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esta Tesis le ha robado mucho tiempo de estar conmigo.

Entre Carolina del Norte y Zaragoza, año 2023.

II



Funding

Esta Tesis ha sido financiada por el Gobierno de Aragón mediante las subvenciones para

la contratación de personal investigador predoctoral en formación y para la movilidad

de personal investigador predoctoral en formación.

• MVE 06 23: Subvención de fomento de la movilidad de personal investigador

predoctoral en formación para el año 2023, convocada por ORDEN

CUS/1668/2022

• CPE 09 20: Subvención destinada a la contratación de personal investigador

predoctoral en formación para el peŕıodo 2020–2024, convocada por ORDEN
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Abstract

Evidence of climate change induced from the increasing concentration of greenhouse

gases in the atmosphere suggests an increment not only in mean temperature, but also

more frequent warm days, heat waves, and extreme and record-breaking temperatures.

This Thesis aims to develop novel stochastic models for the spatiotemporal analysis of

such extreme temperature events. Additionally, the purpose of this project is to provide

insights to a specific geographic region, around the Comunidad Autónoma de Aragón

in Spain and peninsular Spain, about its state of the climate in terms of temperatures.

The datasets for this project contain series of over 60 years of daily maximum

temperature observations at 18 and 40 meteorological stations around Aragón and

Spain, respectively. Most of the proposed methods for modeling such data fall within

the Bayesian hierarchical framework for point-referenced spatiotemporal data. Fitting

of these models proceeds through specifically designed Markov chain Monte Carlo

algorithms, and a model-based perspective offers full and exact inference with proper

assessment of uncertainty. As an alternative to the asymptotic extreme value theory,

the proposed spatiotemporal models include mean and—multiple and joint—quantile

autoregressive in time specifications with fixed and random effects modeled as spatial

Gaussian processes. Applications of the models are presented including prediction of

the daily temperature series or any quantile of interest at unobserved sites. Inference

to investigate climate change comparison is presented including predictive spatial

probability surfaces and spatial extents for an event, including extreme heat events.

In a different direction, acknowledging the lack of exploratory or inferential tools

for the analysis of record-breaking events, some of the proposed methods consist of

graphical tools and hypothesis testing within the classical framework. The underlying

idea of all these non-parametric tools is to use the distribution of the occurrence of

records under series of independent and identically distributed continuous random

variables to analyze if the observed records are compatible with that behavior. After

proposing a general framework for the exploration of the occurrence of records, a first

attempt is made in the modeling of such events. A Bayesian hierarchical spatial logistic
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regression model is proposed for the record indicators, which incorporate suitable fixed

effects and strong daily spatial random effects. Applications of the model are presented

including predictions of record indicator series at unobserved sites, the spatial extent

of record surface, and comparison with stationarity to assess warming rates.

Remarkable evidences of climate change found in this project include increasing

global temperature trends in the summer season for Aragón, both in the mean and high

quantiles, but weaker in the latter. The mean exhibits a homogeneous global warming

behavior across space, while high quantiles reveal different types of trends—generally

more pronounced than for the mean—across space. The occurrence of record-breaking

events displays distinct characteristics in temperature’s distribution, along with a

significant increase in the number of records in Spain with respect to the stationary case.

This increase is neither homogeneous across years—with the past two decades being the

most affected—, across seasons—with summer being the most affected—, nor across

space—with the Cantabrian coast being the least affected. Another notable finding is

the strong effect of persistence—previous day’s temperature dependence—being more

pronounced in the central part of the distribution than in high quantiles, and being

also very strong in the occurrence of records for consecutive days.

These findings highlight, on one hand, the importance of employing specialized

statistical models that focus on characterizing the specific features of interest in the

dataset, as well as models that adequately capture the spatiotemporal dependence

to borrow strength across sites and provide a proper assessment of uncertainty. On

the other hand, the proposed methods allow analyzing the magnitude of the potential

effects of climate change along with a measure of uncertainty, and indicate the need to

inform management strategies to mitigate the impact of extreme temperature events

on human health, agriculture, and the economy.
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Resumen

La evidencia del cambio climático inducido por el aumento de la concentración de

gases de efecto invernadero en la atmósfera sugiere un incremento no solo en la

temperatura media, sino también en d́ıas cálidos más frecuentes, olas de calor, y

temperaturas extremas y récord. Esta Tesis tiene como objetivo desarrollar modelos

estocásticos novedosos para el análisis espaciotemporal de tales eventos de temperatura

extrema. Además, el propósito de este proyecto es brindar información sobre una región

geográfica espećıfica, alrededor de la Comunidad Autónoma de Aragón en España y la

España peninsular, acerca de su estado del clima en cuanto a temperaturas.

Los conjuntos de datos de este proyecto contienen series de más de 60 años de

observaciones diarias de temperatura máxima en 18 y 40 estaciones meteorológicas

en torno a Aragón y España, respectivamente. La mayoŕıa de los métodos propuestos

para modelizar tales datos caen dentro del marco jerárquico bayesiano para datos

espaciotemporales punto referenciados. El ajuste de estos modelos se realiza a través

de algoritmos Monte Carlo basados en cadenas de Markov diseñados espećıficamente,

y una perspectiva basada en modelos ofrece inferencia completa y exacta con una

evaluación adecuada de la incertidumbre. Como alternativa a la teoŕıa asintótica de

valores extremos, los modelos espaciotemporales propuestos incluyen especificaciones

autorregresivas en el tiempo de medias y cuantiles—múltiples y conjuntos—con efectos

fijos y aleatorios modelados como procesos gaussianos espaciales. Se presentan las

aplicaciones de los modelos, incluida la predicción de la serie diaria de temperaturas

o cualquier cuantil de interés en sitios no observados. Se presenta la inferencia para

investigar la comparación del cambio climático, incluidas superficies de probabilidad

espacial predictivas y extensiones espaciales de un evento, incluidos los eventos de calor

extremo.

En una dirección diferente, reconociendo la falta de herramientas exploratorias o

inferenciales para el análisis de eventos récord, algunos de los métodos propuestos

consisten en herramientas gráficas y contrastes de hipótesis dentro del marco clásico. La

idea subyacente de todas estas herramientas no paramétricas es utilizar la distribución
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de la ocurrencia de récords bajo series de variables aleatorias continuas independientes

e idénticamente distribuidas para analizar si los récords observados son compatibles con

ese comportamiento. Después de proponer un marco general para la exploración de la

ocurrencia de récords, se hace un primer intento en la modelización de tales eventos.

Se propone un modelo espacial jerárquico bayesiano de regresión loǵıstica para los

indicadores de récord, que incorpora efectos fijos adecuados y fuertes efectos aleatorios

espaciales diarios. Se presentan aplicaciones del modelo, incluidas predicciones de series

de indicadores de récord en sitios no observados, la extensión espacial de la superficie

récord, y comparación con estacionariedad para evaluar las tasas de calentamiento.

Evidencias notables de cambio climático encontradas en este proyecto incluyen

tendencias globales crecientes en las temperaturas en la estación de verano para

Aragón, tanto en la media como en los cuantiles altos, pero más débiles en estos

últimos. La media muestra un comportamiento homogéneo de calentamiento global

en todo el espacio, mientras que los cuantiles altos revelan diferentes tipos de

tendencias—generalmente más pronunciadas que para la media—a lo largo del espacio.

La ocurrencia de récords muestra caracteŕısticas distintas en la distribución de

temperaturas, junto con un aumento significativo en el número de récords en España

con respecto al caso estacionario. Este aumento no es homogéneo ni a lo largo de

los años—siendo las dos décadas pasadas las más afectadas—, ni a lo largo de las

estaciones—siendo el verano el más afectado—, ni a lo largo del espacio—siendo la

costa Cantábrica la menos afectada. Otro hallazgo notable es el fuerte efecto de la

persistencia—la dependencia con respecto a la temperatura del d́ıa anterior—, que es

más pronunciada en la parte central de la distribución que en los cuantiles altos, y

siendo también muy fuerte en la ocurrencia de récords en d́ıas consecutivos.

Estos hallazgos resaltan, por una parte, la importancia de emplear modelos

estad́ısticos especializados que se enfoquen en caracterizar las particularidades de

interés del conjunto de datos, aśı como modelos que capturen adecuadamente la

dependencia espaciotemporal para compartir evidencia entre sitios y proporcionar

una estimación adecuada de la incertidumbre. Por otro lado, los métodos propuestos

permiten analizar junto a una medida de incertidumbre la magnitud de los posibles

efectos del cambio climático e indican la necesidad de informar estrategias de gestión

para mitigar el impacto de eventos de temperatura extrema en la salud humana, la

agricultura y la economı́a.
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Chapter 1

Introduction

The classical modeling of spatial extremes relies on asymptotic models for block

maxima or peaks over high thresholds. Usual criticisms of these models include that

their dependence structure is too rigidly constrained and the prohibitive computational

cost to fit in high dimensions. Asymptotic arguments and parametric assumptions are

needed to estimate very extreme quantities, however, many important applications

where the focus is less extreme could benefit from the less restrictive and more robust

quantile regression approach. For example, obtaining 1,000-year return levels required

by many flood risk management commissions versus studying the effect of climate

change on the 20-year return level of daily temperature. In addition, the continuously

increasing interest on record-breaking events in atmospheric sciences, but an overall

lack of research regarding how to model the occurrence of such events provides an

attractive opportunity for research. This Thesis aims to develop novel stochastic

models for the spatiotemporal analysis of extreme temperatures such as extreme heat,

high quantile, and record-breaking events. This chapter will provide an introduction to

the project by first discussing the background and the research problems, followed by

the research objectives and their thematic unit, and finally the outline of the Thesis.

1.1 Background and methodological problems

Natural hazards in the context of temperature such us heat waves, or extreme

and record-breaking temperatures arise due to physical processes that are spatial in

extent and temporal in duration. In atmospheric science, spatiotemporal extreme

data is a subject of great interest because extreme weather events usually yield the

largest human, agricultural, and economic impacts (Coumou & Rahmstorf, 2012).

Understanding the possible space-time alterations in phenomena characteristics like

temperature due to climate change is vital for assessing the risk of future extreme

events. The following sections will introduce key ideas about spatial statistics,
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extreme value theory, quantile regression, and theory of records to provide background

knowledge for this Thesis. This includes the meaning of these concepts, main pieces of

theory, the current context, and gaps in the literature to be filled with this project.

1.1.1 Bayesian geostatistics

Arguably, the most common scenario in spatial data involves what is known as

geostatistics—data modeled as values from a spatial process defined on the continuum

but observed at fixed spatial locations. This section provides a brief overview of a

fully model-based perspective for such data, the approach of hierarchical modeling

fitted within a Bayesian framework. Standard texts from spatial, spatiotemporal, and

Bayesian hierarchical perspectives are Cressie (1993), Cressie and Wikle (2011), and

Banerjee et al. (2014), respectively.

The most basic geostatistical hierarchical model considers a response Y (s) at

location s over a spatial domain D specified as

Y (s) = x⊤(s)β + w(s) + ϵ(s), (1.1)

where the residual is partitioned into a spatial piece w(s) and a non-spatial piece ϵ(s).

The statistical problem is to make inference for the response elsewhere in D. The

geostatistical story is explained by w(s), usually modeled as a Gaussian process (GP)

(Gelman et al., 2013, Chapter 21) with an isotropic stationary covariance function,

cov(w(s), w(s′)) = C(||s − s′||;σ2
w, ϕw), with partial sill parameter σ2

w and decay

parameter ϕw. The pure error ϵ(s) is usually modeled as independent and identically

distributed (i.i.d.) normal with nugget parameter σ2
ϵ . The sill is the sum of the variance

components σ2
w + σ2

ϵ .

Given a dataset Y (si) for i = 1, . . . , n, let Y = (Y (s1), . . . , Y (sn))
⊤ and w =

(w(s1), . . . , w(sn))
⊤, and denote by R(ϕw) the correlation matrix arising for w. There

are two inferentially equivalent but alternative representations of the model, a marginal

in w representation where the likelihood is

Y | θ ∼ N(Xβ, σ2
wR(ϕw) + σ2

ϵ I),

and a hierarchical conditional in w representation

First stage Y | θ,w ∼ N(Xβ +w, σ2
ϵ I),

Second stage w | σ2
w, ϕw ∼ N(0, σ2

wR(ϕw)),

Third stage Priors on [θ],

that emerges as a special case of the general multi-level process model

[data | process, parameters][process | parameters][parameters].
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In the Bayesian framework, independent priors are usually chosen for the model

parameters, yielding [θ] = [β][σ2
w][σ

2
ϵ ][ϕw]. Customary weakly informative priors are

multivariate normal for [β], inverse gamma for [σ2
w] and [σ2

ϵ ], and usually uniform or

gamma for [ϕw] although depends upon the choice of C. Care must be taken with

regard to σ2
w, σ

2
ϵ , and ϕw, since an improper prior for all of them leads to an improper

posterior.

Markov chain Monte Carlo. Model fitting can then proceed using Markov

chain Monte Carlo (MCMC) (Gelman et al., 2013, Part III) algorithms. MCMC

offers a powerful tool to approximate complex posterior distributions that arise from

hierarchical models. These algorithms allow to explore the parameter space of the

model, obtaining samples that provide insights into the uncertainty associated with

the model parameters. Bayesian kriging obtains posterior predictive samples from the

response at new locations using these posterior samples from the model parameters

by means of composition sampling (Banerjee et al., 2014, Chapter 6). Full Bayesian

model-based inference is straightforward using these posterior predictive samples to

provide a posterior distribution for any quantity of interest. Here, full emphasizes

obtaining the entire posterior distribution, while model-based underscores the use of

probabilistic models that describe the data generating process.

For example, frequently, for a function g, of great interest is the block average,

Y (D) =
1

|D|

∫

D

g(Y (s)) ds,

where |D| is the area of D. Also of interest is the particular case g(y) = 1(y ≤ c) that

leads to the definition of the spatial cumulative distribution function (cdf) (Banerjee

et al., 2014, Chapter 15). The spatial cdf behaves like a cdf in the sense that it is

non-decreasing and goes to 0 as c → −∞ and 1 as c → ∞, however, since it is a

function of the process realization, it is a random variable and arises as a stochastic

integral.

A spatiotemporal geostatistical model. In recent years, there has been a

dramatic surge in interest towards spatiotemporal modeling attributed to the rapid

growth of datasets with both spatial and temporal indices. Rather than revising a

huge list of works in this topic, the Schliep et al. (2021) model used to illustrate

novel model-based tools in the publication of Section 3.2 will be revisited. Their

spatiotemporal model is specifically developed to predict the occurrence and incidence

of extreme heat events (EHEs) in space. Extreme heat is defined in terms of

temperatures that are much hotter than average for a particular time and location,
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and an EHE is defined as a period of persistent extreme heat. Specifically, EHEs are

defined locally and are based on exceedance of a suitable local threshold. To address

this, they introduce thresholding, i.e., a model which switches between two observed

states, one that defines extreme heat days (those above the temperature threshold) and

the other that defines non-extreme heat days (those below the temperature threshold).

Let Yt(s) denote the daily maximum temperature at day t and location s. Schliep

et al. (2021) proposed a two-state model where the state for a given day defines whether

or not the location is experiencing an EHE. Considering known a threshold (quantile),

q(s) at location s, the threshold state indicator Ut(s) takes the value 1 if Yt(s) > q(s)

and 0 otherwise. The joint distribution for temperature and state is specified in a

first order Markov fashion explicitly as follows. Given Yt−2(s), the joint distribution

[Ut−1(s), Yt−1(s), Ut(s), Yt(s)] is written as

[Yt(s) | Ut(s), Yt−1(s)][Ut(s) | Yt−1(s)][Yt−1(s) | Ut−1(s), Yt−2(s)][Ut−1(s) | Yt−2(s)].

This formulation requires three model specifications:

(i) [Yt(s) | Ut(s) = 0, Yt−1(s)],

(ii) [Yt(s) | Ut(s) = 1, Yt−1(s)],

(iii) [Ut(s) | Yt−1(s)].

Truncated distributions are needed for (i) and (ii), i.e., [Yt(s) = y]1(y ≤ q(s)) and

[Yt(s) = y]1(y > q(s)), respectively. For (i), a truncated normal distributions with

autoregressive centering is adopted,

TN
(
µ0
t (s)− ρ0(Yt−1(s)− µ0

t−1(s)), σ
2,0(s)

)
I(−∞, q(s)).

For (ii), a truncated t distribution with autoregressive centering is adopted,

Tt
(
µ1
t (s)− ρ1(Yt−1(s)− µ1

t−1(s)), σ
2,1(s)

)
I(q(s),∞).

For (iii), a probit link is employed to define

P (Ut(s) = 1 | Yt−1(s)) = Φ(ηt(s)).

These µ0
t (s), µ

1
t (s), and ηt(s) are linear expressions of regressors and a spatially

varying intercept modeled as a GP. Further, spatially varying variances modeled as the

logarithm of a GP are introduced for the truncated distributions, and ηt(s) includes

expressions of Yt−1(s) centered by the threshold. Putting (i), (ii), and (iii) together, a

mixture distribution for Yt(s) results: (i) a truncated normal distribution for the bulk
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of the distribution, (ii) a truncated t distribution for the upper tail of the distribution,

and (iii) mixture weights according to P (Ut(s) = 0) or P (Ut(s) = 1), respectively.

Model inference is obtained in a Bayesian framework, the model is completely

specified giving customary weakly informative prior distributions for each of the model

parameters, and model fitting proceeds through MCMC to obtain samples from the

joint posterior distribution. These samples allow full inference based on model-based

geostatistics.

Bayesian models can be either general, designed for versatility across various

problems, or application-specific, tailored to address unique challenges within a specific

context. The generic model in (1.1) offers flexibility but might lack precision for

assessing EHEs, while the application-specific Schliep et al. (2021) model provides

precision but might be limited to the analysis of threshold state. For example,

the Schliep et al. (2021) model can be useful to learn about notions of the spatial

extent of heat waves and EHEs, which have previously been considered informally

and descriptively in the climate community. As a result, the existing research might

be useful to offer context but is sometimes inadequate for a particular objective

and dataset, as every problem should be data-driven to capture well the specific

characteristics of interest.

1.1.2 Extreme value theory

Extreme value theory (EVT) concerns inference for rare events in data. Often very

extreme values have never yet been observed, and their probabilities must therefore

be estimated by extrapolation of asymptotic tail models fitted to available data. This

section is included here to give a detailed background for most approaches available

for the analysis of extremes, but it will not be used in the methodology proposed in

this Thesis. Following the reviews by Davison et al. (2012) and Huser and Wadsworth

(2022), this section gives a very brief outline of the classical theory of extremes for

maxima and threshold exceedances of stationary series, and the main approaches for

the analysis of spatial and spatiotemporal extremes. Standard texts from mathematical

and statistical points of view are de Haan and Ferreira (2006) and Coles (2001),

respectively.

Statistical modeling of extremes is usually based on limiting families of distributions

for maxima that satisfy the property of max-stability. If a non-degenerate limiting

distribution for the scaled maximum of a series of continuous independent and

identically distributed (c.i.i.d.) variables exists, then it must be max-stable. The only

non-degenerate distribution with that property is the generalized extreme value (GEV)

distribution, which includes the Weibull, the Gumbel, and the Fréchet distributions.
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A typical goal in applications is the estimation of a high τ -quantile of the distribution

of the maximum. If the available observations are annual maxima and τ = 1 − 1/T ,

then the τ -quantile is called the T -year return level, interpreted as the level exceeded

once on average every T years. Under mild conditions on the dependence structure

of stationary time series, the GEV also emerges as the only possible non-degenerate

limiting distribution for scaled maxima of blocks of observations.

The GEV may also be regarded as giving an approximation for the upper tail of

the distribution of an individual variable. In this case, the only limiting distribution of

the excess of the individual variable conditioned to exceed a limiting high threshold is

the generalized Pareto distribution, which is commonly used for modeling exceedances

over high thresholds. The standard approach to such modeling uses that the times of

exceedances over the high threshold are the realization of a stationary Poisson process.

Multivariate approaches to extreme values require additional max-stability

properties for the joint distribution. Unlike for univariate extremes, there is no simple

parametric form for the multivariate limiting distribution. While various parametric

forms for the joint distribution have been proposed, those commonly employed now

often lack flexibility, and non-parametric estimation has mainly been limited to the

bivariate scenario due to the curse of dimensionality.

Numerous statistical techniques, such as Bayesian hierarchical models, copulas,

max-stable or r-Pareto processes, subasymptotic models, and conditional spatial

extremes, have been employed very recently for spatial extreme modeling (see Huser

& Wadsworth, 2022, for a remarkably rich review on spatial extremes). Bayesian

hierarchical models consider GEV or generalized Pareto marginals with distribution

parameters modeled in terms of regressors and a GP to obtain spatially varying

return levels. The copula models extend the hierarchical ones by modeling spatial

dependence between observations. While hierarchical models model the response

surface as everywhere discontinuous, copula models model it as continuous. The

Gaussian or t copulas are simple approaches, while extremal copulas are more difficult

to work with but satisfy the max-stable conditions. Max-stable and r-Pareto processes

are theoretically justified, but computation in most cases is difficult and requires

composite likelihood methods. They are asymptotically dependent processes. In

practice, however, environmental data often tend to exhibit weakening dependence for

increasing quantile levels and to support asymptotic independence. By contrast with

the asymptotic max-stable and r-Pareto processes, subasymptotic models are more

flexible hybrid versions that can bridge the two asymptotic dependence regimes. The

last approach, conditional spatial extremes, aims at describing the spatial behavior of

a random process conditional on single points being large. It allows for very flexible
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forms of extremal dependence and can naturally capture both asymptotic dependence

and independence.

1.1.3 Quantile regression

Classical quantile regression (QR) models the relationship between a set of regressors

and a specific quantile (equivalent to a return level) of the response variable, and

it offers a less restrictive and more robust approach. Simplifying interpretation, the

focus here is on linear QR, while nonlinear methods are beyond the scope of this

project. This section reviews the two main approaches for QR—multiple and joint—,

and a quantile autoregression (QAR) model for time series. A standard text for QR

is Koenker (2005), but as far as I know there is not systematic texts nor reviews that

include spatial or spatiotemporal QR, so the existing approaches are summarized at

the end of this section.

Multiple quantile regression. Initiated by Koenker and Bassett (1978), the scope

of QR methods has broadened considerably in recent years. The so-called multiple QR

offers a separate regression model for each of the τ -quantiles of interest, and inference

proceeds by minimizing a piecewise linear check loss function,

min
β

∑
δτ (yi − x⊤

i β),

where δτ (u) = u[τ − 1(u < 0)] and τ ∈ (0, 1). The simplest case employs τ = 0.5 and

yields the sum of absolute deviations, which is minimized by the median.

In a manner similar to how the check loss corresponds to quantiles just as the sum

of squares corresponds to the mean, the normal distribution also has an equivalent

counterpart for quantiles. First introduced by K. Yu and Moyeed (2001), the Bayesian

approach assumes

Yi = x⊤
i β(τ) + ϵi(τ)

where ϵi(τ) are i.i.d. asymmetric Laplace (AL) (Kotz et al., 2001) errors. The AL

distribution is characterized by location, scale, and asymmetry parameters; i.e., µ,

σ > 0, and τ ∈ (0, 1), respectively. Fixing µ = 0 to ensure P (ϵ ≤ 0) = τ , the density

of ϵ ∼ AL(0, σ, τ) is written as

f(ϵ) = τ(1− τ)σ exp{−σδτ (ϵ)}.

The τ -quantile of Yi given xi is then simply x⊤
i β(τ). A convenient representation of ϵ

in terms of standard normal and exponential variables is

ϵ =

√
2U

σ2τ(1− τ)
Z +

1− 2τ

στ(1− τ)
U, with Z ∼ N(0, 1) and U ∼ Exp(1). (1.2)
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A primary issue with multiple QR is the so-called quantile crossing

problem—increasing quantiles in τ are not guaranteed. However, multiple QR imposes

soft (stochastic) order on the quantiles, and rich modeling for a given quantile is

relatively straightforward; which motivates its implementation when interest is focused

on one or a few separated quantiles.

Joint quantile regression. Recently, advances have been made in the so-called joint

(or simultaneous) QR, supplying an appropriate joint model for all quantiles which

avoids crossing of the regression across quantiles. Bondell et al. (2010) suggested

to alleviate quantile crossing by solving the classical optimization problem adding

monotonicity constraints on a grid of quantiles, but estimates based on this method

can be sensitive to the number and location of the chosen grid.

Foundational work appears in Tokdar and Kadane (2012) presenting a simple

characterization of the joint QR with one regressor through an interpolation of two

monotone curves modeled via logistic transformations of a smooth GP. Their approach,

embedded within a Bayesian framework, leads to a likelihood function that can be

computed through a one-dimensional root-finder. The same inferential framework is

used by Yang and Tokdar (2017) proposing a novel parameterization that characterizes

any collection of non-crossing quantile planes over arbitrarily shaped convex regressor

domains. Their parameterization uses unconstrained scalar, vector and function valued

parameters with GP prior distributions. Other joint approaches were implemented

directly in the spatial framework and will be summarized below.

These joint methods offer coherence from a generative model perspective,

possibilities for joint inference across quantile levels, and strength borrowing across

proximate quantile levels; at the cost of a perhaps more limited modeling, a bounded

support on regressors, and approximate and very demanding computation. Choosing

between multiple or joint methods should depend on the research problem and

researchers expertise.

Quantile autoregression. Time series data has traditionally been based on

Gaussian models that exclusively use first- and second-moment information. However,

asymmetries and heterogeneous patterns of dependence across different levels of the

distribution—invisible features for Gaussian models—, can be revealed with the aid of

QR methods. Koenker and Xiao (2006) offered theoretical results for QAR(p) models

of the form

QYt(τ | yt−1, . . . , yt−p) = θ0(τ) +

p∑

j=1

θj(τ)yt−j.
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The usual i.i.d. error autoregression with errors having quantile function θ0(τ) is a

particular case when the θj(τ) do not depend upon τ for j = 1, . . . , p. Provided

non-crossing quantile functions, they linked them to the generative model,

Yt = θ0(Ut) +

p∑

j=1

θj(Ut)Yt−j

with Ut ∼ U(0, 1). For the monotonicity constraint, they required all θj(τ) for j =

0, . . . , p to be strictly increasing functions (referred to as comonotonic coefficients).

Comonotonic coefficients ensure non-crossing of the resulting quantiles, but under the

restrictive assumption that the autoregression coefficients strictly increase in τ . They

illustrate for p = 1 with θ0(τ) = σΦ−1(τ) and θ1(τ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1)

and γ1 > 0.

A somewhat restrictive limitation of any linear specification is that there must be

a bounded support for Yt beyond which the ordering of quantiles is reversed, so linear

joint QAR models must be regarded as useful local approximations over a prespecified

bounded support.

Spatial quantile regression. A few Bayesian QR models have been proposed for

the analysis of point-referenced spatial and spatiotemporal data. Lum and Gelfand

(2012) extended the usual i.i.d. AL error to a spatial process that incorporates

spatial dependence; the latent normal and exponential variables from the mixture

representation are modeled as a GP and a copula transformation.

Reich et al. (2011) developed a spatial joint QR model with spatially varying

regression coefficients to account for spatial dependence; the coefficients are expressed

as a weighted sum of Bernstein basis polynomials where the weights are constrained

spatial GPs. A somewhat similar approach was followed by Reich (2012) in a

spatiotemporal context using only one regressor; he considered piecewise Gaussian basis

functions rather than Bernstein polynomials, and allowed for spatiotemporal residual

correlation via a dynamic spatial Gaussian copula process over the quantile levels of the

observation units. The so-called constraint-free parameterization by Yang and Tokdar

(2017) was extended to spatial data by Chen and Tokdar (2021); they characterized

again spatial dependence via a Gaussian or t copula process on the underlying quantile

levels, but obtained quantiles that do not vary spatially.

Spatiotemporal QR development is important for the analysis of data with spatial

and temporal dependence. A few studies have proposed methods to manage spatial or

temporal data with the QR approach. However, these studies have rarely focused on

both of them simultaneously and never from a spatial QAR perspective. Expectedly,
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explicit assessment of persistence—previous times’ data dependence—within a proper

implementation of spatial dependence, or assessment of changes in the distribution in

space and time, are difficult.

1.1.4 Record-breaking events

In recent times, records have gained special importance for climate researchers in the

context of global warming. The question of how a changing climate impacts the number

of temperature records that are observed has intrigued both the general public and

scientists. It is not surprising that the breaking of temperature records is now a hot

topic, more and more frequent all over the world (Plumer & Shao, 2023). Analysis

of such events is an area that has received attention primarily within the probability

community, so only a few recent studies have focused on applied record-breaking events.

This section introduces the main statistics of records and reviews their theory for the

analysis of climate data, dominated by results for records in stationary series with

some additional work addressing trends. Standard texts for the probabilistic theory of

records are Arnold et al. (1998) and Nevzorov (2001).

Probabilistic properties of records. Initiated by Chandler (1952), probabilistic

properties of record events have been pursued quite extensively. An observation Yt in

a time series is called a record if its value exceeds that of all previous observations, i.e.,

if Yt > max{Y1, . . . , Yt−1}. By definition, Y1 is always considered a trivial record. The

occurrence of records is characterized by the series of record indicators defined as It

taking the value 1 if Yt is a record and 0 otherwise. The number of records up to time

t is given by Nt =
∑t

j=1 Ij.

The classical record model (CRM) characterizes records arising in a series of c.i.i.d.

random variables and provides the expected behavior in stationary climatic series. The

main property of the variables associated with the occurrence of records under the CRM

is that they do not depend on the underlying distribution of the c.i.i.d. variables. Foster

and Stuart (1954) demonstrated that the record indicators are mutually independent

and follow a Bernoulli distribution with probability pt = P (It = 1) = 1/t. Then, the

number of records up to time t is asymptotically normal and its expected value grows

as the logarithm of the number of variables, E(Nt) =
∑t

j=1 1/j = log(t) + γ +O(1/t),

where γ is the Euler-Mascheroni constant. The distribution-free properties under the

CRM have been used to develop statistical hypothesis tests to detect non-stationary

behavior in the occurrence of records, first from a probabilistic point of view by Foster

and Stuart (1954) and Diersen and Trenkler (1996), and then from a climatic applied

perspective initiated by Benestad (2003, 2004).
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In climatic data, stationary evolution over time is an unrealistic assumption and

an alternative specification for the temperature series is the linear drift model (LDM),

Yt = ct+ ϵt, where c > 0 is a constant and ϵt are c.i.i.d. errors. In this simple scenario,

the probability density function (pdf) ft(y) of Yt is of the form ft(y) = f(ct+x) with a

fixed pdf f(y) and the corresponding cdf F (y), which is the distribution of the errors.

The probability of record at time t in the LDM depends on the distribution of the error

term and is given by

pt(c) =

∫ ∞

−∞
f(x)

t−1∏

j=1

F (cj + x) dx.

It was shown by Ballerini and Resnick (1985, 1987) that pt(c) exists and becomes

constant in the asymptotic limit for t→ ∞ provided the distribution of ϵt has a finite

first moment. In other words, in the LDM the probabilities of record do not tend to

zero as they do in the CRM. Gouet et al. (2020) generalized some of the LDM results

for δ-records (observations higher than the previous record plus a constant δ).

Franke et al. (2010) investigated the asymptotic behavior of the probability pt(c)

for a few families of distributions. Their approximation for the special case of the

normal distribution has been used quite extensively to analyze records in temperature

data (see, e.g., Wergen & Krug, 2010; McBride et al., 2022). Other authors such

as Rahmstorf and Coumou (2011) or Fischer et al. (2021) also consider the normal

distribution but with more complex trends and derive the probabilities by numerical

integration.

Record-breaking investigation is vital, as records yield particularly large impacts

because society often tends to react and adjust based on the most extreme event it has

encountered within a lifetime, rather than considering events beyond that scope. When

events of comparable magnitude recur after several years, the resulting impacts might

be notably reduced, as society has had the opportunity to adapt, at least to some extent.

Numerous studies have investigated probabilistic approaches to describe the occurrence

of temperature records. However, these studies have been focused on the CRM, the

parametric LDM, and simple extensions with more elaborate trends. Probabilistic

record models are useful exploratory tools that should be readily available, but effective

analysis for adaptation decisions would benefit from richer modeling strategies.

1.2 Motivation, objectives and thematic unit

Given the lack of research within the space-time domain regarding extreme heat,

high quantile, and record-breaking methodology, this project will aim to develop

model-based tools, spatiotemporal QAR models, and record-breaking methodology
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to identify and evaluate the effects of climate change in different characteristics of

daily temperature extremes around the Comunidad Autónoma de Aragón in Spain

and peninsular Spain—Aragón and Spain from now on.

Study region and meteorological stations. The data that motivates most of the

methods proposed in this project are the extended summer season for Aragón; while

the data motivating the analysis of records are all year round in peninsular Spain.

Peninsular Spain has an area of 492,175 km2, while Aragón represents almost a 10% of

it, 47,719 km2. Spain is a diverse geographic region with several mountain ranges and

a long coastline. Aragón, an inland region located in the northeast of Spain, is not an

exception; with the Pyrenees to the north rising above 3,000 meters, the Ebro Valley

as a central axis below 300 meters, and the Iberian system to the south exceeding

2,000 meters. Outside Aragón, Spain has the Central Plateau in the center, the Sierra

Nevada near the Mediterranean Sea to the south and east, and the Atlantic Ocean

to the north and west completes its long coastline. Both of them represent regions

of exceptional climatic interest, not only because of their climatic variability, but also

because Spain has experienced some of the most significant temperature increments in

the world over the past few decades (Lionello & Scarascia, 2018).

The datasets for this project contain series of over 60 years (1956–2015 and

1960–2021) of daily maximum temperature observations at 18 and 40 meteorological

stations throughout Aragón and Spain, respectively. The stations are irregularly

distributed across the regions representing their diverse climatic zones. The Aragón

dataset do not have any missing data, while the Spanish dataset contains a very small

amount of missing data. Figure 1.1 shows an elevation map with the region of Aragón

and the stations in the Iberian Peninsula. While Aragón is given by an irregular

polygon, the actual study region is a rectangle similar in dimension and location that

includes a few stations outside the Comunidad itself.

For both regions, one can anticipate strong persistence between two consecutive

daily temperatures. The study of this type of temporal dependence in space through

explicit autoregressive models will be of key interest in the methodology. Regressors

could also bear important information in describing the daily maximum temperatures.

Spatially varying time trends must be included in the models to assess different trends

of climate change in space. To interpolate over the study regions and produce maps,

the spatial regressor information must be available for the entire region and not just at

the meteorological stations. Two readily available spatial covariates are elevation and

distance to coast. For an area with both mountains and valleys, it is highly likely that

elevation will have a crucial role on the behavior of temperatures. It is not so clear
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Figure 1.1: Map of the 18 Aragón stations (blue triangles) and the 40 Spanish stations
(red dots) in southwestern Europe. The big gray irregular polygon is peninsular Spain,
the small gray irregular polygon is the Comunidad Autónoma de Aragón, and the black
rectangle is the actual study region around Aragón.

whether these regressors have a relationship with climate change.

Objectives and thematic unit. The overall aim is divided into three specific

objectives, which will be developed in the subsequent sections in Chapter 3 coinciding

with the publications that compose this Thesis. These objectives are: (i) to develop

a spatiotemporal geostatistical mean model and propose simple model-based tools

to promote such methodology within the climatic community, and to extend those

tools for the analysis of EHEs; (ii) to develop novel spatiotemporal multiple and joint

QAR models; and (iii) to offer an accessible framework for the analysis of records,

and to develop a modeling framework for the occurrence of record-breaking events.

All these objectives are addressed from an applied methodological perspective, and

mainly, but not exclusively, within the Bayesian hierarchical model-based paradigm.

Although the models are driven by the Aragón or Spanish datasets, all methods can be

easily adapted for application in other ecological or environmental contexts. The role

that each publication has had in the fulfillment of these objectives will be specified in

Chapter 2. There are, however, two unpublished works submitted for publication that

address the parts of model-based tools and record-breaking modeling, which could not
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be included in the compendium as they have not yet been accepted for publication

at the time of depositing this Thesis. Chapter 2 will also provide a comprehensive

summary of these two works. Below I attempt to give greater clarity to the thematic

unit of the project.

Spatiotemporal models for extremes entail two challenges. First, a spatiotemporal

approach needs to incorporate dependence in both, time and space. For instance,

it entails including trend effects, seasonal component, serial correlation, spatial

dependence, other regressors, and random effects, among others. Second, modeling

extremes calls for specific techniques tailored to their analysis, which in climate

applications should be spatiotemporal in nature.

The first objective is to develop more standard spatiotemporal models for the

mean of the response distribution. The flexibility of these spatiotemporal models

with complex dependence structures represented through fixed and random effects

is enhanced within the Bayesian hierarchical framework and the associated fitting

methods like MCMC algorithms. These models are particularly valuable in climate

applications as they enable the quantification of trends alongside their seasonal and

spatial variability. Specifically, the model-based approach allows for the generation of

practical derivatives such as probability surfaces and extents, including those of EHEs.

The second objective is to develop more general spatiotemporal models for the entire

response distribution, particularly for extremes, based on quantile modeling. Insights

gained from modeling means can be extended to a multiple QR model, facilitating

the comparison of effects on the mean and high quantiles of the distribution. In the

search for a data-generating model, working with joint QR addresses the entire response

distribution simultaneously.

The third objective is the analysis of the most extreme observed values of the

response, i.e., record-breaking events. Analyzing records presents certain challenges,

such as scarcity of data or weak evidence of trend effects compared to the variability

in the data. The spatiotemporal dependence in record series may not be as strong

as in the bulk of the distribution or even high quantiles, necessitating preliminary

statistical tools for the analysis of records. Having inference tools with sufficient power

to determine the trend effect on their occurrence is crucial and that analysis would be

facilitated by user-friendly software implementing these tools. Ultimately, the analysis

of records benefits from the spatiotemporal modeling of their occurrence through

Bayesian hierarchical spatiotemporal models, enabling full inference at unobserved

locations.
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Significance. This study will contribute to the methodological development of

spatiotemporal statistics for the analysis of extremes within the Bayesian hierarchical

framework, and of record-breaking events within a broader extent. It will offer

complementary approaches to EVT which is rapidly and constantly growing. This will

help address the current shortage of research for space-time EHEs, QAR, and especially

records. This will provide real-world value to society by advancing our understanding

of extreme events in Aragón and Spain, and offering a valuable methodology for

application in other regions or contexts. Understanding the role of uncertainty in

assessing trends in EHEs, high quantiles, and temperature records is crucial for

addressing climate change, safeguarding public health, and ensuring food security and

disaster management. It provides the foundation for informed decision-making and

effective adaptation.

1.3 Outline

The outline of the Thesis is as follows. In Chapter 1, the bibliographic review of the

study has been introduced. The research objectives and their thematic unit have been

identified, and the value of such research argued. In Chapter 2, the methodological

objectives and contributions will be summarized publication by publication, including

key ideas and the challenges addressed. Also the two unpublished works will be

summarized in this chapter. In Chapter 3, the full publications together with their

supplementary materials will be inserted. These eight publications are the core

contribution of this Thesis. In Chapter 4, the contributed works will be linked to the

existing literature and discussed in relation to the objectives and research questions. In

Chapter 5, a brief summary of the contributions and findings, limitations, improvement

opportunities and future work will conclude the Thesis.
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Chapter 2

Summary of the publications

This chapter summarizes and highlights the main methodological contributions offered

in the eight publications and the two unpublished works that relate to the Thesis

objectives but are not included in the compendium. The original notation from

the publications is simplified and unified for ease of readability. The outline follows

the three branches of research followed in this project within the study of extremes.

Section 2.1 deals with Bayesian geostatistics, model-based tools, and EHEs; Section 2.2

deals with Bayesian multiple and joint QAR; and Section 2.3 deals with hypothesis

testing and graphical tools for records, software and a real-world data application, and

Bayesian logistic regression for the record indicators.

2.1 Spatiotemporal mean autoregression

The first approach was to develop an intensive exploratory data analysis (EDA) that

would lead us to the construction of a first data-driven geostatistical spatiotemporal

model. Subsequently, the aim was to exploit the model from a climatic point of

view, which gave rise to novel model-based tools. This section summarizes the

model proposed in Castillo-Mateo et al. (2022), the model-based tools proposed in

the unpublished work Cebrián et al. (2023), and the EHE tools proposed in Cebrián,

Aśın, et al. (2022).

2.1.1 Spatial mean autoregression modeling

The Castillo-Mateo et al. (2022) model offers a Bayesian hierarchical spatiotemporal

specification for daily maximum temperature which introduces several innovations in

a standard framework. The model adopts two temporal scales, year and day within

year. It captures temporal dependence through autoregression on days within year and

on years. In addition to the fixed effects (linear trend, seasonality, and elevation), the

complex spatiotemporal structure of temperature requires four spatial GPs to model
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spatially varying intercept, slope, autoregression and residual variance parameters, and

three pure error terms (years, sites within years, and sites for days within years).

Let Ytℓ(s) denote the daily maximum temperature for day ℓ, ℓ = 1, . . . , L of year

t, t = 1, . . . , T at location s ∈ D, where D is the study region. In Castillo-Mateo

et al. (2022), for all years from 1956 to 2015 associated with t = 1 and T = 60, ℓ = 1

corresponds to May 1 and L = 153 corresponds to September 30, and D is Aragón.

We model daily maximum temperature for day ℓ, ℓ = 2, . . . , L, year t, t = 1, . . . , T ,

and location s ∈ D by

Ytℓ(s) = µtℓ(s) + ρ(s) (Yt,ℓ−1(s)− µt,ℓ−1(s)) + ϵtℓ(s).

We specify µtℓ(s), the fixed and random effects components, by

µtℓ(s) = β0 + αt+ β1sin(2πℓ/365) + β2cos(2πℓ/365) + β3elev(s) + γt(s), (2.1)

in which β0 is a global intercept, α is a global linear trend coefficient that captures

long-term climate change, the sin and cos terms are introduced to provide an annual

seasonal component, and elev(s) is the elevation at s. The random effects component,

γt(s), is specified as

γt(s) = β0(s) + α(s)t+ ψt + ηt(s),

where β0(s) is a mean-zero GP with an exponential covariance function having

variance parameter σ2
β0

and decay parameter ϕβ0 , and α(s) is a mean-zero GP with an

exponential covariance function having variance parameter σ2
α and decay parameter ϕα.

Thus, β0(s) provides local spatial adjustment to the intercept and α(s) provides local

slope adjustment to the linear trend. They provide a flexible, locally linear baseline

specification. Further, we add local space-time varying random effects, ηt(s), and an

autoregression in years for annual intercepts, ψt = ρψψt−1 + λt, to provide adjustment

to this baseline.

As a result, we have introduced three pure error terms: λt ∼ i.i.d. N(0, σ2
λ) at

yearly scale, ηt(s) ∼ i.i.d. N(0, σ2
η) at sites within years, and ϵtℓ(s) ∼ ind. N(0, σ2(s))

at sites for days within years. Additionally, ρ(s) and σ2(s) are, respectively, a spatially

varying autoregressive term and a spatially varying variance at location s, both of which

are assumed constant over days and years. We model log {(1 + ρ(s))/(1− ρ(s))} =

Zρ(s) ∼ GP (Zρ, C(·;σ2
ρ, ϕρ)), and log{σ2(s)} = Zσ(s) ∼ GP (Zσ, C(·;σ2

σ, ϕσ)), again

with exponential covariance function.

The entire specification is supplied distributionally in the form of a multi-level
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hierarchical model as

[Ytℓ(s) | Yt,ℓ−1(s),θf , γt(s), ρ(s), σ
2(s)]

[γt(s) | β0(s), α(s), ψt, σ2
η]

[β0(s) | σ2
β0
, ϕβ0 ][α(s) | σ2

α, ϕα][ψt | ψt−1, ρψ, σ
2
λ]

[Zρ(s) | Zρ, σ2
ρ, ϕρ][Zσ(s) | Zσ, σ2

σ, ϕσ]

[θf ][θr][σ
2
η][Zρ][σ

2
ρ][ϕρ][Zσ][σ

2
σ][ϕσ],

where we denote the fixed effect parameters by θf = (β0, α, β1, β2, β3) and the random

effects parameters by θr = (ρψ, σ
2
λ, σ

2
β0
, ϕβ0 , σ

2
α, ϕα). Motivation for all the terms in the

model comes from a comprehensive EDA.

Model fitting. Model inference is implemented in a Bayesian framework, requiring

prior distributions for each of the model parameters. In general, weakly informative

and, when available, conjugate prior distributions are chosen.

A Metropolis-within-Gibbs algorithm is developed with code in R to obtain MCMC

samples from the joint posterior distribution. For example, the regression coefficients

and the variance hyperparameters have a normal or an inverse gamma full conditional

distribution, respectively. On the other hand, the spatial autoregressive parameters or

the spatial variance of the response require Metropolis steps that are tuned manually.

Spatial and spatiotemporal prediction. For a given year, and day within year,

the model enables kriging to unobserved locations. Given a new site s0 ∈ D, we obtain

posterior predictive samples, {Y (b)
tℓ (s0) : b = 1, . . . , B}, using composition sampling,

from the posterior distribution of Ytℓ(s0), which is a function of the parameters, process

realizations, and Yt,ℓ−1(s0). Posterior samples for the parameters are available from

the model fitting, posterior samples for the GPs are available through usual Bayesian

kriging, and posterior samples from Yt,ℓ−1(s0) are obtained dynamically.

Model validation. Model validation is carried out using leave-one-(site)-out

cross-validation (LOOCV) to compare the spatial predictive performance between the

full model and reduced nested models. The metrics used are: (i) the root-mean-square

error (RMSE), (ii) the mean absolute error (MAE), (iii) the continuous ranked

probability score (CRPS), and (iv) the 90% coverage (CVG).

2.1.2 Model-based tools for space-time analysis

The model-based tools introduced in Cebrián et al. (2023) and Cebrián, Aśın, et al.

(2022) leverage predictive Bayesian modeling to enhance the spatial and temporal
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analyses. These tools include predictive spatial probability surfaces and spatial extents,

employing spatial cdfs for diverse climatic events. It is established a crucial link

between generative models, like the aforementioned mean model, and the utilization of

its output in conducting comprehensive space-time analyses, emphasizing their utility

in addressing uncertainty. This framework proves particularly valuable for climate

analyses, including mean analysis and extreme temperature assessments.

Probability surface and extent of an event

The events of interest are defined in terms of temperature data, which are represented

by the output of a Bayesian model. Subsequently, statistical tools are derived from

this Bayesian model output to quantify the probability of these events and their spatial

extent.

Events. The events of interest Atℓ(s) are defined in terms of the daily maximum

temperature Ytℓ(s) on day ℓ within year t and a local reference value r(s) at location s.

The simplest event {Ytℓ(s)−r(s) ≥ w} corresponds to the daily maximum temperature

being higher than the value r(s) + w. Persistence is studied with the events {Ytℓ(s)−
r(s), Yt,ℓ+1(s)−r(s) ≥ w} and {Yt,ℓ−1(s)−r(s), Ytℓ(s)−r(s), Yt,ℓ+1(s)−r(s) ≥ w}, which
correspond to consecutive daily maximum temperatures being higher than the value

r(s) + w. The same type of events are defined in terms of averages of daily maximum

temperatures, e.g., seasonal averages in a decade. Also events defined in terms of the

difference between the seasonal averages in two different decades are analyzed.

Probability surface. Let Atℓ(s) denote an event related to Ytℓ(s) on day ℓ within

year t at location s. The posterior probability associated with Atℓ(s) is estimated by

the proportion of occurrences in the collection of posterior predictive samples of the

event {A(b)
tℓ (s) : b = 1, . . . , B}. In other words, the mean across samples of the binary

variable indicating the occurrence of the event,

P̂ (Atℓ(s)) =
1

B

B∑

b=1

1(A
(b)
tℓ (s)).

These daily probabilities kriged over a fine spatial grid of D, GD, can be drawn on a

map to reveal the probability surface of the event.

Extent of an event. Thinking of Ytℓ(s) at location s ∈ D as a spatial process, we

define the extent of area in D that is experiencing an event Atℓ(s) on day ℓ within year

t by

Ext(Atℓ(D)) =
1

|D|

∫

D

1(Atℓ(s)) ds, (2.2)
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where |D| is the area of D. This is referred to as a block average of indicator functions.

We also integrate over subregions of D to observe different temporal evolutions in

different climatic regions.

Though in Cebrián, Aśın, et al. (2022) we calculate explicit expressions for the

first and second moments of the spatial extent, it is difficult to work with the integral

above in practice. However, approximation via Monte Carlo integration is natural, i.e.,

replacing Ext(Atℓ(D)) by

Êxt(Atℓ(D)) =
1

|GD|
∑

sj∈GD
1(Atℓ(sj)),

where GD is a fine spatial grid of D, and |GD| is the number of grid cells in GD. We

obtain samples from Êxt(Atℓ(D)), {Êxt(A(b)
tℓ (D)) : b = 1, . . . , B}, using the posterior

predictive samples of Ytℓ(sj) and kriged values of r(sj) for all sj ∈ GD if necessary.

Probability surfaces and extents in practice. With interest on summarizing

the behavior of the probability surface or extent across years, or changes in their

seasonal pattern, in practice we analyze the distribution of different averages of the

daily probabilities or extent. For example, for the latter we consider

Avt∈T ,ℓ∈L Ext(Atℓ(D)) =
1

|T ||L|
∑

t∈T

∑

ℓ∈L
Ext(Atℓ(D)),

where T and L are the subsets of years and days within year over which the daily

extents are averaged, and |T | and |L| are the number of years and days within year in

each subset, respectively.

Probability surface and extent of an event around the mean

In Cebrián et al. (2023), r(s) is a quantity related to the mean, and consequently the

events are related to the mean behavior of temperatures. The output used to compute

the events are spatiotemporal predictions by the Castillo-Mateo et al. (2022) modeling

work.

Extent of an extreme heat event

Extreme temperature might be of greater interest than mean behavior. In Cebrián,

Aśın, et al. (2022), the local reference value is denoted by q(s) and represents the

threshold surface given by a 95th percentile of local daily maximum temperatures.

Special interest receives the extent of area in D that is experiencing extreme heat at

least w degrees above local thresholds. This is a formal definition of the spatial extent

in (2.2) of an EHE on day ℓ within year t, Atℓ(s) = {Ytℓ(s)− q(s) ≥ w}. In particular,
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EHE is applicable to the extent when w = 0. With interest on EHEs, in Cebrián, Aśın,

et al. (2022) we use output from the Schliep et al. (2021) modeling work described in

Section 1.1.1 to illustrate the notion.

2.2 Spatiotemporal quantile autoregression

Models focused on the bulk of the distribution like those with Gaussian errors often

fail to accurately represent the extreme values observed in the data. In addition,

the association between predictor variables and the response variable may vary across

different quantile levels τ . In an EDA for extremes, very different marginal effects

of covariates were observed across quantile levels. The first approach to address this

was to extend the previous mean model to a spatial multiple QAR model. A challenge

appears when one tries to do interpolation at unobserved locations without knowing the

previous day’s temperatures. Having successfully addressed these issues, the approach

of modeling the entire conditional distribution simultaneously was appealing, leading

to a joint model with a methodological focus. This added substantial complication

to the quantile modeling, which lacks a conventional joint approach in the literature.

This section summarizes the multiple QAR model proposed in Castillo-Mateo, Aśın,

Cebrián, Gelfand, et al. (2023), and the joint QAR model proposed in Castillo-Mateo

et al. (in press).

2.2.1 Multiple quantile autoregression modeling

The Castillo-Mateo, Aśın, Cebrián, Gelfand, et al. (2023) model extends the

specification in Castillo-Mateo et al. (2022) summarized in Section 2.1.1 to the

QR framework by substituting the Gaussian errors by AL errors. Again, the

model adopts two temporal scales, and offers a flexible mixed effects autoregressive

structure using four spatial GPs to capture space-time dependence. Using the AL

specification, a method to extract marginal quantiles from the conditional quantiles in

the autoregression is proposed.

