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ABSTRACT

In silico models of biological systems are usually very complex and rely on a large number

of parameters describing physical and biological properties that require validation. As such,
parameter space exploration is an essential component of computational model development

to fully characterize and validate simulation results. Experimental data may also be used to
constrain parameter space (or enable model calibration) to enhance the biological relevance

of model parameters. One widely used computational platform in the mathematical biology
community is PhysiCell, which provides a standardized approach to agent-based models of
biological phenomena at different time and spatial scales. Nonetheless, one limitation of PhysiCell
is the lack of a generalized approach for parameter space exploration and calibration that can be
run without high-performance computing access. Here, we present PhysiCOOL, an open-source
Python library tailored to create standardized calibration and optimization routines for PhysiCell
models.

Subjects Software Engineering, Software and Workflows, Data Integration

STATEMENT OF NEED

Mathematical biology is a field of study that aims to represent biological systems through
the language of mathematics: a set of rules that can be used to test hypotheses and make
predictions [1]. Several types of mathematical models can be employed to simulate
biological systems at varying complexity levels. Agent-based models are among the most
popular implementations to develop models that consider the cellular and sub-cellular
scales. Currently, multiple computational frameworks are available to facilitate the creation
of agent-based models based on previously built templates, making mathematical biology
more accessible to researchers from different backgrounds [2]. Among these platforms,
PhysiCell [3] is an open-source hybrid framework that is able to simulate cells as discrete
agents and model the reaction-diffusion dynamics of the substances present in the
surrounding microenvironment through a continuous approach. Furthermore, recent
add-ons have been developed to introduce new biological processes into the PhysiCell
ecosystem [4-6].
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Despite the recent advances in the development of additional PhysiCell plugins, the new
modules are mostly centred around model extensions. Nevertheless, model exploration can
be as important as model development to validate results and evaluate whether the model
predictions about the underlying biological mechanisms are plausible [7]. Furthermore,
experimental data could be used to provide biological and/or physical constraints on model
parameters to validate whether the model captures the range of expected biological
behaviours [8]. Also, optimization routines could be employed to understand which model
parameters maximize the similarity between the model results and a target dataset.
Subsequently, model developers may consider these optimal solutions to identify which
biological mechanisms captured by the computational model may explain the experimental
data.

We highlight that previous works have developed parameter exploration routines with
PhysiCell, namely DAPT (RRID:SCR_021032) and PhysiCell-EMEWS [9, 10], but these were
specifically designed for high-performance computing (HPC) and distributed systems.
Hence, currently, general PhysiCell users without access to such resources, or whose needs
do not require them, must develop their own scripts to process simulation results and
perform model exploration studies. As well as introducing a barrier to scientific progress
depending on the researchers’ programming knowledge and computing resources, HPC
workflows generally lack the standardization that may enable widespread use in the
mathematical biology community [11]. In addition, DAPT and PhysiCell-EMEWS focus on
parameter exploration and not optimization, and they require some level of expertise in
both Python (RRID:SCR_008394) and PhysiCell.

Taking into account that there is still a need in the PhysiCell community for a
standardized tool that implements calibration and optimization routines, we present
PhysiCOOL, a generalized framework for model calibration and optimization of modelling
projects written in PhysiCell. PhysiCOOL aims to be model agnostic. In other words, models
are treated as a black box that can be executed through Python, making this approach
suitable for several kinds of biological problems. Moreover, our library includes a built-in
multilevel optimization routine for parameter estimation that is constrained by target
output (experimental or otherwise). A visual representation of the new functionalities
added by PhysiCOOL to the PhysiCell ecosystem is shown in Figure 1. We also provide two
practical examples of how PhysiCOOL can be used, showcasing PhysiCOOL’s optimization
routine at two distinct complexity levels. Furthermore, we show how PhysiCOOL black-box
models can be used to couple PhysiCell with other publicly-available Python libraries for
model optimization.

