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Moi, j’ai trahi la musique respectable pour la musique concrète, et le violoncelle de
mon enfance pour le magnétophone et pour le potentiomètre. [. . . ]
Nous autres dans nos studios avec nos armes automatiques, multipliant d’un coup
de pouce le nombre des exécutants, gonflant le volume des orchestres, nous trichons.

Me, I have betrayed respectable music for practical music, and the cello of my
childhood for the tape recorder and for the potentiometer. [. . .]
The rest of us in our studios, with our automatic weapons, multiplying the number
of performers with a flick, swelling up entire orchestras, we cheat. (translated)

Yo, he traicionado a la música respetable para la música concreta, y al violonchelo
de mi infancia para el magnetófono y para el potenciómetro. [. . .]
Nosotros en nuestros estudios, con nuestras armas automáticas, multiplicando los
intérpretes con una toba, hinchando las orquestas, hacemos trampas. (traducido)

— Pierre Schaeffer
La leçon de musique
De la musique concrète à la musique même, 1979

https://fresques.ina.fr/artsonores/fiche-media/InaGrm00212/pierre-schaeffer-la-lecon-de-musique.html
https://fresques.ina.fr/artsonores/fiche-media/InaGrm00212/pierre-schaeffer-la-lecon-de-musique.html


ABSTRACTS

Abstract (in English)

We study knotted codimension-two objects in manifolds of dimension 3 and 4: complex line
arrangements in CP2 and links in S3. We introduce new topological invariants of their embedding,
derived from the interaction between their complement and their peripheral structure.

The motivation for line arrangements is to identify Zariski pairs which have the same
combinatorics but different embeddings. Building on ideas developed by B. Guerville-Ballé and
W. Cadiegan-Schlieper, we consider the inclusion map of boundary manifold to the exterior
and its effect on homology classes. A careful study of the graph Waldhausen structure of the
boundary manifold allows to identify specific generators of the homology. Their potential images
are encoded in a group, the graph stabiliser, with a nice combinatorial presentation. The invariant
related to the inclusion map is an element of this group. Using a computer implementation in
Sage and the braid monodromy, we compute the invariant for some examples and exhibit new
ordered Zariski pairs.

The second part concerns knot theory and a generalisation of a slope invariant developed by
A. Degtyarev, V. Florens and A.G. Lecuona. Similarly to the context of line arrangements, we
consider the inclusion map of the boundary components of a neighbourhood of a link in its exterior.
On twisted homology, the kernel of this map is a Lagrangian subspace – for the intersection
form – and its slopes provide a topological invariant of the link. We present two applications of
this idea. In the first, developed in collaboration with L. Bénard, we consider knots and SL2(C)
representations. This new slope invariant appears to be closely related to a higher-level invariant
called the A-polynomial. The second application uses a Lagrangian characterisation method due
to V. Arnol’d. It provides a concordance invariant with several relations to Sato-Levine invariant
and Milnor linking numbers.
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ABSTRACTS iv

Resumen (en castellano)

Estudiamos objetos anudados de codimensión dos en variedades de dimensión 3 y 4: configuraciones
de rectas complejas en CP2 y enlaces en S3. Introducimos nuevos invariantes topológicos de su
encaje, que provienen de la interacción entre el complementario y su estructura periférica.

La motivación para las configuraciones de rectas es identificar pares de Zariski que tienen la
misma combinatoria pero diferentes encajes. Basándonos en las ideas desarrolladas por B. Guerville-
Ballé y W. Cadiegan-Schlieper, consideramos el mapa de inclusión de la variedad límite hacia
el exterior y su efecto sobre las clases de homología. Un estudio cuidadoso de la estructura de
grafo de Waldhausen de la variedad del borde permite identificar generadores específicos de la
homología. Sus imágenes potenciales están codificadas en un grupo, el estabilizador del grafo, con
una elegante presentación combinatoria. El invariante relacionado con la inclusión es un elemento
de este grupo. Utilizando una implementación informática en Sagemath y la monodromía de
trenzas, calculamos el invariante para algunos ejemplos y encontramos nuevos pares ordenados de
Zariski.

La segunda parte se refiere a la teoría de nudos y una generalización de un invariante llamado
pendiente («slope») desarrollado por A. Degtyarev, V. Florens y A.G. Lecuona. De manera similar
al contexto de configuraciones de rectas, consideramos la inclusión de los componentes del borde
de un entorno de un enlace en su exterior. En homología torcida, el núcleo de esta aplicación
es un subespacio lagrangiano –para la forma de intersección– y sus pendientes proporcionan
un invariante topológico del enlace. Presentamos dos aplicaciones de esta idea. En el primero,
desarrollado en colaboración con L. Bénard, consideramos nudos y representaciones SL2(C).
Este nuevo invariante de pendiente parece estar estrechamente relacionado con un invariante de
nivel superior llamada polinomio A. La segunda aplicación utiliza un método de caracterización
lagrangiano debido a V. Arnol’d. Proporciona un invariante de concordancia con varias relaciones
con el invariante de Sato-Levine y los números de enlace de Milnor.
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Résumé (en français)

On étudie des objets noués de codimension 2 dans des variétés de dimension 3 et 4 : des
arrangements de droites complexes dans CP2 et des entrelacs dans S3. On introduit de nouveaux
invariants topologiques de leurs plongements, dérivés des interactions entre leur complémentaire
et leur structure périphérique.

La motivation concernant les arrangements de droites est d’identifier des paires de Zariski qui
ont la même combinatoire mais des plongements différents. En utilisant des idées développées par
B. Guerville-Ballé et W. Cadiegan-Schlieper, on considère l’application inclusion de la variété bord
dans l’extérieur et son effet sur les classes d’homologie. Une étude approfondie de la structure
graphée de Waldhausen de la variété bord permet d’identifier des générateurs spécifiques de son
homologie. L’information de leurs images potentielles est collectée dans un groupe, le stabilisateur
du graphe, qui a une présentation combinatoire simple. On utilise une implémentation en Sage et
la monodromie de tresses pour calculer l’invariant dans certains exemples et produire de nouvelles
paires de Zariski ordonnées.

La seconde partie est consacrée à la théorie des nœuds et à une généralisation d’un invariant
de pente (« slope ») développé par A. Degtyarev, V. Florens et A.G. Lecuona. Similairement
aux arrangements de droites, on considère l’application inclusion des composantes de bord d’un
voisinage de l’entrelacs dans l’extérieur. Au niveau de l’homologie tordue, le noyau de cette
application est un sous-espace Lagrangien – pour la forme d’intersection – et sa pente est un
invariant topologique de l’entrelacs. On présente deux applications de cette construction. Dans la
première, en collaboration avec L. Bénard, on considère le cas des nœuds et des representations
dans SL2(C). L’invariant slope obtenu est étroitement relié à un invariant de haut niveau, le A-
polynôme. La seconde application utilise une caractérisation des sous-espaces lagrangiens due à
V. Arnol’d. On construit un invariant de concordance qui a de nombreux liens avec l’invariant de
Sato-Levine et les enlacements de Milnor.
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INTRODUCTION

Peripheral structures in codimension 2

The subject of this thesis is to study certain families of curves of co-dimension 2. The works of
Smale [Sma62] and Milnor [Mil65] made it possible to determine an algebraic classification of
smooth manifolds in dimension ≥ 5. However, the study of smooth manifolds in dimension 3
and 4 is still a very active domain which involves a wide variety of tools from algebraic topology
and geometry. In our work we notably make use of the fundamental group, several types of
(co-)homology, intersections and mapping class groups. Graphs and related combinatorial methods
also make a significant contribution.

Consider a manifold M of dimension 3 or 4 with boundary. In the cases we study this manifold
will be the complement of a regular neighbourhood of certain curves of co-dimension 2. Our
approach is to study the inclusion

i : ∂M ↪−→M

In several situations the boundary has a much simpler structure than the manifold itself. Yet this
inclusion and its induced morphisms still contain significant topological information. We consider
several types of algebraic topology structures for the induced morphisms, mainly the fundamental
group π1(M), the homology group H1(M,Z) and the twisted homology group H1(M ; ρ) with
respect to a representation ρ : π1(M)→ GL(V ) of the fundamental group over a vector space V .
This last structure, also called homology with local coefficients, computes homological groups
which have the structure of vector spaces. General construction of twisted homology is detailed for
example in [Hat02], and more specialised results used in our work are presented in Appendix A.

We apply this approach to the complements of two families of curves: singular plane algebraic
curves embedded in CP2, in dimension 4, and knots and links embedded in S3, in dimension 3.

Topology of line arrangements

Generalities
A plane algebraic curve C is the zero locus of a complex homogenous polynomial. The topological
study of these curves was initiated by O. Zariski which considered them as branch curves of
algebraic functions. He showed that all such smooth curves of a given degree are isotopic [Zar29],
which enticed to focus on curves with singularities. The combinatorics of the curve is the
topological type of the pair (C, NC) where NC is a tubular neighbourhood of C. These data is
determined by the topological type of the singularities and the incidence relations between the
components. Following the works of O. Zariski [Zar31; Zar37] and E. van Kampen [Kam33]
it is known that there exist pairs of curves C1, C2 with the same combinatorics but different
embeddings in CP2, which were dubbed Zariski pairs by E. Artal in [Art94].

Line arrangements are finite collections of complex lines in CP2 that is, curves whose defining
polynomial has irreducible factors of degree 1. They form a subclass of plane algebraic curves
whose combinatorics depends only on the incidence relations, which can be encoded in a graph
called the incidence graph. The components of a line arrangement A are non-singular and the
singularities are all pairwise transverse intersections. For all these reasons the study of line
arrangements provides a favourable setting to create topological methods and invariants that

1



INTRODUCTION 2

could then be extended to algebraic curves in general. It also offers some interesting questions in
itself. The first potential Zariski pair of line arrangements was discovered by G. Rybnikov [Ryb11].
It was definitively confirmed as a Zariski pair by E. Artal, J. Carmona, J.I. Cogolludo and
M.Á. Marco in [Art+06]. They considered the complement of A and proved that the two
complements of the pair have non-homeomorphic fundamental groups. This showed that the
combinatorics does not determine the topological type of a curve even in the simplest case of
line arrangements. The same team also found a Zariski pair of arithmetic complexified real
arrangements in [Art+05]. The search for more Zariski pairs and a finer comprehension of the
relationship between combinatorics and topology of curves and line arrangements has been a
very active topic since the 2000s. S. Nazir, M. Yoshinaga [NY12] and F. Ye [Ye13] have shown
that no Zariski pairs exist for line arrangements with less than 10 lines. Many new Zariski pairs
have been found since thanks to the works of B. Guerville-Ballé [Gue16] and J. Viu Sos [GV19].
Readers can refer to [ACT08; Gue22] for a more detailed review of the subject.

Review of common invariants
A wide variety of common invariants from algebraic topology have been applied to the study
of line arrangements and Zariski pairs. E. van Kampen [Kam33] gave a method to compute
a presentation of the fundamental group of the exterior of an algebraic curve, now called the
Zariski-van Kampen method. Direct comparison of fundamental groups can sometimes give a
Zariski pair, as for the original example of G. Rybnikov. However, there are known examples
of Zariski pairs where the fundamental groups of the complements are isomorphic (see [Shi09;
Shi19; ACM19a; Gue20]) and it has since then be shown that not even the characteristic varieties
determine the topology of line arrangements in general, including for complexified arrangement
drawn in RP2.

The Zariski-van Kampen method makes use of a construction called braid monodromy,
introduced by O. Chisini in [Chi33], which encodes as a braid the relative position of each
component of the curve in the vicinity of each singularity. This approach was refined by
B. Moishezon in [Moi81] and for the specific case of real line arrangements by M. Salvetti [Sal88].
A. Libgober [Lib86] has shown that the braid monodromy does determine the homotopy type of
a line arrangement, and J. Carmona [Car03] has extended it to the topological type (see also
[ACC03]). The braid monodromy has appeared to be a slightly more effective invariant than the
fundamental group and more Zariski pairs have been obtained using it, see [ACT08] for a survey.

Homology inclusion invariants
As we mentioned earlier, another approach to build invariants of line arrangements is to focus
on the boundary manifold BA := ∂EA of the exterior EA of the arrangement, defined as the
complement of a tubular neighbourhood of A. T. Jiang, S. S.-T. Yau [JY93] and E. Westlund
[Wes97] have shown that BA has the structure of a graph manifold as defined by F. Waldhausen
[Wal67a; Wal67b] and W. Neumann [Neu81]. The topology of BA is directly determined by
the combinatorics CA of the line arrangement A, encoded in the form of a graph ΓA. This
graph provides a ‘blueprint’ to reconstruct BA by gluing together circle bundles (Seifert pieces)
corresponding to the boundary of local neighbourhoods around each line component and singularity
of A. Our own interest lies in the study of the inclusion

i : BA ↪−→ EA

which still contains topological information on the exterior EA. This approach was first taken
by E. Hironaka [Hir01] on the fundamental groups of complexified real line arrangements, and
then continued by E. Artal, V. Florens, B. Guerville-Ballé and M.Á. Marco in [FGM15; AFG17].
They initiated the study of the induced morphism

i∗ : H1(BA,C) −→ H1(EA,C)

The group H1(BA,C) has two types of generators: the meridians of the line components, and
generators arising from the cycles of the graph ΓA (see Theorem 1.5.16). The main difficulty lies
in the ambiguity of defining the set of cycle generators. In other words the map

H1(ΓA) H1(BA,C) H1(EA,C)
γ∗ i∗ (G)
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depends on the choice of the embedding

γ : ΓA ↪−→ BA

The cycle generators form a freely generated subgroup of H1(BA,C), yet their images are sums
of the meridians in H1(EA,C). The composition i∗ ◦ γ∗ contains information from both the
combinatorics, through the graph itself, and from the topology of the line arrangement A, through
the closure of the cycles by homological discs in the exterior. A proper definition of γ where the
combinatorial dependence is precisely determined is the key to access only the topological part of
the information.

The approach to this problem in [FGM15; AFG17] is to consider characters of the fundamental
group π1(EA). They introduce inner cyclic triplets (C,ω, c) where C is a combinatorics, ω
is a character and c ∈ H1(ΓA) is a cycle of the graph such that ω is trivial on all meridian
generators of H1(BA) along c. This allows to define a local embedding γ such that ω ◦ i∗ ◦ γ∗
is a topological invariant on all neighbour cycles of c. The restriction of ω ◦ i∗ on these cycles
constitutes the I-invariant. It successfully detects known Zariski pairs [AFG17] as well as a new
Zariski quadruplet [Gue16].

The main downside of the I-invariant is that it can only be applied to certain combinatorics
because it does not provide a complete description of i∗ ◦ γ∗. A more algebraic approach of
the problem is taken by W. Cadegan-Schlieper in his Ph.D. thesis [Cad18] to generalise the
I-invariant. The loop-linking number gives the images by i∗ of all cycle generators of H1(BA,C)
using an embedding γ that respects a list of combinatorial conditions on the graph ΓA, based
on a construction due to P. Orlik and L. Solomon [OS80]. These conditions depend only on the
ordered combinatorics. B. Guerville-Ballé [Gue22] has successfully used the loop-linking number
to obtain more Zariski pairs with non-isomorphic fundamental groups.

Our work presents a new generalisation of these ideas. Our new approach is to completely
determine the combinatorial dependence of the values of the map i∗ ◦ γ∗ in Eq. (G). We use a new
construction of graphed embeddings which fully exploits the ordered graph manifold structure
of the boundary BA. We deduce from this a new set of relations that completely accounts for
the differences in values caused by a combinatorial change of generators. Inside the quotient, i∗
becomes a topological invariant on any ordered line arrangement, which we call the homology
inclusion.

Summary of Part I

Chapter 1 is dedicated to the combinatorial study of the boundary manifold BA and our new
class of graphed embeddings.

After some preliminaries in Section 1.1, we present in Section 1.2 the ordered stars which are
the ‘elementary bricks’ used to build the embeddings. In Section 1.3 we recall the structure of a
graph manifold M as a union of circle bundles Si joined by a set of tori Θ along a graph Γ. The
fundamental property of graph manifolds is the unicity of the minimal graph structure:
Theorem A ([Wal67b, Satz 8.1]). Let M and N be two graph manifolds with respective minimal
graph structures ΘM and ΘN . Let Φ :M → N be a homeomorphism. Then, if M and N do not
belong to one of the exceptional cases, Φ is isotopic to a homeomorphism Ψ :M → N such that
Ψ(ΘM ) = Ψ (ΘN ). ◁

As a consequence we consider strongly positive graphed homeomorphisms (see Definitions 1.3.22
and 1.3.23) which respect the graph structure and the local orientation of each Seifert piece.
Definition 1.3.20 introduce the crucial concept of the graph ordering Ω which is the data of local
orders ωi around each vertex, used for the ordered stars. We can then define ordered graphed
embeddings in Section 1.4 as the reunion of a set of ordered stars, one for each Seifert piece Si,
respecting the local order.
Theorem B. Let M be a graphed manifold ordered whose graph Γ is ordered by Ω. There is a
well-defined action of the group of strongly positive homeomorphism on the set of ordered graphed
embeddings. This action is transitive. ◁

In Section 1.5 we explain how the choice of an ordered graphed embedding determines the
cycle generators of π1(M) and H1(M) in Theorems 1.5.9 and 1.5.16.
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We then present in Section 1.6 the main construction of Chapter 1, the graph stabiliser. The
topological map i∗ ◦ γ∗ of Eq. (G) lies in the group

H := Hom(H1(ΓA), H1(EA))

which is combinatorially determined, see Proposition 2.4.22. The graph stabiliser GΓ is the
quotient of H by the differences on the cycle generators between every two ordered graphed
embeddings, see Definition 1.6.1. Using Theorems A and B, we can reduce the computation
of this difference down to the ordered stars, and thus give in Theorem 1.6.11 a combinatorial
presentation of the graph stabiliser.

Chapter 2 uses the graph stabiliser to define the homology inclusion as an invariant of ordered
line arrangements.

We start by recalling the basic definitions of line arrangements in Section 2.1, and combinatorics
based on incidence data in Section 2.2, where we also list the exceptional cases that we do not
consider. In Section 2.3 we give the description of the minimal graph structure of the boundary
manifold BA and of the circle bundles that compose it (see Theorems 2.3.15 and 2.3.17), using
the blow-up operation to resolve the singularities. Section 2.4 presents the main tools used to
characterise the topological type the exterior manifold and its fundamental group, namely the
wiring diagram and the braid monodromy. It is this last tool that we use as the primary invariant
to get the topological information of the arrangements.

Section 2.5 collects all previous results to establish the invariance of the homology inclusion.
By construction of the graph stabiliser, the class of the map i∗A′ ◦ γ∗ does not depend on the
choice of the ordered graphed embedding. Every combinatorial contribution has been accounted
for by the quotient, so we get:
Theorem C. Let A,A′ ⊂ CP2 be two non-exceptional line arrangements with the same combin-
atorics. Endow A and A′ with the same ordering on their set of lines, which induces a graph
ordering on the minimal graph structure. If the ordered arrangements A and A′ are topologically
equivalent then for every ordered graphed embedding γ we have |i∗A ◦ γ∗| = |i∗A′ ◦ γ∗| inside the
graph stabiliser GΓ. ◁

Chapter 3 explains the method to compute the homology inclusion. As mentioned before, in
Section 3.1 we use the braid monodromy to construct a geometrical standard ordered graphed
embedding γB. The values of the map |i∗A ◦ γ∗B| are then determined by an algorithmic computation
on the braids of the monodromy called the braid linking, which we present in Section 3.2. Technical
details of the braid monodromy processing and computation algorithms implemented in Sage
[Sag23] are dealt with in Section 3.3. In particular, Section 3.3.3 gives several examples of known
and new Zariski tuples detected by the homology inclusion.

Link slopes and concordance

General context

A link is an embedding of disjoint polygonal curves inside S3. The Lickorish-Wallace theorem
allows to connect the study of oriented closed manifolds of dimension 3 to the study of knots
and links. The concordance relation is a natural extension of link equivalence in dimension 4
which was designed by R. Fox and J. Milnor [Fox62]. Two links are concordant if they co-bound
a set of properly embedded disjoint cylinders in S4, and a link is slice if it is concordant to the
unlink. This relation creates a natural connection between link theory and the study of surfaces
embedded in S4.

The character slope
The slope invariant was developed by A. Degtyarev, V. Florens and A.G. Lecuona in [DFL22b]
and later refined in [DFL21; DFL22a]. It appeared as an invariant of its own during a study of
the signature of the intersection form on the exterior of coloured links, and has been applied in
this context. As we mentioned in the general introduction, its construction is based on the fact
that the boundary of the exterior of the link ML is merely a union of disjoint tori.

∂ML =

n⊔
i=1

TLi

https://www.sagemath.org/
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Applying the strategy similar as what we presented for line arrangements, they considered the
induced application of the inclusion i : ∂ML ↪→ML in twisted homology :

i∗ : H1(∂ML; ρ) −→ H1(ML; ρ)

where ρ is a representation of the fundamental group. It turns out that the twisted homology of
the boundary is a vector space entirely determined by the image of the chosen representation on
the peripheral structure of the link, namely its meridians and longitudes. With a one-dimensional
character ω : π1(ML) → C∗, the dimension of H1(∂ML;ω) is a multiple of the number of
non-trivial values of ω. Therefore by imposing ω to be trivial on a single component K called
distinguished, they obtained:
Theorem D. Let ω be an admissible character and suppose that dimker i∗ = 1. Then ker i∗ is
generated by a vector of H1(∂MK∪L;ω) of the form

ker i∗ = ⟨a · ℓ+ b ·m⟩

with [a : b] ∈ CP1. The (K/L)-slope is defined by the formula

s(K/L)(ω) := −
b

a
∈ C ∪ {∞} ◁

The slope is a rational function in the values of the character and has several interesting
properties, some of which are recalled in Chapter 4. In particular it does not depend on the
fitting ideals of the homology group and it is a concordance invariant.

In fact the character slope generalises the single-variable η-function developed by S. Kojima
and M. Yamasaki [KY79] and the invariant developed by N. Sato and J. Levine [Sat84]. The
η-function can be seen as a generating function of the β-invariants of T. Cochran [Coc85]. These
are in turn [Coc90] linked to certain lifts of the linking numbers of J. Milnor [Mil54].

Our objective is to generalise the main idea of the first slope, which we now call the character
slope, to other contexts. We present two such extensions. The first, the SL2(C)-slope, was
developed in collaboration with L. Bénard. It allows to define a slope on knots using adjoint
representations over SL2(C). The second extension, the generalised slope, uses complexified
representations in SO2(R) and a method due to V. Arnold [Arn67] to allow more than one
component of the link to be distinguished.

Summary of Part II

Chapter 4 gives a quick presentation of the character slope and its main properties to establish
the reference for the generalisations. Section 4.1 makes a quick overview of basic knot and link
theory definitions. Section 4.2 gives the main Definition 4.2.4 of the character slope. Some results
use new more general proofs detailed in Appendix A, notably Theorem 4.2.10 which establishes
the concordance invariance. Section 4.2 explains how to compute the slope using Fox calculus
[Fox54] in Theorem 4.3.1. We also present a new implementation in GAP [GAP22] of that method
which allows to compute the slope on any compatible link diagram thanks to [CD08; DT83].

Chapter 5 is adapted from [BFR21] and is dedicated to the SL2(C)-slope on knots. The choice
of SL2(C) is motivated by the fact that the set of all representations of the group of knot K
in SL2(C) carries naturally the structure of an algebraic set. This holds also for the characters
of these representations, whose set is called the SL2(C)-character variety of the knot. Given
a peripheral structure of the knot, the character variety is a plane curve in C∗ × C∗, whose
coordinates M and L correspond to the eigenvalues of the meridian m and the preferred longitude
ℓ of K. The polynomial AK(L,M) defining this curve is an invariant of the knot, called the
A-polynomial. This invariant contains many interesting informations on the knot; in particular,
S. Boyer and X. Zhang [BZ05] and N. Dunfield and S. Garoufalidis [DG04] showed that AK = L−1
if and only if K is trivial. One of our main motivations, as explained in Section 5.1, is to harness
topological information from the A-polynomial using the slope. Indeed, the A-polynomial is a
high-level invariant which is difficult to compute in general, whereas the SL2(C)-slope can be
computed with Fox calculus with a similar process as the character slope. The construction and
general results about the A-polynomial are covered in Section 5.2.

The construction of the SL2(C)-slope is presented in Section 5.3. It is based on the fact that
a perfect analogue of Theorem D exists for which all adjoint non-parabolic representations of

https://www.gap-system.org/
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the knot group in SL2(C) are admissible, see Definition 5.3.2 and Lemma 5.3.4. The invariant is
thus defined again as the slope of ker i∗ with respect to the meridian-longitude basis. It should
be noted that unlike the character slope, no restrictions are made on the knot K. The slope
definition relies on constructions made by J. Porti [Por97] which observed that H1(∂MK ; Ad ◦ρ)
has the structure of a symplectic space for the induced intersection form. J. Porti also defined the
Reidemeister torsion for the Ad ◦ρ-twisted homology, and we prove that it is linked to the slope
by a simple formula given in Proposition 5.3.15. Section 5.4 contains the main Theorem 5.4.1
which connects the slope and the A-polynomial. This result is notably used in Corollary 5.4.5
which establishes that the SL2(C)-slope can detect the unknot.

Chapter 6 presents our other generalisation of the character slope. To simplify, we consider
links with zero linking numbers between all components. The fundamental proposition for the
construction is the following:
Proposition E. Let ρω : π1(ML) → SO2(R) be the realification of a character ω of the link.
Then the R-vector space H1(∂EL,R(ρω)) endowed with the intersection form is a symplectic space
freely generated by the meridians and longitudes of the components of Li such that ω(mi) = 1.
Moreover, ker i∗ is a Lagrangian subspace, i.e. its own orthogonal for the symplectic form. ◁

V. Arnol’d [Arn67] has developed a method based on the complexification of a symplectic
real vector space, which allows to characterise all Lagrangian subspaces with a class of complex
unitary matrices. This method is briefly recalled in Section 4.2. The generalised slope is
defined in Section 6.2 as the argument of the determinant of the matrix characterising ker i∗, see
Definition 6.2.7. Unlike the character slope, the generalised slope can be defined as a function on
the entire character torus of the link L. In Section 6.3, we prove that it is again a concordance
invariant.



PART I

HOMOLOGY OF LINE
ARRANGEMENTS



CHAPTER

1

GRAPH STABILISER

Contents

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Finitely presented groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Braid groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Mapping class group of planar surfaces . . . . . . . . . . . . . . . . . . . . 10

1.2 Ordered stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Definition and standard model . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Action of the pure mapping class group . . . . . . . . . . . . . . . . . . . 12

1.3 Graph manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Circle bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Definition of the graph manifolds . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Ordered graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 Graphed homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Ordered graphed embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Ordered model of a graph manifold . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Definition of an ordered graphed embedding . . . . . . . . . . . . . . . . . 19
1.4.3 Action of the homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Fundamental group of a graph manifold . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.1 Cycles of the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2 Presentation of the fundamental group . . . . . . . . . . . . . . . . . . . . 22
1.5.3 First homology group of a graph manifold . . . . . . . . . . . . . . . . . . 24

1.6 Graph stabiliser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.1 Definition of the graph stabiliser . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.2 Difference maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.3 Presentation of the graph stabiliser . . . . . . . . . . . . . . . . . . . . . . 28
1.6.4 Plumbing moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8



CHAPTER 1. GRAPH STABILISER 9

1.1 Preliminaries

1.1.1 Finitely presented groups
Definition 1.1.1. Let G be a group. Let F be a finitely-generated free group and let R be a
finite set of elements in F . Let ⟨R⟩ be the smallest normal subgroup of F generated by R. The
data P = ⟨F | R⟩ is called a presentation of G if there is an exact sequence

0 ⟨R⟩ F G 0 3

For A and B two Z-modules we often make use of the equivalence

Hom(A,B) ≃ A∗ �B

1.1.2 Braid groups
We recall some basic results about braid group presentation, which are taken from [Art47; Bir75].

The braid group on m strands Bm is generated by the elementary braids σi,j that permutes
the strands i and j, with the relations

σs,tσq,r = σq,rσs,t if (t− r)(t− q)(s− r)(s− q) > 0

σs,tσr,s = σr,tσs,t = σr,sσr,t for 1 ≤ r < s < t ≤ n

Alternatively, Bm can also be generated by the elementary braids σi for 1 ≤ i ≤ m − 1 that
permutes the strands i and i+ 1, with the relations

σi · σk = σk · σi if |i− k| ≤ 2

σi · σi+1 · σi = σi+1 · σi · σi+1 for 1 ≤ i ≤ n− 1

The two presentations are connected by the inverse group isomorphisms

Bm Bm

σi,j (σi · · ·σj−2) · σj−1 · (σi · · ·σj−2)
−1

σi,i+1 σi

Let Sm be the permutation group on m elements. By convention, a permutations σ ∈ Sm

performs a right action on the elements which is denoted i · σ. There is a natural epimorphism
σ : Bm ↠ Sm defined by

σ(σi,j) := (i, j)

The pure braid group on m strands Pm is defined as the kernel of σ. It is generated by the braids
ai,j := σ2

i,j that performs a full twist on the strands i and j with the relations

ar,s · ai,j · ar,s−1 =

ai,j if r < s < i < j

or i < r < s < j

ar,j · ai,j · ar,j−1 if r < s = i < j

(ai,j · as,j) · ai,j · (ai,j · as,j)−1 if r = i < j < sÄ
ar,j · as,j · a−1

r,j · a
−1
s,j

ä
· ai,j ·

Ä
ar,j · as,j · a−1

r,j · a
−1
s,j

ä−1
if r < i < s < j

For every subset I = {i1, . . . , ik} of {1, . . . , n}, the full twist over I is the pure braid defined
by

∆2
I :=

(
σi1,i2 · · ·σik−1ik

)k (1.1)
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1.1.3 Mapping class group of planar surfaces

Let Σm
r be a planar surface with m boundary components D1, . . . , Dm and r punctures x1, . . . , xr.

When there are no punctures we only write Σm. A homeomorphism φ : Σm
r → Σm

r that restricts
to the identity on ∂Σm

r is called a boundary-homeomorphism. We denote by Homeo∂ (Σ
m
r ) the

group boundary-homeomorphism of M up to isotopies that also restrict to the identity on the
boundary.

The mapping class group M (Σm
r ) is the group of isotopy classes of orientation-preserving

diffeomorphisms of Σm
r that respect the boundary set. The pure mapping class group P (Σm

r ) is
the subgroup of M (Σm

r ) consisting of elements that fix each boundary component ∂iD and each
puncture xi individually.

The results of this section are well-known, see for example [FM11] and [Bir75].
Theorem 1.1.2. For m ≥ 2, the group M

(
Σm+1

)
(resp. P

(
Σm+1

)
) is isomorphic to Bm × Zm

(resp. Pm×Zm), where the generator σj,l ∈ Bm (resp. aj,l ∈ Pm) corresponds to a Dehn half-twist
(resp. full twist) along the curve δj,l, and the generator di ∈ Zm is the full Dehn twist around a
curve δi parallel to ∂iD, as shown on Figure 1.1.1. ◁

δj,l

. . . . . . . . . . . . . . .∂iD∂jD ∂kD ∂lD

δi

Figure 1.1.1: Dehn twist generators

Theorem 1.1.3. Fill in a boundary component of Σm+1 to obtain Σm. There is a surjective
group homomorphism

fm : P
(
Σm+1

)
P (Σm)

that respects the action of P
(
Σm+1

)
on the sub-surface Σm+1 ⊂ Σm. ◁

Proof. It is known from [Art47] that P
(
Σ1

r

)
is homeomorphic to Pr for r ≥ 3. The generator aj,l

corresponds to a Dehn full twist along a curve δj,l that goes around xj and xl only. There is a
relation that arises on mapping class groups by capping a boundary component with a punctured
disk.
Lemma 1.1.4. Fill in the boundary component Dm of Σm

r with a punctured disk B2 ∖ {xr+1} to
get Σm−1

r+1 . Then
P (Σm

r ) = P
(
Σm−1

r+1

)
× ⟨dm⟩

where dm is the full Dehn twist around a curve δm parallel to Dm. ◁

Starting from Σm+1, capping all boundary components but one using Lemma 1.1.4 gives
Theorem 1.1.2.

A similar relation arises by filling in a puncture.
Lemma 1.1.5 ([Bir75]). Fill in the puncture xr+1 of Σm

r+1 to obtain Σm
r . If m+ r > 2 then there

is a short exact sequence

1 π1(Σ
m
r , x

r+1) P
(
Σm

r+1

)
P (Σm

r ) 1 ◁

Fill in the boundary component Dm+1 of Σm+1 to obtain Σm. If m > 2, by combining
Lemma 1.1.4 and Lemma 1.1.5, we get Theorem 1.1.3.

1.2 Ordered stars

An ordered star is a set of non-intersecting paths drawn on a disc Dm with m holes which are
geometrically ordered. We denote by Om the set of all isotopy classes of ordered stars on Dm.
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b∞

Dm

U

∂∞D

α1

α2

αm

⊕

(a) Ordering of a star

b∞

∂∞D

bm

∂mD

b2

∂2D

b1

∂1D

αm
α2 α1

⊕

(b) Standard ordered star

Figure 1.2.1: Ordered star

Ordered stars will be used in Section 1.4.2 as elementary pieces to assemble the graphed
embeddings on a graph manifold. Their role is to define a way to properly embed all half-edges
of the graph with a common starting vertex vi inside the corresponding circle bundle Si. An
important choice of our construction is that the half-edges, and thus the whole ordered star, are
to be drawn on a section si : Σi → Si, where Σi is homeomorphic to a 2-sphere with mi +1 holes.

We will also show in the beginning of Section 1.4 that one can in fact always generically
remove the interior of a disc from Σi disjoint from its boundary. Ordered stars are thus defined
as objects on a 2-disc with a finite number m of holes.

1.2.1 Definition and standard model

Let R be a closed disc in the oriented plane C. Let D1, . . . Dm be disjoint identical closed pairwise
disjoint discs enclosed within R and ordered by their descending horizontal coordinates, and let
xj be the centre of Dj . By convention, we write ∂∞D for the boundary ∂R and ∂jD for ∂(Dj).
These boundary circles are often seen as looping paths, denoted ∂j+D (resp. ∂j−D) when travelled
along in the positive (resp. negative) sense relatively to the orientation of C. Finally, define

Dm := R∖
m⋃
j=1

D̊j ∆m := R∖
m⋃
j=1

{xj}

For any non-looping curve α of the complex plane, we denote by ∂−α its starting point and
∂+α its ending point.
Definition 1.2.1. Let ω ∈ Sm be a permutation. An ω-star on Dm is a collection of properly
embedded simple curves α =

(
αj
)
1≤j≤m

drawn on Dm such that:

(i) for every curve αj , ∂+αj := bj·ω ∈ ∂j·ωD and ∂−αj is a common point b∞ ∈ ∂∞D.

(ii) for every pair of curves, αj ∩ αk = {b∞}.

(iii) there exists a disc U centred on b∞ in the complex plane and an orientation-preserving
homeomorphism ϕ : U → U that sends the pair (Dm ∩ U,α ∩ U) to the pair shown in
Figure 1.2.1a. 3

We denote by Sm(ω) the set of all isotopy classes of ω-stars on Dm and by Sm the reunion of
all sets Sm(ω) for every ω ∈ Sm.
Definition 1.2.2. An ordered star on Dm is a star of Sm with respect to the permutation
ω = Id ∈ Sm. The set of all ordered stars is denoted Om. 3

Remark 1.2.3. It is easy to construct a simple ordered star on Dm as shown in Figure 1.2.1b,
so the set Om is not empty. ◊
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1.2.2 Action of the pure mapping class group

Let ω ∈ Sm and write ξ := ω−1. Let α ∈ Sm(ω) be a star on Dm. Up to isotopy, one can always
move α such that the loop δj,l (resp. δk) of Figure 1.1.1 does not intersect any path from α except
αj·ξ and αl·ξ (resp αk·ξ), with only one transverse intersection for each. The respective actions of
the Dehn twists on the curves of α is then shown on Figure 1.2.2. It is clear that the modified
curves still respect the conditions from Definition 1.2.1, and thus we obtain:
Proposition 1.2.4. There is a well-defined action of M (Dm) on Sm induced by its natural
action on Dm. Additionally, for every star α ∈ Sm(ω) and every braid β ∈ Bm, we have

β · α ∈ Sm(ω · σ(β)) ◁

Corollary 1.2.5. There is a well-defined action of P (Dm) on Om induced by its natural action
on Dm. ◁

The action of the pure braid generator aj,l ∈ Pm on an ordered star is shown on Figure 1.2.3.
The rest of the section is dedicated to the proof of the following result, and can be skipped on

first reading.
Proposition 1.2.6. The group P (Dm) acts transitively on the set Om. ◁

Proof. We split the proof by considering separately the actions of the subgroups Pm and Zm of
P (Dm).

The fundamental group of ∆m is a free group Fm with m generators. Let α be an ordered
star on Dm. We say that we travel positively along the curve αj when we go from b0 to bj , and
negatively otherwise, which we write as (αj)

−1. Then every curve αj of the ordered star can be
associated to the closed curve of ∆m defined by:

θ(α)j := αj · ∂j+D ·
(
αj
)−1 (1.2)

where the closed path along ∂jD is followed in the positive sense with respect to the orientation
of ∆m. There is thus a map

θ : Om −→ (Fm)
m

which associates to any ordered star α ∈ Om the homotopic classes of all the curves θ(α)j inside
π1(∆m) = Fm. Note that the product

∏m
j=1 θ(α)

j is equal to the class of the loop ∂∞+ D.
Lemma 1.2.7. The group Pm acts transitively on the set θ (Om). ◁

Go back to Dm by removing again the discs Dj from ∆m. We now consider the action on
Om of the Zm subgroup of P (Dm) generated by the Dehn twists along the δk curves. We define
the equivalence relation on Om by

∀ α, α′ ∈ Om : α ≃ α′ ⇐⇒ θ(α) = θ(α′) (1.3)

Lemma 1.2.8. The group Zm acts transitively on every equivalence class of Om. ◁

Let α, α′ ∈ Om be two ordered stars on Dm. By Lemma 1.2.7 there exists some pure braid
β ∈ Pm such that β · θ(α) = θ(α′) for the action of P (Dm) on π1(∆m) ≃ π1(Dm). This action
is induced by the natural action of P (Dm) on Dm itself, which fixes all boundary components
of Dm. So from Eq. (1.2) it is clear that β · θ(α) = θ(β · α). This means that β · α and α′ are
equivalent in the sense of Eq. (1.3), so by Lemma 1.2.8 there exists some d ∈ Zm such that
d · (β · α) = (β, d) · α = α′, which concludes the proof.

Proof of Lemma 1.2.7. Consider the standard ordered star α0 on Dm shown on Figure 1.2.1b.
Set T = (t1, . . . , tn) := θ(α0). It is clear that T is a free generating family of π1(∆m) = Fm. Now
consider any other ordered star α ∈ Om and set S = (s1, . . . , sm) := θ(α). Every element sj of
S can be expressed in the basis T . It is also clear from Eq. (1.2) that each sj is conjugated to
the homotopical class of ∂j+D, i.e tj . There is thus a mapping f : (Fm)

m → (Fm)
m such that

f(tj) = sj = SjtjSj
−1 for every j, where Sj ∈ Fm. By [Art47, Theorem 14], f is canonically

associated to the mapping-class-group action of a pure braid β ∈ Pm on π1(∆m).
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σj,l · αl·ξσj,l · αj·ξ

∂lD∂kD∂jD

δj,l

. . .. . .. . .. . .

αl·ξαj·ξ

∂lD∂kD∂jD

δj,l

. . .. . .. . .. . .

(a) Generator σj,l

dk · αk

αk

∂kD

δk

. . .. . .

∂kD

δk

. . .. . .

