Image-based biomarkers for engineering neuroblastoma patient-specific computational models
Financiación H2020 / H2020 Funds
Resumen: Childhood cancer is a devastating disease that requires continued research and improved treatment options to increase survival rates and quality of life for those affected. The response to cancer treatment can vary significantly among patients, highlighting the need for a deeper understanding of the underlying mechanisms involved in tumour growth and recovery to improve diagnostic and treatment strategies. Patient-specific models have emerged as a promising alternative to tackle the challenges in tumour mechanics through individualised simulation. In this study, we present a methodology to develop subject-specific tumour models, which incorporate the initial distribution of cell density, tumour vasculature, and tumour geometry obtained from clinical MRI imaging data. Tumour mechanics is simulated through the Finite Element method, coupling the dynamics of tumour growth and remodelling and the mechano-transport of oxygen and chemotherapy. These models enable a new application of tumour mechanics, namely predicting changes in tumour size and shape resulting from chemotherapeutic interventions for individual patients. Although the specific context of application in this work is neuroblastoma, the proposed methodologies can be extended to other solid tumours. Given the difficulty for treating paediatric solid tumours like neuroblastoma, this work includes two patients with different prognosis, who received chemotherapy treatment. The results obtained from the simulation are compared with the actual tumour size and shape from patients. Overall, the simulations provided clinically useful information to evaluate the effectiveness of the chemotherapy treatment in each case. These results suggest that the biomechanical model could be a valuable tool for personalised medicine in solid tumours.
Idioma: Inglés
DOI: 10.1007/s00366-024-01964-6
Año: 2024
Publicado en: ENGINEERING WITH COMPUTERS (2024), [17 pp.]
ISSN: 0177-0667

Financiación: info:eu-repo/grantAgreement/ES/DGA/2019-23
Financiación: info:eu-repo/grantAgreement/EC/H2020/826494/EU/PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers/PRIMAGE
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU18/04541
Financiación: info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2021-122409OB-C21
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-05-22-10:17:56)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-05-22, última modificación el 2024-05-22


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)