IMPLEMENTATION

PhysiCOOL is a Python library that requires Python version 3.8 or higher. This package was
created to work specifically with PhysiCell models, and it fully supports PhysiCell v1.10.4 or
lower (the most recent version at the time of publication). Furthermore, PhysiCOOL has
been tested extensively and includes unit tests to ensure that its modules are working as
expected and that it can be used on different platforms.

Configuration file parser

As with many computational modelling frameworks, PhysiCell models are initialized with
values stored in a text-based configuration file, namely an Extensible Markup Language
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Contributions and advantages to the PhysiCell ecosystem
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Figure 1. PhysiCOOL’s contributions and advantages to the PhysiCell ecosystem. PhysiCOOL aims to improve the
way researchers design and implement their parameter and calibration studies for models written in PhysiCell. To
this end, PhysiCOOL introduces new functionalities, such as a configuration file parser that updates configuration
files in an error-free and user-friendly manner. PhysiCOOL also enables users to turn models into black-box
models, making the optimization pipeline model-agnostic. In addition, it implements a multilevel parameter
sweep routine to optimize models using some target data. Lastly, PhysiCOOL facilitates the integration of third-
party libraries, which makes PhysiCell more accessible.

(XML) file [3]. Thus, in parameter sweeps and sensitivity analysis studies, it is necessary to
open these files and modify the parameter values to be studied every time a new simulation
is run. This process can be done manually, either by editing the XML file directly or using
GUI tools such as xml2jupyter [12]. However, it becomes unfeasible to repeat this action
several times in large-scale studies. Henceforth, it is crucial to automate this process to run
optimization and calibration workflows. Although it is possible to create Python scripts that
will edit these files automatically with a standard module such as ElementTree [13], doing so
requires users to identify the values to be updated with long strings that reflect the
structure of the XML file, as shown in the code snippet below.

from xml.etree import ElementTree

# Read cell data
file_path = "config/PhysiCell_settings.xml"
tree = ElementTree.parse(file_path)

# Define where to find the motility parameters

stem = "cell_definitions/cell_definition[@name='default']/phenotype/motility"
# Define the name and value of the parameter to be updated

key = "migration_bias"

value = 0.9

# Update the migration_bias wvalue (no wvalidation)
tree.find(f"{stem}/{key}") .text = str(value)

tree.write(file_path)

3/1
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Table 1. Data classes implemented in PhysiCOOL.

Domain X_min/y_min/z_min Lower bound of the domain float -
X_max/y_max/z_max Upper bound of the domain float -
dx/dy/dt Domain voxel length float >0

Substance name Substance name string -
diffusion_coefficient Diffusion coefficient float >0
decay_rate Decay rate float >0
initial_condition Initial conditions for the entire domain float >0

dirichlet_boundary_condition Dirichlet boundary conditions float

Cell death phase_durations Phase duration list list
phase_transition_rates Phase transition rates list list >0

Cell mechanics cell_cell adhesion_strength Adhesion strength

cell_cell_repulsion_strength Repulsion strength float >0
relative_maximum_adhesion_distance Maximum adhesion distance float >0

Here, we aimed to develop a Python class that enables users to read the data from these
configuration files more efficiently, making this process less prone to errors. We
implemented a ConfigurationFileParser class that reads the data from the configuration file
into custom Python objects that follow the expected structure and data requirements
defined in the XML file. A more detailed description of this implementation is presented in
Table 1. Variable types and numerical constraints are validated when new instances of
these data classes are created and when their values are updated. To achieve this, we
implemented our classes using Pydantic [14], which improves data validation in Python.
The task described in the code snippet presented previously can be implemented in a more
user-friendly way with PhysiCOOL, as shown below:

from physicool.config import ConfigFileParser

# Read cell data into custom Python objects
file_path = "config/PhysiCell_settings.xml"
parser = ConfigFileParser(file_path)

cell_data = parser.read_cell_data(name="default")

# Update the migration_bias value (values will be validated before writing)
cell_data.motility.migration_bias = 0.9
parser.write_cell_params(cell_data)