(b) Generator dk

Figure 1.2.2: Action of M (Dm) on a star

aj,l · αlaj,l · αj

αlαj

∂lD∂kD∂jD

δj,l

. . .. . .. . .. . .

∂lD∂kD∂jD

δj,l

. . .. . .. . .. . .

Figure 1.2.3: Action of aj,l ∈ P (Dm) on an ordered star



CHAPTER 1. GRAPH STABILISER 14

Proof of Lemma 1.2.8. It is easy to see from Figure 1.2.2b that for every α ∈ Om and every k,
θ(dk · α) is homotopic to θ(α) if Dk is filled in except for its centre, so the action is well-defined.
Consider α, α′ ∈ Om equivalent and define the collection of m closed curves α · α′−1 by the
formula

(α · α′−1
)
k
:= (α′k)

−1
· αk

Since (α ◦ α′−1
)k is a closed curve in Dm and thus in ∆m, we can see it as an element of π1(∆m).

Remember that θ(ω) = (t1, . . . , tm) is a free generating family of π1(∆m). Using Eq. (1.2) inside
the equation

1 = θ(α′)
−1 · θ(α)

we obtain that (α · α′−1
)
k

commutes with the homotopical class of ∂k+D, i.e tk. Since tk is a free
generator of π1(∆m) = Fm, there must exist some integer rk ∈ Z such that (α · α′−1

)k = tk
r.

This means exactly that up to homotopy αk = dk
rk · α′k. Doing this for all k, we obtain an

element d :=
∏

k dk
rk ∈ Zm such that d · α = α′.

1.3 Graph manifolds

The graph manifolds were introduced by Waldhausen in [Wal67a; Wal67b] and were further
studied by Mumford [Mum61] and Neumann [Neu81].

The results of this section are well-known. See for example [ST80] and [Hat99] for circle
bundles, and [FM97] or [JS79] for a modern approach on graph manifolds.

1.3.1 Circle bundles
Definition 1.3.1. A circle bundle S is a fibre bundle p : S → Σ, where Σ is a compact 2-surface,
such that for every s ∈ S, there exist an open neighbourhood U of p(s) and an isomorphism
q : U × S1 → p−1(U) with (p ◦ q)|U corresponding to the projection on the first variable. 3

The surface Σ is called the basis of the bundle. The pre-image p−1(x) of a point x ∈ Σ is
homeomorphic to a circle S1 which is called the fibre over x. A section is an embedding s : Σ ↪→ S
such that p ◦ s = IdΣ.
Definition 1.3.2. A homeomorphism Ψ : S → S′ between two circle bundles is called fibrewise if
it sends every fibre of S to a fibre of S′. 3

Definition 1.3.3. An oriented circle bundle is an orientation-preserving fibre bundle p : S → Σ
along with the data of two of the following three:

• an orientation on S.

• an orientation on all fibres of p.

• an orientation of Σ. 3

Remark 1.3.4. Fixing just the orientation of S does not fix the orientation on the basis and
fibres. Indeed, there exists a homeomorphism ν of S that changes the orientation of the basis
and all fibres at the same time, without changing the global orientation of S. ◊

Definition 1.3.5. A fibrewise homeomorphism Ψ : S → S is said to be fibre-positive if the
induced homeomorphisms on the basis Σ and on every fibre S1 are all positive. 3

We denote by Homeo+∂ (S) the group of fibre-positive boundary-homeomorphisms of S. We
assign a numbering in {1, . . . ,m} to the boundary components of S and we denote by ∂iS the
i-th boundary component of S.
Definition 1.3.6. A boundary section collection on a circle bundle S with m components is the
data of a collection of closed curves µ̄ := (µi)1≤i≤m such that µi ⊂ ∂iS and is transverse to the
fibres of S. 3

Circle bundles are a special case of Seifert manifolds, namely those without singular fibres. In
our study we are only interested in the circle bundles that respect the following set of conditions:

Conditions 1.3.7. Let S be a circle bundle with basis Σ.
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(C1) S is orientable.

(C2) Σ is planar.

(C3) Σ has m ≥ 3 boundary components.

It must be noted that Condition (C3) can exceptionally be relaxed when we consider non-
minimal graph structures.

We now describe the construction of the reference model that we use for all our circle bundles
with fixed sections on the boundary.
Definition 1.3.8. Let ε ∈ Z. Recall from Section 1.2.1 the model Dm ⊂ C homeomorphic to the
surface Σm+1. Consider the direct product

Tm := Dm × S1

and a separate solid torus
T∞ := D′ × S1

Assign the same respective orientations on the sections and fibres of Tm and T∞. Let š be a fixed
section of Tm. It is naturally associated with a collection µ̌ of sections on the boundary with
µ̌i := š(∂iDm). Take a point x∞ on µ∞ and let λ̌∞ be the fibre over x∞. Let š′ be a section of
T∞ and take µ̌′

∞ the positive path ∂D′ and λ̌′∞ the fibre over a point x′∞ on µ̌′
∞. Glue ∂T∞ to

the toric boundary component ∂∞Dm × S1 of Tm using the gluing map:

gε :

®
µ̌∞ 7−→ −µ̌′

∞ − ε · λ̌′∞
λ̌∞ 7−→ λ̌′∞

(1.4)

The manifold
S(m, š, ε) := Tm ∪gε T∞

thus obtained is a circle bundle with m boundary components, and ε is called its Euler number. 3

Proposition 1.3.9. The manifold S(m, š, ε) does not depend on the choice of the section š′ on
the solid torus T∞. ◁

Proof. This is a direct consequence from the fact that all fibre structures on the solid torus are
isotopic.

Remark 1.3.10. The notion of Euler number is usually defined on closed fibred spaces. The
choice of the fixed section š allows to extend this definition and designate ε as the Euler number
of S(m, š, ε). Note that this could also have been achieved by fixing only a boundary section
collection µ̌. ◊

Theorem 1.3.11 ([JS79]). Let S be a circle bundle with m boundary components that respects
Conditions 1.3.7 and let µ̄ be a collection of sections on the boundary of S. Then there exists an
orientation-preserving fibrewise boundary-homeomorphism χ : S(m, š, ε)→ S such that χ(µ̌i) = µi

for some unique value of ε ∈ Z. ◁

The number ε ∈ Z is called the Euler number of the oriented circle bundle S.
Remark 1.3.12. Orienting the manifold S(m, š, ε) induces an orientation of the bundle. Indeed,
changing the orientation of just (say) the sections of Tm ⊂ S(m, š, ε) would also change the Euler
number ε into its opposite −ε. ◊

Remark 1.3.13. For m = 2, the manifold S(2, š, ε) is homeomorphic to a thickened torus T × I
for any value of ε ∈ Z. This means that the thickened torus has not a unique structure as a circle
bundle, which justifies the requirement that m ≥ 3 in Theorem 1.3.11. ◊

1.3.2 Definition of the graph manifolds
We shall begin by recalling some basics about the graph manifolds, in preparation of Section 1.6.
Let M be an oriented connected 3-manifold
Definition 1.3.14. A graph structure on M is a set Θ of pairwise disjoint tori such that M ∖Θ
is a disjoint union of Seifert manifolds. If M has a graph structure it is called a graph manifold
and the elements of Θ are called joining tori. 3
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Theorem 1.3.15 ([Wal67b]). Any graph manifold that does not belong to the exceptions listed in
[Wal67b, Satz 8.1] admits a unique graph structure with a minimal number of tori. ◁

In fact only a handful of exceptional classes arise in our applications to line arrangements.
They are listed in Section 2.2.3 and we do not intend to study them. From now on we only
consider non-exceptional graph manifolds, for which we only use the unique minimal structure,
which we will thus refer to as ‘the graph structure’.

According to Theorem 1.3.11, for every circle bundle component S there exists an orientation-
preserving fibrewise boundary-homeomorphism χ : S(m, š, ε)→ S for some m ∈ N and ε ∈ Z. A
joining torus T ∈ Θ that joins two circle bundles S and S′ corresponds to a component ∂kDm×S1

in S(m, š, ε) and a component ∂k
′
Dm′ × S1 in S(m′, š′, ε′).

We intend to apply the graph manifold theory to regular neighbourhoods of complex line
arrangements. For this reason, we only consider a subclass of non-exceptional graph manifold
with specific additional properties.

Conditions 1.3.16. Let M be a graph manifold with minimal graph structure Θ.

(M1) All irreducible components of M are oriented circle bundles (i.e. Seifert manifolds with no
exceptional fibres).

(M2) Every circle bundle component S of M verifies Conditions 1.3.7.

(M3) There is a choice of a section µ̄ : Dm → S on every circle bundle S of M oriented as the
opposite of a base section.

(M4) For every joining torus T ∈ Θ between S and S′, let µ be the chosen oriented section of T
as a boundary component of S, and let λ be the oriented fibre over a point x0 on µ. Define
µ′ and λ′ similarly inside S′. Then the gluing map from T ⊂ S to T ⊂ S′ is given by

gext :

®
µ 7−→ λ′

λ 7−→ µ′

1.3.3 Ordered graphs
As the name suggests, the graph structure of a given graph manifold can be represented as a
graph.
Definition 1.3.17. The graph Γ of a graph manifold M with graph structure Θ is given by the
following description:

• every vertex v is associated to a circle bundle component S of M ∖Θ.

• every vertex v is decorated with the Euler number ε ∈ Z of the corresponding component
S ≃ S(m, š, ε).

• every edge e is associated to a unique joining torus in Θ that co-bounds S and S′. 3

For a non-exceptional graph manifold M , the graph is unique since it is entirely determined
by the unique minimal graph structure Θ.

The restrictions on the graph manifold given by Conditions 1.3.16 induce new restrictions on
the graph itself:

Conditions 1.3.18. The graph Γ of the graph manifold M is such that:

(G1) no edge starts and ends at the same vertex.

(G2) there is at most one edge between every two vertices.

(G3) every vertex has at least three neighbours.

A graph that verifies the first two conditions is also called simplicial. The third condition is
specific to the class of graph manifolds that we consider in this chapter.
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Remark 1.3.19. In the most general case of graph manifolds as defined by [Wal67a; Neu81],
vertices are also weighted by the genus of S, which in our case is set as zero for all vertices with
Condition (C2). The gluing map is also characterised by a slope value for each boundary similar
to Eq. (1.4), which is put as a decoration on the edges. Again, in our case this slope is set as ∞
for all edges with Condition (M4). ◊

We denote by V the set of vertices and by E the set of edges of Γ. We fix an ordering
ω : V → {1, . . . , n} which we denote by V = {v1, . . . , vn}. For every vertex vi, the set of its
neighbours is Vi with cardinal mi ≥ 3. By default edges are not oriented and can be seen as
subsets {vi, vj} ⊂ V . The set of edges is denoted by E. We use the notation ei,j (or ej,i) as
a shortcut for the unique edge {vi, vj}. The corresponding joining torus in Θ is denoted Ti,j .
We also denote by e⃗i,j and e⃗j,i the two half-edges that compose ei,j on the side of vi and vj
respectively.
Definition 1.3.20. A graph ordering over Γ is a collection of functions Ω = (ωi)vi∈V where

ωi : Vi → {1, . . . ,mi}

are bijections defined on the sets of neighbours. For every vertex vi ∈ V , the function ωi is called
the local order around vi. 3

In some contexts we make a greater use of the inverse of ωi, which we denote by

ξi : {1, . . . ,mi} → Vi

A convenient way of representing a graph ordering is to put a decoration on every half-edge e⃗i,j of
the graph indicating the local order ωi(vj) of the corresponding neighbour vj around the starting
vertex vi, as illustrated in Figure 1.3.1.

v1

v2

v3

v4

1

3

22

3

1

1

2

2

3

1

3

Figure 1.3.1: An ordered graph

1.3.4 Graphed homeomorphisms
Theorem 1.3.21 ([Wal67a]). Let M and N be two graph manifolds with respective minimal
graph structures ΘM and ΘN . Let Φ :M → N be a homeomorphism. Then, if M and N do not
belong to one of the exceptional cases, Φ is isotopic to a homeomorphism Ψ :M → N such that
Ψ(ΘM ) = Ψ (ΘN ). ◁

According to Theorem 1.3.21, up to isotopy any homeomorphism of a graph manifold acts on
the graph structure. Since joining tori are associated to edges of the graph, one can thus define a
surjective morphism

G : Homeo(M) Aut(Γ)

where Homeo(M) stands for the group of isotopy classes of homeomorphisms of M .
Definition 1.3.22. The kernel of G is called the group of graphed homeomorphisms of the graph
manifold M and is denoted HomeoΓ(M). 3

Graph manifolds are orientable as well as all of their circle bundle components. We thus take
these orientations in consideration.
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Definition 1.3.23. A homeomorphism Ψ :M →M is said to be positive if it respects the global
orientation of M . It is strongly positive if its restriction on every component Si is fibre-positive
in the sense of Definition 1.3.5. 3

We denote by Homeo+(M) (resp. Homeo++(M)) the group of isotopy classes of positive
(resp. strongly positive) homeomorphisms of M . The similar notations Homeo+Γ (M) (resp.
Homeo++

Γ (M)) denotes the respective subgroups of graphed homeomorphisms of M . In fact
Homeo++

Γ (M) is a normal subgroup of index 2 of Homeo+Γ (M). The quotient is generated by
the positive homeomorphism of M defined as follows:

• On every circle bundle component Si there is a homeomorphism νi that changes the
orientation of all sections and all fibres at the same time, without changing the global
orientation of Si.

• Since the gluing map given by Condition (M4) permutes fibres and sections, the action of
νi on one component Si of M propagates to every other component. The ensuing global
homeomorphism of M is denoted by ν and does not change the global orientation of the
manifold.

Proposition 1.3.24. The group Homeo++
Γ (M) is fixed by the action of ν and we have:

Homeo+Γ (M) = Homeo++
Γ (M)⋉ν

Z⧸2Z ◁

Remark 1.3.25. The definition of strongly positive homeomorphisms is motivated by the fact
that the action of ν on M does not change the global orientation of M but still affects the
orientation of ordered stars drawn on the basis of every circle bundle component. ◊

1.4 Ordered graphed embeddings

In this section we define a proper way to draw the graph of a graph manifold on the manifold
itself. This allows us to obtain a presentation of the fundamental group of the graph manifold
which is combinatorially determined up to some specific homeomorphisms. We then solve that
ambiguity by giving a way to construct the subgroup of the graph manifold homeomorphisms
that leave the presentation unchanged. This subgroup is called the graph stabiliser of the graph
manifold.

1.4.1 Ordered model of a graph manifold
Let M be a graph manifold with associated (unique) graph structure Θ and graph Γ and let Ω be
a graph ordering on Γ. For every vertex vi ∈ V , we denote by Si the associated circle bundle.
Theorem 1.3.11 ensures that there exists a function

χi : S(mi, ši, εi) −→ Si

where εi is the Euler number of Si. The model circle bundle decomposes as:

S(mi, ši, εi) = Tmi
∪gεi T∞

where Tmi
= Dmi

×S1 for any m ≥ 0 and gεi is the gluing map given in Eq. (1.4). The basis Dmi

is a disc with mi holes described at the beginning of Section 1.2.1. The boundary components of
Dmi have a natural order given by the horizontal coordinate of their basis circle in C, which we
extend to the boundary components of Tmi and S(mi, ši, εi).
Definition 1.4.1. Let M be a graph manifold with associated (unique) graph structure Θ and
graph Γ. Let Ω be a graph ordering on Γ. An ordered model of M with respect to Ω is a collection
of functions X := (χi : S(mi, ši, εi)→ Si)vi∈V such that:

(i) for every vi ∈ V , χi is a positive fibrewise boundary-homeomorphism.

(ii) for every boundary torus Ti,j ∈ Θ, the pre-image χi
−1(Ti,j) is the ωi(vj)-th boundary

component of S(mi, ši, εi) for the natural order. 3
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Proposition 1.4.2. For any graph ordering Ω, there always exists an ordered model X of M with
respect to Ω. ◁

Proof. According to Theorem 1.3.11, there exists an orientation-preserving fibrewise boundary-
homeomorphism χi : S(mi, ši, εi)→ Si. One then just needs to make the corresponding boundary
tori coincide along the ordered graph by using homeomorphisms on the boundary that permutes
the components.

Notation. When
s : Dmi

−→ Tmi
⊂ S(mi, ši, εi)

is a section of the trivial circle bundle and

χi : S(mi, ši, εi) −→ Si

is a local ordered model of a circle bundle component Si, we write“si := χi ◦ si : Dmi
−→ Si

The map “si is not a full section of Si but rather a section of the subset χi(Tmi
). For simplicity,

we call “si a section nonetheless since we never consider objects in the χi(T∞) part of Si.

Proposition 1.4.3. Let X = (χi)vi∈V and X′ = (χ′
i)vi∈V be two ordered models of a graph

manifold M with respect to the same graph ordering Ω. Define the change of model Ψ as the
unique homeomorphism of M which restricts to Ψi := χ′

i◦(χi)
−1 on every circle bundle component

Si. Then Ψ ∈ Homeo++
Γ (M). ◁

Proof. We first prove that Ψ is well defined. By Definition 1.4.1, for every vi ∈ V , χi and χ′
i are

boundary-homeomorphisms on Si, and thus so is Ψi. We can then extend Ψi by the identity on
every gluing torus Ti,j to define Ψ ∈ Homeo(M). It is clear that Ψ is graphed by construction.
Besides, χi and χ′

i are fibrewise positive, and so is Ψi. This implies that Ψ respects the orientation
of all fibres and sections of every Si, and thus Ψ ∈ Homeo++

Γ (M).

1.4.2 Definition of an ordered graphed embedding
Ordered graphed embeddings are defined piece by piece by tying together one ordered star on
each circle bundle component of the graph manifold.
Definition 1.4.4. Let M be a graph manifold whose graph Γ is ordered by Ω. Let γ : Γ→M
be a graphed embedding, i.e. a map that sends vertices of the graph to disjoint points and edges
of the graph to disjoint simple curves. Suppose that there exist an ordered model X of M and,
for every vertex vi ∈ V , a section si : Dmi → Tmi and an ordered star αi ∈ Omi drawn on Dmi

such that γ ∩ Si = “si(αi). Then γ is called an ordered graphed embedding with respect to the
graph ordering Ω.

The set of isotopy classes of ordered graphed embeddings with respect to the graph ordering
Ω is denoted by EΓ (Ω). 3

Remark 1.4.5. We can always tie together an ordered star αi drawn on si and another ordered
star αj drawn on sj along an edge ei,j ∈ E. Indeed, since the gluing map g given by Condition (M4)
permutes longitudes and meridians, the circles g(“si ∩ Ti,j) and “sj ∩ Ti,j have exactly one point of
intersection. One can thus always perform an isotopy on a small neighbourhood of ∂ωi(vj)Dmi

inside si so that the endpoint of αωi(vj)
i coincides with the intersection point, and likewise on the

other side. ◊

Example 1.4.6. The schematic construction of a graphed embedding of the ordered graph of
Figure 1.3.1 is represented on Figure 1.4.1. The fibres of each circle bundle are assigned a specific
colour. By the gluing map of Condition (M4), each boundary curve of the basis of every circle
bundle is identified with a fibre of the corresponding neighbour. 7

Remark 1.4.7. Definition 1.4.4 is not the most general way of embedding the graph Γ inside M
in a way that respects the graph structure. The specificity of our construction is to ask that the
image of every half-edge inside each circle bundle to be drawn on a section. This allows to impose
a circular order on the half-edges inside each circle bundle Si, thus taking into account the local
order ωi. This local order is indeed required to study the homotopy class of the half-edges, as
evidenced by Theorem 1.5.9. ◊



CHAPTER 1. GRAPH STABILISER 20

v1 v3

v2

v4

Figure 1.4.1: Construction of a graphed embedding

Proposition 1.4.8. For any cycled graph manifold M with graph Γ and any choice of Ω, the set
EΓ (Ω) is non-empty. ◁

Proof. By Proposition 1.4.2, there always exists an ordered model X of M . By Remark 1.2.3,
there always exists an ordered star αi ∈ Omi

for every possible value of mi ≥ 3. Choose a section“si : Dmi
→ Si for every vi ∈ V . Now tie together the ordered stars “si(αi) along every edge

ei,j ∈ E as described in Remark 1.4.5. The reunion of all the αi for 1 ≤ i ≤ n is an ordered
graphed embedding γ ∈ EΓ (Ω).

1.4.3 Action of the homeomorphisms
Theorem 1.4.9. Let M be a graphed manifold ordered whose graph Γ is ordered by Ω. There is
a well-defined action of the group of strongly positive homeomorphisms Homeo++

Γ (M) on EΓ (Ω).
This action is transitive. ◁

Proof. We prove that the action is well defined. Consider γ ∈ EΓ (Ω). There exists an ordered
model X and for every vi ∈ V a section si : Dmi

→ Tmi
and an ordered star αi ∈ Omi

such
that γ ∩ Si = “si(αi) = χi ◦ si(αi). Let Ψ ∈ Homeo++

Γ (M). By Definition 1.3.22, up to isotopy

Ψ restricts to Ψi ∈ Homeo+∂ (Si) for every vi ∈ V . Define Ψi(“si) := Ψi ◦ “si ◦ Ψ̃i

−1
. Then

Ψi(“si) : Dmi
→ Si is a (partial) section, and we have

(Ψi ◦ “si)(αi) = Ψi(“si) ◦ Ψ̃i(αi) (1.5)

The full basis of Si is Σi ≃ Σmi and the boundary-homeomorphism Ψ̃i is an element of P (Σmi). By
Theorem 1.1.3, there exists an element ψi ∈ P (Dmi

) such that Ψ̃i = fmi
◦ψi. By Proposition 1.2.6,

ψi(αi) is still an ordered star on Dmi
. Since fmi

respects the inclusion Dmi
⊂ Σi then Ψ̃i(αi) is

still an ordered star on Dmi for the same order ωi.
Thus, the action of Ψ sends every couple section/ordered star (“si, αi) to another well-defined

couple (Ψi(“si), Ψ̃i(αi)) on the same ordered model χi of Si. All the new ordered stars can then
be tied together in the same points as γ since Ψ restricts to the identity on all joining tori. We
therefore have formed a new ordered graphed embedding Ψ(γ) ∈ EΓ (Ω).
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We now prove that the action is transitive. Let γ, γ′ ∈ EΓ (Ω) be two ordered graphed
embeddings and let X,X′ be the corresponding ordered models.

Consider vi ∈ V and the two couples section/ordered stars (“si, αi) and (“si′, α′
i) corresponding

to γ and γ′ respectively. There always exists a Φi ∈ Homeo+∂ (Tmi) such that Φi(si) = s′i but also
such that Φi induces the identity on the basis Dmi

, and thus Φ̃i(αi) = αi.
By Proposition 1.2.6, there also exists an element πi ∈ P (Dmi) such that πi · αi = α′

i. Now
extend πi to Tmi by taking the section s′i as the basis of the fibration, to obtain Πi ∈ Homeo+∂ (Tmi).
Now set Πi ◦ Φi to S(mi, ši, εi) by the identity on T∞ along the gluing map gεi and define

Ψi := χ′
i ◦Πi ◦ Φi ◦ (χi)

−1 ∈ Homeo+∂ (Si)

By construction, Ψi(“si) = “si′ and Ψ̃i(αi) = α′
i.

Now define Ψ as the reunion of all the Ψi’s for every vi ∈ V . Then Ψ ∈ Homeo++
Γ (M) and

Ψ(γ) = γ′.

1.5 Fundamental group of a graph manifold

1.5.1 Cycles of the graph
Let M be a graph manifold with graph Γ. We reuse notations from Section 1.3.3. Recall that V
is the vertex set and E is the edge set.

There are two different ways to construct the cycles of the graph: either as generators of the
fundamental group π1(Γ) or as elements of the first homological group H1(Γ).

From now on it is convenient to orient the graph Γ.
Definition 1.5.1. An orientation of Γ is a function δ : V 2 → {−1, 0, 1} such that

• δi,j ∈ {±1} if ei,j is an edge of Γ.

• δi,j = 0 if ei,j is not an edge.

• δi,j = −δj,i. 3

Let r be a vertex. The generators of the fundamental group π1(Γ, r) can be drawn directly on
the graph Γ itself using a spanning tree based in a vertex r as shown on Figure 1.5.1a.
Definition 1.5.2. A spanning tree of a graph Γ verifying Conditions 1.3.18 is a connected acyclic
subgraph T of Γ containing all the vertices. 3

Proposition 1.5.3. Let r ∈ V . For every vertex v ∈ V , there always exist a unique path from r
to v inside T . The vertex r is called a root of the tree T . ◁

Proposition 1.5.4. Let T be a spanning tree of a graph Γ and let r ∈ V be a root. Then the set
of edges E ∖ T is naturally associated with a basis of π1(Γ, r) as follows: assign to every edge
ei,j ∈ E ∖ T (with i, j ordered such that δi,j = 1) the unique cycle ci,j on the graph Γ that goes
along the unique path inside T from r to vi, then along ei,j, and finally along the unique path
inside T from vj back to r as illustrated on Figure 1.5.1b. ◁

The alternative way to describe the cycles of Γ is to use the fact that Γ has a natural structure
of a CW-complex generated by the vertices and the edges. The boundary map ∂1 : C1(Γ)→ C0(Γ)
is defined on the basis E of C1(Γ) as ∂1(ei,j) = δi,j(vj − vi).

The first homology group H1(Γ) is defined as the kernel of ∂1 and does not depend on the
choice of the orientation. There is a natural group homomorphism

ζδ : H1(Γ) −→ C1(Γ)

which decomposes every cycle into the sum of its oriented edges. Note that the choice of the
orientation δ only affects the signs of the decomposition.

The connection between the two definitions of the cycles of Γ is made by the natural abelian-
isation map

Ab : π1(Γ, r) −→ H1(Γ)
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v1

v2

v3

v4

(a) A spanning tree

r

vi

vj

ei,j

(b) T -cycle curve

Figure 1.5.1: Spanning tree on a graph

1.5.2 Presentation of the fundamental group
Fix a graph ordering Ω, an orientation δ on Γ and a graphed embedding γ ∈ EΓ (Ω). Let T be a
spanning tree with root r and let b := γ(r).
Definition 1.5.5. For every edge ei,j ∈ E ∖ T , let ci,j be the unique cycle drawn on Γ going
through ei,j and the root r as per Proposition 1.5.4. Then the simple closed curve γi,j := γ(ci,j)
is called a T -cycle curve of M . 3

Definition 1.5.6. For every vertex vi ∈ V , let fi be the fibre curve of the circle bundle Si over the
point γ(vi), and let ci be the unique path from the root r to vi in T . Then µi := γ(ci) ·fi ·γ(ci)−1

is called a T -meridian curve of M . 3

Recall from Proposition 1.5.4 that the set E ∖ T naturally determines a basis of the free
group π1(Γ, r). We denote by FV the group freely generated by the vertex set V .
Definition 1.5.7. A graphed embedding γ ∈ EΓ (Ω) naturally induces a map

γT ,δ : FV ∗ π1(Γ, r) −→ π1(M, b)

which sends vi ∈ V to the class of the T -meridian curve µi of Definition 1.5.6 and each cycle ci.j
for ei,j ∈ E ∖ T to the class of the T -cycle curve γi,j of Definition 1.5.5. 3

Remark 1.5.8. If vi, vj ∈ V are linked by an edge ei,j then by the gluing map of Condi-
tion (M4), the meridian generator µi can be retracted to the closed curve “sj(∂ωj(vi)Dmj ) inside
the section “sj of Sj . ◊

Using Remark 1.5.8 and a combination of Seifert-van Kampen’s theorem and HNN-extensions
along the graph Γ of the manifold, E. Westlund [Wes97] obtained a presentation of the fundamental
group of M . Similar works were done in [Mum61; ACM19b; KN14]. We reformulate his result
using our notations and the new concept of ordered graphed embeddings.
Theorem 1.5.9. Let δ be an orientation of Γ, let T be a spanning tree of Γ and let r be the root
of T . Let γ ∈ EΓ (Ω) be an ordered graphed embedding and write b := γ(r). Then there is an
exact sequence

0 PΓ (T , δ, γ) FV ∗ π1(Γ, r) π1(M, b) 0
γT ,δ

where PΓ (T , δ, γ) is the subgroup of relations normally generated by

• ∀ vi ∈ V :

mi∏
k=1

µξi(k)
u(i,ξi(k)) = µi

−εi

• ∀ ei,j ∈ E :
[
µi, µj

u(i,j)
]
= 1

where u(i, j) :=


γi,j if ei,j ∈ E ∖ T and δi,j = 1.

γi,j
−1 if ei,j ∈ E ∖ T and δi,j = −1.

1 if ei,j ∈ T .
◁
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For x, y ∈ π1(M, b) the notations are [x, y] = xyx−1y−1 and xy = y−1xy.
Remark 1.5.10. This presentation can often be simplified, in particular when some Euler
numbers εi are equal to 0, 1 or −1. ◊

In fact the presentation PΓ (T , δ, γ) does not depend on the ordered graphed embedding.
Theorem 1.5.11. With the spanning tree T and orientation δ of Γ being fixed, the presentation
PΓ (T , δ, γ) depends only on the graph ordering Ω. ◁

This result is crucial to study invariants directly derived from the fundamental group π1(M),
as it ensures that the presentation is stable under the change of the graphed embedding induced
by the action of Homeo++

Γ (M). This allows to compute representations of the fundamental group
and other derived invariants such as twisted homology. Since these applications exceeds the scope
of our presentation, we do not prove Theorem 1.5.11 here. The remainder of this subsection is
dedicated to the proof of Theorem 1.5.9.
Lemma 1.5.12. Let S be a circle bundle with m boundary components and Euler number ε that
verifies Conditions 1.3.7. Let b be a point in S. Then π1(S, b) admits the presentation

Generators: f, (x1), . . . , (xm)

Relation:
m∏

k=1

(xk) = f−ε ◁

Proof. This is obtained directly by using Seifert-van Kampen’s theorem on the description of
the model S(m, š, ε) given in Section 1.3.1 and Theorem 1.3.11. The generator f is the positive
fibre over b, and for every 1 ≤ r ≤ m, the generator (xk) is the positive curve αk · ∂kDm · (αk)

−1

where α ∈ On is any ordered star on the basis Dm of Tm ⊂ S.

Proof of Theorem 1.5.9. Let T be a spanning tree of Γ and let γ ∈ EΓ (Ω). Let V ∗ be the set of
vertices of Γ that borders an edge of E ∖ T . Consider vi ∈ V . From Lemma 1.5.12 we get the
presentation P (mi, εi) of π1(Si, γ(vi)).

By Remark 1.5.8, (xki ) is homotopic inside M to fj with k = ωi(vj), and µj is homotopic to fj
inside Sj . Now consider ei,j ∈ T and glue together Si and Sj along the gluing torus Ti,j . Using
Seifert-van Kampen’s theorem and the gluing map from Conditions 1.3.16 along all edges of T ,
we obtain a sub-manifold MT of M whose fundamental group π1(MT , γ(r)) has the following
presentation:

Generators: µi for vi ∈ V and xωi(vj)
i for every ei,j ∈ E ∖ T

Relations:

• ∀ ei,j ∈ E ∖ T : [µi, µj ] = 1

• ∀ vi ∈ V ∖ V ∗ :
∏mi

k=1 µξi(k) = µi
−εi

• ∀ vi ∈ V ∗ :
∏mi

k=1(x
k
i ) = µi

−εi and (xki ) = µj when ξi(k) ∈ V ∗ (which happens for
only one value of k).

Let ei,j ∈ E ∖ T , with vi, vj ∈ V ∗. We glue back the tori Ti,j corresponding to the edge
ei,j . This corresponds to a HNN-extension of MT by gluing a handle from S1 × ∂ωi(vj)Dmi

to S1 × ∂ωj(vi)Dmj . The fundamental group of the extension contains a new generator which
corresponds to the homological class of the cycle curve γi,j from Definition 1.5.5. Suppose
that i < j. Since the gluing map once again permutes the meridian and longitude of Ti,j , the new
relations are Ä

x
ωi(vj)
i

ä
= γe

−1 · fj · γe
î
fi,
Ä
x
ωi(vj)
i

äó
= 1

fi = γe
−1 ·

Ä
x
ωj(vi)
j

ä
· γe

î
fj ,
Ä
x
ωj(vi)
j

äó
= 1

But fi (resp. fj) is homotopic to µi (resp. µj), which yields the simplified relationsÄ
x
ωi(vj)
i

ä
= µj

γe

Ä
x
ωj(vi)
j

ä
= µi

(γe
−1) [µi, µj

γe ] = 1

Doing the HNN-extensions of π1(MT , b) for all edges ei,j ∈ E∖T , and then replacing all
Ä
x
ωi(vj)
i

ä
for every vi ∈ V ∗ in the previous presentation gives the desired presentation of π1(M, b).
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Figure 1.5.2: Minimal graph of the generic combinatorics with 4 vertices

Example 1.5.13. Consider the graph shown on Figure 1.5.2. Each vertex vi is decorated with
its Euler number in green and its local order ωi in blue. Each edge of E is oriented and the edges
of E ∖ T are drawn in red. The corresponding presentation PΓ (T , δ,Ω) of π1(M,v0) is given by:

Generators: meridian curves µ1, µ2, µ3, µ4 ; cycle curves γ2,3, γ3,4, γ2,4.

Relations:

µ4µ3µ2 = µ1
−1 µ2µ1µ4 = µ3

−1 µ1µ3µ4 = µ2
−1 µ2µ3µ1 = µ4

−1

[µ1, µ2] = 1 [µ1, µ3] = 1 [µ1, µ4] = 1

[µ2, µ3
γ2,3 ] = 1 [µ3, µ4

γ3,4 ] = 1 [µ2, µ4
γ2,4 ] = 1

7

1.5.3 First homology group of a graph manifold
Recall that every vertex vi ∈ V of the graph Γ is decorated with the Euler number εi ∈ Z of the
corresponding circle bundle component Si.
Definition 1.5.14. The meridian homology V (Γ) of a graph Γ is the quotient of the free abelian
vertex group C0(Γ) by the normally generated subgroup

R(Γ) :=
〈
εi · vi +

∑
vj∈Vi

vj , vi ∈ V
〉

with the exact sequence:

0 R(Γ) C0(Γ) V (Γ) 0
η

For any element v ∈ C0(Γ), we also note v its class in V (Γ). 3

The terminology ‘meridian homology’ comes from the fact that V (Γ) corresponds precisely to
the contribution of the meridians of the components to the first homology group of the graph
manifold M .
Example 1.5.15. The meridian homology of the graph from Figure 1.5.2 has four generators
µ1, µ2, µ3, µ4 with the relation:

µ1 + µ2 + µ3 + µ4 = 0 7

When a disambiguation is necessary, for a closed curve w inside a manifold M we use the
notation [w] for its class inside H1(M,Z), which we shorten to H1(M).
Theorem 1.5.16. Let γ ∈ EΓ (Ω) be a graphed embedding. Then γ induces a group isomorphism

γ∗ : V (Γ) �H1(Γ)
∼−→ H1(M) ◁
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Proof. Abelianising the exact sequence of Theorem 1.5.9 yields a new exact sequence

0 PΓ (T , δ, γ) FV ∗ π1(Γ, r) π1(M, b) 0

0 R(Γ) C0(Γ) �H1(Γ) H1(M,Z) 0

Ab

γT ,δ

Ab Ab

Ab(γ)

which is exactly the defining exact sequence of V (Γ) �H1(Γ). The morphism γ∗ is defined as
the morphism induced by Ab(γ) on the quotient, which does not depend on the choice of the
presentation PΓ (T , δ, γ).

Remark 1.5.17. Even if the morphism γ∗ does not depends on the presentation PΓ (T , δ, γ)
and its underlying parameters, it is necessary to fix such a presentation to obtain a basis of
C0(Γ) �H1(Γ) and thus compute the exact values of γ∗. ◊

Proposition 1.5.18. For every pair of graphed embeddings γ, γ′ ∈ EΓ (Ω), we have(
γ∗

−1 ◦ γ′∗
)
|V (Γ)

= IdV (Γ) ◁

Proof. Fix a spanning tree T and a graph ordering Ω. Let vi ∈ V . By construction, γ′∗(vi) = [µi],
which by Definition 1.5.6 has the same class as the fibre fi over γ(vi) inside Si. Similarly, γ∗(vi)
is equal to the class of the fibre f ′i over γ′(vi) inside Si. But by Lemma 1.5.12, all fibres of a
circle bundle have the same homological class. Therefore all morphisms γ∗ send vi to the same
unique class [fi] ∈ H1(M) coming from V (Γ). Thus γ′∗(vi) = [fi] and γ−1

∗ ([fi]) = vi.

Remark 1.5.19. When M is the boundary of a regular neighbourhood of a complex algebraic
curve embedded in the projective plane CP2, V (Γ) is also isomorphic to the first homology
group of the exterior of the curve. For the case of complex line arrangements this is proven in
Proposition 2.4.22. ◊

1.6 Graph stabiliser

1.6.1 Definition of the graph stabiliser
The graph stabiliser is the quotient of Hom(H1(M), V (Γ)) by the differences between every two
ordered graphed embeddings. The functions of the quotient are thus stable by all possible changes
of the generators of H1(M). Let Γ be a graph verifying Conditions 1.3.18 on page 16 and let M
be the associated graph manifold. Let also Ω be an ordering on Γ.
Definition 1.6.1. The graph stabiliser GΓ(Ω) is defined as the quotient of

Hom(H1(Γ), V (Γ))

by the subgroupÆ
ϕ ◦ (γ∗ − γ′∗)|H1(Γ)

∣∣∣∣∣ γ, γ′ ∈ EΓ (Ω) , ϕ ∈ Hom(H1(M), V (Γ))

(ϕ ◦ γ∗)|V (Γ) = IdV (Γ)

∏
3

Our objective in the remainder of this section is to find a combinatorial presentation of the
graph stabiliser.

1.6.2 Difference maps
The difference maps are used to compute the homological difference between two graphed embed-
dings. This difference lies exclusively on the cycle generators of H1(M) since by Proposition 1.5.18
two graphed embeddings always coincide on the homological meridian generators.
Definition 1.6.2. Let vi ∈ V be a vertex of the graph Γ. Let ⟨Vi⟩ be the submodule of C0(Γ)
freely generated by Vi. The natural map

gi : ⟨Vi⟩ −→ H1 (Dmi
)

which sends vk to the class [∂wi(vk)Dmi ] for every vk ∈ Vi is called the homological neighbour
map. 3
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Consider two ordered graphed embeddings γ, γ′ ∈ EΓ (Ω) and let ei,j ∈ E be an edge with
δi,j = 1. Let αi (resp. α′

i) be the ordered star of Omi
associated to γ (resp. γ′) for the vertex

vi. We can always suppose that αi and α′
i have the same starting point in Dmi

. The branches
α
ωi(vj)
i and α′ωi(vj)

i both have their end points on the circular boundary component ∂ωi(vj)Dmi .
Let aji be a simple circle arc that joins them, such that the curve

wj
i (αi, α

′
i) := α

ωi(vj)
i ◦ aji ◦

Ä
α′ωi(vj)

i

ä−1
⊂ Dmi

is closed.
Definition 1.6.3. The edge difference map is the morphism

∆ : EΓ (Ω)
2 −→ Hom(C1(Γ), C0(Γ))

defined by:

∆(γ, γ′)(ei,j) := g−1
i

Ä
wj

i (α, α
′)
ä
− g−1

j

(
wi

j(α, α
′)
)
∈ ⟨Vi, Vj⟩ ⊂ C0(Γ) 3

Proposition 1.6.4. For every γ, γ′ ∈ EΓ (Ω), the edge difference map ∆ verifies the following
properties:

(i) ∆(γ, γ) is the trivial group homomorphism.