Let Ytℓ(s) denote the daily maximum temperature for day ℓ within year t at location

s as in Section 2.1.1. In Castillo-Mateo, Aśın, Cebrián, Gelfand, et al. (2023), we

propose the following spatiotemporal multiple QAR model. Given a quantile level

τ ∈ (0, 1) and denoting by QYtℓ(s)(τ | Yt,ℓ−1(s)) the τ conditional quantile of Ytℓ(s)

given Yt,ℓ−1(s),

Ytℓ(s) = QYtℓ(s)(τ | Yt,ℓ−1(s)) + ϵτtℓ(s)

= qτtℓ(s) + ρτ (s)
(
Yt,ℓ−1(s)− qτt,ℓ−1(s)

)
+ ϵτtℓ(s).
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In particular,

qτtℓ(s) = βτ0 + ατ t+ βτ1 sin(2πℓ/365) + βτ2 cos(2πℓ/365) + βτ3 elev(s) + γτt (s),

is the analogue of µtℓ(s) in (2.1) with the same specification. On the other hand, the

error term is ϵτtℓ(s) ∼ ind. AL(0, στ (s), τ). Again, the autoregressive coefficient in the

response and the scale parameter of the error term are spatially varying.

Model fitting. Model inference is implemented in a Bayesian framework. The

conditional AL distribution for all Ytℓ(s) can be expressed as normal when it is

conditioned on U τ
tℓ(s) ∼ Exp(1) as in (1.2). To complete the model we specify diffuse

and, when available, conjugate priors such as normal and inverse gamma for most

model parameters. A Metropolis-within-Gibbs algorithm is developed with code in

C++ to obtain MCMC samples from the joint posterior distribution. Full conditional

distributions for each of the parameters are derived, including the n × T × (L − 1)

reparameterized latent exponential variables ξτtℓ(s) = U τ
tℓ(s)/σ

τ (s), which conditionally

follow an inverse Gaussian distribution, being this the main bottleneck of the algorithm.

Model adequacy. Model adequacy is carried out using LOOCV where the

conditional quantiles are obtained using one-step ahead prediction. The metrics used

are: (i) the probability p(τ) that an observation is less than the conditional quantile,

(ii) the check loss or weighted mean absolute error (WMAE), and (iii) the R1(τ), the

analogue for the quantiles of the R2 for the mean.

Marginal quantiles

Marginal quantiles are easy to interpret and interpolate, and in many climate

applications they are of great interest to calculate thresholds. It is appealing to think

of qτtℓ(s) as a marginal quantile for Ytℓ(s), but P (Ytℓ(s) ≤ qτtℓ(s)) ̸= τ . We use the

conditional quantile model to extract a marginal quantile from the autoregression by

adding a term dτtℓ(ρ
τ (s), στ (s)) to qτtℓ(s) to adjust the probability to τ .

For sake of simplicity, space, years, and the superscript τ are suppressed. Then, Yℓ =

qℓ+ρ(Yℓ−1−qℓ−1)+ϵℓ where ϵℓ ∼ i.i.d. AL(0, σ, τ). We demonstrate in Castillo-Mateo,

Aśın, Cebrián, Gelfand, et al. (2023) that the τ marginal quantile of Yℓ is qℓ+ d
τ
ℓ (ρ, σ),

with dτℓ (ρ, σ) satisfying P (ϵ̃ℓ < d | ρ, σ) = τ in d, and using the conditional normal

form for the AL distribution,

ϵ̃ℓ | ρ, σ, Uℓ, Uℓ−1, . . . , U1 ∼ N

(
1− 2τ

στ(1− τ)

ℓ−1∑

j=0

ρjUℓ−j,
2

σ2τ(1− τ)

ℓ−1∑

j=0

ρ2jUℓ−j

)
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and

P (ϵ̃ℓ < d | ρ, σ) =
∫ ∫

· · ·
∫
P (ϵ̃ℓ < d | ρ, σ, {Uj : j = 1, . . . , ℓ})[{Uj}] dU1 · · · dUℓ.

The adjustment value is approximated via Monte Carlo integration and a

one-dimensional root-finder.

As an example of the practical interest of calculating marginal quantiles in climate

analysis, we observe that these marginal quantiles, q̃Ytℓ(s)(τ) ≡ qτtℓ(s)+d
τ
tℓ(ρ

τ (s), στ (s)),

kriged over a fine grid of D, GD, can be drawn on a map to reveal the temperature

quantile surface. Also the difference between the quantiles of two decades can be

compared to study the temporal evolution of quantiles.

2.2.2 Joint quantile autoregression modeling

Multiple QR offers rich modeling capabilities but has the limitation of quantile crossing.

The Castillo-Mateo et al. (in press) methodological work derives a characterization of

the non-crossing QAR(1) model using two monotone curves. Subsequently, a novel

spatial joint QAR(1) that captures spatial dependence through copula modeling and

spatially varying quantiles through GPs is proposed. Also a pth order QAR(p) version,

and a multivariate QAR(1) version are derived. All these proposed models are available

in the R packageQAR (Castillo-Mateo, 2023a). It is important to note that the models

do not introduce any covariates in order to achieve simple conditions for non-crossing

of autoregressive quantiles.

The support of the data. Linear QAR models should be cautiously interpreted as

useful local approximations to more complex nonlinear global models. With a linear

specification, the only non-crossing lines over an unbounded support are parallel lines

yielding the constant autoregression model.

Let {y∗t : t = 1, . . . , T} be a time-series data. The interest focuses on ensuring

that the quantile curves do not cross for all values of y∗t−1 in a bounded interval.

Although the region of interest for noncrossing must be assumed to be bounded, the

variable space itself may still be unbounded. We take this interval to be [0, 1] and

implement this by making a transformation of the data, yt = (y∗t −m)/(M−m), where

m < min y∗t and M > max y∗t . For a convenient “automatic” strategy for selecting

m and M we use basic results from the theory of order statistics where y∗(1) is the

minimum and y∗(T ) is the maximum of the data. We propose m = (Ty∗(1)−y∗(T ))/(T −1)

and M = (Ty∗(T ) − y∗(1))/(T − 1).
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Joint QAR model for time-series data

Koenker and Xiao (2006) offered an initial version of a joint QAR(p) model,

it is described in Section 1.1.3. They required both θ0 and θ1 to be strictly

increasing functions. In Castillo-Mateo et al. (in press), we offer a straightforward

characterization of the required monotonicity of the QAR(1) lines in terms of two

monotone curves, inspired from Tokdar and Kadane (2012).

Theorem 1. An autoregressive specification, QYt(τ | yt−1) = θ0(τ) + θ1(τ)yt−1 with

θ1(τ) ∈ [−1, 1] for τ ∈ [0, 1], is monotonically increasing in τ for yt−1 ∈ [0, 1] if and

only if QYt(τ | yt−1) = η2(τ) + (η1(τ) − η2(τ))yt−1 where η1, η2 : [0, 1] → [0, 1] are

monotonically increasing.

A convenient class of η’s to work with are cdfs for continuous random variables

with support in [0, 1]. A rich class would arise as probabilistic mixtures of such cdfs,

leading to the general form η(τ) =
∑K

k=1 λkF (τ | Ωk), such that λk ≥ 0,
∑

k λk = 1,

and F : [0, 1] → [0, 1] is strictly increasing for any parameters Ωk. A convenient

class of F ’s are the cdfs of the two parameter Kumaraswamy distribution. The pdf

and cdf of the Kumaraswamy distribution are f(x | a, b) = abxa−1(1 − xa)b−1 and

F (x | a, b) = 1−(1−xa)b, respectively, where x ∈ [0, 1] and a, b > 0. The Kumaraswamy

distributions are a family with behavior similar to the beta distribution but much

simpler, especially in the context of simulation since the pdf and cdf can be expressed

in a closed form. Through simulation, we explored that these mixtures offer great

flexibility.

Likelihood evaluation and model fitting. Extending to the autoregressive case

the density expression noted by Tokdar and Kadane (2012), a valid joint specification

of QYt(τ | yt−1) for all τ ∈ (0, 1) uniquely defines the conditional response density for

yt−1 ∈ [0, 1],

fYt(yt | yt−1) =
1

d
dτ
QYt(τ | yt−1)

∣∣∣∣∣
τ=τyt−1 (yt)

,

where τyt−1(yt) solves yt = yt−1η1(τ) + (1 − yt−1)η2(τ) in τ and is numerically

approximated via a one-dimensional root-finder. Consequently, we write a valid

log-likelihood score in terms of ut = τyt−1(yt), all of the observed data y = (y1, . . . , yT )
⊤,

and the model parameters Ω as

ℓ(Ω | y) = −
T∑

t=2

log
{
yt−1η̇1(ut) + (1− yt−1)η̇2(ut)

}
.

We conclude the model specification with the prior distribution of the parameters

a’s, b’s, and λ’s. We suggest to model the weights using the additive logistic normal
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transformation and the parameters of the Kumaraswamy distribution with a weak

Gaussian prior in the log scale. The root-finder used to evaluate the log-likelihood

function is Brent’s method. We implement an adaptive block-Metropolis sampler

algorithm to obtain MCMC samples from the posterior distribution of the parameters

and the conditional quantile function.

Model adequacy and comparison. Two dimensionless metrics which assess the

global adequacy and comparative performance of the conditional quantile function are

offered. The first metric p̃v is a standardized version of p(τ) integrated over τ ∈ (0, 1).

The second metric R̄1 is a generalization of R1(τ), again integrated over τ ∈ (0, 1).

Spatial joint QAR model

Let Yt(s) denote, in a spatial point-referenced time series, a variable for time t =

1, . . . , T at location s ∈ D, where D is the study region. In Castillo-Mateo et al. (in

press), D is Aragón, and the period spans from May 1 to September 30 in 2015. We

specify the joint spatial QAR model,

Yt(s) = θ0(Ut(s); s) + θ1(Ut(s); s)Yt−1(s),

where the θ functions are quantile and spatially varying, and the vectors

(Ut(s1), . . . , Ut(sn))
⊤ are assumed to follow a spatial copula process.

Modeling spatial dependence. Spatial dependence is captured through spatially

varying quantiles—analogue to spatially varying coefficients—and dependent quantile

levels—analogue to dependent errors—as follows.

Spatially varying quantiles. For the spatially varying coefficients, we consider one cdf

for each η(τ ; s). In fact, at location s, let assume ηj(τ ; s) = 1 − (1 − τaj(s))bj(s) with

parameters aj(s) and bj(s) (j = 1, 2). We introduce four independent GPs for the a’s

and b’s on the log scale. In particular, we model log aj(s) ∼ GP (aj, C(·;σ2
aj
, ϕaj)) and

log bj(s) ∼ GP (bj, C(·;σ2
bj
, ϕbj)) where C(·;σ2, ϕ) is an exponential covariance function

with variance parameter σ2 and decay parameter ϕ.

The spatial copula process. We take the processes Ut(s)’s to follow a Gaussian copula

for each t, induced by a stationary spatial GP. In the spirit of Chen and Tokdar (2021),

we define
Ut(s) = Φ(Zt(s)), Zt(s) = Wt(s) + ϵt(s),

Wt(s) ∼ GP (0, C(·; γ, ϕ)), ϵt(s) ∼ i.i.d. N(0, 1− γ).

The process Wt(s) captures spatial dependence while ϵt(s) is independent pure error.

The parameter γ ∈ [0, 1] determines the proportion of spatial and independent
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variation. With this approach, the Gaussian copula density has correlation matrix

γR(ϕ) + (1− γ)I where R(ϕ) is the n× n correlation matrix induced by C(·; γ, ϕ).

Likelihood evaluation and spatial interpolation. It is convenient to first obtain

the joint distribution for all data, y. By Sklar’s theorem, the joint conditional density

of y can be partitioned into a marginal part and a copula part. Subsequently, we

find the expression of the log-likelihood function for the spatial QAR, and after giving

weakly informative priors, inference proceeds in a similar way as in the univariate case.

With the proposed model we can interpolate the autoregressive coefficient, or

conditional quantiles to any desired location in the study region given any proposed or

reference value for the previous time’s observation at that location.

2.3 Spatiotemporal record-breaking events

In parallel with QR, the focus was centered on the exploration of record-breaking

events. As far as I know, there were only a few specific inference tools based on the

occurrence of records and no complete modeling approach. The need to objectively

evaluate the impact of climate change on the occurrence of records at local and

regional levels is vital in many climate-related issues. Both approaches offer valuable

complementary insights. A spatiotemporal model provides extensive opportunities for

full inference, although its proper implementation might require expertise in multi-level

stochastic modeling. On the other hand, the inference tools are straightforward, relying

on conventional hypothesis testing and easily interpretable graphical tools. They are

now readily accessible through a freely available software package that is particularly

suitable for researchers less experienced in statistics or for preliminary EDAs preceding

more complex modeling.

This section summarizes the hypothesis tests and graphical tools proposed in

Cebrián, Castillo-Mateo, et al. (2022) and Castillo-Mateo (2022); the R package

RecordTest (Castillo-Mateo, 2023b) described in Castillo-Mateo, Cebrián, et al.

(2023a) that implements these and other inference tools; and their extensive application

in Castillo-Mateo, Cebrián, et al. (2023b) to the Spanish dataset. This summary

concludes with the model proposed in the unpublished work Castillo-Mateo, Gelfand,

et al. (2023), which offers a very novel Bayesian hierarchical specification for the record

indicators.
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2.3.1 Record tests

In general, records are considered for individual calendar days across years, yielding

365 time series for each location, so when necessary, (I1ℓ(s), . . . , ITℓ(s))
⊤ denote the

sequence of record indicators across years within day ℓ at location s.

Non-stationarity detection

The null hypothesis H0 of the tests is that the probability of record at each time

t in a series of length T is the probability of record under the stationary condition

characterized by c.i.i.d. series. Under climate change, higher probabilities of upper

record than in c.i.i.d. series are expected. The null and one-sided alternative hypotheses

are, respectively,

H0 : pt = 1/t, t = 2, . . . , T,

H1 : pt > 1/t, for at least one t = 2, . . . , T.
(2.3)

In Cebrián, Castillo-Mateo, et al. (2022), we propose a family of distribution-free

tests to detect deviations from c.i.i.d. series using the likelihood function of the

record indicators under the null hypothesis. If the analyzed series is formed by

continuous independent observations with no seasonal behavior, deviations from the

c.i.i.d. hypothesis suggest a change in the mean, a change in the shape of the pdf,

or a combination of both. The tests assume L mutually independent series of length

T available. These series can be a subset of uncorrelated series extracted from series

measured at different spatial points or series obtained from splitting the original data.

Tests based on the number of records. The most basic statistic is the total

number of records up to time T in the L series,

N =
L∑

ℓ=1

NTℓ =
L∑

ℓ=1

T∑

t=1

Itm.

Under the null hypothesis, N is asymptotically normal when T and/or M tend to

∞. Diersen and Trenkler (1996) suggested to include weights in the record indicators

according to their position in the series to improve the power of the tests, i.e.,

N =
L∑

ℓ=1

T∑

t=1

wtItℓ.

They suggested the use of linear weights wt = t − 1 because records become less

likely for increasing time, and an occurrence at high t gives more evidence against

the null hypothesis. Although different in nature, using the score—the gradient of
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the log-likelihood function—we found in Cebrián, Castillo-Mateo, et al. (2022) an

equivalent statistic with weights wt = t2/(t − 1) (w1 = 0), which give the locally

most powerful unbiased score test. Under the null hypothesis, N is still asymptotically

normal in L. The p-value of the test is P (Z ≥ (N0−0.5−µ)/σ), where Z is a standard

normal variable, µ and σ are the mean and standard deviation of the statistic under

the null hypothesis, N0 is the observed statistic, and 0.5 is a continuity correction.

Further, we use the asymptotic normal distribution of the statistics N and N to

compute reference intervals (RIs) under the null hypothesis of the number of records

and of the weighted number of records up to time t. These RIs together with the

observed values are drawn across t to observe deviations from the null hypothesis.

Joining information from different types of records. Foster and Stuart (1954)

already observed that there are four types of records available in a series. The upper

and lower records in the forward series, (Y1, . . . , YT )
⊤, and in the backward series,

(YT , . . . , Y1)
⊤. We use the superscripts L and B to denote lower records and records

in backward series, respectively.

The null hypothesis is the same for all types of record. Joining information from

different types of records allows to study the tails of the distribution, not only the

observed record-breaking events in the classical sense. The main statistics we consider

are: (i) Nupp = N −NB based on upper records, for the analysis of an increasing trend

in the upper tail; (ii) Nlow = NBL −N L based on lower records, for the analysis of an

increasing trend in the lower tail; (iii) Nboth = N − N L − NB + NBL based on four

types of records, for the analysis of an increasing trend in both tails. The sign of the

statistic for each type of record is positive or negative according to whether a higher

or lower number of records is expected under the alternative hypothesis for that type

of record. Under the null hypothesis, all these statistics have an asymptotic normal

distribution in L, and/or in T only if no weights are included as above. They have zero

mean, and using notions from order statistics we derive in Cebrián, Castillo-Mateo,

et al. (2022) the covariances between all types of record indicators, necessary to obtain

the variance of the statistics. The p-value is obtained as usual.

Again, we use the asymptotic normal distribution of these statistics to compute RIs

under the null hypothesis for the statistic up to each time t. These RIs together with

the observed values are drawn across t to observe deviations from the null hypothesis.

Additional record tests, a powerful approach for joining dependent p-values coming

from individual tests for different types of records, and graphical tools based on

probabilities and times of record are given in Cebrián, Castillo-Mateo, et al. (2022).
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Monte Carlo analysis of size and power. The size and power of these tests

are assessed and compared through Monte Carlo simulations. The estimated power

is obtained under several scenarios of the alternative hypothesis; e.g., models with

linear (the LDM), concave, and convex trends, and normal, generalized Pareto, and

generalized extreme value error terms. The record tests result even more powerful

than the widely used Mann-Kendall test—used to detect trends in the mean—in some

scenarios where an error term with a light or bounded tail is considered. The power of

the tests based on different types of records is higher than those using only one type.

Change-point detection

In Castillo-Mateo (2022), I propose three distribution-free statistics to detect a

change-point if the record occurrence stops being stationary. The statistics test the

null hypothesis H0 in (2.3) against the two-sided alternative hypothesis

H1 : pt = 1/t, t = 1, . . . , t0, and pt ̸= 1/t, t = t0 + 1, . . . , T,

where t0 is the change-point. The main test statistic for change-point detection in the

record occurrence is K = max1≤t≤T |KT (t)|, where

KT (t) =
Nt − E(Nt)√
V ar(NT )

− V ar(Nt)

V ar(NT )

NT − E(NT )√
V ar(NT )

.

The change-point estimate is defined as t̂0 = argmax1≤t≤T |KT (t)|. Under the null

hypothesis, the distribution of K is Kolmogorov in the limit as T → ∞. The p-value

is computed in the usual way, and a significant change-point occurs at time t̂0 if the

null hypothesis is rejected.

The change-point statistic can also consider L series and weights for the record

indicators with wt =
√
t2/(t− 1) (w1 = 0). I proved that the statistic does no longer

follow the Kolmogorov distribution in the limit, but the p-value can be estimated using

Monte Carlo simulations under the null hypothesis.

Monte Carlo analysis of size, power, and change-point estimate. The size,

power, and ability of these statistics to detect the actual change-point are assessed

through Monte Carlo simulations. The estimator is right-sided biased, which can

be usefully interpreted as the time when the underlying process that drives the

temperature distribution truly affects the records in the observed data. In other words,

the change-point is determined by the occurrence of a record; if no records are observed,

there is no change-point. This bias decreases significantly when the number of series

L is increased or when the effect of the change becomes greater under the alternative

hypothesis.

30



2.3.2 The R package RecordTest and real-world application

The R package RecordTest (Castillo-Mateo, 2023b) provides EDA and inference tools

based on theory of records to describe the record occurrence and detect trends and

change-points in time series. In particular, RecordTest consists of graphical tools

(Benestad, 2003, 2004; Cebrián, Castillo-Mateo, et al., 2022), distribution-free tests

for trend in location, variation or non-stationarity in the tails (Foster & Stuart, 1954;

Diersen & Trenkler, 1996; Cebrián, Castillo-Mateo, et al., 2022), and change-point

detection tests (Castillo-Mateo, 2022), all of them based on the record occurrence.

We describe RecordTest in Castillo-Mateo, Cebrián, et al. (2023a). We detail how

to prepare the data: first splitting the series with series split(), and then extracting

a subset of uncorrelated series ready to be used as argument in the functions with

series uncor(). The main tests are comprised in the functions: N.test() for those

based on the number of records, foster.test() for those based on joining information

from different types of records, and change.point() for the change-point tests. And

graphical tools to show: the evolution of the number of records with N.plot(), the

statistics joining different types of records with foster.plot(), and the probabilities

of record with p.plot(). Other tests, graphical tools, and additional functions are

also available in the package. As far as I know, RecordTest is the only statistical

software package currently available for the analysis of record-breaking events; and it

is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.

R-project.org/package=RecordTest.

Real-world data application. We extend and use RecordTest in Castillo-Mateo,

Cebrián, et al. (2023b) to incorporate permutation tests and analyze records over

peninsular Spain in the period 1960–2021. Permutation tests allow to apply the tests to

dependent series in time or space. This property allows to evaluate the null hypothesis

globally pooling data in a region. Permutation tests only rely on the assumption of

exchangeability under the null hypothesis. A sample is exchangeable if any permutation

of it has the same joint probability distribution. In the record tests, there is a sample

of t = 1, . . . , T observations of a vector of L variables (Yt1, . . . , YtL). Under the null

hypothesis, the T observations of the vector (Yt1, . . . , YtL) are independent with the

same multivariate distribution, so that permutations in t are exchangeable.

In Castillo-Mateo, Cebrián, et al. (2023b), we compare the behavior of the

occurrences of records in different Spanish regions, in different periods of the year, and

in different signals such as daily or annual maximum temperature. Significant evidences

of the effect of an increasing trend in the occurrence of upper extremes are found in
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most of Spain. The effects are heterogeneous within the year, being autumn the season

where the effects are weaker and summer where they are stronger. Concerning the

spatial variability, the Mediterranean and the Atlantic region are the areas where the

effects are more and less clear, respectively.

2.3.3 Spatial modeling of record-breaking events

Modeling the occurrence of records in Spain is challenging due to diverse climate and

topography, leading to regional variations that make it difficult to identify specific

drivers of temperature records and to distinguish between climate change and natural

variability. In this section, and in more detail in Castillo-Mateo, Gelfand, et al. (2023),

we address these challenges through the use of a Bayesian hierarchical model that

accounts for large- and small-scale variation—mean behavior as well as spatial and

temporal stochastic dependence—in order to obtain high-resolution posterior predictive

realizations that can be used for needed inference. Although the probabilistic properties

of records have been widely applied, they model the marginal probabilities of record.

The contribution of this section is to propose space-time conditional models for the

record indicators. This pooling of data with joint modeling is especially important

when studying records because these events, though rare, are highly dependent.

Specifically, we model the probability of record ptℓ(s) at day ℓ within year t =

2, . . . , T at location s using a version of a logistic regression model. With regard to the

Bernoulli distributions of the indicators, we introduce suitable fixed effects and daily

spatial random effects, specified within a fully Bayesian hierarchical structure on the

logit scale. For long-term trends, we consider forms like pt = 1/tα which, on the logit

scale yields − log(tα−1). To simplify to an asymptotically equivalent linear expression,

we adopt −α log(t− 1) and α = 1 gives the probability of record in the CRM. Further,

the model also incorporates seasonality, persistence, geographical covariates, and useful

interactions with the long-term trends, i.e., the α coefficient could be a linear expression

of covariates expressing the rate of deviation from stationarity.

Data and exploratory analysis

Data precision and tied records. The Spanish dataset is measured to the nearest

1/10th of a ◦C. This rounding/discretization results in some ties when records are

identified. To deal with ties, an observation that is at least as large as any previous

observation is called a weak record. Here, we define a tied record in terms equal rather

than higher or equal, i.e., an r-tied record (r ≥ 2) arises when an observation shares the

same value with r−1 preceding weak records. To accommodate the tied records within

the Bayesian framework, we assume that each of the true daily temperatures roundings
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are i.i.d., following a distribution on the interval (observed − 0.05, observed + 0.05).

Therefore, for an r-tied record in the rounded data series, the probability of it being a

record in the true daily temperature series is 1/r. The MCMC model fitting algorithm

addresses this characteristic of temperature data by sampling from the Bernoulli(1/r)

distribution of the indicators corresponding to r-tied records at the beginning of each

iteration.

Exploring the occurrence of records. An extensive EDA was conducted to

evaluate departures from stationarity in the occurrence of records, identify related

regressors, and enable a data-driven variable selection for the model. The covariates

studied as fixed effects aim to capture spatio-temporal variability; i.e., annual trend,

persistence, seasonal behavior, and geographic features.

Two types of exploratory tools were used in the analysis: (i) graphical tools, and

(ii) exploratory global or local logit models for all or individual sites, respectively.

Frequentist models with different regressors were compared using the AIC as a goodness

of fit measure. Below I show a couple of examples developed in the EDA.

The model in the logit scale must at least include a long-term trend, log(t − 1),

which in the stationary case would have a coefficient roughly equal to −1. To explore

whether that term is enough to capture temporal evolution across years, the left plot

in Figure 2.1 shows t× p̂t against t, whose expected value under stationarity is 1. An

empirical estimate of pt was obtained by averaging across space and days within year,

p̂t =
∑

i

∑
ℓ Itℓ(si)/(n×365). The estimates of pt are getting higher than expected in a

stationary climate. To allow a flexible modeling of the deviation from stationarity, the

inclusion of a polynomial function of log(t − 1) was considered. The AIC concluded

that a third order polynomial is unnecessary and the second is preferred.

To study the dependence between the occurrence of records in two consecutive

days, we considered the joint distribution [Itℓ(s), It,ℓ−1(s)] expressed in terms of 2 × 2

tables. The evolution of this dependence across years was studied with two-way tables

obtained by summing across space and days within year. The empirical log odds ratios

(ORs) provide a useful tool for learning about persistence,

LORt = log
(nt,11 + 0.5)(nt,00 + 0.5)

(nt,01 + 0.5)(nt,10 + 0.5)
,

where nt,jk =
∑

i

∑
ℓ 1(Itℓ(si) = j, It,ℓ−1(si) = k) for j, k ∈ {0, 1} denotes the

frequencies in each cell of the table, and 0.5 is a customary continuity correction.

For notation convenience It0(s) ≡ It−1,365(s). The LORt compares the probabilities

of record given a record or a non-record the previous day. Values close to 0 express

independence while positive values capture persistence. The right plot in Figure 2.1
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Figure 2.1: Left: Evolution of t × p̂t against t with reference value 1. Right: LORt

comparing the probability of record given a record the previous day and the probability
of record without a record the previous day, together with a linear model fitted to
log(t− 1) in a solid gray line. LOESS curves in dashed black lines.

that shows the LORt against t indicates a strong persistence increasing across years.

The linear relationship observed between LORt and log(t − 1) suggests the inclusion

of the autoregressive term It,ℓ−1(s) and its interaction with the long-term trend in the

model. Given the strong persistence of temperature, the introduction of second-order

autoregressive terms was also considered with analogous results.

Additional analyses found a significant seasonal behavior in the long-term trends

and spatial variability primarily explained by distance to the coast. Elevation did not

appear to improve the AIC of the models once distance to the coast was introduced.

Model specifics

A rich spatial logistic regression model across days, for annual temperature records is

proposed. Let Itℓ(s) denote the record indicator of the daily maximum temperature

for day ℓ, ℓ = 1, . . . , 365, within year t, t = 1, . . . , T , at location s ∈ D, where D is

the study region. In particular, D is peninsular Spain, and the series go from January

1, 1960 to December 31, 2021; so, t = 1 corresponds to 1960 and T = 62 to 2021.

We model record indicators beginning with day ℓ = 3, . . . , 365, year t = 2, . . . , T , and

location s according to

Itℓ(s) | It,ℓ−1(s), It,ℓ−2(s) ∼ Bernoulli(g−1(ηtℓ(s))) with ηtℓ(s) = xtℓ(s)β + wtℓ(s),

where g(p) = log{p/(1 − p)} is the logit link function. Here, ptℓ(s) = g−1(ηtℓ(s)) is

the probability of a record for day ℓ, year t, and location s, with fixed effects xtℓ(s)β

and random effects wtℓ(s). The xtℓ(s) = (1, xtℓ1(s), . . . , xtℓk(s)) are k + 1 covariates

measured on day ℓ, year t, and location s with β a column vector of length k + 1 of

regression coefficients. The wtℓ(s) are space-time correlated errors.

We first supply the fixed effects term. Apart from the intercept, the entries are: (i)

the first and second degree polynomials of log(t− 1); (ii) persistence terms to capture
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first and second autoregressive dependence, It,ℓ−1(s), It,ℓ−2(s), and It,ℓ−1(s)× It,ℓ−2(s),

and their interactions with log(t − 1); (iii) seasonal terms including one harmonic,

sinℓ = sin(2πℓ/365) and cosℓ = cos(2πℓ/365), and their interactions with the

second-order long-term trend; and (iv) spatial terms to model the effect of the logarithm

of the distance to the coast, log(dist(s)), including interaction with the second-order

long-term trend and persistence. In summary, we have the intercept and the following

20 predictors,

xtℓ(s) = (1, log(t− 1), [log(t− 1)]2, It,ℓ−1(s), It,ℓ−2(s), It,ℓ−1(s)× It,ℓ−2(s),

log(t− 1)× It,ℓ−1(s), log(t− 1)× It,ℓ−2(s), log(t− 1)× It,ℓ−1(s)× It,ℓ−2(s),

sinℓ, cosℓ, sinℓ× log(t− 1), cosℓ× log(t− 1), sinℓ×[log(t− 1)]2, cosℓ×[log(t− 1)]2

log(dist(s)), log(dist(s))× log(t− 1), log(dist(s))× [log(t− 1)]2,

log(dist(s))× It,ℓ−1(s), log(dist(s))× It,ℓ−2(s), log(dist(s))× It,ℓ−1(s)× It,ℓ−2(s)).

While 20 fixed effects terms may seem excessive, in explaining the roughly 900, 000

observations we do find all of them significant. Motivation for all the terms in the

model comes from the novel EDA and model comparison.

We introduce explicit spatial and temporal dependence through random effects.

We considered different structures for modeling these random effects, with the full

model considering wtℓ(s) space-time correlated errors following GPs with mean wtℓ ∼
i.i.d. N(0, σ2

1) and a common exponential covariance function having variance and

decay parameters σ2
0 and ϕ0, respectively.

For prediction, the autoregressive model requires an initial condition for It1(s) and

It2(s), the first and second values in year t. We model them as ηt1(s) = xt1(s)β1+wt1(s)

and ηt2(s) = xt2(s)β2+wt2(s). The covariate vectors are reduced to xt1(s) = (1, log(t−
1), It−1,365(s)) and xt2(s) = (1, log(t − 1), It1(s)). The wtℓ(s) for ℓ = 1, 2 are modeled

as above, each a GP with mean wtℓ ∼ N(0, σ2
1,ℓ) and exponential covariance function

having variance σ2
0,ℓ and the same decay parameter ϕ0.

Prior specification and model fitting. Model inference is implemented in a

Bayesian framework. Adopting the data augmentation strategy by Held and Holmes

(2006), each binary data can be seen as the indicator of a latent standard logistic

variable exceeding a particular threshold. A standard logistic variable can be

represented as a scale mixture of normal form, allowing the same conjugate priors as

in a standard spatial linear model. Consequently, we specified weak normal priors for

the regression coefficients, weak inverse gamma priors for the variances, and a gamma

prior for the decay parameter. A Metropolis-within-Gibbs algorithm is developed with

code in C++ to obtain MCMC samples from the joint posterior distribution. Each
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iteration of the MCMC requires the simulation of a truncated normal variable and a

variable following the asymptotic distribution of the Kolmogorov-Smirnov statistic for

every data, which is the main bottleneck of the algorithm.

Spatial prediction and inference. For a given year, and day within year, the model

enables kriging—again, through Bayesian kriging and composition sampling—for the

record indicators Itℓ(s0) or their probabilities ptℓ(s0) to unobserved locations s0 ∈ D.

EmployingGD, a fine spatial grid forD, posterior samples from Itℓ(s) can be realized

at each location in GD for every day ℓ, ℓ = 1, . . . , 365, within year t, t = 2, . . . , T . So,

we can make inference about any feature of interest related to the occurrence of records.

Let 1 ≤ ℓ1 ≤ ℓ2 ≤ 365 and 1 ≤ t1 ≤ t2 ≤ T . Then, a general feature of primary interest

is the average cumulative number of records across days from ℓ1 to ℓ2 and across years

from t1 to t2. It is defined as

N̄t1:t2,ℓ1:ℓ2(s) =
1

ℓ2 − ℓ1 + 1

t2∑

t=t1

ℓ2∑

ℓ=ℓ1

Itℓ(s).

The average total number of records N̄T (s) arises with ℓ1 = 1, ℓ2 = 365, t1 = 1 and

t2 = T . Comparison between the average number of records predicted by the model and

the expected number of records under the stationary case, E0[N̄t1:t2,ℓ1:ℓ2(s)] =
∑t2

t=t1
1/t

may be of interest. The ratio expression

Rt1:t2,ℓ1:ℓ2(s) =
N̄t1:t2,ℓ1:ℓ2(s)

E0[N̄t1:t2,ℓ1:ℓ2(s)]
, (2.4)

captures records expected by the model compared to a scenario without climate

change. To compare seasons, the statistics Rt1:t2,DJF(s), Rt1:t2,MAM(s), Rt1:t2,JJA(s), and

Rt1:t2,SON(s) were considered, where DJF is winter (December, January, and February),

MAM is spring, JJA is summer, and SON is autumn, with obvious notation.

Computing the above quantities for all s ∈ GD we can draw maps of the posterior

mean or borders of the 90% credible intervals (CIs) of the quantities of interest. This

enables a useful picture of the spatio-temporal characteristics of the occurrence of

records and assessment of regions and time periods with higher risk of exceeding

temperatures above all of the previous measurements. Probability surfaces and the

extent of record surface that extend the ideas from Section 2.1.2 to record-breaking

occurrences are also proposed.

Model comparison. The spatial predictive performance of several models was

compared using 10-fold cross-validation. The metrics used are: (i) the proper

scoring rule for binary events Brier score (BS), (ii) the area under the receiver
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operating characteristic curve (AUC), and (iii) an absolute deviation (AD) statistic,

|Ntℓ(s)−N
(b)
tℓ (s)| comparing observed values and posterior predictive samples.

Two periods for record breaking were considered. One employs the first 30 years

of the series when records are more frequent, the second employs the last 31 years

when records are more rare. The simplest model considered for illustration was the

stationary model ηtℓ(s) = − log(t− 1). For 1961–1990, its 100× BS was 7.88 and the

AUC was 0.733; for 1991–2021, its 100 × BS was 3.23 and the AUC was 0.514. The

full model presented above obtained the best results. For 1961–1990, its 100×BS was

4.32 and the AUC was 0.944; for 1991–2021, its 100×BS was 2.13 and the AUC was

a remarkable 0.924.

Results

In Castillo-Mateo, Gelfand, et al. (2023), we included an extensive list of results, e.g.,

the posterior distribution of the model parameters, maps based on the posterior mean

and CIs for the number of records, or the time series of the extent of record surface.

In this section I show two illustrative results.

Of special interest is the number of records in the past decade, as it provides a

current picture of the climate and is not influenced by the high probability of occurrence

in the early stages. Analyzing records by season is also important because each season

has distinct spatial and temporal patterns. Figure 2.2 shows the posterior mean of the

ratio R53:62,ℓ1:ℓ2(s) in (2.4) for years in 2012–2021 by season. The model estimates that

the global warming trends have increased the number of records expected in the past

decade almost two-fold—1.93 (1.89, 1.98)—, which suggests an estimated probability of

around 50% that the records of the past decade over peninsular Spain would not have

occurred in the absence of climate warming. By season the values are 1.88 (1.80, 1.97)

in winter, 1.81 (1.72, 1.89) in spring, 2.13 (2.04, 2.22) in summer, and 1.92 (1.83, 2.01) in

autumn. The number of records in the past decade is higher than in the stationary case

everywhere, and this difference is significant for any point in the region. The percentage

of area that has a significantly higher number of records is 100% for winter, 90.1%

for spring, 98.4% for summer, and 99.9% for autumn. During this period, summer

presents greater warming on average but also greater spatial variability compared to,

e.g., winter.

The model is also useful to obtain maps for the probability of record across days

during a particular heatwave. On August 14 (ℓ = 225), 2021, the province of Cordoba

in Spain set the highest temperature ever recorded in the country, while other stations

also broke their own records (WMO, 2022). To demonstrate the spatial and temporal

extent of this absolute record, Figure 2.3 shows the posterior mean of the probabilities
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Figure 2.2: Map of the posterior mean of R53:62,DJF (s) (winter, top–left), R53:62,MAM(s)
(spring, top–right), R53:62,JJA(s) (summer, bottom–left), and R53:62,SON(s) (autumn,
bottom–right).

of record p62ℓ(s) on days ℓ = 222, . . . , 229 within year 2021. This specific episode

demonstrates the dynamics of persistence as well as the spatial structure of dependence.

The beginning of the effects of the heatwave on the occurrence of records was observed

on day 224, with posterior mean probabilities surpassing 0.5 in the northeast. Over the

following three days, the heatwave continued to evolve, with high probabilities observed

across most regions, except for the coast, and with the area of high probabilities

gradually diminished towards the southwest.

Figure 2.3: Maps of the posterior mean of p62ℓ(s) on days ℓ = 222, . . . , 229 within year
2021.
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3.1 Spatial modeling of day-within-year

temperature time series: an examination

of daily maximum temperatures in Aragón,

Spain

This manuscript was published in:

Castillo-Mateo, J., Lafuente, M., Aśın, J., Cebrián, A. C., Gelfand, A. E., &

Abaurrea, J. (2022). Spatial modeling of day-within-year temperature time series: an

examination of daily maximum temperatures in Aragón, Spain. Journal of Agricultural,

Biological and Environmental Statistics, 27 (3), 487–505. https://doi.org/10.1007/

s13253-022-00493-3 [arXiv:2201.01687]

And it was disseminated (speaker emphasized) in:

• Castillo-Mateo, J., Gelfand, A. E., Cebrián, A. C., Aśın, J., & Abaurrea,

J. (2022, June 7–10). Spatio-temporal modeling and analysis of daily maximum

temperatures [Contributed talk]. XXXIX Congreso Nacional de Estad́ıstica e

Investigación Operativa, Granada, Spain.

• Castillo-Mateo, J., Lafuente, M., & Gelfand, A. E. (2021, July 12–16).

Hierarchical spatio-temporal modeling of daily maximum temperatures: A case

study in the Ebro river basin [Poster session]. Valencia International Bayesian

Analysis Summer School 4, Valencia, Spain.

He came into my office one day
with that classic spatial data set
on scallop catches in the
Atlantic Ocean, and asked,
“What can I do with this stuff,
and what the heck is a
variogram?” I said, “I have no
clue.”

Alan E. Gelfand, in Carlin and
Herring (2015)
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Spatial Modeling of Day-Within-Year
Temperature Time Series: An Examination of
Daily Maximum Temperatures in Aragón,

Spain
Jorge Castillo-Mateo , Miguel Lafuente , Jesús Asín ,
Ana C. Cebrián , Alan E. Gelfand, and Jesús Abaurrea

Acknowledging a considerable literature on modeling daily temperature data, we pro-
pose a multi-level spatiotemporal model which introduces several innovations in order
to explain the daily maximum temperature in the summer period over 60 years in a
region containing Aragón, Spain. The model operates over continuous space but adopts
two discrete temporal scales, year and day within year. It captures temporal dependence
through autoregression on days within year and also on years. Spatial dependence is
captured through spatial process modeling of intercepts, slope coefficients, variances,
and autocorrelations. The model is expressed in a form which separates fixed effects
from random effects and also separates space, years, and days for each type of effect.
Motivated by exploratory data analysis, fixed effects to capture the influence of elevation,
seasonality, and a linear trend are employed. Pure errors are introduced for years, for
locations within years, and for locations at days within years. The performance of the
model is checked using a leave-one-out cross-validation. Applications of the model are
presented including prediction of the daily temperature series at unobserved or partially
observed sites and inference to investigate climate change comparison.

Supplementary materials accompanying this paper appear online.

Key Words: Autoregression; Gaussian process; Hierarchical model; Long-term trend;
Markov chain Monte Carlo; Spatially varying coefficients.

1. INTRODUCTION

Evidence of global warming in the climate system is strong and many of the observed
changes since the 1950s are unprecedented, with an estimated anthropogenic increase of
0.2◦C per decade due to past and ongoing emissions (IPCC 2013, 2018). Climate change
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raises significant concerns as it may result in health problems and death, degradation of
flora and fauna biodiversity, reductions in crop production, increase in pests, etc. In this
framework, the analysis of daily maximum temperatures and their long-term trends over
time is particularly important due to the strong potential impact on public health (Roldán
et al. 2016; Rossati 2017; Watts et al. 2015), agriculture (Hatfield et al. 2011; Schlenker and
Roberts 2009), and economy (Diffenbaugh and Burke 2019).

We propose a new multi-level spatiotemporal model to explain the daily maximum tem-
perature in the summer period, in an area containing the Comunidad Autónoma de Aragón
in the northeast of Spain. The region includes part of the Ebro Valley in the center, with
mountainous areas in the south (Iberian System) and north (Pyrenees). The valley is an
extensively irrigated production area with garden crops, fruits, and vegetables, as well as
rainfed agriculture with cereals, almonds, wine, and oil. In the mountainous areas, there are
some protected natural spaces with extensive forests and a high diversity of landscapes. It is
an area of great biodiversity with important water resources for the region. Despite its rela-
tively small size, spatiotemporal modeling of the temperatures in this region is a challenge
due to the heterogeneous orography and the climatic variability.

The spatiotemporal model seeks to characterize spatial patterns and detect trends over
time in the daily maximum temperature during the summer period. It is specified over
continuous space but adopts two discrete units of time, years and days within years. This
allows us to model the time evolution of daily maximum temperatures during the summer,
omitting the cooler months that are not of interest here. The model introduces temporal
dependence using autoregression terms for days within years and also for years. The model
separates fixed and random effects in the mean. Fixed effects capture the global mean, the
seasonal component across days, the average long-term trend across years, and the influence
of elevation. Random effects are employed for the spatial dependence in the intercepts, the
slope coefficients, the autoregression coefficients, and the variances of the responses. The
two temporal scales allow us to separate space, years, and days within years for each type of
effect. Three pure error processes are adopted, one for locations at days within years, one for
locations within years, and one for years. The full specification is motivated by exploratory
analyses. Altogether, the model provides a better understanding of the temporal evolution
of temperatures for the entirety of the region along with the spatial uncertainty linked to
those features.

The model is specified in a hierarchical Bayesian framework and estimated using a
Markov chain Monte Carlo (MCMC) algorithm. In this framework, posterior predictive
distributions for the features of daily maximum temperatures (trends, persistence, mean,
variance, etc.) can be readily obtained. In particular, we can obtain posterior predictive
samples of the spatial processes and the daily maximum temperature series at unobserved
sites. Prediction at unobserved sites is particularly important in Aragón since this region
is sparsely monitored due to rural depopulation; there is a lack of observed series in many
areas of interest. The model can also be used to impute periods of missing observations in
a series.

Space–time modeling of environmental series has received substantial attention in the
literature. Sahu et al. (2006) proposed a random effects model for fine particulate matter
concentrations in the midwestern USA. Sahu et al. (2007) proposed a space–time hierarchi-
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cal model for daily 8-hour maximum ozone levels in the state of Ohio. This model includes
an autoregressive part for the residuals of the fixed effects, a global annual intercept, and
a spatially correlated error term. Lemos et al. (2007) modeled monthly water temperature
data in a Central California Estuary. They used a Bayesian approach to separate the sea-
sonal cycle, short-term fluctuations, and long-term trends by means of local mixtures of two
patterns. With regard to temperature models, Craigmile and Guttorp (2011) built space–
time hierarchical Bayesian models using daily mean temperatures in Central Sweden that
emphasize modeling trend through a wavelet specification, as well as seasonality, and error
that may exhibit space–time long-range dependence. Verdin et al. (2015) modeled max-
imum and minimum temperature to develop a weather generator using spatial Gaussian
processes (GPs), where both temperature models are autoregressive with spatially varying
model coefficients and spatial correlation. Li et al. (2020) proposed a three-step space–time
regression-kriging model for monthly average temperature data. With such data, they first
remove seasonality, then they regress the revised data on environmental predictors, and
finally they take the resulting residuals and administer spatiotemporal variogram modeling.
By contrast, models for daily temperatures take a different approach, seeking to explicitly
express short-term persistence of temperature. They employ autoregressive terms, e.g., the
one-point model byMohammadi et al. (2021). Amodeling approach very different from our
mean specification considers extremes in the daily temperature series and leads to extreme
value modeling under the block maxima framework or peaks-over-threshold framework
(see, e.g., Reich et al. 2014; Bopp and Shaby 2017).

The outline of the paper is as follows. An exploratory analysis to motivate the complexity
of the model is given in Sect. 2. Section 3 describes the modeling details, and Sect. 4
presents a leave-one-out cross-validation (LOOCV) analysis for model comparison as well
as some results and applications for the selected model. Section 5 ends the paper with some
conclusions and future work. Supplementary Materials accompanying this paper appear
online.

2. DATA AND EXPLORATORY ANALYSIS

The point-referenced dataset we use contains 18 daily maximum temperature obser-
vational series from AEMET (the Spanish Meteorological Office) around the Comunidad
Autónoma de Aragón (see Fig. 1). The time series include the daily observations fromMay
to September (MJJAS), corresponding to the extended summer period, and span the period
from 1956 to 2015. The region of interest is located in the central portion of the Ebro Basin
in the northeastern part of Spain and has an area of 53,279 km2, wherein the areas above 500
m and 1,000 m are 32,924 km2 and 15,195 km2, respectively. The maximum elevation is
roughly 3,400m in the Pyrenees, 2,600m in the Iberian System, and between 200 and 400m
in the Central Valley. Most of the area is characterized by a Mediterranean-Continental dry
climate with irregular rainfall and a large temperature range. However, climate differences
can be distinguished by elevation and the influence from theMediterranean Sea in the east as
well as the continental conditions of the Iberian Central Plateau in the southwest (AEMET
2011).
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Figure 1. Map locating within the Iberian Peninsula the 18 sites (black) used to fit the model and the 3 unobserved
sites (red) where prediction is carried out (Color figure online).

We summarize an extensive exploratory data analysis of the daily maximum temperature
series that helps us establish the covariates and spatiotemporal structures that are candidates
for inclusion in the model. The top plots in Fig. 2 show the variability in temperature
characteristics and the influence of elevation on them. The two plots on the left show the
mean and the standard deviation of temperature at each site against elevation. The mean
temperature shows an approximately linear decreasing relation with elevation, varying from
almost 30 to 18◦C. However, there exist other influential factors, e.g., Sallent in the north
and Tornos in the south have both an elevation around 1,000 m, but a quite lower mean
temperature is observed for the latter (see Table S1 in Supplementary Materials).

The bottom plots in Fig. 2 summarize the mean and standard deviation from data corre-
sponding to a month inMJJAS for the 18 sites in the periods 1956–1985 and 1986–2015; the
summary measures are calculated in 30-year periods following the recommendation of the
WMO (2017). The seasonal pattern for all of the series is quite similar, i.e., the maximum
mean temperature is observed in July and the minimum in May, with a difference of around
7◦C between them. The range of the mean temperatures among sites is around 10◦C, so
the spatial variability of the mean is a bit higher than the variability at each site within the
summer. The mean of the set of standard deviations is slightly higher than 4◦C. However,
relevant spatial differences are observed with a range of values around 1.5◦C. Temporal
variability is lower within the summer.

To explore the effect of globalwarming in the region, the changes between1956–1985 and
1986–2015 periods, expressed as differences for the means and quotients for the standard
deviations, are also shown on the bottom-right plot in Fig. 2 and Table S1. The mean
temperature in 1986–2015 has increased from 1956–1985 by roughly 1◦C, with a slightly
smaller increase in the northeastern sites. The increase in the mean temperature is observed
in May, June, August and, except for three sites, in July. No relevant change in the seasonal
pattern is observed. The spatial variability in the two periods is similar. As for the standard
deviations, no evidence of temporal change is observed, with all of the quotients between
the two periods being approximately one.
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Figure 2. Top: Mean value, standard deviation, annual time trend, and serial correlation against elevation for the
daily maximum temperature series at the 18 sites. Bottom: Mean value and standard deviation of the series in both
30-year periods, 1956–1985 and 1986–2015, and the change between them, expressed as differences for the mean
and quotients for the standard deviation.

The two plots in the top right in Fig. 2 summarize an exploratory analysis of the behavior
of the time series over time. The first shows the slope regressed against year (expressed in ◦C
per decade), fitted by ordinary least squares to the daily maximum temperature series in each
site. Clear differences are observed in the 18 fitted trends, suggesting the need to include a
spatial random effect to reflect this feature. The variability in the trends does not seem to be
related to the elevation. The last plot shows the serial correlation in the temperature series. A
strong correlation, higher than 0.72, is observed for all the sites but with spatial differences.
The strong autocorrelation is probably caused by a persistent anticyclonic situation that
tends to affect the Iberian Peninsula in the summer. Sites with a higher elevation seem to
show a slightly higher persistence.

As an additional exploratory analysis, 18 hierarchical temporal models were fitted, one
for each of the available sites. These local models, which are summarized in Section S1.1
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of the Supplementary Materials, are useful to identify the time structures required for the
temperature series and to evaluate the spatial variability of the fitted terms. The results
motivate the introduction of spatially varying intercepts, trends, autoregression coefficients,
and variances for the spatial variability in the model.

3. THE MODEL

We propose a multi-level (i.e., hierarchical) full mean model for daily maximum tem-
peratures that operates over continuous space and two discrete temporal scales. It captures
temporal dependence through autoregression on days within year and on years. It captures
spatial dependence through spatial process modeling of intercepts, slope coefficients, vari-
ances, and autocorrelations. We detail this model below and then discuss model fitting,
prediction under the model, and model comparison.

3.1. MODEL CONSTRUCTION

Let Yt�(s) denote the daily maximum temperature for day �, � = 2, . . . , L of year t ,
t = 1, . . . , T at location s ∈ D, where D is our study region. Here, for all years, � = 1
corresponds to May 1 and L = 153 corresponds to September 30. It is convenient to
express the full model in a form which separates fixed effects from random effects and also
carefully separates space, years, and days for each type of effect. Specifically, we model
daily maximum temperature for day �, year t , and location s by

Yt�(s) = μt�(s; θ f ) + γt (s) + ρY (s)
(
Yt,�−1(s) − (μt,�−1(s; θ f ) + γt (s))

) + ε
(Y )
t� (s). (1)

Here, μt�(s; θ f ) denotes the fixed effects component and γt (s) the random effects com-
ponent. We specify

μt�(s; θ f ) = β0 + αt + β1sin(2π�/365) + β2cos(2π�/365) + β3elev(s) (2)

in which β0 is a global intercept, α is a global linear trend coefficient, the sin and cos terms
are introduced to provide an annual seasonal component, and elev(s) is the elevation at s.
We denote these fixed effect parameters by θ f = (β0, α, β1, β2, β3).

We specify
γt (s) = β0(s) + α(s)t + ψt + ηt (s). (3)

In (3), ψt follows an AR(1) specification, i.e., ψt = ρψψt−1 + λt , providing an autore-
gression in years for annual intercepts. This autoregression could help to capture factors
yielding correlation across years, such as the influence of variation in solar activity on the
earth’s surface temperature or the El Niño–Southern Oscillation. However, in Sect. 3.2, we
discover that ρψ is not significantly different from 0. We still need ψ’s in the model to
address the fact that some years are warmer or colder than others, but we do not need to
specify them autoregressively. We denote the variance for this component by σ 2

λ .
Continuing, β0(s) is a mean-zero GP with an exponential covariance function having

variance parameter σ 2
β0

and decay parameter φβ0 , and α(s) is a mean-zero GP with an
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exponential covariance function having variance parameter σ 2
α and decay parameter φα .

Thus, β0(s) provides local spatial adjustment to the intercept and α(s) provides local slope
adjustment to the linear trend. Due to the simplicity of linear time trends they are often
used in climate studies (IPCC 2013). Here, they provide an extremely flexible, locally
linear baseline specification. Further, we add local space–time varying random effects,
ηt (s), to provide adjustment to this baseline. We collect the random effects parameters into
θr = (ρψ, σ 2

λ , σ 2
β0

, φβ0 , σ
2
α , φα).

