field. It can be seen the agreement between the values
of the coil impedance, both amplitude and complex phase,
are quite good considering the approximation taken in the
derivation process. Time-domain results also include higher
harmonic contributions closely related to the saturation of the
material. In any case, the influence of the distortion in the
first harmonic contribution is almost totally included in the
nonlinear IBC estimation.

In Fig. 10 is compared the coil impedance from nonlinear
IBC and time domain first harmonic extraction for different
magnetic field saturation of the material. Based on the data
presented in Fig. 10a, it is evident that the absolute value of
the coil impedance is significantly influenced by the degree
of saturation in the material. Therefore, in induction heating
systems, the saturation level of the material utilized plays a
crucial role in determining the coil impedance. Moreover, as
depicted in Fig. 10b, the complex phase of the coil impedance
also clearly depends on the saturation magnetization of the
material. Fig. 10 shows a good agreement between the results

obtained from the nonlinear boundary condition, validating the
usefulness of this kind of approach to the treatment of eddy
current problems where saturation plays an important role.

V. CONCLUSION

In certain problems related to electromagnetism, the fields
exhibit a rapid decay as they penetrate into specific media.
In such cases, it is advantageous to replace the regions with
rapidly varying fields with a boundary impedance condition,
which simplifies the problem. This approach is effective when
the equations governing the rapidly varying field behavior are
linear. However, the saturation phenomenon can lead to the
appearance of non-harmonic distortion, which might render
this approach unsuitable.

The Langevin function BH-loop holds significant physical
significance in modeling the saturation of magnetic properties
in materials through the anhysteretic Jiles-Atherton model. The
finite difference method has been implemented to obtain the
nonlinear boundary impedance, which balances accuracy and
complexity, for the preceding magnetic properties dependence.
The value of the nonlinear boundary impedance is reliant on
the applied excitation level. Despite the seemingly vast number
of degrees of freedom to describe the characteristics of a
medium with saturation, the nonlinear boundary impedance
values can be obtained from a single curve by applying appro-
priate normalization. Validation of the normalized expression
of the nonlinear boundary impedance has been conducted
through comparison with simulation results in the time do-
main.

The implementation of a nonlinear boundary condition for
electromagnetic systems has the potential to deliver notewor-
thy savings in computational costs. This is due to its ability
to facilitate simulations in the frequency domain, which are
capable of capturing the nonlinear behavior of a load that
has saturated magnetic properties. This approach can offer a
significant advantage in terms of more efficient and accurate
modeling of complex electromagnetic systems.
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