(ii) ∆(γ, γ′)(e) = −∆(γ′, γ)(e) for every e ∈ C1(Γ). ◁

Definition 1.6.5. Let δ be an orientation of Γ. The cycle difference map is the map‹∆ : EΓ (Ω)
2 −→ Hom(H1(Γ), V (Γ))

defined by ‹∆(γ, γ′) := (ζ∗δ � η) ◦∆(γ, γ′)

where ζδ : H1(Γ)→ C1(Γ) is the natural inclusion map and η : C0(Γ) ↠ V (Γ) is the projection
from Definition 1.5.14. 3

Remark 1.6.6. The cycle difference map ‹∆ verifies properties similar to Proposition 1.6.4 which
are induced by the properties of the edge difference map ∆. ◊

As announced, the cycle difference map gives a first reformulation of the graph stabiliser
definition.
Proposition 1.6.7. Let γ, γ′ ∈ EΓ (Ω). Then

γ∗ ◦ ‹∆(γ, γ′) = (γ∗ − γ′∗)|H1(Γ)
∈ Hom(H1(Γ), V (Γ)) ◁

Theorem 1.6.8. There is a natural identification

GΓ(Ω) ≃ Hom(H1(Γ), V (Γ))⧸̈ ‹∆(γ, γ′) | γ, γ′ ∈ EΓ (Ω)
∂ ◁

Proof. Let γ, γ′ ∈ EΓ (Ω) and ϕ ∈ Hom(H1(M)) such that (ϕ ◦ γ∗)|V (Γ) = IdV (Γ) as in Defini-
tion 1.6.1 of GΓ(Ω). Then by Proposition 1.6.7:

ϕ ◦ (γ∗ − γ′∗)H1(Γ)
= ϕ ◦ γ∗ ◦ ‹∆(γ, γ′) = ‹∆(γ, γ′)

The remainder of this subsection is dedicated to the proof of Proposition 1.6.7. Let ei,j ∈ E
be an edge. By Definition 1.4.4 on page 19 of γ ∈ EΓ (Ω), there exist an ordered model X, sections
si, sj and ordered stars αi, αj such that

γ(e⃗i,j) = “si(αωi(vj)
i ) γ(e⃗j,i) = “sj(αωj(vi)

j )

where e⃗i,j is the half-edge of Γ starting from vi and going towards vj (and reciprocally for e⃗j,i).
The junction point of γ(e⃗i,j) and γ(e⃗j,i) is exactly the point γ ∩ Ti,j . We therefore have

γ(ei,j) = γ(e⃗i,j) · γ(e⃗j,i)−1 ⊂ “si(Dmi
) ∪ “sj(Dmj

)

We use similar notations for γ′.
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Lemma 1.6.9. The following diagram commutes

H1 (Dmi
) H1(M)

⟨Vi⟩ V (Γ)

“si∗
η

gi γ∗ ◁

Proof. As noted in Remark 1.5.8 on page 22, for any vk ∈ Vi the meridian curve µk has the
same homological class as the image by “si of the corresponding boundary component ∂wi(vk)Dmi

.
This precisely means that “si∗(vk) = [µk]. But by Theorem 1.5.16, we also have γ∗(vk) = [µk] by
construction of γ∗.

Corollary 1.6.10.
(“si∗)−1 ◦ “s′i∗ = IdH1(Dmi)

◁

Proof. This is an immediate consequence of combining Lemma 1.6.9 with Proposition 1.5.18.

b0
′

i

“s′j(Σj)

b0i

“sj(Σj)

wi

Si

b0
′

j

“s′i(Σi)

b0j

“si(Σi)

wj

Sj

aj
i

ai
j

. . . . . .

γ(ζδ(c))

γ′(ζδ(c))

Figure 1.6.1: Difference between two graphed embeddings

Proof of Proposition 1.6.7. Up to isotopy, one can always suppose that the starting point b0i of
γl(ei,j) and the starting point b0i

′ of γ′l(ei,j) lie in the same fibre fi of Si, with a path wi joining
them. Then the curves

wL(γ, γ
′)(ei,j) := γ(e⃗i,j) · aji · a

i
j · γ′(e⃗i,j)

−1 · wi
−1 ⊂ Si

wR(γ, γ
′)(ei,j) := γ(e⃗j,i) · aji · a

i
j · γ′(e⃗j,i)

−1 · wi
−1 ⊂ Sj

are closed, as shown on Figure 1.6.1. By retracting the vertical fibre curves within Si and Sj , we
obtain the following equalities for the homological classes:

[wL(γ, γ
′)(ei,j)]M = “si∗(îwj

i (αi, α
′
i)
ó
Dmi

)
[wR(γ, γ

′)(ei,j)]M = “sj∗([wi
j(αj , α

′
j)
]
Dmj

)
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Let c ∈ H1(Γ) and write ζδ(c) =
∑

k δk · eik,ik+1
with δk := δik,ik+1

. By construction of the
embedding γ ∈ EΓ (Ω) we have

γ(ζδ(c)) =
∏
k

γ(eik,ik+1
)
δk

Inside H1(M), (γ∗ − γ′∗)(c) can be seen as the class of the closed curve

w(γ, γ′)(c) = γ(ζδ(c)) · wi0 · γ′(ζδ(c))
−1 · wi0

−1

As shown on Figure 1.6.1, a 2-chain bordering that curve inside M can be decomposed into a sum
of squared 2-chains bordering each of the closed curves wL(γ, γ

′)(eik,ik+1
) and wR(γ, γ

′)(eik,ik+1
)

on each reunion Sik ∪ Sik+1
. Inside H1(M), this yields the equation:

(γ∗ − γ′∗)(c) =
∑
k

δk
(
[wL(γ, γ

′)(eik,ik+1
)]
M
− [wR(γ, γ

′)(eik,ik+1
)]
M

)
Applying successively Lemma 1.6.9 and Definition 1.6.3 of the edge difference map ∆(γ, γ′), we
get:

[wL(γ, γ
′)(eik,ik+1

)]
M
− [wR(γ, γ

′)(eik,ik+1
)]
M

= “si∗ ◦ gi ◦ gi−1
(î
wj

i (αi, α
′
i)
ó
Dmi

)
− “sj∗ ◦ gj ◦ gj−1

([
wi

j(αj , α
′
j)
]
Dmj

)
= γ∗ ◦ η ◦∆(γ, γ′)(eik,ik+1

)

Replacing in the sum yields:

(γ∗ − γ′∗)(c) =
∑
k

δk · γ∗ ◦ η ◦∆(γ, γ′)(eik,ik+1
)

= γ∗ ◦ ((ζ∗δ � η) ◦∆(γ, γ′)) (c)

= γ∗ ◦ ‹∆(γ, γ′)(c)

1.6.3 Presentation of the graph stabiliser
The results obtained in Section 1.1.3 allows us to compute explicitly the image of the cycle
difference map ‹∆ and thus give a combinatorial presentation of GΓ(Ω).
Theorem 1.6.11. The group GΓ(Ω) is finitely presented and admits the presentation:

Generators: c∗ � ṽ for every c ∈ H1(Γ) and v ∈ V .

Relations: the images by ζ∗δ � η of

(GS1) e∗i,j � vi = 0 and e∗i,j � vj = 0 for every edge ei,j ∈ E.

(GS2) e∗i,j � vk − δi,jδj,k · e∗j,k � vi = 0 for every pair of adjacent edges ei,j and ej,k in Γ. ◁

Corollary 1.6.12. The graph stabiliser GΓ(Ω) does not depend on the choice of the graph
ordering Ω. ◁

Proof of Theorem 1.6.11. Applying Definition 1.6.5, the subgroup¨‹∆(γ, γ′) | γ, γ′ ∈ EΓ (Ω)
∂
⊂ H1(Γ) � V (Γ)

in isomorphic to the image by ζ∗δ � η of the subgroup〈
∆(γ, γ′) | γ ∈ EΓ (Ω) ,Ψ ∈ Homeo++

Γ (M)
〉
⊂ C1(Γ) � C0(Γ)

By Theorem 1.4.9 on page 20, this subgroup is in turn isomorphic to

GΓ :=
〈
∆(Ψ(γ), γ) | γ ∈ EΓ (Ω) ,Ψ ∈ Homeo++

Γ (M)
〉

Therefore, we just have to determine that GΓ is freely generated by the elements of type (GS1)
and (GS2) listed above.
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Let Ψ ∈ Homeo++
Γ (M) and γ ∈ EΓ (Ω). Recall from the proof of Theorem 1.4.9 that the

action of Ψ on γ can be seen as induced by the combined actions of elements ψi ∈ P (Dmi
) on

each ordered star αi ∈ Dmi
that compose γ.

Let ei,j ∈ E. We reuse the notations from Sections 1.2 and 1.6.2. We want to compute
∆(ψi · γ, γ)(ei,j) where the action of ψi ∈ P (Dmi) is extended by the identity everywhere outside
Si. In particular, ψi only acts on the γ(e⃗i,j). Applying Definition 1.6.3, ∆(ψi · γ, γ)(ei,j) can be
seen as the image by gi−1 of the homological class inside H1 (Dmi

) of the loop

(ψi · αi)
ωi(vj) · (αωi(vj)

i )
−1

The generators of P (Dmi
) were given in Theorem 1.1.2 on page 10 : the Dehn twists dk and

dj,l for 1 ≤ j, k, l ≤ mi. The actions of each of these generators on the path of ordered stars
are shown on Figure 1.2.3 on page 13. Denote by xk the class of ∂kDmi

inside H1 (Dmi
). By

superimposing the upper part of Figure 1.2.3 on the lower part, we see that for every vj , vk, vl ∈ Vi
we have:

[(dr · γ)(ei,k) · γ(ei,k)−1
]Σi

=

®
δi,k · xωi(vk)

i if r = ωi(vk).
0 otherwise.

[(dr,s · γ)(ei,j) · γ(ei,j)−1
]Σi

=

{
δi,j ·

Ä
x
ωi(vj)
i + x

ωi(vl)
i

ä
if {r, s}= {ωi(vj), ωi(vl)}

0 otherwise.

Recall from Definition 1.6.2 that gi−1(xk) = vk ∈ Vi. Hence we get that for every vertices
vj , vk, vl ∈ Vi the differences are:

∆(dωi(vk) · γ, γ) = δi,k · e∗i,k � vk

∆(dωi(vj),ωi(vl) · γ, γ) = δi,j · e∗i,j � (vj + vl) + δi,l · e∗i,l � (vj + vl)

Repeating this for all vertices vi ∈ V gives the generating set of the subgroup GΓ. However, it
can be simplified by removing the first generator from the second when k = j and k = l, which
gives:

GΓ =
〈
e∗i,k � vk, e

∗
i,j � vl − δj,iδi,l · e∗i,l � vj

∣∣ ∀ vi ∈ V, ∀ vj , vk, vl ∈ Vi〉
The group GΓ is thus generated by the elements of types (GS1) and (GS2).

Example 1.6.13. We apply Theorem 1.6.11 to compute a simplified combinatorial presentation
of the graph stabiliser GΓ for the data of the graph Γ, spanning tree T and orientation δ of
Figure 1.5.2 on page 24.

The basis of H1(Γ) associated to E ∖ T is given by:

c34 = −e31 + e34 + e41 c42 = e21 + e42 − e41 c32 = e21 + e32 − e31

The dual map ζ∗δ : C1(Γ)→ H1(Γ) is given by:

e∗21 7→ c∗42 + c∗32 e∗31 7→ −c∗34 − c∗32 e∗41 7→ c∗34 − c∗42
e∗32 7→ c∗32 e∗42 7→ c∗42 e∗34 7→ c∗34

The generators of GΓ are thus:

c∗32 ⊗ v2 c∗34 ⊗ v2 c∗42 ⊗ v2
c∗32 ⊗ v3 c∗34 ⊗ v3 c∗42 ⊗ v3
c∗32 ⊗ v4 c∗34 ⊗ v4 c∗42 ⊗ v4

Now we compute the relations. This is done in two steps: first writing the relations of GΓ inside
C1(Γ) � C0(Γ), and then taking their image by the map ζ∗δ � η. We use the symbol ≡ to denote
the equivalence of relations in the group GΓ. The first set of relations of type (GS1) is given by:

e∗32 ⊗ v3 7→ c∗32 ⊗ v3 e∗32 ⊗ v2 7→ c∗32 ⊗ v2
e∗34 ⊗ v3 7→ c∗34 ⊗ v3 e∗34 ⊗ v4 7→ c∗34 ⊗ v4
e∗42 ⊗ v4 7→ c∗42 ⊗ v4 e∗42 ⊗ v2 7→ c∗42 ⊗ v2
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The second set of relations of type (GS1) is given by:

e∗21 ⊗ v2 7→ (c∗42 + c∗32)⊗ v2 ≡ 0

e∗21 ⊗ v1 7→ −(c∗42 + c∗32)⊗ (v2 + v3 + v4) ≡ −c∗42 � v3 − c∗32 � v4

e∗31 ⊗ v3 7→ −(c∗32 + c∗34)⊗ v3 ≡ 0

e∗31 ⊗ v1 7→ (c∗32 + c∗34)⊗ (v2 + v3 + v4) ≡ c∗32 � v4 + c∗34 � v2

e∗41 ⊗ v4 7→ (c∗34 − c∗42)⊗ v4 ≡ 0

e∗41 ⊗ v1 7→ −(c∗34 − c∗42)⊗ (v2 + v3 + v4) ≡ −c∗34 � v2 + c∗42 � v3

Similar computations show that all relations of type (GS2) are redundant for this set of data. 7

1.6.4 Plumbing moves
In [Neu81, Proposition 2.1], Neumann gives a series of plumbing moves that can be performed
on any graph structure Θ of a graph manifold M without changing the oriented diffeomorphism
type of M . Using these moves one can reduce any decomposition of M in Seifert manifolds to
the minimal graph structure of Theorem 1.3.15.

The original topological Definition 1.6.1 of the graph stabiliser is only valid as such on the
minimal graph Γ of the manifold M , because it critically relies on Theorem 1.3.21 that ensures
that the minimal graph structure is preserved up to homeomorphism of M . However, Neumann’s
theorem still allows us to compute the purely combinatorial presentation of the graph stabiliser
GΓ given in Theorem 1.6.11 using non-minimal graphs.

Neumann’s plumbing calculus is defined in a more general class of graphs than the ones
verifying only Conditions 1.3.18. In particular, he allows ‘negative’ edges which correspond to a
gluing map that reverses the orientation of the meridian and longitude of the gluing torus. By
this definition, our class of graphs contains only ‘positive’ edges. It turns out that only one flavour
of the Neumann plumbing moves, the blowing down, can give graphs respecting Conditions 1.3.18.
The two applicable moves are denoted by (R1b) (binary case) and (R1u) (unary case) respectively.
They are represented on Figure 1.6.2, using the notation Vi = ‹Vi ⊔ {va}.

vi

εi‹Vi vj

εj

Ṽjva

εa = −1

ei,a ea,j

Γ′

Γ

R1b

vi

εi + 1‹Vi vj

εj + 1

Ṽjei,j

(a) Binary case

vi

εi‹Vi va

εa = ±1

ei,a

Γ′

Γ

R1u

vi

εi − εa‹Vi
(b) Unary case

Figure 1.6.2: Blowing-down

For the subclass of graph manifolds that we consider, removing the minimality condition is
therefore equivalent to alleviating Condition (G3). For the remainder of this section we thus
consider graphs that verify the new set of conditions:

Conditions 1.6.14. The graph Γ′ is such that:

(G1) no edge starts and ends at the same vertex.
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(G2) there is at most one edge between every two vertices.

(G3’) every vertex has at least three neighbours, except :

• vertices with ε = −1 can have one or two neighbours.
• vertices with ε = 1 can have one neighbour.

Thanks to Theorem 1.6.11, the graph stabiliser can be seen as a combinatorial object which
can thus be defined on graphs verifying only the new Conditions 1.6.14. Then applying any of
the blowing-down moves leave the graph stabiliser unchanged.
Theorem 1.6.15. If Γ and Γ′ are two graphs verifying Conditions 1.6.14, such that Γ is obtained
from Γ′ by a series of blowing-down moves, then there is a natural isomorphism GΓ′

∼−−→ GΓ. ◁

Remark 1.6.16. In all generality, the (R1b) move with εa = +1 could also be applied to the
family of graphs that we consider. This case is nevertheless not considered for two reasons. Firstly
because it is a combinatorial exception to Theorem 1.6.15. Secondly because the non-minimal
graphs which include this situation are precisely the graphs of the exceptional combinatorics of
Definition 2.2.18 on page 39, which correspond to graph manifolds that do not have a unique
minimal graph structure, i.e. exceptions of Theorem 1.3.15. ◊

The remainder of this section is dedicated to the purely combinatorial proof of Theorem 1.6.15
and can be skipped on first reading.
Lemma 1.6.17. If Γ′ and Γ are related by a series of blowing-down moves then there exist a
group isomorphism h and an epimorphism g such that the following diagram commutes:

C0(Γ
′) C0(Γ)

V (Γ) V (Γ)

g

η′ η

h

∼

◁

Proof. Suppose that Γ is obtained from Γ′ by a (R1b) blowing-down move on the edges ei,a and
ea,j . Define the morphism g by

va 7−→ vi + vj v 7−→ v if v ̸= va

By Definition 1.5.14 inside V (Γ′) we have the relations

va = vi + vj −εivi = va +
∑
v∈Ṽi

v −εjvj = va +
∑
w∈Ṽj

w (1.6)

Replacing va in the other two relations of Eq. (1.6) yields

−(εi + 1)vi =
∑
v∈Ṽi

v −(εj + 1)vj =
∑
w∈Ṽj

w

which are exactly the corresponding relations in V (Γ). All other generators and relations of V (Γ′)
are identical in V (Γ) and are indeed preserved by the plumbing move. Therefore we can define h
by h(v) := η(g(v)) for every v ∈ V ′.

Suppose that Γ is obtained from Γ′ by a (R1u) blowing-down move on the edge ei,a. Define
the morphism g by

va 7−→ −εavi v 7−→ v if v ̸= va

Inside V (Γ′) we have the relations

−εava = vi −εivi = va +
∑
v∈Ṽi

v (1.7)

Replacing va in the other two relations of Eq. (1.7) yields

−(εi − εa)vi =
∑
v∈Ṽi

v

which is exactly the corresponding relation in V (Γ). We can then define h by the same formula
as in the (R1b) case.
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Lemma 1.6.18. Let Γ and Γ′ be two graphs verifying Conditions 1.6.14 such that Γ is obtained
from Γ′ by a series of blowing-down moves. Let δ′ be an orientation of Γ′. Then there exist a
monomorphism f : C1(Γ) ↪→ C1(Γ

′), an orientation δ of Γ, and an isomorphism q : H1(Γ)
∼−→

H1(Γ
′) such that

ζδ ◦ q = f ◦ ζδ ◁

Proof. Suppose that Γ is obtained from Γ′ by a (R1b) blowing-down move on the edges ei,a and
ea,j . Define the morphism f by

ei,j 7−→ δ′a,j · ei,a + δ′i,a · ea,j e 7−→ e if e ̸= ei,j

and define the orientation δ by δi,j := δ′i,aδ
′
a,j and δ := δ′ everywhere else. The morphism q sends

any cycle going through ei,j inside Γ to the corresponding cycle going through ei,a and ea,j inside
Γ′, and is the identity on all other cycles. One easily verifies that ζδ′ ◦ q = f ◦ ζδ.

Suppose that Γ is obtained from Γ′ by a (R1u) blowing-down move on the edge ei,a. Define
the morphism f by the natural inclusion of E inside E′ and δ′ as equal to δ on E and equal
to any value in {±1} on ei,a. Any cycle c ∈ H1(Γ) going through ei,a does it twice in opposite
directions. In other terms

ζδ(c) = · · ·+ δj,i · ej,i + δi,a · ei,a − δi,a · ei,a + δi,k · ei,k + · · ·

Therefore q is the identity and we immediately have ζδ′ ◦ q = f ◦ ζδ.

Proof of Theorem 1.6.15. By Theorem 1.6.11, we have

GΓ(T ) = H1(Γ) � V (Γ)⧸(ζ∗δ � Id)(GΓ)

where GΓ ⊂ C1(Γ) � C0(Γ) is the free group generated by the elements of type (GS1) and
(GS2) listed in Theorem 1.6.11. Combining Lemmas 1.6.17 and 1.6.18, we have the following
commutative diagram

C1(Γ) � C0(Γ) C1(Γ′) � C0(Γ
′)

H1(Γ) � V (Γ) H1(Γ′) � V (Γ′)

ζ∗
δ �η

f∗�g

ζ∗
δ′�η′

q∗�h

∼

To prove the theorem it is enough to prove that (f∗ � g)(GΓ′) = GΓ. In both cases we only
compute the image of the non trivial elements. It is understood that f∗ � g restricts to the
identity on all other elements of GΓ′ not mentioned.

Suppose that Γ was obtained from Γ′ by a (R1b) blowing-down move on the edges ei,a and ea,j .
We have e∗i,j = δ′a,jf

∗(e∗i,a) = δ′i,af
∗(e∗a,j) and g(va) = vi + vj . On the elements of type (GS1) of

GΓ′ , we have

f∗(e∗i,a) � g(vi) = δ′a,j · e∗i,j � vi f∗(e∗i,a) � g(va) = δ′a,j · e∗i,j � (vi + vj)

f∗(e∗a,j) � g(vj) = δ′i,a · e∗i,j � vj f∗(e∗a,j) � g(va) = δ′i,a · e∗i,j � (vi + vj)

We obtain all the elements of type (GS1) of GΓ. Now let vl ∈ ‹Vi and vk ∈ Ṽj . On the elements of
type (GS2) of GΓ′ , we have

f∗(e∗i,a) � g(vj)− δ′i,aδ′a,j · f∗(e∗a,j) � g(vi) = δ′a,j(e
∗
i,j � vj + e∗i,j � vi)

f∗(e∗l,i) � g(va)− δl,iδ′i,a · f∗(e∗i,a) � g(vl)

= e∗l,i � (vi + vj)− δl,iδ′i,aδ′a,j · e∗i,j � vl

= e∗l,i � vi + (e∗l,i � vj − δl,iδi,j · e∗i,j � vl)

f∗(e∗a,j) � g(vk)− δ′a,jδj,k · f∗(e∗j,k) � g(va)

= δ′i,a · e∗i,j � vk − δ′a,jδj,k · e∗j,k � (vi + vj)

= −δ′a,jδj,k · e∗j,k � vj + δ′i,a(e
∗
i,j � vk − δi,jδj,k · e∗j,k � vi)
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We obtain all the elements of type (GS2) of GΓ.
Suppose that Γ was obtained from Γ′ by a (R1u) blowing-down move on the edge ei,a. We

have f∗(e∗i,a) = 0 and g(va) = −εavi. On the elements of type (GS1) of GΓ′ , we have

f∗(e∗i,a) � g(vi) = 0 f∗(e∗i,a) � g(va) = 0

All other elements of type (GS1) of GΓ′ are preserved and we thus obtain all the corresponding
elements of GΓ′ . Now let vl ∈ ‹Vi. On the elements of type (GS2) of GΓ′ , we have

f∗(e∗l,i) � g(va)− δl,iδ′i,a · f∗(e∗i,a) � g(vl) = −εi · e∗l,i � vi + 0

which is an element of type (GS1) of GΓ′ . Again all other elements of type (GS2) of GΓ′ are
identically mapped to all of the corresponding elements in GΓ.
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2.1 Presentation of line arrangements

Definition 2.1.1. A line arrangement is a union of complex lines

A =

n⋃
i=0

Li

drawn on the projective complex plane CP2. 3

In particular, for given homogenous coordinates [x : y : z] on CP2, there exist n homogenous
polynomials fi(x, y, z) of degree 1 such that

Li = {[x : y : z] ∈ CP2 | fi(x, y, z) = 0}

We denote by L = (Li)1≤i≤n the set of line components of A.
Definition 2.1.2. A defining polynomial f of A is a square-free homogenous polynomial such
that

A = {[x : y : z] ∈ CP2 | f(x, y, z) = 0} 3

In particular, the product PA =
∏n

i=1 fi is a defining polynomial of A.
Definition 2.1.3. The restriction of a line arrangement A to the standard affine chart C2 ≡ {[x :
y : 1] ∈ CP2} is called its affine part Aaff . 3

Definition 2.1.4. An affine line arrangement is a union of complex lines

Aaff =

n⋃
i=0

Laff
i

drawn on the complex plane C2. 3

If the line at infinity {z = 0} is not already in an arrangement A, then by a linear change of
coordinates one can always send any of the lines Li at infinity. The resulting affine part Aaff

then
coincides with the sub-arrangement (A∖ Li)

aff

. We often alternate between both projective and
affine points of view on arrangements. In general we will explicitly mention if the line at infinity
is within the arrangement only when it is relevant.

The intersections between the lines are called singular points. We write

Pi1,i2,...,im = Li1 ∩ Li2 ∩ · · · ∩ Lim

where m is called the multiplicity of the point. Alternatively, for a given singular point P , we
write VP = {Li1 , . . . , Lim} the sub-arrangement composed only with the m lines that meet P .
We denote by Q the set of all singular points.
Definition 2.1.5. Two arrangements A and A′ in CP2 are topologically equivalent if there exists
a homeomorphism Φ of the pair (CP2,A) to the pair (CP2,A′). 3

If two arrangements are topologically equivalent then there is a bijection between their sets of
lines that naturally extends into a bijection between their sets of singular points.

An ordering of a line arrangement A is a function θ : L → {1, . . . , n}. An ordered line
arrangement is the data of a line arrangement along with an ordering on its lines. In particu-
lar a topological equivalence homeomorphism Φ between ordered line arrangements induces a
permutation θΦ ∈ Sn on the set of lines L.
Definition 2.1.6. Two ordered line arrangements (A, θ) and (A′, θ′) are topologically equivalent
if θ = θ′ and there exists a topological equivalence homeomorphism Φ : (CP2,A) → (CP2,A′)
such that θΦ = Id. 3

An orientation of a line arrangement is the data of an orientation on every complex line
component Li ⊂ CP2 of A. Two oriented line arrangements are equivalent if there exists an
orientation-preserving topological equivalence between them.
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2.2 Combinatorics

2.2.1 Definitions
Combinatorics is a general concept that generalises incidence. It applies to all hyperplane
arrangements but also to other types of algebraic curves in CP2. However, since we are focused
on line arrangements, we introduce it in a form specific to this context.
Definition 2.2.1. A line combinatorics is a triple C = (L,Q,∈) where L is a finite set, Q is a
finite subset of P(L) and ∈ is a relation from Q to L such that:

(i) For every element P ∈ Q, there exist at least two distinct elements L,L′ ∈ L such that
P ∈ L and P ∈ L′.

(ii) For every pair L,L′ ∈ L with L ̸= L′ there exists a unique P ∈ Q such that P ∈ L and
P ∈ L′. 3

For an element P ∈ Q or L ∈ L, we often make use of the neighbour sets:

VP := {L ∈ L | P ∈ L} VL := {P ∈ Q | P ∈ L} (2.1)

The multiplicity of an element P ∈ Q or L ∈ L are defined respectively as m(P ) = #VP and
m(L) = #VL. In particular, for P ∈ Q, we have 2 ≤ m(P ) ≤ n where n = #L. Since every line
has to meet all the others exactly once, we have the relation:

∀ L ∈ L :
∑
P∈L

m(P ) = n− 1 +m(L)

The extreme values of the multiplicity correspond to two unique type of line combinatorics.
Definition 2.2.2. Let n ≥ 2.

• There is a unique line combinatorics which contains a P ∈ Q such that m(P ) = n. In this
case Q is a singleton {P}. This is called the trivial combinatorics with n lines.

• There is a unique line combinatorics where m(P ) = 2 for every P ∈ Q. This is called the
generic combinatorics with n lines. 3

Definition 2.2.3. An ordered line combinatorics is a line combinatorics C= (L,Q,∈) along with
the data of an ordering θ : L → {1, . . . , n}. 3

Note that Q is not ordered in general for the usual definition of an ordered combinatorics.
There is however a canonical way to order Q using the θ-lexicographic ordering on P(L).

There is an alternative way to describe ordered line combinatorics. Replace every P ∈ Q with
the set {θ(L) | P ∈ L}. Then the full ordered combinatorics can be retrieved from just the data
of Q as a set of sets. For example

(C, θ) = [[1, 2, 3]; [1, 4]; [2, 4]; [3, 4]]

It is much easier to write down explicit ordered combinatorics than unordered ones. Therefore,
we use the following notation

C = ([1, 2, 3]; [1, 4]; [2, 4]; [3, 4])

to denote an unordered combinatorics where the given order of both L and Q is purely indicative.

Example 2.2.4.

• ([1, 2, . . . , n]) is the unique trivial combinatorics with n lines.

• ([1, 2]; [1; 3]; [2, 3]) is the unique generic combinatorics with 3 lines.

• ([i, j] | 1 ≤ i ̸= j ≤ n) is the unique generic combinatorics with n lines. 7
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Definition 2.2.5. Two combinatorics C = (L,Q,∈) and C ′ = (L′,Q′,∈′) are isomorphic if there
exists a bijection λ : L → L′ such that if µ : Q → Q′ is the bijection naturally induced by λ on
the points, we have:

∀ L ∈ P, ∀ P ∈ Q : P ∈ L⇐⇒ µ(P ) ∈′ λ(L) 3

The group of automorphism of a combinatorics C is denoted AutC .
Example 2.2.6. The combinatorics of Example 2.2.4 have exceptionally large automorphism
groups:

• The automorphism group of the trivial combinatorics with n lines is isomorphic to the
permutation group Sn.

• The automorphism group of the generic combinatorics with n lines is also isomorphic to Sn.

For larger combinatorics, the automorphism group has in general a much simpler structure. 7

For a line arrangement A, there is a natural line combinatorics CA associated with A and
given by the incidence of the lines. If the arrangement is ordered, then CA inherits the ordering.
However, not every combinatorics can be realised by an arrangement.
Definition 2.2.7. A realisation of a line combinatorics C is a line arrangement A ⊂ CP2 such
that CA = C. The combinatorics C is called realisable. 3

Example 2.2.8. A realisation in RP2 of the ordered generic combinatorics with 4 lines is shown
on Figure 2.2.1. 7

L2

L3

L4

L
1

at

∞

Figure 2.2.1: Realisation of the generic combinatorics with 4 lines

An ordered line arrangement with n lines can be seen as an element of
( ˘CP2

)n
where ˘CP2

denotes the dual space. The set of all ordered realisations of a realisable combinatorics is defined
by

Σ(C) =
{
A ∈

( ˘CP2
)n ∣∣∣ CA = C

}
There is a natural action of PGL3(C) on CP2 which extends to its dual and then Σ(C). The
moduli space is defined as the quotient of Σ(C) by this natural action.
Proposition 2.2.9. If two line arrangements A and A′ are topologically equivalent then they
have isomorphic combinatorics CA and CA′ . ◁

The converse is wrong. In fact, a large part of the theory of line arrangements revolves around
measuring in which cases the combinatorics do not characterise the topological type.
Definition 2.2.10. A pair of line arrangements (A,A′) is called a combinatorial pair if CA is
isomorphic to CA′ . A combinatorial pair where A and A′ do not have the same topological type
is called a Zariski pair. 3

An usual way of building a combinatorial pair is to consider a defining polynomial fω
with a cyclotomic parameter ω ∈ Q(

√
n). Then the conjugated arrangements have the same

combinatorics.
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2.2.2 Graphs of a combinatorics
Let C = (L,Q,∈) be a combinatorics. Then C can be represented by a graph. If C is realisable,
this graph encodes the incidence data of every realisation of C.
Definition 2.2.11. The full incidence graph Γ(C) of C is defined by the following description:

Vertices: all elements of L ∪Q.

Edges: L ∈ L and P ∈ Q are linked by an edge eP,L if and only if P ∈ L. 3

The full incidence graph is a bipartite graph, which means that its set of vertices is separated
in two subsets P and Q, and every edge only link a vertex of P to a vertex of Q. The vertices
corresponding to P are called line-vertices and the vertices corresponding to Q are called point-
vertices.

If the combinatorics C is ordered then Γ(C) inherits the ordering on the line-vertices. Point-
vertices can then be labelled with the set of their line-vertex neighbours.

Since two lines always intersect, the point-vertices with only two neighbours do not carry any
characterising information. They can thus be removed without any loss of generality.
Definition 2.2.12. The reduced incidence graph Γ̃(C) of C is defined by the following description:

Vertices: all elements of L and all elements P ∈ Q such that m(P ) ≥ 3.

Edges:

• L ∈ L and P ∈ Q such that m(P ) ≥ 3 are linked by an edge eP,L if and only if P ∈ L.

• two line-vertices L,L′ ∈ L are linked by an edge eL,L′ if and only if the element P ∈ Q
that verifies P ∈ L,P ∈ L′ is such that m(P ) = 2. 3

Graphs may also bear additional combinatorial data, such as a graph ordering (see Defin-
ition 1.3.20 on page 17), an orientation or a spanning tree (see Definitions 1.5.1 and 1.5.2 on
page 21).
Definition 2.2.13. The standard orientation δ0 on Γ(C) is defined by

δ0L,P = −δ0P,L = −1 3

Now suppose that combinatorics C is ordered by θ : L → {1, . . . , n}.
Definition 2.2.14. The induced spanning tree T θ on Γ(C) is defined for every edge eLi,P by

• eL,P ∈ T θ if P ∈ L0 or if θ(L) = min θ(NP ).

• eL,P /∈ T θ otherwise. 3

The vertex vL0
is the root of T θ and every vertex vP lying at distance greater than 2 of vL0

has only one adjacent edge in T θ.
A graph orientation of Γ(C) can be derived from the ordering θ on L and an additional

ordering ν on Q. They induce two graph sub-orderings ΩL and ΩQ on the disjoint sets of vertices
corresponding to L and Q respectively.
Definition 2.2.15. The induced graph sub-ordering Ωθ

Q on Γ(C) is defined on every vertex vP
by θ|VP

where VP is seen as both the set of neighbour line-vertices of vP and the subset of lines
of L that contain P .

The induced graph sub-ordering Ων
L is defined on every vertex vL by ν|VL

where VL is seen as
both the set of neighbour point-vertices of vL and the subset of points of Q that are contained in
L. 3

Together, Ωθ
Q and Ων

L form a full graph ordering Ωθ,ν of Γ(C). Note that one could chose ν as
the θ-lexicographic ordering and thus obtain a graph ordering Ωθ of Γ(C) depending only on θ.
Proposition 2.2.16. Any graph ordering Ω of the full incidence graph Γ(C) restricts to a graph
ordering Ω̃ on the reduced graph ordering Γ̃(C) defined as follows:

• ω̃P = ωP for every P ∈ Q with m(P ) > 2.

• for every L ∈ L:
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◦ ω̃L(vP ) = ωL(vP ) if P ∈ VL is such that m(P ) > 2.
◦ ω̃L(vL′) = ωL(vP ) if P ∈ VL is such that m(P ) = 2 and VP = {L,L′}. ◁

Example 2.2.17. Consider the ordered generic combinatorics with 4 lines given by

(G4, θ) := [[1, 2]; [1, 3]; [1, 4]; [2, 3]; [2; 4]; [3, 4]]

A realisation of G4 is shown on Figure 2.2.1. The full incidence graph Γ(G4) ordered with Ωθ is
shown on Figure 2.2.2a. The edges of E ∖ T θ are shown in red. The reduced incidence graph
Γ̃(G4) ordered with the reduced ordering Ω̃θ is shown on Figure 2.2.2b. 7
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(a) Full Γ(G4)
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(b) Reduced Γ̃(G4)

Figure 2.2.2: Ordered incidence graphs of the generic combinatorics G4

2.2.3 Binary vertices
In fact most of the time the reduced incidence graph coincides with the minimal graph of the
graph manifold structure of the boundary manifold of a line arrangement. There are however
some exceptions, which we establish in this section.
Definition 2.2.18. A combinatorics C is called exceptional if its reduced graph Γ̃(C) contains
reduced vertices of multiplicity 2, called binary vertices. A line arrangement whose combinatorics
is exceptional is also called exceptional. 3

Note that by Definition 2.2.12 of the reduced incidence graph, binary vertices can only be
line-vertices. The associated lines are also called binary. From the point of view of arrangements,
a line L is binary if and only if m(L) = 2. We write L>2 and Q>2 the sets of non-binary lines
and singular points of C.

In fact the combinatorics that contain binary vertices can be fully listed.
Theorem 2.2.19. Let C be an exceptional combinatorics with n ≥ 3. Then C is isomorphic to
one of the following:

(B1) the generic combinatorics ([1, 2]; [1, 3]; [2, 3]) with three binary lines.

(B2) the near-pencil combinatorics

([1, 2]; [1, 3]; · · · ; [1, n]; [2, . . . , n])

with exactly n− 1 binary lines.

(B3) one of the r-double-pencil combinatorics

([1, 2, . . . , r]; [1, r + 1, . . . , n]) ∪ ([a, b] | 2 ≤ a ̸= b ≤ n), 3 ≤ r ≤ n

2

with exactly one binary line. ◁
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Figure 2.2.3: The near-pencil combinatorics
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(b) Possible realisation in RP2

Figure 2.2.4: The r-double-pencil combinatorics

The proof of Theorem 2.2.19 is decomposed in the following Lemmas 2.2.20 to 2.2.23.
Lemma 2.2.20. The generic combinatorics with 3 lines ([1, 2]; [1, 3]; [2, 3]) is the only combinat-
orics that contains two binary vertices connected by an edge. ◁

Proof. Suppose that C has two connected binary lines L1, L2 ∈ L. Then there exists a P1,2 ∈ Q
which meets no other line other than L1 and L2. Consider a third line L3. Then L3 has to
meet both L1 and L2 in Pa and Pb respectively. If there is no other line in L, then C is the
generic combinatorics with three lines. Suppose that there exists a fourth line L4 ∈ L. Then L4

has to meet all of the previous lines. But L1 and L2 already meet two singular points, so L4

cannot create a third for either one of them. It cannot meet P1,2 either, since its multiplicity is
fixed. Thus L4 has to meet L1 in Pa and L2 in Pb. But then L4 would meet L3 twice, which is
impossible.

Lemma 2.2.21. Let C be a combinatorics with at least four lines that contains a binary line.
Then any singular point that does not meet the binary line has multiplicity 2. ◁

Proof. Let L0 be a binary line of C. It meets exactly two singular points Pa and Pb. Suppose
that there exists another singular point P ∈ Q>2 with m(P ) ≥ 3. Then there exist three lines
L1, L2, L3 ∈ L that meet P . But at least two of these three lines also need to meet L0 in either
Pa or Pb. They will thus meet twice, which is impossible.

Lemma 2.2.22. For n ≥ 4, the near-pencil combinatorics is the only combinatorics with n lines
that has more than one binary line. ◁
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Proof. We proceed by induction on the number of lines n.
Let C be a combinatorics with four lines that contains at least two binary lines L1, L2 ∈ L.

By Lemma 2.2.20, L1 and L2 meet on a point P0 ∈ Q>2 with m(P0) ≥ 3. Then there exists at
least another line L0 that meets P0. Let Pa (resp. Pb) be the other singular point of L1 (resp.
L2). Then the fourth line L3 must meet L1 in Pa and L2 in Pb, and it cannot meet L0 in P0.
The result is that C is the near-pencil combinatorics with four lines.

Suppose that the proposition is true for n ≥ 4 lines. Consider a combinatorics C with n+ 1
lines and suppose that it contains at least two binary lines L1, L2 ∈ L. By Lemma 2.2.20, L1 and
L2 meet on a point P0 ∈ Q>2 with m(P0) ≥ 3. Let Pa (resp. Pb) be the other singular point of
L1 (resp. L2). On L1 we have m(P0)+m(Pa) = n+2 and on L2 we have m(P0)+m(Pb) = n+2.
Thus m(Pa) = m(Pb). If m(P0) < n then m(Pa), m(Pb) and m(P0) > 2, which by Lemma 2.2.21
is impossible. Thus m(Pa) = n > 3. Therefore there exists a line Ln+1 ∈ L such that Pa ∈ Ln+1

but Pb, Pc /∈ Ln+1. Consider the sub-combinatorics “C obtained by removing Ln+1 from C. Then“C still has the two binary lines L1 and L2, so by assumption “C is the near-pencil combinatorics
with n lines.