The entire specification is supplied distributionally in the form of a multi-level hierar-
chical model as

[Yt�(s) | Yt,�−1(s), �θ f , γt (s), ρY (s), σ 2
ε (s)]

[γt (s) | β0(s), α(s), ψt , σ
2
η ]

[β0(s)|σ 2
β0

, φβ0 ][α(s)|σ 2
α , φα][ψt |ψt−1, ρψ, σ 2

λ ]
[ZρY (s)|ZρY , σ 2

ρY
, φρY ][Zσ 2

ε
(s)|Zσ 2

ε
, σ 2

σ 2
ε
, φσ 2

ε
]

[�θ f ][�θr ][σ 2
η ][ZρY ][σ 2

ρY
][φρY ][Zσ 2

ε
][σ 2

σ 2
ε
][φσ 2

ε
].

(4)

As a result, we have introduced three pure error terms: λt
i id∼ N (0, σ 2

λ ) at yearly scale,

ηt (s)
i id∼ N (0, σ 2

η ) at sites within years, and ε
(Y )
t� (s)

ind.∼ N (0, σ 2
ε (s)) at sites for days

within years. Additionally, ρY (s) and σ 2
ε (s) are, respectively, a spatially varying autore-

gressive term and a spatially varying variance at location s, both of which are assumed
constant over days and years. We model log {(1 + ρY (s))/(1 − ρY (s))} = ZρY (s) ∼
G P(ZρY , C(·; σ 2

ρY
, φρY )), and log{σ 2

ε (s)} = Zσ 2
ε
(s) ∼ G P(Zσ 2

ε
, C(·; σ 2

σ 2
ε
, φσ 2

ε
)), again

with exponential covariance functions. Motivation for adopting spatially varying specifica-
tions for these terms arises from exploratory data analysis at the level of the individual sites.
That is, suppose we fit the model above but ignore spatial structure and treat the sites as
conditionally independent.We show in Section S1.1 of the SupplementaryMaterials that the
assumptions of constant autoregression coefficients and constant variances over the region
do not seem justified.

All of the components considered in the full model and their relationships are depicted
in the graphical model in Fig. 3. This diagram, perhaps, reveals the complexity of the full
model more readily than through Equations (1) to (4).

The reader might wonder if the GPs above are independent. We investigated dependence
between the intercept and slope GPs using the following coregionalization (Banerjee et al.
2014, Chapter9). Suppose v1(s) and v2(s) are independent GPs with zero mean and unit
variance whose exponential covariance functions have decay parameters φ1 and φ2, respec-
tively. In the full model, we insert β0(s) = a11v1(s) and α(s) = a21v1(s) + a22v2(s). Here,
we let a11 and a22 each have a half (or folded) Gaussian prior, while a21 has a regular
Gaussian prior. The parameter a21 captures the dependence between the two processes.
That is, the induced covariance between β0(s) and α(s) is a21a11. We care whether a21 is
significantly different from zero with little interest in exactly what the correlation is. Under
the model above, the posterior distribution of a21 was centered at zero with wide credible
intervals. So, this dependence was not included in the final model for which we present the
inference.



494 J. Castillo-Mateo et al.
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Figure 3. Graphical model for specification in Equations (1) to (4). Rectangular nodes are observed, circular
nodes are unobserved.

Returning to the full model, notice that we have separated the fixed effects according
to subscripts t , �, and s. As for γt (s), we can see that it has a spatially varying intercept, a
spatially varying coefficient for drift, and an AR(1) model for years. Also, γt (s) has both
space and time dependence and, in fact, we can readily calculate cov(γt (s), γt+h(s′)). Under
independence of the intercept and slope processes, the equilibrium covariance becomes

cov(γt (s), γt+h(s′)) = C(||s− s′||; σ 2
β0

, φβ0)+ t (t + h)C(||s− s′||; σ 2
α , φα)+ σ 2

λ

1 − ρ2
ψ

ρ
|h|
ψ .

(5)
Finally, special cases of interest include: β0(s) = 0 implies a constant intercept over

space, α(s) = 0 implies a constant linear drift over space, and ρψ = 0 implies no yearly
autoregression. These assumptions merely revise the form of γt (s). We might consider con-
ditioning on a longer history of maximum temperatures. We experimented with introducing
additional lags in the modeling, but we found no gain in predictive performance. We could
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also consider additional fixed effects, e.g., longitude, latitude or distance to coast, or even
adding interactions, e.g., t × elev(s). However, the exploratory analysis did not reveal a
relationship between daily temperatures and these fixed effects, so they were not introduced
in the full model.

3.2. MODEL FITTING

Model inference is implemented in a Bayesian framework, requiring prior distributions
for each of the model parameters. In general, diffuse and, when available, conjugate prior
distributions are chosen. Recall that the model adopts a conditional Gaussian distribution
for all Yt�(s)’s. Thus, it is appropriate to assign each of the coefficient parameters β0,
α, β1, β2, and β3, independent and diffuse Gaussian prior distributions with mean 0 and
standard deviation 100. The variance parameters, σ 2

λ and σ 2
η , are assigned independent

Inverse-Gamma(2, 1) prior distributions. In preliminary analyses, the autoregresive term
between years,ρψ , was assigned a non-informativeUniform(−1, 1) prior distribution. As its
posterior distribution was centered at zero with wide credible intervals, we set the parameter
at ρψ = 0. For identifiability, the random effect for the first year, ψ1, is fixed to zero.

Hyperpriors are assigned to the mean of both ZρY (s) and Zσ 2
ε
(s). That is, ZρY and

Zσ 2
ε
are given a Gaussian prior distribution with mean 0 and standard deviation 100 and

1, respectively. The variance parameter for each of the four spatial covariance functions,
σ 2

β0
, σ 2

α , σ
2
ρY
, and σ 2

σ 2
ε
, is assigned an independent Inverse-Gamma(2, 1) prior distribution.

Preliminary analyses with a discrete uniform prior distribution for each of the spatial decay
parameters indicated that these parameters almost always placed most mass on the smallest
decay value. Due to the fact that, with an exponential covariance function, the variance and
the decay parameter cannot be individually identified (Zhang 2004), and the decay parameter
is 3/range, we set φ ≡ φβ0 = φα = φρY = φσ 2

ε
= 3/dmax , where dmax is the maximum

distance between any pair of spatial locations.
MCMC is used to obtain samples from the joint posterior distribution. The sampling

algorithm is a Metropolis-within-Gibbs version. Since we only have 18 sites, we fit the
model without marginalization over the spatial random effects. Also, we introduce β̃0(s) =
β0 + β0(s) and α̃(s) = α + α(s) within γt (s) for the fitting to enable the benefits of
hierarchical centering in the model fitting (Gelfand et al. 1995). Details of the MCMC used
for the model fitting are provided in Section S2.1 of the Supplementary Materials. All the
covariates have been centered and scaled to have zero mean and standard deviation one to
improve the mixing behavior of the algorithm.

3.3. SPATIAL AND SPATIOTEMPORAL PREDICTION

Under the full model, prediction at location s0, day �′, and year t ′ is based on the posterior
predictive distribution of Yt ′�′(s0) arising from the full model. Here, s0 may correspond
to a fully observed location (held out for validation), a partially observed location (for
completion of a record), or a new location in D. Our goal is not forecasting, so we restrict
ourselves to the observed time period �′ = 2, . . . , L and t ′ = 1, . . . , T . Within the Bayesian
framework, the posterior predictive distribution for Yt ′�′(s0) is obtained by integrating over
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the parameters with respect to the joint posterior distribution. The formal expression for the
posterior predictive distribution for [Yt ′�′(s0) | Y], where Y is the observed data, is given
in Section S2.2 of the Supplementary Materials. Customarily, the distribution is obtained
empirically through posterior samples. That is, with MCMC algorithms, samples of the
posterior parameters are used to obtain posterior predictions of observations, the so-called
composition sampling (see Banerjee et al. 2014, Chapter 6; and Section S2.2 for the details).

3.4. MODEL EVALUATION

For model assessment, a LOOCV is carried out to compare the spatial predictive per-
formance of the models. The full model considered includes four spatial GPs. To validate
that model as well as the importance of the considered GPs, reduced models incorporating
0, 1, 2, or 3 GPs are fitted. Models are presented explicitly in Sect. 4.1 where we further
clarify that removing particular terms allows explicit interpretation of the resulting reduced
models.

Results from Sect. 4.1 favor the full model, and so results for this model are presented
subsequently. However, several of the reduced models yield essentially equivalent global
performance, though the fit at some sites is poorer. We attempt to clarify why this might
be expected but also show that each set of random effects reveals differences across sites,
further encouraging us to retain them in the inference presentation.

For each location in the holdout set, the entire time series of dailymaximum temperatures
is withheld during model fitting. Then, for location si , we conduct our model comparison
through the following metrics: (i) root-mean-square error (RMSE), (ii) mean absolute error
(MAE), (iii) continuous ranked probability score (CRPS; Gneiting and Raftery 2007), and
(iv) coverage (CVG). By definition,

RMSEi =
√√√√ 1

T (L − 1)

T∑

t=1

L∑

�=2

(
Ŷt�(si ) − Yt�(si )

)2
,

MAEi = 1

T (L − 1)

T∑

t=1

L∑

�=2

∣∣∣Ŷt�(si ) − Yt�(si )

∣∣∣ ,

CRPSi = 1

T (L − 1)

T∑

t=1

L∑

�=2⎛

⎝ 1

B

B∑

b=1

∣∣
∣Y (b)

t� (si ) − Yt�(si )

∣∣
∣ − 1

2B2

B∑

b1=1

B∑

b2=1

∣∣
∣Y (b1)

t� (si ) − Y (b2)
t� (si )

∣∣
∣

⎞

⎠ ,

CVGi = 1

T (L − 1)

T∑

t=1

L∑

�=2

I (Lt�(si ) ≤ Yt�(si ) ≤ Ut�(si )),

where Ŷt�(si ) = ∑B
b=1 Y (b)

t� (si )/B with Y (b)
t� (si ) the bth posterior predictive replicate of

Yt�(si ), from the left-out location si . Also, (Lt�(si ), Ut�(si )) is the 90% predictive interval
for Yt�(si ), i.e., the 5th and 95th percentiles of the MCMC samples Y (b)

t� (si ) (b = 1, . . . , B),



Spatial Modeling of Day- within- Year Temperature Series... 497

Table 1. Mean value across the 18 sites of the performance metrics for models with different spatial GPs

RMSE MAE CRPS CVG

M0 4.49 3.64 2.57 0.894
M1(β0(s)) 4.36 3.53 2.49 0.901
M1(α(s)) 4.49 3.64 2.57 0.894
M1(ρY (s)) 4.49 3.64 2.57 0.895
M1(σε(s)) 4.49 3.63 2.56 0.893
M2(β0(s), σε(s)) 4.36 3.53 2.48 0.901
M3(β0(s), α(s), σε(s)) 4.36 3.53 2.49 0.899
M3(α(s), ρY (s), σε(s)) 4.49 3.63 2.56 0.894
M4 4.36 3.53 2.48 0.900

and I (·) is the indicator function. The smaller the RMSE,MAE, and CRPS values, the better
the model performance. However, the target for CVG is proximity to 0.90.

4. RESULTS

We summarize, using LOOCV, the comparison of models with differing inclusion of the
foregoing spatial GPs. Each model was fitted to the daily maximum temperature series in
months MJJAS for the 60 years from 1956 to 2015. Then, we present the results for the
fitting of the full model over the study region.

In the MCMC fitting, we ran 10 chains, with 200,000 iterations for each chain, to obtain
samples from the joint posterior distribution. The first 100,000 samples were discarded
as burn-in, and the remaining 100,000 samples were thinned to retain 100 samples from
each chain for posterior inference. MCMC diagnostics for the full model are shown in
Section S2.3 of the Supplementary Materials.

4.1. VALIDATION AND MODEL COMPARISON

The full model considered includes four spatial GPs. To compare models and assess the
importance of the proposed GPs, simpler models incorporating 0, 1, 2, or 3 GPs are fitted.
Mp with p = 0, 1, . . . , 4 denotes a model including p spatial processes that are specified
in parentheses. For example, M1(β0(s)) is the model with a single spatial process for the
intercept; for simplicity, the full model is denoted M4.

Using the criteria in Sect. 3.4 with LOOCV for each of the 18 available locations, Table 1
summarizes the averages across sites for the four metrics. The strongest improvement in
predictive performance is obtained by adding a spatially varying intercept process, i.e.,
M1(β0(s)). The inclusion of the other GPs does not yield a clear improvement in perfor-
mance. This is not surprising, since the GP for intercepts explicitly rewards predicting the
mean and random realizations well in order to agree with the held-out values. However,
the usefulness of the other GPs with regard to effectively capturing autocorrelations and
variances at the observed sites will be seen in Sect. 4.2.
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Table 2. Posterior mean and 90% credible intervals for the parameters of M4

Mean Credible interval

β0 (intercept) 25.70 (24.30, 27.16)
α (trend) 0.0207 (−0.0074, 0.0490)
β1 (sine) 13.18 (13.00, 13.37)
β2 (cosine) 0.633 (0.558, 0.709)
β3 (elevation) −0.0069 (−0.0084,−0.0054)
ρY 0.691 (0.606, 0.762)
σε 2.963 (2.433, 3.515)
ση 0.230 (0.201, 0.264)
σλ 0.936 (0.799, 1.088)
σβ0 1.492 (1.154, 1.939)
σα 0.0283 (0.0211, 0.0376)
σρY 0.339 (0.263, 0.435)
σ
σ2
ε

0.404 (0.312, 0.522)

Table S4 in the Supplementary Materials provides details, by site, for the metrics in
Table 1. The locations with poorest fit for all of the models are Pamplona and Tornos, the
only ones with CRPS greater than 3. They also show large RMSE and MAE as well as poor
CVG. For the other locations, the CVG of all the models is closer to the nominal value 0.90.
In particular, M4 not only has the best CVG on average, but the variability of the CVGi ’s
with respect to the nominal 0.90 is the lowest of all the models.

4.2. RESULTS FOR THE FULL MODEL

Here, we show fitted and prediction results for the full model, M4, and demonstrate the
need to include the four GPs. The parameters α, β1, β2, β3, α(s), and σα have been rescaled
to interpret them in terms of the original measure of the covariates. Table 2 summarizes the
posterior mean and credible intervals of the model parameters, including standard deviation
of random effects.

The harmonic coefficients β1 and β2 indicate the strong seasonality in the temperature
series. The coefficient β3 supplies the gradient of temperature corresponding to elevation,
approximately−7◦C per 1,000 m. This value agrees with the exploratory analysis in Sect. 2,
and the average environmental lapse rate (Navarro-Serrano et al. 2018). The linear trend
coefficient, α, indicates that the average increase in temperature is 0.21◦C per decade. Peña-
Angulo et al. (2021) found a similar trend (0.27◦C per decade) in the summer maximum
temperature in Spain (1956–2015). The posterior mean of the autoregresive spatial process,
ρY , confirms the strong serial correlation of daily temperatures.

The other parameters are standard deviations linked to the spatiotemporal effects of the
model. The posterior mean of σε , the mean of the spatially varying standard deviations of
the pure error process ε

(Y )
t� (s), is close to 3◦C. This value doubles the posterior mean of

σβ0 which represents the spatial variability of the mean level β0(s) and triples the posterior
mean of σλ, linked to the variability of the yearly random effects ψt . The magnitude of the
remaining standard deviation parameters is smaller.
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Figure 4. Box plots of the posterior distributions of the annual random effects ψt in M4.

With ρψ = 0, the yearly random effects, ψt , are, a priori, distributed as N (0, σ 2
λ ). The

posteriors are summarized using box plots in Fig. 4. It is observed that the effects may add
or subtract in a given year up to roughly 2.5◦C, with a standard deviation close to 1◦C. These
yearly random effects are able to capture historical events like the extremely cold summer
of 1977 in Spain or the European heat wave in 2003 (Peña-Angulo et al. 2021).

The posterior distributions at the observed locations of the four spatial processes in M4,
β̃0(s), α̃(s), ρY (s), and σε(s), are summarized in Fig. 5 using box plots. The box plots of
the locations are sorted from the lowest to the highest elevation in the horizontal axis. They
confirm the need to consider the four GPs to represent the great climatic variability of the
region under study. To show the spatial behavior of the spatial processes over the entire
region, maps of their posterior means, obtained by a model-based Bayesian kriging, are
presented in Fig. 6. In Section S3.2 of the Supplementary Materials, the parameters of M4

are compared with the parameters of the local models described in Section S1.1, and both
show good agreement.

The top-left plots in Figs. 5 and 6 correspond to β̃0(s). The posterior distributions for
most of the locations show remarkable differences. In particular, β̃0(s) has a clear climatic
interpretation. The spatial adjustments provided by this GP help to improve the fit for the
two areas with a similar elevation around 1,000 m but different climates. These areas are
the southwest and the north of the region. The former has a warmer climate than the latter,
whose climate is influenced by the proximity of the Atlantic Ocean.

With regard to the spatially varying yearly linear trend, α̃(s), the top-right plots in Figs. 5
and 6 reveal clear spatial differences in the warming trend. The posterior distributions for
higher locations and for the Central Valley are shifted with respect to others. Most of the
area shows warming trends, except some areas in the northwest, e.g., Yesa or Ansó, whose
posterior distributions are centered at zero.

The spatial process for the autoregressive term, ρY (s), is clearly necessary in the model.
The bottom-left plot in Fig. 5 shows that the posterior distributions for the 18 locations
differ substantially. The posterior means of the ρY (s) are positive in all locations, and their



500 J. Castillo-Mateo et al.

Figure 5. Box plots of the posterior distributions of the spatial random effects, β̃0(s), α̃(s), ρY (s), σε(s), in M4.
Locations are sorted by elevation, from lowest to highest.

values seem to have an increasing relation with the elevation. According to the bottom-left
plot in Fig. 6, the posterior mean is also related to cierzo, a severe northwesterly cold wind
that gives rise to a renewal of the atmospheric condition with less warm air masses. This
wind reduces the persistence of the temperature and therefore the dependence with respect
to the previous day. In the areas affected by cierzo, the mean is around 0.65, lower than the
posterior mean of the mean of the process ρY (s), close to 0.7.

The need for the σε(s) process is also clear. The bottom-right plot in Fig. 5 reveals strong
differences among the posterior distributions of the standard deviations across locations. The
high variability of Pamplona, Yesa, and Tornos stands out. The bottom-right plot in Fig. 6
confirms the spatial variability of the standard deviation and shows that higher standard
deviations are observed in the western part of the region.

4.2.1. Prediction at Unobserved Locations

Now, we illustrate the use of the full model for prediction at three unobserved sites in the
region: Longares (530 m), Olite (390 m), and Guara (800 m). The new sites are marked in
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Figure 6. Maps of the posterior means of the four spatial processes included in M4, obtained by a model-based
Bayesian kriging, with resolution 100 × 100 (Color figure online).

red in Fig. 1 and represent areas with different environmental and climatic characteristics.
Longares is located in the southern half of the region in a rainfed agricultural area dedi-
cated to the production of wine. Vines are seriously affected by global warming since high
temperatures lead to both a decrease in production and a premature ripening of the grapes.
Olite is located in a rural area in the northwest where smaller increases in the temperature
have been observed; an incomplete series of observed values is available at this site. Guara
is an uninhabited area in the Natural Park Sierra and Cañones de Guara. The prediction of
the temperature evolution in this area is essential to better understand the changes that have
been observed in the ecosystem of the Natural Park.

We use the model to impute missing values in an observed series using the posterior
predictive distribution. Daily temperatures in Olite are available in the AEMET database
from 1968 to 2007, although with many missing observations. As an example, Fig. 7 shows
the plot of the observed series and the posterior predictivemeans with 90% credible intervals
for MJJAS days in 1968 and, as a summary, the plot of the observed and the posterior yearly
averages with 90% credible intervals. The 90% CVG in the observed data is 92.0%. The
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Figure 7. Left: Observed (black rough curve) and posterior predictive means (blue smooth curve) with associated
90% credible intervals of daily maximum temperatures in Olite (1968). Right: Observed yearly averages (black
curve) and associated posterior mean and 90% credible intervals (Color figure online).

agreement between the observed and the predicted data confirms that M4 can be used
effectively to impute missing values in Olite.

The posterior distribution of the four spatial processes β̃0(s), α̃(s), ρY (s), and σε(s) for
the three predicted locations are shown in Figure S5 of the Supplementary Materials. The
posterior distributions for β̃0(s) in Longares and Guara are similar despite having different
elevations. The posterior distributions of α̃(s) in Longares and Guara are very similar, while
the distribution of Olite is shifted with a posterior mean almost 0.3◦C per decade lower.
The fitted ρY (s)’s show the differences in the autocorrelation of temperature in the three
locations with posterior means varying from 0.65 to 0.72. The largest differences in the
posterior distributions appear in the σε(s).

M4 is also used to evaluate the change over time of the temperature in the three predicted
sites, using the posterior predictive distribution of the difference between the average in the
30-year periods 1956–1985 and 1986–2015 (see Figure S6 in Supplementary Materials).
Despite the difference in elevation, the posteriormean of the increment is similar in Longares
and Guara, around 1.4◦C, while in Olite it is smaller, 0.5◦C and its 90% credible interval
(−0.010, 1.028) contains zero. The posterior probability that the mean in 1986–2015 is
higher than in 1956–1985 is 0.94 in Olite and essentially 1 in Longares and Guara.

5. SUMMARY AND FUTUREWORK

We have proposed a very rich space–time mean model for daily maximum temperatures,
fitted over a 60-year period for a region in Spain. Our specification is continuous in space and
autoregressive in time. In time, autoregression was examined annually and also daily for the
summer season within each year. We find novel spatial structure including spatially varying
intercepts and trend coefficients as well as spatially varying autoregression coefficients and
variances.

The proposed modeling can be adapted to other regions, perhaps considering other geo-
graphical covariates such as latitude, longitude, or distance to the sea. Also, the modeling
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can omit spatial processes that are not necessary, e.g., avoiding ρY (s) in a more homoge-
neous region with a lower variation in elevation. The modeling might also be adapted to
other response variables in spatiotemporal problems, such as daily minimum temperature
and other environmental variables including daily evapotranspiration or hourly temperature
in the sea. The flexible autoregression terms can express behavior in series where serial
correlation is an important source of variation.

A limitation of the present analysis is that we have only 18 monitoring stations so that
learning about the spatial surfaces in our modeling is less than we would want. Despite
this small number of sites, the model has been able to capture the climate variability of
the region under study. The spatial random effects identify areas with a different mean
temperature level, but also areas where the observed warming over time shows a different
trend, areaswhere temperature ismore persistent (i.e.,with a stronger daily serial correlation)
or with different variability. The capacity of the fitted model to impute temperature over
the entire region allows us to obtain reliable predictions and credible intervals for daily
temperature series at unobserved sites. This can be valuable for economical, agricultural, or
environmental reasons.

Future work will consider different regions providing more available spatial locations
n. However, the O(n3) computational complexity of inverting a n × n covariance matrix
can be prohibitive for implementing the above model for data with large n. Reduced rank
approximations to GPs may be used to address this computation bottleneck, e.g., Gaussian
predictive process (Banerjee et al. 2008) or nearest-neighbor GP (Datta et al. 2016). As
a different challenge, one may wonder whether the low trend values (blue region) in the
top-right plot in Fig. 6 are actually meaningful. Future work could implement a version
of a spatially dependent multiple testing analysis (Risser et al. 2019) given the posterior
draws of α̃(s). A different future direction will move away from mean modeling to quantile
modeling in order to investigate extremes of temperature, both hot and cold. This will lead
to novel development for spatiotemporal quantile regression.
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Supplementary Materials for “Spatial modeling of
day-within-year temperature time series: an

examination of daily maximum temperatures in Aragón,
Spain”

S1 Data and exploratory analysis

Table S1 shows the elevation in meters for each site. It also summarizes the differences in
mean value and standard deviation of the daily maximum temperature in degrees Celsius
for each site between both 30-year periods, 1956–1985 and 1986–2015.

S1.1 The local model

In order to motivate our spatial modeling decisions in Section 3 of the Main Manuscript,
in this section we fit independent local models for each location following the steps in that
section. However, here we do not center or scale the covariates. The local model for day `,
year t at any location simplifies the full model as

Yt` = µt` + ψt + ρY (Yt,`−1 − (µt,`−1 + ψt)) + ε
(Y )
t` ,

where the fixed effects are

µt` = β0 + αt+ β1 sin(2π`/365) + β2 cos(2π`/365).

We consider ψt
iid∼ N(0, σ2

λ) and ε
(Y )
t`

iid∼ N(0, σ2
ε ). The interpretation of the model terms is

equivalent to that given for the full model in the Main Manuscript, so we do not repeat it
here.

The parameters are shown in Figure S1 and the seasonal pattern is summarized in S2.
The first figure shows the posterior mean and 90% credible interval for β0, α, ρY , σε, for the
independently fitted models at each location. Significant differences between locations are
observed for the four parameters. The parameter σλ did not show a remarkable difference
between most locations (not shown).

It is clear that β0 is related with elevation, i.e., the temperature is inversely proportional
to the elevation of each location. However, this relationship shows considerable noise due to
the specific climatic conditions in the southern region, which has stations with an elevation
close to 1,000 m with a significantly warmer temperature than stations in the north region
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Table S1: Elevation, and mean value and standard deviation of the daily maximum temper-
ature for each site in the months MJJAS for the 30-year periods, 1956–1985 and 1986–2015.
Difference between means (∆ mean) and quotient of standard deviations (Q sd) of each
period.

1956–1985 1986–2015
Location Elevation Mean Sd Mean Sd ∆ mean Q sd

Pamplona 442 24.2 5.9 25.0 5.9 0.8 1.0
Buñuel 242 27.5 5.1 28.5 5.4 1.0 1.1
El Bayo 360 27.6 5.4 28.0 5.3 0.4 1.0
Morella 998 22.9 5.2 24.0 5.1 1.1 1.0
Huesca 546 26.3 5.1 28.0 5.2 1.7 1.0
Tornos 1,018 26.1 6.3 27.3 6.3 1.2 1.0
Santa Eulalia 983 25.8 5.7 26.6 5.8 0.9 1.0
Calatayud 600 27.1 5.8 27.6 5.7 0.5 1.0
Panticosa 1,645 17.1 5.4 18.7 5.2 1.6 1.0
La Puebla de Hı́jar 245 28.7 5.2 29.8 5.1 1.1 1.0
Ansó 860 23.8 5.6 23.6 5.6 -0.2 1.0
Daroca 779 25.6 5.7 27.4 5.7 1.8 1.0
Zaragoza 249 27.6 5.2 29.3 5.2 1.7 1.0
La Sotonera 413 27.3 5.4 28.1 5.2 0.8 1.0
Pallaruelo 356 28.2 5.6 29.0 5.1 0.8 0.9
Cueva Foradada 580 25.5 4.7 26.8 5.0 1.3 1.1
Sallent 1,285 20.9 5.7 21.8 5.5 0.9 1.0
Yesa 515 26.3 6.1 26.5 5.7 0.2 0.9

with a similar elevation. The spatial variability of α suggests that there is a different warming
between locations, that does not seem to be related to elevation. The ρY parameter and the
elevation are clearly related, but the variability around the linear relationship cannot be cap-
tured by a fixed effect. Finally, the posterior mean of σε is quite different between locations
with narrow credible intervals, showing a spatial variability of this parameter throughout
the region without any relation to elevation.

The left plot in Figure S2 shows the empirical seasonal pattern at each location. In
particular, the mean value over the years is drawn for each day of MJJAS and each location.
The right plot shows the posterior mean of β1 sin(2π`/365)+β2 cos(2π`/365) for ` = 1, . . . , L.
In both plots the patterns have been centered to compare them between locations. In
conclusion, the climate of Aragón shows a common and unimodal seasonal pattern in MJJAS.
In particular, the seasonal component can be characterized by a single harmonic for the entire
region.

In summary, this local modeling is useful to find spatial differences and similarities be-
tween the full model parameters for different points in space. Furthermore, the inclusion
of spatial random effects in the model associated with the intercept, the linear trend, the
autoregression coefficient and the variance is justified by these results.
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Figure S1: Posterior mean and 90% credible interval of the parameters β0, α, ρY , σε in the
local models. Summaries are sorted by the elevation of the locations.

150 200 250

−
10

−
5

0
5

Day

150 200 250

−
10

−
5

0
5

Day

Figure S2: Left: Centered empirical mean value of each series across each day of MJJAS.
Rigth: Posterior mean of the centered seasonal pattern in the local models.
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S2 Sampling methods

S2.1 Gibbs sampling algorithm

The Bayesian spatio-temporal model can be represented in a hierarchical structure, following
Gelfand (2012), we specify distributions for data, process and parameters in three stages,

First stage:
[
data | process, parameters

]

Second stage:
[
process | parameters

]

Third stage:
[
(hyper)parameters

]
.

Although the hierarchical model can be flattened by suitable marginalization, the advantage
of the hierarchical structure lies in convenience of specification, ease of interpretation and
facilitation of model fitting. In particular, since the model is Gaussian and linear, the Gibbs
sampler is expected to be well behaved and convergence to be fairly quick before 50,000
iterations. The hierarchical form leads to the following joint distribution for data, processes
and parameters,

n∏

i=1

T∏

t=1

L∏

`=2

[
Yt`(si) | Yt,`−1(si), β1, β2, β3, γt(si), ρY (si), σ

2
ε (si)

]

n∏

i=1

T∏

t=1

[
γt(si) | β̃0(si), α̃(si), ψt, σ

2
η

] T∏

t=2

[ψt | ψt−1, ρψ, σ2
λ]

[
{β̃0(si)} | β0, σ2

β0
, φβ0

][
{α̃(si)} | α, σ2

α, φα
][
{ZρY (si)} | ZρY , σ2

ρY
, φρY

][
{Zσ2

ε
(si)} | Zσ2

ε
, σ2

σ2
ε
, φσ2

ε

]
[
β0
][
α
][
β1
][
β2
][
β3
][
ZρY

][
Zσ2

ε

][
ρψ
][
σ2
λ

][
σ2
η

][
σ2
β0

][
σ2
α

][
σ2
ρY

][
σ2
σ2
ε

][
φβ0

][
φα
][
φρY
][
φσ2

ε

]
,

(S1)
provided one starts any year t with the observed Yt1(s).

Defining notation that will be used to shorten the expressions, we denote the elements

of the correlation matrices by
(
r
(·)
jk

)−1
= R(φ·) = (exp{−φ·||sj − sk||}) where · is any of

β0, α, ρY , σ
2
ε . We denote Xt`i = Yt`(si)−(µt`(si;θf )+γt(si)) and X

(−·)
t`i = Yt`(si)−(µt`(si;θf )+

γt(si))
(−·), where here · is any of β1, β2, β3, γt(si) and represents that µt`(si;θf ) + γt(si) does

not have that component. Finally, we shorten sin` = sin(2π`/365) and cos` = cos(2π`/365).
And a and b denote chosen hyperpriors in each case.

The Gibbs sampler algorithm for Equation S1 is initialized giving initial values to all the
parameters. Then, updating from iteration b to b+ 1 consists of drawing a sample from the
following full conditional distributions:

• The full conditional distributions of β0, α, β1, β2, β3, ZρY , Zσ2
ε

are all Gaussian, in par-
ticular

[β0 | · · · ] ∝ N

(
β0 |

∑
j,k r

(β0)
jk β̃0(sk)

∑
j,k r

(β0)
jk

,
σ2
β0∑

j,k r
(β0)
jk

)
×N(β0 | aβ0 , b

2
β0

)

[α | · · · ] ∝ N

(
α |
∑

j,k r
(α)
jk α̃(sk)

∑
j,k r

(α)
jk

,
σ2
α∑

j,k r
(α)
jk

)
×N(α | aα, b2α)
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[β1 | · · · ] ∝
n∏

i=1

N

(
β1 |

∑T
t=1

∑L
`=2(sin`−ρY (si) sin`−1)(X

(−β1)
t`i − ρY (si)X

(−β1)
t,`−1,i)

T
∑L

`=2(sin`−ρY (si) sin`−1)2
,

σ2
ε (si)

T
∑L

`=2(sin`−ρY (si) sin`−1)2

)
×N(β1 | aβ1 , b

2
β1

)

[β2 | · · · ] ∝
n∏

i=1

N

(
β2 |

∑T
t=1

∑L
`=2(cos`−ρY (si) cos`−1)(X

(−β2)
t`i − ρY (si)X

(−β2)
t,`−1,i)

T
∑L

`=2(cos`−ρY (si) cos`−1)2
,

σ2
ε (si)

T
∑L

`=2(cos`−ρY (si) cos`−1)2

)
×N(β2 | aβ2 , b

2
β2

)

[β3 | · · · ] ∝
n∏

i=1

N

(
β3 |

∑T
t=1

∑L
`=2(X

(−β3)
t`i − ρY (si)X

(−β3)
t,`−1,i)

T (L− 1)(1− ρY (si))elev(si)
,

σ2
ε (si)

T (L− 1)(1− ρY (si))2elev(si)2

)
×N(β3 | aβ3 , b

2
β3

)

[ZρY | · · · ] ∝ N

(
ZρY |

∑
j,k r

(ρY )
jk ZρY (sk)

∑
j,k r

(ρY )
jk

,
σ2
ρY∑

j,k r
(ρY )
jk

)
×N(ZρY | aρY , b2ρY )

[Zσ2
ε
| · · · ] ∝ N

(
Zσ2

ε
|
∑

j,k r
(σ2
ε )

jk Zσ2
ε
(sk)

∑
j,k r

(σ2
ε )

jk

,
σ2
σ2
ε∑

j,k r
(σ2
ε )

jk

)
×N(Zσ2

ε
| aσ2

ε
, b2σ2

ε
)

• The full conditional distribution of ρψ is a truncated Gaussian distribution within the
interval (a, b).

[ρψ | · · · ] ∼ TN

(∑T
t=2 ψtψt−1∑T
t=2 ψ

2
t−1

,
σ2
λ∑T

t=2 ψ
2
t−1

, (aρψ , bρψ)

)

• The full conditional distributions for σ2
λ, σ

2
η, σ

2
β0
, σ2

α, σ
2
ρY
, σ2

σ2
ε

are all inverse gamma as
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follows,

[1/σ2
λ | · · · ] ∼ G

(
T − 1

2
+ aσλ ,

1

2

T∑

t=2

(ψt − ρψψt−1)2 + bσλ

)

[1/σ2
η | · · · ] ∼ G

(
nT

2
+ aση ,

1

2

n∑

i=1

T∑

t=1

(
γt(si)− (β̃0(si) + α̃(si)t+ ψt)

)2
+ bση

)

[1/σ2
β0
| · · · ] ∼ G

(
n

2
+ aσβ0

,
1

2
({β̃0(si)} − β01)>R(φβ0)−1({β̃0(si)} − β01) + bσβ0

)

[1/σ2
α | · · · ] ∼ G

(
n

2
+ aσα ,

1

2
({α̃(si)} − α1)>R(φα)−1({α̃(si)} − α1) + bσα

)

[1/σ2
ρY
| · · · ] ∼ G

(
n

2
+ aρY ,

1

2
({ZρY (si)} − ZρY 1)>R(φρY )−1({ZρY (si)} − ZρY 1) + bρY

)

[1/σ2
σ2
ε
| · · · ] ∼ G

(
n

2
+ aσ2

ε
,
1

2
({Zσ2

ε
(si)} − Zσ2

ε
1)>R(φσ2

ε
)−1({Zσ2

ε
(si)} − Zσ2

ε
1) + bσ2

ε

)

• For φβ0 , φα, φρY , φσ2
ε

the simplest solution is to fix the parameter at some reasonable
value. An alternative is to discretize the support to say m between 10 to 20 values,
obtain and store the collection of n× n matrices, i.e., inverses and determinants, and
then make discrete updates from the following full conditionals.

[φβ0 | · · · ] ∝ |R(φβ0)|−1/2 exp

{
−1

2σ2
β0

({β̃0(si)} − β01)>R(φβ0)−1({β̃0(si)} − β01)

}

× U
{
a
(1)
φβ0
, . . . , a

(m)
φβ0

}

[φα | · · · ] ∝ |R(φα)|−1/2 exp

{ −1

2σ2
α

({α̃(si)} − α1)>R(φα)−1({α̃(si)} − α1)

}

× U
{
a
(1)
φα
, . . . , a

(m)
φα

}

[φρY | · · · ] ∝ |R(φρY )|−1/2 exp

{ −1

2σ2
ρY

({ZρY (si)} − ZρY 1)>R(φρY )−1({ZρY (si)} − ZρY 1)

}

× U
{
a
(1)
φρY

, . . . , a
(m)
φρY

}

[φσ2
ε
| · · · ] ∝ |R(φσ2

ε
)|−1/2 exp

{
−1

2σ2
σ2
ε

({Zσ2
ε
(si)} − Zσ2

ε
1)>R(φσ2

ε
)−1({Zσ2

ε
(si)} − Zσ2

ε
1)

}

× U
{
a
(1)
φ
σ2
ε

, . . . , a
(m)
φ
σ2
ε

}

• The full conditionals for the β̃0(si)’s and α̃(si)’s are Gaussian, coming from the joint
multivariate Gaussian distributions of β̃0(s) and α̃(s) respectively, and the part of the
random effects. Note that we consider the hierarchical centering of these random effects
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to improve convergence behavior. For i = 1, . . . , n, the full conditionals are

[β̃0(si) | · · · ] ∝ N

(
β̃0(si) |

1

T

T∑

t=1

(γt(si)− α̃(si)t− ψt),
σ2
η

T

)

×N
(
β̃0(si) | β0 +

∑
k 6=i r

(β0)
ik (β0 − β̃0(sk))
r
(β0)
ii

,
σ2
β0

r
(β0)
ii

)

[α̃(si) | · · · ] ∝ N

(
α̃(si) |

∑T
t=1 t(γt(si)− β̃0(si)− ψt)∑T

t=1 t
2

,
σ2
η∑T

t=1 t
2

)

×N
(
α̃(si) | α +

∑
k 6=i r

(α)
ik (α− α̃(sk))

r
(α)
ii

,
σ2
α

r
(α)
ii

)

• The full conditional distributions of the ZρY (si)’s and Zσ2
ε
(si)’s are non-standard. To

draw samples from them, we suggest a random walk Metropolis-Hastings algorithm
with Gaussian distribution proposals with the mean at the current parameter value.
According to Gelman et al. (1996), the variance of the proposals should be tuned until
the acceptance rate is between 15% and 40%. For i = 1, . . . , n, the full conditionals
are proportional to

[ZρY (si) | · · · ] ∝ exp

{
−1

2σ2
ε (si)

T∑

t=1

L∑

`=2

(
Xt`i −

eZρY (si) − 1

eZρY (si) + 1
Xt,`−1,i

)2
}

×N
(
ZρY (si) | ZρY +

∑
k 6=i r

(ρY )
ik (ZρY − ZρY (sk))

r
(ρY )
ii

,
σ2
ρY

r
(ρY )
ii

)

[Zσ2
ε
(si) | · · · ] ∝ exp{Zσ2

ε
(si)}−T (L−1)/2 exp

{
−1

2 exp{Zσ2
ε
(si)}

T∑

t=1

L∑

`=2

(Xt`i − ρY (si)Xt,`−1,i)
2

}

×N
(
Zσ2

ε
(si) | Zσ2

ε
+

∑
k 6=i r

(σ2
ε )

ik (Zσ2
ε
− Zσ2

ε
(sk))

r
(σ2
ε )

ii

,
σ2
σ2
ε

r
(σ2
ε )

ii

)

• We obtain the Gaussian full conditionals for the ψ’s as follows. For identifiability, ψ1

is fixed to zero. Then, two cases are considered: (i) when t = 2, . . . , T − 1, and (ii)
when t = T . Then, respectively

[ψt | ψt−1, ψt+1, · · · ] ∝ N

(
ψt |

1

n

n∑

i=1

(γt(si)− β̃0(si)− α̃(si)t),
σ2
η

n

)

×N
(
ψt |

ρψ(ψt−1 + ψt+1)

1 + ρ2ψ
,

σ2
λ

1 + ρ2ψ

)

[ψT | ψT−1, · · · ] ∝ N

(
ψT |

1

n

n∑

i=1

(γT (si)− β̃0(si)− α̃(si)T ),
σ2
η

n

)
×N

(
ψT | ρψψT−1, σ2

λ

)
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• Finally, the full conditionals for the γt(si)’s are all Gaussian. For i = 1, . . . , n and
t = 1, . . . , T ,

[γt(si) | · · · ] ∝ N

(
γt(si) |

∑L
`=2(X

(−γt(si))
t`i − ρY (si)X

(−γt(si))
t,`−1,i )

(L− 1)(1− ρY (si))
,

σ2
ε (si)

(L− 1)(1− ρY (si))2

)

×N
(
γt(si) | β̃0(si) + α̃(si)t+ ψt, σ

2
η

)

Note in the expressions above that the product of Gaussian densities is proportional to
a Gaussian density with parameters as follows

n∏

i=1

N
(
x | µi, σ2

i

)
∝ N

(
x |

n∑

i=1

µi
σ2
i

/

n∑

i=1

1

σ2
i

, 1/
n∑

i=1

1

σ2
i

)
.

S2.2 Composition sampling algorithm and Bayesian kriging

Following the notation of Section 3.3 of the Main Manuscript. Once samples of the join
posterior distribution have been obtained using the Gibbs sampler algorithm in Section S2.1,
one may want to make spatial or space-time predictions. Formally, the posterior predictive
distribution for Yt′`′(s0) is

[
Yt′`′(s0) | Y

]

=

∫ `′∏

`=2

[
Yt′`(s0) | Yt′,`−1(s0),θf , γt′(s0), ρY (s0), σ

2
ε (s0)

]

×
[
γt′(s0) | β̃0(s0), α̃(s0), ψt′ , σ

2
η

]

×
[
β̃0(s0) | β0, σ2

β0
, φβ0 , {β̃0(si)}

]
×
[
α̃(s0) | α, σ2

α, φα, {α̃(si)}
]

×
[
ZρY (s0) | ZρY , σ2

ρY
, φρY , {ZρY (si)}

]
×
[
Zσ2

ε
(s0) | Zσ2

ε
, σ2

σ2
ε
, φσ2

ε
, {Zσ2

ε
(si)}

]

×
[
θ, {β̃0(si)}, {α̃(si)}, {ZρY (si)}, {Zσ2

ε
(si)}, ψt′ | Y

]

×
`′−1∏

`=2

dYt′`(s0)dγt′(s0)dβ̃0(s0)dα̃(s0)dZρY (s0)dZσ2
ε
(s0)dθ

d{β̃0(si)}d{α̃(si)}d{ZρY (si)}d{Zσ2
ε
(si)}dψt′ ,

where Y denotes the observed data and θ = (θf ,θr, ZρY , Zσ2
ε
, σ2

η, σ
2
ρY
, σ2

σ2
ε
, φρY , φσ2

ε
) all the

parameters. Note that prediction at a new location would require additional modeling for
Yt′1(s0), although no additional complications arise. The simplest solution is to obtain these
values by ordinary kriging.

The samples from the Gibbs sampler are used to obtain samples from the posterior
predictive distribution. First, a random sample is drawn from the posterior distribution
using the details in the Gibbs sampler algorithm described in Section S2.1. Then, from each
GP, say W (s), Bayesian kriging is used to draw a sample from the conditional distribution
of W (s0) given {W (si)}, details are given in the paragraph below. A sample of γt′(s0) is
drawn from [

γt′(s0) | · · ·
]
∼ N

(
β̃0(s0) + α̃(s0)t

′ + ψt′ , σ
2
η

)
.
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Finally, a sample Yt′`(s0), ` = 2, . . . , `′, is drawn sequentially from the top level model

[
Yt′`(s0) | · · ·

]
∼ N

(
µt′`(s0;θf ) + γt′(s0) + ρY (s0)(Yt′,`−1(s0)− (µt′,`−1(s0;θf ) + γt′(s0))), σ

2
ε (s0)

)
.

The details of the Bayesian kriging are as follows. In particular, we are interested in
predicting the state of a GP, W (s), at a new location s0. The joint distribution for s ∈
{s0, s1, . . . , sn} is a multivariate Gaussian distribution arising from the GP for W (s), i.e.,

(
W (s0)
{W (si)}

)
∼ N

((
µ0

µ

)
,

(
Σ00 {Σi0}>
{Σi0} Σ

))
.

Therefore, the conditional distribution of the process at s0 is

[
W (s0) | {W (si)} = w, · · ·

]
∼ N

(
µ0 + {Σi0}>Σ−1(w− µ),Σ00 − {Σi0}>Σ−1{Σi0}

)
,

from which we would draw a sample. In particular, to obtain a sample for ρY (s0) or σ2
ε (s0),

it is enough to apply to the samples of their associated GPs the inverse function of the
transformation applied to them.

S2.3 MCMC convergence diagnostics

In the MCMC fitting we run 10 chains and 200,000 iterations on each chain to obtain samples
from the joint posterior distribution. The first 100,000 samples were discarded as burn-in
and the remaining 100,000 samples were thinned (i) to retain 1,000 samples from each chain
for computing the estimated potential scale reduction factor (R̂; Gelman and Rubin, 1992),
and (ii) to retain 100 samples from each chain for computing the effective sample size (ESS;
Gong and Flegal, 2016) out of 1,000 samples and showing trace plots. The samples from (ii)
were used for posterior inference.

We check the convergence and mixing of the MCMC algorithm for the full model based
on diagnostics and trace plots for all the parameters, although we do not show the individual
results for ψ’s and γ’s (a total of T × (n+ 1) parameters). Tables S2 and S3 show the ESS
and the R̂ for the main parameters and the GPs at the observed locations, respectively. The
best ESS should be close to the actual sample size of 1,000, although an ESS of around 200
is considered sufficient. On the other hand, if the 10 chains have converged to the target
posterior distribution, then R̂ should be close to 1. In particular, if R̂ < 1.2 for all model
parameters, one can be confident that convergence has been reached. The ESS is around
1,000 in most parameters, but it is particularly small for β3 and β0(si)’s due to the high
correlation between them, although their ESS is sufficient. The R̂ is below 1.2 for all the
parameters in the tables, ψ’s and γ’s (not shown), which suggests the adequate convergence
of the chains. Figure S3 shows the trace plots of all 1,000 samples of the parameters.
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Table S2: Convergence diagnostics for the main parameters of the full model.

ESS R̂

β0 1,000 1.01
α 1,000 1.00
β1 1,000 1.00
β2 1,000 1.00
β3 226 1.12
ρY 1,000 1.00
σ2
ε 1,000 1.00
σ2
η 1,000 1.00
σ2
λ 1,000 1.00
σ2
β0

1,000 1.00
σ2
α 1,000 1.00
σ2
ρY

1,000 1.00
σ2
σ2
ε

1,049 1.00

Table S3: Convergence diagnostics for the GPs at the observed locations of the full model.

β̃0(s) α̃(s) ρY (s) σ2
Y (s)

Location ESS R̂ ESS R̂ ESS R̂ ESS R̂

Pamplona 247 1.07 1,000 1.00 1,000 1.00 1,000 1.00
Buñuel 194 1.11 1,000 1.00 1,000 1.00 1,000 1.00
El Bayo 215 1.09 1,000 1.00 1,000 1.00 1,000 1.00
Morella 190 1.10 1,000 1.00 1,000 1.00 1,000 1.00
Huesca 429 1.04 1,000 1.00 1,000 1.00 1,000 1.00
Tornos 219 1.10 1,000 1.00 1,000 1.00 1,000 1.00
Santa Eulalia 213 1.10 1,000 1.00 1,000 1.00 1,000 1.00
Calatayud 745 1.02 1,000 1.00 1,000 1.00 1,120 1.00
Panticosa 232 1.12 1,000 1.00 1,000 1.00 1,000 1.00
La Puebla de Hı́jar 220 1.10 1,000 1.00 1,076 1.00 1,000 1.00
Ansó 279 1.07 1,000 1.00 1,000 1.00 1,000 1.00
Daroca 627 1.04 915 1.00 1,000 1.00 1,000 1.00
Zaragoza 217 1.10 1,009 1.00 1,000 1.00 914 1.00
La Sotonera 247 1.08 1,000 1.00 1,000 1.00 1,000 1.00
Pallaruelo 218 1.09 1,000 1.00 1,000 1.00 1,000 1.00
Cueva Foradada 688 1.02 1,000 1.00 1,000 1.00 1,000 1.00
Sallent 181 1.12 1,000 1.00 1,000 1.00 1,000 1.00
Yesa 334 1.05 1,000 1.00 1,000 1.00 981 1.00
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(a) Main parameters (not rescaled)

Figure S3: Trace plots for the parameters (1 of 5).
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(b) β̃0(s)

Figure S3: Trace plots for the parameters (2 of 5).
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(c) α̃(s) (not rescaled)

Figure S3: Trace plots for the parameters (3 of 5).
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(d) ρY (s)

Figure S3: Trace plots for the parameters (4 of 5).
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(e) σ2
ε (s)

Figure S3: Trace plots for the parameters (5 of 5).
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S3 Results

S3.1 Leave-one-out cross-validation

The performance of the models is compared using the approach in Section 3.4 of the Main
Manuscript based on LOOCV for the 18 locations available. Table S4 summarizes for each
site the four considered metrics.

S3.2 Comparison between local models and the full model

Figure S4 shows a comparison between the posterior distributions at the observed locations
of the spatial processes α̃(s), ρY (s), and σε(s), in M4 (black), and the posterior distribution of
the corresponding parameters in the local models shown in Section S1.1 (red). The results
for M4 show a good agreement with results of the local models. This agreement shows
that M4 has no systematic bias in the estimation of the parameters related to time trends,
autocorrelations, or variances.

Note that β0 expresses the baseline in local models, but M4 also includes the term asso-
ciated with elevation in the fixed effects, then the comparison of the posterior distribution
of the intercept in local models and β̃0(s) is not of interest.

S3.3 Prediction at unobserved locations

Figure S5 shows for each unobserved location (Longares, Olite and Guara) the posterior
densities of the four spatial processes in M4. Figure S6 shows the posterior difference between
average temperatures in both 30-year periods, 1956–1985 and 1986–2015.
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Table S4: Value of the performance metrics for models with different spatial GPs for each
location.