Black-box models
In complex and large computational models, it may be challenging or even impossible to
estimate the model outputs analytically. Consequently, it is common to conduct calibration
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and optimization studies by running several simulations and performing sensitivity
analysis studies to identify how model outputs change in response to different input
parameter values. This process is recognized as simulation-based optimization or black-box
optimization [15]. PhysiCell models are written in C++ and have to be compiled to produce
an executable file that can be run to produce simulation results. In order to test and
characterize the response of these models, it is generally necessary to conduct three tasks:

(i) Update the PhysiCell configuration file with input parameter values;
(i) Run the PhysiCell model;
(iii) Read the model outputs and compute a desired output metric.

These tasks can be performed manually. Nonetheless, it is not feasible or productive to
do so in large computational studies, specifically when trying to characterize the model
response to a large number of input parameter values that can be inside a wide range and
require multiple simulation runs. Hence, PhysiCOOL allows users to create black-box
models using the PhysiCellBlackBox class and automatically perform the aforementioned
tasks through Python.

These black-box models are modular in that the users can select what functions to use to
update the configuration file (i) and process the results (iii). For instance, users can decide
to change the cells’ motility parameters and evaluate the effect on the distance travelled by
cells over time. Alternatively, the cell cycling rates could be varied to analyze the evolution
of the number of cells. Furthermore, (i) and (iii) do not have to be defined in the black-box
model. In fact, users can also create black-box models composed only of the PhysiCell
executable and use our approach to run multiple simulation replicates.

PhysiCOOL offers some built-in data quantification methods that can be used to extract
and process data in step (iii). For example, functions are provided to obtain the final
number of cells in a simulation, the final cell coordinates, and the concentration of a given
substance over the simulation domain. Furthermore, these methods can be employed by
users to process simulation results and generate 2D and 3D plots of the cells and the
microenvironment.

Multilevel parameter sweeps
Parameter optimization studies require the definition of a search space, which defines the
range of the parameter values that will be studied. There are multiple approaches to
defining this space and how to explore it. For example, random search algorithms can be
employed to randomly sample points within a defined bounded parameter space.
Alternatively, a grid search, while a more computationally expensive option, systematically
samples every point within a defined parameter grid space providing a more
comprehensive overview of the model’s response than that offered by a random search.
Grid-based approaches have advantages for stochastic frameworks such as PhysiCell, as
gradient-based approaches may struggle to accurately calculate the gradient and change
the parameter set to minimize the error between the model and the target data.
PhysiCOOL implements a multilevel parameter sweep class (MultiLevelSweep) that is
aimed at identifying the parameters that best fit a target dataset through a grid search. In
this example, the parameter sweep considers two PhysiCell parameters for which the user
should provide initial values. At each level, MultiLevelSweep creates a search grid based on
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Table 2. Parameter values used in the multilevel optimization examples.

Example Initial point Points per Percentage Levels Estimated Target point
direction per direction point
Logistic growth  (0.15, 1000.0) 8 50% 7 (0.10, 994.7) (0.10, 1000.0)
Chemotaxis (2.5,0.7) 5 30% 4 (1.7, 0.8) (2.0, 0.9)

these two values, the number of points per direction and the percentage per direction.
These values should be configured by the user and optimized for a given problem.
Furthermore, the number of levels and grid spacing parameters are related to the precision
and sensitivity of each model parameter. That is, for less sensitivity or less precise models, a
single-level coarse grid search may suffice. However, for parameters that require a high
level of precision and significantly affect the model outcomes, multiple levels may be
beneficial.

The results for each simulation are compared to the target data, and the error between
both datasets is computed and stored. At the end of the level, the parameters that provide
the minimum error value are selected as the centre of the parameter exploration grid for
the next level, and the parameter bounds are updated accordingly.