In “C the lines L1 through Ln−1 are binary and the line Ln meet all of them in double points.
Now add back the line Ln+1. If Ln+1 goes through the point P2,...,n, then it meets L1 on a new
singular point, and C is exactly the near-pencil combinatorics with n+ 1 lines. If Ln+1 does not
go through P2,··· ,n, then it will create new singular points on n− 1 or n− 2 of the binary lines
L1, . . . , Ln−1, depending on whether he meets Ln at an existing singular point or not. In either
case, C would have at most one binary line remaining, which is a contradiction.

Lemma 2.2.23. For n ≥ 4, the r-double pencil combinatorics are the only combinatorics with
exactly one binary line. ◁

Proof. Let C be a combinatorics with n ≥ 4 lines and exactly one binary line L1. Let Pa, Pb ∈ Q
be the two singular points that meet P1. Denote by r = m(Pa). Then m(Pb) = n + 1 − r.
Since Pa and Pb have symmetric role, we can suppose that r ≤ n

2 . Suppose that r = 2, and let
L2 be the other line that meets Pa. By Lemma 2.2.21, L2 must meet all other lines in points
of multiplicity 2. Then C is isomorphic to the near-pencil combinatorics with n lines, which
contradicts C having exactly one binary line. Therefore r = m(Pa) ≥ 3 and m(Pb) ≥ 3. By
Lemma 2.2.21, all other singular points of C have multiplicity 2. The lines that meet Pa form a
pencil of r lines, and the lines that meet Pb form another pencil of n− r lines, with the binary
line L1 being the only line shared by both pencils.

2.3 Boundary manifold of a line arrangement

In this section, for a given arrangement A in CP2 with n + 1 lines, the line at infinity is part
of the arrangement and is denoted by L0 ∈ A. In this case the affine part arrangement Aaff

coincides with the sub-arrangement (A∖ L0)
aff

with n lines in C2.
In [CS08], D. Cohen and A. Suciu give a geometrical construction of a regular neighbourhood

NA of a line arrangement A as follows. Choose homogenous coordinates x = [x : y : z] on CP2.
A closed, regular neighbourhood of A may be constructed as follows. Define ϕ : CP2 → R by

ϕ(x) = |PA(x)|2/∥x∥2(n+1)

and define NA := ϕ−1([0, δ]), for δ > 0 sufficiently small.
Definition 2.3.1. The boundary manifold BA of a line arrangement is defined as the boundary
of the regular neighbourhood NA. The exterior manifold EA is defined as

EA := CP2 ∖ ˚̃
NA 3

Remark 2.3.2. The exterior manifold EA is a deformation retract of the complementary of the
arrangement CP2 ∖A. ◊

The boundary manifold of A is a special case of a graph manifold, which means that it is
constructed algorithmically from the incidence graph, by gluing together Seifert manifolds as
explained in Section 1.3.2.
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In this section we want to give a somewhat more detailed construction of BA due to [Wes97]
which directly shows its graph manifold structure.

To do this we make use of the blow-up operation that helps to resolve the singularities of the
line arrangements.

2.3.1 Blow-up

Definition 2.3.3. Let (x, y) be coordinates on C2. Consider CP1 with coordinates [x′ : y′]. The
blow-up of the complex plane C2 at the point (0, 0) is defined as the set

X(0,0) :=
{
((x, y), [x′ : y′]) ∈ C2 × CP1 | xy′ = x′y

}
3

There exists a natural projection σ from X(0,0) to C2 defined by the diagram

X(0,0) C2 × CP1

C2

σ

By extension, the blow-up of an open neighbourhood U of (0, 0) in C2 is defined as “U := σ−1(U).
Note that σ : “U → U is an isomorphism everywhere outside (0, 0).

Using a change of coordinates, the blow-up can then be defined around any point P of C2.
Definition 2.3.4. Let S be a complex surface and let P ∈ S. Consider a local chart c : V →
U ⊂ C2 on a neighbourhood V of P inside S. The blow-up ”SP of S in P is defined as”SP :=

Ä
(S ∖ {P}) ⊔ “Uä⧸f

where f = σ−1 ◦ c is the isomorphism between V ∖ {P} and “U ∖ {σ−1((0, 0))}. 3

We now apply this construction to the case of line arrangements, where all non-binary singular
points will be blown-up separately.
Definition 2.3.5. The full blow-up of a line arrangement is the data of (X, “A), where X is the
blow-up of all non-binary singular points P ∈ Q>2 of A (called the blow-up space), and “A is the
pre-image of A inside the blow-up space.

The total blow-up of A is the data of (X ′, “Amax) where X ′ is the blow-up of all singular points
P ∈ Q of A, and “Amax is the pre-image of A. 3

We often called “A itself the ‘full blow-up of A’.
Example 2.3.6. The blow-up pre-image of a pencil with n lines is shown on Figure 2.3.1. 7

L1

L2
Lk

Lm

P

(a) Pencil of m lines

σ−1(P )

L̂1 L̂2 L̂k
”Lm

(b) Blow-up

Figure 2.3.1: Blow-up of a line arrangement

The irreducible components of “A are of two types:

• The components ”LP arising from the blow-ups of the points P ∈ Q>2 are called exceptional
lines.

• The components L̂i arising from the lines Li of A are called regular lines.



CHAPTER 2. HOMOLOGY INCLUSION OF LINE ARRANGEMENTS 43

We denote by L̂ the set of irreducible components of “A. We have:

L̂ =
Ä
L̂i

ä
1≤i≤n

∪
Ä”LP

ä
P∈Q>2

By construction, all irreducible components of “A intersect at binary singular points.
Proposition 2.3.7. The pre-image “A inside the blow-up is a divisor with normal crossings of
the line arrangement A. ◁

A divisor with normal crossings is a type of algebraic variety that contains only binary singular
points and smooth irreducible components. It has a combinatorial structure encoded by a graph
in a similar fashion to line arrangements but with simpler rules and no need to distinguish two
types of vertices.
Definition 2.3.8. Let “A be the full blow-up of a line arrangement. The dual graph Γ̂(A) of “A is
defined by the following description:

Vertices: vℓ for every irreducible component ℓ of “A.

Edges: vℓ and vℓ′ are linked by an edge eℓ,ℓ′ if and only if ℓ ∩ ℓ′ ̸= ∅ in “A. 3

Proposition 2.3.9. The dual graph Γ̂(A) of the full blow-up “A is identical to the reduced incidence
graph Γ̃(CA), with every point-vertex of Γ̃(CA) replaced with the vertex of the corresponding
exceptional-line component in Γ̂(A).

Similarly, the dual graph Γ̂max(A) of the total blow-up “Amax is identical to the full incidence
graph Γ(CA). ◁

2.3.2 Construction of the boundary manifold

Instead of constructing the boundary manifold on the original line arrangement A inside CP2 as
was done in Definition 2.3.1, we build the boundary manifold of the full blow-up “A inside the
blow-up space X, using its dual graph Γ̂(A). Theorem 2.3.12 justifies that the two constructions
lead to homeomorphic manifolds.

Just as with the line arrangement A in Definition 2.3.1, the boundary manifold of “A is obtained
by taking the boundary of a regular neighbourhood of “A. This neighbourhood is obtained by
gluing together local regular neighbourhoods of each irreducible component of “A.

For every line ℓ ∈ L̂ of the full blow-up (exceptional or regular), let Nℓ be a regular neigh-
bourhood of ℓ inside the full blow-up space X. One can always take them small enough such that
Nℓ ∩Nℓ′ = ∅ if ℓ ∩ ℓ′ = ∅.
Definition 2.3.10. Let

N “A :=
⋃
ℓ∈“LNℓ

Then N “A is a regular neighbourhood of “A inside the blow-up space X. 3

Definition 2.3.11. The manifold B “A := ∂N “A is called the boundary manifold of the full blow-up“A. 3

The usefulness of the full blow-up construction is justified by the following
Theorem 2.3.12. There is a homeomorphism between B “A and BA. ◁

Proof. Contracting each exceptional line ”LP ∈ L̂ back into a point gives an isotopy from B “A to
BA. This can be seen by thickening the lines of Figure 2.3.1: the ‘thick star’ around the pencil is
homeomorphic to the ‘thick comb’ around its blow-up (recall that σ−1(P ) is compact).

2.3.3 Graph structure
To make the graph manifold structure of B “A (and BA) explicit we re-decompose it as a union of
local boundary manifolds around each line of the blow-up.
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Definition 2.3.13. For every line ℓ ∈ L̂, define

Σℓ := ℓ∖
⋃

ℓ∩ℓ′ ̸=∅
ℓ ∩Nℓ′

Sℓ := ∂Nℓ ∖
⋃

ℓ∩ℓ′ ̸=∅
(∂Nℓ ∩Nℓ′) 3

For every line ℓ ∈ L̂, the surface Σℓ is homeomorphic to Σm(ℓ).
Definition 2.3.14. For a regular line Li ∈ L, define V >2

i := {P ∈ Q>2 | P ∈ Li} and let
b(Li) := #V >2

i be the blow-up number of Li. 3

The Euler number of a circle bundle coincide with its self-intersection number. The regular
neighbourhood of a regular complex line in CP2 has self-intersection 1. An exceptional line looks
like a regular line in the neighbourhood “U of the blow-up, but the change of charts f gives it a
self-intersection −1. Since this also affects the line components that meet the exceptional line,
their own self-intersection is reduced by 1 for each blow-up. One then obtains the following
description of the structure of the local boundary manifolds.
Theorem 2.3.15. For every regular line Li ∈ L, the manifold SLi

:= ∂N”Li
is a circle bundle

over ΣLi ≃ Σm(Li) with Euler number εi = 1− b(Li).
For every exceptional line ”LP with P ∈ Q>2, the manifold SP := ∂N

L̂P
is a circle bundle

over ΣPl ≃ Σm(P ) with Euler number εP = −1.
In particular, SLi

and SPl
verify Conditions 1.3.7 on page 14. ◁

The local boundary neighbourhoods assemble along their boundary components to form a
graph manifold which is exactly BA. It is however necessary to identify a collection of sections
on the boundary (see Definition 1.3.6 on page 14) on each of the circle bundles so that the graph
manifold respects Conditions 1.3.16 on page 16.
Proposition 2.3.16. For every line ℓ ∈ L̂, (ℓ ∩ ∂Nℓ′)ℓ∩ℓ′ ̸=∅ is a collection of section on the
boundary of Sℓ. ◁

Theorem 2.3.17 ([JY93]). Let A be a non-exceptional line arrangement in the sense of Defini-
tion 2.2.18. The boundary manifold BA is a graph manifold whose minimal graph structure is given
by the reduced incidence graph Γ̃(CA) decorated with the Euler numbers given in Theorem 2.3.15,
and it verifies Conditions 1.3.16. ◁

Corollary 2.3.18. Let A and A′ be two non-exceptional line arrangements with the same
combinatorics C. Then there exists a homeomorphism Φ : BA → BA′ . ◁

We can state a similar theorem when both arrangements are endowed with the same ordering θ.

Theorem 2.3.19. Let (A, θ) and (A′, θ) be two non-exceptional ordered line arrangements
with the same combinatorics C. Then there exists a strongly positive graphed homeomorphism
Φ : BA → BA′ . ◁

Proof. By Corollary 2.3.18, there exists a homeomorphism Φ : BA → BA′ . We thus write
B = BA ≃ BA′ . The graph structure of B is given by Γ = Γ̃(C). By Theorem 1.3.21, Φ
induces a permutation G(Φ) on the graph Γ. However, since the ordered arrangements are
equivalent, by Definition 2.1.6 the homeomorphism Φ induces the identity permutation on L,
and by extension on the whole combinatorics C. This means that G(Φ) = IdΓ, and thus Φ is a
graphed homeomorphism on B. Now take the image of Φ in Homeo++

Γ (B) by the quotient map
of Proposition 1.3.24 to obtain a strongly positive graphed homeomorphism from BA to BA′ .

One can make a similar construction of the boundary manifold of the total blow-up “Amax

of A. Theorem 2.3.12 extends to show that B “Amax is also homeomorphic to BA. However, the
graph structure of B “Amax , which by Proposition 2.3.9 is given by the full incidence graph Γ(CA),
is not minimal.

As described in Section 1.6.4, graphs for non-minimal structures can be obtained combinatori-
ally from the minimal graph by performing blowing-down moves represented on Figure 1.6.2 on
page 30. It occurs that the binary blowing-down move corresponds exactly to the inverse of the
action of the blow-up operation on the graph.
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Proposition 2.3.20. Let A be a non-exceptional line arrangement. Then the reduced incidence
graph Γ̃(CA) is obtained from the full incidence graph Γ(CA) by blowing down all vertices
corresponding to binary singular points. ◁

Proof. By Theorem 2.3.15, the Euler numbers of the vertices of Γ(CA) are: −1 for every vertex
vP with P ∈ Q and 1−#Ni for every vertex vi with Li ∈ L. Let P ∈ Q be a binary point and
write P = Li ∩ Lj . Blowing-down the vertex vP as described on Figure 1.6.2 will replace vP by
an edge exactly as in Γ̃(CA), and add 1 to the Euler numbers of vi and vj . Now consider a line
component Li and the associated vertex vi. We have Ni = N∗

i ⊔N ′
i where N ′

i is the set of all
binary singular points P ∈ Li. Blowing down all vertices vP for P ∈ N ′

i leaves 1−#N∗
i as the

new Euler number of vi. This is exactly the corresponding Euler number of vi in Γ̃(CA).

2.4 Exterior of a line arrangement

Let A be a line arrangement with n lines and let EA be the complement in CP2 of an open regular
neighbourhood of A as explained in Definition 2.3.1. Suppose that L0 is the line at infinity in
the standard affine chart. Throughout this section, C2 is thus assumed to be CP2 ∖ L0. The
complementary C2 ∖Aaff is naturally homeomorphic to CP2 ∖A. We define

L∗ := L∖ {L0} Q∗ := Q∖ VL0

2.4.1 Wiring diagram
The wiring diagram is a construction due to W. Arvola [Arv92] which allows to fully encode the
topology of an ordered line arrangement on a planar diagram.

We consider linear projections π : C2 → C such that for every L ∈ L∗, the restriction π|Laff is
a homeomorphism of the complex plane.
Definition 2.4.1. A linear projection π : C2 → C is said to be generic if each multiple point
P ∈ Q∗ lie in a different fibre of π. 3

Let ν : Q∗ → {1, . . . , r} be an ordering on Q∗. We denote by xl := π(Pl) the ordered images
of the singular points. Let R0 be an open rectangle in C containing all the points x1, . . . , xr and
let x0 and xr+1 ∈ C be points such that

Re(x0) ≤ inf Re(R0) Re(xr+1) ≥ supRe(R0)

Definition 2.4.2. A smooth path γ : [0, 1] → C is said to be ν-admissible if γ(0) = x0,
γ(1) = xr+1, and γ goes through x1 . . . xr in order. 3

Definition 2.4.3. Let π be a generic linear projection and let γ be a ν-admissible path. The
wiring diagram WA(π, γ) associated to π and γ is defined as the graph inside [0, 1] × C of the
multivalued function

πA : t ∈ [0, 1] 7−→ π−1(γ(t)) ∩ A

Each continuous value of πA which corresponds to the trace of

wL : t ∈ [0, 1] 7−→ π−1(γ(t)) ∩ L

is called the wire associated with the line L. 3

Since WA is a real one-dimensional object inside a real three-dimensional space, it can then
be projected back onto a real plane. By convention, we take the projection π0 : [0, 1]× C→ R2

given by
π0(t, x+ iy) := (t, y)

There are values of t ∈ [0, 1] for which several projected wires π0(wL(t)) might cross. If πA(t) = P
for some P ∈ Q∗, then all the wires wL(t) corresponding to the lines that contain P already
merged into a single point on WA before the projection π0. The image π0(P ) on the real plane is
thus called an actual crossing. However, if πA(t) do not correspond to a singular point of A, then
the crossing on the real plane was caused by π0 only. In this case, we replace it with a virtual
crossing in a similar fashion as on a knot diagram.
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The genericity of the projection π ensures that all crossings on the real plane (actual and
virtual) correspond to different values of t. In practice a non-generic wiring diagram can always
be slightly deform to produce a generic one, with a new ordering on Q∗. The admissible path γ
can also always be adjusted so that only two projected wires meet on any virtual crossing.

The projection π0(WA) with the addition of virtual crossings as described above is used as
the common representation of the wiring diagram WA.

2.4.2 Braid monodromy
The braid monodromy was first introduced for complex algebraic curves by O. Chisini [Chi33]
and O. Zariski [Zar29] and was later redefined by B. Moishezon [Moi81]. For the case of line
arrangements, it is a very similar construction to the wiring digram and is in fact an equivalent
way of presenting the same topological information. The construction of the braid monodromy
we present was developed by E. Artal, J. Carmona and J.I. Cogolludo in [ACC03].

First we introduce another geometrical interpretation of the braid group. Let y ⊂ C be
a subset of n points in the complex plane. The points of y are naturally ordered by their
ascending real parts. Fix a polygonal path py in C that joins the points of y in order. Let
{γi : [0, 1]→ C}1≤i≤n be a set of n paths that start and end at y such that for every t ∈ [0, 1], the
points {γ1(t), . . . , γn(t)} are all distinct. Define the group By to be the set of homotopy classes
of all such path sets {γ1, . . . , γn} in C× [0, 1] relatively to p0y and p1y. Similarly, given two sets
y1,y2 one can define the groupoid By1,y2 as the set of homotopy classes of paths joining y1 to y2

relatively to the paths p0y1
and p1y2

.
Proposition 2.4.4. There are natural isomorphisms

Iy : By Bn

Iy1,y2 : By1,y2 Bn

◁

The isomorphism Iy restricts to the pure braid group Pn for the subset of paths {γ1, . . . , γn}
that all start and end at the same respective point of y. Consider a projection π : C2 → C, which
is not necessarily generic in the sense of Definition 2.4.1. Several singular points can thus be sent
to a same point in C.
Definition 2.4.5. The projection π : C2 → C defines an assignation function

Xπ : π(Q∗) −→ P(Q∗)

that sends each point x ∈ π(Q∗) to the subset π−1(x) ∩Q∗. 3

The projection points x ∈ π(Q∗) such that Xπ(x) is a singleton are called generic. The others
are called non-generic. By assumption the projection never sends a line component L ∈ L∗ to a
single point. Therefore, two singular points sent to a common projection point x ∈ π(Q∗) cannot
be on the same component line of A. In other words, if P, P ′ ∈ Xπ(x) then VP ∩ VP ′ = ∅.

We write rπ := #π(Q∗) and define CA := C∖ π(Q∗). The set CA is a complex plane with rπ
punctures.

The restriction π : C2 ∖ Aaff → CA is a locally trivial bundle. For any point b ∈ CA, the
fibre π−1(b) is isomorphic to C with a set of n punctures y(b) corresponding to the points
wL(b) := π−1(b) ∩ L for every L ∈ L∗.
Definition 2.4.6. For every point b ∈ CA there is a corresponding ordering

θb : L∗ −→ {1, . . . , n}

which orders the set of points {wL(b) | L ∈ L∗} by their ascending horizontal coordinate in the
complex plane π−1(b). 3

Definition 2.4.7. Let b− and b+ be two points in CA and let γ : [0, 1]→ CA be a path joining
them. Consider the set of paths {γL | L ∈ L∗} joining y(b−) to y(b+) defined by taking the wires

γL : t ∈ [0, 1] 7−→ wL(γ(t))

as shown on Figure 2.4.1. Then the lifted braid of γ is defined by

ρA,π(γ) := Iy(b−),y(b+) ({γL | L ∈ L∗}) ∈ Bn 3
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Figure 2.4.1: Braid over the path αl ⊂ Σ

By construction, ρA,π(γ) only depends on the homotopic class of γ relatively to b− and b+.
Moreover, ρA,π restricts to Pn when b− = b+.

Now recall thatNL (resp. NP ) is a regular neighbourhood of L ∈ L∗ (resp. P ∈ Q∗) inside CP2.
We have NP ≃ Naff

P and the image π(NP ) is homeomorphic to a 2-disc. Let D be a closed disc in
C containing all the images π(NP ) for every P ∈ Q∗. The basis

Σ := D ∖
⋃

P∈Q∗

˚̇
π(NP ) ⊂ CA

is homeomorphic to a 2-disc with rπ holes.
Let b∞ ∈ ∂D be a base point. For any closed curve γ based in b∞, the lifted braid ρA,π is

pure and only depends on the homotopic class of γ in π1(Σ, b∞). We therefore have a map

ρA,π : π1(Σ, b
∞) −→ Pn

Changing the base point from b∞ to b∞
′
is done by an isomorphism of π1(Σ). This corresponds

to conjugating the map ρA,π with a braid β ∈ Bn such that θ∞
′
= σ(β) ◦ θ∞, where σ(β) ∈ Sn

is the permutation associated with β.
Definition 2.4.8. The map

ρA,π : π1(Σ) −→ Pn

defined up to conjugation in Bn is called the braid monodromy of the line arrangement A. 3

In general we do not use the morphism ρA,π itself, but rather its image on a set of generators
of π1(Σ, b∞). This set is called a representative and depends on additional parameters which can
be linked to the choice of a star on the basis Σ.
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Definition 2.4.9. Let π : C2 → C be a linear projection. Up to a change of coordinates
in C2, we suppose that all the points of π(Q∗) have distinct real parts. The projection ordering
νπ : π(Q∗)→ {1, . . . , rπ} is defined such that the points x1, . . . , xrπ of π(Q∗) ⊂ C verify

Re(x1) < · · · < Re(xrπ ) 3

Let θ be an ordering on L∗ and let b∞ ∈ ∂∞Σ such that θ∞ = θ. Let ν be an ordering on
π(Q∗) and let α ∈ Srπ be a star on Σ associated with the ordering ν ◦ νπ−1 (see Definition 1.2.1
on page 11). Let also xl ∈ π(Q∗) be a projection point. The local braid monodromy around xl is
δl := ρA,π(∂lΣ).
Proposition 2.4.10. For every Pl ∈ Q∗, the local braid monodromy δl is positive and

ρA,π(∂
lΣ) =

∏
P∈Xπ(xl)

∆2
θl(VP )

where θl is the order above the point bl := ∂+α
l at the extremity of the l-th branch of α (see

Figure 2.4.1). ◁

Note that since the sets VP are disjoint for all P ∈ Xπ(xl), the full twists that compose
ρA,π(∂lΣ) act on disjoint sets of strands and commute.

Proof. Write Xπ(xl) = {P1, . . . , Pk}. Let (x, y) be a coordinate system of C2 centred in P1. Up
to a change of coordinates, we can always suppose that π is the projection on the coordinate x.
The points P2, . . . , Pk have coordinates (0, y2), . . . , (0, yk). Up to isotopy, the local equation of
Aaff around the singular point Pi with multiplicity mi is of the form (y− yi)mi − xmi . The lifted
braid ρA,π(∂

l
+Σ) is therefore a product of full twists ∆2 over the mi strands corresponding to the

lines L ∈ VPi that contain Pi. The corresponding set of indices is θl(VPi) ⊂ {1, . . . , n}.

Definition 2.4.11. The shift braid to xl is defined by τl := ρA,π(α
l) ∈ Bn. 3

Definition 2.4.12. The pure braid given by

βl := τl · δl · (τl)−1 ∈ Pn

is called a star braid monodromy around xl. The set of braids

BA(π, θ, ν, α) = (βl)1≤l≤rπ
∈ (Pn)

rπ

is called a representative of the braid monodromy of A. 3

Proposition 2.4.13. The braid at infinity of the representative BA(π, θ, ν, α) is defined by the
equivalent formulas:

β0 := ∆2
θ∞(L∗) ·

(
rπ∏
l=1

βl

)−1

=
∏

P∈VL0

∆2
θ∞(VP ) ◁

Proof. Choose a system of coordinates (x, y) of C2 such that π is the projection on the horizontal
plane {y = 0} and (0, 0) is the centre of D0. Remember that the space C2 is seen as the standard
affine chart of CP2 given by {[x : y : 1] ∈ CP2}. In the exterior of D ⊂ CP2 (where x ̸= 0) apply
the change of coordinates

[x : y : 1] 7−→
[
Z−1 : Y Z−1 : 1

]
[1 : y/x : 1/x]←− [ [1 : Y : Z]

The new chart {[1 : Y : Z] ∈ CP2} is called the ∞-chart. Write D = {|x| ≤ r0}. The exterior
D∞ := CP1∖D̊ becomes the 2-disc {|Z| ≤ 1/r0} in the∞-chart. Similary, the line L0 = {x =∞}
becomes {Z = 0} and the projection π : (x, y) → (x, 0) becomes π : (Y, Z) → (0, Z). The
component L0 is now a vertical line for π, and all singular points of VL0 are all sent to a same
point x0 = (Y = 0, Z = 0). Let D∞′

be a disc inside the interior of D∞ that does not meet
any of the π(NP ) for every P ∈ VL0

. Note x∞′ the centre of D∞′
. By construction, the line

L∞ := π−1(x∞) is generic to the arrangement A, in the sense that all the intersection points
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L∞ ∩ Li for Li ∈ L∗ are double points. Now apply a new change of coordinates by making the
translation

[1 : Y : Z] 7−→ [1 : Y ′ : Z ′] := [1 : Y : Z]− x∞′

[x : y : 1] 7−→ [x′ : y′ : 1] := [x : y : 1]− x∞′

This defines two new charts which we call the ∞′-chart and the standard prime chart respectively.
The projection π is not affected. We also restrict the ∞′-chart to the interior of D∞′

. Inside
the standard prime chart, the line L∞ is the new line at infinity, but L0 is still vertical. Let
D′ := CP1 ∖D∞′

. Up to homeomorphism, we can suppose that all π(NP ) for P ∈ VL0
are equal

to a same disc D0. We therefore have D0 ⊔D ⊂ D′ as shown on Figure 2.4.2. Now consider the
path

α∗ :=

rπ∏
l=1

αl · ∂l+Σ · (αl)
−1

which has the same homotopy type as ∂D. The lifted braid ρA,π(∂+D) is therefore equal to
the product of all βl for 1 ≤ j ≤ m. Let α0 be an extra branch to the star α that joins b∞ to
∂D0. Up to homeomorphism, one can increase the diameter of D0 so that ρA,π(α

0) = 1. Let
γ0 := α0 · ∂+D0 · (α0)

−1. By Proposition 2.4.10, we have

ρA,π(γ
0) = ρA,π(∂+D

0) =
∏

P∈VL0

∆2
θ∞(VP )

Similarly, let α′ be another extra branch that joins b∞ to ∂D′ and let γ′ := α′ · ∂+D′ · (α′)
−1.

Since π−1(D′) contains all singular points of Q, including those of VL0 , then in an exterior
neighbourhood of D′ the local equation of the arrangement A∖ L0 is of the form (x′)

n − (y′)
n.

This means that
ρA,π(∂+D

′) = ∆2
θ∞(L∗)

This full twist braid over all strands is central in the braid group Bn. Therefore ρA,π(γ
′) =

ρA,π(∂+D
′). To conclude the proof we only need to say that γ′ has the same homotopy type as

γ0 · ∂+D. By unicity of the lifting braid and using the previous results, we get

ρA,π(∂+D
′) · ρA,π(γ

∗)
−1

= ρA,π(D
0)

D

α0α′

D0

D′

γ∗

Figure 2.4.2: Construction of the braid at infinity in the standard prime chart

Remark 2.4.14. The path γ∗ is also almost an admissible path in the sense of Definition 2.4.2.
The lifted braid over the branch parts of γ∗, seen as a geometrical object, corresponds exactly to
the wiring diagram WA(π, γ) in C× [0, 1] with all crossings removed. This is the core argument
to prove that the wiring diagram and the braid monodromy are topologically equivalent. ◊
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It is possible to change the parameters θ, ν and α of a braid monodromy representative
using two separate actions on the group (Pn)

rπ . First consider the Hurwitz action of Brπ on the
Cartesian product (Bn)

rπ .
Definition 2.4.15. Let G be a group. The right Hurwitz action of Brπ on the Cartesian product
Grπ is defined on any element (a1, . . . , arπ ) ∈ Grπ by

aj · σ∗
i :=


ajaj+1aj

−1 if j = i

aj−1 if j = i+ 1

aj otherwise

The action of each elementary braid σi is called a Hurwitz move. 3

Next consider the action of Bn on (Bn)
rπ by conjugation:

∀ τ ∈ Bn : (β1, . . . , βrπ )
τ := (β1

τ , . . . , βrπ
τ )

This action corresponds to the change of base point in π1(Σ).
Proposition 2.4.16 ([Moi81; ACC03]). Let BA(π, θ, ν, α) = (βl)1≤l≤rπ

be a representative of
the braid monodromy of A. For every couple (κ, τ) ∈ Brπ × Bn, define

• θ′ := σ(τ) ◦ θ.

• ν′ := σ(κ) ◦ ν.

• α′ := κ · α for the action of Proposition 1.2.4 on page 12.

• (β′
l)1≤l≤rπ

= (κ, τ) · (βl)1≤l≤rπ
for the Hurwitz and conjugation actions.

Then BA(π, θ
′, ν′, α′) coincides with (β′

l)1≤l≤rπ
and is another representative of the braid mono-

dromy of A. ◁

2.4.3 Fundamental group of the exterior
Either the wiring diagram or the braid monodromy can be used to obtain a presentation of the
fundamental group of the exterior of a line arrangement A, and both presentations are equivalent
[CS97]. The method using the wiring diagram was introduced by W. Arvola [Arv92]. The
method using the braid monodromy was first introduced by O. Zariski, E.R. van Kampen and
B. Moishezon, and was later readapted by A. Libgober [Lib86]. It is this method that we recall
here. For the similar wiring diagram method, see for example [FGM15].
Definition 2.4.17. Let Fr be the free group generated by r elements (f1, . . . , fr). The right
Hurwitz action of Br on Fr is defined by

fj
σi :=


fjfj+1fj

−1 if j = i

fj−1 if j = i+ 1

fj otherwise
3

We reuse notations from Section 2.4.2. The arrangement A is projected in C2 with the line
L0 at infinity. We fix π : C2 → C a projection. Let ω be an ordering on L∗ and ν be an ordering
on π(Q∗).

For every x ∈ CA, let D(x) be a closed disc in π−1(x) containing all the intersections
DL(x) := π−1(x) ∩N aff

L for L ∈ L∗ and define

∆(x) := D(x)∖ {wL(x) | L ∈ L∗}

Σ(x) := D(x)∖
⋃

L∈L∗

π−1(x) ∩
˚̄
N

aff

L

as shown on Figure 2.4.1.
Definition 2.4.18. Let αx ∈ On be an ordered star drawn on Σ(x). Then the curves

µi := αi
x · ∂iΣ(x) · (αi

x)
−1 for 1 ≤ i ≤ n

are called exterior meridians of the line arrangement A. Each meridian µi is associated with the
line (θx)

−1
(i) ∈ L∗ for the ordering above x. 3
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Theorem 2.4.19 ([Zar29; Moi81]). Let BA(π, θ, ν, α) = (βl)1≤l≤rπ
be a representative of the

braid monodromy of Aaff = A∖ L0. Let b∞ be the base point of α with θ∞ = θ. Let µ1, . . . , µn

be exterior meridian curves of A drawn on Σ(b∞). For every xl ∈ π(Q∗), let Ik ⊂ {1, . . . , n} be
the reunion of the sets θ(VP ) for every P ∈ Xπ(xl). The fundamental group of C2 ∖Aaff admits
the following presentation:

Generators: µ1, · · · , µn.

Relations:
(
µi

δl · µi
−1
)τl−1

= µi for every 1 ≤ l ≤ rπ and every i ∈ Il. ◁

Remark 2.4.20. The product µ1 · · ·µn has the same homotopy type as ∂+D(b∞) and corresponds
to the inverse of a meridian µ0 of the line at infinity. ◊

Corollary 2.4.21. The first homology group of the exterior H1(EA,Z) is a Z-module of finite
type given by the presentation

H1(EA,Z) =

〈
µ0, µ1, . . . , µn

∣∣∣∣∣
n∑

i=0

µi = 0

〉
◁

Recall the meridian homology V (Γ) of a graph Γ from Definition 1.5.14 on page 24. The-
orem 1.5.16 on page 24 states that V (Γ) represents the contribution of the meridians to the
first homology group of the graph manifold associated with Γ. It turns out that in the case of
line arrangements that exact same construction also corresponds to the first homology group of
the exterior in CP2. This result is crucial for the definition of the homology inclusion map in
Section 2.5.
Proposition 2.4.22. H1(EA,Z) = V (Γ̃(CA)). ◁

Proof. By Lemma 1.6.17 on page 31, one can compute V (Γ̃(CA)) on a bigger graph which reduces
to Γ̃(CA) by blowing-down moves. By Proposition 2.3.20 on page 45, the full incidence graph
Γ(CA) is such a graph. Therefore it is enough to prove that H1(EA,Z) = V (Γ(CA)). Recall
that Γ(CA) is the graph structure of the total blow-up boundary manifold B “Amax , which by
Theorem 2.3.12 on page 43 is homeomorphic to BA. By Definition 1.5.14, V (Γ(CA)) is a free
abelian module generated by one meridian curve for each vertex of the graph. In the case of
BA these are the meridians µ0, µ1 . . . , µn of Definition 1.5.6 on page 22 corresponding to the
line-vertices Li ∈ L, but also the meridians µP for every P ∈ Q, where µP is a fibre curve
inside the local boundary manifold SP around P . The Euler number values of each vertex were
given by Theorem 2.3.15 on page 44. In the total blow-up “Amax, the blow-up number b(Li) of
a line line Li ∈ L is equal to its multiplicity m(Li). Using the neighbour sets induced by the
Definition 2.2.11 on page 38 of Γ(CA), the relations of V (Γ(CA)) become

∀ Li ∈ L :
∑
P∈Vi

µP = (m(Li)− 1) · µi

∀ P ∈ Q :
∑

Li∈VP

µi = µP

Fix Li ∈ L. Replacing µP in the first relation for every P ∈ Vi yields:

(m(Li)− 1) · µi =
∑
P∈Vi

∑
Lk∈VP

µk = m(Li) · µi +
∑
P∈Vi

∑
Lk∈VP
k ̸=i

µk

since Li ∈ VP for every P ∈ Vi and m(Li) = #Vi. Thus we get:

0 = µi +
∑
P∈Vi

∑
Lk∈VP
k ̸=i

µk

But Li meets every other line Lj ∈ L exactly once. In other words:

L = {Li} ⊔
⊔

P∈Vi

{Lk ∈ L | Lk ∈ VP , k ̸= i}
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For every Li ∈ L, the previous relation thus becomes∑
Lj∈L

µj = 0

Since Q =
⋃

Li∈L Vi, we have replaced all the meridians µP for P ∈ Q, leaving only the µi for
Li ∈ L as generators. This simplification of the presentation of V (Γ(CA)) thus gives exactly the
presentation of H1(EA,Z) given by Corollary 2.4.21.

2.5 Homology inclusion map

Let A a non-exceptional line arrangement in CP2 and Γ := Γ̃(CA) its reduced incidence graph.
Let BA be the boundary manifold, as given in Definition 2.3.1 on page 41. As per Theorem 2.3.17
on page 44, BA is a graph manifold whose unique minimal graph structure is given by Γ.
Order the arrangement A with ω and let Ωθ be the reduced ordering on Γ induced by θ as per
Definition 2.2.15 and Proposition 2.2.16 on page 38.

Consider the inclusion map
iA : BA ↪−→ EA

and the induced map on the first homology groups

i∗A : H1(BA,Z) −→ H1(EA,Z)

By Theorem 1.5.16 on page 24, every graphed embedding γ ∈ EΓ

(
Ωθ
)

induces an isomorphism

γ∗ : V (Γ) �H1(Γ)
∼−−→ H1(BA,Z)

where the image of the subgroup V (Γ) is generated by the boundary meridian curves from
Definition 1.5.6 on page 22. Separately, by Corollary 2.4.21 the homology of the exterior manifold
EA is generated by the exterior meridian curves defined in Section 2.4.3 and there is a natural
group isomorphism

H1(EA,Z) ≃ V (Γ)

Therefore, we have a map
i∗A ◦ γ∗ : V (Γ) �H1(Γ) −→ V (Γ)

Lemma 2.5.1. For every graphed embedding γ ∈ EΓ

(
Ωθ
)
, we have

(i∗A ◦ γ∗)|V (Γ) = IdV (Γ) ◁

Proof. By construction, for every line Li of A both the boundary meridian curve µi and the
exterior meridian curve µ′

i have the same homology class as a the boundary ∂iD of a disc transverse
to Li.

Now consider the restriction

(i∗A ◦ γ∗)|H1(Γ)
∈ Hom(H1(Γ), V (Γ))

which we simply write i∗A ◦ γ∗ for short. Remember the graph stabiliser GΓ from Definition 1.6.1
on page 25, which by Corollary 1.6.12 on page 28 only depends on the graph Γ. Lemma 2.5.1
ensures that the class

|i∗A ◦ γ∗| ∈ GΓ
is well-defined and by construction does not depend on the choice of γ ∈ EΓ

(
Ωθ
)
. Our main

result states that this class element is a topological invariant of ordered line arrangements.
Theorem 2.5.2. Let A,A′ ⊂ CP2 be two non-exceptional line arrangements with the same
combinatorics C. Endow A and A′ with the same ordering θ on their set of lines. If (A, θ) and
(A′, θ) are topologically equivalent then for every γ ∈ EΓ

(
Ωθ
)
, we have |i∗A ◦ γ∗| = |i∗A′ ◦ γ∗| inside

the graph stabiliser GΓ. ◁
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Proof. By Theorem 2.3.19 on page 44, there exists a homeomorphism Ψ : BA → BA′ such that
Ψ ∈ Homeo++

Γ (B) where B = BA ≃ BA′ . We thus have iA′ = iA ◦ Ψ. Let Ω be a graph
ordering on Γ and let γ ∈ EΓ

(
Ωθ
)

be an ordered graph embedding. By Theorem 1.4.9 on page 20,
the image Ψ(γ) is again an element of EΓ

(
Ωθ
)
. The map Ψ induces a group automorphism

Ψ∗ : H1(B,Z) → H1(B,Z). By construction we have flΨ(γ) = Ψ∗ ◦ γ∗ and (iA ◦Ψ)
∗
= i∗A ◦ Ψ∗.

Then, in restriction to H1(Γ), we have

i∗A′ ◦ γ∗ = i∗A ◦Ψ∗ ◦ γ∗ = iA ◦flΨ(γ)

By Definition 1.6.1 on page 25 of the graph stabiliser GΓ, this implies that in the quotient

0 =
∣∣∣i∗A ◦ (flΨ(γ)− γ∗

)∣∣∣ = |i∗A′ ◦ γ∗| − |i∗A ◦ γ∗|

Remark 2.5.3. By definition of the graph stabiliser, the class |i∗A ◦ γ∗| ∈ GΓ does not depend on
the graphed embedding γ∗ ∈ EΓ

(
Ωθ
)
. However, it does depend on the graph ordering Ωθ and

thus on the ordering on the combinatorics θ. The homology inclusion is therefore an ordered
line arrangement invariant. However, some combinatorics have trivial automorphism groups (see
Definition 2.2.5 on page 37). The restriction of the homology inclusion to this subclass of line
arrangements becomes an unordered topological invariant. ◊

Remark 2.5.4. The graph stabiliser does not quotient the homology differences caused by the
application of the complex conjugation inside CP2, since it is not a positive homeomorphism of
the boundary manifold. A line arrangement A and its conjugate A might thus have different
homology inclusion values. If one imposes the same orientation on both arrangements, then
(A,A) becomes an oriented Zariski pair. ◊
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Our objective is to compute the homology inclusion map of a non-exceptional line arrangement
A. To achieve this, we explain in Section 3.1 how to build a graph embedding γB ∈ ET (Ω)
using a standard geometrical method on a representative B of the braid monodromy of a line
arrangement A. We then use this graph embedding in Section 3.2 to compute the value of the
morphism i∗A ◦ γ∗B of the embedded graph cycles using a simple tool called the braid linking.
Finally in Section 3.3 we explain how to modify the braid monodromies of two line arrangements
A,A′ with the same combinatorics C in order to associate them with a common graph ordering Ω
and spanning tree T . The homology inclusion maps can then be computed in the same basis of
the graph stabiliser module, and Theorem 2.5.2 allows us to compare them to determine if the
pair (A,A′) is Zariski. We then describe the final algorithm written in Sage [Sag23] that sums up
all these computations. Finally, we give our main examples of Zariski pairs, which were obtained
in collaboration with B. Guerville-Ballé.