Model Pamplona Buñuel El Bayo
RMSE MAE CRPS CVG RMSE MAE CRPS CVG RMSE MAE CRPS CVG

M0 5.97 4.89 3.51 0.74 4.25 3.42 2.41 0.92 4.13 3.34 2.35 0.93
M1(β0(s)) 5.74 4.72 3.36 0.77 4.21 3.40 2.39 0.92 4.16 3.39 2.37 0.92
M1(α(s)) 5.97 4.89 3.51 0.74 4.25 3.43 2.41 0.92 4.12 3.33 2.34 0.93
M1(ρY (s)) 5.96 4.88 3.51 0.74 4.24 3.42 2.41 0.92 4.13 3.34 2.34 0.92
M1(σε(s)) 5.97 4.89 3.48 0.77 4.26 3.43 2.42 0.92 4.13 3.34 2.35 0.94
M2(β0(s), σε(s)) 5.77 4.74 3.35 0.79 4.21 3.40 2.39 0.92 4.17 3.39 2.37 0.94
M3(β0(s), α(s), σε(s)) 5.76 4.73 3.35 0.80 4.20 3.40 2.39 0.92 4.15 3.39 2.37 0.94
M3(α(s), ρY (s), σε(s)) 5.95 4.87 3.48 0.77 4.25 3.43 2.41 0.91 4.12 3.33 2.34 0.93
M4 5.75 4.73 3.36 0.79 4.20 3.40 2.38 0.91 4.15 3.39 2.36 0.93

Model Morella Huesca Tornos
RMSE MAE CRPS CVG RMSE MAE CRPS CVG RMSE MAE CRPS CVG

M0 3.89 3.05 2.20 0.94 3.75 3.01 2.14 0.95 5.92 4.95 3.50 0.75
M1(β0(s)) 3.89 3.06 2.21 0.95 3.75 3.00 2.14 0.95 5.23 4.34 3.04 0.81
M1(α(s)) 3.88 3.05 2.20 0.94 3.76 3.02 2.15 0.95 5.92 4.95 3.50 0.75
M1(ρY (s)) 3.89 3.05 2.20 0.94 3.76 3.02 2.15 0.96 5.92 4.96 3.50 0.76
M1(σε(s)) 3.88 3.05 2.19 0.92 3.75 3.01 2.13 0.94 5.92 4.95 3.49 0.77
M2(β0(s), σε(s)) 3.87 3.05 2.19 0.94 3.75 3.01 2.13 0.93 5.22 4.33 3.03 0.83
M3(β0(s), α(s), σε(s)) 3.91 3.07 2.21 0.93 3.75 3.01 2.13 0.93 5.23 4.34 3.03 0.83
M3(α(s), ρY (s), σε(s)) 3.88 3.05 2.19 0.92 3.76 3.02 2.13 0.94 5.92 4.96 3.49 0.78
M4 3.90 3.06 2.20 0.94 3.75 3.01 2.13 0.93 5.23 4.34 3.03 0.83

Model Santa Eulalia Calatayud Panticosa
RMSE MAE CRPS CVG RMSE MAE CRPS CVG RMSE MAE CRPS CVG

M0 4.93 4.11 2.84 0.87 4.53 3.71 2.59 0.90 5.15 4.05 2.91 0.83
M1(β0(s)) 4.38 3.56 2.49 0.91 4.42 3.60 2.52 0.90 4.44 3.49 2.50 0.88
M1(α(s)) 4.94 4.11 2.85 0.87 4.55 3.72 2.59 0.90 5.15 4.05 2.91 0.83
M1(ρY (s)) 4.93 4.10 2.84 0.87 4.54 3.71 2.59 0.89 5.20 4.09 2.94 0.85
M1(σε(s)) 4.96 4.13 2.85 0.88 4.53 3.71 2.58 0.91 5.06 3.97 2.86 0.83
M2(β0(s), σε(s)) 4.38 3.56 2.49 0.92 4.43 3.60 2.52 0.92 4.44 3.49 2.50 0.88
M3(β0(s), α(s), σε(s)) 4.38 3.57 2.49 0.92 4.45 3.61 2.53 0.91 4.48 3.51 2.52 0.87
M3(α(s), ρY (s), σε(s)) 4.96 4.13 2.85 0.89 4.55 3.72 2.60 0.91 5.09 4.00 2.88 0.84
M4 4.38 3.57 2.49 0.92 4.45 3.62 2.53 0.91 4.46 3.50 2.51 0.89

Model La Puebla de Hı́jar Ansó Daroca
RMSE MAE CRPS CVG RMSE MAE CRPS CVG RMSE MAE CRPS CVG

M0 4.01 3.24 2.28 0.94 4.56 3.63 2.57 0.89 4.61 3.83 2.65 0.90
M1(β0(s)) 4.02 3.24 2.28 0.93 4.44 3.58 2.52 0.90 4.50 3.64 2.56 0.88
M1(α(s)) 4.01 3.23 2.28 0.94 4.55 3.63 2.57 0.89 4.61 3.82 2.65 0.89
M1(ρY (s)) 4.02 3.25 2.28 0.94 4.56 3.63 2.58 0.89 4.61 3.83 2.65 0.90
M1(σε(s)) 4.00 3.23 2.26 0.91 4.56 3.63 2.58 0.91 4.61 3.83 2.64 0.93
M2(β0(s), σε(s)) 4.03 3.25 2.28 0.90 4.45 3.58 2.52 0.92 4.49 3.64 2.55 0.92
M3(β0(s), α(s), σε(s)) 4.01 3.23 2.27 0.90 4.43 3.58 2.51 0.92 4.50 3.64 2.55 0.92
M3(α(s), ρY (s), σε(s)) 4.01 3.23 2.27 0.90 4.54 3.62 2.57 0.91 4.61 3.83 2.64 0.93
M4 4.03 3.25 2.28 0.90 4.43 3.58 2.51 0.92 4.50 3.64 2.55 0.92

Model Zaragoza La Sotonera Pallaruelo
RMSE MAE CRPS CVG RMSE MAE CRPS CVG RMSE MAE CRPS CVG

M0 4.03 3.28 2.29 0.94 4.00 3.21 2.27 0.94 4.09 3.30 2.33 0.93
M1(β0(s)) 4.04 3.28 2.30 0.93 4.00 3.20 2.27 0.93 4.04 3.24 2.29 0.93
M1(α(s)) 4.02 3.27 2.30 0.94 4.01 3.21 2.28 0.94 4.11 3.30 2.33 0.93
M1(ρY (s)) 4.02 3.28 2.29 0.94 4.00 3.21 2.28 0.94 4.10 3.31 2.33 0.93
M1(σε(s)) 4.03 3.28 2.29 0.93 4.00 3.21 2.27 0.91 4.08 3.29 2.31 0.90
M2(β0(s), σε(s)) 4.04 3.28 2.30 0.93 4.00 3.20 2.26 0.90 4.04 3.24 2.29 0.91
M3(β0(s), α(s), σε(s)) 4.04 3.28 2.30 0.92 4.00 3.21 2.26 0.90 4.06 3.25 2.29 0.90
M3(α(s), ρY (s), σε(s)) 4.02 3.27 2.29 0.92 4.00 3.21 2.27 0.91 4.10 3.30 2.32 0.90
M4 4.04 3.28 2.30 0.92 4.00 3.21 2.27 0.91 4.06 3.25 2.30 0.90

Model Cueva Foradada Sallent Yesa
RMSE MAE CRPS CVG RMSE MAE CRPS CVG RMSE MAE CRPS CVG

M0 3.69 2.94 2.11 0.95 4.47 3.56 2.52 0.90 4.85 3.96 2.78 0.86
M1(β0(s)) 3.85 3.05 2.18 0.94 4.48 3.67 2.56 0.89 4.86 4.03 2.80 0.86
M1(α(s)) 3.68 2.93 2.10 0.96 4.47 3.56 2.52 0.90 4.83 3.95 2.76 0.87
M1(ρY (s)) 3.69 2.94 2.11 0.95 4.49 3.57 2.53 0.92 4.85 3.96 2.78 0.86
M1(σε(s)) 3.69 2.94 2.10 0.95 4.46 3.56 2.52 0.87 4.86 3.96 2.77 0.89
M2(β0(s), σε(s)) 3.85 3.05 2.18 0.93 4.48 3.67 2.57 0.86 4.87 4.03 2.79 0.88
M3(β0(s), α(s), σε(s)) 3.84 3.04 2.17 0.93 4.48 3.67 2.56 0.86 4.84 4.02 2.78 0.89
M3(α(s), ρY (s), σε(s)) 3.68 2.93 2.09 0.95 4.46 3.56 2.52 0.89 4.83 3.95 2.76 0.89
M4 3.84 3.03 2.17 0.93 4.48 3.66 2.55 0.88 4.85 4.03 2.79 0.88
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Figure S4: Boxplots of the posterior distributions of the spatial random effects in M4 (black)
and of the corresponding coefficients in the local models (red). Locations are sorted by
elevation, from lowest to highest.
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Figure S5: Posterior densities of the spatial random effects, β̃0(s), α̃(s), ρY (s), σε(s), at the
unobserved locations Longares, Olite and Guara.

19



−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Posterior distribution of change

Celsius

D
en

si
ty

Longares
Olite
Guara

25.0 25.5 26.0 26.5 27.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Posterior mean value

P
os

te
rio

r 
di

st
rib

ut
io

n

1956 − 1985 to 1986 − 2015 Change in mean value 
 CI 90%

●

●

●

Lo
ng

ar
es

O
lit

e

G
ua

ra

Figure S6: Left: Posterior densities of the difference between the mean value of the daily
maximum temperature between both 30-year periods, 1956–1985 and 1986–2015, at the
unobserved locations Longares, Olite and Guara. Right: Posterior mean and 90% credible
intervals of the previous difference against posterior mean value of the entire period.
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Abstract
Evidence of global warming induced from the increasing concentration of greenhouse gases in the atmosphere suggests

more frequent warm days and heat waves. The concept of an extreme heat event (EHE), defined locally based on

exceedance of a suitable local threshold, enables us to capture the notion of a period of persistent extremely high

temperatures. Modeling for extreme heat events is customarily implemented using time series of temperatures collected at

a set of locations. Since spatial dependence is anticipated in the occurrence of EHE’s, a joint model for the time series,

incorporating spatial dependence is needed. Recent work by Schliep et al. (J R Stat Soc Ser A Stat Soc 184(3):1070–1092,

2021) develops a space-time model based on a point-referenced collection of temperature time series that enables the

prediction of both the incidence and characteristics of EHE’s occurring at any location in a study region. The contribution

here is to introduce a formal definition of the notion of the spatial extent of an extreme heat event and then to employ

output from the Schliep et al. (J R Stat Soc Ser A Stat Soc 184(3):1070–1092, 2021) modeling work to illustrate the notion.

For a specified region and a given day, the definition takes the form of a block average of indicator functions over the

region. Our risk assessment examines extents for the Comunidad Autónoma de Aragón in northeastern Spain. We calculate

daily, seasonal and decadal averages of the extents for two subregions in this comunidad. We generalize our definition to

capture extents of persistence of extreme heat and make comparisons across decades to reveal evidence of increasing extent

over time.

Keywords Bayesian inference � Block average � Monte Carlo integration � Spatial autoregression � Stochastic integral

1 Introduction

There is strong evidence of global warming due to the

increasing concentration of greenhouse gases in the atmo-

sphere (Lai and Dzombak 2019). This global warming

suggests more frequent warm days, more frequent and

persistent heat waves (Lemonsu et al. 2014; Alexander

2016) as well as events that break previous records by

much larger margins (Fischer et al. 2021; Cebrián et al.

2021). The analysis of heat waves is particularly important

due to the potential for serious anthropogenic, environ-

mental, and economic impacts (Amengual et al. 2014;

Campbell et al. 2018). Extreme heat raises significant

health concerns in humans as it can result in death, change

the range or niche for plants and animals, and lead to heat-

driven peaks in electricity demands or lost crop income.

A challenge in analyzing heat waves stems from on-

going debate over its exact definition. According to the

World Meteorological Office (WMO), a period persisting

at least three consecutive days of marked unusual hot

weather (maximum, minimum and daily average temper-

ature) over a region with thermal conditions above given

thresholds based on local climatological conditions can be

considered a heat wave. This definition suggests that

& Ana C. Cebrián

acebrian@unizar.es

1 Dpto. Métodos Estadı́sticos, Matemáticas, Universidad de
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analyses of heat waves require temperature series at a daily

scale, but offers no operational guidance with regard to the

various choices of implementation. Khaliq et al. (2005)

and Reich et al. (2014) used only maximum temperature,

while Keellings and Waylen (2014) and, more recently,

Abaurrea et al. (2018) considered both maximum and

minimum temperatures.

While there is lack of agreement on heat wave definition

in the literature (Perkins and Alexander 2013; Smith et al.

2013), the concept of an extreme heat event (EHE) is

explicitly defined, capturing the notion of a period (number

of consecutive days) of persistent extremely high temper-

atures. Specifically, EHE’s are defined locally and are

based on exceedance of a suitable local threshold. That is,

useful thresholds should be based on local conditions; in

the sequel, we adopt the 95th percentile of local daily

maximum temperatures, derived using a ten year period. In

the context of persistence of exceedance, it is evident that

we need to model daily max temperatures since an EHE is

defined at a given location as a run of consecutive daily

temperature observations exceeding the given threshold for

that location. Additionally, daily modeling enables

assessment of important behaviors describing the nature of

an EHE such as the duration, average exceedance, and

maximum exceedance above the threshold. As a result, we

define extent in terms of incidence of exceedance on a

given day, developed from a daily max temperature model

that is able to adequately represent both the central part and

the upper tail of the temperature distribution. It is not a

model only for the tails or observations above a threshold,

i.e., left-truncated data (peaks over thresholds models) or

for the extremes (generalized extreme value distribution

models). Such modeling addresses different objectives.

Modeling for extreme heat events is customarily

implemented using time series of temperatures over a

window of time collected at particular locations. However,

spatial aspects of this phenomenon are also of interest and

should be introduced into the modeling process, particu-

larly with interest in predicting EHE behavior at locations

without available time series of temperatures. Since spatial

dependence is anticipated in the occurrence of EHE’s, a

joint model for time series at different locations that

incorporates spatial dependence is needed.

Recent work by Schliep et al. (2021) develops a space-

time model based on a point-referenced collection of

temperature time series that enables the prediction of both

the incidence and the characteristics of the EHE’s occur-

ring at any location in the region. Specifically, it offers

direct spatial modeling for daily maximum temperatures

which can then be used to characterize the EHE’s. The

challenge is that, while the bulk of the distribution, i.e.,

where most of the data is observed, is not extreme, the

main interest for the model lies in the upper tail when

attempting to characterize EHE’s (Keellings and Waylen

2015; Shaby et al. 2016). To address this, a specification

incorporating thresholding is introduced, i.e., a model

which switches between two observed states, one that

defines extreme heat days (those above the temperature

threshold) and the other that defines non-extreme heat days

(those below the temperature threshold). Again, these

thresholds are obtained locally and assumed fixed. Impor-

tantly, this two-state structure allows temporal dependence

of the observations but also permits the parameters con-

trolling the effects of covariates and the spatial dependence

to differ between the two states. We briefly review details

of this modeling in Sect. 2.4.

With regard to risk assessment, the contribution of this

work is to formalize the notion of the spatial ‘‘extent’’ of an

extreme heat event and then to illustrate it using output

from the Schliep et al. (2021) modeling work. Interest in

characterizing the extent of heat waves is clear. For

example, Lhotka and Kyselý (2015) proposed an extremity

index that captures joint effects of spatial extent, temper-

ature and duration of heat waves. Keellings and Morad-

khani (2020) also developed a spatial metric combining

heat wave frequency, magnitude, duration and areal extent

to analyze the evolution of heat waves across the United

States. Rebetez et al. (2009) compared the heatwave extent

in Europe in 2003 and 2006. Khan et al. (2019) found an

increase of 1.36% of the affected area having both maxi-

mum and minimum temperature above the 95th percentile

per decade in Pakistan. Lyon et al. (2019) projected the

increase in the spatial extent of contiguous US summerheat

waves using the CMIP5 archive under RCP4.5 and RCP8.5

scenarios. They found a substantial increase in spatial

extent climate model employing projections for

2031–2055. However, all this work analyzes the extent

using descriptive approaches and using observed or gridded

data with no formal inference from probabilistic modeling.

Some more formal definitions related to the concept of

area under extreme conditions have been introduced in the

statistical literature. For example, French and Sain (2013)

present a method for constructing confidence regions for

Gaussian processes that contain the true exceedance

regions with some predefined probability. Extending this

methodology, Hazra and Huser (2021) obtain confidence

regions that contain joint threshold exceedances of surface

sea temperatures in the Red Sea, using a semiparametric

Bayesian spatial mixed-effects linear model. Bolin and

Lindgren (2015) consider excursion sets, which are sets of

points in an area where a spatial function is above a given

threshold. Sommerfeld et al. (2018) develop confidence

regions for these spatial excursion sets with an application

to climate and Romero-Béjar et al. (2018) develop quan-

tile-based spatiotemporal risk assessment of exceedances

using this concept. Zhong et al. (2020) analyze spatial
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extent of heatwaves using a model based on max-infinitely

divisible processes for annual temperature maxima. How-

ever, to our knowledge, the notion of the extent of an EHE

has not been explicitly defined as a stochastic object. So,

we take this up both conceptually and practically. Given a

threshold surface over a specified region, for a given day,

the extent of an EHE over the region is the proportion of

the area of the region whose daily max temperature for the

day is above the associated threshold surface. In the sequel

we adopt a static threshold surface in order to assess

change in extent over time. With different intentions, time-

varying thresholds could be employed.

The basic idea is an extension of the so-called spatial

cumulative distribution function (cdf) following the work

of Lahiri et al. (1999) and Short et al. (2005). It is also

discussed in Section 15.3 of Banerjee et al. (2014). The

extent arises as a stochastic integral, i.e., an integral over a

realization of a stochastic process. It is a random object as

well as a conceptual object in the sense that it can not be

observed and it can not be calculated in closed form.

However, its moment properties can be calculated and

approximate realizations can be obtained through Monte

Carlo integration.

Attractively, we can study extents employing realiza-

tions from any spatio-temporal model fitted for daily max

temperatures. Here, we adopt the model from Schliep et al.

(2021) and do not do any additional modeling work. We

can provide extents directly from the output of that model

fitting. In different words, assessment of extent of an EHE

is a post model fitting activity.

The region over which we study extents is the Comu-

nidad Autónoma de Aragón region in northeastern Spain,

located in the Ebro basin (85,362 km2). The Ebro river

flows from the NW to the SE through a valley bordered by

the Pyrenees and the Cantabrian Range in the north and the

Iberian System in the southwest. The maximum elevation

is approximately 3400 m in the Pyrenees, 2600 m in the

Cantabrian Range and Iberian System, and between

200-400 m in the central valley. In general, the area is

characterized by a Mediterranean-continental dry climate

with irregular rainfall, and a large temperature range.

However, several climate subareas can be distinguished

due to the heterogeneous orography and other influences,

such as the Mediterranean sea to the east, and the conti-

nental conditions of the Iberian central plateau in the

southwest. Zaragoza, the largest city in the region, is

located in the central part of the valley, and experiences

more extreme temperatures and drier conditions.

Our data are observational series from AEMET (the

Spanish Meteorological Office). Only long term series with

limited missing observations were considered, resulting in

daily maximum temperatures for 18 sites across and around

the Comunidad Autónoma de Aragón region for the years

1953-2015. The names and locations of the 18 sites are

shown spatially in Fig. 1. Data from the years 1953-1962

were used to obtain the location-specific thresholds for

extreme heat events; the data for the years 1963-2015 were

used in the modeling. Specifically, thresholds were com-

puted as the 95th percentile of daily maximum temperature

for the months June, July, and August during the 10 years

1953-1962. Again, our objective is to see change in extent

over time which requires a fixed qðsÞ threshold surface.

While we could use fixed thresholds associated with any

time window, using thresholds prior to the start of our

modeling, using data not employed in our fitting, seemed to

provide a sensible baseline.

The format of the paper is as follows. In Sect. 2, we

present the details of the spatial extent and briefly review

the Schliep et al. (2021) model. Section 3 shows the rich

scope of extents we can calculate and compare. Section 4

provides a brief summary and future work.

2 Formalizing extent of extreme heat

2.1 The definition of extent

The definition of the spatial cdf (Lahiri et al. 1999) is

attached to a realization of a stochastic process taking

values in R, Z ¼ fZðsÞ : s 2 Dg, over a region D and, for a

given w, is

FZðwÞ ¼
1

jDj

Z
D
1ðZðsÞ�wÞds

where jDj is the area of D. That is, it is the proportion of

the realization over D that lies below w. It behaves like a

cdf in the sense that it is nondecreasing and goes to 0 as

w ! �1 and 1 as w ! 1. However, since it is a function

of the process realization, it is a random variable and arises

as a stochastic integral. It differs from the marginal cdf

associated with the variable ZðsÞ at location s, PðZðsÞ�wÞ
which is a constant (as a feature of the distribution of ZðsÞÞ.
Like stochastic integrals in general, it can not be calculated

explicitly (but it can be approximated using Monte Carlo

integration). However, some distributional properties, e.g.,

mean and variance, can be calculated.

To define the object of interest here, a spatial extent, let

YtðsÞ denote the daily max temp for day t at location s.

Suppose we consider a subregion B � D of the study

domain. Then, for a given w, the extent of the EHE in

subregion B on day t is:

Exttðw;BÞ ¼
1

jBj

Z
B

1ðYtðsÞ � qðsÞ�wÞds: ð1Þ
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Here, qðsÞ is the threshold surface over B. That is, it is the

proportion of B which is experiencing extreme heat at least

w degrees above or below (according to the sign of w)

associated local thresholds on day t. In fact, it is referred to

as a block average (Banerjee et al. 2014) in this case of

indicator functions. Evidently, we can choose B as we

wish. In Section 3 we consider two subregions of interest

for comparison but, with interest in extent at a larger spatial

scale, we might also consider the case where B ¼ D.

Regardless, since extent captures proportion of incidence

within a region, a larger region does not imply a larger

extent. However, an alternative definition of extent would

specify a region where extent is anticipated to be high (or

low) and then calculate the extent in order to provide

quantification. EHE is applicable to the extent when w ¼ 0

and is probably of greatest interest but below, Sect. 3.4, we

also look at the extent of more (w[ 0) or less (w\0)

extreme heat events.

The posterior predictive distribution for Exttðw;BÞ is

needed for inference. We use a Monte Carlo integration to

obtain an approximate realization of it by computing:

gExttðw;BÞ ¼ 1

m

Xm
j¼1

1ðYtðsjÞ � qðsjÞ�wÞ: ð2Þ

Here, for a selected set of m locations in B with an asso-

ciated set of thresholds, fqðsjÞ; j ¼ 1; 2; . . .;mg, fYtðsjÞ; j ¼
1; 2; . . .;mg is a posterior predictive realization of daily

max temperatures for day t at the locations, sj. If we have a

collection of these realizations, then we can obtain poste-

rior samples of gExttðw;BÞ for any choices of w. In this way,
with arbitrarily many posterior predictive realizations, we

can learn arbitrarily well about the posterior predictive

distribution for Exttðw;BÞ.
To compute (2), given t, we need a realization

fYtðsjÞ; j ¼ 1; 2; . . .;mg. To consider arbitrary days within

arbitrary years within arbitrary decades, we need a poste-

rior predictive realization of a 50 year daily max time

series (1966-2015) for each sj. Employing the output of the

model fitting of Schliep et al. (2021), we can obtain such

posterior predictive realizations using composition sam-

pling (Banerjee et al. 2014, Chapter 6). Below, we obtain a

collection of 500 such realizations, enabling a posterior

predictive distribution for Exttðw;BÞ through gExttðw;BÞ.
These samples yield an empirical summary of the posterior

predictive distribution for Exttðw;BÞ, hence, posterior

inference regarding any features of Exttðw;BÞ that are of

interest.
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Fig. 1 Location of the stations

in the Iberian Peninsula (upper
left), names and elevation of the

locations (upper right), level
curves of elevation (bottom left)
and thresholds defining local

extreme temperatures (bottom
right). Pyrenees (B1) is the area

over the upper horizontal line

and Ebro valley (B2) the area

between the two horizontal lines
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Note that to compute (2) we first need to create the qðsjÞ.
In the sequel, upon a regular gridding of B to fairly fine

resolution, we obtained the centroids of the grid cells as our

sj’s. Then, gathering elevations for these centroids from a

digital terrain map (DTM), we kriged the qðsjÞ. That is,
using the thresholds for the observed sites with their

associated elevations, we employed a standard kriging

model for the thresholds at the sj using their associated

DTM elevations. Furthermore, we identified an additional

37 stations which had temperature data available between

1953-1962, yielding a total of 55 stations from which we

developed the qðsÞ surface. In Figure OR.1 in the Online

Resource we show the resulting qðsÞ surface along with the

55 stations. Fancier kriging could be imagined but here and

illustratively, we confine ourselves to the above. Further-

more, we treat all of the kriged qðsjÞ as fixed in imple-

menting the Monte Carlo integrations.

As a last remark, it is possible to create an empirical

extent, employing the form in (2) but using only the

available observed sites that are within B. With only 18

stations, only a few will be in B, yielding a single estimate

that can assume only a few discrete values and with no

uncertainty. In implementing the Monte Carlo integrations

for (2) below, we employ m � 6000 – 8000, yielding much

smoother extents and with replication enabling us to see the

distribution.

2.2 Some technical details: a digression

Here, we offer some theoretical insight into the distribution

of a spatial extent by calculating the first and second

moments under an illustrative Gaussian spatial first order

autoregression model, a simplified version of the model

that we work with in Sect. 2.4. In particular, consider the

model

YtðsÞ¼ltðsÞþgðsÞþqðYt�1ðsÞ�ðlt�1ðsÞþgðsÞÞÞþ�tðsÞ

where ltðsÞ is a spatio-temporal drift term. Specific choices

are adopted in Sect. 2.4. Here, gðsÞ is a mean 0 Gaussian

process with covariance covðgðsÞ; gðs0ÞÞ ¼ r2hðs� s0Þ
providing local spatial adjustment to the drift terms as well

as spatial dependence across locations. The �tðsÞ are pure

errors, independent and identically distributed as Nð0; s2Þ.
Let ZtðsÞ ¼ YtðsÞ � ltðsÞ so

ZtðsÞ ¼ qZt�1ðsÞ þ ð1� qÞgðsÞ þ �tðsÞ. Marginalizing over

gðsÞ, we obtain

ZtðsÞ j Zt�1ðsÞ�NðqZt�1ðsÞ; ð1� qÞ2r2 þ s2Þ:

In fact, the joint distribution of ðZtðsÞ; Ztðs0ÞÞ given

ðZt�1ðsÞ; Zt�1ðs0ÞÞ is bivariate normal with mean

qZt�1ðsÞ
qZt�1ðs0Þ

� �
and covariance matrix

ð1� qÞ2r2 þ s2 ð1� qÞ2r2hðs� s0Þ
ð1� qÞ2r2hðs� s0Þ ð1� qÞ2r2 þ s2

 !
:

Implementing the customary marginalization over Zt�1ðsÞ,
at equilibrium (t large), we have ZtðsÞ�Nð0;/2ðq; r2; s2ÞÞ
where /2ðq; r2; s2Þ ¼ ð1�qÞ2r2þs2

1�q2 . So,

YtðsÞ�NðltðsÞ;/2ðq;r2; s2ÞÞ. Similarly, we can obtain

covðZtðsÞ; Ztðs0ÞÞ ¼ ð1�qÞ2r2hðs�s0Þ
1�q2 and hence, the distribu-

tion, ½YtðsÞ; Ytðs0Þ	.
Returning to (1), E Exttðw;BÞð Þ ¼

E
1

jBj

Z
B

1ðYtðsÞ � qðsÞ�wÞds
� �

¼ 1

jBj

Z
B

E 1ðYtðsÞ � qðsÞ�wÞð Þds:

However,

E 1ðYtðsÞ � qðsÞ�wÞð Þ ¼PðYtðsÞ� qðsÞ þ wÞ 
 ptðs;wÞ

¼ U
ltðsÞ � ðqðsÞ þ wÞ

/ðq; r2; s2Þ

� �
:

So,

E Exttðw;BÞð Þ ¼ 1

jBj

Z
B

U
ltðsÞ � ðqðsÞ þ wÞ

/ðq; r2; s2Þ

� �
ds: ð3Þ

Monte Carlo approximation to (3) is straightforward.

Next, we obtain varðExttðw;BÞÞ. Let

gðYtðsÞÞ ¼ 1ðYtðsÞ � qðsÞ�wÞ. Then, by familiar calcula-

tion for block averages (see Banerjee et al.

2014, Chapter 7),

varðExttðw;BÞÞ ¼
1

jBj

Z
B

varðgðYtðsÞÞÞds

þ 1

jBj2
Z
B

Z
B

covðgðYtðsÞÞ; gðYtðs0ÞÞÞds0ds:

However, var gðYtðsÞÞð Þ ¼ ptðs;wÞð1� ptðs;wÞÞ. Similarly,

covðgðYtðsÞÞ; gðYtðs0ÞÞÞ ¼ ptðs; s0;wÞ � ptðs;wÞptðs0;wÞ

where

ptðs; s0;wÞ ¼ PðYtðsÞ� qðsÞ þ w; Ytðs0Þ � qðs0Þ þ wÞ

, a double integral over the bivariate normal distribution for

YtðsÞ and Ytðs0Þ given above. So,

varðExttðw;BÞÞ ¼
1

jBj

Z
B

ptðs;wÞð1� ptðs;wÞÞds

þ 1

jBj2
Z
B

Z
B

ptðs; s0;wÞ � ptðs;wÞptðs0;wÞds0ds:
ð4Þ

Monte Carlo integration for (4) can also be implemented.
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2.3 Elaborating extents

In climate applications, such as attempting to assess the

effect of global warming on extreme temperatures, the

main interest is not usually to characterize the distribution

of the extent in a given day Exttðw;BÞ but rather to char-

acterize the behavior of the extent across years or changes

in its seasonal pattern. To this end, it is convenient to

analyze the distribution of different averages of the daily

extent over a given period of time, such as seasons or years.

In defining average extents, we will use two time indexes,

one for the day within year l and one for the year t,

Extt;lðw;BÞ ¼
1

jBj

Z
B

1ðYt;lðsÞ � qðsÞ�wÞds:

Then, we can average the daily extent over a period of days

within the year, L, and over a period of years, T, as

Avt2T ;l2LExtt;lðw;BÞ ¼
1

nTnL

X
t2T

X
l2L

Extt;lðw;BÞ

where nT and nL are the number of observations in the

periods T and L respectively.

In the analysis of EHE, we consider: (i) decadal aver-

ages for a given day l and decade D,

Avt2DExtt;lðw;BÞ ¼ 1
10

P
t2D Extt;lðw;BÞ, (ii) the average

extent over the summer months JJA for a given year t,

Avl2JJAExtt;lðw;BÞ ¼ 1
92

P
l2JJA Extt;lðw;BÞ, and (iii) the

average extent over the summer months and a decade,

Avt2D;l2JJAExtt;lðw;BÞ ¼ 1
920

P
t2D
P

l2JJA Extt;lðw;BÞ: In

calculating these quantities, we replace all integrals by

their Monte Carlo approximations, obtaining the values

Avt2T ;l2LgExtt;lðw;BÞ. Further, using 500 posterior predic-

tive samples of realizations of gExtt;lðw;BÞ, we obtain 500

samples of Avt2T ;l2LgExtt;lðw;BÞ to supply an empirical

summary of the posterior distribution of

Avt2T ;l2LExtt;lðw;BÞ. In the cases where the average is

carried out only over one time index, a bigger size sample

is obtained if the distribution is the same in a given period

of time. For example, if the distribution of

Avl2JJAExtt;lðw;BÞ is taken to be the same for all the years

in a decade, t 2 D, we can obtain a sample of 5000 real-

izations of Avl2JJAgExtt;lðw;BÞ, 500 for each of the 10 years

t 2 D, to consider empirically the posterior distribution of

Avl2JJAExtt;lðw;BÞ in D. When it is assumed that the dis-

tribution of the ten years in D is the same, we modify

notation to AvDl2JJAExtt;lðw;BÞ, and AvDl2JJAgExtt;lðw;BÞ.
Persistence: In the context of global warming, a rele-

vant feature in the analysis of extreme temperatures is

persistence. We consider persistence as arising when the

probability of being in an extreme heat state at day lþ 1 is

higher if we were in an extreme heat state at day l than if

we were not. To analyze this feature spatially through the

extent, we consider the proportion of B at w degrees above

threshold, for both of two consecutive days, l and lþ 1,

denoted by 2Extt;lðw;BÞ and defined as

2Extt;lðw;BÞ ¼
1

jBj

Z
B

1ðYt;lðsÞ � qðsÞ�wÞ

1ðYt;lþ1ðsÞ � qðsÞ�wÞds:

More generally, rExtt;lðw;BÞ denotes an r-day EHE, that is

an EHE persisting for r consecutive days starting at day l,

with analogous definition. It is immediate that

rExtt;lðw;BÞ� r�1Extt;lðw;BÞ� . . .�Extt;lðw;BÞ:

This accords with the fact that the extents of two-day

EHE’s will be smaller than the extents of one-day EHE’s.

Again, we will use a Monte Carlo integration to obtain a

realization, e.g., for the r ¼ 2 case:

2gExtt;lðw;BÞ ¼ 1

m

Xm
j¼1

1ðYt;lðsÞ � qðsÞ�wÞ 1ðYt;lþ1ðsÞ � qðsÞ�wÞ:

In the analysis for our dataset/study area we confine our-

selves to r ¼ 1 and r ¼ 2 since the probability of observing

runs with r� 3 is too small to show useful extents.

As with the daily extents, we are usually more interested

in the average of rExtt;lðw;BÞ over a time window of l’s,

t’s, or both. These averages are defined as above but with
2Extt;lðw;BÞ. Monte Carlo integrations for these averages

are analogous to those for averages of Extt;lðw;BÞ; we only
have to substitute rExtt;lðw;BÞ with rgExtt;lðw;BÞ.

Useful displays: Displays we will develop for extent

and persistence include the following. First, we will con-

sider different subregions of Aragón in order to make

comparison between regions. To do this we will examine

evolution of extent or persistence across the JJA season.

We do this averaged over a decade in order to enable

decadal comparison. Further, with posterior predictive

samples of extents for each day l within each year t, we will

supply the entire posterior predictive distribution of some

of these extents and persistences. We will also develop

‘‘time to’’ displays, showing the time to the first day in year

t with extent or persistence greater than or equal to a

specified v. Lastly, we will examine how extents and per-

sistences vary over choices of w since there can be interest

in different specification of local thresholds for extreme

heat.

2.4 Reviewing the daily max temperature model

Returning to the notation at the start of this section, let

YtðsÞ denote the daily maximum temperature at day t and

location s. Schliep et al. (2021) propose a two-state model
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where the state for a given day defines whether or not the

location is experiencing an extreme heat event. Given a

threshold, qðsÞ at location s, let UtðsÞ 2 f0; 1g denote the

state at time t for location s where a value of 0 denotes the

below threshold state and a 1 denotes the above threshold

state. So, UtðsÞ is a spatial binary time series process

reflecting times of transition or state-switching. It is

observed for each t at a monitored site but is latent else-

where. With regard to extents, we note that

Exttð0;BÞ ¼ 1
jBj
R
B UtðsÞds.

UtðsÞ is a Markov process where the state UtðsÞ depends
only on the previous state Ut�1ðsÞ. Then, the distribution of

YtðsÞ is specified explicitly given UtðsÞ and, given the

threshold, UtðsÞ is a binary function of YtðsÞ. Furthermore,

the transition probabilities between states are allowed to be

a function of previous temperature. This specification

ensures transition probabilities to be ‘‘local’’, i.e., to vary

with location and to depend upon the previous day’s

maximum temperature at that location. The opposite would

be expected if the maximum temperature of the previous

day resulted in a non-extreme heat state.

The joint distribution for temperature and state is

specified in a first order Markov fashion explicitly as fol-

lows. Given Yt�2ðsÞ, and thus, Ut�2ðsÞ, for two consecutive

time points, t � 1 and t, the joint distribution

½Ut�1ðsÞ; Yt�1ðsÞ;UtðsÞ; YtðsÞ	 is written as

½YtðsÞjUtðsÞ; Yt�1ðsÞ	½UtðsÞjYt�1ðsÞ	½Yt�1ðsÞjUt�1ðsÞ;Yt�2ðsÞ	
½Ut�1ðsÞjYt�2ðsÞ	:

This formulation requires three model specifications: (i)

½YtðsÞjUtðsÞ ¼ 0;Yt�1ðsÞ	, (ii) ½YtðsÞjUtðsÞ ¼ 1; Yt�1ðsÞ	,
and (iii) ½UtðsÞjYt�1ðsÞ	. With qðsÞ denoting the threshold

(quantile) for location s, truncated distributions are needed

for (i) and (ii), i.e., ½YtðsÞ ¼ y	1ðy\qðsÞÞ and

½YtðsÞ ¼ y	1ðy� qðsÞÞ, respectively. For (i), a truncated

normal distribution is adopted, with autoregressive

centering,

TN l0t ðsÞ � q0ðYt�1ðsÞ � l0t�1ðsÞÞ; r2;0ðsÞ
� �

Ið�1; qðsÞÞ:

Details for l0t ðsÞ are given below.

For (ii), a truncated t-distribution is adopted, with

autoregressive centering,

Tt l1t ðsÞ � q1ðYt�1ðsÞ � l1t�1ðsÞÞ; r2;1ðsÞ
� �

IðqðsÞ;1Þ:

Details for l1t ðsÞ are given below. As an aside, unlike the

multivariate normal, the multivariate t-distribution captures

upper tail extreme dependence (Chan and Li 2008) which

may be desirable in looking at extreme heat events. Fur-

ther, with multivariate t-distributions in both time and

space, tail dependence is inherited in space as well.

Exploratory analysis of the observed data suggested a

smaller variance for the above threshold daily maximum

temperature distribution than for the below threshold daily

maximum temperature distribution. Further, spatially-

varying variances are introduced, expecting that variation

in say, Jaca (in the Pyrenees in the north of the region)

would be different from variation in say, Zaragoza (flat and

central in the region).

For (iii) a probit link is employed to define

U�1ðptðsÞÞ 
 U�1ðPðUtðsÞ ¼ 1jYt�1ðsÞÞÞ 
 gtðsÞ

with gtðsÞ given below. Putting (i), (ii), and (iii) together, a

mixture distribution for YtðsÞ results: (i) a truncated normal

distribution for the bulk of the distribution, (ii) a truncated

t-distribution for the upper tail of the distribution, and (iii)

mixture weights according to PðUtðsÞ ¼ 0Þ or

PðUtðsÞ ¼ 1Þ, respectively.
As for the specifics of ltðsÞ and gtðsÞ, compacting

notation, for lUtðsÞ
t ðsÞ, Schliep et al. (2021) consider

lUtðsÞ
t ðsÞ ¼ bUtðsÞ

0 þ bUtðsÞ
0 ðsÞ þ cUtðsÞ

½ t
365

	þ1
þ bUtðsÞ

1 elevðsÞ

þ bUtðsÞ
2 latðsÞ þ k1sinð2pt=365Þ þ k2cosð2pt=365Þ:

Here, bUtðsÞ
0 denotes a global (across the domain for our

dataset) intercept and bUtðsÞ
0 ðsÞ denotes a local spatial

intercept, i.e., providing local adjustment to the global

intercept. Each bUtðsÞ
0 ðsÞ is modeled as a mean 0 Gaussian

process with exponential covariance function. For cð1Þ½ t
365

	þ1
,

where ½ 	 denotes the greatest integer function, thus

counting years with this subscript and, as a result, the c’s
provide annual intercepts to allow for yearly shifts, i.e., for

hotter or colder years. The sin and cos terms are introduced

to capture annual seasonality with their coefficients

reflecting associated amplitudes. This seasonality is critical

to ensure that an annual daily maximum temperature tra-

jectory over the course of a year at a location will provide

sensible realizations. elevðsÞ is the elevation at s and latðsÞ
is the latitude. Finally, qUtðsÞ provides a centered AR(1)

specification, bringing in the previous day’s temperature,

Yt�1ðsÞ.
For gtðsÞ, Schliep et al. (2021) propose

gtðsÞ ¼/0 þ /0ðsÞ þ /1ðYt�1ðsÞ � qðsÞÞ

þ /2ððYt�1ðsÞ � qðsÞÞ1ðYt�1ðsÞ � qðsÞ� 0ÞÞ

þ /3sinð2pt=365Þ þ /4cosð2pt=365Þ:

Here, centering by the threshold yields more sensible

transition probabilities. The threshold, qðsÞ, can be moved

over to the intercept term in order to provide a spatially

varying offset. However, the inclusion of /0ðsÞ, modeled

as a Gaussian process, allows for a richer spatially-varying

intercept.
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We note that, as other common mixture models with a

‘‘cut point’’ to capture skewness, the unconditional density

obtained from this model is discontinuous at the threshold.

No continuity constraints are needed to smooth the density

since this discontinuity does not affect the calculation of

the extents over the threshold. This model was satisfacto-

rily validated using out-of-sample prediction of character-

istics of extreme values in three locations, see Section 5.2

in Schliep et al. (2021) and a summary in Section OR.2 in

the Online Resource.

3 Illustrative summaries

3.1 The data and subregions

We analyze the evolution of the extent over time in two

different areas around Aragón, a region located in north-

eastern Spain. The areas are quite different in topography

and temperature, see Fig. 1, where the elevation and the

thresholds that define a local EHE are shown.

• B1: Pyrenees, with latitude between 42.5N and 43N and

longitude between �1:9W and 0.7E. It is a mountainous

area with a high variability in elevation. The elevation

of the stations varies from 442 to 1645 m asl, but some

points in the area are over 3000 m. This leads to a high

variability in the thresholds qðsÞ, that vary from 25.5 to

36 �C. This region shows a high biodiversity, including

the last glaciers in Spain.

• B2: Central Ebro valley with latitude between 41.5N

and 42.5N and longitude between �1:9W and 0.7E.

This region is more homogeneous both in elevation,

ranging from 245 to 546 m, and in temperature. The

thresholds qðsÞ vary from 33.8 to 37 �C. This region is

the most populated in Aragón, and the most important

farming zones are located here.

With regard to computing extents over these regions, B1

was partitioned into 1km� 1km grid cells yielding, with

regard to (2), m ¼ 7881. B2, a much larger region, was

partitioned into 2km� 2km grid cells yielding, with regard

to (2), m ¼ 5841.

The following five observed decades D1: 1966-1975,

D2: 1976-1985, D3: 1986-1995, D4: 1996-2005 and D5:

2006-2015, are considered in most of the following anal-

ysis to quantify the evolution over time of the different

features related to the extent.

Altogether, the posterior predictive time series result in

very large data files from which extents and persistences

are computed. For instance, for B1, we have 50 years by 92

days by 7881 grid centroids by 500 replicates yielding

1:81263� 1010 points.

In the sequel we present some comparative analysis for

the regions B1 and B2. We present in the text the analysis

for both regions and displays for the Pyrenees (B1) region,

with analogous displays for the Ebro Valley (B2) region in

the Online Resource.

3.2 Analysis of the time evolution of the extent

To offer some quantification of global warming, we ana-

lyze the evolution of the extent of EHE’s across years. In

that regard, we also analyze persistence through the extent

of two-day EHE’s. We consider the averages of the extent

in the summer period JJA, Avl2JJAExtt;lð0;BÞ and

Avl2JJA
2Extt;lð0;BÞ. We also compare the evolution in the

regions B1 and B2.

Figure 2 shows the plot of the posterior mean of

Avl2JJAExtt;lð0;BÞ for B1 and B2 vs. year t. Both regions

show an increasing trend; the magnitude of the slope is

similar in both regions, although the mean extent in B2 is

approximately 1% higher than in B1. The analogous plot

for Avl2JJA
2Extt;lð0;BÞ is also shown in Figure 2. Similar

conclusions about the extent of two-day EHE’s are

obtained, although the magnitude is reduced almost to half,

the increase over time is slower, and the difference

between the mean extent in the two regions is reduced to

0.5%. These conclusions are in agreement with the analysis

of the raw empirical EHE extents using the observed series

of temperature, see Figure OR.4 in the Online Resource.

However, that figure reveals the limitations of the empiri-

cal extent. The plots in Figure OR.4 show the high vari-

ability of the empirical extent, and the impossibility of

inference to compare the two decades.

To study the entire distribution, we analyze

AvDl2JJAExtt;lð0;BÞ using the 5000 realizations

AvDl2JJAgExtt;lð0;BÞ. The boxplots of the distribution for each
decade in B1 are shown in Fig. 3, and Table 1 gives some

summary measures in the two regions. Apart from a small

dip in D4, an almost linear increase is observed. Similar

conclusions are obtained in B2. With regard to the evolu-

tion of the extent of two-day EHE’s, the boxplots of

AvDl2JJA
2Extt;lð0;BÞ in Fig. 3, and Table OR.1 in the Online

Resource, confirm that it is quite similar to the evolution of

the extent of EHE’s, but smaller and slower in magnitude.

To better illuminate the global increase of the extent in

the summer season, the posterior density for the first and

the last decades is shown in Fig. 3 and Figure OR.5, where

a shift of the central location and a slightly higher
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Fig. 3 Top: Boxplots of the
posterior density of

AvDl2JJAExtt;lð0;B1Þ (left) and of

the posterior density of

AvDl2JJA
2Extt;lð0;B1Þ (right) in

the five decades. Bottom:
Posterior density of

AvDl2JJAExtt;lð0;B1Þ in D1
(black) and D5 (red). Vertical
lines are the posterior means

Table 1 Posterior mean,

standard deviation, lower and

upper 0.05 quantiles of

AvDl2JJAExtt;lð0;BÞ for the five

decades in regions B1 and B2

Decades B1 B2

Mean SD p5 p95 Mean SD p5 p95

D1 0.087 0.012 0.068 0.107 0.080 0.012 0.060 0.098

D2 0.094 0.012 0.076 0.116 0.087 0.011 0.070 0.105

D3 0.104 0.014 0.082 0.126 0.097 0.014 0.076 0.118

D4 0.103 0.010 0.088 0.120 0.097 0.009 0.083 0.112

D5 0.110 0.016 0.086 0.137 0.105 0.016 0.080 0.128
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variability is observed. Table 2 summarizes the posterior

mean and 90% credible intervals (CI’s) of the difference

rDD5
D1ðBÞ ¼ AvD5l2JJA

rExtt;lð0;BÞ � AvD1l2JJA
rExtt;lð0;BÞ

for r ¼ 1; 2 (superscript r ¼ 1 is omitted for simplicity)

and B1 and B2. In both regions, the interval for the one-day

EHE’s contains zero, showing that it is possible that the

JJA average extent of one year in the last decade is lower

than in the first decade. However, it is unlikely according to

the posterior probability PðDD5
D1ðBÞ[ 0 j yÞ, which is 0.803

in B1 and 0.805 in B2. Similar conclusions are obtained for

the two-day EHE’s since Pð2DD5
D1ðBÞ[ 0 j yÞ are 0.815 in

B1 and 0.808 in B2.

Evidence of a significant increase over time in the

decadal average is much stronger. Summary measures of

the difference of the decadal average,

rDD5;D1ðBÞ ¼ Avt2D5;l2JJA
rExtt;lð0;BÞ

� Avt2D1;l2JJA
rExtt;lð0;BÞ

for r ¼ 1; 2 are also shown in Table 2. The CI’s for the

one-day EHE’s are narrower than the corresponding CI’s of

the yearly averages and do not include zero. The posterior

probabilities PðrDD5;D1ðBÞ[ 0 j yÞ are essentially 1 in both

regions for r ¼ 1; 2, indicating that the decadal average in

D5 is significantly higher than in D1 in all the cases.

Another question of interest is the comparison of the

increment of the extent between D1 and D5 in the two

regions under study. Fig. 2 shows that the trends in B1 and

B2 are quite parallel, and that the increase of the JJA

average extent between D1 and D5 is quite similar in both

regions. The posterior mean of the difference between B1

and B2 of the increase in the yearly average,

DD5
D1ðB1Þ � DD5

D1ðB2Þ, is �0:002 and the 90% CI is

ð�0:013; 0:009Þ while the CI of the decadal average,

DD5;D1ðB1Þ � DD5;D1ðB2Þ is ð�0:006; 0:002Þ. That means

that although there is a shift in the mean value of the

average extent in both regions, there is no evidence of a

significant difference in the increase of average extent, and

both regions show a similar evolution over time.

3.3 Evolution of the seasonal pattern
and the beginning of the summer

To analyze the evolution of the seasonal pattern in JJA of

the extent Extt;lð0;BÞ, l ¼ 1; . . .; 92, and 2Extt;lð0;BÞ, Fig. 4
shows the plot vs. day within year of the posterior mean of

Avt2DExtt;lð0;BÞ in D1 and D5 in region B1. The seasonal

pattern attains the maximum mean extent at the end of July

in all cases, and a similar increase of the mean across

decades, is observed in both regions. The analogous plot of

Avt2D
2Extt;lð0;BÞ, see Fig. 4, shows a smoother seasonal

pattern of the extent of the two-day EHE’s, and a smaller

increase between decades than in the extent of the one-day

EHE’s. The same conclusions are obtained in region B2,

and the corresponding plots are shown in Figure OR.6 in

the Online Resource.

The increase between decades is quantified in Table 3

that summarizes the posterior distribution of the monthly

averages AvDl2JnExtt;lð0;BÞ, AvDl2JlExtt;lð0;BÞ and

AvDl2AgExtt;lð0;BÞ, in D1 and D5. There is an increase in the

posterior mean in the three months with a similar seasonal

pattern in both regions: the highest absolute increase, more

than 3%, is observed in July and the lowest, around 1.4%,

in June. This increase is higher in the upper tail: almost 2%

in June and 4% in July. The posterior probability

PðAvD5l2JnExtt;lð0;BÞ[AvD1l2JnExtt;lð0;BÞ j yÞ is 0.813 in B1

and 0.818 in B2, and in July and August they are 0.805 and

0.804, in both regions.

3.3.1 Time to beginning of EHE’s

An important feature related to the seasonality is the

beginning of extreme temperatures in summer, and the

analysis of its change across years. To that end, we define

the variable Ltðv;BÞ, the number of days to the first day l

within the period JJA in year t with an extent higher or

equal to v, that is the first day l such that Extt;lð0;BÞ� v. If

no extent over v is observed in a year, we set Ltðv;BÞ ¼ 92.

Table 2 Posterior mean and

90% credible intervals of the

increase between D5 and D1 of

different averages of the

extents, in regions B1 and B2

B1 B2

Post. mean 90% CI Post. mean 90% CI

rDD5
D1ðBÞ ¼ AvD5l2JJA

rExtt;lð0;BÞ � AvD1l2JJA
rExtt;lð0;BÞ

One-day EHE’s (r ¼ 1) 0.023 ð�0:009; 0:061Þ 0.025 ð�0:010; 0:063Þ
Two-day EHE’s (r ¼ 2) 0.013 ð�0:006; 0:041Þ 0.014 ð�0:006; 0:041Þ
rDD5;D1ðBÞ ¼ Avt2D5;l2JJA

rExtt;lð0;BÞ � Avt2D1;l2JJA
rExtt;lð0;BÞ

One-day EHE’s (r ¼ 1) 0.023 (0.021, 0.026) 0.025 (0.023, 0.028)

Two-day EHE’s (r ¼ 2) 0.013 (0.007, 0.011) 0.014 (0.012, 0.016)
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Since extents over high thresholds are being analyzed,

large extents are very rarely observed so we only consider

here v ¼ 0:1. 2Ltðv;BÞ, the first day with an extent of the

two-day EHE’s higher or equal than v, is defined

analogously.

Figure 5 shows the posterior mean of Ltð0:1;BÞ vs. year
for B1 and B2, and the the analogous plot for 2Ltð0:1;BÞ. A
decreasing trend is observed in both variables and in both

regions. However, the decrease of the mean of 2Ltð0:1;BÞ
across years is much greater, almost 30 days, versus less

than 10, but with much higher variability. This variability

is likely due to the low incidence of the considered event.

Figure 6 shows the posterior density of the first day,

estimated in a decade, LDt ð0:1;BÞ, in D1 and D5 in B1; the
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Table 3 Posterior mean,

standard deviation and lower

and upper 0.05 quantiles of

Avl2JnExt
D
t;lð0;BÞ,

Avl2JlExt
D
t;lð0;BÞ and

Avl2AgExt
D
t;lð0;BÞ in D1 and D5,

in regions B1 and B2

B1 B2

Decade Month mean SD p5 p95 mean SD p5 p95

D1 June 0.042 0.007 0.030 0.053 0.036 0.007 0.024 0.046

D5 0.056 0.009 0.041 0.071 0.051 0.009 0.036 0.065

D1 July 0.126 0.016 0.099 0.152 0.117 0.016 0.091 0.142

D5 0.157 0.021 0.125 0.192 0.151 0.021 0.118 0.182

D1 August 0.092 0.013 0.072 0.114 0.085 0.013 0.065 0.105

D5 0.117 0.018 0.090 0.147 0.111 0.017 0.084 0.138
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Fig. 6 Posterior density of LDt ð0:1;B1Þ for D1 (black) and D5 (red)

Stochastic Environmental Research and Risk Assessment (2022) 36:2737–2751 2747

123



analogous plot in B2 is shown in Figure OR.7 in the Online

Resource. Table 4 summarizes the posterior mean, standard

deviation and 90% CI for LDt ð0:1;BÞ, for the five decades in
the observed period. The mean of the first day between the

first and the last decade has decreased almost 7 days in B1

and 8 days in B2. The posterior probability

PðLD1t ð0:1;BÞ[ LD5t ð0:1;BÞ j yÞ, that is the probability that
the first day of the summer where more than 10% of the

region is under extreme temperatures occurs earlier in the

last decade, is 0.775 in B1 and 0.781 in B2.

A summary of 2LDt ð0:1;BÞ analogous to that in Table 4

is presented in Table OR.2 in the Online Resource. Since

the probability of a two-day EHE is quite low, it is likely

that in a year all the extents of two-day EHE’s are lower or

equal than 0.1 and, consequently, the event

Pð2LDt ð0:1;BÞ ¼ 92 j yÞ has a positive probability mass.

However, this posterior probability decreases over the

observed period. In B1, the percentage of years with

Ltð0:1;BÞ ¼ 92 is 0.77 in D1 and 0.31 in D5, and 0.88 and

0.36 in B2. Further evidence that LDt ð0:1;BÞ is decreasing is
that, conditionally to the fact that an extent higher than 0.1

occurs in a year, the posterior mean of 2LDt ð0:1;BÞ has

decreased more than 5 days between D1 and D5 in both

regions.

3.4 Behavior of extent across choices of w

The previous sections consider results for Extt;lðw;BÞ
only at w ¼ 0, that is the extent corresponding to the

threshold used to define an EHE. Here, we consider the

effect on extent by adjustment of the local thresholds to

lower extreme temperatures and to higher extreme tem-

peratures. To that end, we consider Extt;lðw;BÞ for a grid of

values over and under the threshold, w ¼
�1:5;�1:0;�0:5; 0:0; 0:5; 1:0; 1.5 �C.

