000135332 001__ 135332
000135332 005__ 20240522124406.0
000135332 0247_ $$2doi$$a10.3389/fbioe.2024.1348774
000135332 0248_ $$2sideral$$a138579
000135332 037__ $$aART-2024-138579
000135332 041__ $$aeng
000135332 100__ $$aDahaghin, Ali
000135332 245__ $$aInvestigation of crystalline lens overshooting: ex vivo experiment and optomechanical simulation results
000135332 260__ $$c2024
000135332 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135332 5203_ $$aIntroduction: Crystalline lens overshooting refers to a situation in which the lens momentarily shifts too much from its typical location immediately after stopping the rotational movement of the eye globe. This movement can be observed using an optical technique called Purkinje imaging.Methods: In this work, an experimental setup was designed to reproduce this effect ex vivo using a fresh porcine eye. The sample was rotated 90° around its centroid using a high-velocity rotation stage, and the Purkinje image sequences were recorded, allowing us to quantify the overshooting effect. The numerical part of the study consisted of developing a computational model of the eye, based on the finite element method, that allowed us to understand the biomechanical behavior of the different tissues in this dynamic scenario. A 2D fluid–structure interaction model of the porcine eye globe, considering both the solid parts and humors, was created to reproduce the experimental outcomes.Results: Outputs of the simulation were analyzed using an optical simulation software package to assess whether the mechanical model behaves optically like the real ex vivo eye. The simulation predicted the experimental results by carefully adjusting the mechanical properties of the zonular fibers and the damping factor.Conclusion: This study effectively demonstrates the importance of characterizing the dynamic mechanical properties of the eye tissues to properly comprehend and predict the overshooting effect.
000135332 536__ $$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON
000135332 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000135332 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135332 700__ $$aSalimibani, Milad
000135332 700__ $$aBoszczyk, Agnieszka
000135332 700__ $$aJózwik, Agnieszka
000135332 700__ $$aSkrok, Marta
000135332 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000135332 700__ $$aSiedlecki, Damian
000135332 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000135332 773__ $$g12 (2024), 1348774 [9 pp.]$$pFront. Bioeng. Biotechnol.$$tFrontiers in Bioengineering and Biotechnology$$x2296-4185
000135332 8564_ $$s1874355$$uhttps://zaguan.unizar.es/record/135332/files/texto_completo.pdf$$yVersión publicada
000135332 8564_ $$s2094537$$uhttps://zaguan.unizar.es/record/135332/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135332 909CO $$ooai:zaguan.unizar.es:135332$$particulos$$pdriver
000135332 951__ $$a2024-05-22-10:17:21
000135332 980__ $$aARTICLE