3.1 Standard ordered graphed embedding

Let A be a non-exceptional line arrangement with combinatorics CA. As explained in Section 2.3.3,
the boundary manifold BA has several graph structures. The unique minimal one is given by the
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reduced incidence graph Γ̃(CA), and another non-minimal one is given by the complete incidence
graph Γ(CA).

Our objective is to build a standard graphed embedding of the full incidence graph Γ := Γ(CA)
using a representative of the braid monodromy of A as defined in Definition 2.4.8 on page 47. This
graphed embedding is designed specifically to allow an algorithmic computation of the homology
inclusion using only the braid monodromy representative as base data.

3.1.1 Combinatorial data
We reuse all notations from Section 2.4 which we recall briefly. Most of them are also summed up
on Figure 2.4.1 on page 47. Fix a component L0 ∈ A as the line at infinity. We work with the
affine part Aaff ≃ A∖ L0 in the standard affine chart C2 ≡ {[x : y : 1] ∈ CP2}. We use the sets
L∗ = L∖ {L0} and Q∗ = Q∖ VL0

. The set L∗ is ordered by θ.
Let π : C2 → C be a projection. We choose coordinates (x, y) on the standard affine chart

such that π(x, y) = x. To simplify the descriptions, we also suppose that π is generic as in
Definition 2.4.1 on page 45 which means that π(Q∗) ≃ Q∗. In practice one can always adjust
the projection π to make it generic. We write r := #Q∗ and CA := C∖ π(Q∗). For every point
x ∈ CA, the strand corresponding to Li is wLi

(x) = π−1(x) ∩ Li. Let D(x) be a closed disc in
π−1(x) containing all the intersections DLi

(x) := π−1(x) ∩NLi
for every Li ∈ L∗. Define

Σ(x) := D(x)∖
⋃

Li∈L∗

˚̊ �DLi(x)

Let D be a closed disc in C containing all the images π(NP ) for P ∈ Q∗. Up to isomorphism,
D(x) can be chosen to have the same shape for all values of x ∈ D. We define

Σ := D ∖
⋃

P∈Q∗

˚̇
π(NP ) ⊂ CA

The projection π induces its own ordering νπ : Q∗ → {1, . . . , r}. Let b∞ ∈ ∂D be a base point
and let α ∈ Srπ be a star on Σ with respect to the permutation ν ◦ νπ−1, where ν is any ordering
on π(Q∗).

These data allow to build a representative of the braid monodromy

BA(π, θ, ν, α) = (βl)1≤l≤r

as explained in Definition 2.4.12 on page 48.

3.1.2 Boundary manifold and braid monodromy
Before giving the definition of the standard graphed embedding we need to identify the graph
structure of the boundary manifold BA associated with the complete incidence graph Γ(CA)
within the same construction of the braid monodromy representative we have fixed. To achieve
this, we first need to identify the local regular neighbourhoods NLi and NPl

for each Li ∈ L∗

and Pl ∈ Q∗, and we will then consider their boundaries. The cases of the line at infinity L0 and
the singular points it meets must be treated separately.

Let V ∗
Li

:= VLi
∖ {Li ∩ L0}. For every Li ∈ L∗, let

ΣLi := D ∖
⋃

Pl∈V ∗
Li

˚̊ �π(NPl
)

Note that we have Σ ⊂ ΣLi
. Separately, for every Pl ∈ Q∗ and every x ∈ Σ, let

ΣPl(x) := Σ(x) ∩NPl

By construction, ΣPl(x) is a subsurface of Σ(x) that contains only the boundary components
∂DLi

(x) for Li ∈ VPl
. Recall that

Saff
Li

= ∂Naff
Li

∖
⋃

Pl∈V ∗
Li

˚̃
NPl

SPl
= ∂NPl

∖
⋃

Li∈VPl

˚̄
Naff

Li
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Proposition 3.1.1. There are homeomorphisms

Saff
Li
≃

⋃
x∈ΣLi

∂DLi
(x) ∪

⋃
x∈∂D0

DLi
(x)

SPl
≃

⋃
x∈∂π(NPl

)

ΣPl(x) ∪
⋃

x∈π(NPl
)

∂∞ΣPl(x)

for each Li ∈ L∗ and Pl ∈ Q∗. ◁

Both manifold types are divided between a trivial circle bundle which contains all boundary
components, and a solid torus. The fibres of SPl

are horizontal circles corresponding to the
intersection of {ΣPl(x) | x ∈ ∂π(NPl

)} with an horizontal section of π. A section of SPl
is

simply ΣPl(x) for any choice of a x ∈ ∂π(NPl
). Remember that we only consider sections of the

sub-bundle that contains the boundary. This structure of SPl
is represented schematically on

Figure 3.1.1b on the following page. The situation is similar for Saff
Li

. The fibres of Saff
Li

are vertical
circles ∂DLi(x) for x ∈ ΣLi . The intersection of a horizontal section of π with those vertical
circles gives a partial section of Saff

Li
in the sense that it lacks the part at infinity. Again we ignore

the second solid torus. This structure of Saff
Li

is represented schematically on Figure 3.1.1a on the
next page.

Proof of Proposition 3.1.1. Let DPl(x) be the disc obtained by filling in the ∂DLi boundary
components of ΣPl(x). There are natural homeomorphisms

Naff
Li
≃
⋃
x∈D

DLi
(x) NPl

≃
⋃

x∈π(NPl
)

DPl(x)

Consider the boundaries

∂Naff
Li
≃
⋃
x∈D

∂DLi
(x) ∪

⋃
x∈∂D

DLi
(x)

∂NPl
≃

⋃
x∈∂π(NPl

)

DPl(x) ∪
⋃

x∈π(NPl
)

∂DPl(x)

As expected, both boundaries are homeomorphic to S3 as the reunion of two solid tori. Suppose
that Pl ∈ Li. Then

TPl,Li
≃ ∂NPl

∩ ∂Naff
Li

=
⋃

x∈π(NPl
)

∂DLi
(x)

is the joining torus corresponding to the edge eLi,Pl
for the Γ̃(CA) graph structure. Removing

the joining tori from the boundaries ∂Naff
Li

and ∂NPl
give the expected description of Saff

Li
and

SPl
.

To complete Saff
Li

into SLi
we must now attend the situation at infinity. This is done by

switching to a new chart called the ∞-chart, as described in the proof of Proposition 2.4.13
on page 48. Denote by (Y,Z) the coordinates of the ∞-chart. The exterior D∞ := CP1 ∖ D̊
is a 2-disc in the ∞-chart. The line L0 corresponds to {Z = 0} and the projection becomes
π : (Y, Z) → (0, Z). This means that L0 is now a vertical line for π, and all singular points of
VL0

are all sent to a same point x0 = (Y = 0, Z = 0), and thus the extension of π to the ∞-chart
is not generic.
Remark 3.1.2. The braid at infinity associated to the representative is the lifted braid over
∂D∞ in the ∞-chart. But by Proposition 2.4.13 it can also be computed from the product of all
other braids of the representative. This means that in practice it is not necessary to consider
direct transformations of the graph structure near L0 since they are automatically induced by
the transformations in the standard chart. ◊

We now describe the intersection of the boundary manifold with the ∞-chart. Let

N∞
Li

:= NLi
∩ π−1(D∞)

Extending the notations of the standard chart, for every every Li ∈ L∗, Pl ∈ VL0 and Y ∈ D∞ we
define D(Y ), DLi

(Y ), Σ(Y ) and ΣPl(Y ). The situation is different for the basis of the projection
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b1
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(b) Structure of SP1 with P1 = L1 ∩ L2

Figure 3.1.1: Local boundary manifolds
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since π is no longer generic. By construction, for every P ∈ VL0
we have NP ∖NL0

̸= ∅. This
means that up to homeomorphism we can suppose that π(NL0

) and all π(NP ) for all P ∈ VL0

are a common disc D0. We also define

Σ∞ := D∞ ∖
˚̂
D0 Σ0 := D0 ∖

˚̊ �π(NL0
)

Proposition 3.1.3. There are homeomorphisms

S∞
Li
≃

⋃
x∈Σ∞

∂DLi
(Y ) ∪

⋃
x∈∂D∞

DLi
(Y )

SP ≃
⋃

x∈∂D0

DP (Y )

for every P ∈ VL0
and every Li ∈ L∗. ◁

The structure of S∞
Li

and SP are similar to their counterparts in the standard chart. How-
ever, for SP the decomposition contains another horizontal torus {∂DP (Y ) | Y ∈ ∂D0} which
corresponds to the joining torus with SL0 . A section of SP with P ∈ L0 is thus composed of the
vertical surface Σ(Y ) for Y ∈ ∂D0, but unlike in the standard chart the additional boundary
torus do not correspond to the Euler gluing map.

The two parts S∞
Li

and Saff
Li

reconnect to form SLi
along the torus

T∞
Li

:=
⋃

x∈∂D∞

∂DLi
(x)

A complete section of SLi
is therefore determined by the choice of a point on DLi

(x) and DLi
(Y )

for every x ∈ ΣLi and every Y ∈ Σ∞.
Finally, the circle bundle SL0 is a special case since Laff

0 is vertical.
Proposition 3.1.4. There is an homeomorphism

Saff
L0
≃

⋃
x∈∂D0

Å
π−1(Y )∖

⋃
P∈VL0

DP (Y )

ã
◁

A partial section of Saff
L0

is thus the vertical surface

DL0
(Y ) := D(Y )∖

⋃
P∈VL0

DP (Y )

for the choice of a point Y ∈ ∂π(NL0
).

3.1.3 Construction of the standard graphed embedding
As explained in Definition 1.4.4 on page 19, a graphed embedding is made of ordered stars drawn
on sections of each of the circle bundles SL and SP for every L ∈ L and every P ∈ Q. Using the
description of the graph structure of BA established in Section 3.1.2, we can now explain how to
build the standard graphed embedding associated with the representative B = BA(π, θ, ν, α) of
the braid monodromy of the line arrangement A.

A graphed embedding also depends on the choice of a graph ordering that must be fixed.
Extend the ordering θ defined on L∗ to L by assigning 0 to L0. Then Definition 2.2.15 on page 38
allows to define two graph sub-orderings Ωθ

Q and Ων
L∗ on Γ. The only neighbour set remaining to

be ordered is VL0
, which can be done using the (extended) θ-lexicographic ordering. We thus get

a full graph ordering Ωθ,ν of Γ(CA).
Recall that α ∈ Sr(ν ◦ νπ−1) is a star drawn on Σ ⊂ C with b∞ ∈ ∂∞Σ as its base point.

Extend α to Σ∞ by adding a final branch α0 joining b∞ to ∂D0 to get the new star α̃ ∈ Sn+1.
We first need to adjust the local geometrical orderings θl for each Pl ∈ Q∗ so that it coincides
with the graph ordering Ωθ,φ.
Lemma 3.1.5. For every Pl ∈ Q∗, one can always make the sub-orderings

θ, θl : VPl
−→ {1, . . . ,m(Pl)}

coincide without changing the representative B. ◁
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Proof. Let σl ∈ Sn be the permutation such that σl ◦ θl(VPl
) = θ(VPl

) and leave all other indices
unchanged. Let χl ∈ Bn such that σ(χl) = σl. Then the braid χl commute with ∆2

θl(VPl
). We

can thus write
βl = τl ·∆2

θl(VPl
) · (τl)

−1
= (τl · χl) ·∆2

θ(VPl
) · (τl · χl)

−1

Redefining the shift braid τl as τl ·χl gives the intended result without changing the braid βl.

Now we can describe the pair section-ordered star that compose the standard graph ordering
for each kind of vertices:

• For every Li ∈ L∗, consider the section sLi
of SLi

defined as such: for every x ∈ ΣLi
, sLi

(x)
is the point of ∂DLi

(x) that minimises the value of Re(y). The section is completed by using
the same definition on Σ∞ in the ∞-chart. Now consider the ordered star αLi ∈ Om(Li)

drawn on sLi and defined by αLi
:= π−1(α̃) ∩ sLi .

• For every Pl ∈ Q∗, consider the section sPl
of SPl

defined as the vertical surface ΣPl(bl),
where bl := ∂+αl. Let αPl

∈ Om(Pl) be an ordered star drawn on sPl
that joins a base point

to each of the points sPl
∩ sLi

for every Li ∈ VPl
.

• For L0, consider the section sL0 of SL0 defined as the vertical surface Σ(b0) where b0 = ∂+α
0.

Let αL0 ∈ Om(L0) be a star on sL0 .

• For every Pl ∈ VL0
, consider the section sPl

of SPl
defined as the surface ΣPl(b0), where

b0 := ∂+α0. Let αPl
∈ Om(Pl) be an ordered star drawn on ΣPl(b0) that joins a base point

to each of the points sPl
∩ sLi

for every Li ∈ VPl
. Note that the centre of αPl

is not on
∂DPl as usual but must be placed in the interior of the section.

Definition 3.1.6. The standard ordered graphed embedding γB ∈ EΓ(CA)

(
Ωθ,ν

)
is defined as

the reunion of the ordered stars αLi
∈ Omi

and αPl
∈ Oml

described above for every Li ∈ L
and Pl ∈ Q. 3

Remark 3.1.7. By construction, the image by γB of the half-edge e⃗Li,Pl
going from Li ∈ L∗

to Pl ∈ V ∗
Li

is homotopic to the i-th strand of the shift braid τl of the representative B (see
Definition 2.4.11 on page 48). ◊

Remark 3.1.8. Since π is generic and therefore π(Q∗) = Q∗, the ordering ν could have been fixed
as the θ-lexicographic ordering. We made this choice for the sake of simplicity in Theorem 2.5.2
on page 52 which defines the homology inclusion of A. The reasons to keep ν as a separate value
for the explicit computation are explained in Section 3.3.1. ◊

3.2 Values of the homology inclusion map

The specific geometrical construction of the standard graphed embedding γB allows to compute
the morphism i∗A ◦ γ∗B. This reduces to the computation of linking numbers between strands
of the shift braids extracted from the representative B of the braid monodromy of the line
arrangement A.

3.2.1 Braid linking
The braid linking is a linking number computed between two strands of a braid according to
specific rules.

Let y ⊂ C be a set of n disjoint points ordered by their descending horizontal coordinates.
Recall from Proposition 2.4.4 on page 46 that a braid β ∈ Bn can be seen as the homotopy class of
n non-crossing paths γ1, . . . , γn inside C× [0, 1] that start and end at y. We write C(t) := C×{t},
where the parameter t is called the height. Fix a braid β := {γ1, . . . , γn} ∈ By and a braid
decomposition

β =

m∏
s=1

σis

There is a set of heights H = {t1, . . . , ts} where two points γi(t) and γj(t) have the same horizontal
coordinate in C(t). For every t ∈ [0, 1]∖H, the ordering

ωt
β : {γ1(t), . . . , γn(t)} −→ {1, . . . , n}
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corresponds to the decreasing horizontal coordinates of the points in C(t). The index i of a strand
γi is therefore the order of its starting point inside C(0). By convention we suppose that every
elementary braid σis that permutes two consecutive strands corresponds to a positive rotation of
their projection points in the base plane.

Let 1 ≤ i < j ≤ n be two fixed indices. For every t ∈ [0, 1], let Di(t) ⊂ be a small disc
such that γi(t) is the point of Di(t) with the minimum horizontal coordinate. Finally, for every
t ∈ [0, 1]∖H, let Si,j(β, t) be the path drawn on C(t) as shown on Figure 3.2.1. Note that the left
support strand and the right support strand of the path Si,j(β, t) play non-symmetric roles. When
the left and right support strands reverse their position, the modification of the path Si,j(β, t)
is shown on Figure 3.2.3 on the following page. This is called a reversal crossing. Every other
permutation of two strands involving only one of the support strands is called a regular crossing.

d j c b i a· · ·· · · · · ·

+Si,j(t)

Figure 3.2.1: Section of the (i, j)-braid linking surface

Definition 3.2.1. The reunion

Si,j(β) :=
⋃

t∈[0,1]

Si,j(β, t)

is an orientable surface within C× [0, 1] called the (i, j)-braid linking surface of the braid β. 3

By convention, Si,j(β) is oriented positively on the side that face the lowest vertical coordinates
in the section C(0). At every reversal crossing, the positive and negative sides switch their positions,
as illustrated on Figure 3.2.3 on the next page.

For every height t ∈ [0, 1], define

C(β, t) := C(t)∖
n⋃

i=1

Di(t)

and C(β) :=
⋃

t∈[0,1] C(β, t). For any height t ∈ [0, 1], there is a natural group isomorphism

Zn H1(C(β, t),Z)
vi [Di(t)]

These isomorphisms extend into a global group isomorphism H1(C(β),Z) ≃ Zn with the same
generators.
Definition 3.2.2. Let 1 ≤ i < j ≤ n be two strand indices. The (i, j)-braid linking function

λi,j : Bn −→ Zn

associates to a braid β the homological class of the boundary ∂Si,j(β) inside the free abelian
group H1(C(β),Z) ≃ Zn. 3

Example 3.2.3. The (1, 3)-braid linking surface of the braid σ−1
2 σ1 ∈ B3 is shown on Figure 3.2.2

on the following page. The corresponding (1, 3)-braid linking value is

λ1,3(σ
−1
2 σ1) = v2 + v3 7

Proposition 3.2.4. The (i, j)-braid linking of a braid β ∈ Bn can be computed directly from any
crossings decomposition

β = σε1
i1
· · ·σεr

ir
, 1 ≤ is ≤ n, εis ∈ {±1}

by adding up the values corresponding to each crossing using the rules of Figures 3.2.3 and 3.2.4
on the next page and on page 62. The indicated signs must be reversed after each reversal
crossing. ◁
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⊕

32 1
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Figure 3.2.2: (1, 3)-braid linking surface of σ−1
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Figure 3.2.3: Braid linking surface at reversal crossings
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(b) Regular crossings with right support strand

Figure 3.2.4: Braid linking surface at regular crossings
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Example 3.2.5. The braid linking values of the braid β = σ−1
2 σ1 ∈ B3 are

λ1,2(β) = v3 λ2,3(β) = v2 λ1,3(β) = v2 + v3 7

3.2.2 Main computation theorem
This section is dedicated to the statement and proof of Theorem 3.2.6 which gives the main
formula that links the braid linking function given in Section 3.2.1 and the homology inclusion map
defined in Section 2.5. The statement of the theorem uses many objects and concepts introduced
in the previous chapter, in addition of the specific construction of the standard graphed embedding
detailed in Section 3.1. We thus begin with a quick summary of these concepts before stating the
theorem.

Recall from Section 2.5 that the homology inclusion map is the morphism

i∗A ◦ γ∗ : H1(Γ̃(CA)) −→ V (Γ̃(CA))

inside the graph stabiliser GΓ̃(CA), where γ ∈ EΓ̃(CA)

(
Ωθ
)

is any ordered graphed embedding.
The class value depends on the graph ordering Ωθ which itself depends on the ordering θ of the
line component set L.

By Proposition 2.3.20 on page 45, the reduced incidence graph Γ̃(CA) is obtained from the
full incidence graph Γ(CA) by blowing-down moves. We can thus use Theorem 1.6.15 on page 31
which gives a natural group isomorphism

GΓ̃(CA)

∼−−→ GΓ(CA)

This means that both the graph stabiliser and the homology inclusion map can be computed using
the full incidence graph Γ := Γ(CA) rather than the reduced one Γ̃(CA). Following Remark 3.1.8
on page 59, we also prefer to use the graph ordering Ωθ,ν from Definition 2.2.15 on page 38 which
depends on an additional ordering ν on the set of singular points Q.

Recall the induced spanning tree T θ on Γ from Definition 2.2.14 on page 38. By Proposi-
tion 1.5.4 on page 21, the edges of E∖ T θ are naturally associated with a basis of the free abelian
group H1(Γ). For every Pl ∈ Q∗, define nl := min θ(VPl

) and

V ∗
Pl

:= VPl
∖ {Lnl

}

The set of edges outside T θ is then given by

E ∖ T θ := {eL,P | P ∈ Q∗, L ∈ V ∗
P }

For any such edge e ∈ E ∖ T θ, let ce ∈ H1(Γ) be the corresponding graph cycle. On the other
end of the homology inclusion map, recall the quotient map

η : C0(Γ) −→ V (Γ)

where C0(Γ) ≃ Zn+1 is the free abelian group generated by the vertices of Γ.
The standard graphed ordering γB ∈ EΓ

(
Ωθ,ν

)
of the graph Γ is built with a geometrical

method from a representative of the braid monodromy

B := BA(π, θ, ν, α) = (βl)1≤l≤r

The n strands of the braid βl are naturally associated with the lines of L∗ := L∖ {L0}. Moreover,
each braid of the representative is a conjugate of the form

βl = τl · δl · (τl)−1 ∈ Pn

where τl ∈ Bn is called the shift braid and δl is a pure twist.
Finally, recall the braid linking function λi,j : Bn → Zn from Section 3.2.1. The free abelian

group Zn can be seen as the subgroup of C0(Γ) generated by the set of vertices {vL | L ∈ L∗}.
All these constructions allow us to compute the values of the morphism i∗A ◦ γ∗B on each

element of the cycle basis given above.
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Figure 3.2.5: Decomposition of the exterior cycle surface

Theorem 3.2.6. The homology inclusion map i∗A ◦ γ∗B admits the following value for every edge
eLi,Pl

∈ E ∖ T θ on the associated graph cycle:

i∗A ◦ γ∗B(ce) = η ◦ λm(Pl),i(τl) + h0,B(e)

where h0,B(e) ∈ V (Γ) only depends on the braid at infinity β0 of the representative B of the braid
monodromy of A. ◁

Lemma 3.2.7. Let eLi,Pl
∈ E∖T θ. Let Pa := Lnl

∩L0 and Pb := Li∩L0. Then the corresponding
cycle ce drawn on Γ is made of exactly six edges:

ePl,Li
+ eLi,Pb

+ ePb,L0
+ eL0,Pa

+ ePa,Lnl
+ eLnl

,Pl
◁

Proof of Theorem 3.2.6. Fix an edge eLi,Pl
∈ E ∖ T θ. We reuse once more the notations from

Sections 2.3.3 and 3.1. Recall that α is the star on the basis Σ of π (see Figure 2.4.1 on page 47).
One can add an extra branch α0 joining the base point b∞ to ∂D0 as explained in the proof of
Proposition 2.4.13 on page 48. The T θ-cycle curve γe, which is the image of the cycle ce ∈ H1(Γ)
by the ordered graphed embedding γB borders a disc De in the exterior manifold EA. This disc
can be decomposed into five parts as shown on Figure 3.2.5. From left to right:

• The first part of the surface is contained within the vertical section sL0
.

• The second part is a vertical surface contained within π−1(b0) that links the branch αi
Pa

in
the section sPa

and the branch αnl

Pb
in the section sPb

.

• The third part corresponds to the braid-linking surface Snl,i(τ0) of the shift braid τ0 over
the branch α0. As explained in the proof of Proposition 2.4.13, τ0 can always be chosen as
the trivial braid.

• The fourth part corresponds to the braid-linking surface Snl,i(τl) of the shift braid τl over
the branch αl. Indeed, the set π−1(αl) can be identified as C× [0, 1]. The path Snl,i(βl, 0)
drawn on Σ(b∞) joins the two points γ(vLi

) = γB ∩ T∞
Li

and γ(vLnl
) = γB ∩ T∞

Lnl
. On the

other end, the path Snl,i(βl, 1) drawn on Σ(bl) joins the two points bPl

Li
:= γB ∩ T aff

Li,Pl
and

bPl

Lnl
:= γB ∩ T aff

Lnl
,Pl

.

• The fifth part is contained within the vertical section sPl
.

Now we evaluate what are the contributions of each part to the homological value of the boundary.

• The first and fifth part are contained within sections of a line component circle bundle. This
means they do not meet other line components and therefore do not contribute to the value.

• The second part’s contribution corresponds to h0,B(e). It is entirely determined by the local
orderings around the line vertex vL0 and the singular points vertices vP for P ∈ VL0 . This
combinatorial information is contained within the braid at infinity by Proposition 2.4.13 on
page 48.
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• The third part is a braid linking surface of a trivial braid, which does not meet other
components by construction and do not contribute to the value.

The morphism
η : C0(Γ) ≃ H1(C(τl)) −→ V (Γ)

corresponds to the induced morphism in homology of the inclusion

π−1(αl) ≃ C(τl) ↪−→ EA

The fourth part’s contribution can then be seen as the image by η of the homological value of the
braid linking surface Snl,i(τl) inside C× [0, 1] ≃ π−1(αl), which is precisely equal to λm(Pl),i(τl)
by Definition 3.2.2.

3.3 Comparison of a combinatorial pair

The following diagram sums up the combinatorial dependencies of all the objects involved in the
computation of the homology inclusion.

θ, ν Ωθ,ν

B γB ∈ EΓ

(
Ωθ,ν

)
i∗ ◦ γ∗B ∈ Hom(H1(Γ), V (Γ))

A C ≃ Γ GΓ |i∗ ◦ γ∗B| ∈ GΓ
top

olo
gy

From now on we consider (A,A′) a combinatorial pair of line arrangements with the same
combinatorics C.

3.3.1 Adjustments of the orderings
As noted in Remark 2.5.3 on page 53, the individual value of the homology inclusion of a line
arrangement depends on the choice of Ωθ,ν and therefore θ, ν. However, the difference between
the two values on the combinatorial pair does not as long as the parameters θ, ν are the same in
both computations. In this situation the difference is only determined by the topological types of
both line arrangements.

In practice the computational algorithms used to obtain the braid monodromy representative
B of a line arrangement A take ν = νπ to simplify computations, and π itself might be chosen
randomly. Moreover, these algorithms do not decompose the individual star braid monodromies βl,
and do not explicitly give the orderings θ, ν associated with B. We will thus use Proposition 2.4.16
on page 50 to modify a posteriori the value of θ and ν, once they are determined.

E. Artal has written a function in Sage [Sag23] that provides a braid monodromy representative
B(0) of a line arrangement A as well as the associated initial ordering θ(0) : L∗ → {1, . . . , n}.

Algorithm 3.3.1: Raw braid monodromy computation

Data: Defining polynomial of the affine arrangement Aaff

Result: Braid monodromy representative B(0) = (β
(0)
l )

1≤l≤r

Result: Ordering θ(0)

In the following we describe the algorithms to process the braid monodromy representative
B(0) to prepare it for the final comparison. First we conjugate all star braid monodromies β(0)

l to
get the desired ordering θ.

Algorithm 3.3.2: Adjustment of the ordering θ

Data: Braid monodromy representative B(0)

Data: Desired ordering θ
Result: New braid monodromy representative B(1) with θ(1) = θ

https://www.sagemath.org/
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The next algorithm uses a method due to N. Franco and J. González Meneses [FG03] to
compute a decomposition of β(1)

l ∈ Pn of the form

β
(1)
l = τ

(1)
l ·∆2

θl(VPl
) ·
Ä
τ
(1)
l

ä−1

Algorithm 3.3.3: Star braid assignation

Data: Star braid monodromy β(1)
l

Result: Central full twist ∆2
θl(VPl

)

Result: Shift braid τ (1)l

In fact this first decomposition is done only to associate each braid β(1)
l with its corresponding

singular point P ∈ Q∗. Since the braids (β
(1)
l ) are already ordered, this also gives the initial

ordering νπ associated with B0. The next algorithm applies Hurwitz moves on the representative
B(1) to get the desired ordering ν : Q∗ → {1, . . . , r}.

Algorithm 3.3.4: Adjustment of the ordering ν

Data: Braid monodromy representative B(1)

Data: Desired ordering ν
Result: New braid monodromy representative B(2) with νπ = ν

We now compute the new shift braids τ (2)l by performing a second decomposition.

Algorithm 3.3.5: Star braid decomposition

Data: Star braid monodromy β(2)
l

Result: Central full twist ∆2
θl(VPl

)

Result: Shift braid τ (2)l

There is no guarantee that the ordering θl coincides with the desired local ordering θ|VPl
. The

next step will multiply the shift braids on the right with a (non-full) twist braid to adjust the
local ordering. This does not affect β(2)

l since the central full twist can be conjugated by the
inverse twist braid.

Algorithm 3.3.6: Adjustment of the local ordering θl

Data: Shift braid τ (2)l

Data: Desired ordering θ
Result: New shift braid τ (3)l with θl = θ|VPl

Algorithms 3.3.1 to 3.3.6 must be repeated for the other line arrangement A′, thus giving a
second set of shift braids T(3)′ .

The braid at infinity (see Proposition 2.4.13 on page 48) encodes all the local orderings for
vL0

and every vP for P ∈ VL0
. Individual adjustment of each of these local orderings is not

required. Instead it is enough to make sure that the two braids at infinity b0 and b0
′ ∈ Pn of the

combinatorial pair are equal. This is done by finding a conjugating braid and then multiplying
all shift braids T(3)′ of A′ on the left. The set of shift braids T(3) of A is not modified.

Algorithm 3.3.7: Adjustment of the infinity braids

Data: Decomposed representative B(3)

Data: Decomposed representative B(3)′

Result: New decomposed representative B(4)′ with β(4)′

0 = β
(3)
0

Remark 3.3.1. The Hurwitz moves used on the braids of the representative to change ν are
computationally expensive because they require two separate decompositions, with the conjugation
performed in-between by Algorithm 3.3.4 significantly increasing the length of the braids (β

(1)
l ).

This explains why we choose to define the standard graphed embedding γB using ν as an
independent parameter, in order to minimise the number of such moves required to reach a
common value. ◊
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3.3.2 Comparison algorithm
The following procedure presents all the steps to compare the homology inclusion values of a
combinatorial pair.

Algorithm 3.3.8: Comparison of a combinatorial pair

Data: Combinatorial pair (A,A′)
Data: Orderings θ, ν

1 Perform Algorithms 3.3.1 to 3.3.6 on A and A′ to get B(3) and B(3)′ .
2 Perform Algorithm 3.3.7 on B(3) and B(3)′ to get B(4)′ .
// Shift braids are now ready.

3 Compute the full incidence graph Γ.
4 Compute the graph stabiliser GΓ and the projection map using Theorem 1.6.11.
// Graph stabiliser is now ready.

5 forall eLi,Pl
∈ E ∖ T θ do

6 Compute the values λm(Pl),i(τ
(3)
l ) and λm(Pl),i(τ

(4)′

l ) using Proposition 3.2.4.
7 Compute i∗ ◦ γ∗B(3) and i∗ ◦ γ∗B(4)′ )(ce) using Theorem 3.2.6.
8 Take the image by the projection map.
9 end

10 Combine the images.

Result:
∣∣i∗ ◦ γ∗B(3)

∣∣− ∣∣∣i∗ ◦ γ∗B(4)′

∣∣∣ ∈ GΓ
Note that the graph stabiliser GΓ of a combinatorics is a free abelian group since it is a quotient

of the homomorphism group H1(H1(Γ), V (Γ)) between two free abelian groups. As a Z-module it
admits a decomposition as a product of cyclic groups in an adequate basis, the so-called Smith
normal form. It is this basis that we use to actually compare the two values of the homology
inclusions.

3.3.3 Examples of Zariski pairs
We now give several examples of Zariski pairs which are identified by the homology inclusion.
Example 3.3.2 (MacLane arrangements). The following lexicographically ordered combinatorics
were discovered by S. MacLane [Mac36]:

[[0, 1, 2], [0, 3, 4], [0, 5, 6], [0, 7], [1, 3], [1, 5, 7], [1, 4, 6], [2, 3, 5], [2, 4, 7], [2, 6], [3, 6, 7], [4, 5]]

The automorphism group of the MacLane combinatorics is isomorphic to GL2(F3). It is known
(see [Bjö+99]) that this constitutes the smallest possible combinatorics that does not admit a
realisation in RP2. It admits two conjugated realisations M+ and M− with 8 lines. The defining
(ordered) equations in CP2 are

L0 : 0 = z L3 : 0 = y L6 : 0 = −x− ω2y + z

L1 : 0 = −x+ z L4 : 0 = ω2x+ ωy + z L7 : 0 = ωy + z

L2 : 0 = x L5 : 0 = −x+ y

where ω = e
2iπ
3 for M and ω = e−

2iπ
3 for M . Each of the combinatorics automorphisms can be

realised as projective automorphisms of CP2. The ones in SL2(F3) preserve the order. We now
give the results of the computations of the graph stabiliser and the homology inclusion of M and
M using Algorithm 3.3.8.

The Smith normal form of the graph stabiliser is

GΓ ≃ Z⧸3Z× Z35

The two values of the homology inclusion in the corresponding basis are given in Figure 3.3.1.
The difference is non-zero in the torsion part of GΓ. The line arrangements (M,M) therefore

form an ordered oriented Zariski pair (see Remark 2.5.4 on page 53).
7
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|i∗ ◦ γ∗B| : 0̄ 0 1 2 0 0 0 1 0 1 0 1 2 0 1 0 1 1 0 1 1 1 0 0 -1 1 -1 -1 0 1 0 0 0 0 1 0∣∣∣i∗ ◦ γ∗B∣∣∣ : 2̄ 0 1 2 0 0 0 1 0 1 0 1 2 0 1 0 1 1 0 1 1 1 0 0 -1 1 -1 -1 0 1 0 0 0 0 1 0

Difference: 2̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.3.1: Homology inclusion values of the MacLane arrangements

Example 3.3.3 (New Zariski quadruplet). Consider the polynomial

P = X4 + 2X3 + 4X2 + 3X + 1

and the following equations given by

L0 : 0 = z L6 : 0 = x

L1 : 0 = ω2x− y − ω(ω + 1)z L7 : 0 = x− z

L2: 0 = (3ω2 + 3ω + 1)x+ (ω + 1)
2
y − (ω3 + 5ω2 + 5ω + 2)z

L3 : 0 = ω(ω2 + ω + 1)x+ y + ω(ω + 1)z L8 : 0 = y

L4 : 0 = ωx+ y L9 : 0 = y − z
L5 : 0 = ωx+ y − (ω + 1)z L10 : 0 = y + ω(ω2 + 2ω + 2)z

where ω = − 1
2 ±

1
2 i
√
5± 2

√
5 take the values of the four roots of P . This defines four conjugated

arrangements with 11 lines B1, B2, B1, B2 whose common ordered combinatorics is given by

[[0, 1, 2], [0, 3], [0, 4, 5], [0, 6, 7], [0, 8, 9, 10], [1, 3, 6], [1, 4, 7], [1, 5, 8],

[1, 9], [1, 10], [2, 3, 5], [2, 4], [2, 6, 10], [2, 7], [2, 8], [2, 9], [3, 4, 9], [3, 7, 10],

[3, 8], [4, 6, 8], [4, 10], [5, 6], [5, 7, 9], [5, 10], [6, 9], [7, 8]]

The Smith normal form of the graph stabiliser is:

GΓ ≃ Z⧸5Z× Z119

The values of the homology inclusion of the four realisations are identical on the free part but
differ on the torsion part=

B1 : 1̄ B2 : 4̄ B1 : 3̄ B2 : 0̄

The automorphism group of the combinatorics is trivial, which means that the four realisations
form an unordered oriented Zariski quadruplet. The two pairs (B1, B2) and (B1, B2) and their
respective conjugates are unordered unoriented Zariski pairs. 7

Example 3.3.4 (Rybnikov quadruplet). This is the first Zariski pair of line arrangements
identified by G. Rybnikov in [Ryb11]. Consider the equations:

L0 : 0 = z L5 : 0 = −x+ ωy + z L9 : 0 = −2x+ y + 3z

L1 : 0 = x L6 : 0 = −(ω + 1)x− y + z L10 : 0 = (1− 5η)x+ 2ηy + ηz

L2 : 0 = x− z L7 : 0 = −(ω + 1)x+ ωx+ z L11 : 0 = (1− 5η)x+ 2η + 6ηz

L3 : 0 = y L8 : 0 = −4ηx+ 2ηy + z L12 : 0 = x+ 2y + z

L4 : 0 = y − z

where
(ω, η) =

Å
e

2iπ
3 ,

5ω + 6

31

ã
or
Å
e

2iπ
3 ,

5ω̄ + 6

31

ã
This defines four conjugated line arrangements with 13 lines R1, R2, R1, R2, whose common
ordered combinatorics is given by

[[0, 1, 2], [0, 3, 4], [0, 5, 6], [0, 7], [0, 8, 9], [0, 10, 10], [0, 11], [1, 3], [1, 4, 6], [1, 5, 7], [1, 8],

[1, 9, 10], [1, 10, 11], [2, 3, 5], [2, 4, 7], [2, 6], [2, 8, 10], [2, 9, 11], [2, 10], [3, 6, 7], [3, 8], [3, 9],

[3, 10], [3, 11], [4, 5], [4, 8], [4, 9], [4, 10], [4, 10], [4, 11], [5, 8], [5, 9], [5, 10], [5, 10], [5, 11], [6, 8],

[6, 9], [6, 10], [6, 10], [6, 11], [7, 8], [7, 9], [7, 10], [7, 10], [7, 11], [8, 10, 11], [9, 10]]
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The Smith normal form of the graph stabiliser is:

GΓ ≃
ÄZ⧸3Zä2 × Z219

The homology inclusion values differ not only on the torsion part but also on the free abelian
part=

R1 : (1̄, 1̄, f1) R1 : (1̄, 0̄, f1) R2 : (0̄, 0̄, f2) R2 : (0̄, 1̄, f2)

where f1, f2 ∈ Z219. This means that the four realisations (R1, R2, R1, R2) form an ordered
oriented Zariski quadruplet. Moreover, the two pairs (R1, R2) and (R1, R2) and their respective
conjugates are unoriented ordered Zariski pairs. 7

Remark 3.3.5. For all the Zariski pairs we obtain, the graph stabiliser contains a torsion part
(this is not always the case) and the value of the difference of the homology inclusions lies at least
partly in the torsion part of the graph stabiliser. B. Guerville-Ballé has conjectured that only
Zariski pairs whose graph stabiliser contains a torsion part can be distinguished by the homology
inclusion itself. Even if this is true, a torsion-free graph stabiliser could nevertheless be used as
an intermediary step to compute the twisted homology inclusion values. This new difference value
might be able to detect the evading Zariski pairs. ◊
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4.1 Preliminaries on link theory

4.1.1 Generalities

Let S3 be the oriented 3-sphere.
Definition 4.1.1. A knot is an embedding K : S1 ↪−→ S3 such that K(S1) is a simple polygonal
curve.