To study the evolution across years and across threshold,

Fig. 7 shows the posterior mean of Avl2JJAExtt;lðw;B1Þ vs.

year for the grid of w values, and the corresponding linear

trends fitted to the means. An increasing trend is observed

for all the w values but the trend is stronger for smaller w’s.

More precisely, the ratio between the slope for w ¼ �1:5

and w ¼ 1:5 is 0:00106=0:00018 ¼ 5:8. The finding is that

the incidence of extents associated with more extreme

thresholds is increasing at a slower rate than that for less

extreme thresholds.

This increase over time is not only observed in the

mean, but in the entire distribution. As an example, we

consider the decadal average of July, where Fig. 8 shows

the posterior density of Avt2D;l2JlExtt;lðw;B1Þ across w for

D1 and D5; the analogous plot for B2 is shown in Fig-

ure OR.8 in the Online Resource. It is observed that the

Table 4 Posterior mean, standard deviation and lower and upper 0.05

quantiles of LDt ð0:1;BÞ in D1 and D2, in regions B1 and B2

B1 B2

Decade Mean SD p5 p95 Mean SD p5 p95

D1 35.230 4.848 29 43 38.214 6.560 31 48

D2 33.052 3.625 28 39 35.463 3.926 30 42

D3 30.252 3.705 25 37 32.146 4.001 27 39

D4 30.146 2.600 26 34 31.884 2.686 28 36

D5 28.490 3.748 23 35 30.067 4.068 25 37
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Fig. 7 Posterior mean of Avl2JJAExtt;lðw;B1Þ for w ¼
�1:5;�1:0;�0:5; 0:0; 0:5; 1:0; 1:5 �C and linear trends fitted to the

means
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Fig. 8 Posterior density of Avt2D;l2JlExtt;lðw;B1Þ for w ¼
�1:5;�1:0;�0:5; 0:0; 0:5; 1:0; 1.5 and D1 (solid line) and D5
(dashed line)
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shape of the distribution is very similar across w and across

decades but, in both cases, there are clear shifts that are not

homogeneous across w.

The different evolution across w is observed if we

compare the mean difference between decades. For

example, in B1, the posterior mean difference

E AvD5l2JlExtt;lðw;B1Þ � AvD1l2JlExtt;lðw;B1Þ j y
� �

is 5% for w ¼ �1:5, while for w ¼ 1:5 is 1%. The change

is also observed if we compare the mean differences

between the range of w values across decades. Again in B1,

the posterior mean difference

E AvDl2JlExtt;lð�1:5;B1Þ � AvDl2JlExtt;lð1:5;B1Þ j y
� �

is 18% in D5, while in D1 is 14%. These values together

with the counterparts for B2 are summarized in Table OR.3

in the Online Resource. The change in the entire distribu-

tion is quantified by the posterior probability of the extent

for a given w in the last decade being higher than in the

first,

P AvD5l2JlExtt;lðw;B1Þ[AvD1l2JlExtt;lðw;B1Þ j y
� �

:

Table 5 summarizes these posterior probabilities and shows

that there is a nonmonotonic decrease across w.

Figure 9 shows the posterior mean of the average

Avt2DExtt;lðw;B1Þ vs. day within year for D1 and D5 in

order to compare the seasonal behavior of the extent across

w; the analogous plot for B2 is shown in Figure OR.9 in the

Online Resource. It can be seen that the seasonal pattern is

smoother for larger w. In all the cases, the seasonal pattern

is more pronounced in the last decade but the changes

across w are not homogeneous, with stronger differences in

smaller w values. More precisely, the seasonal pattern for

w ¼ 1:5 in D5 is more pronounced than its counterpart in

D1, approaching that of w ¼ 1 in D1, with probability

P AvJJAt2D5Extt;lð1:5;B1Þ[AvJJAt2D1Extt;lð1:5;B1Þ j y
� �

, that is

essentially 1, and P AvJJAt2D5Extt;lð1:5;B1Þ[AvJJAt2D1
�

Extt;lð1;B1Þ j yÞ ¼ 0:18. For smaller w values, the differ-

ences are higher, with the posterior probabilities comparing

the previous averages in w ¼ �1:5 and w ¼ �1:5, and in

w ¼ �0:5 and w ¼ �1:5 equal to 1; in addition, the sea-

sonal pattern of w ¼ �1:5 in D1 is only slightly more

pronounced than the pattern in w ¼ �0:5 in D5.

4 Summary and future work

Notions of the spatial extent of heat waves and extreme

heat events have been considered informally and descrip-

tively in the climate community. Here we have introduced

a formal probabilistic definition for extents of extreme heat

events. For a specified region, for a given day, the defini-

tion of spatial extent takes the form of a block average over

the region. It is an average of indicator variables which

identify exceedance of a local threshold by the daily max

temperature surface for the day at each location within the

region. We demonstrate that extents can be calculated

through Monte Carlo integration and can be obtained for

realizations from arbitrary space-time autoregressive

models for daily max temperatures. Using a dataset of daily

max temperatures over 50 years, adopting a particular

choice of model, working within a Bayesian framework,

we obtained posterior predictive samples of daily temper-

ature time series on a fairly fine grid scale to implement the

Monte Carlo integrations.

With these samples, we calculated daily, seasonal and

decadal averages of the extents for two regions around the

Comunidad Autónoma de Aragón in Spain. We generalized

these extents to capture extents of persistence of extreme

heat. We made comparisons across decades to reveal evi-

dence of increasing extent over time. We also studied other

features related to the extent of EHE’s, for example, the

first day in the period JJA with an extent higher than a

given percentage, and the behaviour of extent across

choices of the threshold. Following our approach, other

extents yielding other comparisons may be developed

according to the interest of the user.

With regard to the regions under study, Pyrenees and

Ebro Valley, we found that a clear increase of the extent of

EHE’s across time is observed. For example, the posterior

probability of the yearly average extent across JJA in the

decade 2006–2015 being higher than in 1966-1975 is

higher than 0.8. It is also found that the first day of the

summer where the extent of EHE’s is higher than 10% has

decreased around seven days. The extent of EHE’s defined

with all the considered thresholds is increasing, but the

incidence of extents associated with more extreme thresh-

olds is increasing at a slower rate than that for less extreme

thresholds.

Future work will explore the temporal evolution of

geographic extent for different regions to enable compari-

son. It will also examine the challenges of working with

regions at larger spatial scales. Alternatively, with

Table 5 Posterior probabilities for a grid of w values, P AvD5l2JlExtt;l
�

ðw;BÞ[AvD1l2JlExtt;lðw;BÞ j yÞ, for regions B1 and B2

w -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

B1 0.808 0.806 0.804 0.805 0.817 0.779 0.732

B2 0.814 0.810 0.808 0.805 0.814 0.803 0.763
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suitable computing capability, we can consider investigat-

ing extents at higher spatial resolution than done here.

Further, while here we work with actual weather data,

another goal is to consider projection of future spatial

extent using future climate scenarios.
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This supplementary material includes some complementary figures and tables.
Most of them, except those in Section OR.1, are figures for Section 3: Illustrative
summaries. For example, the preliminary analysis of the empirical extent and
the displays of the analysis for the Ebro valley region (B2). These displays are
analogous to the displays for the Pyrenees (B1) region presented in the text. The
conclusions from these displays are also analogous to those described in the text.

OR.1 Comparison of kriged and empirical thresholds

In order to obtain a q(s) surface, we employed a standard kriging model for the
thresholds. It is based on the thresholds for the observed sites with their associated
DTM elevations. We used the 18 stations in the database plus an additional 37
stations which had temperature data available between 1953 and 1962, yielding
a total of 55 stations. The series are selected from the database of Spanish Me-
teorological Office (AEMET). Only series that fulfill some quality standards, and
contain at least 70% observed values in each month (June, July and August) in
the reference period 1953-62, were selected.

Figure OR.1 shows the resulting q(s) surface. Black numbers are the levels of
the contour curves, plotted at 2◦C increments, and red numbers are the empirical
thresholds in the 55 observed series. The agreement with the empirical thresholds
shows that the obtained q(s) surface is reasonable.



2

−1.5 −1.0 −0.5 0.0 0.540
.0

40
.5

41
.0

41
.5

42
.0

42
.5

43
.0

Threshold (°C)

 22 
 22 

 24  24 

 26 

 28 

 28 

 28 

 30  30 

 30 

 30 

 30 

 32 

 32 

 32 

 32 

 32 

 32 

 34 

 34 

 34 

 34 

 36 

 36 

 36 

 36 

 38 

36

33.8
27

24.628

34.236

30

37
36

37

36

35.234.7

3738

36
34

33
34.8

38

34

34.4

36.7
35

37.2
36 36

2925.5

3330.5

36

37

38.5
36

34.7

31

30
3234

34.5

37
35.5

33.8

37

37

32.5

35.7

35.1

31

35

31.9

32

Fig. OR.1 Threshold map and empirical thresholds in the observed series (red numbers).

OR.2 Validation analysis of the daily max temperature model

This model was thoroughly validated, see Section 5.2 in Schliep et al (2021), using
out-of-sample prediction of characteristics of extreme values in three locations,
Tornos, Zaragoza and Yesa, that represent different climates in the region. The
validation compares the posterior predictive distribution of exceedance days as
well as EHE characteristics (duration, and intensity) with the observed empirical
counterparts. Comparisons are made for the entire time window of the analysis,
1966-2015, as well as for two 10-year periods, 1976-1985 and 2006-2015 to examine
the time evolution. A brief summary of that validation is shown here.

Figure OR.2 shows the mean and 90% credible interval of the probability den-
sity for events lasting 3 days, 4-5 days, 6-7 days, and 8 or more days together
with the empirical probabilities. The results reveal that, for each site and for each
duration bin, our predictive intervals always capture the observed/true proportion.

Figure OR.3 shows the mean and 90% credible of cumulative probabilities of
the average (or maximum) excess being greater than or equal to a set of discrete
values for the average. Our model appears to capture these cumulative probabilities
well for both average and maximum exceedance.
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Fig. OR.2 Posterior predictive mean estimates and 90% credible intervals of the probability
density for the durations of extreme heat events across the years 1966-2015. For each of the
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days, 6-7 days, and 8 or more days.
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Fig. OR.3 Posterior predictive mean estimates and 90% credible intervals of the cumulative
probability of the average (top) and maximum (bottom) exceedance being at or greater than
the specified level during an EHE lasting 3 of more days.

OR.3 Analysis of the time evolution of the extent

Analysis of the empirical extent. The plots in the upper part of Figure OR.4
show the mean of the empirical extent vs. day within JJA in the first and the
last decade of the observed period, for regions B1 and B2. Figure OR.4 (bottom
part) shows the plot of the mean of the empirical extent over JJA for each year
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and the linear trend fitted to that mean in B1 and B2 (left plot), and the mean
of the empirical extent vs. day within JJA (right plot). Although the comparison
between the decades is not clear, the plots in the bottom part suggest that the
mean level of the empirical extent of EHE’s in B2 tends to be higher than in
B1. A possible reason of this behaviour is that area B1 is more heterogeneous in
elevation and topography than B2.

Figure OR.5 shows the plots analogous to those in Figure 3 in the text, for
region B2. Table OR.1 shows the summary measures analogous to those in Table
1 in the text, for Avl∈JJA

2Extt,l(0;B).
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Fig. OR.4 Top: Mean of the empirical extent in the first and the last decade vs. day within
JJA in B1 (left) and B2 (right). Bottom: Mean of the empirical extent over JJA and linear
trend fitted to than mean in B1 and B2 (left) and mean of the empirical extent vs. day within
JJA (right).
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Table OR.1 Posterior mean, standard deviation and lower and upper 0.05 quantiles of
AvDl∈JJA

2Extt,l(0;B), by decades in areas B1 and B2.

B1 B2

Decades Mean sd p5 p95 Mean sd p5 p95

D1 0.049 0.008 0.037 0.064 0.046 0.008 0.034 0.058
D2 0.055 0.010 0.041 0.074 0.051 0.008 0.039 0.066
D3 0.060 0.011 0.044 0.080 0.056 0.010 0.041 0.072
D4 0.058 0.008 0.046 0.071 0.054 0.007 0.044 0.066
D5 0.063 0.012 0.046 0.085 0.060 0.011 0.044 0.079
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OR.4 Evolution of the seasonal pattern and the beginning of the
summer

Figure OR.6 shows the plots analogous to those in Figure 4 in the text, for region
B2. Figure OR.7 shows the plots analogous to those in Figure 6 in the text, for
region B2. Table OR.2 shows the summary measures analogous to those in Table
4 in the text, for 2LDt (0.1;B).
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Fig. OR.7 Posterior density of LDt (0.1;B2) for D1 (black) and D5 (red).
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Table OR.2 Posterior mean, standard deviation and lower and upper 0.05 quantiles of
2LDt (0.1;B), for decades D1 and D2 and regions B1 and B2.

B1 B2

Decade Mean sd p5 p95 Mean sd p5 p95

D1 82.173 18.344 45 92 86.852 13.830 49 92
D2 71.122 23.037 40 92 77.308 20.850 43 92
D3 63.262 23.552 37 92 67.059 23.135 40 92
D4 66.827 22.616 40 92 71.413 21.873 43 92
D5 58.615 23.057 35 92 61.370 23.272 37 92
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OR.5 Behavior of extent across choices of w

Figure OR.8 shows the plots analogous to those in Figure 7 in the text, for region
B2. Table OR.3 summarizes the posterior mean of some increments of the average
extents AvDl∈JlExtt,l(w;B) to compare the evolution across a grid of w values.
Figure OR.9 shows the plots analogous to those in Figure 8 in the text, for region
B2. Figure OR.10 shows the plots analogous to those in Figure 9 in the text, for
region B2.
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Fig. OR.8 Posterior mean of Avl∈JJAExtt,l(w;B2) for w = −1.5,−1.0,−0.5, 0.0, 0.5, 1.0,
1.5oC and linear trends fitted to the means.
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Table OR.3 Posterior mean of some increments of the average extents to compare the evo-
lution across w.

B1 B2

w −1.5 1.5 −1.5 1.5

E
(
AvD5

l∈JlExtt,l(w;B)−AvD1
l∈JlExtt,l(w;B) | y

)
0.053 0.015 0.058 0.015

Decade D1 D5 D1 D5

E
(
AvDl∈JlExtt,l(−1.5;B)−AvDl∈JlExtt,l(1.5;B)) | y

)
0.145 0.183 0.134 0.176
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Fig. OR.9 Posterior density of Avt∈D,l∈JlExtt,l(w;B2) for a grid of values w =
−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5 and D1 (solid line) and D5 (dashed line).
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Regression is the most widely used modeling tool in statistics. Quantile
regression offers a strategy for enhancing the regression picture beyond cus-
tomary mean regression. With time-series data, we move to quantile autore-
gression and, finally, with spatially referenced time series, we move to space-
time quantile regression. Here, we are concerned with the spatiotemporal
evolution of daily maximum temperature, particularly with regard to extreme
heat. Our motivating data set is 60 years of daily summer maximum temper-
ature data over Aragón in Spain. Hence, we work with time on two scales—
days within summer season across years—collected at geocoded station lo-
cations. For a specified quantile, we fit a very flexible, mixed-effects autore-
gressive model, introducing four spatial processes. We work with asymmetric
Laplace errors to take advantage of the available conditional Gaussian rep-
resentation for these distributions. Further, while the autoregressive model
yields conditional quantiles, we demonstrate how to extract marginal quan-
tiles with the asymmetric Laplace specification. Thus, we are able to interpo-
late quantiles for any days within years across our study region.

1. Introduction. Quantile regression (QR) has a rich history by now, dating to Koenker
and Bassett (1978), with much seminal work by Koenker and colleagues (see, e.g., Koenker
and Machado (1999), Koenker (2005), Koenker and Xiao (2006)). Many facets are considered
in the literature including choice of optimization function (equivalently error distribution),
dependence through autoregression, and quantile crossing. We review this literature briefly
below. Here, our contribution is to consider QR in the context of a complex spatiotemporal
model. This model specifies temporal dependence through autoregression, adopting two time
scales, and introduces needed spatial dependence through four Gaussian processes (GPs).
We are motivated by mean modeling work developed in Castillo-Mateo et al. (2022) but
now seeking quantiles associated with time series of daily maximum temperature during the
summer season over a period of 60 years. We use data obtained from monitoring stations
in the Comunidad Autónoma de Aragón, Spain. Our interest is in extreme heat; specifically,
we work with daily maximum temperatures and primarily inferential focus on the τ = 0.95
quantile. Throughout the paper, when we refer to temperature it is a daily maximum tem-
perature. However, our model could be applied to arbitrary quantiles of, for example, daily
average temperature or daily minimum temperature.

More precisely, we specify a spatial conditional autoregression model on a daily scale
using the asymmetric Laplace (AL) distribution. Our quantile autoregression is an AR(1)

form, producing conditional temperature quantiles given the previous day’s temperature. The
specification enables spatial autoregression at daily and annual scale. We first present the

Received January 2022; revised November 2022.
Key words and phrases. Asymmetric Laplace distribution, Gaussian process, hierarchical model, marginal

quantile, Markov chain Monte Carlo, seasonal time series.
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inference associated with the conditional model, discussing the resulting conditional quan-
tiles and employing model performance assessment by location. The conditional quantiles
facilitate assessment of persistence, for example, according to yesterday’s temperature, what
are today’s temperature quantiles? Next, we offer an attractive approach to obtain marginal
quantiles at daily scale. The marginal quantiles enable interpolation. We can show the spatial
surface for a given marginal quantile. We can also consider averaging to provide marginal
quantiles associated with say, 7-day average temperatures. We consider these both spatially
and also dynamically. In fact, we show how to provide marginal quantiles associated with
7-day averages over a specified region. We work in a hierarchical Bayesian framework, en-
abling full posterior inference for all of the quantiles we develop.

There are two modeling approaches for QR in the literature. The first follows the original
ideas by Koenker and Bassett (1978) and offers a separate regression model for each of the
quantiles of interest. This approach is usually called multiple QR, and inference typically pro-
ceeds by minimizing a check loss function or assuming an AL error term. Examples of multi-
ple QR with AL errors appear in Yu and Moyeed (2001) while Kozumi and Kobayashi (2011)
present a Gibbs sampler for a Bayesian QR model. The second approach, which is usually
called joint QR, specifies an appropriate joint model for all quantiles (see, e.g., Tokdar and
Kadane (2012), Yang and Tokdar (2017), Das and Ghosal (2017a)). Broad implementation
for joint QR has proven challenging.

We can also classify the models in terms of whether they incorporate temporal, spatial, or
spatiotemporal dependence. Koenker and Xiao (2006) established the basis for joint quan-
tile autoregression (QAR) models in time series. A detailed overview of the different strands
of time-series QR modeling can be found in Peters (2018). Recently, spatial quantiles have
been an active area of research. Hallin, Lu and Yu (2009) introduce spatial multiple QR that
is nonparametric, focusing on asymptotic behavior using assumptions associated with time-
series asymptotics. Reich, Fuentes and Dunson (2011) develop a spatial joint QR model that
incorporates spatial dependence through spatially varying regression coefficients, which are
expressed as a weighted sum of Bernstein basis polynomials where the weights are con-
strained spatial GPs. Lum and Gelfand (2012) consider spatial multiple QR with AL errors
and then extend it to capture spatial dependence by introducing the AL process. Yang and
He (2015) consider a nonparametric approach based on Bayesian spatial QR using empiri-
cal likelihood as a working likelihood and spatial priors. Chen and Tokdar (2021) specify a
spatial joint QR based on the so-called constraint-free reparametrization by generalizing the
model of Yang and Tokdar (2017) and characterizing spatial dependence via a Gaussian or
t-copula process on the underlying quantile levels of the observation units. Spatiotemporal
quantile models are the most challenging and little work has been done in that regard. For
example, Reich (2012) follows Reich, Fuentes and Dunson (2011), but allows for residual
correlation via a spatiotemporal copula model. Neelon et al. (2015) propose a multiple QR
model for areal data. They model the random effects via intrinsic conditionally autoregres-
sive priors, and they adopt the Bayesian approach based on the AL errors. Das and Ghosal
(2017b) develop a joint QR model with a single explanatory variable following the represen-
tation of quantile functions given by Tokdar and Kadane (2012) and Das and Ghosal (2017a).
The explanatory variable is a linear trend over time and spatial dependence is captured by a
B-spline basis expansion prior.

The primary advantage of joint QR models is that they avoid the possibility of quantile
crossing. This can occur in methods that estimate and infer about quantiles separately. How-
ever, joint methods have the disadvantage of restrictive assumptions on covariates and very
demanding computation. Further, suppose we work with quantiles of an error distribution
such as the AL, that is, we model Y = μτ + ετ where the distribution for ετ has zero as
the τ quantile. Therefore, P(ετ ≤ 0) = τ so μτ provides a τ -QR for Y . If we model in this
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way, we impose a soft (stochastic) order on the quantiles. More precisely, if we also write
Y = μτ∗ + ετ∗ with τ < τ ∗, then ετ∗ will be stochastically smaller than ετ , equivalently μτ∗
will be stochastically larger than μτ , yielding the stochastic order.

Recently, QR models have become widely used in climate studies (see, e.g., Haugen et al.
(2018), McKinnon and Poppick (2020)). Gao and Franzke (2017) fit a local joint QR to
analyze the spatial and temporal pattern of extreme daily temperature. The Bayesian spa-
tiotemporal quantile model in Reich (2012) is used by Tan, Gan and Chen Shu Liu (2019)
to identify climate changes in accumulated precipitation in Canada. None of those models
include serial dependence in daily variables, but Yang, Li and Xu (2018) propose a semipara-
metric autoregressive QR model including lagged data to estimate the thresholds to define
quantile-based temperature extreme indices.

Our interest focuses on the analysis of the temporal evolution of the distributional changes
in the daily maximum temperatures during the summer periods from 1956 to 2015 around the
Comunidad Autónoma de Aragón, in the northeast of Spain. The region includes part of the
Ebro Valley in the center, with mountainous areas in the south (Iberian System) and the north
(Pyrenees). Despite its relatively small size, the region shows a diverse orography, with a
warm homogeneous climate in the center and greater climatic variability in the mountainous
areas.

Lastly, in this article we discuss many different quantiles—empirical and modeled,
marginal and conditional (perhaps conditioned on a marginal quantile). So, we offer some no-
tation to hopefully help in what follows. Our primary model is for a spatial QAR in the form
of conditional quantiles. So, we define QV (τ | y) as the τ quantile for variable V given y.
Hence, for example, QYt�(s)(τ | Yt,�−1(s)) is the τ conditional quantile for the daily temper-
ature variable for day � in year t at location s given the previous day’s temperature at that
site. Also, y might be an empirical quantile as we clarify below. Marginal quantiles, extracted
from our spatial QAR (employing adjustment), are denoted by q̃V (τ ). So, q̃Yt�(s)(τ ) is the τ

marginal quantile for the daily temperature variable for day � in year t at location s. Empirical
quantiles are denoted by q

emp
V (τ ∗). They may be indexed by site, averaged over days within

a year, years for a given day, or both. When they appear, an explicit definition is clarified in
the associated text. They may be used in specifying a conditional quantile and, in this case,
τ ∗ need not equal τ .

The format of the paper is as follows. Section 2 describes the data set with some descriptive
work. Section 3 presents our spatial QAR model with the results of the model fitting and some
model adequacy assessment. Section 4 develops a strategy for extracting marginal quantiles
from our QAR model and then develops interpolation and averaging over time and space for
them. Section 5 concludes with a summary and future work.

2. The data. The analyses presented here consider daily maximum temperature (◦C)
data at n = 18 sites around the Comunidad Autónoma de Aragón (see Figure 1) provided by
the Agencia Estatal de Meteorología (AEMET) in Spain. The data are available at a daily
scale from 1956 to 2015, but the focus of the analyses is in the warm months of June, July,
and August (denoted as JJA); in this regard, we fit the models with data in an extended period
from May 1 to September 30 to avoid boundary issues.

The region of interest, D, is around Aragón, located in the Ebro Basin in northeastern
Spain, with a spatial extent of roughly 53,000 km2. In particular, D has corners at approxi-
mately (40.5◦N,1.7◦W), (42.9◦N,1.7◦W), (42.9◦N,0.0◦E), and (40.5◦N,0.0◦E). Figure 1
shows the name, location, and elevation of the 18 sites. The Ebro River flows from the north-
west to the southeast through a valley bordered by the Pyrenees and the Cantabrian Range in
the north and the Iberian System in the southwest. The maximum elevation is around 3000 m
in the Pyrenees, 2000 m in the Cantabrian Range and the Iberian System, while the elevation
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FIG. 1. Location of the 18 sites around the Comunidad Autónoma de Aragón in northeastern Spain.

in the Central Valley varies between 200–400 m. In summary, roughly 62% of the area is
above 500 m and 28% above 1000 m.

According to AEMET (2011), the central part of the Valley is characterized by a
Mediterranean-continental dry climate with irregular rainfall and a large temperature range.
However, several climate subareas can be distinguished due to the heterogeneous orography
and other influences. Consequently, the region presents a wide variety of climate conditions
in a relatively small area, bringing interest in studying it and challenge in modeling it.

With regard to showing maps over this region, D was partitioned with a resolution of
4 km × 4 km grid cells yielding K = 2342 cells.

2.1. Descriptive analysis. Figure 2 describes the distribution across sites of three features
related to the empirical quantiles of daily temperatures in JJA months for a grid of quantiles.
Each boxplot corresponds to a quantile and is based on 18 points, one point for each observed
site. The first plot shows the empirical quantiles calculated with 60 (years)×92 (days) obser-
vations, that is, each one of the 18 points corresponds to the empirical quantile across 60×92
observations, and each boxplot is across 18 empirical quantiles from the 18 sites. The range
of each boxplot varies around 10◦C to 15◦C, and the difference between the median of the
0.95 and 0.05 quantiles is around 15◦C, indicating a similar variability across sites and across
quantiles. The second plot shows the difference between the empirical quantiles of the 30-
year periods 1986–2015 and 1956–1985 so that each quantile is now calculated with 30 × 92

FIG. 2. Boxplots of the 18 sites across quantiles to describe empirical quantile features.
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observations. Most of the observed increases vary from around −0.5◦C to 2.5◦C, but the ob-
served warming is higher in central quantiles. The variability of this increase across quantiles
is lower than across sites. The third plot shows the quantile autocorrelation, a measure of
quantile dependence based on the correlation between a binary variable indicating whether
the temperature in a day is higher than its empirical quantile and the previous day’s temper-
ature; see Li, Li and Tsai (2015) and Section S1.1 in the Supplementary Material (Castillo-
Mateo et al. (2023)) for the details. This autocorrelation is strong in all sites and quantiles,
but it clearly decreases in both tails. The variability across quantiles is larger than across sites.
Section S1.1 also includes a descriptive analysis of a second-order quantile autocorrelation,
with little or no evidence in favor of including it in the model.

A thorough analysis of the temporal pattern and the effect of elevation and latitude in
the quantiles of temperatures is offered in Section S1.2 of the Supplementary Material. This
analysis shows that elevation of the site has a roughly negative linear relationship in the em-
pirical quantiles and that this effect is slightly higher in the left tail. As expected, given the
size of the region, no latitudinal gradient is observed. Lastly, the data show a strong seasonal
component, with no evidence of changes across quantiles and across time. The increase ob-
served between both 30-year periods is homogeneous during the summer, although relevant
differences are observed across sites and quantiles.

3. The spatial quantile autoregression model.

3.1. Review of the asymmetric Laplace distribution. We introduce the AL distribution as
an error distribution for multiple QR models using the following parametrization. We denote
by ε ∼ AL(μ,σ, τ ) a random variable with probability density function (pdf),

f (ε | μ,σ, τ ) = στ(1 − τ)

{
exp

{−(1 − τ)σ |ε − μ|} if ε < μ,

exp
{−τσ |ε − μ|} if ε ≥ μ.

The cumulative distribution function is

F(ε | μ,σ, τ ) =
{
τ exp

{−(1 − τ)σ |ε − μ|} if ε < μ,

1 − (1 − τ) exp
{−τσ |ε − μ|} if ε ≥ μ.

Here, μ is a location parameter, σ > 0 is a scale parameter, and τ ∈ (0,1) is an asymmetry
parameter. In particular, it is easily checked that μ is the τ quantile of the distribution and we
will typically set μ = 0 so that P(ε ≤ 0) = τ .

The pdf above can be rewritten as f (ε | μ,σ, τ ) = στ(1 − τ) exp{−σδτ (ε − μ)} where
δτ (u) = u(τ − 1(u < 0)) is the check loss function (Koenker and Bassett (1978)). For a
sample {xi : i = 1, . . . , n}, finding arg minμ

∑
δτ (xi − μ) returns the τ empirical quantile.

Just as minimizing the sum of squares loss is associated with normal errors, minimizing
check loss is associated with AL errors.

A convenient strategy for generating ε ∼ AL(0, σ, τ ) variables is to use the following rep-
resentation proven by comparing moment generating functions (see, e.g., Kotz, Kozubowski
and Podgórski (2001)). We can express ε in terms of

ε =
√

2U

σ 2τ(1 − τ)
Z + 1 − 2τ

στ(1 − τ)
U,

where Z ∼ N(0,1) and U ∼ Exp(1). So,

(1) ε | σ,U ∼ N

(
1 − 2τ

στ(1 − τ)
U,

2U

σ 2τ(1 − τ)

)

is normally distributed enabling us to use all of the familiar Gaussian theory.
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3.2. The space-time model. Let τ ∈ (0,1) denote a quantile order, where each quantile
is modeled separately. Our general form for a spatiotemporal τ -QAR with two time scales is
given by

(2)
Yt�(s) = QYt�(s)

(
τ | Yt,�−1(s)

) + ετ
t�(s)

= qτ
t�(s) + ρτ (s)

(
Yt,�−1(s) − qτ

t,�−1(s)
) + ετ

t�(s),

where QYt�(s)(τ | Yt,�−1(s)) is the τ conditional quantile of Yt�(s) given Yt,�−1(s) and the
error term is ετ

t�(s) ∼ ind. AL(0, σ τ (s), τ ). Here, qτ
t�(s) contains fixed and random effects

as below. In addition, ρτ (s) is a spatially varying autoregression coefficient and σ τ (s) is a
spatially varying pure error scale parameter at location s.

Based upon the foregoing exploratory analysis along with that developed in Castillo-Mateo
et al. (2022), we adopt an analogue of their spatiotemporal mean autoregression model. Here,
Yt�(s) denotes the daily maximum temperature for day �, � = 2, . . . ,L of year t , t = 1, . . . , T

at location s, s ∈ D, the study region. We specify ρτ (s) to capture spatial autoregession
dependence through the GP Zτ

ρ(s) = log{(1 + ρτ (s))/(1 − ρτ (s))} with mean Zτ
ρ and ex-

ponential covariance function having variance parameter σ 2,τ
ρ and decay parameter φτ

ρ . In
the same manner, we specify στ (s) to capture spatial scale dependence through the GP
Zτ

σ (s) = log{στ (s)} with mean Zτ
σ and exponential covariance function having variance pa-

rameter σ 2,τ
σ and decay parameter φτ

σ .
As for qτ

t�(s), we adopt

qτ
t�(s) = βτ

0 + ατ t + βτ
1 sin(2π�/365) + βτ

2 cos(2π�/365) + βτ
3 elev(s) + γ τ

t (s),

where γ τ
t (s) = βτ

0 (s) + ατ (s)t + ψτ
t + ητ

t (s). The fixed effects are given by βτ
0 , a global

intercept, ατ t , a global long-term linear trend, sin and cos terms that provide the annual sea-
sonal component, and elev(s), the elevation at s. The random effects given by γ τ

t (s) capture
space-time dependence through GPs. In particular, βτ

0 (s) is a GP with zero mean and expo-

nential covariance function having variance parameter σ
2,τ
β0

and decay parameter φτ
β0

, and it
provides a local spatial adjustment to the intercept. The ατ (s) are a GP, with zero mean and
exponential covariance function having variance parameter σ 2,τ

α and decay parameter φτ
α , to

provide a local slope adjustment to the linear trend. Together, γt (s) supplies a locally linear
trend, an exceptionally rich spatial specification. With the inclusion of seasonality, it is dif-
ficult to imagine that the data could inform about a higher-order local choice. Continuing,
ψτ

t ∼ i.i.d. N(0, σ
2,τ
ψ ) provides annual intercepts to allow for yearly shifts (i.e., for hotter

or colder years),1 and ητ
t (s) ∼ i.i.d. N(0, σ 2,τ

η ) provides local annual intercepts to allow for
local yearly shifts.

We make two further points here. Focusing on performance of conditional quantiles, we
have investigated departures from our first-order regression but have found no reason to adopt
a more elaborate ARMA specification. In the exploratory and residual analysis, no evidence
of second-order correlation has been found while dependence explained by MA terms be-
comes confusing with regard to our conditional objective. Second, we do not introduce spatial
variability in the seasonality in our study. We are interested in the warmest time of the year,
JJA. Our region is small enough to assume that the daily amplitude of solar incidence, that
is, seasonality, during JJA is almost equivalent between the northernmost and southernmost
sites. A brief residual analysis to validate the seasonal term used in the model is given in
Section S2 of the Supplementary Material.

1An autoregression could be considered for ψτ
t . However, Castillo-Mateo et al. (2022) found no such autocor-

relation in their means model.
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We conclude with a technical remark regarding the validity of the Bayesian analysis for
individual quantiles based on the working AL likelihood since this likelihood differs from
that of the data generating process. Sriram, Ramamoorthi and Ghosh (2013) established suf-
ficient conditions for the posterior consistency of model parameters under the AL working
likelihood (at a single quantile level). The situation is more complicated when multiple quan-
tile levels are considered, as this means different likelihoods will be utilized in each of the
Bayesian analyses. When the AL likelihood differs from the data generating process, there
is some literature providing posterior adjustments under the linear quantile regression model
for independent data (see, e.g., Chernozhukov and Hong (2003), Yang, Wang and He (2016)).
While it is useful to be aware of these issues, addressing them is beyond the scope of our
complex spatiotemporal modeling employed here.

3.2.1. Prior distributions and model fitting. Model inference is implemented in a
Bayesian framework. To complete the model, we specify prior distributions for all model
parameters. In this setting, diffuse and, when available, conditionally conjugate prior distribu-
tions are chosen. Recall that the model adopts a conditional AL distribution for all Yt�(s), and
that this distribution can be expressed as normal when it is conditioned on Uτ

t�(s) ∼ Exp(1).
Therefore, the coefficient parameters βτ

0 , ατ , βτ
1 , βτ

2 , and βτ
3 are each assigned independent

normal prior distributions with mean 0 and standard deviation 100. The variance parameters,
σ

2,τ
ψ and σ 2,τ

η , are assigned independent Inverse-Gamma(0.1,0.1) prior distribution.
The specification of the GPs is as follows. First, Zρ and Zσ are each given a normal prior

distribution with mean 0 and standard deviation 100. Second, the variance parameter for each
of the four spatial covariances, σ 2,τ

β0
, σ 2,τ

α , σ 2,τ
ρ , and σ 2,τ

σ , is assigned an independent Inverse-
Gamma(0.1,0.1) prior distribution. With an exponential covariance function, the product
of the variance and the decay parameter is identified but the individual parameters are not
(Zhang (2004)). With stronger interest in the spatial variability, we adopt weak priors and
let the data inform about the σ 2’s. We are more precise with regard to the decay parameters.
In fact, with information well informed by the spatial scale of our study region, we fix the
decay parameters φ ≡ φτ

β0
= φτ

α = φτ
ρ = φτ

σ = 3/dmax, where dmax is the maximum distance
between any pair of spatial locations. That is, with an exponential covariance function, the
decay parameter is 3/range, and it is set to the value associated with the largest spatial range
for the observed data locations.

We develop a Metropolis-within-Gibbs algorithm to obtain Markov chain Monte Carlo
(MCMC) samples from the joint posterior distribution. In particular, we derive full condi-
tional distributions for each of the parameters, including the n×T × (L− 1) latent exponen-
tial variables ξτ

t�(s) = Uτ
t�(s)/σ

τ (s). This parametrization is adopted to obtain a gamma full
conditional distribution for the scale parameter in the AL (Kozumi and Kobayashi (2011)).
However, in our case, with a GP prior for the log-scale parameter, the full conditional is
still nonstandard so we do not benefit from this parametrization. For the fitting, we introduce
β̃τ

0 (s) = βτ
0 + βτ

0 (s) and α̃τ (s) = ατ + ατ (s) within γ τ
t (s) to enable the benefits of hierar-

chical centering in the model fitting (Gelfand, Sahu and Carlin (1995)). Details of the Gibbs
sampler used for the model fitting are provided in Section S3 of the Supplementary Material.
All the covariates have been centered and scaled to have mean zero and standard deviation
one to improve the mixing of the algorithm.

3.3. Results of model fitting. This section summarizes the results of the QAR models
for τ ∈ {0.05,0.10,0.20, . . . ,0.80,0.90,0.95} quantiles fitted to the temperature series de-
scribed in Section 2. The parameters ατ ,βτ

1 , βτ
2 , βτ

3 , ατ (s), and στ
α have been rescaled to

interpret them in terms of the original scales of the covariates. For each τ , using MCMC and
the Gibbs sampling algorithm (see Section S3), we ran three chains, each with different initial
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FIG. 3. Posterior median and 90% credible interval of the main parameters and posterior mean of the centered
seasonal pattern captured by the harmonic terms (first row central plot) across quantiles.

values, out to 1,000,000 iterations for each chain, to obtain samples from the joint posterior
distribution. The first 100,000 samples were discarded as burn-in and the remaining 900,000
samples were thinned to retain 1000 samples from each chain for posterior inference. Exper-
iments were run on a computer with an Intel Core i9-10900K processor running at 3.70 GHz
using 64 GB of RAM, running Windows 10 Pro version 21H2. Under this setup, fitting eleven
models in parallel, we were able to fit the 3 (chains) × 11 (τ ’s) models in 3 × 36 hours. Con-
vergence was monitored by usual trace plots (not shown), and the marginal and multivariate
potential scale reduction factors (Brooks and Gelman (1998)).

Figure 3 shows a summary across quantiles for the fixed effects parameters and for ρτ , the
mean of the spatial process ρτ (s). Figure S7 of the Supplementary Material provides the rest
of the model parameters. As expected, βτ

0 increases monotonically with the quantiles, but it is
not a linear function of τ since the slope varies from τ = 0.60. The seasonal pattern obtained
from the harmonic terms is very similar across the τ ’s. The elevation coefficient βτ

3 is close
to −7◦C/km, the environmental lapse rate (Navarro-Serrano et al. (2018)), for τ greater than
or equal to 0.40. This value decreases below −9◦C/km for τ ’s close to the extreme cold. The
posterior median of ατ is above 0.30◦C/decade in the central quantiles, close to the trend of
0.27◦C/decade estimated by Peña-Angulo et al. (2021) for the daily temperature in Spain in
the summer period 1956–2015, and decreases to about 0.10◦C/decade in the tails. The results
of ρτ show a strong autoregression in all the quantiles, varying from 0.55 for τ = 0.05 to 0.75
in the central quantiles.

Figure 4 shows the posterior mean of the spatial random effects, β̃τ
0 (s), α̃τ (s), ρτ (s), and

στ (s) at each observed site across quantiles. Figure 5 shows spatially the posterior mean of
the previous spatial processes (showing βτ

0 (s) instead of β̃τ
0 (s)) for τ = 0.05,0.50,0.95. See

also Figure S8 of the Supplementary Material for posterior boxplots of these processes at
the observed sites and Figure S9 to get an idea of the uncertainties of these estimates. These
figures show wide spatial variability in the four spatial processes at all quantiles. In particular,
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FIG. 4. Posterior mean of the four spatial random effects in the 18 observed sites across quantiles.

the spatially varying intercept βτ
0 (s) captures climate variability not explained by elevation.

The similarity of the spatial pattern for β0.50
0 (s) and β0.95

0 (s) versus β0.05
0 (s) is noteworthy.

There are clear differences across quantiles in the spatial pattern of the linear trend α̃τ (s).
For τ = 0.50, the trends are positive in all of the regions while negative values are observed
in the northwest for τ = 0.05 and in the central part and northeast for τ = 0.95. The areas
where the 80% credible intervals do not contain a null trend are shown in Figure S10 of the
Supplementary Material. The range and spatial pattern of the autoregression term ρτ (s) also
vary across quantiles. The posterior mean varies from 0.72 to 0.80 in τ = 0.50, from 0.53 to
0.69 in τ = 0.95, and from 0.36 to 0.64 in τ = 0.05.

The random evolution across years of the posterior distribution of the temporal random ef-
fects ψτ

t (see Figure S11 in the Supplementary Material) confirms that a more complex trend
would not improve the fit of the linear trend. Again, we note the similarity of the distribution
of ψ0.50

t and ψ0.95
t , while ψ0.05

t is slightly different and has a greater variance.

3.3.1. Conditional quantiles. As an illustration of the output provided by the model,
Figure 6 shows the posterior mean of the conditional quantiles QYt�(s)(τ | y) on July 15, 2015
(t = 60 and � = 76) under three different situations for y and for τ = 0.05,0.50,0.95. An
important feature of daily temperature is its high persistence, evidenced by the autoregression
coefficients ρτ (s) of the model. The selected values of y correspond to location dependent
cold, mild, and warm situations, that is, we use local empirical quantiles q

emp
Y (s)(τ

∗) for τ ∗ =
0.05,0.50,0.95. First, the empirical quantiles at the observed sites are obtained using the
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FIG. 5. Maps of the posterior mean of the four spatial random effects for τ = 0.05,0.50,0.95.

30 × 92 observations of the JJA months in the reference period 1981–2010. Later, to obtain a
value for each s, the observed values are interpolated by means of a simple kriging.

Though the posterior mean level changes, the spatial pattern in all the conditional quantiles
is similar. However, as a consequence of the different persistence across quantiles, the poste-
rior mean of the difference between QYt�(s)(0.50 | y) and QYt�(s)(0.05 | y) varies noticeably
depending on the value of the previous day’s temperature. For example, in Zaragoza, it is
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FIG. 6. Maps of the posterior mean of the conditional quantiles QY60,76(s)(τ | q
emp
Y(s)(τ

∗)) on July 15, 2015, for

τ, τ∗ = 0.05,0.50,0.95.

2.8◦C, 5.7◦C and 8.6◦C for y = 20,30,40◦C, respectively. Analogously, the posterior mean
of the difference between QYt�(s)(0.95 | y) and QYt�(s)(0.50 | y) is 4.3◦C, 3.7◦C, and 3.1◦C
for the previous values of y. Another consequence is that an increase of around 1◦C in the
previous day’s temperature, y, yields an increase of around 0.44◦C in the posterior mean of
the 0.05 conditional quantile, 0.73◦C in the conditional median, and around 0.66◦C in the
0.95 conditional quantile.

3.4. Model assessment through cross-validation. Here, we take up model assessment in
the context of performance across the n locations. That is, we are not implementing model
comparison; rather, we are looking at local and global adequacy of the model employing
three different quantiles, τ = 0.05,0.50,0.95. In particular, a leave-one-out cross-validation
is carried out. That is, each site is held out one at a time and subsequently the model is fitted
with the remaining n − 1 sites. Then the conditional quantiles are obtained using one-step
ahead prediction since, for held-out site, we know the Yt,�−1(s) to condition on.
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We consider two types of residuals. The first type is defined as R
(b)
t� (τ ; s) = Yt�(s) −

Q
(b)
Yt�(s)

(τ | Yt,�−1(s)) for b = 1,2, . . . ,B , where b denotes an MCMC posterior realization of
the τ conditional quantile on day �, year t at site s. A simpler type based on the mean of those
realizations yields the single residual value Rt�(τ ; s) = Yt�(s) − E[QYt�(s)(τ | Yt,�−1(s)) |
data]. The simpler version only looks at Yt�(s) relative to the associated mean of the con-
ditional quantile. The replicated version looks at Yt�(s) relative to the distribution of the
associated conditional quantile.

Now, we define three measures of model assessment. First, we propose an approximation
to the probability (an integral) that the observed Yt�(s) is less than the conditional quantile
on day �, year t , site s. This probability is estimated as pt�(τ ; s) = ∑

b 1(R
(b)
t� (τ ; s) < 0)/B .

The mean value of these probabilities should be τ . As a result, a global measure is defined as

p(τ) = 1

nT (L − 1)

n∑
i=1

T∑
t=1

L∑
�=2

pt�(τ ; si ).

Under an adequate model, this should take a value close to τ . Analogous versions without
averaging over days, years, or sites are denoted by p�(τ), pt(τ ), or p(τ ; s), respectively.

Second, to evaluate potential overfit in terms of out of sample performance, we employ
the asymmetrically τ -weighted mean absolute error (Koenker and Bassett (1978)), which we
denote by WMAE(τ ). Using the check loss function δτ (u) = u(τ − 1(u < 0)) defined in
Section 3.1, this measure is given by

WMAE(τ ) = 1

nT (L − 1)

n∑
i=1

T∑
t=1

L∑
�=2

δτ

(
Rt�(τ ; si)

)
.

Equivalently, this measure calculates the mean value of the absolute errors weighted by 1 − τ

if Rt�(τ ; s) < 0 or τ otherwise. The smaller its value, the better the model performance. The
analogous site-level version is denoted by WMAE(τ ; s).

The third measure is calculated as R1(τ ) according to Koenker and Machado (1999). This
goodness-of-fit measure is viewed as an analogue of R2 for the classical residual sum of
squares; the check loss function for quantiles replaces the least-squares loss function and the
τ empirical quantile q

emp
Y (s)(τ ) replaces the sample mean. In this section, q

emp
Y (s)(τ ) is calculated

with the T × (L − 1) observations of the held-out site. Thus, this measure is given by

R1(τ ) = 1 −
∑n

i=1
∑T

t=1
∑L

�=2 δτ (Rt�(τ ; si))∑n
i=1

∑T
t=1

∑L
�=2 δτ (Yt�(si ) − q

emp
Y (si )

(τ ))
.

Note that in-sample, but not out-of-sample, R1(τ ) would fall between 0 and 1. In both cases,
it measures the relative success of the corresponding QR models at a specific quantile in
terms of an appropriately weighted sum of absolute residuals. Thus, R1(τ ) provides a local
measure of goodness-of-fit for a particular quantile rather than a global measure of goodness-
of-fit over the entire conditional distribution. The analogous site-level version is denoted by
R1(τ ; s).

Table 1 shows global performance metrics and Table 2 shows the results by site. The
performance is good for the three values of τ according to p(τ). Further, for most of the
stations, p(τ ; s) is within τ ± 0.02. The goodness-of-fit considering R1(τ ) is around 0.367
for τ = 0.05, with values above 0.4 in some sites. This criteria is around 0.464 and 0.442 for
τ = 0.50 and 0.95, respectively, but it is above 0.5 in some sites. Quantiles 0.50 and 0.95
perform better than the left tail.
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TABLE 1
Performance metrics for the models with τ = 0.05,0.50,0.95

τ p(τ) WMAE(τ ) R1(τ )

0.05 0.056 0.378 0.367
0.50 0.505 1.192 0.464
0.95 0.944 0.272 0.442

Less accurate results appear in sites located in the western part of the region. Tornos has
a climate that is affected by plateau conditions, and presents the worst values in p(τ ; s) and
R1(τ ; s) for τ = 0.95. Pamplona has colder conditions related to Cantabrian Sea effects, and
the actual τ = 0.05 quantile is much colder than expected by the model. Furthermore, its
median is the most poorly captured across the sites. The performance of the other sites is
reasonably homogeneous based on the three measures for the three values of τ .

Figure 7 shows the evolution of pt(τ ) and p�(τ) across t and �, respectively. It reveals that
the temporal evolution of days-within-years and years is well captured and there seems to be
no bias in the estimates.

4. Marginal quantiles. Here, we present a general strategy for obtaining marginal quan-
tiles from the conditional quantiles. Implementation is straightforward working with AL er-
rors, employing the conditional Gaussian representation.

Marginal quantiles enjoy direct interpretation as well as the benefit of spatial interpolation.
That is, to be locally appropriate, conditional quantiles would require the local previous day’s
temperature, which will not be available at unobserved locations.2 We present the approach

TABLE 2
Performance metrics for models with τ = 0.05,0.50,0.95 for the 18 sites

p(τ ; s) WMAE(τ ; s) R1(τ ; s)

Location 0.05 0.50 0.95 0.05 0.50 0.95 0.05 0.50 0.95

Pamplona 0.140 0.582 0.933 0.501 1.619 0.359 0.144 0.333 0.369
Buñuel 0.069 0.519 0.954 0.368 1.227 0.270 0.345 0.422 0.430
El Bayo 0.036 0.485 0.952 0.367 1.162 0.262 0.361 0.457 0.444
Morella 0.035 0.531 0.953 0.342 1.046 0.250 0.418 0.488 0.460
Huesca 0.040 0.485 0.954 0.341 1.005 0.225 0.398 0.520 0.515
Tornos 0.051 0.446 0.876 0.436 1.392 0.349 0.386 0.458 0.347
Santa Eulalia 0.037 0.463 0.951 0.390 1.137 0.257 0.393 0.510 0.480
Calatayud 0.044 0.504 0.944 0.372 1.221 0.279 0.411 0.473 0.451
Panticosa 0.042 0.568 0.976 0.346 1.110 0.267 0.402 0.491 0.419
La Puebla de Híjar 0.063 0.465 0.925 0.377 1.118 0.252 0.342 0.462 0.449
Ansó 0.045 0.524 0.969 0.370 1.160 0.262 0.392 0.490 0.463
Daroca 0.053 0.523 0.968 0.380 1.275 0.274 0.394 0.454 0.456
Zaragoza 0.066 0.505 0.957 0.365 1.176 0.244 0.350 0.446 0.484
La Sotonera 0.055 0.506 0.941 0.361 1.094 0.251 0.378 0.493 0.470
Pallaruelo 0.058 0.481 0.932 0.373 1.106 0.250 0.375 0.488 0.463
Cueva Foradada 0.046 0.573 0.976 0.326 1.027 0.246 0.396 0.477 0.452
Sallent de Gállego 0.060 0.465 0.914 0.373 1.167 0.276 0.389 0.487 0.429
Yesa 0.062 0.464 0.910 0.423 1.414 0.316 0.324 0.416 0.411

2Of course, we can always interpolate conditional quantiles given illustrative choices of previous day’s temper-
ature.
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FIG. 7. Evolution of pt (τ ) across t (left) and p�(τ) across � (right) for τ = 0.05,0.50,0.95.

for extracting a marginal quantile from a conditional quantile after fitting the conditional
quantile model. In the setting of an AL specification for the errors, first we show how to
implement this procedure for a single day. Next, we clarify how the spatial kriging is imple-
mented using these marginal quantiles and supply a spatial map of the marginal τ -quantile
temperature surface in our study region for a given day. Then we move to the marginal quan-
tile associated with an average over days. Such averaging is helpful in providing say, weekly
quantiles; in our application, 7-day average temperatures quantiles in the summer may be
useful, particularly for comparison over years. Such quantiles can be kriged over a spatial
region to reveal the quantile surface. Lastly, such a daily or weekly quantile surface can be
averaged over a region of interest to obtain areal daily or weekly quantiles. The tool here is
block averaging (Banerjee, Carlin and Gelfand (2015), Chapter 7).

4.1. Obtaining marginal quantiles from conditional quantiles in an autoregression. Con-
sidering expression (2), it is attractive to think about qτ

t�(s) as a version of a marginal τ quan-
tile for Yt�(s). However, P(Yt�(s) ≤ qτ

t�(s)) 	= τ . So, we seek an additive adjustment to qτ
t�(s),

which depends upon the model for Yt�(s), so that it adjusts this probability to τ . Then qτ
t�(s)

plus this adjustment becomes the marginal τ quantile we want.
To present the idea in its simplest form, we ignore space and years and suppress the

superscript τ in the parameters. So, we have Y� = q� + ρ(Y�−1 − q�−1) + ε� where the
ε� ∼ i.i.d. AL(0, σ, τ ). In this notation, QY�

(τ | Y�−1) = q� + ρ(Y�−1 − q�−1) is the τ quan-
tile of the QAR. For convenience, write this model as W� = ρW�−1 + ε� with W� = Y� − q�.
Upon substitution, we have W� = ρ�W0 +∑

j ρj ε�−j . Using the conditional normal form for
ε� in (1), we have

ε̃� | ρ,σ,U�,U�−1, . . . ,U1 ≡
�−1∑
j=0

ρjε�−j | ρ,σ,U�,U�−1, . . . ,U1

∼ N

(
1 − 2τ

στ(1 − τ)

�−1∑
j=0

ρjU�−j ,
2

σ 2τ(1 − τ)

�−1∑
j=0

ρ2jU�−j

)
.