EXAMPLES

Simple model of logistic growth

The first example was implemented to calibrate two parameters of a simple model of
logistic growth based on target data that defines a generated growth curve. Therefore, it
serves as an introduction to this PhysiCOOL feature, as users are able to fully understand
the behaviour of this simple model. It must be remarked that this model was not
implemented in PhysiCell. We modelled the number of agents in a population, N, over a
period of time ¢ through a logistic function given by Equation (1):

KN,

N(t) = Ny + (K — Ng) exp(—rt)

D

where K represents the carrying capacity, i.e., the maximum population size, N, represents
the number of initial agents and r is the proliferation rate. In this study, we fixed the initial
number of agents and evaluated how the carrying capacity and the proliferation rate
regulated the growth curve of a population. An example of two growth curves obtained for
different model parameters is shown in Figure 2(a).

We generated some target data using this model (X =1000, r =0.1) and, subsequently, we
used PhysiCOOL’s multilevel sweep algorithm to evaluate if we could estimate these model
parameters based on their resulting growth curve. To do so, we first created a search grid
based on a set of user-defined values: an initial estimate for both parameters, the number
of points to search in each direction of the search grid, the percentage to vary in each
direction and the number of levels to search. These values can be found in Table 2.

Figure 2(b) shows the error between the target and simulated datasets for every cell of
the parameter space after one level of the multilevel search. At this point, a new point
estimate was calculated based on the parameter values that minimized the error between
the two datasets. Likewise, the parameter space was adjusted to the area of interest and the
process was repeated in the new parameter grid. This process was repeated for each level
of the search and the results are shown in Figure 2(c).

n
[FGI é\l’ENa . — 6/11


https://doi.org/10.46471/gigabyte.77

(GIGA)bYte

Gigabyte, 2023, DOI: 10.46471/gigabyte.77

L G. Gongalves et al.

@ r=0.1,K=1000 r=0.2,K=1000 r=0.1,K=2000 r=0.2,K=2000
2 2000 e0oe@ e®000oe
(] °
O o °
bS]
5 1000 PR e®00000e ®
a °
£ ° ° e ®
=1 o [ ]
=z 02 - . : + : = :
0 50 0 50 0 50 0 50
Time (Days) Time (Days) Time (Days) Time (Days)
IE‘ Objective function
1500.0 1le6
3.0
1357.1429
2 1214.2857 2.5
® 0.22
2 10714286 % 0.20 2.0
o —-
= = 018
£ 9285714 2 0.16 15
g ® 0.14 !
8 s £ o012
5 o010 |, 1.0
642.8571 & 0.08
0.5
500.0
o x o > A © o
°§\ o&u Q‘é\ e’yn b?’be . _\9’0’ h’y@ &1 0.0

Proliferation rate

Figure 2. Model and optimization results for the logistic growth example. (a) Growth curves obtained for different
parameter sets (carrying capacity, K, and proliferation rate, r). (b) Optimization results after the completion of the
first level of the multilevel optimization algorithm. The heatmap shows the difference, as given by the summed
squared error, between the target data and the data produced by each cell’s input parameters. (c) Optimization

results after seven levels of the multilevel optimization algorithm. Results converged to the parameters that
originated the target data.

PhysiCell chemotaxis model

The second example can be classified as a more complex problem since it was developed to
calibrate a chemotaxis model written in PhysiCell. In this modelling framework, the cells’
chemotactic response, i.e., the ability to migrate along a substance gradient, is dictated by a
bias value defined between 0 and 1 [3]. When cells have a migration bias of 0, they move in
a random walk. Conversely, if the value is set to 1, cells follow the substance gradient in a
deterministic manner. Therefore, we developed a model to estimate the cells’ speed and
migration bias in response to an oxygen gradient based on their travelled distances.

We implemented a 2D simulation with an oxygen source on one of the domain walls, as
defined by the model’s boundary conditions, and a group of cells placed on the opposite
wall, as shown in Figure 3(a). We expected that the cells’ final position would be modulated
by the cells’ sensitivity to the oxygen chemotactic gradient. On the one hand, if a cell
population had low sensitivity and, thus, moved randomly, they would likely remain close
to their initial position as they would move around without following any specific direction.
On the other hand, cells that followed oxygen would move towards the opposite wall, as
seen in Figure 3(b).