A link is an embedding

L :

n⊔
i=1

Li ↪−→ S3

of several components L1, . . . , Ln whose images are disjoint simple polygonal curves. 3

By extension, we identify the embeddings with their images and call them link and knot
respectively.
Definition 4.1.2. Let L and L′ be two links. An ambient isotopy between L and L′ is an
application:

G : S3 × [0, 1] S3

(x, t) gt(x)

such that G is a piecewise linear homeomorphism of S3 × [0, 1] into itself, with g0 = IdS3

and g1 (L) = L′. 3

Definition 4.1.3. Two links L and L′ are said to be equivalent if there exists an ambient isotopy
of S3 that sends L to L′. 3

The name ‘link’ now designate an equivalence class of links. For the remainder of this section,
‘link’ also include knots (i.e. n = 1) unless specified otherwise.
Definition 4.1.4. A link orientation is a function

δL : (L1, . . . , Ln) −→ {±1}n

which assigns an orientation to every link component. 3

Definition 4.1.5. A regular link projection is an application p : L → R2 such that for every
point x of the link diagram p(E), the fibre p−1(x) has no more than two element, and has exactly
two elements for a finite number of point in the diagram. 3

The points of the plane which have exactly two antecedents are called crossings. Each crossing
has an upper and lower antecedent in the link relatively to the projection p. The link L is
therefore divided in strands which are continuous paths in L which joins two lower points.
Proposition 4.1.6. Two links are equivalent if and only if their respective digrams obtained
by the same regular projection on R2 can be transformed into each other by a finite series of
Reidemeister moves. ◁

Definition 4.1.7. Let 1 ≤ µ ≤ n. A µ-coloured link is an oriented link in S3 equipped with a
surjective map

c : {1, . . . , n} −→ {1, . . . , µ} 3

Let χ := c−1 such that ξ(j) ⊂ {1, . . . , n} for j ∈ {1, . . . , µ}. We write Lχ(j) for the union of
individual components Li of the link L that are j-coloured.
Definition 4.1.8. Two µ-coloured links L0 and L1 are concordant if there exists a collection of
properly embedded disjoint locally flat cylinders A := A1 ⊔ · · · ⊔Aµ such that

∂Aj ∩ (S3 × 0) = −L0
χ(j) and ∂Aj ∩ (S3 × 1) = L1

χ(j)

for all 1 ≤ j ≤ µ. A n-coloured link concordant to the unlink is called slice. 3

4.1.2 Link group

Definition 4.1.9. Let K ⊂ S3 be a knot. A tubular neighbourhood T (K) is a regular neighbour-
hood of K which is homeomorphic to a solid torus K × D2. The exterior of the knot MK is
defined as

MK := S3 ∖
˚̆

T (K) 3
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This definition is naturally extended to links. Let b be a base point in ∂ML. The link group
πL is the fundamental group π1(ML, b).
Definition 4.1.10. A meridian of a knot K is a curve m whose class is null in H1(T (K)) but not
in H1(ML). A longitude of a knot K is a curve ℓ is the intersection of T (K) with an orientable
oriented surface S embedded in S3 with ∂S = K. 3

Since we mostly work inside the fundamental group of either ML or ∂T (K), the terms
‘meridian’ and ‘longitude’ almost always designates the homotopy classes of these two types of
curves.
Definition 4.1.11. The peripheral system of a knot K is the triple (πL, ℓ,m) where ℓ and m
are the homotopy classes of a longitude and meridian of K respectively such that m · ℓ = ℓ ·m.
These are called the preferred longitude and meridians of K. The pair (m, ℓ) is unique up to
conjugation of a common element in πK . 3

Theorem 4.1.12 (Waldhausen). Two knots K,K ′ are equivalent if and only if there exists a
group isomorphism φ : πK → πK′ such that (φ(m), φ(ℓ)) = (m′, ℓ′). ◁

Definition 4.1.13. The Wirtinger presentation of the oriented link group πL is obtained from an
link diagram of L in the following way: every strand is associated with a meridian generator as
shown on Figure 4.1.1a. Every crossing of the diagram is associated with the relation as shown on
Figure 4.1.1b. The extended Wirtinger presentation adds a peripheral couple (ℓi,mi) of preferred
longitude and meridian for each knot component Li of the link L. 3

xi

(a) Generating meridian

xi+1 xi

xk

xk

xkxi+1
−1xk

−1xi

(b) Crossing relation

Figure 4.1.1: Wirtinger presentation of the link group

The abelianisation map
Ab : πL −→ H1(ML)

induces a group isomorphism between H1(ML) and the free abelian group generated by a meridian
for each link component. The preferred longitudes are all sent to the identity element 1.
Definition 4.1.14. Let K,K ′ be two knot components embedded in the same S3. Then lk(K,K ′)
is defined as the class of the curve ℓK inside H1(EK′) ≃ Z. 3

4.2 Definition of the character slope

The construction presented in the section was developed by A. Degtyarev, V. Florens and
A.G. Lecuona in [DFL22b; DFL21; DFL22a]. It is the basis of the generalisations that we will
present in the next chapters.

Let L be a µ-coloured link. We denote by (mi, ℓi) the peripheral pairs of each component of
L. The group H1(EL) is free abelian and generated by the classes of the meridians m1, . . . ,mµ.
All meridian generators of a component Li are conjugated to each other. A character of the link
group ω : π1(EL)→ C∗ is therefore determined by its values on the preferred meridian of each
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component and can then be seen as an element

(ω(m1), . . . , ω(mµ)) ∈ (C∗)
µ

with ω(mi) = ω(mj) if Li and Lj have the same colouring. We define

ω−1 :=
(
ω1

−1, . . . , ωµ
−1
)

ω := (ω1, . . . , ωµ) ω† := (ω)
−1

A character ω is called unitary if ω† = ω.

4.2.1 Twisted homology of the boundary
Let K ∪ L be a (1, µ)-coloured link where L = L1 ∪ · · · ∪ Lµ is a sublink and K is a special
component called distinguished. We use the convention that L0 = K.
Definition 4.2.1. A character ω ∈ (C∗)

µ+1 is called admissible if ω(m0) = 1 and non-vanishing
if ω(mi) ̸= 1 for every 1 ≤ i ≤ µ. The variety of admissible characters is denoted by A(K/L).
The subvariety of non-vanishing admissible characters is denoted by A◦(K/L). 3

We are interested in the restriction of the character ω to H1(∂EK) seen as a subgroup of
H1(EL). The subgroup H1(∂EK) is free abelian generated by the classes of m0 and ℓ0. By
Definition 4.1.14, we have

∀ i ∈ {1, . . . , µ} : ω(ℓ0) = ω(mi)
lk(K,Li) (4.1)

From now on, we suppose that the linking numbers lk(K,Li) are zero for every 1 ≤ i ≤ µ. This
means that ω(ℓ0) = 1 and

A(K/L) = (C∗)
µ A◦(K/L) = (C∗ ∖ {1})µ

Proposition 4.2.2. There is a natural vector space isomorphism

H1(∂EL;ω) ≃
⊕

ω(mi)=1

⟨ℓi,mi⟩� C(ω) ◁

Proof. We have the decomposition

H1(∂EL;ω) ≃
⊕

ω(mi )̸=1

H1(∂ELi ;ω) ⊕
⊕

ω(mi)=1

H1(∂ELi ;ω)

For the components Li where ω(mi)− 1 ̸= 0, Corollary A.2.2 gives H1(∂ELi ;ω) = {0}. For the
components Li where ω(mi) = 1, Corollary A.2.3 gives a natural isomorphism

H1(∂ELi ;ω) ≃ ⟨ℓi,mi⟩� C(ω)

Corollary 4.2.3. If ω ∈ A◦(K/L) then H1(∂EL;ω) is a C-vector space of dimension 2 which
admits the canonical basis (ℓ0,m0). ◁

4.2.2 Definition of the character slope
Consider the inclusion map

i : ∂MK∪L ↪−→MK∪L

and the induced map on the first twisted homology groups of (MK∪L, ω):

i∗ : H1(∂MK∪L;ω) −→ H1(MK∪L;ω)

We consider the space Z(ω) := ker i∗.
Definition 4.2.4. Let ω ∈ A◦(K/L) and suppose that dimZ(ω) = 1. The space Z(ω) is
generated by a vector of H1(∂MK∪L;ω) of the form

Z(ω) = ⟨a · ℓ+ b ·m⟩

with [a : b] ∈ CP1. The (K/L)-slope is defined by the formula

s(K/L)(ω) := −
b

a
∈ C ∪ {∞} 3
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Proposition 4.2.5. If the slope s(K/L)(ω) is well defined for ω ∈ A(K/L), then so are the slopes
for ω and ω†, and one has

s(K/L)(ω
†) = s(K/L)(ω) s(K/L)(ω) = s(K/L)(ω) ◁

Proof. These results are immediate consequences of Poincaré duality as stated in Lemma A.1.5
on page 104.

Proposition 4.2.6. If ω is unitary then the slope is well-defined and

s(K/L)(ω) ∈ R ∪ {∞} ◁

Proof. The slope is well-defined as a direct application of Theorems A.1.8 and A.1.9 on page 104
and on page 105. The slope is real because of Proposition 4.2.5.

4.2.3 Properties of the slope
We recall some of the known properties of the slope. The proofs can be found in [DFL22b; DFL21;
DFL22a].
Definition 4.2.7. The characteristic varieties of the (1, µ)-coloured link L are the jump loci

Vr(L) := {ω ∈ (C∗)
µ | dimH1(ML;ω) ≥ r}

They are nested algebraic sub-varieties of the character torus:

(C∗)
µ
= V0(L) ⊃ V1(L) ⊃ · · ·

A characteristic variety is called proper if Vr(L) ̸= (C∗)
µ. The first proper characteristic variety

is denoted by Vmax(L). 3

Theorem 4.2.8 ([DFL22b, Theorems 3.19 and 3.21]). If lk(K,L) = 0, the slope is a rational
function, possibly identical to {∞}, on A◦(K/L)∖Vmax(L). If Vmax(L) = V1(L), one has

sK/L(ω) = −
∇′(1,

√
ω)

2∇L(
√
ω)
∈ C ∪ {∞}

where ∇′ is the derivative of the Conway polynomial ∇K∪L(t, ·) with respect to t. ◁

Definition 4.2.9. Consider the subset of Laurent polynomials defined by

U :=
{
P ∈ Z

[
t±1
1 , . . . , t±1

µ

] ∣∣ P (1, . . . , 1) = ±1}
An element ω ∈ A(K/L) is called a concordance root if there is a polynomial P ∈ U such
that P (ω) = 0. The set of non-concordance roots is denoted by Ac(K/L) and the subset of
non-vanishing non-concordance roots by A◦

c(K/L). 3

Theorem 4.2.10 ([DFL22a, Theorem 3.2]). Let K ∪ L0 and K ∪ L1 be two concordant (1, µ)-
coloured links. Then

Ac(K
0/L0) = Ac(K

1/L1)

and the slope functions s(K0/L0)(ω) and s(K1/L1)(ω) are equal on A(K/L). ◁

Corollary 4.2.11. If K ∪ L is slice then sK/L(ω) = 0 for every ω ∈ Ac(K/L). ◁

4.3 Slope computation

The slope computation is done using Fox calculus, whose definition is recalled in Appendix A.3.
Let K ∪L be a (1, µ)-coloured link and let ω ∈ A◦(K/L) be a non-vanishing admissible character.
Theorem 4.3.1. Let P be a presentation of the link group π1(EK∪L) that contains mK and
ℓK . Let Aω be the twisted Alexander matrix of MK∪L associated with ω and P. Let Aω

K be the
sub-matrix of Aω containing only the columns associated with ℓK and mK , and let Aω

C be its
complementary sub-matrix. Then

Aω
K · (kerAω

C)

is a generating matrix of ker i∗ and in particular has rank 1. If v is a generating vector of the
row-space with

v = a · dℓk + b · dmK

then sK/L(ω) = − b
a . ◁
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Proof. This is a direct application of Theorem A.4.1 since MK∪L and ω ∈ A◦(K/L) verify
Eq. (A.2).

The algorithm used to compute the slope, which is written in GAP [GAP22]. Theorem 4.3.1
reduces the computation of the slope to Fox calculus and elementary linear algebra. It is however
necessary to obtain the extended Wirtinger presentation of the link K ∪ L first.

To encode links, we use the oriented DT-code (which stands for C.H. Dowker and M.B. Thi-
stlethwaite [DT83]). This code attributes a number to each strand of the link in-between two
crossings, starting from any crossing. The DT strands therefore do not coincide directly with the
generators of the Wirtinger presentation, since over-strands are counted multiple times. The DT
code also induces an ordering on the link components, dubbed the DT order.

Algorithm 4.3.1: Extended Wirtinger presentation
Data: Oriented DT code of K ∪ L
Data: DT order of the distinguished component K
Result: Extended Wirtinger presentation of K ∪ L with ℓK

Remark 4.3.2. It is crucial for all our studies of slope invariants to be able to compute the
extended Wirtinger presentation, in such a way that the generators are explicitly associated with
their corresponding strands in the link diagram. It turns out that amongst the many knot theory
computer programs available, none meets these precise requirements. We therefore designed
our own system to achieve this. It is based on the program PLink created by M. Culler and
N. Dunfield [CD08], which is a lightweight graphical link editor which allows to draw a link by
hand and can also give the oriented DT code of the link with an explicit display of the number
assigned to each strand. Our own Algorithm 4.3.1 will then compute the presentation. The initial
DT numbers are kept inside the generators’ names throughout all our computations, including
when simplifications are performed. ◊

K

mK = a1

b11

L1

b9

b13

b5

a3

b7

Figure 4.3.1: Link L7a1

Example 4.3.3 (L7a1). The link L7a1 represented on Figure 4.3.1 has two components K,L
with lk(K,L) = 0. A simplified extended Wirtinger presentation of the link group is given by

π1(MK∪L) =

±
b9, b13,mK , ℓK

∣∣∣∣∣∣∣
r0 : ℓ−1

K b−1
9 b−1

13 b9b13b9b
−1
13

r1 : ℓKb13m
−1
K b−1

9 b−1
13 b9mKb

−1
13 m

−1
K b−1

9 b13b9mK

r2 : [ℓK ,mK ]

ª
Let ω be a unitary character with ω|K = 1 and ω|L = b ∈ S1. The twisted Alexander matrix Aω

https://www.gap-system.org/
https://github.com/3-manifolds/PLink
http://katlas.org/wiki/L7a1
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is given by


dℓK dmK db9 db13

dr0 −1 0 −b−1
(
1− b−1 − b

)
b−1

(
1− b−1 − b

)
dr1 1 −b+ 2− b−1 b−1

(
−b+ 2− b−1

)
−b−1

(
−b+ 2− b−1

)
dr2 0 0 0 0


We have

kerAω
C =

ñ dr0 dr1 dr2

1 +
(
1− b−1 − b

)−1
1 0

0 0 1

ô
and

Aω
K (kerAω

C) =

ñ dℓK dmK

−(1− b−1 − b)−1 −b+ 2− b−1

0 0

ô
The value of the slope is then

sK/L(ω) = (1− b)
(
1− b−1

) (
1−

(
b+ b−1

))
which is a real number as expected. 7

The following result is a reformulation using the slope of a property of abelian Fox calculus
already observed by R. Crowell [Cro71].
Proposition 4.3.4. If K ∪ L is a boundary link then for any (1, µ)-colouring K ∪ L = K ∪ L,
the slope function s(K/L) is identically zero. ◁

Proof. It is known that if K ∪ L is a boundary link, then all its longitudes are commutators of
commutators, i.e. for every component K of K ∪ L there exist meridians a, b, c, d ∈ π1(MK∪L)
such that

ℓK = [[a, b] , [c, d]]

An elementary computation shows that inside Z[H1(MK∪L)] the derived vector dℓK is zero. In
particular this is still the case after composition by a character ω : Z[H1(K ∪ L)]→ C∗. Therefore

dℓK ∈ im (Aω
K · (kerAω

C))

By Theorem 4.3.1 this matrix has rank 1 and therefore dℓK generates its row-space. Then
necessarily s(K/L)(ω) = 0.
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5.1 Introduction

The character set of all representations of the group of a knot K in SL2(C) carries naturally the
structure of an algebraic set. Given a peripheral structure of the knot, the character variety
is a plane curve in C∗ × C∗, whose coordinates M and L correspond to the eigenvalues of the
meridian m and the preferred longitude ℓ. The polynomial AK(L,M) defining this curve is an
invariant of the knot, called the A-polynomial.

In this chapter, our motivations come, among others, from the following result of Boden:
Theorem 5.1.1 ([Bod14]). If the M -degree degM AK(L,M) of the A-polynomial is zero, then K
is the trivial knot. ◁

This result motivates the systematic study of the logarithmic Gauss map of the A-polynomial

M

L
· ∂MAK(L,M)

∂LAK(L,M)
(5.1)

where ∂M and ∂L denote the partial derivatives. By Theorem 5.1.1, this rational function vanishes
identically on {AK = 0} if and only if K is trivial.

The logarithmic Gauss map has introduced in [GKZ94] by I.M. Guelfand, M.M. Kapranov
and A.V. Zelevinsky in order to study some determinantial varieties. Then it has been used for
instance by G. Mikhalkin in [Mik00] for studying the topology of arrangements of real plane
curves. In [GM21], A. Guilloux and J. Marché showed it is related with the volume function of
the A-polynomial of knots, or more generally of exact polynomials.

Our proposal is to develop a homological point of view on this function, by extending the
constructions of A. Degtyarev, V. Florens and A.G. Lecuona [DFL22b; DFL21] already presented
in Section 4.2 to the setting of non-abelian representations. Let K be an oriented knot in the
3-sphere S3 with exterior MK . Denote by R(MK) and X(MK) the SL2(C)-representation and
character varieties of the knot K. We consider representations ρ : π1(MK)→ SL2(C) composed
with the adjoint action of SL2(C) on the Lie algebra Ad: SL2(C)→ Aut(sl2(C)), and show that
there is a non-empty Zariski open subset of X(MK) such that for all ρ in this subset

• there is an element vρ ∈ sl2(C) such that (vρ ⊗ ℓ, vρ ⊗m) is a basis of the homology group
H1(∂MK ; Ad ◦ρ) ≃ C2 with coefficients twisted by Ad ◦ρ, and

• the kernel of the homomorphism induced by the inclusion:

Z(∂MK ; Ad ◦ρ) := ker
(
H1(∂MK ; Ad ◦ρ) i∗−−→ H1(MK ; Ad ◦ρ)

)
is generated by a single vector of the form a vρ⊗ ℓ+ b vρ⊗m for some element [b : a] ∈ CP1.

The representations which verify these conditions are called admissible. We define the slope of K
at the admissible representation ρ by

sK(ρ) := − b
a
∈ CP1

We prove that representations which restrict to non-parabolic representations of the boundary
∂MK of MK are admissible, see Lemma 5.3.4. If ρ is a boundary-parabolic representation,
we define the slope sK(ρ) as the modulus of the euclidean structure induced by the restricted
representation on π1(∂MK), see Section 5.3.3. It turns out that these two different definitions fit
well and that the following holds.
Proposition 5.1.2. The slope depends only on the conjugacy classes of the representations and
induces a rational function

sK : X ⊂ X(MK) −→ CP1

on each irreducible component X of the character variety. ◁

Note that if the representation is real or unitary, then sK takes values in RP1 (see Proposi-
tion 5.3.13). For any knot, the function sK can be computed by Fox calculus, see Section 5.3.5.
We illustrate the method in the case of the trefoil knot, and further compute the slope of the
figure-eight knot.

The following theorem relates sK to the original motivation; a precise statement is given in
Theorem 5.4.1.
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Theorem 5.1.3. The slope function sK equals minus the logarithmic Gauss map of the A-
polynomial defined in Eq. (5.1). ◁

We also relate sK to the change of curve factor for the Reidemeister torsion. Let TMK ,ℓ(ρ)
and TMK ,m(ρ) be the Reidemeister torsions according to homology bases induced by the choices
of the curves ℓ and m in ∂MK , see Section 5.3.4.
Proposition 5.1.4. The slope coincides with the quotient of Reidemeister torsion:

sK(ρ) =
TMK ,ℓ(ρ)

TMK ,m(ρ)

for all ρ such that this formula is well-defined. ◁

J. Porti had already observed ([Por97, Corollary 4.9]) that the logarithmic Gauss map of
the A-polynomial could be expressed as a ratio of torsions -up to a sign-, and that this ratio of
torsions is equal to the modulus of ρ when it is a boundary-parabolic representation ([Por97,
Proposition 4.7]). Our point of view permits to fix and compute the sign ambiguity. Moreover,
our results Proposition 5.1.2 and Theorem 5.1.3 are more general, since they do not require the
Reidemeister torsion to be well-defined, for instance they hold for high dimensional components
of the character variety.

Finally, we consider ideal points of the A-polynomial, those are points added at infinity
in a compactification of the curve {A(L,M) = 0} in C2. In [CS83], M. Culler and P. Shalen
constructed incompressible surfaces in MK associated to such points. Those surfaces have a
non-empty boundary, whose slope is determined by a rational number p/q. We prove the following
theorem=
Theorem 5.1.5. Let y be an ideal point in a one-dimensional component Y of the A-polynomial.
Then the value of the slope function at the ideal point y equals minus the boundary slope of an
incompressible surface corresponding to y or minus the slope of the corresponding side of the
Newton polygon of the A-polynomial. ◁

This theorem sheds some light on the main theorem of [Coo+94], which states that the
boundary slopes of the Culler–Shalen surfaces are boundary slopes of the Newton polygon of the
A-polynomial. Indeed it is well-known that the logarithmic Gauss map converges at those ideal
points to the value of the slope of the corresponding boundary of the Newton polygon.

To conclude this introduction, we mention that the slope invariant can be extended to
orthogonal (real) representations of link groups. In this more general setting, the first twisted
homology space H1(∂MK , ρ) can have an arbitrary dimension higher than 2 and the kernel Z(K, ρ)
might not be a line any more. However, the space H1(∂MK , ρ) carries a natural symplectic
structure given by the (twisted) intersection form on ∂MK , and Z(K, ρ) is still a Lagrangian
subspace. A construction of V.I. Arnol’d [Arn67] related to the Maslov index allows to construct a
generalised slope for this context, lying in S1 ⊂ C∗. As it turns out, in the case of a representation
ρ : π1(MK)→ SU2(C), both theories coincide via the natural isomorphism RP1 ≃ S1.

In Section 5.2 we collect basic definitions on character varieties and A-polynomials. In
Section 5.3 we define the slope invariant and we prove Proposition 5.1.2 and Proposition 5.1.4. In
Section 5.4 we prove Theorem 5.1.3. Only the A-polynomial is concerned by Section 5.4.2, where
we prove Theorem 5.1.1. Finally, in Section 5.4.3 we prove Theorem 5.1.5.

This chapter is adapted from work in collaboration with L. Bénard and V. Florens [BFR21].

5.2 Representation varieties and A-polynomial

This section is devoted to definitions and properties of representations spaces and character
varieties (Section 5.2.1). We compute the character variety of the group Z2 in Section 5.2.2 and
define the A-polynomial of knots in Section 5.2.3. References for character varieties are [Sha01;
Sik12], the A-polynomial was first defined in [Coo+94], see also [CL98].

5.2.1 Representation and character varieties
Let Γ be a finitely generated group. The representation variety is the affine algebraic set

R(Γ) = Hom(Γ,SL2(C))
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If Γ is generated by n elements, the representation variety is an algebraic subset of SL2(C)n given
by polynomial relations corresponding to the relations of the group Γ. Two different presentations
yield naturally isomorphic algebraic sets.

A representation ρ : Γ → SL2(C) is abelian is ρ(Γ) is an abelian subgroup of SL2(C). A
representation ρ is reducible if there exists a proper subspace of C2 invariant under the action of
ρ(Γ). Equivalently, ρ(Γ) is conjugated to a subgroup of the group of upper-triangular matrices in
SL2(C). Abelian representations are reducible, but the converse does not hold. Non-reducible
representations are irreducible.

Two representations ρ and ρ′ in R(Γ) are equivalent if they have the same trace:

ρ ∼ ρ′ if and only if Tr ρ(γ) = Tr ρ′(γ), for any γ ∈ Γ.

The set of equivalence classes of representations coincides with the algebro-geometric quotient
of R(Γ) by the action of SL2(C) by conjugation. This quotient is usually constructed through
invariant theory, and is denoted

X(Γ) = R(Γ)// SL2(C)

Points of the character variety are called characters. The equivalence class of a representation
ρ (the character of ρ) is denoted by χρ : Γ → C with χρ(γ) = Tr(ρ(γ)) for γ ∈ Γ. If Γ is the
fundamental group of a manifold W , we simply write R(W ) and X(W ) for the representation
and character varieties of the manifold W .

Despite being abelian is not a well-defined notion on the character variety, the notion of being
reducible makes sense there, since a reducible representation ρ : Γ→ SL2(C) can be characterised
by the fact that for any γ, δ ∈ Γ, the following equality holds (see for instance [CS83, Lemma
1.2.1]):

Tr ρ
(
γδγ−1δ−1

)
= 2. (5.2)

The character variety X(Γ) can be decomposed as

X(Γ) = X irr(Γ) ∪Xred(Γ)

where Xred(Γ) is the set of reducible characters, and its complement X irr(Γ) is the set of irreducible
characters. Eq. (5.2) implies that Xred(Γ) is a Zariski closed subset of X(Γ).

An algebraic set is reducible if it can be written as a union of two proper algebraic subset, else
it is irreducible. An irreducible component of an algebraic set is a maximal irreducible algebraic
subset.
Remark 5.2.1. Despite R(Γ) or X(Γ) are called varieties, they are not quite algebraic varieties
in general: they are actually reducible, and might not be reduced as schemes (some points or
subspaces might have multiplicity). On the other hand, any irreducible component is irreducible,
and in particular reduced, by definition. ◊

Two representations ρ and ρ′ are conjugate if there exists a matrix M ∈ SL2(C) such that
ρ(γ) =Mρ′(γ)M−1 for every γ ∈ Γ. Two conjugate representations define the same character;
the converse is false in general, but true for elements of X irr(Γ). More precisely, the following
holds.
Theorem 5.2.2 ([CS83, Proposition 1.5.2]). If ρ and ρ′ are two representations ΓA → SL2(C)
with ρ irreducible and χρ = χρ′ , then ρ and ρ′ are conjugate (and ρ′ is irreducible as well). ◁

Two non-conjugate representations having the same character in X(Γ) must be reducible. If Γ
is a knot group, G. Burde and G. de Rham [Bur67; Rha67] showed that the set of characters
containing non-conjugate representations is finite.

5.2.2 The character variety of Z2

We describe explicitly the character variety of a 2-torus S1×S1. Pick a basis m, ℓ of π1(S1×S1) =
Z2. Any representation in SL2(C) is conjugate to a representation ρ given by two commuting
matrices of the form

ρ(m) =

ï
M ∗
0 M−1

ò
ρ(ℓ) =

ï
L ∗
0 L−1

ò
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for M,L ∈ C∗. Each point of the character variety X(S1 × S1) has a pre-image in R(S1 × S1) of
the form

ρ(m) =

ï
M 0
0 M−1

ò
ρ(ℓ) =

ï
L 0
0 L−1

ò
M,L ∈ C∗ (5.3)

This pre-image is unique up to the involution σ of (C∗)2 which sends (L,M) to (L−1,M−1), and
X(S1 × S1) can be identified with the singular affine complex surface (C∗)2/σ. It embeds in C3

as the zeros of the polynomial

∆ = x2 + y2 + z2 − xyz − 4

Indeed, the function algebra of X(S1 × S1) naturally identifies with the σ-invariant sub-algebra
C[M +M−1, L+ L−1] of C[L±1,M±1]. This algebra of invariant functions is isomorphic with
C[x, y, z]/(∆) through

M +M−1 7−→ x L+ L−1 7−→ y ML+ (ML)−1 7−→ z

From this description, one sees that the singular locus of X(S1 × S1) consists on the four points
{(L,M) = (±1,±1)}.

5.2.3 The A-polynomial

Let K be an oriented knot in S3 with exterior MK . The inclusion ∂MK ⊂ MK induces an
injective group homomorphism π1(∂MK) ↪→ π1(MK). Let r be the restriction map:

r : X(MK) −→ X(∂MK) ≃ X(S1 × S1)

For short we denote by ρ∂ = r(ρ) the restriction of ρ to π1(∂MK). By Section 5.2.2, the choice
of the longitude ℓ and the meridian m induces an identification of X(S1 × S1) with a quotient
of (C∗)2. The image of r is a union of points and curves, possibly with multiplicities, see for
instance [DG04, Lemma 2.1]. Discarding the 0-dimensional components, the A-polynomial of
K is the unique polynomial AK(L,M) in C[L,M ] whose zero locus in C2 is exactly mapped
onto the image of the algebraic map r Note that AK(L,M) is always divisible by L− 1. This
factor corresponds to the curve of reducible characters. S. Boyer, X. Zhang, N. Dunfield and
S. Garoufalidis have shown the following result.
Theorem 5.2.3 ([BZ05; DG04]). Let K be a knot in S3. The A-polynomial AK(L,M) is equal
to (L− 1)k for some k, if and only if K is the trivial knot (and in this case k = 1). ◁

5.3 The SL2(C)-slope invariant

In this section we define the slope of an admissible representation (Section 5.3.1), and observe that
generic SL2(C)-representations are admissible. In Section 5.3.2 we show that the slope is invariant
by conjugation of the representation. We prove in Section 5.3.3 that it yields a rational function
on irreducible components of the character variety and that the slope of a real representation is
a real number. Then we prove in Section 5.3.4 that the slope can be written as a quotient of
Reidemeister torsions. Finally, in Section 5.3.5 we describe a procedure to compute the slope
with an Alexander matrix.

5.3.1 Admissible representations
Let V be a finite dimensional C-vector space, and ρ : π1(MK)→ GL(V ) be a representation. The
representation extends to a ring homomorphism and V can be viewed as a right Z[π1(MK)]-
module denoted by V (ρ). Let H∗(MK ; ρ) be the ρ-twisted homology spaces of MK as defined in
Appendix A.
Definition 5.3.1. A representation ρ : π1(MK)→ GL(V ) is admissible if it satisfies:

• there exists vρ ∈ V such that {ℓ� vρ,m� vρ} is a basis of H1(∂MK ; ρ) ≃ C2,
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• the kernel of the homomorphism induced by the inclusion:

Z(∂MK ; ρ) := ker
(
H1(∂MK ; ρ)

i∗−−→ H1(MK ; ρ)
)

has dimension one. 3

We restrict to representations ρ : π1(MK)→ SL2(C). The composition of ρ with the adjoint
action Ad of SL2(C) on sl2(C) induces the following representation:

Ad ◦ρ : π1(MK) Aut(sl2(C))

γ
(
v 7→ ρ(γ)vρ(γ)−1

)
Definition 5.3.2. Let ρ : π1(MK)→ SL2(C) be such that Ad ◦ρ is admissible. Let

a (ℓ� vρ) + b (m� vρ)

be a generator of Z(∂MK ; Ad ◦ρ) for some [a : b] ∈ CP1 . The slope of the knot K at the
representation ρ is

sK(ρ) := − b
a
∈ C ∪∞ 3

Definition 5.3.3. A representation ρ : π1(MK)→ SL2(C) is boundary-parabolic if the restriction
ρ∂ : π1(∂MK)→ SL2(C) is parabolic, that is Tr ρ(γ) = ±2 for any γ ∈ π1(∂MK).

A boundary-parabolic character is the character of a boundary-parabolic representation. 3

Lemma 5.3.4. Let ρ : π1(MK)→ SL2(C) be a non-parabolic representation. The vector space
H1(∂MK ; Ad ◦ρ) is isomorphic to C2, and the kernel Z(MK ; Ad ◦ρ) has dimension 1. Moreover,
if ρ is not boundary-parabolic, then Ad ◦ρ is admissible. ◁

Proof. The group π1(MK) is generated by pairwise conjugate meridians. If ρ is non-parabolic, then
the image of a meridian must differ to ±I2, otherwise we would have ρ(π1(MK)) ⊂ {±I2}. Since
Ad ◦ρ ∈ Aut(sl2(C)) ≃ SO3(C) is unitary, a direct application of Lemma A.2.1 on page 106 gives
the dimension of H1(∂MK ; Ad ◦ρ). Moreover, when ρ is not boundary-parabolic, for vρ ∈ sl2(C)
invariant by Ad ◦ρ∂ , the pair of vectors (ℓ� vρ,m� vρ) forms a basis of H1(∂MK ; Ad ◦ρ). The
constructions of the Appendices A.1.3 and A.1.4 can also be applied to Ad ◦ρ using the C-bilinear
Killing form on sl2(C) as the standard vector product, see [Por97, Section 0.3]. Theorem A.1.9
thus gives the dimension of the subspace Z(MK ; Ad ◦ρ).

As an example, we compute the slope for abelian non boundary-parabolic representations.
Let φ : π1(MK) → H1(MK) = Z be the abelianisation. For any λ ∈ C∗, there is an abelian
representation

ρλ : π1(MK) SL2(C)

γ

ï
λφ(γ) 0
0 λ−φ(γ)

ò (5.4)

and any abelian, non boundary-parabolic representation is conjugate to a representation of this
form.
Lemma 5.3.5. For any λ ̸= ±1, the slope at the abelian representation ρλ vanishes:

sK(ρλ) = 0 ◁

Proof. Up to conjugation, the representation Ad ◦ρ has the form

Ad ◦ρ(γ) =

λ2φ(γ) 0 0
0 1 0
0 0 λ−2φ(γ)


and sl2(C) splits as Z[π1(MK)]-module as

sl2(C) = Cλ2 ⊕ C⊕ Cλ−2

This yields a splitting in twisted homology (with abelian coefficients), for U = ∂MK or U =MK :

H1(U ; Ad ◦ρ) = H1 (U ;Cλ2)⊕H1(U ;C)⊕H1 (U ;Cλ−2)
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Since λ ̸= ±1, by Corollaries A.2.2 and A.2.3 on page 106 for U = ∂MK the only non-trivial
summand is H1(∂MK ,C), and the map H1(∂MK ; Ad ◦ρ) i∗−→ H1(MK ; Ad ◦ρ) coincides with the
map induced by the inclusion in homology with trivial coefficients H1(∂MK ,C)→ H1(MK ,C),
whose kernel is generated by ℓ.

5.3.2 The slope of characters
By the following lemma, the slope does not depend on the conjugacy class of an irreducible repres-
entation. Combined with Theorem 5.2.2, it follows that the slope of an irreducible representation
depends only on its character.
Lemma 5.3.6. Let ρ and ρ′ : π1(MK) → SL2(C) be two irreducible, non boundary-parabolic
representations. If ρ and ρ′ are conjugate, then sK(ρ) = sK(ρ′). ◁

Proof. Let A be a matrix in GL2(C) such that ρ′ = AρA−1. Any Ad ◦ρ-invariant vector
vρα

∞ ∈ sl2(C) yields an Ad ◦ρ′-invariant vector v′ρ = AvρA
−1, and the conjugation by A induces

an isomorphism
H1(∂MK ; Ad ◦ρ) −→ H1(∂MK ,Ad ◦ρ′)

sending the basis {vρ ⊗ ℓ, vρ ⊗ m} to {v′ρ � ℓ, v′ρ � m} and the subspace Z(∂MK ; Ad ◦ρ) to
Z(K,Ad ◦ρ′). Hence sK(ρ) = sK(ρ′).

Remark 5.3.7. There exist pairs of reducible, non-conjugate representations with the same
character. Indeed, let χ be an arbitrary reducible character in X(MK). Consider a representation
ρ of the form

î
λ(γ) ∗
0 λ−1(γ)

ó
, where λ : π1(MK)→ C∗ is a group homomorphism, chosen such that

χ(ρ) = χ. Note that λ can further be written λ(γ) = λφ(γ) for some λ ∈ C∗ and φ : π1(MK)→ Z.
Hence the abelian representation ρλ defined in Eq. (5.4) has also character χ, but is not conjugated
in general to ρ. It turns out that they can have different slope values.

For example, consider the right-handed trefoil knot T in S3. The character variety X(MT ) is
the union of a line Xred and a conic X irr in the plane. The line contains only reducible characters,
and any character in the conic is irreducible except the two intersection points Xred ∩ X irr.
Let χ be a point in Xred ∩X irr. Since χ is reducible, there exists a λ ∈ C∗ such that the abelian
representation ρλ has character χ. By Lemma 5.3.5, one has sT (ρλ) = 0. However, we show in
Example 5.3.19 that the slope defines a constant function on X irr, everywhere equal to −6. ◊

5.3.3 Regularity and properties of the slope
We extend the slope to a rational function –locally a quotient of polynomials– on the character
variety X(MK).

There is a component Xred ⊂ X(MK) of reducible characters only. By Remark 5.3.7 any
character in Xred is the character of an abelian representation. Hence the slope is identically zero
on Xred, see Lemma 5.3.5. Suppose now that X ⊂ X(M) is an irreducible component containing
an irreducible character.
Proposition 5.3.8. Let X ⊂ X(M) be an irreducible component which contains an irreducible
character. The slope extends to a rational function on X, still denoted sK . Moreover, if χ ∈ X is
a boundary-parabolic character then

sK(χ) = τ(χ), (5.5)

where the modulus τ(χ) ∈ C is defined by taking the representative ρ of χ satisfying

ρ(m) =

ï
±1 1
0 ±1

ò
ρ(ℓ) =

ï
±1 τ(χ)
0 ±1

ò
◁

Remark 5.3.9. If χ is the character of an irreducible representation and lies at the intersection
of several irreducible components, then the value of the slope at χ is well-defined. ◊

The rest of the section is devoted to the proof of Proposition 5.3.8. Lemma 5.3.10 asserts that
the slope is a rational function in the neighbourhood of any irreducible, non boundary-parabolic
character. For boundary parabolic characters χ, we define the slope by the relation in Eq. (5.5)
and we show that the result is still a rational function on X in Lemma 5.3.12.
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Lemma 5.3.10. Let χ0 an irreducible, non-boundary-parabolic character in X. The slope is a
rational function in a neighbourhood of χ0 in X. ◁

Proof. Let ρ0 in R(MK) be a representation with character χ0. By Lemma 5.3.4 one has
H1(∂MK ; Ad ◦ρ) ≃ C2. The set of complex lines

P(ρ) = P(H1(∂MK ; Ad ◦ρ))

is a complex algebraic variety isomorphic to CP 1. If ρ and ρ′ are conjugate, then there is a natural
algebraic isomorphism P(ρ) ≃ P(ρ′). It defines an algebraic CP1-fibration on a neighbourhood
of χρ0 , and for any χ, the complex line Z(MK ; Ad ◦ρ) is an algebraic section of this fibration,
independent of the choice of representation ρ with character χ.

It remains to show that the identification P(ρ) ≃ CP1 is algebraic, in other words, that the
choice of the basis (vρ⊗ ℓ, vρ⊗m) depends algebraically on ρ. Since ρ0 is not boundary-parabolic,
we can shrink the chosen neighbourhood so that no representation ρ near ρ0 is boundary-parabolic.
Then, since ρ∂ is conjugated to a diagonal representation, there is a unique Ad ◦ρ∂-invariant
vector vρ with norm 1 in sl2(C). This choice depends polynomially on the entries of the matrix
Ad ◦ρ(m), and then the basis (vρ ⊗ ℓ, vρ ⊗m) depends algebraically on ρ.

We now consider the case of boundary-parabolic characters.
Lemma 5.3.11. Let ρ0 be a boundary-parabolic representation whose character χρ0

lies in X.
Then ρ0 is irreducible, in particular ρ0(m) ̸= ±I2. ◁

Proof. For ρ reducible in X, [Bur67; Rha67] implies that ρ(m) has eigenvalues λ, λ−1 in C,
whose square is a root of the Alexander polynomial ∆MK

(t), in particular λ ̸= ±1, and ρ is not
boundary-parabolic. Now for irreducible ρ, the image of any meridian must be different of I2,
since meridians generate the group π1(MK).

Lemma 5.3.12. Let X ⊂ X(M) be an irreducible component containing an irreducible char-
acter, and χ0 ∈ X a boundary-parabolic character. Then the slope function sK is rational in a
neighbourhood of χ0. ◁

Proof. Suppose first that X contains only boundary-parabolic characters. Any χ ∈ X is the
character of a representation ρ such that ρ(m) =

[±1 1
0 ±1

]
. Hence χ 7→ τ(χ) is rational.