We want the τ quantile of W�, call it dτ
� (ρ, σ ), so that W� −dτ

� (ρ, σ ) has 0 as its τ quantile
and, therefore, Y� has q� +dτ

� (ρ, σ ) as the τ marginal quantile. The τ quantile of W� is ρ�W0
plus the τ quantile of ε̃�. While 0 is the τ quantile of ε�, the τ quantile of ε̃� will not be 0.
That is, each term in ε̃� has τ quantile 0 but the sum will not.

Though ε̃� does not have an AL distribution, we can find its τ quantile. For any d , we seek
P(ε̃� < d | ρ,σ ). However,

P(ε̃� < d | ρ,σ )

=
∫ ∫

· · ·
∫

P
(
ε̃� < d | ρ,σ, {Uj : j = 1,2, . . . , �})[{Uj }]dU1 dU2 · · · dU�.



SPATIAL QUANTILE AUTOREGRESSION 2319

But given {Uj : j = 1,2, . . . , �}, we have the distribution for ε̃� above. So, we can calculate
P(ε̃� < d | ρ,σ, {Uj : j = 1,2, . . . , �}). In fact, we can do a Monte Carlo integration to calcu-
late P(ε̃� < d | ρ,σ ) by generating many sets {Uj : j = 1,2, . . . , �}, all i.i.d., all distributed
as Exp(1). We can do this for any value d , in fact, using the same Monte Carlo samples.
Then, using a simple search, we can find dτ

� (ρ, σ ). Moreover, we can use the same Monte
Carlo samples for any ρ and σ so computation is not demanding.

In our modeling setting, we need dτ
t�(ρ

τ (s), σ τ (s)) to accompany qτ
t�(s). From the model

fitting described in Section 3.2.1, we have random samples of ρτ (s) and σ τ (s), which can
produce random samples of dτ

t�(ρ
τ (s), σ τ (s)). These can be used with posterior samples of

qτ
t�(s) to create the posterior distribution of the τ marginal quantile for any year, day, and site.

In the sequel, we denote this as q̃Yt�(s)(τ ) ≡ qτ
t�(s)+ dτ

t�(ρ
τ (s), σ τ (s)). Again, we can use the

same sets of {Uj }’s. Moreover, we can do this for any τ . Generating the entire collection of
marginal quantiles of interest is straightforward.

4.2. Kriging marginal quantiles and block averaging of marginal spatial quantiles. As
above, for a given τ , year, and day within year, marginal quantiles enable kriging to un-
observed locations. More precisely, at new site s0, we can obtain the posterior distribution
of q̃Yt�(s0)(τ ). To obtain a sample of q̃Yt�(s0)(τ ), we need a sample of the model part plus
a sample of the adjustment part, dτ

t�(ρ
τ (s0), σ

τ (s0)). The model part is a function of the
parameters and process realizations while the correction part is a function of just process
realizations. Posterior samples for the parameters are available from the model fitting. Pos-
terior samples for the GPs are available, using posterior samples of the parameters, through
usual Bayesian kriging (Banerjee, Carlin and Gelfand (2015), Chapter 6). Therefore, we can
interpolate marginal quantiles to any desired location in the study region. If we do this to a
sufficiently spatially resolved grid, we can obtain the posterior mean at each point and “see”
the posterior τ quantile surface for the given day within year.

Further, we might seek the average of the τ quantile over some subregion B ⊆ D for day
� in year t . This becomes a block average, q̃Yt�(B)(τ ) ≡ ∫

B q̃Yt�(s)(τ ) ds/|B|. As is customary,
we approximate this integral by Monte Carlo integration of the form

∑K
k=1 q̃Yt�(sk)(τ )/K for

{sk ∈ B}, drawing the sk from above grid. Lastly, we note that in the above, we are interpo-
lating a parameter, not an observation. We are obtaining posterior distributions, not posterior
predictive distributions.

4.2.1. Marginal quantiles for one day at unobserved locations. For each of the 3000
posterior samples of ρτ (si ) and σ τ (si ) (i = 1, . . . , n) stored in Section 3.3, we use Bayesian
kriging to obtain 3000 samples of ρτ (sk) and στ (sk) (k = 1, . . . ,K) in a grid of the study
region D (see Section 2 for grid details). For each of them, we sample 1000 sets of {Uj }’s
to calculate P(ε̃� < d | ρ,σ ), and obtain a sample of dτ

t�(ρ
τ (sk), σ

τ (sk)) through a one-
dimensional rootfinder. In particular, ρ�W0 drops rapidly to zero as � tends to infinity, so it
becomes negligible.

As an illustration of the output provided by the marginal quantiles, Figure 8 shows maps of
the posterior mean of q̃Yt�(s)(τ ) on July 15, 2015 (t = 60 and � = 76) for τ = 0.05,0.50,0.95.
For all quantiles, the maximum temperature is reached in the Valley, center and southeast, and
the minimum in the Pyrenees in the northeast. For τ = 0.05, the temperature range goes from
6.0◦C to 27.9◦C, for τ = 0.50 from 19.7◦C to 37.1◦C, and for τ = 0.95 from 23.3◦C to
41.1◦C.

We use the marginal quantiles to analyze climate change for τ = 0.05,0.50,0.95 in Fig-
ure 9. The first row shows spatially

(3) E

(
1

10

∑
t∈D6

q̃Yt�(s)(τ ) − 1

10

∑
t ′∈D1

q̃Yt ′�(s)(τ )
∣∣∣ data

)
,
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FIG. 8. Maps of the posterior mean of the marginal quantiles q̃Y60,76(s)(τ ) on July 15, 2015, for
τ = 0.05,0.50,0.95.

where D1 is the first decade (1956–1965) and D6 the last (2006–2015). The result does not
depend on � since it can be summed up to the change in the terms ατ t + γ τ

t (s). The posterior
mean in (3) supplies the mean change in temperature between the marginal quantile of a day
averaged over the first decade and the marginal quantile of that same day averaged over the
last decade, that is, we use averages of daily quantiles. The spatial pattern appears different
across quantiles, with a smaller range of change for the median than for the extreme quantiles.
Warming is general, exceeding 3◦C in the southwest for τ = 0.95. But cooling patterns also
appear in the northwest for τ = 0.05.

The second row shows spatially

(4) P
(
q̃Yt ′�(s)(τ ) < q̃Yt�(s)(τ ) | t ′ ∈ D1, t ∈ D6,data

)
.

FIG. 9. Top: Difference (in ◦C) between the marginal quantiles of the last and the first decades in (3). Bottom:
Posterior probability in (4) that a marginal quantile in a day in a year of the first decade is colder than the same
day in a year of the last decade. For τ = 0.05,0.50,0.95.
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FIG. 10. Evolution of the block average q̃Yt,76(D)(τ ) on July 15 against year for τ = 0.05,0.50,0.95.

This value represents the posterior probability that the marginal quantile of a day in any year
of the first decade is colder than the marginal quantile of that same day for any year of the
last decade. The pattern is the same as above, but in this case instead of seeing results in ◦C,
we see them in terms of probabilities. To summarize the results, if we also condition on s ∈ D
in (4), these posterior probabilities are 0.67 for τ = 0.50, 0.66 for τ = 0.95, and 0.57 for
τ = 0.05.

Figure 10 shows the evolution over the years of the block average q̃Yt�(D)(τ ) for July 15
(� = 76). A warming trend is observed in all three quantiles. Although the baseline may
change for other choices of �, the pattern through the years will be common.

4.3. Marginal quantiles for averages. Next, we take up averaging over time to obtain
say, a weekly τ quantile at site s in year t . To simplify notation, we suppress the year, the
site, and the superscript τ . Suppose we want to average back r days, starting at day � ≥ r .
So, we are seeking the marginal τ -quantile of Ȳ

(r)
� = 1

r

∑�
j=�−r+1 Yj . To be clear, we want

the quantile of this average, not the average of the daily quantiles. Going one step further,
if we want to average over space (as above) and time, we should first average over time and
then average over space. That is, the quantile of the temporal average is not the average of
the temporal quantiles but q̃Yt�(B)(τ ), by definition, is an average of quantiles.

From above, we have Y� = q� +ρ(Y�−1 −q�−1)+ ε� where the ε� ∼ i.i.d. AL(0, σ, τ ). So,
again, QY�

(τ | Y�−1) = q� + ρ(Y�−1 − q�−1) is the τ quantile for the QAR for day �. Again,
for convenience, write this model as W� = ρW�−1 + ε� with W� = Y� − q�.

Then, if W̄
(r)
� = 1

r

∑�
j=�−r+1 Wj , W̄

(r)
� = Ȳ

(r)
� − q̄

(r)
� where q̄

(r)
� averages the q’s accord-

ingly. So, the marginal τ quantile for Ȳ
(r)
� will be q̄

(r)
� plus an adjustment.

Since Wj = ρjW0 + ∑j−1
k=0 ρkεj−k , we need the τ quantile of

¯̃ε(r)
� ≡ 1

r

�∑
j=�−r+1

j−1∑
k=0

ρkεj−k.

Note that, while the double sum is over r(�−r)+r(r +1)/2 terms, it only involves ε1, . . . , ε�.
We can rewrite the sum in terms of these � distinct ε’s but to no advantage. Rather, we need to
generate � associated U ’s, that is, � i.i.d. Exp(1) random variables. For each ρ, σ , and given
these U ’s,

¯̃ε(r)
� ∼ N

(
1 − 2τ

στ(1 − τ)

1

r

�∑
j=�−r+1

j−1∑
k=0

ρkUj−k,
2

σ 2τ(1 − τ)

1

r2

�∑
j=�−r+1

j−1∑
k=0

ρ2kUj−k

)
.
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FIG. 11. Left: Map of the posterior mean of the weekly marginal quantiles q̃
Ȳ

(7)
60,79(s)

(0.95) centered on July 15,

2015. Right: Evolution of the block average of the weekly marginal quantiles q̃
Ȳ

(7)
t,79(D)

(0.95) centered on July 15
against year.

Again, using a simple search, we can find the τ quantile of ¯̃ε(r)
� and, therefore, we can find

the adjustment to obtain the τ marginal quantile for Ȳ
(r)
� . In our modeling setting, we de-

note this quantile by q̃
Ȳ

(r)
t� (s)(τ ). With posterior samples from the model fitting, we can create

a posterior distribution for this marginal quantile. We can do this for any location, averag-
ing back from any day within a year, and for any year. Thus, we can create an associated
spatial surface. Note that we can reuse the U ’s except the number that we require depends
upon � as above. Finally, if we want this τ marginal quantile averaged over a region say, B,
we can implement an analogous Monte Carlo integration as above, replacing q̃Yt�(s)(τ ) with
q̃
Ȳ

(r)
t� (s)(τ ).

4.3.1. Weekly marginal quantiles at a given site. Note that in climate analysis some ex-
treme events are defined by the integration of the temperature series over several days. For
example, Cattiaux and Ribes (2018) study the probability of extremely hot temperatures dur-
ing a moving-window of r = 2,3, . . . ,15 days in Paris, and Lee (2021) analyzes trends in
extreme “weather whiplash” events defined by daily temperature in a 7-day moving window.
Here, as an example of application of the proposed methodology, we follow the setup in Sec-
tion 4.2.1 to obtain weekly marginal quantiles q̃

Ȳ
(r)
t� (s)(τ ) centered at July 15, 2015 (t = 60,

� = 79 and r = 7), for τ = 0.95.
In particular, the plot on the left of Figure 11 shows the map of the posterior mean of

q̃
Ȳ

(r)
t� (s)(τ ) centered on July 15, 2015 (t = 60, � = 79 and r = 7) for τ = 0.95. The spatial

pattern is the same as for the daily marginal quantiles, but the temperature range is 21.2–
38.9◦C. The plot on the right of Figure 11 shows the weekly block average centered on July
15 across years for τ = 0.95.

Lastly, other values of r can be considered but, if r is taken too large, many values will be
averaged and, therefore, the quantiles from this averaging will get closer and closer. This can
cause quantile crossing even for quantiles that are far from each other.

5. Summary and future work. This paper develops a modeling approach to predict a
specific quantile in a spatiotemporal framework. We have specified a spatial conditional au-
toregressive model on a daily scale using the AL distribution for the errors. The considered
specification enables spatial autoregression at a daily scale that captures serial correlation and
facilitates assessment of persistence. The flexibility of the model is increased by considering
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two scales of time—days within summer season and years—as well as seasonal behavior,
time trend, and four GPs that represent the spatial dependence of the intercept, the trend, the
serial dependence, and the scale of the AL errors. Bayesian model fitting enables full poste-
rior inference for a given quantile. Although the model gives conditional quantiles, we offer
an attractive approach to obtain marginal quantiles at daily scale. These marginal quantiles
enable interpolation. The approach can also provide marginal quantiles associated with aver-
ages of the response variable, both spatially and dynamically. Posterior inference to evaluate
changes between marginal quantiles of spatial and time averages can also be implemented.

The suggested QAR modeling approach is shown to be flexible enough to represent the
evolution of different quantiles of the distribution of daily maximum temperatures and to
capture the effects of climate change during the period 1956–2015 in Aragón, a small region
but with a wide variety of climate conditions. The strong serial correlation of daily temper-
ature is adequately captured by the autoregressive structure. The elevation, the only spatial
covariate in the model, together with the four considered GPs are able to capture the great
variability in climate conditions over the region; in particular, they capture observed features
of temperature by allowing mean levels, trends over time, and serial correlation of tempera-
ture to vary spatially. The QAR models fitted for τ = 0.05,0.50,0.95 show different spatial
and temporal patterns, revealing important differences in the behavior of the tails versus the
central part of the distribution of daily temperature in summer. More precisely, comparing
the increases over time observed in the median, the 0.95 quantile shows higher increases in
some areas of the Valley, while for the 0.05 quantile, no increase is observed in the north-
west. These differences confirm the importance of modeling the entire distribution of daily
temperature, rather than just the mean (as done in many climate studies). A useful climate
application of the proposed methodology to estimate quantiles is the computation of thresh-
olds to define extreme indexes or extreme events, taking into account changes over time of
temperature.

Future work will consider different spatial regions providing more spatial sites than our
sparse Aragón data set. This will enable comparison of temperature trends at larger spatial
scales. Additionally, our modeling approach could be useful in other environmental analyses
such as pollution exposure or biological experimental data, where the objective is to identify
distributional changes over time and compare these changes across different spatial locations.
Further, though the proposed modeling analyzes daily series across years, the approach could
be applied to other time scales.
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Supplement to “Spatial quantile autoregression for season within year daily maxi-
mum temperature data” (DOI: 10.1214/22-AOAS1719SUPP; .pdf). This Supplementary
Material provides additional details for the descriptive data analysis, a residual analysis, the
details of the Gibbs sampler algorithm used to fit the model, and additional figures for the
results of model fitting.



2324 J. CASTILLO-MATEO ET AL.

REFERENCES

AEMET (2011). Atlas Climático Ibérico—Iberian Climate Atlas. Ministerio de Medio Ambiente, y Medio Rural
y Marino; Agencia Estatal de Meteorología; and Instituto de Meteorologia de Portugal. https://doi.org/10.
31978/784-11-002-5

BANERJEE, S., CARLIN, B. P. and GELFAND, A. E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Monographs on Statistics and Applied Probability 135. CRC Press, Boca Raton, FL.
MR3362184 https://doi.org/10.1201/b17115

BROOKS, S. P. and GELMAN, A. (1998). General methods for monitoring convergence of iterative simulations.
J. Comput. Graph. Statist. 7 434–455. MR1665662 https://doi.org/10.2307/1390675

CASTILLO-MATEO, J., LAFUENTE, M., ASÍN, J., CEBRIÁN, A. C., GELFAND, A. E. and ABAURREA, J.
(2022). Spatial modeling of day-within-year temperature time series: An examination of daily maximum tem-
peratures in Aragón, Spain. J. Agric. Biol. Environ. Stat. 27 487–505. MR4459077 https://doi.org/10.1007/
s13253-022-00493-3

CASTILLO-MATEO, J., ASÍN, J., CEBRIÁN, A. C., GELFAND, A. E. and ABAURREA, J. (2023). Supplement to
“Spatial quantile autoregression for season within year daily maximum temperature data.” https://doi.org/10.
1214/22-AOAS1719SUPP

CATTIAUX, J. and RIBES, A. (2018). Defining single extreme weather events in a climate perspective. Bull. Am.
Meteorol. Soc. 99 1557–1568. https://doi.org/10.1175/BAMS-D-17-0281.1

CHEN, X. and TOKDAR, S. T. (2021). Joint quantile regression for spatial data. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 83 826–852. MR4320003 https://doi.org/10.1111/rssb.12467

CHERNOZHUKOV, V. and HONG, H. (2003). An MCMC approach to classical estimation. J. Econometrics 115
293–346. MR1984779 https://doi.org/10.1016/S0304-4076(03)00100-3

DAS, P. and GHOSAL, S. (2017a). Bayesian quantile regression using random B-spline series prior. Comput.
Statist. Data Anal. 109 121–143. MR3603645 https://doi.org/10.1016/j.csda.2016.11.014

DAS, P. and GHOSAL, S. (2017b). Analyzing ozone concentration by Bayesian spatio-temoral quantile regres-
sion. Environmetrics 28 e2443, 15 pp. MR3660099 https://doi.org/10.1002/env.2443

GAO, M. and FRANZKE, C. L. E. (2017). Quantile regression-based spatiotemporal analysis of extreme temper-
ature change in China. J. Climate 30 9897–9914. https://doi.org/10.1175/JCLI-D-17-0356.1

GELFAND, A. E., SAHU, S. K. and CARLIN, B. P. (1995). Efficient parameterisations for normal linear mixed
models. Biometrika 82 479–488. MR1366275 https://doi.org/10.1093/biomet/82.3.479

HALLIN, M., LU, Z. and YU, K. (2009). Local linear spatial quantile regression. Bernoulli 15 659–686.
MR2555194 https://doi.org/10.3150/08-BEJ168

HAUGEN, M. A., STEIN, M. L., MOYER, E. J. and SRIVER, R. L. (2018). Estimating changes in temperature
distributions in a large ensemble of climate simulations using quantile regression. J. Climate 31 8573–8588.
https://doi.org/10.1175/JCLI-D-17-0782.1

KOENKER, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge Univ. Press, Cam-
bridge. MR2268657 https://doi.org/10.1017/CBO9780511754098

KOENKER, R. and BASSETT, G. JR. (1978). Regression quantiles. Econometrica 46 33–50. MR0474644
https://doi.org/10.2307/1913643

KOENKER, R. and MACHADO, J. A. F. (1999). Goodness of fit and related inference processes for quantile
regression. J. Amer. Statist. Assoc. 94 1296–1310. MR1731491 https://doi.org/10.2307/2669943

KOENKER, R. and XIAO, Z. (2006). Quantile autoregression. J. Amer. Statist. Assoc. 101 980–990. MR2324109
https://doi.org/10.1198/016214506000000672

KOTZ, S., KOZUBOWSKI, T. J. and PODGÓRSKI, K. (2001). The Laplace Distribution and Generalizations:
A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkhäuser, Inc.,
Boston, MA. MR1935481 https://doi.org/10.1007/978-1-4612-0173-1

KOZUMI, H. and KOBAYASHI, G. (2011). Gibbs sampling methods for Bayesian quantile regression. J. Stat.
Comput. Simul. 81 1565–1578. MR2851270 https://doi.org/10.1080/00949655.2010.496117

LEE, C. C. (2021). Weather whiplash: Trends in rapid temperature changes in a warming climate. Int. J. Climatol.
42 4214–4222. https://doi.org/10.1002/joc.7458

LI, G., LI, Y. and TSAI, C.-L. (2015). Quantile correlations and quantile autoregressive modeling. J. Amer.
Statist. Assoc. 110 246–261. MR3338500 https://doi.org/10.1080/01621459.2014.892007

LUM, K. and GELFAND, A. E. (2012). Spatial quantile multiple regression using the asymmetric Laplace process.
Bayesian Anal. 7 235–258. MR2934947 https://doi.org/10.1214/12-BA708

MCKINNON, K. A. and POPPICK, A. (2020). Estimating changes in the observed relationship between humidity
and temperature using noncrossing quantile smoothing splines. J. Agric. Biol. Environ. Stat. 25 292–314.
MR4132962 https://doi.org/10.1007/s13253-020-00393-4



SPATIAL QUANTILE AUTOREGRESSION 2325

NAVARRO-SERRANO, F., LÓPEZ-MORENO, J. I., AZORIN-MOLINA, C., ALONSO-GONZÁLEZ, E., TOMÁS-
BURGUERA, M., SANMIGUEL-VALLELADO, A., REVUELTO, J. and VICENTE-SERRANO, S. M. (2018).
Estimation of near-surface air temperature lapse rates over continental Spain and its mountain areas. Int. J. Cli-
matol. 38 3233–3249. https://doi.org/10.1002/joc.5497

NEELON, B., LI, F., BURGETTE, L. F. and BENJAMIN NEELON, S. E. (2015). A spatiotemporal quantile regres-
sion model for emergency department expenditures. Stat. Med. 34 2559–2575. MR3368401 https://doi.org/10.
1002/sim.6480

PEÑA-ANGULO, D., GONZALEZ-HIDALGO, J. C., SANDONÍS, L., BEGUERÍA, S., TOMAS-BURGUERA, M.,
LÓPEZ-BUSTINS, J. A., LEMUS-CANOVAS, M. and MARTIN-VIDE, J. (2021). Seasonal temperature trends
on the Spanish mainland: A secular study (1916–2015). Int. J. Climatol. 41 3071–3084. https://doi.org/10.
1002/joc.7006

PETERS, G. W. (2018). General quantile time series regressions for applications in population demographics.
Risks 6 97. https://doi.org/10.3390/risks6030097

REICH, B. J. (2012). Spatiotemporal quantile regression for detecting distributional changes in environmental
processes. J. R. Stat. Soc. Ser. C. Appl. Stat. 61 535–553. MR2960737 https://doi.org/10.1111/j.1467-9876.
2011.01025.x

REICH, B. J., FUENTES, M. and DUNSON, D. B. (2011). Bayesian spatial quantile regression. J. Amer. Statist.
Assoc. 106 6–20. MR2816698 https://doi.org/10.1198/jasa.2010.ap09237

SRIRAM, K., RAMAMOORTHI, R. V. and GHOSH, P. (2013). Posterior consistency of Bayesian quantile re-
gression based on the misspecified asymmetric Laplace density. Bayesian Anal. 8 479–504. MR3066950
https://doi.org/10.1214/13-BA817

TAN, X., GAN, T. Y. and CHEN SHU LIU, B. (2019). Modeling distributional changes in winter precipitation of
Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections. Clim. Dyn.
52 2105–2124. https://doi.org/10.1007/s00382-018-4241-0

TOKDAR, S. T. and KADANE, J. B. (2012). Simultaneous linear quantile regression: A semiparametric Bayesian
approach. Bayesian Anal. 7 51–72. MR2896712 https://doi.org/10.1214/12-BA702

YANG, Y. and HE, X. (2015). Quantile regression for spatially correlated data: An empirical likelihood approach.
Statist. Sinica 25 261–274. MR3328814

YANG, C., LI, L. and XU, J. (2018). Changing temperature extremes based on CMIP5 output via semi-parametric
quantile regression approach. Int. J. Climatol. 38 3736–3748. https://doi.org/10.1002/joc.5524

YANG, Y. and TOKDAR, S. T. (2017). Joint estimation of quantile planes over arbitrary predictor spaces. J. Amer.
Statist. Assoc. 112 1107–1120. MR3735363 https://doi.org/10.1080/01621459.2016.1192545

YANG, Y., WANG, H. J. and HE, X. (2016). Posterior inference in Bayesian quantile regression with asymmetric
Laplace likelihood. Int. Stat. Rev. 84 327–344. MR3580414 https://doi.org/10.1111/insr.12114

YU, K. and MOYEED, R. A. (2001). Bayesian quantile regression. Statist. Probab. Lett. 54 437–447. MR1861390
https://doi.org/10.1016/S0167-7152(01)00124-9

ZHANG, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics.
J. Amer. Statist. Assoc. 99 250–261. MR2054303 https://doi.org/10.1198/016214504000000241



Supplement to “Spatial quantile
autoregression for season within year daily

maximum temperature data”
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S1. Descriptive analysis

S1.1. Quantile autocorrelation

For random variables X and Y , let QY (τ) be the τ unconditional quantile of Y . For τ ∈ (0, 1),
Li, Li and Tsai (2015) define the quantile covariance as

qcovτ (Y,X) ≡ cov [1(Y −QY (τ) > 0), X] = E [δ∗τ (Y −QY (τ))(X − E(X))] ,

where the function δ∗τ (u) = τ − 1(u < 0). Subsequently, they define the quantile correlation
as follows,

qcorτ (Y,X) ≡ qcovτ (Y,X)√
var [δ∗τ (Y −QY (τ))] var(X)

=
E [δ∗τ (Y −QY (τ))(X − E(X))]√

(τ − τ 2)var(X)
.

We compute the empirical first-order quantile autocorrelation for our data by substituting
each element for its sample or empirical estimates in qcorτ (Y,X) and considering Y and X
as follows. Let {yt} be the observed daily maximum temperatures for any site from January
1, 1956 to December 31, 2015. Then, we take {yt} as a sample of Y and {yt−1} as a sample
of X for t in the 60× 92 days of the JJA months. Figure S1 (left) shows this autocorrelation
as explained in Figure 2 of the Main Manuscript. The correlation is strong in all locations
and quantiles with positive values in the range 0.27–0.63. When exploring a second-order
quantile autocorrelation, we find no evidence of its existence in the data. Figure S1 (right)
shows the quantile (partial) autocorrelation between {yt} and {yt−2} conditioned on {yt−1}.
The 0.05, 0.50 and 0.95 quantiles of these correlations are −0.07, −0.03 and 0.02, suggesting
that quantile correlation between {yt} and {yt−2} given {yt−1} is negligible.

Figure S2 shows the effect of the first and second-order quantile autocorrelations for three
illustrative sites: Zaragoza, Daroca and Yesa. It shows the empirical 0.05, 0.50 and 0.95
quantiles of yt conditional on yt−1 and yt−2, for days in JJA. To obtain the plots, we separate
observations in three sets: yt with yt−2 ≤ qempY (1/3) (blue), yt with qempY (1/3) < yt−2 ≤
qempY (2/3) (black), and yt with qempY (2/3) < yt−2 (red); where qempY (1/3) and qempY (2/3) are the
corresponding empirical quantiles of {yt}. In each set, we compute the empirical quantiles of
the yt’s in subsets where the yt−1’s take values in an interval of length 2◦C represented in the
horizontal axis (only quantiles calculated with at least 30 data are shown). The increasing
linear trends in the empirical quantiles give evidence of an strong effect of yt−1 on yt, but
the overlap of the three colors gives little or no evidence of an effect of yt−2 on yt given yt−1.

1
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Fig S1. Boxplots of the 18 sites across quantiles to describe the empirical quantile features: first-order
quantile autoregression (right) and second-order quantile (partial) autoregression (left).
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Fig S2. Empirical 0.05, 0.50 and 0.95 quantiles vs. data from the previous day separated by three sets of
data from two days ago. The three sets are defined according to yt−2 ≤ qempY (1/3) (blue), qempY (1/3) < yt−2 ≤
qempY (2/3) (black), and qempY (2/3) < yt−2 (red). Here, we show Zaragoza, Daroca and Yesa as an illustration
of the 18 sites.
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S1.2. Elevation, latitude and temporal patterns

We follow Section 2.1 of the Main Manuscript on the empirical description of quantiles.
Figure S3 shows the 0.05, 0.50 and 0.95 quantiles vs. elevation (left) and latitude (right) for
each site. These quantiles are empirical for daily data in JJA from 1956 to 2015 at each site,
i.e., each quantile (point in the plot) is calculated with 60×92 observations. For each quantile
a line of least squares is also drawn. There is a clear negative relation approximately linear
between temperature and elevation, and slightly more pronounced for the 0.05 quantile. For
latitude, although the lines suggest a slight negative trend between temperature and latitude,
this is mainly caused by a set of two higher elevation sites located in the mountains of the
north of the region. No pattern is observed in the rest of the sites.

Figure S4 shows the temporal evolution of the quantiles for the three illustrative sites.
The first row shows the 0.05, 0.50 and 0.95 quantiles vs. day in JJA. The quantile of a given
day is the empirical quantile of the daily data in a 21-day window centered on that day
in the first (1956–1985) (dashed) and the last (1986–2015) (solid) 30-year periods. Finally,
to eliminate variability, what is shown in the figure is a smoothing using a LOWESS of
these quantiles. As a general conclusion, there is a strong potentially common seasonal
component between quantiles that has not changed between the two 30-year periods. The
change observed between both 30-year periods appears reasonably homogeneous throughout
the summer, although it seems to be heterogeneous across quantiles. The second row shows
the kernel density estimation for the data in a 21-day window centered on July 15 in the first
(dashed blue) and the last (solid red) 30-year periods. In Zaragoza and Daroca the density
of the last period is placed to the right of the first, indicating warmer temperatures for all
quantiles. In Yesa the behavior is different, while the 0.05 quantile of the first period is a
little to the left than that of the last, the median and in particular the 0.95 quantile of the
first period are located to the right of those of the first period, indicating a cool-down period.
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Fig S3. Empirical 0.05 (blue), 0.50 (black) and 0.95 (red) quantiles for data in JJA months from 1956 to
2015 by site vs. elevation (left) and latitude (right).
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Fig S4. Top: Smoothed empirical 0.05 (blue), 0.50 (black) and 0.95 (red) quantiles across days in JJA
months, 1956–1985 (dashed) and 1986–2015 (solid). Bottom: Kernel density estimation of the data in a
21-day window centered on July 15 in 1956–1985 (dashed blue) and 1986–2015 (solid red). The 0.05, 0.50
and 0.95 quantiles are denoted by points on the horizontal axis. Here, we show Zaragoza, Daroca and Yesa
as an illustration of the 18 sites.
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S2. Analysis of residuals

Here, we show model assessment of the seasonal cycle. We check the assumption of a spatially
common seasonal cycle through the analysis of residuals by months and locations to detect if
any of them show any seasonal pattern not captured by the common seasonal term. Residuals
are defined as Yt`(s) − QYt`(s)(τ | Yt,`−1(s)). Figure S5 shows the boxplots of residuals by
months in JJA, in the three illustrative locations, and for three different quantiles, τ =
0.05, 0.50, 0.95. The seasonal behavior of the series seems to be well captured by the common
seasonal term in all the locations, since no bias is observed.

We check the assumption of a seasonal cycle that does not vary in years through the
analysis of residuals by months, decades and locations to detect if any of them show any
seasonal pattern not captured by the non-varying seasonal term. Figure S6 show the boxplots
of the residuals in Zaragoza in the 6 available decades in June (left), July (center) and August
(right) for three different quantiles, τ = 0.05, 0.50, 0.95. The evolution of the boxplots across
decades is very similar in June, July and August, and no bias or evidence of a remaining
seasonal behavior is observed. Similar behaviors are observed in all locations.
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Fig S5. Boxplots of residuals, of the τ = 0.05, 0.50, 0.95 quantile models, by months in JJA. Here, we show
Zaragoza, Daroca and Yesa as an illustration of the 18 sites.
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Fig S6. Boxplots of residuals, of the τ = 0.05, 0.50, 0.95 quantile models, by months in JJA and 10-year
periods. Here, we show Zaragoza as an illustration of the 18 sites.
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S3. Metropolis-within-Gibbs algorithm

This section describes the algorithm used to fit the models. For simplicity we suppress the
superscript τ from the parameters. Also for simplicity, we denote by Q∗Yt`(si)(τ | Yt,`−1(si))
the part of QYt`(si)(τ | Yt,`−1(si)) that does not contain the variable associated with the
full conditional in each case. We denote c1 ≡ cτ1 = (1 − 2τ)/(τ(1 − τ)) and c2 ≡ cτ2 =
2/(τ(1 − τ)). We denote by rjk the elements of the inverse matrix of R(φ), the correlation
matrix derived from the exponential covariance function. We denote sin` = sin(2π`/365) and
cos` = cos(2π`/365). Also, we use the usual parameterization with AL errors (Kozumi and
Kobayashi, 2011), ξt`(s) = Ut`(s)/σ(s). It does not help us in our setup, but it is useful for
a common scale parameter in space and a gamma prior distribution in it.

The joint distribution for data, processes and parameters is

n∏

i=1

T∏

t=1

L∏

`=2

[
Yt`(si) | Yt,`−1(si), β1, β2, β3, γt(si), ρ(si), ξt`(si), σ(si)

]

n∏

i=1

T∏

t=1

L∏

`=2

[
ξt`(si) | σ(si)

] n∏

i=1

T∏

t=1

[
γt(si) | β̃0(si), α̃(si), ψt, σ

2
η

] T∏

t=2

[ψt | σ2
ψ]

[
{β̃0(si)} | β0, σ2

β0
, φ
][
{α̃(si)} | α, σ2

α, φ
][
{Zρ(si)} | Zρ, σ2

ρ, φ
][
{Zσ(si)} | Zσ, σ2

σ, φ
]

[
β0
][
α
][
β1
][
β2
][
β3
][
Zρ
][
Zσ
][
σ2
ψ

][
σ2
η

][
σ2
β0

][
σ2
α

][
σ2
ρ

][
σ2
σ

]

(S1)

provided one starts any year t with the observed Yt1(s), and for a common fixed φ.
The Gibbs sampler algorithm for Equation S1 is initialized giving initial values to all the

parameters. Then, updating from iteration b to b+ 1 consists of drawing a sample from the
following full conditional distributions:

• The full conditional distributions of β0, α, β1, β2, β3, Zρ, Zσ are all normal, in particular

[β0 | · · · ] ∝ N

(
β0 |

∑
j,k rjkβ̃0(sk)∑

j,k rjk
,

σ2
β0∑

j,k rjk

)
×N(β0 | aβ0 , b2β0)

[α | · · · ] ∝ N

(
α |
∑

j,k rjkα̃(sk)∑
j,k rjk

,
σ2
α∑

j,k rjk

)
×N(α | aα, b2α)

[β1 | · · · ] ∝
n∏

i=1

T∏

t=1

L∏

`=2

N

(
β1 |

Yt`(si)−Q∗Yt`(si)(τ | Yt,`−1(si))− c1ξt`(si)
(sin`−ρ(si) sin`−1)

,

c2ξt`(si)

(sin`−ρ(si) sin`−1)2σ(si)

)
×N(β1 | aβ1 , b2β1)

[β2 | · · · ] ∝
n∏

i=1

T∏

t=1

L∏

`=2

N

(
β2 |

Yt`(si)−Q∗Yt`(si)(τ | Yt,`−1(si))− c1ξt`(si)
(cos`−ρ(si) cos`−1)

,

c2ξt`(si)

(cos`−ρ(si) cos`−1)2σ(si)

)
×N(β2 | aβ2 , b2β2)
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[β3 | · · · ] ∝
n∏

i=1

T∏

t=1

L∏

`=2

N

(
β3 |

Yt`(si)−Q∗Yt`(si)(τ | Yt,`−1(si))− c1ξt`(si)
(1− ρ(si))elev(si)

,

c2ξt`(si)

(1− ρ(si))2elev(si)2σ(si)

)
×N(β3 | aβ3 , b2β3)

[Zρ | · · · ] ∝ N

(
Zρ |

∑
j,k rjkZρ(sk)∑

j,k rjk
,

σ2
ρ∑

j,k rjk

)
×N(Zρ | aρ, b2ρ)

[Zσ | · · · ] ∝ N

(
Zσ |

∑
j,k rjkZσ(sk)∑

j,k rjk
,

σ2
σ∑

j,k rjk

)
×N(Zσ | aσ, b2σ)

• The full conditional distributions for σ2
ψ, σ

2
η, σ

2
β0
, σ2

α, σ
2
ρ, σ

2
σ are all inverse gamma as

follows,

1/σ2
ψ | · · · ∼ G

(
T − 1

2
+ aσψ ,

1

2

T∑

t=2

ψ2
t + bσψ

)

1/σ2
η | · · · ∼ G

(
nT

2
+ aση ,

1

2

n∑

i=1

T∑

t=1

(
γt(si)− (β̃0(si) + α̃(si)t+ ψt)

)2
+ bση

)

1/σ2
β0
| · · · ∼ G

(
n

2
+ aσβ0 ,

1

2
({β̃0(si)} − β01)>R(φ)−1({β̃0(si)} − β01) + bσβ0

)

1/σ2
α | · · · ∼ G

(
n

2
+ aσα ,

1

2
({α̃(si)} − α1)>R(φ)−1({α̃(si)} − α1) + bσα

)

1/σ2
ρ | · · · ∼ G

(
n

2
+ aσρ ,

1

2
({Zρ(si)} − Zρ1)>R(φ)−1({Zρ(si)} − Zρ1) + bσρ

)

1/σ2
σ | · · · ∼ G

(
n

2
+ aσσ ,

1

2
({Zσ(si)} − Zσ1)>R(φ)−1({Zσ(si)} − Zσ1) + bσσ

)

• The full conditionals for the β̃0(si)’s and α̃(si)’s are normal. Note that we consider the
hierarchical centering of these random effects to improve convergence behavior. For
i = 1, . . . , n, the full conditionals are

[β̃0(si) | · · · ] ∝
T∏

t=1

N
(
β̃0(si) | γt(si)− α̃(si)t− ψt, σ2

η

)

×N
(
β̃0(si) | β0 +

∑
k 6=i rik(β0 − β̃0(sk))

rii
,
σ2
β0

rii

)

[α̃(si) | · · · ] ∝
T∏

t=1

N
(
α̃(si) | (γt(si)− β̃0(si)− ψt)/t, σ2

η/t
2
)

×N
(
α̃(si) | α +

∑
k 6=i rik(α− α̃(sk))

rii
,
σ2
α

rii

)
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• The full conditional distributions of the Zρ(si)’s and Zσ(si)’s are non-standard. To
draw samples from them, we suggest a random walk Metropolis-Hastings algorithm
with normal distribution proposals with the mean at the current parameter value. The
variance of the proposals was tuned until the acceptance rate was about 40%. For
i = 1, . . . , n, the full conditionals are proportional to

[Zρ(si) | · · · ]

∝
T∏

t=1

L∏

`=2

N

(
eZρ(si) − 1

eZρ(si) + 1
| Yt`(si)− qt`(si)− c1ξt`(si)

Yt,`−1(si)− qt,`−1(si)
,

c2ξt`(si)

(Yt,`−1(si)− qt,`−1(si))2σ(si)

)

×N
(
Zρ(si) | Zρ +

∑
k 6=i rik(Zρ − Zρ(sk))

rii
,
σ2ρ
rii

)

[Zσ(si) | · · · ]

∝ G
(
exp{Zσ(si)} |

3

2
T (L− 1) + 1,

T∑

t=1

L∑

`=2

[
(Yt`(si)−QYt`(si)(τ | Yt,`−1(si))− c1ξt`(si))2

2c2ξt`(si)
+ ξt`(si)

])

×N
(
Zσ(si) | Zσ +

∑
k 6=i rik(Zσ − Zσ(sk))

rii
,
σ2σ
rii

)

• We obtain the normal full conditionals for the ψt’s as follows. For identifiability, ψ1 is
fixed to zero. Then, for t = 2, . . . , T , we have

[ψt | · · · ] ∝
n∏

i=1

N
(
ψt | γt(si)− β̃0(si)− α̃(si)t, σ

2
η

)
×N

(
ψt | 0, σ2

ψ

)

• The full conditionals for the γt(si)’s are all normal. For i = 1, . . . , n, and t = 1, . . . , T ,

[γt(si) | · · · ] ∝
L∏

`=2

N

(
γt(si) |

Yt`(si)−Q∗Yt`(si)(τ | Yt,`−1(si))− c1ξt`(si)
(1− ρ(si))

,
c2ξt`(si)

(1− ρ(si))2σ(si)

)

×N
(
γt(si) | β̃0(si) + α̃(si)t+ ψt, σ

2
η

)

• Finally, we sample each one of the n×T×(L−1) parameters ξt`(si) using a Metropolis-
Hastings step. This is the main computational bottleneck, since the number of param-
eters is equal to the number of data. Following Lum and Gelfand (2012), the proposal
distribution for each ξt`(si) is an exponential distribution with rate σ(si), as is specified
in the hierarchy.

[ξt`(si) | · · · ]

∝ ξt`(si)−1/2 exp
{ −σ(si)
2c2ξt`(si)

[
Yt`(si)−QYt`(si)(τ | Yt,`−1(si))− c1ξt`(si)

]2 − σ(si)ξt`(si)
}

Note in the expressions above that the product of normal densities is proportional to a
normal density with parameters as follows

n∏

i=1

N
(
x | µi, σ2

i

)
∝ N

(
x |

n∑

i=1

µi
σ2
i

/

n∑

i=1

1

σ2
i

, 1/
n∑

i=1

1

σ2
i

)
.
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Note that an alternative procedure to generate the ξt`(s)’s would characterize their full
conditional as generalized inverse Gaussian (GIG) (Kozumi and Kobayashi, 2011), from
which samples could be generated using the algorithm proposed by Dagpunar (1989). Let
X ∼ GIG(a, b, ν), then its pdf is

f(x | a, b, ν) ∝ xν−1 exp {−(ax+ b/x)/2} .

With this parameterization the full conditional for ξt`(si) follows

ξt`(si) | · · · ∼ GIG

(
σ(si)

(
2 +

c21
c2

)
, σ(si)

(
Yt`(si)−QYt`(si)(τ | Yt,`−1(si))

)2

c2
,
1

2

)
.

S4. Results of model fitting

Here, we follow Section 3.3 of the Main Manuscript with additional figures.
Figure S7 shows the parameters not shown in Figure 3 of the Main Manuscript, some

general conclusions are as follows. We observe that the parameters βτ1 and βτ2 are very
different across quantiles, however, the seasonal pattern they generate is relatively similar
as we can see in Figure 3. The parameter στψ suggests greater variability across years in
quantiles close to the extremes of the left tail than in the other quantiles that show similar
variability. The parameter στη suggests that the difference across yearly shifts across locations
is small for the median and increases for the extreme quantiles.

Figure S8 shows boxplots of the four spatial processes at the 18 observed sites for τ =
0.05, 0.50, 0.95. This figure is complementary to Figures 4 and 5 of the Main Manuscript.

Figure S9 shows the posterior mean and 90% credible intervals of the spatial random ef-
fects, β̃τ0 (s), α̃τ (s), ρτ (s) and στ (s) at Zaragoza across quantiles. This figure supports Figure 4
of the Main Manuscript to give an idea of the uncertainties of the estimates, in particular,
only Zaragoza is shown but the width of the credible intervals are very similar for all loca-
tions.

Figure S10 shows whether an 80% credible interval of the spatially varying linear trend
α̃(s) contains zero for τ = 0.05, 0.50, 0.95. There is strong evidence of region-wide warming
in the center of the distribution, however there is not as much evidence at the extremes.

Figure S11 shows boxplots of the ψ’s across years for τ = 0.05, 0.50, 0.95. We note the
similarity of the distribution of ψ0.50

t and ψ0.95
t , while ψ0.05

t is slightly different. It is observed
that the effects may add or subtract in a given year up to roughly 3◦C.
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Fig S7. Posterior median and 90% credible interval of the parameters not shown in Figure 3 of the Main
Manuscript across quantiles.
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Fig S8. Boxplots of the posterior distribution of β̃τ0 (s), α̃
τ (s), ρτ (s), στ (s) for τ = 0.05, 0.50, 0.95. Locations

are sorted by elevation, from lowest to highest.



/Supplementary Material/ 13

Fig S9. Posterior mean and 90% credible intervals of the four spatial random effects in Zaragoza across
quantiles.

Fig S10. Summary map of the 80% credible intervals of α̃τ (s) for τ = 0.05, 0.50, 0.95. Blue means that the
80% credible interval does not contain zero and is negative, red means that the 80% credible interval does
not contain zero and is positive, and gray means that the 80% credible interval contains zero.
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Fig S11. Boxplots of the posterior distributions of the annual random effects ψτt with τ = 0.05, 0.50, 0.95.
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22–24). Quantile autoregression [Contributed talk]. 13th Bayesian Inference for

Stochastic Processes, Madrid, Spain.

“Statisticians, like artists, have
the bad habit of falling in love
with their models.”

George E. P. Box

144

https://arxiv.org/abs/2305.19080


Bayesian joint quantile autoregression

Jorge Castillo-Mateo1*, Alan E. Gelfand2, Jesús Aśın1,
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Abstract

Quantile regression continues to increase in usage, providing a useful alterna-
tive to customary mean regression. Primary implementation takes the form of
so-called multiple quantile regression, creating a separate regression for each
quantile of interest. However, recently, advances have been made in joint quantile
regression, supplying a quantile function which avoids crossing of the regres-
sion across quantiles. Here, we turn to quantile autoregression (QAR), offering a
fully Bayesian version. We extend the initial quantile regression work of Koenker
and Xiao (2006) in the spirit of Tokdar and Kadane (2012). We offer a directly
interpretable parametric model specification for QAR. Further, we offer a p-th
order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) ver-
sion. We illustrate with simulation as well as a temperature dataset collected in
Aragón, Spain.
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1 Introduction

For time series data, autoregressive (AR) modeling is perhaps the most common
approach. A lag one, AR(1), takes the form Yt = µ+ρ(Yt−1−µ)+ϵt, with ϵt following
a suitable zero-mean error distribution; a conditional mean is provided. By analogy,
quantile autoregression (QAR) considers conditional quantiles.

An issue with quantile regression (QR) is the so-called quantile crossing problem.
Modeling quantiles individually enables rich modeling for a given quantile but allows
for crossing of quantiles across quantile level τ . For arbitrary values of the regressors,
X, we can not ensure that the resulting modeled quantiles will increase in τ . Such
modeling is referred to as multiple QR. Inference typically proceeds by minimizing
a check loss function or, more formally, assuming an asymmetric Laplace (AL) error
term. Examples of multiple QR with AL errors appear in Yu and Moyeed (2001), and
Kozumi and Kobayashi (2011) present a Gibbs sampler model fitting implementation.
Following those ideas, Peng et al. (2023) deals with variable selection in the context of
QAR models with AL errors. Lum and Gelfand (2012) work in the context of spatially
referenced data and extend the AL model to a spatial process. Castillo-Mateo et al.
(2023) propose a very flexible spatial AL mixed effects QAR model.

Recent effort has focused on a joint QRmodeling to avoid quantile crossing. Adopt-
ing restricted support for the regressors, X, the τ -quantile will increase monotonically
over τ ∈ (0, 1). Bondell et al. (2010) offer a non-crossing approach for a fixed set of
quantiles of interest. Foundational work appears in Tokdar and Kadane (2012) using
Gaussian process’s (GP’s) with follow on work in Das and Ghosal (2017) using splines.
Reich et al. (2011) developed a spatial joint QR model through spatially varying regres-
sion coefficients using Bernstein polynomials. Yang and Tokdar (2017) propose a novel
parameterization that characterizes any collection of non-crossing quantile planes over
arbitrarily shaped convex predictor domains. This parameterization was extended to
spatial data by Chen and Tokdar (2021) through a copula process but a non-spatially
varying quantile function results. Joint modeling imposes strong restrictions on the
class of permissible specifications; models outside of this class may be preferred.

Motivation for joint or non-crossing quantile modeling appears in, e.g., Bondell
et al. (2010) who highlight a problem that appears when modeling a wind speed dataset
given climatological regressors; the upper quantiles cross not far from the mean. As
a further example in this regard, accurate quantile predictions across quantile levels
are essential in forecasting of wind power generation (Cui et al., 2023). Formal joint
modeling is necessary in applications where coherent estimates of several quantiles
or a generative model are of interest; otherwise, quantile crossing leads to an invalid
distribution for the response. Also, multiple modeling fails to do justice to the full
potential of the model. Joint modeling helps to avoid the lack of data which emerges
when attempting to fit individual quantile curves (Tokdar and Kadane, 2012). Joint
modeling in the context of QAR is relevant in risk management for estimating value-
at-risk, as well as in demand forecasting, where understanding the complete demand
distribution is crucial for effective production planning and supply chain management.
Further, these models for daily temperatures could improve operational prediction
accuracy with forecast intervals, and high quantile simulated series behavior (Thrasher
et al., 2012).
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Koenker and Xiao (2006) offered an initial version of a joint QAR(p) model.
Illustrating with p = 1, they consider the generative model

Yt = θ0(Ut) + θ1(Ut)Yt−1, (1)

where Ut is a sequence of independent and identically distributed (i.i.d.) standard
uniform random variables. The θ functions, from [0, 1] → R, need to be estimated.
Provided that the right side of expression (1) is monotone increasing in Ut, the τ
conditional quantile function of Yt given yt−1 increases in τ and is

QYt
(τ | yt−1) = θ0(τ) + θ1(τ)yt−1. (2)

Koenker and Xiao (2006) required both θ0 and θ1 to be strictly increasing functions
(referred to as co-monotonicity). Their suggested choices were θ0(τ) = σΦ−1(τ) with
Φ the cumulative distribution function (cdf) of a standard normal distribution and
θ1(τ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1) and γ1 > 0. If yt−1 ≥ 0, co-monotonicity
ensures that QYt(τ | yt−1) will not cross as τ increases but under the restrictive
assumption that the autoregression coefficient strictly increases in τ .

Our contribution is to reconsider the work of Koenker and Xiao (2006) in the
context of Tokdar and Kadane (2012), providing flexible joint QAR modeling in a
Bayesian framework. We characterize non-crossing QAR(1) also using two monotone
curves, through a convenient class of cdf’s. We note extension to the QAR(p) model.
We consider bivariate QAR, capturing dependence through a copula process. Then,
for spatially referenced time series, we introduce spatial dependence in the realizations
and obtain spatially varying QAR’s through spatially varying coefficients.

QAR models arise when time series are observed to display asymmetric dynamics;
such data often appears in economic applications. Koenker and Xiao (2006) show
empirical applications of the QAR model to the USA unemployment rate and gasoline
prices. Further examples in the literature consider dynamic additive quantile models,
QR with cointegrated time series, and conditional quantiles with GARCH models.
Applications include stock returns, house price returns, and gold prices. See, e.g., Li
et al. (2015) or Yang et al. (2023) and references therein. QR is also popular for
climate data (see Gao and Franzke, 2017, for an extensive review). Yang et al. (2018)
propose a semiparametric QAR model including lagged data to develop quantile-based
temperature extreme indices. Zhang et al. (2022) use QR models conditional on the
state of the previous observation time to predict short-term wind speed or velocity.
Castillo-Mateo et al. (2023) use a rich QAR model to compare the effects of climate
change in daily maximum temperature.

The outline of the paper is as follows. Section 2 provides a model characterization
for the QAR(1) case. Further, it offers explicit parametric model specifications, the
resulting likelihood for Bayesian model fitting, some criteria for model assessment,
and a simulation study. Section 3 looks at the QAR(p) case. Section 4 considers the
bivariate QAR(1) setting. Section 5 develops a fully spatial version through the use of
a Gaussian copula. Section 6 employs time series of daily temperature data from 18
spatial locations to illustrate the previous four sections. Finally, Section 7 presents a
brief summary and possibilities for future work.
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2 The QAR(1) case

2.1 The support of the data

For a non-crossing linear QAR specification we need to restrict the support of the
time series data, {y∗t : t = 1, . . . , T}, to a bounded interval on the real line.1 We take
this interval to be [0, 1] and implement this by making a transformation of the data,

yt =
y∗t −m

M −m
, (3)

where m < min y∗t and M > max y∗t . In fact, m and M are chosen such that min yt
is close to but above 0 and max yt is close to but below 1. This enables the most
flexibility for the quantile function under our proposed QAR modeling and we offer
an automatic selection approach below.