We generated some target data by running a simulation with a migration bias of 0.9 and
a speed value of 2.0 ym/min and storing the final y coordinates of the cells. Subsequently,
we ran our multilevel sweep pipeline to evaluate whether we could estimate the parameter
values that originated this data with a set of initial points different from the target
parameter values. The results of this study are shown in Figure 3(c).
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Figure 3. Model and optimization results for the chemotaxis example. (a) Initial model configuration design. Cells
(represented as grey circles) were placed close to a domain wall and an oxygen source (represented by the blue
arrows) was simulated on the opposite wall, creating a chemotactic gradient that cells could follow. This gradient is
illustrated by the colour gradient shown in the figure. (b) Expected model results for cells with different migration
bias values. High migration bias populations were expected to migrate in a deterministic manner and follow the
oxygen gradient, crossing the domain and arriving at the opposite wall. Cell trajectories are shown as grey dashed
lines. On the other hand, cells with low migration bias were expected to move randomly and, thus, present low
net displacement values. (c) Optimization results after four levels of the multilevel optimization algorithm. Results
converged to the parameters that originated the target data. The colourmap was updated for each level, describing
the minimum and maximum error values at the current level.

Connecting to third-party libraries

PhysiCOOL makes it possible for users to turn their PhysiCell models into black-box models
that receive some input parameters and return an output metric. Hence, it is
straightforward to couple them with third-party Python libraries that accept this kind of
model. For example, psweep [16] is a Python library developed to run parameter studies
and save the input parameter values and the returned output metrics into a database. Users
must define a set of parameters and, for each of the defined values, psweep will (i) run a
given user-defined function that takes these parameters as input and (ii) save the input and
output values returned by this function into the database. Therefore, a PhysiCOOL
black-box model could seamlessly be integrated into step (i).

In addition, more sophisticated libraries could be considered to perform advanced
optimization studies, such as Approximate Bayesian Computation (ABC) and Bayesian
Optimization for Likelihood-Free Inference (BOLFI), to sample parameter spaces in a more
efficient manner [17-19]. Henceforth, although PhysiCOOL offers built-in optimization
routines, it can be used in a modular way to take advantage of other libraries that may be
more appropriate to a certain study or type of research, without the need to implement
these optimization algorithms from scratch.

FUTURE DIRECTIONS

At its current state of development, we believe that PhysiCOOL already improves PhysiCell’s
accessibility as it provides an intuitive interface to run studies in Python, which is more
popular among biology researchers than C++, in which PhysiCell was originally written.
Additionally, this standardized approach provides a straightforward workflow for
integrating target data (defined from simulations or biological observations) to constrain
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the parameter space for agent-based models. In the future, new features can be added to
PhysiCOOL, such as the ability to generate non-linear parameter spaces, stopping criteria
based on iteration or tolerance for the multilevel sweep and employing alternative
optimization algorithms. Although future iterations of this library may include different
optimization approaches, its modular design assures that advanced users are still able to
build pipelines that suit their needs.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
* Project name: PhysiCOOL
* Project home page: https://github.com/IGGoncalves/PhysiCOOL
* Operating system(s): Platform independent
¢ Programming language: Python
* Other requirements: Python >=3.8, PhysiCell <=1.10.4
* License: BSD 3-clause license
* RRID:SCR_023305.

All the examples presented here (logistic growth, chemotaxis and connecting to
third-party libraries) can be run online through interactive Jupyter Notebooks found in
https://gitpod.io/#https://github.com/IGGoncalves/PhysiCOOL (see the examples folder for
more information). Documentation and further information on PhysiCOOL can be found on
ReadTheDocs (https://physicool.readthedocs.io/en/latest). Users may seek help, report issues
and suggest improvements through the GitHub issues page of the PhysiCOOL repository.

DATA AVAILABILITY
Snapshots of the code and data are available in the GigaDB repository [20].
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