Now we assume that X contains a non boundary-parabolic character. By definition, boundary-
parabolic characters form a Zariski closed subset of X. By Lemma 5.3.10, the slope function is
rational on the open, non-empty subset of X consisting of non boundary-parabolic characters.
By analytic continuation, it is enough to show that

lim
χ→χ0

α∞sK(χ) = τ(χ0)

By Lemma 5.3.11 any boundary-parabolic representation ρ0 with character χ0 is irreducible.
Moreover, since ρ0(m) can not be trivial, we can chose such a ρ0 satisfying

ρ0(m) =

ï
±1 1
0 ±1

ò
For any χ close to χ0, we chose similarly a representation ρ with character χ such that

ρ(m) =

ï
M 1
0 M−1

ò
with M close to ±1 in C∗. For such ρ, let

vρ =

ï
M −M−1 2

0 M−1 −M

ò
be an Ad ◦ρ∂-invariant vector. The limit at ρ0 of vρ is the (Ad ◦ρ0)∂-invariant vector vρ0

= [ 0 2
0 0 ].

However, a direct computation shows that vρ0
⊗ ℓ and vρ0

⊗ m are linearly dependent in
H1(∂MK ,Ad ◦ρ0), and we cannot compute the slope of the boundary parabolic representation
ρ0 by means of Definition 5.3.2. Nevertheless, the subspace Z(K,Ad ◦ρ0) is one-dimensional by
Lemma 5.3.4.
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It implies that the map i∗ : H1(∂MK ; Ad ◦ρ) → H1(MK ; Ad ◦ρ) has rank one at any rep-
resentation ρ near ρ0, and at ρ0 as well. In particular, for any ρ near ρ0, the slope can
be computed as the ratio of i∗(vρ ⊗ ℓ) and i∗(vρ ⊗ m) in i∗(H1(∂MK ; Ad ◦ρ)). This actu-
ally makes sense for ρ = ρ0 as well. An explicit computation of the boundary operator
∂1 : C2(∂MK ,Ad ◦ρ0) → C1(∂MK ,Ad ◦ρ0) shows that the vector vρ0 ⊗ ℓ − τ(χ0) · vρ0 ⊗ m
belongs to im ∂2, and the equality

vρ0
⊗ ℓ = τ(χ0) · vρ0

⊗m

holds in H1(∂MK ,Ad ◦ρ0). This implies that the ratio of i∗(vρ0 ⊗ ℓ) and i∗(vρ0 ⊗m) coincides
with the modulus τ(χ0). This proves the lemma, and achieves the proof of Proposition 5.3.8.

We end this section with the following observation.
Proposition 5.3.13. Let X ⊂ X(M) be an irreducible component which contains a non boundary-
parabolic representation. If ρ ∈ X is a real representation ρ : π1(MK)→ SL2(R) or SU2(C), then
the slope is a real number in RP1. ◁

Proof. First assume that ρ is non-boundary-parabolic. If ρ is real, denoting by Ad ◦ρR the
action of ρ on the Lie algebra sl2(R) (resp. su(2)) of SL2(R) (resp. SU2(C)), then obviously
the Lagrangian Z(MK ; Ad ◦ρ) ⊂ H1(∂MK ; Ad ◦ρ) is the complexification of the real Lagrangian
Z(MK ,Ad ◦ρR) in the real symplectic vector space H1(∂MK ,Ad ◦ρR) and the slope of this real
Lagrangian is the slope of its complexification, a real number. If ρ is boundary-parabolic and
re al, then it takes value into SL2(R) and the proposition follows from the definition of the
modulus τ .

5.3.4 Slope and Reidemeister torsion
In this section we show that the slope coincides with the ‘change of curve term’ for the Reidemeister
torsion as stated in Proposition 5.1.4.

If ρ is an irreducible representation in X(MK), we consider the torsion of the complex
C∗(MK ; Ad ◦ρ) defined in Section 5.3.1. This complex is naturally based from a cell decomposition
of MK and a choice of a basis of sl2(C), but not acyclic. The Reidemeister torsion is usually
defined for acyclic complexes. In the case we are considering, one needs to make some additional
choices to define it, namely a basis of each homology group H∗(MK ; Ad ◦ρ).

According to [Por97], one can still define the Reidemeister torsion of the cellular complex
C∗(MK ; Ad ◦ρ) for representations ρ in R(MK) such that H1(MK ; Ad ◦ρ) has dimension 1. For
a given curve γ ∈ π1(∂MK), the representation ρ is γ-regular if there exists a vector vρ ∈ sl2(C)
such that vρ ⊗ γ spans H1(MK ; Ad ◦ρ). In this case, since there is a natural choice of a basis of
H2(MK ; Ad ◦ρ), the curve γ determines a homology basis of the complex C∗(MK ; Ad ◦ρ) and the
torsion TMK ,γ(Ad ◦ρ) ∈ C∗ is defined. Note that this torsion depends only on the conjugacy class
of ρ, as well as the property of being γ-regular.

Let X ⊂ X(MK) the component containing χ, the torsion function is the rational function

TMK ,γ : X −→ C

defined as the Reidemeister torsion of the complex C∗(MK ,Ad) if χ is γ-regular, and by
TMK ,γ(χ) = 0 otherwise.

We start with the following lemma, which provides the genuine setting to define the Re-
idemeister torsion.
Lemma 5.3.14. If X has dimension one and contains the character of a scheme-smooth repres-
entation ρ, then dimH1(MK ; Ad ◦ρ) = 1. ◁

Proof. The proof of Lemma 5.3.14 follows from the isomorphism between the Zariski tangent space
of X(MK) at ρ and the module H1(MK ; Ad ◦ρ), see [Sik12, Theorem 1]. Scheme-smoothness
implies that the Zariski tangent space is the actual tangent space, which is one-dimensional
because X is.

Note that scheme-smoothness is a Zariski open condition.
It turns out that the character variety X(MK) of a knot exterior is often one-dimensional.

This is the case if the knot is small (if it does not contains a closed incompressible surface
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[Coo+94, Proposition 2.4]). This is also the case for any component X ⊂ X(MK) containing
the character of a lift of the holonomy representation ρ : π1(MK)→ PSL2(C), provided that the
interior of MK admits a hyperbolic structure.

The following proposition is the main result of this section.
Proposition 5.3.15. Let X ⊂ X(M) be an irreducible one-dimensional component which contains
a scheme-smooth, non-boundary parabolic character. For all χ ∈ X the following holds

sK(χ) =
TMK ,ℓ(χ)

TMK ,m(χ)
◁

We provide two different proofs of this result: one uses the natural definition of the torsion
while the other relies directly on some results on the torsion form proved by L. Bénard in [Bén20].

Torsion and chain complexes

This section is devoted to the proof of Proposition 5.3.15 by using the chain complex of MK . The
proof is very similar to [DFL22b, Theorem 3.21] or [DFL22b, Theorem 6.7]. We use the following
technical lemma.
Lemma 5.3.16. Let γ be a curve in π1(∂MK), and χ be an irreducible γ-regular character
in X(MK). There exists a Zariski open neighbourhood of χ such that any character in this
neighbourhood is irreducible and γ-regular. ◁

Proof. Being irreducible is a Zariski open condition, see Eq. (5.2). The γ-regularity follows from
lower semi-continuity of the rank of a linear map. Indeed the dimension of H1(MK ; Ad ◦ρ) is
upper semi-continuous. It is at least one (the dimension of X) again because it is isomorphic to
the Zariski tangent space hence it is locally constant equal to one. On the other hand, the rank of
the linear map H1(γ,Ad ◦ρ)→ H1(MK ; Ad ◦ρ) sending vρ ⊗ γ to itself is lower semi-continuous.
It is at most one (the dimension of H1(γ,Ad ◦ρ) and it cannot decrease on a neighbourhood of χ.
We deduce that H1(γ,Ad ◦ρ)→ H1(MK ; Ad ◦ρ) is an isomorphism on a Zariski open subset.

Proof of Proposition 5.3.15. Let χ be an irreducible, scheme-smooth, non boundary-parabolic
character and let ρ be a representation in R(MK) with character χ. We first assume that ρ is ℓ
and m-regular, that is for v ∈ sl2(C) an Ad ◦ρ∂-invariant vector, both v ⊗ ℓ and v ⊗m provide a
basis of H1(MK ; Ad ◦ρ).

The calculation of the torsions TMK ,ℓ(χ) and TMK ,m(χ) involves different choices of homology
basis of C∗(MK ; Ad ◦ρ). By [Por97, Proposition 3.18], the bases of H2(MK ; Ad ◦ρ) are determined
by the fundamental class of H2(∂MK ;C) and can be chosen to be the same. Hence, if b1 is a
basis of im(∂1), the ratio of torsions corresponding to the choice of m or of ℓ is reduced to

TMK ,ℓ(χ)

TMK ,m(χ)
=

det(b1 ⊕ (v ⊗ ℓ), c1)
det(b1 ⊕ (v ⊗m), c1)

.

In parallel, consider the affine equation in C1(MK ; Ad ◦ρ):

y b1 + x v ⊗m = v ⊗ ℓ

with at least a solution y = 0 and x = sK(ρ). The Cramer determinants expressed in the common
basis c1 show that sK(ρ) coincides with the ratio of torsions.

If there exist a character in X which is ℓ-regular and a character in X which is m-regular,
then Proposition 5.3.15 holds on the whole component X by Lemma 5.3.16.

Assume that X contains only characters that are not (say) ℓ-regular. Since the map
H1(∂MK ; Ad ◦ρ) → H1(MK ; Ad ◦ρ) is not trivial (by Lemma 5.3.4), it is onto on a Zariski
open subset U ∈ X, again because H1(MK ; Ad ◦ρ) has dimension one generically. Thus all
characters in U must be m-regular, and it follows from the definition that the slope and the
quotient of torsions are identically zero on X. A similar argument works replacing ℓ by m and
zero by infinity.
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The torsion form

In this paragraph, we present an alternative proof of Proposition 5.3.15. We follow a slightly
different point of view on the torsion, as a volume form on the character variety. The following
lemma asserts that the cotangent space of the character variety [Sik12, Section 8] is isomorphic
to the first Ad ◦ρ-twisted homology group.
Lemma 5.3.17. Let χ be an irreducible character in X(MK), and a representation ρ with
character χ. Let T ∗

χX(MK) be the Zariski tangent space of X(MK) at χ. There is a natural
isomorphism

H1(MK ; Ad ◦ρ) ≃ T ∗
χX(MK)

Moreover, if χ is not boundary-parabolic, then

H1(∂MK ; Ad ◦ρ) ≃ T ∗
r(χ)X(∂MK) ◁

The proof of Lemma 5.3.17 follows from [Sik12, Theorem 1]. Note that through the isomorph-
ism, the space Z(∂MK ; Ad ◦ρ) is the Zariski co-normal bundle of r(X(MK)) in X(∂MK).

If X ⊂ X(MK) is a one-dimensional component of the character variety which contains a
scheme-smooth character, L. Bénard proved in [Bén20, Proposition 5.1] that the torsion form
can be written as

tor(MK) =
1

TMK ,ℓ
r∗
Å
dL

L

ã
=

1

TMK ,m
r∗
Å
dM

M

ã
(5.6)

where r∗ is the cotangent map

r∗ : T ∗X(∂MK) −→ T ∗X(MK)

Proof of Proposition 5.3.15. By Eq. (5.6), the ratio of torsions can be written as

TMK ,ℓ

TMK ,m
=

r∗(dL/L)

r∗(dM/M)

If χ is a non boundary-parabolic character, the character variety X(∂MK) is diffeomorphic to
(C∗)2 in a neighbourhood of r(χ). A local chart of X(∂MK) is given by taking l,m ∈ C satisfying
exp l = L and expm =M . The latter ratio of torsions can be written

TMK ,ℓ

TMK ,m
=

r∗(d l)

r∗(dm)

Lemma 5.3.17 implies that the cotangent map r∗ : T ∗
r(χ)X(∂MK)→ T ∗

χX(MK) coincides with
the homomorphism in homology H1(∂MK ; Ad ◦ρ)→ H1(MK ; Ad ◦ρ), thus by Lemma 5.3.4 the
range of the map r∗ is one-dimensional, and the images of the elements d l, dm are collinear. It
turns out that the ratio r∗(d l)

r∗(dm) coincides with the slope by its very definition.
Finally, the formula extends to the wholeX since irreducible, non boundary-parabolic character

are Zariski dense in X.

5.3.5 Compute the slope
In this section we compute the slope sK(ρ) when ρ is an irreducible non-boundary parabolic
representation, with Fox calculus, similarly to Section 4.3 and [DFL22b]. Note that for the
boundary-parabolic case, the slope can be computed directly from the representation using
Proposition 5.3.8.

The Ad ◦ρ-twisted homology group H1(MK ; Ad ◦ρ) can be computed using the chain complex
S∗(Ad ◦ρ) and the Alexander matrix derived from an extended Wirtinger presentation of the
knot group π1(MK), as explained in Appendix A.3.

The specific computation of the slope is achieved with the following result:
Proposition 5.3.18. If ρ is irreducible and non-boundary parabolic, then there exist a, b ∈ C and
an Ad ◦ρ∂-invariant vector vρ ∈ sl2(C) such that

im (∂1(ρ)) ∩ ⟨vρ � dℓ, vρ � dm⟩ = ⟨a (vρ � dℓ) + b (vρ � dm)⟩

and the slope is sK(ρ) = − b
a . ◁



CHAPTER 5. THE SL2(C)-SLOPE OF KNOTS 89

Proof. Set a base point p on ∂MK . The subcomplex S∗(ρ∂) defined by considering only the
generators x1 = m, x2 = ℓ and the relation [m, ℓ] = 1 computes the space H1(∂MK , p; Ad ◦ρ).
There are natural identifications

H1 (∂MK , p; Ad ◦ρ) = H1(∂MK ; Ad ◦ρ)
H1(∂MK , p; Ad ◦ρ) ↪→ H1(∂MK ; Ad ◦ρ)

and the following diagram commutes:

S∂
1 (ρ) S1(ρ)

H1(∂MK ; Ad ◦ρ) H1(MK ; Ad ◦ρ) H1(MK , p; Ad ◦ρ)

h∂MK h

i∗

where h and h∂MK
are the quotient maps.

Let u ∈ sl2(C) be an Ad ◦ρ-invariant vector and γ ∈ π1(MK). Any element u � γ of
H1(∂MK ; Ad ◦ρ) can be lifted to u � dw in S∂

1 (ρ). Since ρ is admissible, there exist a, b ∈ C
such that Z(∂MK ; Ad ◦ρ) = ker i∗ = ⟨a (vρ � ℓ) + b (vρ �m)⟩. Then a (vρ � dℓ) + b (vρ � dm) ∈
ker(h) = im (∂1(ρ)).

Reciprocally, suppose that there exist complex numbers a, b ∈ C such that dz := a (vρ �
dℓ) + b (vρ � dm) is a non-zero vector belonging to im (∂1(ρ)). Then h∂MK

(dz) = a (vρ � ℓ) +
b (vρ �m) must be non-zero since (vρ � ℓ, vρ �m) is a free basis of H1(∂MK ; Ad ◦ρ). However,
h(dz) = i∗ (h∂MK

(dz)) = 0; hence h∂MK
(dz) ∈ ker i∗. Since ker i∗ is one-dimensional, then

ker i∗ = ⟨h∂MK
(dz)⟩, and the slope is − b

a .

Example 5.3.19 (Trefoil knot). Let T be the exterior of the right-handed trefoil knot, with
group π1(MK) = ⟨u, v | uvu = vuv⟩. Any irreducible representation is conjugate to ρ with

ρ(u) =

ï
M 1
0 M−1

ò
ρ(v) =

ï
M−1 0
−1 M

ò
where M ∈ C. If ℓ = vuv−1uvu−3 is the preferred longitude with corresponding meridian m = u,
we obtain

ρ(ℓ) =

ï
−M−6 M5 +M3 +M +M−1 +M−3 +M−5

0 −M6

ò
Whenever M ̸= ±1, the vector vρ =

[
0, 1, 1

M−M−1

]
is right Ad ◦ρ∂-invariant. The Alexander

matrix (acting on the right on the coefficients) whose row-space is generating im (∂1) is given by



0 0 0 1 0 0 −M−2 0 0

0 0 0 0 1 0 −M−1 −1 0

0 0 0 0 0 1 1 2M −M2

−1 0 0 −2
(
2−M−2

)
0 0 1+M−2 0 0

0 −1 0 2M−1 −2 0 M−1 2 0

0 0 −1 −2 −4M 2M2−4 −1 −2M M2+1

sl2(C) � dℓ sl2(C) � dm sl2(C) � dv

dr1

dr2


where r1 is uvu = vuv and r2 is the longitude definition. By Proposition 5.3.18, the space
Z(MK ; Ad ◦ρ) has generator [

0, 1, 1
M−M−1 , 0, 6,

6
M−M−1 , 0, 0, 0

]
in the 2-dimensional subspace spanned by{[

0, 1, 1
M−M−1 , 0, 0, 0, 0, 0, 0

]
,
[
0, 0, 0, 0, 1, 1

M−M−1 , 0, 0, 0
]}

and the slope is sT (Ad ◦ρ) = −6. In particular it does not depend on ρ. 7
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Example 5.3.20 (Figure-eight knot). LetK be the figure-eight knot. There is a unique component
X ⊂ X(MK) containing irreducible characters (see for instance [Bén20, Examples 1.6.2 and 5.5]).
This component is a plane curve given by the equation

{2x2 + y2 − x2y − y − 1 = 0} ⊂ C2

where x it the coordinate function given by χ 7→ χ(m). Note that the coordinate function of the
longitude is χ 7→ χ(ℓ) = x4 − 5x2 + 2. Using [Por97, Théorème 4.1 (ii)] and Proposition 5.3.15 we
compute

sK(x, y)2 =
x2 − 4

(x4 − 5x2 + 2)2 − 4
(4x3 − 10x)2 =

4(2x2 − 5)2

(x2 − 5)(x2 − 1)

Expanding the denominator with the relation x2 = y2−y−1
y−2 , we obtain, up to sign

sK(x, y) = ±2(2x2 − 5)(y − 2)

(y − 1)(y − 3)
7

5.4 The SL2(C)-slope and the A-polynomial

In this section, we express the slope function in terms of the A-polynomial of the knot. As
mentioned in Section 5.2.3, r(X) might have 0-dimensional components but they are omitted in
the definition of the A-polynomial.

5.4.1 The derivation formula
Theorem 5.4.1. Let X ⊂ X(MK) be an irreducible component such that r(X) has dimension 1.
For all χ ∈ X with r(χ) = (L,M), the following holds

sK(χ) = −M
L
· ∂MA(L,M)

∂LA(L,M)
,

where A(L,M) = AK(L,M) and ∂L and ∂M are the partial derivatives. ◁

Remark 5.4.2. Combining Proposition 5.3.15 with [Por97, Corollaire 4.9], the result of The-
orem 5.4.1 follows directly, up to sign, in the case where X has itself dimension 1. We resolve those
two issues. Moreover Theorem 5.4.1 does not require the characters in X to be scheme-reduced,
and the factors of the A-polynomial might have multiplicities greater than 1. ◊

Proof. From Lemma 5.3.17 it follows that the Lagrangian Z(MK ; Ad ◦ρ) generically identi-
fies with the Zariski co-normal bundle of r(X(MK)) in X(∂MK). Picking local coordinates
l = logL,m = logM around r(χ), the kernel of the cotangent map is generated by

dA(el, em) = ∂lA(e
l, em)dl+ ∂mA(e

l, em)dm

in C2 = ⟨dl, dm⟩. Using the chain rule, we obtain that it is generated by the vectorÅ
L
∂A(M,L)

∂L
, M

∂A(M,L)

∂M

ã
and the proposition follows.

Remark 5.4.3. Let T be the right-handed trefoil knot, with AT (L,M) = 1+LM6. Theorem 5.4.1
gives

sT = −M
L
· 6M

5L

M6
= −6

Compare to Example 5.3.19. ◊
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5.4.2 Detecting the unknot

Let K be an oriented knot in S3, and AK(L,M) be the A-polynomial of K. In this subsection we
prove the following theorem, whose proof is a refinement of arguments by Boyer and Zhang [BZ05]:

Theorem 5.4.4. If degM (AK(L,M)) = 0, then K is the trivial knot. ◁

The following corollary asserts that the slope detects the trivial knot:
Corollary 5.4.5. Let K be a knot in S3 such that the slope sK is identically zero. Then K is
the trivial knot. ◁

Proof. Since sK(Ad ◦ρ) ≡ 0, by Theorem 5.4.1 the A-polynomial consists of a collection of lines
L = αi. This is prohibited by Theorem 5.4.4, unless K is the trivial knot.

The rest of the section is devoted to the proof of Theorem 5.4.4.

Proof of Theorem 5.4.4. We assume that the M -degree of the A-polynomial is zero, and we will
prove that K must be the trivial knot. The A-polynomial of K can be written as a finite product

AK(M,L) =
∏
i

(L− αi)

Claim. The αi are roots of unity. ◁

Proof of the claim. By [Coo+94, Proposition 3.1], compactifying the line L−αi in CP2 yields an
ideal point which produces an incompressible surface S in M whose boundary curves are parallel
to the longitude ℓ. Moreover, by the root of unity phenomenon ([Coo+94, Theorem 5.7]), there is
an associated representation ρ : π1(S)→ SL2(C) such that the eigenvalues ρ(ℓ) are roots of unity.
By construction, those eigenvalues are precisely α±1

i , proving the claim.

Assume now that K is not the trivial knot. Let MK(r) the 3-manifold obtained by Dehn
surgery onK, with coefficient r ∈ Q. We use the following result of P. Kronheimer and T. Mrowska:

Theorem 5.4.6 ([KM04]). For any non-zero integer n, there is an irreducible representation
ρ1/n : π1 (MK(1/n))→ SU2(C) with non-cyclic image. ◁

Composing with the epimorphism π1(MK)→ π1(MK(1/n)) = π1(MK)/⟨⟨mℓn⟩⟩, the repres-
entations ρ1/n yield a family of irreducible representations still denoted by

ρ1/n : π1(MK) −→ SU2(C) ⊂ SL2(C)

whose character is denoted χ1/n ∈ X(MK). For all i, the image r(χ1/n) of the character χ1/n in
X(∂MK) belongs to {L− αi = 0} if ρ1/n is conjugated to

ρ(ℓ) =

ï
αi 0
0 αi

−1

ò
ρ(m) =

ï
αi

−n 0
0 αi

n

ò
By the claim above, αi is a root of unity. Let di be its order.
Claim. For any i, for any k ∈ diZ, the image r(χ1/k) does not belong to {L− αi = 0}. ◁

Proof of the claim. Indeed di|k implies ρk(m) = Id, contradicting the irreducibility of ρk.

Finally, we have proved the intermediate result:
Lemma 5.4.7. For d =

∏
di, the characters {r(χρ1/dn

)}n≥1 do not belong to any of the lines {L−
αi = 0}. In particular, this whole family of characters collapse to a finite family of isolated points
in r(X(MK)) ⊂ X(∂MK). ◁

By similar arguments, the following holds:
Claim. It there are k ̸= k′ ∈ dZ such that r(χρ1/k

) = r(χρ1/k′ ) in X(∂MK), then ρ1/k(ℓ) is
conjugated to

[
α 0
0 α−1

]
where α is a root of unity of order p0 | (k − k′), but p0 does not divide k

neither k′. ◁
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Proof of the claim. Since r(χρ1/k
) = r(χρ1/k′ ), we have

ρ1/k(m) = ρ1/k′(m) and ρ1/k(ℓ) = ρ1/k′(ℓ)

Moreover
ρ1/k(mℓ

k) = ρ1/k′(mℓk
′
) = Id.

Hence ρ1/k(ℓ)k = ρ1/k(ℓ)
k′

and ρ1/k(ℓ) has order dividing k − k′. This implies that the order
of the eigenvalue α divides k − k′ as well. As above, this order p0 cannot divide k, neither k′,
otherwise the representation ρ1/k would be trivial.

Now, all isolated points xi of X(∂MK) in r
(
{ρ1/dn}n≥1

)
yield an eigenvalue αi of finite order

pi. We showed that if ρ1/dn, ρ1/d′n are mapped to xi, then dn ≡ d′n ̸≡ 0 mod pi. In particular,
with p =

∏
pi, the representation ρnp is not mapped on any of the isolated points xi. Since it is

neither mapped into one of the lines {L− αi = 0}, this gives a contradiction and proves that K
is the trivial knot.

5.4.3 The slope at an ideal point
In this section we prove Theorem 5.1.5. The context of this result is the work of M. Culler and
P. Shalen (see for instance [Sha01]) which associates incompressible surfaces in MK to ideal points
of curves of X(MK).

Let X ⊂ X(MK) be an irreducible component whose image r(X) = Y is a curve in X(∂MK),
defined as the zero locus of an irreducible factor P of AK(L,M). Its function ring is usually
denoted by C[Y ] = C[L,M ]/(P ), and its function field is C(Y ) = Frac(C[Y ]).

To any point y in Y one can associate a discrete valuation v on the multiplicative group C(Y )∗

in the field C(Y ) of rational functions on Y . A discrete valuation v : C(Y )∗ → Z is a group
epimorphism satisfying v(f + g) ≥ min(v(f), v(g)). The valuation associated to a smooth point y
is simply the map

f 7−→ vy(f) = ordy f

given the vanishing order of f at the point y. More generally, the smooth projective model Y
of Y is smooth compact curve bi-rational to Y , canonically defined up to isomorphism, and the
points of Y are bijectively associated to discrete valuations on the function field C(Y ) ≃ C(Y ).

An ideal point y of Y is a point added ‘at infinity’ in the smooth projective model Y , it
corresponds to a valuation vy on C(Y ) such that not every regular function f ∈ C[Y ] has non-
negative valuation vy(f). In other words, some regular functions (at least one) should have poles
at y.

In [CS83], M. Culler and P. Shalen gave a procedure to construct an incompressible surface Σ
in MK from the data of an ideal point x in a sub-curve C of X(MK) together with the valuation
vxα

∞ : C(C)∗ → Z. Not any ideal point x ∈ X(MK) yields an ideal point y = r(x) ∈ X(∂MK).
In this special case, the ideal point y in Y gives an incompressible surface in MK of a particular

kind: as observed in [Coo+94, Proposition 3.1], the incompressible surface Σ must have non-empty
boundary ∂Σ ⊂ ∂MK . The curve ∂Σ is a finite union of parallel circles in ∂MK and uniquely
determines a boundary slope in Q ∪ {∞}: the slope of aℓ + bm in H1(∂MK ;Z) is the rational
number b

a .
On the other hand, the Newton polygon of AK(L,M) =

∑
i,j ai,jL

iM j is the convex hull
in C2 of the points {(i, j) ∈ Z2 | ai,j ≠ 0}. It is a convex polygon of C2 with integral vertices,
whose sides have a slope in Q ∪ {∞}. In [Coo+94], D. Cooper, M. Culler, H. Gillet, D. Long and
P. Shalen proved the following result:
Theorem 5.4.8 ([Coo+94, Theorem 3.4]). The slopes of the sides of the Newton polygon of the
A-polynomial AK(L,M) are boundary slopes of incompressible surfaces in MK which correspond
to ideal points of one-dimensional components of r∗(X(MK)) in X(∂MK). ◁

Our next statement states that the slope invariant studied in this chapter coincides with the
slopes of [Coo+94] at ideal points.
Theorem 5.1.5. Let y be an ideal point in a one-dimensional component Y of the A-polynomial.
Then the value of the slope function at the ideal point y equals minus the boundary slope of an
incompressible surface corresponding to y or minus the slope of the corresponding side of the
Newton polygon of the A-polynomial. ◁
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Proof. The coordinate functions L,M define rational functions on Y , in particular their valuations
vy(L) and vy(M) are well-defined. Since y is an ideal point and L,M generate the coordinate
ring C[Y ] of the curve Y , at least one of this valuation must be negative, and at least one of these
coordinate functions must have a pole at y.

Lemma 5.4.9. The value of sK at the ideal point y is vy(L)
vy(M) . ◁

Now the theorem follows directly from Lemma 5.4.9, because it is proven in [Coo+94,
Proposition 3.1] that the quantity − vy(L)

vy(M) is the boundary slope of an incompressible surface
corresponding to y.

Proof of Lemma 5.4.9. From the proof of Proposition 5.3.15, we deduce that the value of the
slope at y is given by

sK(y) = lim
(L,M)→y

r∗(dL/L)

r∗(dM/M)

The following argument is an algebraic analogue of taking Taylor expansion of the functions L
and M around the ideal point y. We pick t a local coordinate around y. It is characterised by
vy(t) = 1, and we can write

L = u1t
vy(L)

for u1 ∈ C(Y ), vy(u1) = 0, and similarly

M = u2t
vy(M)

for u2 ∈ C(Y ), vy(u2) = 0. Moreover, near y it follows that

r∗(dL/L)

r∗(dM/M)
=

vy(L)/t

vy(M)/t
=

vy(L)

vy(M)

and the claim follows.
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6.1 Slope of a Lagrangian

A symplectic space is a couple (V, qs) where V is a R-vector space and qs is a definite positive
antisymmetric quadratic form on V .
Definition 6.1.1. A Lagrangian subspace U of (V, qs) is a subspace such that qs(x, y) = 0 for all
x, y ∈ U . 3

Any symplectic space (V, qs) is of even dimension, i.e. dimV = 2r for some r ∈ N, and any
Lagrangian U of V has dimension r. The Lagrangian Grassmannian of (V, qs) is denoted Λ(V ).
Definition 6.1.2. A basis B = (x1, . . . , xr ; y1, . . . , yr) of (V, qs) is symplectic if :

∀ i, j ∈ {1, . . . , r} :
®
qs(xi, yj) = δi,j

qs(xi, xj) = qs(yi, yj) = 0
3

The characterisation of Lagrangian subspaces using complexification was introduced by
V.I. Arnol’d [Arn67]. Readers can refer to [ACL03] for the proofs of the standard results relating
to Lagrangians recalled in Sections 6.1.1 and 6.1.2. The objective of this section is to make the
following new construction:
Theorem 6.1.3. Let (V, qs) be a real symplectic space and let B be a symplectic basis. Then the
triple (V, qs,B) gives rise to a function

s : Λ(V ) −→
]
−π
2
;
π

2

]
called the slope of a Lagrangian. ◁

6.1.1 Complexification
Let (V, qs) be a real symplectic vector space of dimension 2r, and let B be a given symplectic basis.
The basis B is naturally divided into two families BR = (b1, . . . , br) and BI = (br+1, . . . , b2r).
Definition 6.1.4. Let J be the automorphism of V defined by:

J(xi) := yi J(yi) := −xi

for every 1 ≤ i ≤ r. Then J is called the canonical complex structure on (V, qs) with respect to
B. 3

Note that J2 = −IdV . The space V is decomposed as V = V I � V R where BR (resp. BI)
acts as a basis for V R (resp. V I). Since J is an isomorphism from V R to V I , every vector v ∈ V
can be uniquely be decomposed as v = J

(
vI
)
+ vR where vR and vI are both vectors of rank r

belonging to V R. Now denote by j the multiplicative right action of J on V . Then V can be
seen as a complex vector space V C of complex dimension r, called the complexification of V .
Moreover, there are two inverse R-linear applications pR and pC defined by:

V V C

v =
(
vI
)
J + vR vC = vI · j + vR

pC

pR

Note that pR is R-linear but is not C-linear, since the multiplication by a complex scalar is not
defined directly on V . Subsequently, one can also define complexification and realification for
endomorphisms:

PC : E(V ) E
(
V C
)

PR : E
(
V C
)

E(V )

f pC ◦ f ◦ pR g pR ◦ g ◦ pC

and the complexified basis BC of V C by

BC := (yi · j + xi)1≤i≤r
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6.1.2 Characterisation of Lagrangians
Definition 6.1.5. Let qe be the Euclidean form on V defined by

qe(x, y) := qs((x)J, y) (6.1)

Let qh be the Hermitian form defined on V C by

qh(z, w) := qe (pR(z), pR(w)) + qs (pR(z), pR(w)) · j (6.2)

These two forms are induced by the symplectic form qs. 3

Definition 6.1.6. Each of the three forms qs, qe, qh has a corresponding subgroup of stable
endomorphisms.

• The subgroup of E(V ) respecting qs is called the symplectic group Sp(V ).

• The subgroup of E(V ) respecting qe is called the orthogonal group O(V ).

• The subgroup of E
(
V C
)

respecting qh is called the unitary group U
(
V C
)
. 3

These three groups are linked together by the following result:
Theorem 6.1.7. PC (Sp(V ) ∩O(V )) = U

(
V C
)

◁

Theorem 6.1.7 is the key to characterise every Lagrangian subspace. Indeed, any basis
of a Lagrangian U can be extended into a symplectic basis BU of V . This basis is naturally
associated to a symplectic endomorphism fU , namely the change of basis from B. One can then
orthonormalise BU without affecting its symplectic property. According to Theorem 6.1.7, the
endomorphism fU can then be complexified into an Hermitian endomorphism of V C. Reciprocally,
the realification of any Hermitian homeomorphism is symplectic and thus sends any Lagrangian
to another Lagrangian. From these ideas one obtains the characterisation theorem=
Theorem 6.1.8. The group U

(
V C
)

acts transitively on Λ(V ). Moreover, the subgroup O
(
V C
)

of U
(
V C
)

is the stabiliser of the standard Lagrangian V R. ◁

Corollary 6.1.9. There is a bijection between sets:

G : Λ(V ) U
(
V C
)
⧸O

(
V C
)

U [gU ] such that V R · gU = U

∼
◁

Remark 6.1.10. The characterising class G(U) of a Lagrangian does not depend on the full
symplectic basis B but only on the decomposition B = BR � BI . In other words, if g ∈ O(V ) is
such that

〈
g(BR)

〉
=
〈
BR
〉

and
〈
g(BI)

〉
=
〈
BI
〉

then the map G built from the symplectic basis
g(B) is identical to the one built from B. ◊

Rather than using a class of Hermitian endomorphisms to fully characterises any Lagrangian,
we define the slope as the determinant of this class. Since det(gU ) ∈ S1/{±1}, by convention we
only take the argument of the left representative in the unit circle.
Definition 6.1.11. The slope of a Lagrangian is the function

sV : Λ(V )
]
−π

2 ;
π
2

]
U arg (det (gU ))

3

Remark that the slope does not fully characterises a Lagrangian unlike G.
The following result explains how one can explicitly compute the slope of a Lagrangian using

a generating matrix on B.
Proposition 6.1.12. Let U ∈ Λ(V ) and MU be a generating matrix of U in the basis B, of
size (r, 2r). Suppose that the rows of MU are qe-orthonormal. Consider the two halves MR

U and M I
U ,

which are real square matrices of size r. Then the slope is given by

sV (U) = arg
(
det
(
MR

U +M I
U · j

))
◁
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Proof. Consider the real square matrix MU of size (2r, 2r) given by the block description:

MU :=

[V I V R

V I

V R

(MU ) J

MU

]
=

ñ V I V R

V I MR
U −M I

U

V R M I
U MR

U

ô
By assumption, MU ∈ O(V ). One easily checks that MU ∈ Sp(V ). Then by Theorem 6.1.7, we
have PR(MU ) =MR

U −M I
U · j ∈ U

(
V C
)
. The matrix

Sr :=
[V I V R

0r Ir
]

generates the standard Lagrangian V R. It is clear that SrMU =MU . Therefore PR(MU ) = gU
as in the definition of sV (U).

Corollary 6.1.13. If r is even then sV (V
R) = sV (V

I) = 0. ◁

Proof. The matrix Sr · J = [Ir : 0r] generates V I in the basis B. Applying Proposition 6.1.12,
one gets

sV (V
I) = arg (det(Ir · j)) = arg (jr det Ir) = arg(det Ir) = sV (V

r) = 0

6.2 Generalised slope construction

6.2.1 Character torus
Let K be a knot with peripheral system (π1(MK), ℓ,m). Consider a unitary character ω :
π1(MK)→ S1 ⊂ C∗. The character is determined by ω(m) := eiθm . Denote ω(ℓ) := eiθl . Let ϕ
be the realification morphism of C and define ρω := ϕ(ω). The values of ρω are in SO2(R) and
are given by

ρω(m) =

ï
cos θm − sin θm
sin θm cos θm

ò
ρω(ℓ) =

ï
cos θl − sin θl
sin θl cos θl

ò
(6.3)

The following lemma describes the complete computation of the first twisted homology group of
the torus for the representation ρω.
Lemma 6.2.1. Let R(ρω) be R2 seen as a R-module for the action of ρω. Then

H1 (∂MK ; ρω) =

®
⟨m, ℓ⟩� R2 if ω(m) = ω(ℓ) = 1

{0} otherwise
◁

Proof. This is a direct application of Lemma A.2.1 on page 106 with the additional remark that

Vρω
= ker(ρω(ℓ)− I2) ∩ ker(ρω(m)− I2) =

®
R2 if ω(m) = ω(ℓ) = 1

{0} otherwise.

Let now L = L1 ∪ · · · ∪ Ln be a link. We reuse some notations from Section 4.2. We suppose
that all linking numbers are zero, i.e. lk(Li, Lj) = 0 for every pair i ̸= j.

The group H1(ML) is free abelian, generated by the classes mi of the meridians of the
components Li. Let ω : π1(ML)→ S1 ⊂ C∗ be a unitary character. Since ω is abelian, it is fully
determined by its value ωi on mi for all 1 ≤ i ≤ n. Let Tn := Hom

(
π1(ML), S

1
)

be the set of
unitary characters. Then we have a natural identification

Tn ≃ {ω = (ω1, . . . , ωn) | ωi ∈ S1} ⊂ (C∗)
n

As the notation suggests, this set only depends on the number of components n of the link L.
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6.2.2 Symplectic structure of the twisted homology
We consider a symplectic structure on the first homology of ∂ML.

For a given character ω ∈ Tn, we define

D(ω) := {i | ωi = 1} d(ω) := #D(ω)

The components Li where i ∈ D(ω) are called generating for ω.
Proposition 6.2.2. The space H1(∂EL,R(ρω)) endowed with the intersection form is a symplectic
space of dimension 4d(ω), and there is a canonical isomorphism

H1(∂EL; ρω) =
⊕

i∈D(ω)

H1(∂ELi
; ρωi

) ◁

Proof. Each R-vector space H1(∂ELi
; ρωi

) is symplectic as a direct application of Theorem A.1.8
on page 104. The intersection form on H1(∂EL; ρω) is given by the direct sum of all the forms
since ω(ℓi) = 1 and ρω(ℓi) = I2 (as lk(Li, Lj) = 0, see Eq. (4.1) on page 74). By Lemma A.2.1
on page 106, H1(∂ELi ; ρωi) has dimension 4 if ω(mi) = 1, i.e. if i ∈ D(ω), and dimension 0
otherwise.

Definition 6.2.3. Let ⟨c1, c2⟩ be a fixed basis of R2. Let BL be the function:

BL : Tn R4n

ω = (ω1, . . . , ωn) (a1, . . . , a2n ; b1, . . . , b2n)

where

∀ i ∈ D(ρ), ∀ j ∈ {1, 2} :
®
a2(i−1)+j−1 = mi � cj

b2(i−1)+j−1 = ℓi � cj

∀i /∈ D(ρ), ∀ j ∈ {1, 2} : a2(i−1)+j−1 = b2(i−1)+j−1 = 0 3

The rank of the vector family BL(ω) is 4d(ω) ≤ 4n and thus depends on ω. Nevertheless, we
slightly abuse notation and also call BL(ω) the full-rank basis of the subspace of R4n it generates.

Proposition 6.2.4. The family BL(ω) is a symplectic basis of H1(∂ML; ρω). ◁

Proof. The family is a basis thanks to Lemma A.2.1. Using the notations of Appendix A.1, on
every component H1(∂MLi ; ρωi) with i ∈ D(ω) the intersection form particularises as

⟨ℓi � cr | mi � cs⟩ = (cr | cs) = δr,s

⟨mi � cr | ℓi � cs⟩ = (cr | cs) = −δr,s
⟨ℓi � cr | ℓi � cs⟩ = 0

⟨mi � cr | mi � cs⟩ = 0

Remark 6.2.5. It occurs that the coefficients of H1(∂ML; ρω) come from the realification of C(ω)
into R(ρω) ≃ R2 using ϕ. However this symplectic structure on R2 does not extend to the tensor
product in general. As shown in Theorem A.1.8, only the specific property of the intersection
form on ∂ML ensures that H1(∂ML; ρω) is indeed symplectic, with the longitudes and meridians
as the ‘real’ and ‘imaginary’ parts respectively. When a disambiguation is necessary, we call ϕ
the coefficient realification and pR the intersection realification. ◊

6.2.3 Definition of the generalised slope
Consider the inclusion map

i : ∂ML ↪−→ML

and the induced map on the first twisted homology groups of (ML, ρω):

i∗ : H1(∂ML; ρω) −→ H1(ML; ρω)

We consider the space Z(ρω) := ker i∗.
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Lemma 6.2.6. The subspace Z(ρω) is a Lagrangian subspace of the symplectic vector space
H1(∂ML; ρω) endowed with the intersection form. ◁

Proof. This is a direct application of Theorem A.1.9 on page 105.