Two points are important to note. First, we can not take m = min y∗t and
M = max y∗t . The data must be in the interior of the unit interval in order to enable
distinct quantiles as τ varies across (0, 1). Second, choosingm andM is merely a device
for working on the unit interval. There is no connection between these values and the
potential practical support of the y∗t ’s. Imposing bounding on the support is unavoid-
able for a valid linear specification of QYt

(τ | yt−1) of the form θ0(τ) + θ1(τ)yt−1

because the only non-intersecting lines under unbounded support are parallel lines.
A convenient “automatic” strategy for selecting m and M is as follows. The

idea recalls basic results from the theory of order statistics. If we have T indepen-
dent observations from a uniform distribution on (m,M), {y∗t : t = 1, . . . , T}, then
[E(Y ∗

(1)) −m]/(M −m) = 1/(T + 1) and [E(Y ∗
(T )) −m]/(M −m) = T/(T + 1). So

we can say y∗(1) ≈ (mT +M)/(T + 1) and y∗(T ) ≈ (m+ TM)/(T + 1). This gives two
equations in two unknowns to solve for m and M . We obtain

m =
Ty∗(1) − y∗(T )

T − 1
and M =

Ty∗(T ) − y∗(1)
T − 1

. (4)

Of course the Y ∗
t ’s are not independent, they do not come from a distribution on

a bounded interval, and marginally, we would not expect them to follow a uniform
distribution on (m,M). We only implement a simple automatic bounding strategy.

2.2 The model

A straightforward characterization of the required monotonicity of the QAR lines is
offered by the following result, inspired from Tokdar and Kadane (2012).
Theorem 1. An autoregressive specification of the form of (2) with θ1(τ) ∈ [−1, 1] for
τ ∈ [0, 1], is monotonically increasing in τ for Yt taking values in [0, 1] and yt−1 ∈ [0, 1]
if and only if

QYt
(τ | yt−1) = yt−1η1(τ) + (1− yt−1)η2(τ) (5)

where η1, η2 : [0, 1] −→ [0, 1] are monotonically increasing.

1This is the analogue of the restriction over the predictor domain in Yang and Tokdar (2017).
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Proof. Any monotonicity obeying QYt(τ | yt−1) given by (2) can be expressed as (5)
by taking η1(τ) = θ0(τ) + θ1(τ) = QYt(τ | 1) and η2(τ) = θ0(τ) = QYt(τ | 0). For the
converse, if QYt(τ | yt−1) is given by (5) then it must be monotonically increasing in
τ for every yt−1 ∈ [0, 1] for which both yt−1 and 1 − yt−1 are non-negative. One can
express such a QYt(τ | yt−1) by defining θ0(τ) = η2(τ) and θ1(τ) = η1(τ) − η2(τ) ∈
[−1, 1].

If we focus on (5), a model for functions η1 and η2, each from [0, 1] → [0, 1], induces
a QAR(1) model over all valid QAR(1) specifications of QYt

(τ | yt−1), provided the
boundary conditions QYt

(0 | yt−1) = 0 and QYt
(1 | yt−1) = 1 for all yt−1 ∈ [0, 1] are

satisfied. The above condition can be rewritten as ηj(0) = 0 and ηj(1) = 1 for j = 1, 2.
Next we show how to specify these two monotone functions.

2.2.1 Specification for the two monotone curves

Specifically, both η1(·) and η2(·) again must be strictly monotone from [0, 1] → [0, 1]. A
convenient class to work with are cdf’s for continuous random variables with support
[0, 1]. In fact, a rich class would arise as probabilistic mixtures of such cdf’s, leading
to the general form

η(τ) =

K∑

k=1

λkF (τ | Ωk) (6)

such that λk ≥ 0,
∑

k λk = 1 and F : [0, 1] → [0, 1] is strictly increasing for any
parameters Ωk.

A convenient class of F ’s to work with are the cdf’s of the two parameter
Kumaraswamy (1980) distribution (also known as the minimax distribution, Jones,
2009). Specifically, the probability density function (pdf) and cdf are

f(x | a, b) = abxa−1(1− xa)b−1 and F (x | a, b) = 1− (1− xa)b, (7)

where x ∈ [0, 1] and a, b > 0. The Kumaraswamy distributions are a family with
behavior similar to the beta distribution. However, for our purposes, they are much
simpler to use especially in the context of simulation since the cdf and quantile function
can be expressed in closed form, i.e., Q(τ | a, b) = (1 − (1 − τ)1/b)1/a where τ ∈
[0, 1]. The flexibility of the Kumaraswamy distributions is shown in Section S1 of the
Supplementary Information (SI) employing different combinations of parameters (a, b).

To work with the mixture form for η(τ), we investigated two mixture strategies.
The first lets K be small but assumes the a’s and b’s are unknowns. The second lets
K be larger but adopts a fixed set of a’s and b’s, in the spirit of basis function forms.
Specifically, we consider K Kumaraswamy distributions with medians k/(K + 1),
respectively. In the former, with K = 2 we have a total of five parameters (two a’s, two
b’s, and a λ) while in the latter, with K = 6 again we have five parameters (five λ’s).
Increasing the number of “basis” components in the specification of the η’s need not
provide better model performance. From considerable simulation experience, model
performance is very sensitive to the choice of parameters in the mixture components.
So, in the sequel, we work with K = 1 or 2 (QAR1K1 and QAR1K2, hereafter) and
fit the a’s and b’s. As for priors, with K = 1, we consider log a1, log b1 ∼ N(0, σ2

ab)
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with σab = 3, which gives a weak prior on the log-scale. With K = 2, we consider
λ1 ∼ U(0, 1/2) and log a1, log a2, log b1, log b2 ∼ N(0, σ2

ab) with σab = 1.5. Restricting
λ1 to (0, 1/2) avoids identification issues, while σab is taken smaller than in the K = 1
case to penalize values of a’s and b’s too small or large. Values of a’s and b’s that
are close to zero or very large can cause negligible numerical errors in the root-finder
to generate a numerical overflow in the likelihood (see Equations 8 and 9 below) and
thus degeneracy.

2.3 Likelihood evaluation and model fitting

An important feature of a valid joint specification of QYt(τ | yt−1) for all τ ∈ (0, 1), fol-
lowing Tokdar and Kadane (2012), is that it uniquely defines the conditional response
density given yt−1 ∈ [0, 1]. Specifically, this density is given by

fYt
(yt | yt−1) =

1
d
dτQYt

(τ | yt−1)

∣∣∣∣∣
τ=τyt−1

(yt)

, (8)

where τyt−1(yt) solves yt = yt−1η1(τ)+(1−yt−1)η2(τ) in τ and is numerically approx-
imated to arbitrary precision via a one-dimensional root-finder. We implement the
hybrid root-finding algorithm combining the bisection method, the secant method, and
inverse quadratic interpolation, so-called Brent’s method (Brent, 1973). Consequently,
given the data at t = 1, y1, we can write a valid log-likelihood score

ℓ(Ω | y) =
T∑

t=2

log fYt
(yt | yt−1)

= −
T∑

t=2

log
{
yt−1η̇1(ut) + (1− yt−1)η̇2(ut)

}
,

(9)

where ut = τyt−1
(yt), y

⊤ = (y1, . . . , yT ) are all of the observed data, Ω are the model
parameters, and the η̇’s are the derivatives of the η’s.

We implement a block-Metropolis sampler algorithm with an adaptive period
(Haario et al., 2001) during warm-up to obtain Markov chain Monte Carlo (MCMC)
samples from the posterior distribution of the parameters and to summarize the pos-
terior distribution of the conditional quantile function. Furthermore, with a posterior
realization of the model parameters and a given value of yt−1, we can use (8) with
discretization, to obtain a posterior realization of the density function that is driving
the joint quantiles. Averaging over these realizations provides the posterior mean of
the density.

Expression (8) reveals an important difference between our QAR approach and
other nonlinear joint modeling versions in the literature. For example, the nonlinear
QAR model in Chen et al. (2009) specifies a joint dist for (Yt, Yt−1) using a copula. It
yields a conditional distribution for Yt | Yt−1 which has a nonlinear quantile function
that is monotone in τ . What we do is the reverse. We specify a non-crossing quantile
function and obtain the induced conditional distribution for Yt | Yt−1. Our quantile
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function is also nonlinear as a function of Yt−1. Their quantile function depends upon
the choice of copula and the copula parameters. Our quantile function depends on the
Kumaraswamy distribution and the associated parameters. Their Gaussian version has
a conditional quantile function which is linear in Yt−1, which may be restrictive. Their
t-copula version yields a quantile function which has a perhaps unattractive form as
the square root of a function of the square of Yt−1. If the goal is to model the quantile
function directly as nonlinear and flexible, rather than seeing what is induced by a
copula, our approach yields a simple form and may be more attractive.

2.4 Model comparison and simulation study

Working within our parametric Bayesian framework, for any τ , posterior samples of the
model parameters, {Ω∗

b : b = 1, . . . , B}, produce posterior samples of the conditional
quantile function for Yt, QYt(τ | yt−1;Ω

∗
b). Essentially, for each Yt (with associated

yt−1) and any τ , we obtain the posterior distribution of QYt(τ | yt−1;Ω). We use these
posterior distributions along with the dataset, y, to offer model assessment.

We propose two novel approaches. First, for any y, consider 1(y < QYt(τ | yt−1;Ω))
where 1 denotes the indicator function. Then, let pt(τ) ≡ E[1(yt < QYt(τ | yt−1;Ω)) |
y], i.e., the posterior probability that QYt(τ | yt−1;Ω) exceeds yt. Suppose we compute

p(τ) ≡∑T
t=2 pt(τ)/(T−1). We note that for any τ and Y regardless of its distribution,

E[1(Y < QY (τ)] = τ and V ar[1(Y < QY (τ)] = τ(1 − τ). If we let v ≥ 1 be a real
number, then

p̃v ≡ v

√√√√
∫ 1

0

∣∣∣∣∣
p(τ)− τ√

τ(1− τ)/(T − 1)

∣∣∣∣∣

v

dτ (10)

provides a standardized deviation form as a dimensionless measure of how well the
quantile function under the model is capturing conditional quantiles for the given time
series. We propose this as a (global) measure of model accuracy. With a minimum value
of zero, a smaller p̃v indicates better accuracy of the model. We would approximate
the integral by discretizing τ , in particular, we consider τ ∈ {0.01, 0.02, . . . , 0.99}.

As a second measure, we turn to the check loss function, usually employed as an
optimality function to obtain the τ empirical quantile (Koenker and Bassett, 1978).
Here, we adopt δτ (u) = u(τ − 1(u < 0)), the check loss function associated with the
AL distribution. Again, from the posterior distribution of QYt

(τ | yt−1;Ω), for any Yt
(with associated yt−1) and τ , we can obtain ∆t(τ) ≡ δτ (yt − E[QYt

(τ | yt−1;Ω) | y]).
As above suppose we compute ∆(τ) ≡∑T

t=2 ∆t(τ)/(T − 1). Then, for a given τ , ∆(τ)
provides an average discrepancy for the τ quantile function. The smaller the value,
the better the model performance. Then, we propose to weight ∆(τ),

∆̃ ≡
∫ 1

0

ω(τ)∆(τ) dτ (11)

to provide a global measure of model performance. We propose this as a relative mea-
sure of model performance in making model comparison. The weighting function, ω(τ),
compensates for the variation in mean of ∆(τ) across τ . Again, we would approximate
the integral by discretizing τ .
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For the weight function, we consider

ω(τ | y) = 1
∑T

t=2 δτ (yt −Qemp
Y (τ))/(T − 1)

. (12)

This choice leads to a measure that is closely related to the R1(τ) metric by Koenker
and Machado (1999). The R1(τ) measure is essentially, 1−ω(τ | y)∆(τ). This measure
is viewed as an analogue of R2 for the classical residual sum of squares, i.e., the check
loss function for quantiles replaces the least-squares loss function and the τ empirical
marginal quantile Qemp

Y (τ) replaces the sample mean. With a maximum value of 1,
the best model performance is reached at this maximum. Then,

R̄1 ≡
∫ 1

0

R1(τ) dτ = 1−
∫ 1

0

ω(τ | y)∆(τ) dτ = 1− ∆̃, (13)

provides a dimensionless global measure of model performance which can be used for
model comparison.

In Section S2 of the SI we present the results of a brief simulation study where
the goals were (i) to illustrate parameter recovery under fitting for several models, (ii)
to investigate model flexibility, i.e., performance when the sampling model is not the
same as the fitting model, and (iii) to consider the effect of sample size with regard
to (i) and (ii).

3 The QAR(p) case

We provide a straightforward extension of our joint QAR(1) model to the lag p case. It
is not a characterization of the QAR(p) function of Yt but offers a flexible specification.
In this regard, we obtain a form with some restrictions on the autoregressive coefficients
but no constraints on the yt’s beyond the bounded interval support. By interpreting
η1(τ) and η2(τ) in (5) as the conditional quantiles of Yt at yt−1 ∈ {0, 1}, we build a
similar construction for an autoregressive process of order p as follows. Define

QYt
(τ | yt−1, . . . , yt−p)

= (η1(τ), . . . , ηp+1(τ))




0 π1 0 · · · 0
0 0 π2 · · · 0
...

...
...

. . .
...

0 0 0 · · · πp
1 −π1 −π2 · · · −πp







1
yt−1

yt−2

...
yt−p



,

(14)

where the functions η1, . . . , ηp+1 : [0, 1] → [0, 1] are monotonically increasing and
the weights π1, . . . , πp are such that πj ≥ 0 and

∑
j πj = 1. It is easy to see

that such QYt
(τ | yt−1, . . . , yt−p) is monotonically increasing in τ ∈ [0, 1] for every

yt−1, . . . , yt−p ∈ [0, 1].
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In particular, for QAR(2), let τ, π ∈ [0, 1]. Then, define

QYt
(τ | yt−1, yt−2) = πyt−1η1(τ) + (1− π)yt−2η2(τ) + (1− πyt−1 − (1− π)yt−2)η3(τ)

(15)
where the three η functions are all strictly increasing, using forms as above. Rewriting
the expression as

QYt
(τ | yt−1, yt−2) = η3(τ) + π(η1(τ)− η3(τ))yt−1 + (1− π)(η2(τ)− η3(τ))yt−2, (16)

both autoregressive coefficients belong to [−1, 1] and need not be increasing in τ . We
fit this QAR(2) model to our real data in Section 6.3. In fact, we only attempt this with
K = 1 mixture components (seven parameters) to keep the model simple. Further,
the second autoregressive term results are not influential for our data. Also, we choose
log a’s and log b’s to follow a N(0, 1.52) prior and π ∼ U(0, 1) as a non-informative
prior for π.

4 Multivariate QAR(1)

Often a collection of dependent times series is gathered over a common time window.
For instance, our illustration below considers the dependent pairs {(ymax

t , ymin
t ) : t =

1, . . . , T}, the daily maximum and minimum temperature for day t at a site. In fact,
the collection of time series might be spatially referenced (leading to a spatial copula
model construction, as developed in the next section). What we have is the quantile
analogue of usual multivariate AR for time series. Implementation using the class of
joint QAR(1) models we have proposed has not appeared in the literature. Our interest
is in the quantile function for each time series. We are asking about the amount of
dependence between quantile levels regarding the marginal quantile functions.

Here, we illustrate with the bivariate case where we have two models each defined
as in (1), introducing dependence in the two time series by making the associated
Ut’s dependent through T −1 i.i.d. 2-dimensional Gaussian copulas. This specification
captures the acknowledged dependence between the pair of time series. We postpone to
Section 5 the details of modeling using copulas; in particular, that section develops the
form of the general n-dimensional joint density. The only detail that we advance here
is that the correlation matrix associated with the copulas contains 1’s on the diagonal
and ρ on the off-diagonal, where ρ ∼ U(−1, 1) measures the correlation between series.

Apart from introducing dependence through Umax
t and Umin

t , we could introduce
dependence in the η’s. For instance, using Kumaraswamy cdf’s, under the K = 1
case, we consider the pairs log amax

j and log amin
j and the pairs log bmax

j and log bmin
j

(j = 1, 2) to be bivariate normal. In our data we found little or no correlation between
the parameters of the two time series, so in subsequent analyzes we will consider them
independent. We do not pursue this case further here except to note the analogy with
dependent responses in linear regression models. Introducing dependence through the
Ut’s is analogous to introducing dependence through the errors in the linear regression
while introducing dependence through the η’s is analogous to introducing dependence
in the mean structure through shared parameters.
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An example is presented in Section 6.4. Again, with K = 1, this yields four η’s,
i.e., four independent log a’s and four independent log b’s, each following a weak,
say N(0, 32) prior, as well as the copula parameter. As a by-product, we show the
induced bivariate conditional pdf (arising from the bivariate analogue of Equation 8)
for (Y max

t , Y min
t ) with some choices for the yt−1’s.

5 Spatial QAR(1)

In the spatial setting, we consider spatial point-referenced time series data. Here, Yt(s)
denotes the observation for time t = 1, . . . , T at location s ∈ D, where D ⊂ R2 is
the study region. We have a time series at each of the locations, {s1, . . . , sn}, say, the
locations of the monitoring stations. The joint spatial QAR model is given by

Yt(s) = θ0(Ut(s); s) + θ1(Ut(s); s)Yt−1(s), (17)

where the θ functions are quantile and spatially varying. Chen and Tokdar (2021) pro-
pose to model the spatial dependence of the realizations in a QR model using a spatial
copula process. Generalizing it to our model, the vectors (Ut(s1), . . . , Ut(sn))

⊤ fol-
low an independent copula distribution for every t. Supplementing Chen and Tokdar
(2021), in (17) we introduce spatially varying coefficients rather than global coeffi-
cients. As a consequence, we have dependence in the time series realizations as well
as spatially varying quantile functions.

5.1 Modeling spatial dependence

Spatial dependence is captured through spatially varying quantiles which are anal-
ogous to introducing spatially varying coefficients in spatial linear regression, and
dependent quantile levels which are analogous to introducing dependence through the
errors in the linear regression.

5.1.1 Spatially varying quantiles

For the spatially varying coefficients, we consider only one Kumaraswamy cdf for each
η(τ ; s). In fact, at location s, let assume ηj(τ ; s) = 1−(1−τaj(s))bj(s) with parameters
aj(s) and bj(s) for j = 1, 2. Then, we introduce four independent GP’s for the a’s and
b’s on the log-scale. In particular, we model log aj(s) ∼ GP (aj , σ

2
aj
ρ(s, s′;ϕaj )) and

log bj(s) ∼ GP (bj , σ
2
bj
ρ(s, s′;ϕbj )) where the ρ(s, s′;ϕ)’s are exponential correlation

functions with ϕ’s as corresponding decay parameters.
We take the ϕ’s to be fixed values, according to the spatial scale, because it is

usually difficult to estimate them from the data and typically interest focuses on the
σ2’s, the spatial uncertainties (Banerjee et al., 2014). Specifically, we fix ϕ = 3/dmax,
with dmax the maximum distance between any pair of spatial locations. Thus, the
spatial GP’s are only indexed by a mean and a variance parameter. We choose the
priors aj , bj , log σ

2
aj
, log σ2

bj
∼ N(0, 32) (j = 1, 2).
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5.1.2 The spatial copula process

A copula is a multivariate cdf for which the marginal distribution of each variable is
U(0, 1). Copulas are used to model the dependence between random variables. Par-
ticularly, Sklar’s theorem (Sklar, 1959) states that any multivariate joint pdf can
be written in terms of univariate marginal pdf’s and a copula which describes the
dependence structure between the variables.

Gaussian spatial copulas enable computational advantages, e.g., ease of parameter
estimation and scalability with sample size. For a given correlation matrix R, the
n-dimensional Gaussian copula function with parameter matrix R becomes

CΦ(u | R) = ΦR(Φ
−1(u1), . . . ,Φ

−1(un)), (18)

where u⊤ = (u1, . . . , un) ∈ [0, 1]n, ΦR is the joint cdf of a multivariate normal distri-
bution with zero-mean vector and covariance matrix R. According to Xue-Kun Song
(2000), the associated copula density is

cΦ(u | R) = |R|−1/2 exp

{
1

2
q⊤(In −R−1)q

}
, (19)

with q⊤ = (Φ−1(u1), . . . ,Φ
−1(un)).

With regard to the copula model for (17), we take the processes Ut(s)’s to follow a
Gaussian copula for each t, induced by a spatial GP. In the spirit of Chen and Tokdar
(2021), we define

Ut(s) = Φ(Zt(s)), Zt(s) =Wt(s) + ϵt(s),

Wt(s) ∼ GP (0, γρ(s, s′;ϕ)), ϵt(s) ∼ i.i.d. N(0, 1− γ).
(20)

The process Wt(s) captures spatial dependence while ϵt(s) is independent pure error.
The parameter γ ∈ [0, 1] determines the proportion of spatial and independent vari-
ation. When γ = 1, the specification for Zt(s) is purely spatial. When γ = 0, we
have an independent noise model. With this approach, the Gaussian copula density
has correlation matrix R ≡ γR(ϕ) + (1 − γ)In where R(ϕ) is the n × n correlation
matrix induced by ρ(s, s′;ϕ). To address the final copula piece of our model, we fix ϕ
as above, and adopt γ ∼ U(0, 1) as a non-informative prior for γ.

5.2 Likelihood evaluation

We are interested in the likelihood under model (17) using (19) and (20). It is
convenient to first obtain the joint distribution for Y⊤ = (Y⊤

1 , . . . ,Y
⊤
T ) where

Y⊤
t = (Yt(s1), . . . , Yt(sn)), t = 1, . . . , T . That is, each Yt is n× 1 and Y is Tn× 1. By

Sklar’s theorem, the joint conditional density of responses, Y, given the data at the
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initial time, y1, can be partitioned into a marginal part and a copula part,

fY(y | y1) =

T∏

t=2

[
n∏

i=1

fYt(si)

(
yt(si) | yt−1(si)

)

× cΦ
(
FYt(s1)(yt(s1) | yt−1(s1)), . . . , FYt(sn)(yt(sn) | yt−1(sn))

)
]
,

(21)
where the cdf FYt(si) corresponds to the pdf fYt(si) and cΦ is the Gaussian copula
density in (19). As in Section 2.3, we evaluate fYt(si) and FYt(si) using:

fYt(si)(yt(si) | yt−1(si)) =
1

d
dτQYt(si)(τ | yt−1(si))

∣∣∣∣∣
τ=τyt−1(si)

(yt(si))

,

FYt(si)(yt(si) | yt−1(si)) = τyt−1(si)(yt(si)),

(22)

where τyt−1(si)(yt(si)) solves yt(si) = yt−1(si)η1(τ ; si) + (1 − yt−1(si))η2(τ ; si) in τ .
Then, the log-likelihood score of the model parameters Ω can be expressed by

ℓ(Ω | y) =
T∑

t=2

[
−

n∑

i=1

log
{
yt−1(si)η̇1(ut(si); si) + (1− yt−1(si))η̇2(ut(si); si)

}

+ log cΦ (ut(s1), . . . , ut(sn) | R)
]
,

(23)

with ut(si) = τyt−1(si)(yt(si)). Finally, note that, for the calculation of the log-
likelihood, the value of the ut(si)’s must be solved for, so the number of root-finders
needed at each iteration of the MCMC is n(T − 1). As a result, likelihood evaluation
is expensive, leading to long MCMC run times.

5.3 Spatial interpolation

The quantile QYt(s)(τ | yt−1(s)) is a function of process realizations. Posterior samples
for the hyperparameters are available from the model fitting. Posterior samples for
the GP’s are available, using posterior samples of the hyperparameters, through usual
Bayesian kriging (Banerjee et al., 2014). This yields prediction of aj(s0) and bj(s0)
(j = 1, 2) at a new s0 ∈ D, enabling spatially varying quantile functions. Therefore, we
can interpolate conditional quantiles to any desired location in the study region given
any proposed or reference value for the previous day’s temperature at that location. If
we do this over a sufficiently spatially resolved grid, we can obtain the posterior mean
at each point and show the posterior τ conditional quantile surface for the given day.
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Fig. 1 Location of the 18 sites around Aragón, northeastern Spain.

6 Application to temperature data

6.1 The data

We illustrate the proposed modeling methods with analyses of persistence in point-
referenced daily maximum temperatures (◦C) from n = 18 locations in Aragón, Spain.
We bring in daily minimum temperatures for the bivariate QAR(1) case. The data
is provided by the State Meteorological Agency (AEMET, in its Spanish acronym).
Castillo-Mateo et al. (2022) provide exploratory analysis and spatial hierarchical mod-
eling for this dataset. We analyze responses for 2015, an interesting year because
the summer was especially hot in Europe (Dong et al., 2016). There were numerous
locations with record-breaking temperatures in July 2015 and the heat was main-
tained over time. The monthly average value of temperatures was a record in July
2015 for 6 of the 18 locations and in the entire region it was among the 10 hottest
monthly averages. We restrict analysis to observations from May, June, July, August,
and September (denoted as MJJAS), i.e., the hottest months of the year, resulting in
T = 153 days. The location of the 18 observatories is shown in Figure 1 and their time
series in Figure S4 of the SI.

We begin with a model comparison using QAR(1) and QAR(2) models for all
locations. Then, we analyze two illustrative locations within the region, Pamplona and
Zaragoza, separately. Subsequently, we implement the bivariate QAR(1) model to the
daily maximum and minimum temperature series in Zaragoza. Finally, we implement
the general model for spatial QAR(1) with all the locations. Before model fitting, we
scale each of the temperature time series to (0, 1) using the transformation in (3) with
m and M in (4). We adopt site-level values for m and M .

6.2 The QAR(1) case

Table 1 shows, averaged across locations, the metrics of model adequacy p̃2 and model
comparison R̄1 defined in Section 2.4 for the QAR1K1 and QAR1K2 models, and the
model from Koenker and Xiao (2006) fitted under our Bayesian framework using the
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Table 1 Adequacy and comparison metrics p̃2 in (10)

and R̄1 in (13) averaged across locations for QAR1K1,
QAR1K2, QAR2K1, and KX2006 models.

Model Description p̃2 R̄1

QAR1K1 QAR(1) with K = 1 in (6) 0.633 0.365
QAR1K2 QAR(1) with K = 2 in (6) 0.402 0.365
QAR2K1 QAR(2) with K = 1 in (6) 0.542 0.365
KX2006 Koenker and Xiao (2006) 0.683 0.339

density in (8). Table S6 in the SI shows the metrics for each location. For this latter
model, denoted as KX2006, we also consider a location parameter µ in the intercept,
i.e., θ0(τ) = µ + σΦ−1(τ) and θ1(τ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1) and γ1 > 0.
With KX2006 we work on the original scale of the data since they are all positive.
We choose the priors µ ∼ N(0, 102), log σ, log γ1 ∼ N(0, 32), and γ0 ∼ U(0, 1). The
R̄1 does not discriminate much between the proposed models, i.e., the autoregressive
term explains much more variability than the difference in specification between the
models. However, our proposed models have a slightly higher performance, 0.365, than
the KX2006 model, around 0.34. Also, the p̃2 directly measures how well the quantiles
are captured, and its discriminative capacity is much higher. While QAR1K1 obtains
a value of 0.633, adding a second component to the mixing improves this measure to
0.402. For its part, the KX2006 model obtains the worst value, 0.683, indicating an
overall poorer fitting of the quantiles.

Figure 2 shows the posterior mean of the functions θ0 and θ1 in Pamplona and
Zaragoza for the models QAR1K1 (dashed) and QAR1K2 (solid). Note that we could
recover the intercepts on the original scale as θ∗0(τ) = m(1− η1(τ)) +Mη2(τ) and the
autoregressive coefficients remain invariant. Further, θ1 is not monotonic; this aspect
of temperature dependence with respect to the previous day’s temperature was also
observed by Castillo-Mateo et al. (2023). It cannot be reproduced by KX2006. In
Pamplona, the QAR1K2 model (the best) estimates a lower autoregressive coefficient
than the QAR1K1 for τ ∈ (0.1, 0.7). In Zaragoza, similar curves appear for the two
values of K, as shown by p̃2 and R̄1.

Figure 3 shows the posterior mean of the conditional quantile functions QYt
(τ | y)

for three situations where y is the empirical τ marginal quantile for τ = 0.1, 0.5, 0.9;
the legend shows the values that are conditioned on both the original scale and the
(0, 1) scale. The smallest values of θ1 are in extreme τ ’s, this means that the previous
day’s temperature is less influential for high quantiles. In fact, the conditional quantiles
in Figure 3 overlap for τ ’s near 0 or near 1.

Figure 4 shows the posterior mean of the conditional density function in (8) under
the same conditions as Figure 3. Pamplona presents different shapes in fYt

(yt | y) for
different values of y. The distribution is asymmetrical with positive skewness if we
condition on a small value for the previous day’s temperature, and negative skewness if
we condition on a big value. A general pattern is common in the region, the conditional
distribution conditional on the 0.9 marginal quantile is more concentrated than those
conditional on the 0.1 quantile. Figures S5, S6, S7, and S8 in the SI present the plots
for the 18 locations.
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Fig. 2 Posterior mean of θ0(τ) (above) and θ1(τ) (below) vs. τ for QAR1K1 (dashed) and QAR1K2
(solid). Pamplona (left) and Zaragoza (right), MJJAS, 2015.
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6.3 The QAR(2) case

Table 1 uses the criteria p̃2 and R̄1 for the QAR(2) model with K = 1 (QAR2K1).
The previous subsection showed that including a first lag improved the performance
of the model with respect to an empirical null model. However, including a second lag
does not increase the value of R̄1 with respect to a QAR(1) model. On the other hand,
the measure of p̃2 is somewhat better for QAR2K1 than for QAR1K1 but it is still
inferior to the QAR1K2 case. Since QAR2K1 does not improve performance, and, as
we will see below, there is no evidence that the term θ2(τ) is different from zero for
any τ across most locations, there seems to be no value in exploring a QAR(2) model
with K = 2.

Figure 5 shows the θ functions in the QAR2K1 model for Pamplona and Zaragoza
(see Figure S9 in the SI for all locations). The θ0 and θ1 functions have a shape very
similar to the QAR1K1 case. The θ2 functions have values that are essentially centered
at zero in most locations, giving more evidence that it is not necessary to introduce a
lag of order 2 in the model. However, there are four locations with a coefficient slightly
away from zero; Buñuel and La Sotonera have a value of θ2(τ) close to 0.2 for non-
extreme τ ’s while Huesca and La Puebla de Hı́jar have similar behavior with values
around 0.1.

6.4 Multivariate QAR(1)

Here, we fit the multivariate QAR(1) model (MQAR1K1) to the daily maximum and
minimum temperature series at Zaragoza, {(ymax

t , ymin
t ) : t = 1, . . . , T}. The same

analyses were developed for Pamplona and Daroca, but with different conclusions.
Figure 6 shows the θ functions for the ymax

t (red) and ymin
t (blue) series. We see different

patterns for θmax
1 and θmin

1 ; ymax
t shows high autocorrelation for high quantiles while

ymin
t has less persistence for those quantiles.

For Zaragoza, the posterior mean of ρ is 0.32 with 95% credible interval (0.17, 0.45),
indicating the need to include dependence in the quantile levels of both series. For
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Pamplona, the posterior mean of ρ is 0.06 with 95% credible interval (−0.11, 0.23).
Here, independent models for the conditional quantiles could be adopted. A reasonable
explanation is the frequent appearance of fresh wind from the northwest during the
night in Pamplona, resulting from proximity to the Cantabrian Sea.

Figure 7 shows level curves of the posterior conditional joint density of the vec-
tor (Y max

t , Y min
t ) given the previous day’s maximum and minimum temperatures, in

Zaragoza (see Figures S10 and S11 in the SI for Pamplona and Daroca). The con-
ditioning values are empirical marginal quantiles of Y max

t and Y min
t . The first row

conditions on the quantile τ = 0.5 (30.6◦C) and the second row on the quantile
τ = 0.9 (37.0◦C) of Y max

t , and the same quantiles of Y min
t , for the first (17.2◦C) and

second (21.8◦C) columns. The different patterns observed in the plots reveal a differ-
ent relation between Y max

t and Y min
t depending on the previous day’s temperatures.

The conditional posterior distribution is not symmetric, with a different mean vec-
tor depending on the conditioning temperatures; the variability of the distribution is
smaller when it is conditioned on high quantiles.
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6.5 Spatial QAR(1)

The spatial QAR model is fitted to the series of MJJAS in 18 locations in Aragón for
the year 2015. The posterior mean of γ, the proportion of spatial dependence in (20), is
0.96 with 95% credible interval (0.94, 0.98) indicating very strong spatial dependence
in the quantile levels of the temperature series. Figure S12 in the SI provides maps of
the posterior mean surface of the model GP’s. We notice that b1(s) and b2(s) show
approximately opposite spatial behavior since b1(s) has the highest values where b2(s)
has the lowest, in the central and southeastern areas. Figure S13 of the SI shows
boxplots of the posterior distribution of the GP’s at each observed location; locations
are sorted by elevation. The results suggest that the GP of a2(s) might be not necessary
since the boxplots in the 18 locations have very similar ranges. The spatial variability
of a1(s) is higher and, although it is not related to the elevation, it could be related
to the distance to the coast.

The posterior distribution of θ1(τ ; s), which captures the autoregressive structure,
is summarized using the same type of plots. Figure S14 of the SI shows boxplots
presenting the posterior distribution of θ1(τ ; s) at the observed locations while Figure 8
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Fig. 8 Maps of the posterior mean of θ1(τ ; s) for τ = 0.05, 0.50, 0.95.

the maps of the posterior mean surface of θ1(τ ; s), both for τ = 0.05, 0.50, 0.95. The
spatial GP’s in the parameters of the Kumaraswamy distribution allow the model to fit
different spatial patterns in each τ . The results show that the posterior mean of θ1(τ ; s)
is higher in the central quantiles. The spatial pattern of θ1(τ ; s) is not symmetric
around τ = 0.5 and, e.g., values of θ1(0.95; s) in the Pyrenees and northwestern areas
are smaller than θ1(0.05; s) in the same areas. Although θ1(τ ; s) tends to be lower in
locations with higher elevation, its spatial pattern cannot be explained by elevation
alone. Consequently, the spatial GP’s cannot be replaced with an elevation fixed effect.

The spatial joint model can also be used to estimate parameters related to the
conditional distribution, e.g., conditional quantiles at unobserved locations. As a brief
example, Figure S15 of the SI shows this through maps of the posterior mean of
QYt(s)(τ | y) for τ = 0.05, 0.50, 0.95, and y = 0.05, 0.50, 0.95. If it were desired to
obtain the quantiles on the original scale of the data rather than the scale (0, 1), we
could consider a kriging of m(s) and M(s). With the same kriging procedure we could
condition on values y(s)’s relative to a certain empirical marginal quantile for each
location.

The spatial modeling here is primarily illustrative. For instance, the assumption of
asymptotic tail independence, imposed by the Gaussian copula, may not be suitable.
Examination of alternative copulas is beyond the scope of this work.

7 Summary and future work

We have presented consequentially expanded modeling for joint (non-quantile cross-
ing) QAR. In particular, we have characterized the QAR(1) setting in a way that
allows for a more flexible autocorrelation structure than the one in the seminal paper
by Koenker and Xiao (2006). We have extended this to the QAR(p) case. We have
offered a novel multiple time series version using a Gaussian copula. We have elabo-
rated a spatial version, using a GP copula based upon a GP in conjunction with four
additional GP’s. This model enables spatially varying quantile functions. Our mod-
eling is entirely parametric through the use of the Kumaraswamy distributions. A
software implementation of our methods is available as the R-package “QAR” through
GitHub: https://github.com/JorgeCastilloMateo/QAR.

We have illustrated the above contributions through time series of daily temper-
atures from sites in Aragón, Spain. The joint QAR model, with greater flexibility in
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the modeling of the θ functions, allows us to capture autoregression structure in daily
temperature data, which is not strictly increasing in τ , but decreasing in both tails.

A critical challenge in employing this work is model fitting. We can make specifi-
cations as rich as needed through the use of probabilistic mixtures of Kumaraswamy
cdf’s. However, it is well-known that model fitting employing MCMC with mixture
specifications is often poorly identified. This issue is compounded in our case by
the fact that calculation of the likelihood requires constant use of a one-dimensional
root-finder. Ongoing work is attempting to address these computational difficulties.

It is important to note that we have not introduced any regressors into our mod-
eling. This adds substantial complication to the joint approach. In order to consider
coherent implementation of regressors, conditions have to be imposed on the sup-
port for the regressors, seeking to bridge our modeling with the work of Yang and
Tokdar (2017). However, we briefly note a simple approximation strategy to incorpo-
rate regressors, e.g., seasonality, into our joint QAR approach. Suppose we introduce
a regression structure, µt into the QAR(1) and estimate by µ̂t, creating residuals
rt = Yt − µ̂t. Then, we could apply the above methodology to obtain the QAR(1) for
rt. Our strategy for selecting m and M can be applied to residuals. More precisely,
let rt = θ(0)(Ut) + θ(1)(Ut)rt−1. This would yield the conditional quantile function,
Qrt(τ | rt−1) = θ(0)(τ)+θ(1)(τ)rt−1. Solving for the quantile function for Yt we obtain

QYt
(τ | Yt−1) = µ̂t + θ(0)(τ) + θ(1)(τ)(Yt−1 − µ̂t−1). (24)

We acknowledge that this approximation can be criticized for two reasons: (i) we are
creating µ̂t as if we were fitting a usual AR(1), and (ii) the resulting quantiles are not
coherent since µ̂t is a function of {Yt : t = 1, . . . , T}. The QAR(1) is not defined until
the end of the observation window.

Sections 4 and 5 could be combined to build a bivariate spatial QAR model for daily
maximum and daily minimum temperature. Another challenge for the multivariate
and spatial modeling would be to consider alternative copula choices, e.g., t-copulas
in order to allow tail dependence for high quantiles.

Supplementary Information

SI for “Bayesian joint quantile autoregression” contains details on the Kumaraswamy
distribution. Details on the simulation study. More results on the application with
temperature series.
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S1 Kumaraswamy distribution

Figures S1 and S2 show the pdf and the cdf of the Kumaraswamy distribution for different
combinations of parameters (a, b).
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Figure S1: Probability density function of the Kumaraswamy distribution for different pa-
rameters.
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Figure S2: Cumulative distribution function of the Kumaraswamy distribution for different
parameters.
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S2 Simulation study

To illustrate parameter recovery under the modeling in Section 2 of the Main Manuscript
(MM), we perform a simulation study where we consider QAR(1) models with K = 1
and K = 2 (QAR1K1 and QAR1K2) Kumaraswamy cdf’s in the probabilistic mixture
from Section 2.2.1, and scenarios with different combinations of parameter values. For each
scenario we simulate B = 100 datasets of length T = 150 and T = 500 time points, using the
model in (5) from the MM with the η’s again specified as probabilistic mixtures. For each
simulated dataset, a QAR(1) model with K equal to the value used in the data generating
process is fitted. First, 90% credible intervals are computed for θ0(τ) and θ1(τ) in a grid of
values of τ . Then, the coverage (CVG) of each value of each function is computed as the
proportion of the B computed credible intervals that contain the corresponding true values.

Table S1 shows CV G(θ0) and CV G(θ1), the average of the CVG’s for the values of the
functions in τ ∈ {0.01, 0.02, . . . , 0.99} based on the QAR1K1 model fitted to data generated
with the same model, under four scenarios. The individual CVG’s of θ0(τ) and θ1(τ) for
τ = 0.01, 0.50, 0.99 are shown in Table S2. Scenario SC1 considers independent series of
data with a1 = 0.5, b1 = 2, a2 = 0.5 and b2 = 2 (here, the subscript indicates the function ηj
to which the parameter corresponds). The other scenarios correspond to series with different
correlation structures. Parameters in Scenario SC2 (a1 = 4, b1 = 4, a2 = 1, b2 = 2) give
values of θ1(τ) moving from −0.5 to 0, with the maximum negative correlation for the central
values of τ . Parameters in Scenario SC3 (a1 = 0.5, b1 = 2, a2 = 2, b2 = 1) give θ1(τ) values
from 0.2 to 0.7 for τ < 0.75. Parameters in Scenario SC4 (a1 = 0.3, b1 = 6, a2 = 12, b2 = 8)
give values of θ1(τ) from 0.8 to 1 for τ < 0.75. The θ functions corresponding to the generated
data are plotted in Figure S3. The same study is repeated for series of data generated with
a QAR1K2 model under three scenarios: SC5 gives, again, uncorrelated series; SC6 positive
θ1(τ) between 0.5 and 0.91 for τ < 0.8; and SC7 gives θ1(τ) moving from −0.5 to 0, with
the maximum negative values for the central values of τ and decreasing slowly towards 0 in
the extremes. Table S3 contains the parameters used in each scenario. The average of the
CVG’s, CV G(θ0) and CV G(θ1), when fitting the QAR1K2 model under these scenarios are
also shown in Table S1, and plots of θ0(τ) and θ1(τ) are shown in Figure S3.

The results are satisfactory, with the average of the CVG’s close to the nominal level of
0.90, varying between 0.86 and 0.92 in all scenarios for both T = 150 and 500. Not only the
averages but also the individual CVG’s for each τ , even for extreme quantiles (τ = 0.01, 0.99),
are close to 0.90 (see Tables S2 and S4). It is noteworthy that Scenarios SC3, SC4 and SC6
could correspond to a usual correlation structure in climate and environmental data, with a
strong positive dependence in the central values of τ that weakens at the extremes.

To study the flexibility of the QAR1K1 model, Table S5 summarizes the metrics described
in Section 2.4 of the MM, obtained from fitting the QAR1K1 and QAR1K2 models to the
previous data series generated with QAR1K2 models. The values of R̄1 and p̃2 are the
metrics averaged across the B = 100 simulations. QAR1K1 models are quite flexible and
their metrics are only slightly poorer than QAR1K2 models. Note that Scenario SC5 imposes
independence and R̄1 is expected to be zero. We emphasize that comparison with Koenker
and Xiao (2006) do not make sense under scenarios with negative trends and non-monotonic
coefficients. Oppositely, simulating data under the Koenker and Xiao model, QAR1K1
obtains results not too far from QAR1K2 that becomes competitive against the truth.
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Function T SC1 SC2 SC3 SC4 SC5 SC6 SC7

θ0
150 0.87 0.86 0.91 0.87 0.92 0.88 0.88
500 0.89 0.89 0.88 0.89 0.91 0.89 0.91

θ1
150 0.88 0.90 0.88 0.86 0.90 0.87 0.87
500 0.89 0.89 0.90 0.87 0.91 0.90 0.90

Table S1: The 90% CV G of θ0(τ) and θ1(τ) across τ ∈ {0.01, 0.02, . . . , 0.99} obtained from
fitting QAR1K1 models in Scenarios SC1–SC4 and QAR1K2 models in Scenarios SC5–SC7.

Scenario T θ0(0.01) θ0(0.99) θ0(0.50) θ1(0.01) θ1(0.99) θ1(0.50)

SC1
150 0.88 0.86 0.85 0.87 0.91 0.86
500 0.91 0.89 0.88 0.89 0.90 0.90

SC2
150 0.87 0.90 0.92 0.87 0.89 0.90
500 0.87 0.89 0.88 0.87 0.88 0.91

SC3
150 0.91 0.83 0.89 0.90 0.83 0.89
500 0.90 0.87 0.88 0.83 0.89 0.95

SC4
150 0.88 0.88 0.86 0.88 0.88 0.86
500 0.86 0.86 0.80 0.93 0.86 0.81

Table S2: The 90% CVG of θ0(τ) and θ1(τ) (τ = 0.01, 0.50, 0.99) in QAR1K1 models fitted
to Scenarios SC1–SC4.

Scenario a1,1 b1,1 a1,2 b1,2 a2,1 b2,1 a2,2 b2,2 λ1 λ2
SC5 0.5 2.0 4.0 8.0 0.5 2.0 4.0 8.0 0.3 0.3
SC6 0.5 2.0 0.3 6.0 1.0 1.0 12.0 8.0 0.4 0.1
SC7 3.0 0.5 2.0 1.0 1.0 2.0 0.5 1.0 0.2 0.4

Table S3: Values of the parameters of the QAR1K2 models used to generate data under
Scenarios SC5–SC7. (First subscript indicates the mixture function ηj and second subscript
indicates the k-th component of that mixture to which the parameter corresponds.)

Scenario T θ0(0.01) θ0(0.99) θ0(0.50) θ1(0.01) θ1(0.99) θ1(0.50)

SC5
150 0.97 0.91 0.97 0.86 0.91 0.97
500 0.90 0.80 0.93 0.86 0.80 0.93

SC6
150 0.95 0.85 0.90 0.87 0.83 0.91
500 0.90 0.93 0.89 0.80 0.93 0.89

SC7
150 0.95 0.85 0.90 0.87 0.83 0.91
500 0.94 0.88 0.89 0.94 0.86 0.89

Table S4: The 90% CVG of θ0(τ) and θ1(τ) (τ = 0.01, 0.50, 0.99) in QAR1K2 models fitted
to Scenarios SC5–SC7.
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Figure S3: Functions θ0(τ) (left) and θ1(τ) (right) vs. τ . Under Scenarios SC1, (black),
SC2 (orange), SC3 (red), and SC4 (blue) used to generate QAR1K1 series (above); and
under Scenarios SC5 (green), SC6 (purple), and SC7 (pink) used to generate QAR1K2 series
(below).

QAR1K1 QAR1K2
Scenario T R̄1 p̃2 R̄1 p̃2

SC5
150 −0.0387 0.0019 0.0021 0.0002
500 −0.0439 0.0019 0.0002 0.0001

SC6
150 0.3082 0.0003 0.3091 0.0001
500 0.3155 0.0002 0.3171 0.0000

SC7
150 0.0781 0.0003 0.0776 0.0001
500 0.0737 0.0001 0.0737 0.0001

Table S5: Adequacy and comparison metrics for QAR1K1 and QAR1K2 models in Scenar-
ios SC5–SC7. Values are averaged across B = 100 simulations.
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S3 Application to temperature data

S3.1 Time series data
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Figure S4: Daily maximum temperature time series of the 18 locations in MJJAS, 2015.
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S3.2 Model comparison

QAR1K1 QAR1K2 QAR2K1 KX2006
Location p̃2 R̄1 p̃2 R̄1 p̃2 R̄1 p̃2 R̄1

Pamplona 0.75 0.267 0.46 0.270 0.65 0.265 0.65 0.274
Buñuel 0.56 0.358 0.35 0.356 0.52 0.357 0.82 0.337
El Bayo 0.67 0.362 0.39 0.364 0.61 0.361 0.44 0.331
Morella 0.59 0.352 0.35 0.351 0.45 0.351 0.73 0.318
Huesca 0.69 0.381 0.50 0.382 0.39 0.390 0.83 0.342
Tornos 0.61 0.352 0.39 0.352 0.55 0.352 0.54 0.306
Santa Eulalia 0.60 0.454 0.31 0.455 0.52 0.453 0.66 0.445
Calatayud 0.57 0.335 0.44 0.335 0.50 0.336 1.01 0.328
Panticosa 0.60 0.447 0.36 0.448 0.51 0.443 0.40 0.431
La Puebla de Hı́jar 0.80 0.333 0.37 0.336 0.64 0.339 0.69 0.301
Ansó 0.42 0.411 0.34 0.410 0.37 0.410 0.51 0.384
Daroca 0.58 0.334 0.44 0.335 0.56 0.337 0.37 0.297
Zaragoza 0.62 0.351 0.45 0.351 0.50 0.356 0.74 0.304
La Sotonera 0.67 0.341 0.40 0.344 0.58 0.345 0.51 0.300
Pallaruelo 0.80 0.362 0.50 0.362 0.63 0.361 0.80 0.335
Cueva Foradada 0.46 0.359 0.47 0.353 0.40 0.365 0.76 0.334
Sallent 0.71 0.418 0.30 0.419 0.73 0.413 0.53 0.401
Yesa 0.72 0.343 0.42 0.344 0.64 0.340 1.31 0.344∑

/18 0.633 0.365 0.402 0.365 0.542 0.365 0.683 0.339

Table S6: Adequacy and comparison metrics for QAR1K1, QAR1K2, QAR2K1, and KX2006
models for the 18 locations and averaged across locations.
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S3.3 The QAR(1) case
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Figure S5: Posterior mean of θ0(τ) vs. τ for QAR1K1 (dashed) and QAR1K2 (solid). All
locations, MJJAS, 2015.
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Figure S6: Posterior mean of θ1(τ) vs. τ for QAR1K1 (dashed) and QAR1K2 (solid). All
locations, MJJAS, 2015.
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Figure S8: Posterior mean of the density function fYt(yt | y) for QAR1K1 (dashed) and
QAR1K2 (solid). Here, y is the empirical marginal quantile for τ = 0.1 (blue), 0.5 (black),
0.9 (red). All locations, MJJAS, 2015.
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S3.4 The QAR(2) Case

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pamplona

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Buñuel

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

El Bayo

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Morella

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Huesca

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tornos

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Santa Eulalia

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calatayud

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Panticosa

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

La Puebla de Híjar

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ansó

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Daroca

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zaragoza

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

La Sotonera

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pallaruelo

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cueva Foradada

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sallent

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Yesa

τ

θ j
(τ

) (
j=

0,
1,

2)

θ0(τ)
θ1(τ)
θ2(τ)

Figure S9: Posterior mean of θ0(τ) (solid), θ1(τ) (dashed) and θ2(τ) (dotted) vs. τ for
QAR2K1. All locations, MJJAS, 2015
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S3.5 Multivariate QAR(1)
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Figure S10: Posterior mean of the density function of (Y max
t , Y min

t ) conditioned on (ymax, ymin)
for MQAR1K1. Here, (ymax, ymin) is equal to the respective empirical marginal quantiles for
τ = 0.5 (above), 0.9 (below) for the maximum; and τ = 0.5 (left), 0.9 (right) for the
minimum. Pamplona, MJJAS, 2015.
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Figure S11: Posterior mean of the density function of (Y max
t , Y min

t ) conditioned on (ymax, ymin)
for MQAR1K1. Here, (ymax, ymin) is equal to the respective empirical marginal quantiles for
τ = 0.5 (above), 0.9 (below) for the maximum; and τ = 0.5 (left), 0.9 (right) for the
minimum. Daroca, MJJAS, 2015.
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S3.6 Spatial QAR(1)

Figure S12: Maps of the posterior mean of a1(s), b1(s), a2(s), and b2(s).

Figure S13: Boxplots summarizing the posterior distribution of a1(s), b1(s), a2(s), and b2(s)
at the observed locations sorted by elevation.
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Figure S14: Boxplots summarizing the posterior distribution of θ1(τ ; s) for τ =
0.05, 0.50, 0.95 at the observed locations sorted by elevation.

Figure S15: Maps of the posterior mean of QYt(s)(τ | y) for τ = 0.05, 0.50, 0.95 and y =
0.05, 0.50, 0.95.
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3.5 Record tests to detect non stationarity in the

tails with an application to climate change

This manuscript was published in:
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“The situation is this: ¡Oh! ¡No
tengo datos!”

Jesús Aśın, in a group meeting
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Abstract
The analysis of trends and other non-stationary behaviours at the extremes of a series is an important problem in global

warming. This work proposes and compares several statistical tools to analyse that behaviour, using the properties of the

occurrence of records in i.i.d. series. The main difficulty of this problem is the scarcity of information in the tails, so it is

important to obtain all the possible evidence from the available data. First, different statistics based on upper records are

proposed, and the most powerful is selected. Then, using that statistic, several approaches to join the information of four

types of records, upper and lower records of forward and backward series, are suggested. It is found that these joint tests are

clearly more powerful. The suggested tests are specifically useful in analysing the effect of global warming in the extremes,

for example, of daily temperature. They have a high power to detect weak trends and can be widely applied since they are

non-parametric. The proposed statistics join the information of M independent series, which is useful given the necessary

split of the series to arrange the data. This arrangement solves the usual problems of climate series (seasonality and serial

correlation) and provides more series to find evidence. These tools are used to analyse the effect of global warming on the

extremes of daily temperature in Madrid.

Keywords Non-parametric tests � Records � Extremes � Non-stationary tails � Trend � Record-breaking temperatures �
Climate change

1 Introduction

Clear evidence of global warming has been found in many

areas of the planet. Concerning temperature, there is no

question that Earth’s average temperature is increasing

(Sánchez-Lugo et al. 2019), and there is a general con-

sensus to conclude the existence of an increasing trend in

its mean evolution. Most of the works on climate change

focus on the analysis of mean values; however, other rel-

evant aspects are changes in variability and the tails of the

distributions. Many works show the interest of analysing

whether the occurrence of extremes is affected by climate

change (Benestad 2004; Xu and Wu 2019; Saddique et al.

2020). Moreover, consequences of global warming on

human health, agriculture, and other fields are often related

to the occurrence of increasingly intense extremes (Cou-

mou and Rahmstorf 2012).

Although of great interest, the analysis of non-stationary

behaviour in extremes is acknowledged to be difficult due

to the scarcity of data. It is also difficult to link it to the

mean evolution of temperature since, given the small

magnitude of this trend in terms of the variability of the

daily temperatures, its effect on the extremes is not evident.