Definition 6.2.7. The generalised slope of the link L is the function

sL : Tn
]
−π

2 ;
π
2

]
ω sHω

(Z(ρω))

where Hω := H1(∂ML; ρω). By convention, when we have ωi ̸= 1 for all i ∈ {1, . . . , n} and
thus d(ω) = 0, we set sL(ω) := 0. 3

The generalised slope is computed in two steps: the first is to use Algorithm 4.3.1 and The-
orem A.4.1 on page 76 and on page 108 to determine a generating matrix of Z(ρω), which is then
orthonormalised. Then Proposition 6.1.12 is used to compute the slope sL(ω) proper.
Remark 6.2.8. By Corollary 6.1.13, the generalised slope sL(ω) cannot distinguish between the
case where ker i∗ is generated only by the longitudes (i.e. Z(ρω) = HR

ω ) and the case where ker i∗
is only generated by the meridians (i.e. Z(ρω) = HI

ω). However in practice the generating matrix
of Z(ρω) will contains only zeros in its L-side in the first case, and in its R-side in the second.
Since computing this matrix is necessary to get sL(ω), one can immediately identify these two
cases before computing the Lagrangian slope. ◊

6.2.4 Relation with the character slope
We explain the relation between the generalised slope sL of Definition 6.2.7 and the ‘actual’ link
character slope presented in Chapter 4. Let L = L1 ∪ L′ be a link with a single component L1

distinguished and such that lk(L1, Li) = 0 for every 2 ≤ i ≤ n. Reusing notations from Section 4.2
we say that the character slope is defined on the subset of Tn composed of non-vanishing unitary
characters:

A◦
u(L1/L

′) := {ω = (1, ω2, . . . , ωn) | ωi ∈ S1, ωi ̸= 1} ⊂ Tn

The next proposition show how the generalised slope restricts to the character slope, for some
specific characters.
Proposition 6.2.9. Let ω ∈ A◦

u(L1/L
′) be an admissible non-vanishing unitary character. Then

s(L1/L′)(ω) ∈ R ∪ {∞} and we have

sL(ω) =


2 arctan s(L1/L′)(ω)− π if s(L1/L′)(ω) > 1.
2 arctan s(L1/L′)(ω) if −1 < s(L1/L′)(ω) ≤ 1.
2 arctan s(L1/L′)(ω) + π if s(L1/L′)(ω) ≤ −1.
0 if s(L1/L′)(ω) =∞.

◁

Proof. By construction, the coefficient realification morphism ϕ makes the following diagram
commute:

H1(∂ML;ω) H1(ML;ω)

H1(∂ML; ρω) H1(M ; ρω)

i∗

ϕ ϕ

i∗

One has therefore ϕ(Z(ω)) = Z(ρω). Let σ := s(L1/L′)(ω) and suppose that σ ̸= ∞. By
Definition 4.2.4 on page 74, one has

Z(ω) = ⟨σ ·m1 − ℓ1⟩
and thus

Z(ρω) = ⟨(σ ·m1 − ℓ1) � c1 , (σ ·m1 − ℓ1) � c2⟩

since σ is a real number by Proposition 4.2.6. An orthonormalised generating matrix of Z(ρω) in
the basis BL of H1(∂ML; ρω) is given by

1√
1 + σ2

ï m1 � c1 m1 � c2 ℓ1 � c1 ℓ1 � c2
σ 0 −1 0
0 σ 0 −1

ò
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Applying Proposition 6.1.12, we get that

sHω (Z(ρω)) = arg
1

1 + σ2

∣∣∣∣σ · j + 1 0
0 σ · j + 1

∣∣∣∣ = arg
(1− σ2) + 2σ · j

1 + σ2

Using the tangent half-angle, one has arctan
Ä

2σ
1−σ2

ä
= 2σ. Evaluating the argument of sHω

(Z(ρω))
inside

]
−π

2 ;
π
2

]
using arctan gives the desired result thanks to this formula.

Finally, if σ = ∞ then Z(ω) = ⟨m1⟩ and Z(ρω) = HI
ω. By Corollary 6.1.13, we ob-

tain sHω
(Z(ρω)) = 0.

6.3 Concordance invariance

In this section we show that the generalisation of the character slope from Chapter 4 is still a
concordance invariant.

Recall from Definition 4.2.9 on page 75 that ω ∈ Tn is a concordance root if there exists no
polynomial P ∈ U such that P (ω) = 0. Let Tn

! be the subset of Tn composed of characters that
are not concordance roots. We also exclude the characters ω such that d(ω) = 0. The set Tn

! can
be stratified to account for which values of the character are equal to 1. Let Pn be the set of
non-empty subsets of {1, . . . , n}. For every S ∈ Pn, define

TS
! := {ω ∈ Tn

! | D(ω) = S}

Then we have
Tn
! = {(1, . . . , 1)} ⊔

⊔
S∈Pn

TS
!

Definition 6.3.1. Let S ∈ Pn and write ν = #S. Let also µ ∈ {1, . . . , n− ν}. A (S, µ)-colouring
on a link L = L1 ⊔ · · · ⊔ Ln is a surjective function

c : {1, . . . , n} −→ {d1, . . . , dν} ⊔ {c1, . . . , cµ}

such that c(i) = di if and only if i ∈ S. 3

For every j ∈ {1, . . . , µ}, we write χ(j) := c−1(dj) and Lχ(j) the union of individual components
of L that are cj-coloured. As with Definition 4.1.8, (S, µ)-colouring induces a notion of concordance
whose definition depends on the colouration.
Theorem 6.3.2. Let L0, L1 be links with n components such that lk(Lk

i , L
k
j ) = 0 for every

1 ≤ i ̸= j ≤ n and s = 0, 1. Fix S ∈ Pn and µ ∈ {1, . . . , n− ν} and make the links (S, µ)-coloured.
If L0 and L1 are concordant then for every ω ∈ TS

! , one has

sL0(ω) = sL1(ω) ◁

The proof is mostly similar to the proof of the corresponding Theorem 4.2.10 on page 75 for
the character slope.

Proof. Up to reordering we suppose that S = {1, . . . , ν}. For k = 0, 1 we write Lk = Lk
d ⊔Lk

c with

Lk
d = Ls

1 ⊔ · · · ⊔ Ls
ν Lk

c = Ls
ν+1 ⊔ · · · ⊔ Ls

µ

Fix ω ∈ TS
! and let D ∪ C ⊂ S3 × [0, 1] be the concordance. We have D = D1 ⊔ · · · ⊔Dν and for

every i ∈ {1, . . . , ν}, ∂Di = −L0
i ⊔ L1

i . Let TD∪C be a tubular neighbourhood of D ∪ C. Define

E := S3 × [0, 1]∖ TD∪C E0 := S3 × [0, 1]∖ TC

Then E ∩ (S3 × {k}) =MLk and E0 ∩ (S3 × {k}) =MLk
c
. In particular the preferred meridian of

each component of the links is sent to the preferred meridian of the corresponding cylinder inside
D ∪ C. Writing down the relative Mayer-Vietoris sequence in C-homology of the pairs

(S3 × [0, 1], S3 × {k}) = (E,MLk) ∪ (T̄D∪C , T̄Lk) = (E0,MLk
c
) ∪ (T̄C , T̄Lk

c
)

gives
H∗(E,MLk) = H∗(E0,MLk

c
) = 0 (6.4)
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Using this in the homology exact sequence of the pair (E,MLk) gives that the inclusions MLk ↪→ E
induce an isomorphism H1(MLk) ≃ H1(E) that sends the meridians of the link Lk to the
corresponding meridians of the cylinders that composes D ∪ C.

Now write again a relative Mayer-Vietoris sequence in twisted homology for the decomposition

(E0,MLk
d
) = (E,ML) ∪ (T̄D, T̄Lk

d
)

This gives

· · · H1(D × S1, Lk
d × S1; ρω)

H1(E,ML; ρω) �H1(T̄D, T̄Lk
d
; ρω) H1(E0,MLk

d
; ρω) · · ·

Since ω is trivial on all the meridians of Lk
d and also on the meridians of D by the previous

discussion, then H1(D × S1, Lk
d × S1; ρw) = 0. Moreover, by [CNT20, Lemma 2.16] (see also

[NP17]) the C-homology of both pairs of Eq. (6.4) being null implies that their ρω-twisted
homology is also null:

H∗(E,MLk ; ρω) = H∗(E0,MLk
c
; ρω) = 0

Replacing this in the sequence above yields H1(E,MLk ; ρω) = 0. Once again using this in the
ρω-twisted homology sequence of the pair gives an isomorphism

ψ : H1(E; ρω)
≃−−→ H1(MLk ; ρω)

which preserves the meridians. Separately, since L0 and Li are both (S, µ)-coloured, there is a
cylinder Di joining each component L0

i of L0
c to the corresponding component L0

i of L1
c . Since

ℓ0i = Di ∩ TL0
i
, the cylinder Di induces an homotopy between ℓ0i and ℓ1i . Both curves therefore

have the same in H1(E; ρω), and therefore ψ sends ℓ0i ∈ H1(ML0 ; ρω) to ℓ1i ∈ H1(ML1 ; ρω). Every
element of the symplectic basis BL0(ω) is therefore sent to the corresponding element in BL1(ω).
Any vector of Z0(ρω) is also homologically null in Z1(ρω) and vice versa, so ψ restrains into
an isomorphism Z0(ρω) ≃ Z1(ρω). Therefore, the generalised slopes of the links L0 and L1 are
equal.

Corollary 6.3.3. Let L0 and L1 be two n-coloured links with n components and liking numbers
0. If L0 and L1 are n-concordant then the restrictions of the generalised slope functions

sLk : Tn
! −→

]
−π
2
;
π

2

]
for k = 0, 1 are equal. ◁

Proof. If L0 and L1 are n-concordant then for every S ∈ Pn they are (S, n− ν)-concordant. By
Theorem 6.3.2 the generalised slope functions coincide on TS

! . The slopes thus coincide on Tn
! .
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A.1 General results

References for these constructions include [Por97; DFL22b].

A.1.1 Definition
Let M be a smooth compact connected oriented n-dimensional manifold with boundary. Up to
isotopy, M admits a unique p.l.-linear structure, which induces a triangulation and a CW-complex
structure. Fix a base point b ∈ ∂M . Let π := π1(M, b) be the fundamental group of M and
denote by M̃ the universal covering of M . The group π has an action on the lifted cells from M
inside M̃ . One can thus define the chain complex C∗(M ;Z[π]) generated by the lifted cells over
the group ring Z[π]. If N is a submanifold of M , the relative chain complex C∗(M,N ;Z[π]) is
defined on the cells of M̃ with boundary operators relative to the cells of ‹N .

Let K be R or C. Fix a basis B of the K-vector space Kr. By convention we consider vectors
as rows and the matrix action on the right. Consider ρ : π → GLr(K) a representation of π. The
group homomorphism ρ extends into a ring homomorphism on Z[π] and induces a right action of
Z[π] on Kr. The vector space Kr can thus be seen as a right Z[π]-module denoted K(ρ).

There is a canonical involutive anti-automorphism † on Z[π] given by

† :
∑
g∈π

ngg 7−→
∑
g∈π

ngg
−1

Define ρ† := (
t
ρ)

−1 where t is the matrix transposition. The image of † is a left module for the
action of ρ†, and up to transposition we have K(ρ)

† ≃ K(ρ†).
Definition A.1.1. Consider the (co-)chain complexes of K-vector spaces:

C∗(M ; ρ) := C∗(M ;Z[π])⊗Z[π] K(ρ)

C∗(M ; ρ) := HomZ[π]
(
C∗(M ;Z[π]),K(ρ†)

)
The ρ-twisted (co-)homology H∗(M ; ρ) (resp. H∗(M ; ρ†)) is the (co-)homology of the (co-)chain
complex C∗(M ; ρ) (resp. C∗(M ; ρ†)), which have the structure of K-vector spaces. 3

The first module H1(M ; ρ) is also called the twisted Alexander module of (M,ρ).
Definition A.1.2. The twisted Alexander polynomial of (M,ρ) is the first order of the Alexander
module:

∆M (ρ) := ordH1(M ; ρ) ∈ Z [GLr(K)]⧸{±Ir} 3

A.1.2 Duality
Let (· | ·) be a vector product on the basis B. The product can be bilinear if K = R, or bilinear
or sesquilinear (i.e. (v | w) := v · tw) if K = C. The representation ρ is called unitary if®

ρ† = ρ̄ if (· | ·) is sesquilinear.

ρ† = ρ if (· | ·) is bilinear.

Definition A.1.3. The Kronecker product is defined by

[· | ·] : Ck(M,∂M ; ρ)× Ck(M,∂M ; ρ†) K
(f, x� v) (

t
f(x) | v)

3

The Kronecker product is invariant by the diagonal action of ρ� ρ†. It is a perfect pairing
and therefore induces a ‘universal coefficients’ formula:
Lemma A.1.4. There is a natural vector-space isomorphism

Hk(M,∂M ; ρ†) ≃ Hk(M,∂M ; ρ)
∨

where ∨ designates the dual vector space. ◁
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The pair (M,∂M) is a simple Poincaré pair as defined by C.T.C. Wall in [Wal99, Section 2].
This implies that Poincaré duality works as expected even for ρ-twisted coefficients.
Lemma A.1.5. There are canonical Poincaré duality isomorphisms

DM : Hn−k(M,∂M ; ρ†) Hk(M ; ρ)

DM : Hn−k(M ; ρ†) Hk(M,∂M ; ρ)

f [M ]⌢ f

∼

∼

where [M ] ∈ Hn(M,∂M ; ρ) is the fundamental class of M and ⌢ is the usual cap product. ◁

A.1.3 Intersection form
In this section we suppose that ρ is unitary.

The standard cup product on M is naturally defined on the twisted chain complex spaces

⌣ : Ck(∂M ; ρ†)× Cn−k(∂M ; ρ†) −→ Cn(M,∂M ; ρ† � ρ†)

where ρ† � ρ† designates K(ρ†)�K(ρ†) seen as a Z[π]-module for the diagonal action. When ρ is
unitary, the vector product is invariant by this action and can thus be seen as a morphism

(· | ·) : K(ρ†) � K(ρ†) −→ K

Definition A.1.6. The cup product form on ρ-twisted cohomology is defined by the formula

⟨· | ·⟩ : Hk(M,∂M ; ρ†)×Hn−k(M ; ρ†) Hn(M,∂M ;K) ≃ K
(e, f) (e ⌣ f)([M ])

3

One can also define the intersection form on ρ-twisted homology using the cap product.
Definition A.1.7. The intersection form on ρ-twisted homology is defined by the formula

⟨· | ·⟩ : Cn−k(M ; ρ)× Ck(M,∂M ; ρ) K

(x� v, y � w)
∑
α∈π

(xα · y) · (xρ(α) | y)

where (·) designates the algebraic intersection number. 3

The intersection form and the cup product are linked together by the Poincaré duality
isomorphisms of Lemma A.1.5, which make the following diagram commute:

Hk(M,∂M ; ρ†)×Hn−k(M ; ρ†) Hn(M,∂M ;K)

Hn−k(M ; ρ)×Hk(M,∂M ; ρ) K

DM×DM ≀

The properties of the cup product inherited by the intersection form give the fundamental result
Theorem A.1.8. Suppose that n = 2k + 1 and ρ is unitary. Then Hk(∂M ; ρ) endowed with the
intersection form is a symplectic K-vector space. ◁

A.1.4 Kernel of i∗
Consider the portion of the homology exact sequence of the pair (M,∂M)

· · · Hk+1(M,∂M ; ρ) Hk(∂M ; ρ) Hk(M ; ρ) · · ·∂ i∗

where i∗ is induced by the inclusion i : ∂M ↪→M . Define

Zk(∂M ; ρ) := ker i∗ = im ∂

Definition 6.1.1 gives the definition of a Lagrangian subspace of a symplectic space. The
fundamental result of this section is the following:
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Theorem A.1.9. Suppose that n = 2k+1 and that ρ is unitary. Then Zk(∂M ; ρ) is a Lagrangian
subspace of Hk(∂M ; ρ) for the intersection form. In particular,

dimZk(∂M ; ρ) =
1

2
dimHk(∂M ; ρ) ◁

Proof. Using Lemma A.1.5 between the homology and cohomology exact sequence of the pair
(M,∂M), we get that the following diagram is commutative

Hk(M ; ρ†) Hk(∂M ; ρ†)

Hk+1(M,∂M ; ρ) Hk(∂M ; ρ)

i∗

DM ≀ ≀ D∂M

∂

In addition, Lemma A.1.4 implies that i∗ = (i∗)
∨ for the Kronecker product. On ∂M , the usual

duality between the cup and cap products can be stated for f, e ∈ Hk(M,∂M ; ρ†) as

⟨f | e⟩ = (f ⌣ e)([∂M ]) = [f | [∂M ]⌢ e] = [f | D∂M (e)]

Now consider two vectors a, b ∈ Zk(∂M ; ρ). Since ker i∗ = im ∂, we have a = ∂A with A ∈
Hk+1(M,∂M ; ρ†). Using the above diagram, we get

⟨a | b⟩ = (D−1
∂M (a)⌢ D−1

∂M (b))([∂M ])

=
[
D−1

∂M (a) | b
]

=
[
D−1

∂M ◦ ∂(A) | b
]

=
[
i∗ ◦D−1

M (A) | b
]

=
[
D−1

M (A) | i∗(b)
]
= 0

A.2 Twisted homology of the torus

The value of the twisted homology of the 2-torus T is the fundamental case for the construction
of all slope invariants we study, as the torus represents a boundary component of the exterior
ML of a link L. We make this computation in detail from the CW-complex of T .

e21 e11
e0•

(a) CW-complex of T

ẽ0 m · ẽ0

mℓ · ẽ0ℓ · ẽ0

ẽ11

ẽ21

ℓ · ẽ11

m · ẽ21›[T ]
(b) Universal covering T̃

Figure A.2.1: Chain complex of the 2-torus

The generators of the CW-complex structure of T are shown on Figure A.2.1a. The longitude
curve is denoted e11 and the meridian curve is denoted e21. The fundamental group π1(T ) is free
abelian and generated by the classes m and ℓ of the meridian and longitude of T respectively.
The universal covering of the torus T̃ is a π1(T )-module homeomorphic to K2. The twisted chain
complex of T̃ as shown on Figure A.2.1b is given by:

C̃2 =›[T ] � K(ρ) C̃1 =
〈
ẽ21, ẽ

1
1

〉
� K(ρ) C̃0 = {ẽ0}� K(ρ) 0

∂1 ∂0
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From Figure A.2.1b we immediately get that the matrices of the boundary operators ∂1 and ∂0
are given by

D1 =

ï ẽ11 � B ẽ21 � B

Ir − ρ(ℓ) ρ(m)− Ir
ò

D0 =

ρ(m)− Ir ẽ11 � B

ρ(ℓ)− Ir ẽ21 � B


Lemma A.2.1. Suppose that ρ is unitary and let

Vρ := ker(ρ(ℓ)− Ir) ∩ ker(ρ(m)− Ir)

Then there is a natural K-vector space isomorphism

H1(T ; ρ) ≃
〈
ẽ11, ẽ

2
1

〉
� Vρ ◁

Proof. Since [ℓ,m] = 1 inside H1(T ; ρ) and ρ(ℓ) and ρ(m) are unitary then the two matrices are
co-diagonalisable (over C if K = R). In the adequate basis, the module K(ρ) splits over C into

K(ρ) =

r⊕
i=1

C(ωi) (A.1)

where ωi : π1(T )→ S1 for 1 ≤ i ≤ r are characters corresponding to the (complex) eigenvalues of
ρ. Let x ∈ ker (∂0). There exists a, b ∈ C(ωi) such that x = ẽ11 � a+ ẽ21 � b and :

∂0(x) = (m− 1) · ẽ0 � a+ (ℓ− 1) · ẽ0 � b

= ẽ0 � (a (ωi(m)− 1) + b (ωi(ℓ)− 1)) = 0

Then:

∂1
Ä›[T ] � a

ä
= ẽ11 � a (1− ωi(ℓ)) + ẽ21 � a (ωi(m)− 1)

=
(
ẽ11 � a+ ẽ21 � b

)
(1− ωi(ℓ))

= x (1− ωi(ℓ))

∂1
Ä›[T ] � b

ä
= x (ωi(m)− 1)

If (say) ωi(ℓ) ̸= 1, then every x ∈ ker (∂0) can be written as

x = ∂1
Ä›[T ] � a(1− ωi(ℓ))

−1
ä

Therefore ker (∂0) = im (∂1) and H1 (T ;ωi) = {0}. Conversely, if ωi(ℓ) = ωi(m) = 1, then ∂1 and
∂0 are zero and there is a canonical isomorphism

〈
ẽ11, ẽ

2
1

〉
� C(ωi). If K = R then H1(T ;ωi) has

the same dimension as H1(T ;ωi), so the recomposition of H1(T ; ρ) with Eq. (A.1) preserves the
property.

Corollary A.2.2. If either one of the K-endomorphisms (ρ(m)− Ir) or (ρ(ℓ)− Ir) is bijective
then H1 (T ; ρ) = {0}. ◁

Corollary A.2.3. If both ρ(m) = Ir and ρ(ℓ) = Ir then there is a natural K-vector space
isomorphism H1 (T ; ρ) =

〈
ẽ11, ẽ

2
1

〉
� K(ρ). ◁

A.3 Fox calculus

In general the ρ-twisted Alexander module of a CW-complex is computed using Fox calculus, a
combinatorial tool developed by R. Fox in [Fox54] which we present briefly.

Let Fp be the free group generated by x1, . . . , xp and let Z[Fp] be its group module. Let the
augmentation morphism be defined by

aug : Z[Fp] Z∑
f∈Fp

nf · f
∑
f∈Fp

nf
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Definition A.3.1. For every generator xi ∈ Fp, the i-th Fox derivative is the unique linear
function

∂

∂xi
: Z[Fp] −→ Z[Fp]

such that 
∀a, b ∈ Z[Fp] :

∂(ab)

∂xi
= aug(b) · ∂a

∂xi
+ a

∂b

∂xi
∂xi
∂xi

= 1
3

Now consider the complex of Z[Fp]-modules

S∗ := S2 S1 S0
∂1 ∂0

where

S2 :=

q⊕
j=1

Z[Fp] � rj S1 :=

p⊕
j=1

Z[Fp] � dxi S0 := Z[Fp]

and dxi is a formal generator corresponding to xi. For every 1 ≤ i ≤ p and 1 ≤ j ≤ q the
boundary operators are defined by

∂1 : rj 7−→ drj ∂0 : dxi 7−→ xi,

where dw is the Fox differential of the word w ∈ Z[Fp] defined by

dw :=

p∑
i=1

∂w

∂xi
dxi ∈ S1

We explain how to use Fox calculus to compute H1(M ; ρ). Consider a presentation P of the
group π given by

0 ⟨r1, . . . , rq⟩ Fp π 0
ζ

where ri ∈ Fp for every 1 ≤ i ≤ q. The morphism ζ can naturally be extended over the group
modules as Z[Fp]→ Z[π]. Similarly, the representation ρ can be extended into Z[π]→Mn(K).
Now consider the ρ-twisted chain complex over K(ρ) defined by

S∗(ρ) := K(ρ) �Z[π] ζ(S∗)

Theorem A.3.2 ([Cro71]). There is a natural vector space isomorphism between the ρ-twisted
Alexander module H1(M ; ρ) and the first homology group H1(S∗(ρ)). ◁

Definition A.3.3. The ρ-twisted Alexander matrix of M associated with the presentation P is
the matrix of ∂1(ρ) with coefficients in K given by

Aρ :=

ï
(ρ ◦ ζ)

Å
∂ri
∂xj

ãò
1≤i≤q, 1≤j≤p

3

A.4 Computation of ker i∗
In this section we suppose that ∂M is a union of disjoint tori:

∂M =

µ⊔
k=1

∂kM

We also suppose that ρ : π1(M)→ K(ρ) is such that

∀ i ∈ {1, . . . , d} : ρ(mi) = ρ(ℓi) = Ir

∀ j ∈ {d+ 1, . . . , µ} :
®
rank(ρ(mj)− Ir) < r

rank(ρ(ℓj)− Ir) < r

(A.2)

We note ∂DM = ⊔di=1∂iM the subset of the boundary ∂M where ρ is the identity.
Finally, let P be a presentation of the fundamental group π1(M). Up to standard Tietze

movements, one can always suppose that P contains the generators mi, ℓi associated to ∂Mi for
every 1 ≤ i ≤ d.
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Theorem A.4.1. Let Aρ be the ρ-twisted Alexander matrix of M associated with P. Let Aρ
D be

the sub-matrix of Aρ containing only the columns associated with the generators of ∂DM , and
let Aρ

C be its complementary sub-matrix. Then

ker i∗ ≃ im (Aρ
D · (kerA

ρ
C)) ∩H(∂DM ; ρ) ◁

Note that one can use the Zassenhaus algorithm to compute the intersection of the row-spaces
of two matrices written in the same basis.

Proof. By Theorem A.3.2, all computation of twisted homology for M and the sub-sets of ∂M
can be made with Fox calculus and the associated chain complex S∗(ρ). There is a commutative
diagram

S∂
1 (ρ) S1(ρ)

H1 (∂M ; ρ) H1 (M ; ρ)

h∂

i#

h

i∗

By Corollaries A.2.2 and A.2.3 and Eq. (A.2), we have

H1(∂M ; ρ) ≃
d⊕

i=1

H1(∂iM ; ρ) ≃
d⊕

i=1

⟨ℓi,mi⟩� K(ρ)

Define

SD
1 (ρ) := ⟨dℓi, dmi | 1 ≤ i ≤ d⟩� K(ρ)

SC
1 (ρ) := ⟨dx | x⟩� K(ρ)

where x goes through every generator of P that is not ℓi,mi for 1 ≤ i ≤ d. We particularise the
previous diagram to each component i ∈ {1, . . . , d}:

SD
1 (ρ) S1(ρ) = SD

1 (ρ) � SC
1 (ρ)

H1 (∂Mi; ρ) H1 (M ; ρ)

hi

i#

h

i∗

Let us note C a complementary space of ker (∂1) inside SD
1 (ρ). We have the following decomposi-

tion:
SD
1 (ρ) = H � im(∂2) � C

where H ≃ H1 (∂M ; ρ). More precisely, we set an isomorphism

θ : H1 (∂M ; ρ)
∼−−→ H

such that for every W ∈ H1 (∂Mi; ρ), we have q−1(W ) = θ(W ) + im(∂2).
Lemma A.4.2. (i# ◦ θ) (ker i∗) = kerh ∩ im(i#) ∩ i# (H) ◁

Proof. Consider a ∈ ker i∗. We have

i∗(a) = 0⇐⇒ h ◦ i# ◦ h−1(a) = {0}
⇐⇒ i# ◦ h−1(a) ⊂ kerh ∩ im(i#)

⇐⇒ i# (θ(a) + im(∂2)) ⊂ kerh ∩ im(i#)

⇐⇒ (i# ◦ θ) (a) + i# (im(∂2)) ⊂ kerh ∩ im(i#)

Because i# is injective, it preserves the direct sum H � im(∂2). Then:

i∗(a) = 0⇐⇒ (i# ◦ θ) (a) ∈ kerh ∩ im(i#) ∩ i# (H)

Since (i# ◦ θi) is a known isomorphism, to compute ker i∗ we only need to compute the
space im(i#) ∩ kerh. First off, imAρ = kerh by Theorem A.3.2.
Lemma A.4.3. im (Aρ

D (kerAρ
C)) = im(i#) ∩ kerh ◁
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Proof. For every vector a ∈ kerAρ
C we have

aAρ = [aAρ
D | aA

ρ
C ] = [aAρ

D | 0] ∈ im(i#) ∩ kerh

Reciprocally, let b ∈ im(i#) ∩ kerh, and a such that aAρ = b. We know that b is only supported
by the columns of SD

1 (ρ), and then necessarily a ∈ kerAρ
C .

This completes the proof of the theorem.
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CONCLUSION AND FUTURE
RESEARCHS

The work presented in the first part of this thesis is the continuation of a research program
that started in the early 1990s to study Zariski pairs of curves and line arrangements. Our
own contributions build on previous invariants that tried to properly describe the inclusion of
the boundary manifold in the exterior. The induced map for the homology in Z was not well
understood, and we hope that the graph stabiliser has settled this part of the matter. However, our
long-term objective is more ambitious as we seek to study twisted homology on line arrangements.
Some research has already been made in the general case of graph manifolds [ACM19b] and we
intend to apply it to study ker i∗ in twisted homology as we did with links and knots. For this
one needs to describe characters or representations of the fundamental group of the exterior, and
one must know what they induce to the boundary. This is precisely what we achieved with the
homology inclusion for non-twisted integral coefficients. In addition of being an invariant of its
own, it therefore also gives the framework to study the images of the cycle generators in twisted
homology. The structure of ker i∗ will probably require more intermediate invariants which might
also be able to detect new Zariski pairs on their own.

Another axis of research is based on our construction of ordered graphed embeddings, which
are the base concept behind the definition of the graph stabiliser. Theorem 1.5.11 allows to
properly describe any representation of the group of the boundary induced by a representation
on the exterior by removing the influence of the choice of the ordered graphed embedding. One
could then use this presentation to study more general character varieties and other properties of
the map i∗ induced by the inclusion in twisted homology.

In addition, most of the standard tools and structures we used on line arrangements (and
their computer implementations) also apply to more general type of complex algebraic curves
containing non-transverse singularities. The boundary manifold has again a graph structure with
weaker restricting conditions. The Zariski-van Kampen method used to obtain the fundamental
group of the exterior and the braid monodromy are defined as well. Theorem 1.6.15 already
established that the graph stabiliser is well defined on a wider class of graphs than the subclass
corresponding to the minimal structure of line arrangements. We could therefore endeavour to
extend the homology inclusion to algebraic curves whose boundary manifold has a graph structure
of that type.

In the second part, we generalised the slope invariant of links. This invariant was again arising
from the study of the inclusion of the boundary manifold inside the exterior, but directly in
homology twisted by a character. We managed to extend the slope definition to every knot using
SL2(C)-representations, and to remove some of the restrictions on the character on links using
SO2(R)-representations and the characterisation of Lagrangians. This last generalisation is a
concordance invariant for similar reasons as the original character slope. It is known that the
character slope is related to with other known concordance invariants, mostly the Milnor linking
numbers. Just like the slope, these invariants extract topological information on the links from
a low-level analysis of the link group. We plan to investigate further the possible connection
between the generalised slope and the Milnor linking numbers, but also with the Reidemeister
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torsion and twisted Alexander polynomials.
In a wider perspective, the generals theorems of Appendix A and Section 6.1 allow to define

the slope using any real orthogonal representation of the link group with a non-trivial invariant
space on the boundary. Finding new families of such representations could extend the scope of
the generalised slope construction with the objective of detecting new non-slice links.



CONCLUSIONES E
INVESTIGACIONES FUTURAS

El trabajo presentado en la primera parte de esta tesis es la continuación de un programa de
investigación que comenzó a principios de la década de 1990 para estudiar los pares de Zariski de
curvas y configuraciones de rectas. Nuestras contribuciones se basan en invariantes anteriores que
intentaron describir adecuadamente la inclusión de la variedad borde en el exterior. La aplicación
inducida para la homología en Z no estaba completamente desarrollada el invariante introducido,
estabilizador del gráfo, permite entenderla mejor. Sin embargo, nuestro objetivo a largo plazo es
más ambicioso a medida que buscamos estudiar cómo se aplica para calcularlo en la homología
torcida, para configuraciones de rectas y su variedad de borde. Ya se han realizado algunas
investigaciones en el caso general de variedades de grafos [ACM19b] y pretendemos aplicarlas para
estudiar ker i∗ en homología torcida como lo hicimos con enlaces y nudos. Para ello es necesario
describir los caracteres o representaciones del grupo fundamental del exterior y saber qué inducen
en el borde. Esto es precisamente lo que logramos para la inclusión en homología entera (con
coeficientes no torcidos en Z) con el estabilizador del grafo. Además de ser un invariante en sí
mismo, también proporciona el marco para estudiar las imágenes de los generadores de ciclos en
homología torcida. La estructura de ker i∗ probablemente requerirá más invariantes intermedios
que también podrían detectar nuevos pares de Zariski por sí solos.

Otro eje de investigación se basa en nuestra construcción de encajes ordenados del grafo,
que son el concepto base detrás de la definición del estabilizador del gráficos. El Teorema 1.5.11
permite describir adecuadamente cualquier representación del grupo fundamental a la frontera
inducida por una representación del exterior, eliminando la influencia de la elección del encaje
ordenado del grafo. Luego se podría usar esta representación para estudiar variedades de caracteres
más generales y otras propiedades de la aplicación i∗ inducidas por la inclusión en homología
torcida.

Además, la mayoría de las herramientas y estructuras estándar que utilizamos en configuracio-
nes de rectas (y sus implementaciones informáticas) también se aplican a tipos más generales
de curvas algebraicas complejas que contienen singularidades no ordinarias. La variedad límite
nuevamente tiene una estructura de grafo con condiciones restrictivas más débiles. También se
define el método de Zariski-van Kampen utilizado para obtener el grupo fundamental del exterior
y la monodromía de trenzas. El Teorema 1.6.15 ya estableció que el estabilizador del grafos está
bien definido en una clase de grafos más amplia que la subclase correspondiente a la estructura
más pequeña de configuraciones de rectas. Por lo tanto, podríamos intentar extender la inclusión
de homología a curvas algebraicas cuya variedad borde tenga una estructura de grafo de ese tipo.

En la segunda parte, generalizamos el invariante de pendiente de los enlaces. Este invariante
surgió nuevamente del estudio de la inclusión de la variedad borde en el exterior del enlace, pero
directamente en homología torcida por un carácter. Logramos extender su definición a cada
nudo usando SL2(C)-representaciones, y eliminar algunas de las restricciones sobre el carácter
en los enlaces usando SO2(R)-representaciones y la caracterización de lagrangianos. Esta última
generalización es un invariante de concordancia por razones similares a la pendiente del carácter
original. Se sabe que la pendiente del carácter tiene vínculos con otros invariantes de concordancia
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conocidos, principalmente los números de enlace de Milnor. Al igual que la pendiente, estos
invariantes extraen información topológica sobre los enlaces a partir de un análisis de bajo nivel
de las relaciones del grupo del enlace. Planeamos investigar más a fondo la posible conexión entre
la pendiente generalizada y los números de enlace de Milnor, pero también con la torsión de
Reidemeister y los polinomios torcidos de Alexander.

En una perspectiva más amplia, los teoremas generales del Apéndice A y del Apartado 6.1
permiten definir la pendiente utilizando cualquier representación ortogonal real del grupo de
enlaces con un espacio invariante no trivial en el borde. Encontrar nuevas familias de tales
representaciones podría ampliar el alcance de la construcción de pendientes generalizadas con el
objetivo de detectar nuevos enlaces no slice.



CONCLUSION ET FUTURES
RECHERCHES

Le travail présenté dans la première partie de cette thèse est la continuation d’un programme de
recherche démarré au début des années 1990 et qui consiste à étudier les couples de Zariski de
courbes et d’arrangements de droites. Notre contribution se base suer des invariants antérieurs
dont l’objectif était de décrire correctement l’inclusion de la variété-bord dans l’extérieur. Le
morphisme induit en homologie sur Z n’était pas bien compris, et nous pensons que notre définition
du stabilisateur du graphe permet de régler cette partie du problème. Toutefois, notre objectif
à long terme est plus ambitieux et consiste à étudier l’homologie tordue des arrangements de
droites. Des recherches ont déjà été menées sur le sujet [ACM19b] et nous avons l’intention de
les appliquer pour étudier ker i∗ de la même manière que pour les nœuds et entrelacs. Pour
cela il est nécessaire de décrire les représentations ou les caractères du groupe fondamental de
l’extérieur, et de comprendre ce qu’ils induisent sur la variété-bord. C’est précisément ce que nous
avons déterminé avec notre description de l’inclusion homologique pour des coefficients entiers
non-tordus. En plus de représenter un invariant topologique en elle-même, l’inclusion homologique
fournit donc le cadre permettant d’étudier les images dans l’extérieur des cycles de la variété-bord
en homologie tordue. L’analyse complète de la structure de ker i∗ va cependant probablement
nécessiter la création d’autres invariants intermédiaires, qui seront peut-être à même de détecter
par eux-mêmes de nouveaux couples de Zariski.

Un autre axe de recherche est basé sur les plongements ordonnés du graphe qui sont au cœur
de la définition du stabilisateur du graphe. En effet, le Théorème 1.5.11 permet de maîtriser
l’influence du choix du plongement du graphe lors de la description d’une représentation de la
variété-bord induite par une représentation de l’extérieur. La présentation du groupe fondamental
du bord ainsi obtenue peut être utilisée pour étudier les variétés caractéristiques ainsi que d’autres
propriétés du morphisme i∗ induit en homologie tordue par l’inclusion.

Par ailleurs, la plupart des outils et des structures standards que nous avons utilisés sur les
arrangements de droites (ainsi que leurs implémentations informatiques) s’appliquent également
à d’autres types de courbes algébriques complexes contenant des singularités non-transverses.
Leur variété-bord a encore une structure de variété graphée mais avec des conditions plus faibles.
La méthode de Zariski-van Kampen pour obtenir une présentation du groupe fondamental de
l’extérieur fonctionne encore également. Le Théorème 1.6.15 a déjà établi que le stabilisateur du
graphe est bien défini sur une classe plus large de graphes que ceux qui constituent les graphes
minimaux d’arrangements de droites. Nous envisageons ainsi d’étendre l’inclusion homologique à
des courbes algébriques dont la combinatoire appartient à cette classe plus large.

Dans la seconde partie de la thèse, nous avons généralisé l’invariant de pente (« slope »)
sur les entrelacs. Cet invariant est également issu de l’étude de l’inclusion de la variété-bord
dans l’extérieur, mais en considérant directement le morphisme induit en homologie tordue par
un caractère. Nous avons étendu la définition du slope à n’importe quel nœud en utilisant des
représentations à valeurs dans SL2(C), et nous avons également levé une partie des restrictions du
slope original sur les entrelacs en utilisant des représentations à valeurs dans SO2(R) ainsi que la
caractérisation des lagrangiens. Cette dernière généralisation est un invariant de concordance pour
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des raisons similaires au slope original. Il est déjà établi que celui-ci possède des liens avec d’autres
invariants de concordance connus, en particulier les enlacements de Milnor. Tout comme le slope,
ces invariants extraient des informations topologiques des entrelacs en analysant directement le
groupe fondamental à bas niveau. Nous prévoyons d’étudier plus loin la possible connexion entre
le slope généralisé et les enlacements de Milnor, mais également la torsion de Reidemeister et les
polynômes d’Alexander tordus.

Dans une perspective plus large, les théorèmes généraux de l’Appendice A et de la Section 6.1
permettent de définir le slope avec n’importe quelle représentation réelle orthogonale du groupe de
l’entrelacs ayant un espace invariant non-trivial sur la variété-bord. Trouver de telles familles de
représentations permettrait d’étendre les champs d’application du slope généralisé dans l’objectif
de découvrir de nouveaux entrelacs non-slice.
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