Even assuming that global warming affects the occurrence

of extremes, there may be considerable climate variability

in different areas of the planet, and more research on this

topic is needed. Conducting this type of study would be

eased by the existence of simple statistical tools, in the

same way that studies about the mean temperature have

been favoured by the availability of simple non-parametric

tests, such as the Mann–Kendall (MK) test (Kendall and

Gibbons 1990).

Climate models that do not adequately represent non-

stationary behaviours in the extremes can yield important
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biases in the results, especially in extreme value statistics

such as return values or return periods. For example,

ensembles of climate-model simulations are often useless

since the frequency of extremes is too low to be well

sampled by the ensemble (Durran 2020). Statistical models

that represent the whole distribution of temperature also

tend to badly fit the tails of the distributions. The validation

of climate models must include analysing their capability

to properly reproduce the most extreme values, but specific

statistical tests to this end are not available.

In this context, it is of great interest to develop statistical

tools to analyse non-stationary behaviours in the extremes.

The annual maxima or the excesses over the threshold are

the traditional approaches to study extremes in environ-

mental sciences, and they are still commonly used (Pros-

docimi and Kjeldsen 2021). However, a different approach

based on the analysis of records is proposed in this work.

This approach has some important advantages due to the

probabilistic properties of records. In particular, the fact

that the distribution of the occurrence of records in an

independent identically distributed (i.i.d.) series ðXtÞ does
not depend on the distribution of Xt. This property makes it

easier to develop distribution-free statistics, use Monte

Carlo methods to implement inference tools, and join the

information of the records of different series. Another

advantage of using records is that they do not require the

information of the whole series. This is common, for

example, in sports or in old climate series. Coumou et al.

(2013) underlines the interest of this type of analysis and

the importance of quantifying how the number of temper-

ature records is changing worldwide and establishing its

relationship with global warming.

Different approaches have been used to study the

occurrence of temperature records. Redner and Petersen

(2007) compared the observed values of records with the

expected values under a stationary climate in a descriptive

way and using simulations with given distributions. Ben-

estad (2004) compared the observed and expected numbers

of records under stationarity in a more formal way using a

v2 test and graphical tools. Another common approach is to

assume a Gaussian distribution of the temperature. For

example, Newman et al. (2010) used simulations to

determine the influence of trends and long-term correla-

tions on record-breaking statistics. Franke et al. (2010)

investigated the asymptotic behaviour of the probability of

record at a given time, and characterised it under several

distributions. Coumou et al. (2013) used the probabilities

of records by Franke et al. (2010) assuming a Gaussian

distribution to make descriptive comparisons with the

observed records in monthly temperatures. Wergen and

Krug (2010) and Wergen et al. (2014) also used those

probabilities: they found that they were useful only at a

monthly scale but found difficulties quantifying the effect

of slow changes in daily temperature. Although all these

approaches are useful, there is a lack of formal tests to

evaluate the effect of climate change on very extreme

temperatures.

The aim of this work is to propose a new approach based

on the occurrence of records to detect non-stationary

behaviours in the extremes of temperature series, as a tool

to assess the existence of global warming. To that end,

statistical tests to detect those non-stationary behaviours

are required, and they have to consider the specific char-

acteristics of climate series, such as serial correlation and

seasonal behaviour. The underlying idea is to use the dis-

tribution of the occurrence of records in an i.i.d. series ðXtÞ
to study whether the observed records are compatible with

that behaviour. First, we consider the type of tests by Foster

and Stuart (1954) based on the number of records, but we

also propose some statistics based on the likelihood and the

score function of the record indicator binary variables. In

particular, we obtain the expression of a score-sum statistic

based on those variables, and we prove that it is a particular

case of the general family of weighted statistics based on

the number of records proposed by Diersen and Trenkler

(1996). The advantage of this score-sum statistic is that the

weights do not have to be empirically selected since they

are analytically obtained.

To improve the power of the statistics based on the

upper records, Foster and Stuart (1954) considered the four

types of records that can be obtained from a series: upper

and lower records from the forward and the backward

series. To join all the information in one test, they defined

statistics based on the number of each type of record. In

addition to this type of statistic, we suggest another

approach to join the information, to combine the p-values

of the tests for each type of record. To that end, and given

the dependence between the four types of records, we

calculate the covariance between the four statistics, and we

apply the Brown method. Graphical tools based on the

previous statistics that allow us to detect where the devi-

ation of the null hypothesis appears are also proposed.

Finally, an analysis of the size and the power of the tests

under different situations is carried out, including common

distributions used in the analysis of climate extremes, such

as Pareto and Extreme value distributions. All the tools

described in this work are implemented in the R-package

RecordTest (Castillo-Mateo 2021), publicly available from

CRAN.

The outline of the paper is as follows. Section 2

describes the motivating problem and the data. Section 3

presents two families of tests: the first uses the upper

records only, and the second joins the information of four

types of records. A simulation study to compare the size

and power of the proposed tests is shown in Sect. 4.
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Section 5 describes some graphical tools, and Sect. 6

analyses the effect of global warming on the extremes of

daily temperature in Madrid (Spain). Finally, Sect. 7

summarises the main conclusions.

2 Description of the problem

The motivating problem of this work is the analysis of the

effect of global warming on the extremes of a daily max-

imum temperature series, and the series in Madrid (Spain)

is used as an example. Our aim is not only to objectively

establish the existence of non-stationary behaviour at

extreme temperatures but also to identify the time, the

periods of the year, and the features where it occurs.

2.1 Data

The series of daily maximum temperatures in Madrid, Tx,

recorded in �C from 01/01/1940 to 31/12/2019 is obtained

from the European Climate Assessment & Dataset (Klein

Tank et al. 2002); the observations of the 29th of February

have been removed. Madrid is located in the centre of the

Iberian Peninsula (40.4� N 3.7� W) at 667 m a.s.l. and has

an inland Mediterranean climate (Köppen Csa). Winters

are cold and summers are hot, with average temperatures in

January and July of 10 and 31 �C, respectively.
The temperature series shows seasonal behaviour, and a

strong serial correlation is clearly significant. Figure 1

shows the mean evolution of Tx, which has a slight trend,

much lower than the variability of the series. Thus, it is not

clear if this trend affects the extremes, particularly the

occurrence of records. In addition, the trend in the mean

temperature differs across the days of the year. This can be

observed in Fig. 2 (left), which shows ĥi, the slope of a

linear trend estimated by least-squares in the subseries of

each day of the year, standardised in mean and standard

deviation. The mean of the slopes is 0.0075, but they move

from -0.0025 to 0.025.

Figure 2 (right) represents the evolution of the annual

mean of Tx and its records. This plot shows that the

increase in temperature and the occurrence of records at an

annual scale are clearer than those at daily temperatures.

This suggests that global warming manifests itself not only

by global record-breaking temperatures but also by a

higher number of days with extreme temperatures.

In summary, the temperature series present the follow-

ing characteristics: strong seasonal behaviour, serial cor-

relation, and different trend evolution within the year. It is

noteworthy that the strong seasonal behaviour yields not

only different distributions of the variables but also a high

variability of the entire series. Moreover, to study the effect

of global warming on a daily scale, which is essential in

climate applications, the increase in the number of warmer

days must be considered. In the next section, we suggest an

approach to arrange the data that deals with all these

problems.

2.2 Data preparation

A common approach to remove the seasonal behaviour of a

daily series with annual seasonality

ðX1;1;X1;2; . . .;X1;365;X2;1;X2;2; . . .;XT ;365Þ is to split it into

365 subseries, one for each day of the year (Hirsch et al.

1982),

X1;1 X1;2 � � � X1;365

X2;1 X2;2 � � � X2;365

..

. ..
. ..

.

XT ;1 XT ;2 � � � XT ;365

0
BBBB@

1
CCCCA

T�365

:

In this way, each column in the matrix is a series formed by

serially uncorrelated observations with no seasonal beha-

viour. Serial uncorrelatedness is checked by applying

Pearson correlation tests to study whether the correlation

between the series and the lagged series is null. The
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resulting 365 series do not have the same distribution, but

given that the distribution of the occurrence of records does

not depend on the distribution of i.i.d. series, the results can

be aggregated.

The series of consecutive days are clearly correlated

between them. To obtain a set of uncorrelated series that

facilitates the development of inference tools, only a subset

of the 365 series available is considered. To that end, the

following approach is applied: given that the series at day k

is in the subset, the correlation between series k and k þ 1

is tested; if the correlation is not significant, series k þ 1 is

included in the subset; otherwise, the correlation between

series k and k þ 2 is tested. This step is repeated until a

series k þ i, which is not significantly correlated with series

k, is found. Applying this approach to the temperature

series in Madrid, and starting at 1st January, we obtain

M ¼ 58 series of length T ¼ 80. The selected days are

marked with red stars in Fig. 2 (left). One flaw of this

method is that we are not using all the information in the

365 series available but, an interpretation is that it provides

the effective sample size of the 365 correlated series. We

also note that the set of selected subseries may depend on

the method applied to assess the correlation.

In summary, the data preparation approach suggested

here provides a set of M uncorrelated series with no sea-

sonal behaviour. The transformation of one series into

M subseries will be useful to obtain more evidence from

the available data, as we will see in Sect. 3.

2.3 Challenges to analyse the tails
of temperature series

To develop tests that are useful to detect non-stationarity in

the temperature extremes, we have to consider all the

characteristics of daily temperature and how data have to

be arranged for analysis. Thus, we need tests with a high

power to detect weak deviations of the null hypothesis,

such as linear or other types of trends that may be small

compared to the variability of the entire series. Second,

non-parametric tests with few assumptions would be

preferable so that they can be applied in a wide range of

situations. Finally, due to the arrangement of the data

resulting from splitting the series, the tests must be able to

join information from several series, possibly with different

distributions.

3 Statistical tests to study i.i.d. series

In this section, we review and propose a set of tests to study

non-stationary behaviours in the occurrence of records that

satisfy all the requirements described in the previous sec-

tion. First, we recall some properties of the occurrence of

records and the Monte Carlo method used in the develop-

ment of the tests, and we state the null hypothesis to be

analysed. Then, two families of tests are proposed, one

based on the upper records and the other that joins the

information of four types of records.

3.1 Background

3.1.1 Basic definitions and the classical record model

Given a series of variables ðXtÞ, an observation of Xi is

called an upper record (or a record) if its value exceeds all

the previous observations, that is, Xi [ maxt\iðXtÞ. Anal-
ogously, Xi is a lower record if Xi\mint\iðXtÞ. Given that

mint\iðXtÞ ¼ �maxt\ið�XtÞ, lower records can be

defined in terms of the upper records of the negative series,

and all the properties for the upper records can also be

applied to the lower records.
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The basic variables that characterise the occurrence of

records in a series are the binary variables It, with t� 1,

defined as

It ¼
1 if Xt is a record

0 if Xt is not a record:

�

Variable I1 is always 1. Nt is defined as the number of

records up to time t, Nt ¼
Pt

i¼1 Ii.

The classical record model corresponds to the situation

where we have the records of a series of i.i.d. continuous

variables ðXtÞt� 1, with F being the common cumulative

distribution function. An important result for the classical

record model states that the distribution of record times

does not depend on F (Arnold et al. 1998). The following

properties, which are a consequence of the previous result,

characterise in more detail the behaviour of variables It and

Nt. They are useful for developing non-parametric tests

with asymptotic distributions and easing the implementa-

tion of Monte Carlo approaches.

Property 1 Given a sequence of i.i.d. continuous variables

ðXtÞ, the sequence of variables ðItÞ are mutually indepen-

dent and each It is BernoulliðptÞ distributed with,

pt ¼ PðIt ¼ 1Þ ¼ 1=t; t ¼ 1; 2; . . .:

Property 2 Given a series of i.i.d. continuous variables

ðXtÞ, the series of the corresponding variables ðNtÞ con-

verges in distribution to a normal distribution,

Nt � lt
rt

�!D Nð0; 1Þ

where lt ¼ EðNtÞ ¼
Pt

i¼1
1
i and

r2t ¼ VðNtÞ ¼
Pt

i¼2
1
i 1� 1

i

� �
. Consequently, if t is large

enough, Nt can be approximated by a N lt; rtð Þ distribution.

3.1.2 Monte Carlo method under the classical record model

Property 1 states that, under the hypothesis of i.i.d. series,

the sequence of variables ðItÞ are mutually independent and

It is Bernoulli(1/t) distributed, regardless of the continuous

distribution F of ðXtÞ. This makes easy the calculation of

pivotal statistics based on ðItÞ. In addition, the Monte Carlo

method is also easy to apply: for any F, a Bernoulli(1/t)

distribution can be used to generate samples of the vari-

ables It in i.i.d. series. Then, the implementation of the

Monte Carlo method is standard: a series of T independent

Bernoulli(1/t) variables is generated, and the pivotal

statistic R is obtained. Repeating this step B times, a

sample of observations of R under the null hypothesis,

R1; . . .;RB, is obtained, and the p-value is estimated as

cpv ¼
PB

b¼1 I
R
b =B where IRb is the binary variable linked to

Rb �Ro, and Ro is the observed statistic.

The Monte Carlo method can also be used with statistics

that are functions of dependent binary variables, as we will

see in Sect. 3.3.2. The only difference from the previous

approach is that a series of T independent N(0, 1) variables

(or any other continuous distribution) must be simulated

first. Then, the corresponding series of the dependent

record indicator variables It are obtained and used to cal-

culate the pivotal statistic R.

3.1.3 Notation and null hypothesis

In all the tests, we assume that there are M (� 1) mutually

independent series of length T available,

ðXt1Þ; ðXt2Þ; . . .; ðXtMÞ. These series can result from split-

ting the original series, or series measured at different

spatial points for example. To keep the notation simple, it

is assumed that all the series have the same length T, but

this restriction is not necessary.

Given ðXt1Þ; ðXt2Þ; . . .; ðXtMÞ, we define the series of

binary variables indicating the occurrence of records,

ðIt1Þ; ðIt2Þ; . . .; ðItMÞ, and the series of the number of records

ðNt1Þ; ðNt2Þ; . . .; ðNtMÞ. We also define the number of

records at time t in the M series, St ¼ It1 þ It2 þ . . .þ ItM:

The null hypothesis of all the proposed tests is

H0 : ptm ¼ 1=t; t ¼ 1; . . .; T ; m ¼ 1; . . .;M ð1Þ

with ptm ¼ PðItm ¼ 1Þ. In the context of global warming,

the most general alternative hypothesis is

H1 :ptm[1=t; for at least one t¼1;...;T ; m¼1;...;M:

ð2Þ

Hypothesis (2) includes the existence of a monotonous

positive trend in the mean, a usual assumption of global

warming, but it is more general. It also includes other types

of non-stationarity, for example, nonmonotonous trends or

series with increasing variability.

3.2 Tests based on the upper records

This section presents several approaches to building tests,

assuming that only the upper records are available. First,

we review and propose some modifications to a family of

statistics based on the number of records Nt. Second, a new

family of tests based on the likelihood function of the It
variables is proposed.

3.2.1 Tests based on NT

Property 2 states the normal asymptotic distribution of NT ,

the number of records in a series. This property was used
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by Foster and Stuart (1954) to define the d-statistic based

on the difference between the upper and the lower records.

Diersen and Trenkler (1996) found that the efficiency of

the d-statistic and other similar statistics is improved by

splitting a series of lengths T into k series of lengths T/k.

Taking these results into account, the number of records

statistic is defined as

N ¼
XM
m¼1

NTm ¼
XT
t¼1

XM
m¼1

Itm ¼
XT
t¼1

St: ð3Þ

N is asymptotically normal under the null hypothesis since

NTm are independent variables and are asymptotically

normal when T ! 1 (Property 2). On the other hand, by

the central limit theorem, each variable St is also asymp-

totically normal under the null hypothesis, when M ! 1.

This means that the normal approximation ofN is obtained

when any or both M and T increase and that even with

moderate values, a good approximation can be expected.

The mean and the variance under the null are

eN ¼EðN Þ¼M
XT
t¼1

1

t
and vN ¼VðN Þ¼M

XT
t¼2

1

t
1�1

t

� �
:

ð4Þ

Using the previous distribution under the null, a test based

on N is built. The p-value is

PðZ[ ðN 0 � 0:5� eN Þ= ffiffiffiffiffiffi
vN

p Þ, where N 0 is the observed

value ofN and Z�Nð0; 1Þ; note that since N takes integer

values, a continuity correction has been applied.

It is noteworthy that using Property 1 and the independence

of the M series, St �BinomialðM; 1=tÞ under the null

hypothesis. This means that the exact distribution of N is

Poisson-Binomial, that is, the distribution of the sum of T

independent Binomial(M, 1/t) variables with t ¼ 1; . . .T . It

does not have an explicit expression but it can be computed

with numerical methods. However, it is not worth using since

we have checked that the exact and asymptotic normal dis-

tributions are equivalent evenwithM ¼ 1 and lowvaluesofT.

Weighted statistic. Diersen and Trenkler (1996) con-

sidered that more powerful statistics could be obtained by

weighting the records according to their position in the

series. The motivation is that the probability that an

observation exceeds the actual record is inversely propor-

tional to the number of previous observations. After an

empirical study with different weights, the authors rec-

ommended the use of linear weights wt ¼ t � 1. They

found that the asymptotic relative efficiency of the

weighted tests improved with respect to the unweighted.

In our case, the weighted number of records statistic is

N w ¼
XT
t¼1

XM
m¼1

wtItm ¼
XT
t¼1

wtSt: ð5Þ

Under the null hypothesis, N w
is asymptotically normal

when M ! 1 since under those conditions St are asymp-

totically normal. However, we do not have normality when

T ! 1, since
PT

t¼1 wtItm is no longer asymptotically

normal (Diersen and Trenkler 2001). The mean and the

variance are EðN wÞ ¼ M
PT

t¼1 wt
1
t and

VðN wÞ ¼ M
PT

t¼2 w
2
t
1
t 1� 1

t

� �
, and a test analogous to that

based on N can be built.

Statistics with estimated variance The previous tests are

based on the asymptotic normal distribution of the statistics

with the expectation and variance obtained under the null.

A disadvantage of these tests is that the expectation

increases when the null hypothesis is not true but the

variance also changes. This issue could diminish the power

of the tests, since the statistic tends to take higher values

but possibly with higher variability. We propose an alter-

native by standardising the statistic

~N w
S ¼ N w � EðN wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibV ðN wÞ

q :

Assuming that VðItmÞ is the same in the M series and

denoting Nw
T ¼

PT
t¼1 wtIt, we have VðN wÞ ¼ M VðNw

T Þ.
VðNw

T Þ can be estimated by the sample variance of the M

values Nw
T obtained from ðXtmÞ. Under the null hypothesis,

~N w
S has a Student’s t distribution with M � 1 degrees of

freedom, and with pt [ 1=t, the statistic will tend to be far

from 0. This statistic is also more robust to the existence of

serial correlation. It is noteworthy that in correlated i.d.

series, the probability of record is not 1/t, but the deviations

are negligible even with medium correlations.

3.2.2 Tests based on the likelihood function of It

Given M independent series of independent variables ðItmÞ,
the likelihood is

LðpTM j ITMÞ ¼
YM
m¼1

YT
t¼2

pItmtm ð1� ptmÞ1�Itm ð6Þ

where pTM ¼ ðpT1; . . .; pTMÞ with pTm ¼ ðp1m; . . .; pTmÞ,
and analogously ITM ¼ ðIT1; . . .; ITMÞ with

ITm ¼ ðI2m; . . .; ITmÞ. Note that for t ¼ 1, the corresponding

factor is 11ð1� 1Þ1�1 ¼ 1.

Our aim is to propose tests based on the likelihood for

studying the null hypothesis in (1). Standard likelihood

tests assume that parameter values in the null hypothesis

are interior points of the maintained hypothesis. However,

in the one-sided alternative in (2), the parameters lie on the

boundary of the parameter space so that standard regularity

conditions fail to hold, and usual asymptotic distributions

are no longer valid Gourieroux et al. (1982). We propose
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tests under two different assumptions: first, the probabili-

ties of record at time t of the M series are allowed to be

different, and second, it is assumed that they are equal (but

possibly different from 1/t). The most common example of

the second situation is when the M series have the same

distribution.

General test for M independent series

If the M series are not assumed to have the same

probabilities of record at time t, there are MðT � 1Þ dif-

ferent probabilities ptm, without any restriction between

them. Then, the number of unknown parameters ptm is

equal to the number of observations, and they cannot be

estimated. An approach based on the score function, which

only requires the estimation of the parameters under the

null, is suggested.

Score-sum statistics. King and Wu (1997) proposed a

general method of constructing a locally most mean pow-

erful unbiased score test for one-sided alternatives. It has a

small-sample optimal power property when no nuisance

parameters are present, as in this case.

The statistic is based on the sum of the score vector,

evaluated under H0. In this case, using the likelihood in (6)

and the null hypothesis in (1), the score vector is the

MðT � 1Þ vector, q0 ¼ ðq01;0; . . .; q0M;0Þ where qm;0 is a

subvector of length T � 1

qm;0 ¼
t

t � 1
ðtItm � 1Þ

h i
t¼2;...;T

:

The information matrix under the null, I0, is a diagonal

MðT � 1Þ �MðT � 1Þ matrix with diagonal vector

I0
d ¼ ðI0

d1; . . .; I0
dMÞ, where each subvector is

I dm ¼ t2

t � 1

� 	
t¼2;...;T

:

Then, we consider the statistic

S ¼
PM

m¼1 qm;01T�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10MðT�1ÞI 01MðT�1Þ

q ¼
PT

t¼2 tðtSt �MÞ=ðt � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
PT

t¼2 t
2=ðt � 1Þ

q ;

ð7Þ

where 1K is the unity vector of length K. Assuming stan-

dard regularity conditions but without a requirement that

the true parameter is an interior point of the parameter

space and using the asymptotic normal distribution of the

score vector, the distribution of S under the null is

asymptotically N(0, 1) when M ! 1. Using this distri-

bution, we can build a test, and the p-value for the alter-

native in (2) is PðZ[S0Þ, where S0 is the observed value

of S.
It is noteworthy that S is a linear function of variables St

and t ¼ 2; . . .; T , with weights proportional to t2=ðt � 1Þ.

This means that it is a particular case of the weighted

statistic N w
, with the advantage that the considered

weights are analytically justified.

Tests for M independent series with the same distribution

The tests proposed in this section assume that the

probabilities of records in the M series are equal, but they

can be different from 1/t. One advantage of this assumption

is that the number of unknown parameters, T � 1, is lower,

and they can be estimated. In addition, it could be expected

that in cases where the assumption is true, these tests would

be more powerful than S. However, the power study in

Sect. 4 shows that this is not true. Since the use of these

tests is not recommended, they are only briefly described

here.

Shapiro (1988) showed that given a vector y�Nð0;VÞ
of dimension n and a convex cone C, the statistic

�v2 ¼ yTV�1y�min
b2C

ðy� bÞTV�1ðy� bÞ

is distributed as �v2ðVÞ, a mixture of v2 distributions. If V is

the identity matrix and C ¼ fb : b� 0g, the weights of the
mixture are wi ¼ n

i

� �
2�n for i ¼ 1; . . .; n. We apply this

approach to y ¼ I�1=2
0 q0, which under the null has an

asymptotic distribution N(0, 1). The resulting statistic is

T ¼
XT
t¼2

ðtSt �MÞ2

Mðt � 1Þ ISt [M=t ð8Þ

and using the asymptotic distribution, a test can be built as

previously described.

We also derive a statistic based on the likelihood ratio

function using the approach by Gourieroux et al. (1982) to

deal with one-sided alternatives

R ¼ � 2
XT
t¼2

�St log
tSt
M

� �
þ ðM � StÞ log

t � 1

t

� ���

�ISt\M log
M � St
M

� �
�ÞISt [M=t:

Under the null hypothesis, it has a �v2ðI�1
0 Þ asymptotic

distribution. Since the numerical calculation of this distri-

bution is computationally expensive, a Monte Carlo

method is used, but the power performance is worse than

T .

3.3 Tests joining information from different
types of records

When the entire series is available, the power of a test

based on records can be improved by joining the infor-

mation from the binary variables of the occurrence of lower

records, denoted ðILt Þ, and the occurrence of records in the

backward series. This idea was suggested by Foster and
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Stuart (1954) and Diersen and Trenkler (1996). The

backward series are the series obtained when the order of

the terms in the series are reversed so that we start by

observing the last term,

IBt ¼
1 if XT�tþ1 [ maxi[ T�tþ1ðXiÞ (record)
0 otherwise :

�

Note that t is the index of the position in the backward

series, so that It and IBt do not correspond to the same year.

As variables It, under the null, IBt �Bernoullið1=tÞ. Anal-
ogously, we define the binary variables for the occurrence

of its lower records IBLt .

Two approaches are suggested to join the information

from the four types of records. The first step is to obtain the

type of statistic described in the previous section for each

of the four types of records. Then, we can build a joint

statistic, or we can join the resulting p-values using Fish-

er’s type method. In both cases, it is necessary to charac-

terise the dependence between the individual statistics and

the expression of the correlation between them has to be

obtained. The approaches presented here can be applied to

any of the statistics in Sect. 3.2, but the results are pre-

sented for S since, as will be seen in Sect. 4, it is the most

powerful statistic.

3.3.1 Correlation between statistics under the null

The statistic S in (7) can be expressed as

S ¼
PT

t¼2 wtSt þ K, where K is a constant and

wt ¼
t2

ðt � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
PT

t¼2 t
2=ðt � 1Þ

q :

All the calculations are expressed in terms of the weights

wt; in this way, the notation is simpler and the results are

easily generalized to other N w
statistics. SL, SB and SBL

denote the statistics based on the corresponding lower

records or backward series. Note that using these weights,

VðSÞ ¼ VðSLÞ ¼ VðSBÞ ¼ VðSBLÞ ¼ 1.

Correlation between S and SL (SB and SBL). It can be

proved that for t; t0 [ 1,

CovðItm; ILt0mÞ ¼
� 1

t2
if t ¼ t0

0 if t 6¼ t0

8<
:

and CovðSt; SLt0 Þ ¼ MCovðItm; ILt0mÞ. Using this and

VðSÞ ¼ VðSLÞ ¼ 1,

CorðS;SLÞ ¼ CovðS;SLÞ ¼ �M
XT
t¼2

w2
t

t2
:

Note that the resulting correlation does not depend on M

since w2
t is multiplied by a factor 1/M. These statistics are

asymptotically independent, and even for quite low T, the

correlation is negligible, for example, �0:044 for T ¼ 50.

Correlation between S and SB (SL and SBL). Using that

EðItIBt0 Þ ¼ PðIt ¼ 1; IBt0 ¼ 1Þ, it is proved that for t; t0 [ 1,

CovðItm; IBt0mÞ ¼

0 if t0\T � t þ 1
1

T
� 1

t

1

T � t þ 1
if t0 ¼ T � t þ 1

� 1

tt0
if t0 [ T � t þ 1

8>>>><
>>>>:

and the correlation is

CorðS;SBLÞ ¼M
XT�1

t¼2

wtwT�tþ1

1

T
� 1

t

1

T � t þ 1

� �

�M
XT
t¼2

XT
t0¼T�tþ2

wtwt0

tt0
:

These statistics show an increasing negative dependence,

non-negligible; it is �0:667 for T ¼ 50, and it approaches

�2=3 with increasing T.

Correlation between S and SBL (SL and SB). It is proved

that for t; t0 [ 1,

CovðItm;IBt0mÞ

¼

0 if t0\T� tþ1

1

t

T

t

� ��1

� 1

T� tþ1

 !
if t0 ¼T� tþ1

T
t

� ��1 PT
q¼t

q
t

� � 1

qðq�Tþ t0�1Þ

� �
� 1

tt0
if t0[T� tþ1:

8>>>>>><
>>>>>>:

Then,

CorðS;SBLÞ¼M
XT�1

t¼2

wtwT�tþ1

1

t

T

t

� ��1

� 1

T� tþ1

 !
þ

þM
XT
t¼2

XT
t0¼T�tþ2

wtwt0
T

t

� ��1XT
q¼t

q

t


 � 1

qðq�Tþ t0�1Þ�
1

tt0

" #
:

ð9Þ

A simulation study shows that these statistics are asymp-

totically independent, and even for low T, the correlation is

negligible, smaller than 0.03 for T ¼ 50.

3.3.2 Generating a joint statistic

The idea of this approach is to join the information of S,
SL, SB and SBL into one statistic (Foster and Stuart 1954).

To that end, it must be taken into consideration that, under

the alternative of an increasing trend, S and SBL tend to

have high positive values (since pt [ 1=t), while SL and SB

have negative values (since in the corresponding series,

pt\1=t). To unify the behaviour of the four statistics, we

will consider linear combinations of S; see (7), �SL, �SB
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and SBL. The simplest option is to join the statistics that are

asymptotically independent. For example,

S2 ¼ S þ SBL; ð10Þ

whose asymptotic distribution under the null is Nð0;
ffiffiffi
2

p
Þ.

We also consider

S4 ¼ S � SL � SB þ SBL; ð11Þ

that joins the four statistics available. Its expectation under

the null is 0, and its variance is calculated using the

covariances in Sect. 3.3.1. S4 has an asymptotic normal

distribution when M ! 1 since it is the sum of M inde-

pendent variables with the same distribution under the null.

The p-value is also calculated using the Monte Carlo

method in Sect. 3.1.2. The aim of this double calculation is

to check the validity of the asymptotic normal distribution

and state the values of M and T where the approximation

can be used. The Monte Carlo method can be applied since

S4 is a pivotal statistic.

One advantage of this approach is its flexibility to define

statistics, especially when the Monte Carlo method is used.

Depending on the aim of the test, other statistics can be of

interest, for example S � SB and SBL � SL are a better

option to study only the behaviour of the upper and the

lower tail of the distribution, respectively. Other definitions

have been tried, such as S � SL, but the simulation analysis

showed that S4 is more powerful.

3.3.3 Generating a joint p-value

The idea of this approach is to join the information of P p-

values, Pi, from the tests based on S, �SL, �SB and SBL

using Fisher’s type method. Standard Fisher’s approach

states that the distribution of X ¼ �2
PP

i¼1 logPi under the

null is v22P, but it requires independent statistics. Using this

approach, we propose the test F2 that joins the p-values

from S and SBL,

F2 ¼ �2ðlogPS þ logPSBLÞ: ð12Þ

We also propose the test B4 that joins the p-values of the

four statistics using the modification by Kost and McDer-

mott (2002) of the Brown approach to join dependent p-

values. If the statistics are normally distributed, as the score

statistics, the distribution of X under the null can be

approximated by cv2f , where c ¼ VðXÞ=ð2EðXÞÞ and

f ¼ 2EðXÞ2=VðXÞ. The expected value is EðXÞ ¼ 2P and,

using an approximation for the covariance

Covð�2 logPi;�2 logPjÞ,

VðXÞ 	4Pþ 2
XP
i¼1

XP
i\j

ð3:263qij þ 0:710q2ij þ 0:027q3ijÞ

ð13Þ

where qij is the correlation between the statistics i and j.

Another restriction to join the p-values is that the statistics

must have the same behaviour (increase or decrease) under

the alternative. To achieve this, the p-values of the statis-

tics S, �SL, �SB and SBL must be joined,

B4 ¼ �2ðlogPS þ logP�SL þ logP�SB þ logPSBLÞ:
ð14Þ

Then, c and f are

c 	1þ 1

4

X3
l¼1

3:263ql þ 0:710q2l þ 0:027q3l
� �

f ¼8=c

where q1 ¼ qS;�SL , q2 ¼ qS;�SB and q3 ¼ qS;SBL , defined in

Sect. 3.3.1.

4 Size and power analysis of the tests

This section summarises the main results from a simulation

analysis of the size and power of the tests previously

described. First, the tests based on the upper records, and

second, the tests that require the entire series are analysed.

The estimations are based on 10,000 replications and a

significance level a ¼ 0:05.

In the size analysis, i.i.d. series with a N(0, 1) distri-

bution are generated without loss of generality since, under

the null, the distribution of the statistics does not depend on

the distribution of ðXtÞ. The size of the tests is estimated for

M ¼ 1; 4 and 12 and T ¼ 25; 50 and 100. The values of

M correspond to common situations: non-split data, quar-

terly and monthly split data.

The power study focuses on comparing the tests under

‘difficult conditions’ since when M and T are high, or the

series has a strong trend, all the statistics have a similar

high power that approaches 1. Thus, only small sample

sizes, M ¼ 1; 4; 12 and T ¼ 25 and 50, and small trends are

shown in the study. The power is estimated using series

with a monotonous positive trend h since they satisfy the

alternative hypothesis H1 : ptm [ 1=t. Although other sit-

uations can lead to this alternative, a positive monotonous

trend is the most common way of modelling global

warming. Then, the series is generated as a trend plus a

noise term

Xtm ¼ ht þ Ytm: ð15Þ
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Noise terms Ytm with different distributions are used to

generate the series. We consider N(0, 1) and other distri-

butions commonly used in climate and environmental sci-

ences. Series in these fields often require asymmetric and

semibounded distributions (defined in ð0;1Þ), such as the

exponential or gamma distribution for rainfall, generalised

Pareto (GP) for peaks over threshold applied to tempera-

ture or hydrological series, or generalised extreme value

(GEV) for annual maximum temperatures or other maxima.

Three kinds of monotonous trends were initially consid-

ered: linear, concave and convex trends, ht ¼ ht,

ht ¼ h
ffiffiffiffiffi
tT

p
, and ht ¼ ht2=T , so that all of them increase to

hT when t ! T . Given that very similar results are

obtained in the three cases, only the results of the linear

trend are shown. Concerning the magnitude, values h ¼
0:005; 0:01; 0:025 and 0.05 are considered. Note that in the

case of N(0, 1) noise, the trend h corresponds to the 100�
h percentage of the standard deviation.

In climate analysis, it is likely that the series used to

implement the test do not exhibit the same trend, for

example, in different seasons. Consequently, an alternative

H1;hm corresponding to this situation is included in the

analysis: it uses M series generated with different trends

htm ¼ hmt in (15); the trend values hm are randomly gen-

erated from a N(0.0075, 0.005) distribution. Values 0.0075

and 0.005 are the mean and standard deviation estimated

from the sample of trends obtained in the temperature

subseries in Madrid.

4.1 Comparison of the tests using only upper
records

A thorough study of all the statistics described in Sect. 3.2

was performed. Only the results for N , S and T , see (3),

(7) and (8) respectively, are summarised here since the

statistics that are linear weighted functions of St (N w
and

S) yield similar results; the standardised version ~N w
S nei-

ther improves the power with uncorrelated series. The

performance of T andR, the statistics forM series with the

same probabilities of record, are also very similar between

them.

Size analysis Table 1 summarises the size of the three

statistics. It is adequate in all cases, even for N and S,

which have an asymptotic distribution. The size of S,
which is asymptotic when M ! 1, for M ¼ 1 is slightly

higher than the nominal value.

Power analysis Figure 3 summarises the power of the

tests with series with a N(0, 1) noise term and a trend. The

following conclusions are obtained,

• The comparison of N and S shows that there is a clear

increase in the power when weights are used. However,

the value of the weights is not so relevant, and we found

that the linear weights, obtained empirically, are

equivalent, in terms of the power, to the theoretically

derived weights from S.
• Unexpectedly, the tests T andR, which assume that the

M series have the same probabilities of record, have a

power lower than S even when that assumption is true.

• The power of the three tests increases with both T and

M with a similar pattern.

• All the tests have a similar and high power with

medium sample size and not very weak trends. How-

ever, S provides the best power under difficult condi-

tions: it is over 0.9 for h ¼ 0:05 withM ¼ 4 and T ¼ 50

or with M ¼ 12 and T ¼ 25 and for h ¼ 0:025, with

M ¼ 12 and T ¼ 50. For h
 0:01 and small sample

sizes (T 
 50 and M
 12), the tests are not useful since

the power is low.

Alternative with series with different trends. The

pattern of the power with series under the alternative H1;hm

is very similar to that obtained with series with a constant

trend, and S provides the best results in all the settings (see

Figure S.1 in Supplementary Material). The values are also

equivalent; for example, the power of S under H1;hm with

random trends with mean 0.0075 and T ¼ 50 and M ¼ 12

is 0.3, while its counterpart with series with h ¼ 0:0075 is

0.29.

Alternative with negative trends. The analysis of

negative trends is not of great interest in climate. However,

given that the occurrence of upper records in a series with a

negative trend is symmetric to the occurrence of lower

records with a positive trend, a brief analysis is carried out.

The results are shown in Figure S.2 in the Supplementary

Material, and the conclusions are analogous, although the

power is slightly lower.

Table 1 Estimated size with

a ¼ 0:05 of the tests based on

the upper records

T 25 50 100 25 50 100 25 50 100

M 1 1 1 4 4 4 12 12 12

N 0.043 0.049 0.050 0.044 0.031 0.043 0.043 0.039 0.043

S 0.070 0.070 0.068 0.061 0.059 0.063 0.051 0.055 0.058

T 0.049 0.049 0.050 0.050 0.047 0.052 0.047 0.051 0.052
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Some analyses using distributions other than the normal

distribution are carried out, and as in the previous cases, S
is the most powerful test. More results with other distri-

butions are presented in the next section. In summary, S is

the most powerful test in all the considered situations.

Consequently, it is used to build the tests that join the

information of different types of records.

4.2 Comparison of the approaches to join
different types of records

This section summarises the performance of the approa-

ches proposed to join the information from different types

of records. We have a twofold objective: to analyse the

improvement of the power when more than one type of

record is used and to study whether it is more effective to

build a joint statistic or a joint-p-value. Thus, the tests

based on S2, S4, F2 and B4, see (10), (11), (12), and (14),

respectively, are compared in the study.

Size analysis Table 2 summarises the size estimated for

the four tests. It is adequate, although the tests based on

only two statistics, especially F2, tend to yield sizes

slightly higher than the nominal value when M is low.

Power analysis Figure 4 summarises the power of the

tests with series with N(0, 1) noise terms and a trend; the

statistic S, based only on the upper records, is also included

for comparison purposes. The following conclusions are

obtained.

• The pattern of the power is quite similar in all settings:

the joint tests are clearly more powerful than S, but the
differences between them are small.

• Although the improvement resulting from joining

information from different types of records is clear,

the increase in the power with four types of records

over two types is much lower. The power of S2 and F2

is slightly higher than S4 and B4 when M ¼ 1;

however, the power of S4 increases faster with M. In

any case, the differences are negligible, and given that

the sizes of S4 and B4 are better with low sample sizes

and that the computation time is similar, tests joining

four types of records should be preferable.

• Concerning the approach to join the information, both

joint statistics and joint p-values have a similar power

in these settings. The power of B4 is slightly lower with

M ¼ 1, but the differences are negligible.

• As expected, the power of the joint tests increases with

both M and T, and it is over 0.8 for quite low sample

sizes: for h ¼ 0:05 with M ¼ 4 and T ¼ 25 or with

M ¼ 1 and T ¼ 50 and for h ¼ 0:025 with M ¼ 4 and

T ¼ 50. To obtain a power higher than 0.8 for h ¼ 0:01,

a value M ¼ 20 is required with T ¼ 50, and with
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Fig. 3 Power analysis of tests based on upper records using series with N(0, 1) noise terms and the same trend
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M ¼ 12, a value T ¼ 62. Analogously, for h ¼ 0:005, a

value M ¼ 80 is required with T ¼ 50, and with

M ¼ 12, a value T ¼ 115.

Alternative with series with different trends. The

conclusions about the power with series under the alter-

native H1;hm are analogous. Figure 5 shows that the power

of the four joint tests is higher than S and similar among

them. The value of the power is very similar to that

obtained with the M series with the same trend: it is 0.45

with T ¼ 50 and M ¼ 12, while the counterpart with the M

series with trend h ¼ 0:0075 is 0.43. A power higher than

0.8 is obtained with T ¼ 50 and M ¼ 36.

Alternative with series with non-normal distribu-

tions. The power of the tests is now estimated using dis-

tributions commonly used in climate and with different

Table 2 Estimated size with

a ¼ 0:05 of the tests joining

different types of records

T 25 50 100 25 50 100 25 50 100

M 1 1 1 4 4 4 12 12 12

S2 0.063 0.065 0.066 0.059 0.064 0.060 0.052 0.062 0.054

S4 0.050 0.050 0.050 0.049 0.054 0.052 0.049 0.057 0.047

F2 0.076 0.078 0.080 0.068 0.070 0.073 0.057 0.067 0.059

B4 0.047 0.049 0.049 0.048 0.054 0.053 0.045 0.055 0.046
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types of tails (one-side bounded, heavier and lighter tails

than the normal, etc.). Figure 6 summarises the power of

tests S4 and B4 when they are applied to a series with a

trend plus the one-side bounded distribution GP with shape

parameter n ¼ �0:1 (values �0:5\n\0:5 are common in

climate) and r ¼ 1. In this case, the power is higher than

that with normal noise terms in all settings. Even for h ¼
0:005 the power of B4 is higher than 0.9 with T ¼ 50 and

M ¼ 4, and for h ¼ 0:01 it is also higher with T ¼ 25 and

M ¼ 12. The power with noise terms GPðr ¼ 1; n ¼ 0Þ,
that is exponential distribution, GPðr ¼ 1; n ¼ �0:5Þ, and
GPðr ¼ 1; n ¼ �1Þ, that is uniform distribution (two-side

bounded), also have a higher power than the normal, see

Figs. S.3, S.4 and S.5 in the Supplementary Material. The

effect of the type of tails on the power is confirmed using

the GEV distribution; Figs. S.6, S.7 and S.8 summarise the

power for shape parameters n ¼ �0:05; 0; 0:5 and r ¼ 1.

The results lead to the conclusion that in one or two-side

bounded distributions or in distributions with one or two

tails lighter than the normal distribution, the power of the

record tests is higher. With the GP distribution, the record

tests are even more powerful than the MK test to detect

trends in the mean. In effect, Fig. 6 shows that the power of

MK is lower, specially with weak trends. This means that,

in this type of distribution, the detection of trends is most

powerful if we focus on the behaviour of the bounded or

light tail instead of focusing on the mean evolution. In that

case, the power of B4 is higher than S4.
In summary, we conclude that the union of different

types of records clearly improves the power of the test. We

propose the use of tests based on B4 or S4, although, with
bounded or light tail distributions, B4 is slightly more

powerful.

5 Graphical tools to detect non-stationary
behaviour in records

The use of statistical tests is essential to obtain objective

conclusions about the existence of non-stationary beha-

viours in the extremes. However, the use of graphical tools

is also important to explore and characterise the existence

of non-stationarity. Basic exploratory plots based on the

times of occurrence of the records were used in Sect. 2, but

here, we suggest some more elaborated plots together with

confidence intervals (CIs). Two types of plots, based on

variables Nt and estimated probabilities pt, are proposed.
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5.1 Plots based on �Nt

Using Property 2 and the approach in Sect. 3.2, it is

obtained that the mean number of records up to time t in

the M series, �Nt ¼
PM

m¼1 Ntm=M, is asymptotically normal

(both in M and T) under the null. Using this result,

approximate CI for lt ¼ EðNtÞ, that is
Pt

i¼1
1
i under the

null, are

�Nt � z1�a=2rt=
ffiffiffiffiffi
M

p
;

where z1�a=2 is the 1� a=2 percentile of a N(0, 1) distri-

bution. These intervals together with the point estimator
�Nt, and its expected value under the null can be plotted

versus time. The resulting band is not a real confidence

band of the values lt due to the dependence between the

different �Nt. However, it is useful to observe deviations

from stationarity in the evolution of the number of records

and to identify the time point from which this deviation is

significant. Another advantage is that the four types of

records can be displayed in the same plot since their

expected behaviour under the null hypothesis is the same.

The same approach can be used to make plots joining

the number of lower and upper records in forward and

backward series, which are also asymptotically normal

when M ! 1. It is noteworthy that at each time t, it is

necessary to calculate the forward and backward records in

the series observed only up to time t, not the number of

backward records up to t for the series observed up to time

T. If we define �Dt ¼
PM

m¼1 Dtm=M with

Dtm ¼ Ntm � NL
tm � NB;t

tm þ NBL;t
tm , where NB;t

tm denotes the

number of records in the backward series ðXtmÞ of the first t
observations, the expected value of �Dt under the null is 0.

5.2 Plots based on p̂t

The maximum likelihood estimators p̂t ¼ St=M satisfy

Eðp̂tÞ ¼ 1=t under the null, or equivalently, Eðtp̂tÞ ¼ 1.

When ðXtÞ is not an i.i.d. sequence, there does not exist a

general expression for pt and Eðtp̂tÞ. Assuming a series

with a linear trend h, Ballerini and Resnick (1985) proved

that pt has an asymptotically constant limit limt!1 pt ¼ b0
if the distribution has a finite first moment. The assumption

of pt ¼ b0 þ b1=t is compatible with the previous result.

Then, it is reasonable to consider as a general alternative,

the regression model Eðtp̂tÞ ¼ b1 þ b0t, for t[ 1, whose

expected behaviour under the null is b0 ¼ 0; b1 ¼ 1.

Consequently, the plot of tp̂t versus time under the null

hypothesis should be a random cloud of points centred

around 1, and the fitted regression line should be Y ¼ 1.

This model is heteroscedastic under the null, since

Vðtp̂tÞ ¼ ðt � 1Þ=M. This implies that weighted least

square estimators b̂
W

0 and b̂
W

1 with weights equal to the

reciprocal of the variance must be used. CI for Eðtp̂tÞ can
be obtained using that tp̂t ¼ tSt=M and

St �BinomialðM; 1=tÞ under the null hypothesis.

6 Analysing the effect of global warming
in records of daily temperature

The tests and graphical tools described in the previous

sections are used to analyse the effect of global warming in

the records of the series presented in Sect. 2, the daily

temperature series in Madrid.

Joint analysis of the tails. Given that the complete series

is available, and that our first aim is to study the existence

of non-stationary behaviour in the tails of daily tempera-

ture, we start by applying tests based on different types of

records. Taking into account the power study, the tests S4
and B4 are the most appropriate to assess H0 : ptm ¼ 1=t.

The resulting p-values, 2.4e–07 and 7.0e–08, lead to con-

clude at any usual significance level that the probability of

record is higher than expected in an i.i.d. series. This means

that there is evidence of non-stationarity in the occurrence

of records due to an increasing trend.

Figure 7 shows the mean number of records �Dt versus

time, and it allows us to identify when the previous non-

stationary behaviour appears and to characterise it over

time. It is significant from 1980, and the value of the

statistic shows an increasing trend from 2000.

Separate analysis of the upper and lower tails. We are

also interested in studying whether this non-stationary

behaviour appears in both tails of the distribution or only in

one of them, and whether it is equally strong in both cases.

To separately analyse the behaviour of the upper and lower

records, we use the statistics S � SB and SBL � SL

respectively. The resulting p-values are 1.5e–06 and 0.006
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Fig. 7 Mean number of records �Dt versus time and 90% CI under

i.i.d. series, Madrid
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so that although there is evidence of non-stationary beha-

viour in both tails, it is clearer in the upper records.

To study in more detail where non-stationary behaviour

appears, Fig. 8 (left) shows the time plot of the number of

upper and lower records in the forward and backward

series, �Nt, �N
L
t ,

�N
B
t and �N

BL
t , respectively. The forward

series show weaker deviations of the i.i.d. hypothesis, and

non-stationarity only appears in the upper records from

1990, becoming slightly significant from 2015. On the

other hand, the backward series shows clearer deviations.

This behaviour reveals that the effects of global warming

are stronger in the upper tail and in the last years of the

observed period. After five years of observations, the

cumulative number of upper records in the backward series

is significantly lower than expected in an i.i.d. series, and

the consequences affect the rest of the period. However,

from 1940 to 1980, the evolution of the number of records

is quite parallel to the behaviour expected in a stationary

series. The number of lower records is significant mainly

due to the observed values between 1970 and 80, higher

than expected in an i.i.d. series.

Figure 8 (right) shows the estimated probabilities of

upper record tp̂t for each year t together with the regression

line and the confidence band. In an i.i.d. series, the slope of

the regression line should be zero, while a positive slope is

observed. In addition, many of the estimated probabilities

are outside the CI from approximately 1980. This plot

allows us to identify the specific years where the proba-

bility of record is much higher than expected. Similar plots

can be made for the other types of records, and they con-

firm the previous conclusions.

Analysis of the tails by season. To study whether non-

stationary behaviour differs across the seasons of the year

and to identify the periods where it is stronger, the previous

tests are applied separately to the four seasons of the year:

winter (DJF), spring (MAM), summer (JJA) and autumn

(SON).

The resulting p-values are summarised in Table 3. If

both tails are analysed jointly, using S4 and B4, the non-

stationary behaviour is significant in all seasons except

spring. However, if we study only the upper records,

S � SB, the evidence of trend is strong in summer and

autumn but weak in winter. Concerning the lower records,

SBL � SL, there is evidence of a decrease only in winter.

No changes in lower records may be caused by an increase

in variability. Figure 9 shows the cumulative number of

each type of record by season. The plot in spring suggests

that although the joint tests are non-significant, the number

of upper backward records is significantly lower than

expected, but it is compensated by the higher than expected

lower forward number of records. Analysing two separate

periods, it is concluded that it is due to a decreasing trend

before 1970 and an increasing trend afterwards.

7 Conclusions

In the context of global warming, it is clear the interest of

analysing the existence of non-stationary behaviour in the

tails of a series, particularly in its records. This work

reviews and proposes several statistical tests and comple-

mentary tools to detect this type of behaviour in climate

series, using the properties of the occurrence of records in

series i.i.d. More precisely, the tests assess the null

hypothesis H0 : ptm ¼ 1=t versus the alternative

H1 : ptm [ 1=t. From a methodological point of view, the

following conclusions are obtained.

• The approach proposed to arrange the data, based on

splitting the series, solves two usual problems of
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climate series: seasonal behaviour and serial correla-

tion. There is another advantage of having M subseries

of records available. Joining their information into one

statistic, we are taking into account the increase of both,

the magnitude of the highest temperatures and the

number of warm days, maintaining a daily scale.

• A family of six tests based on the upper records is

introduced. N is based on the number of records, and

N w
and ~N w

S are weighted versions of the previous one,

the latter using an estimation of the variance. S is based

on the likelihood function. Assuming that the M series

have the same distribution, two statistics based on the

score and the likelihood ratio, T and R, are considered.

Asymptotic distributions are obtained for most of the

previous statistics. In addition, the Monte Carlo method

can be used to estimate the p-value in all cases, since

they are pivotal statistics. This method is used to check

the validity of the asymptotic distributions, revealing

that they are valid even for M ¼ 1 and low values of T.

We conclude that statistics that are linear weighted

combinations of variables St, N w
and S are the most

powerful. Statistic S, whose weights are analytically

justified, is proposed as the best test based on the upper

records.

• The second family of tests aims to join the information

of different types of records: the upper and the lower

records of the forward and the backward series. Four

statistics, S2, S4 (based on joint statistics) and F2 and

B4 (based on joint p-values), that include two or four

types of records are considered. A power study shows

that the union of two or more types of records clearly

improves the power of S based only on the upper

records. The union of the statistics or the p-values

yields tests with similar power. The power of the joint

Table 3 p-values of the record tests by season

Period Winter Spring Summer Autumn

M 18 14 15 13

S4 9.7e–05 0.52 4.1e–06 0.0002

B4 7.1e–05 0.42 2.9e–07 4.5e–05

S � SB 0.05 0.16 1.2e–07 5.5e–05

SBL � SL 0.0001 0.86 0.11 0.10
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tests with series with N(0, 1) noise terms is high even

with small sample sizes and weak trends. The power is

higher for series with noise terms with one or two-side

bounded distributions or distributions with one or two

light tails, such as GP and GEV, which are often used in

climate analysis. For GP distributions, even for a weak

trend h ¼ 0:005, the power of B4 is higher than 0.9 with
T ¼ 50 and M ¼ 4. The approaches suggested to join

the information of different types of records are very

flexible. They allow us to define other statistics to study

specific features, such as non-stationary behaviour only

in the upper or lower tail, or give more weight to a

particular type of record.

• From the considered record tests, B4 and S4 are the

most powerful. These tests have important advantages

that make them specifically useful in the analysis of

global warming. First, they have a high power to detect

weak trends. They are non-parametric and require few

assumptions, so that they can be applied in a wide range

of situations. Moreover, they are able to join the

information of M independent series, a property that is

useful to deal with seasonal behaviour. This property

can also be useful in the spatial analysis since it allows

us to join series from different locations and to obtain

global conclusions over the area of interest. The tests

are complemented with graphical tools that aim to

characterise where and when non-stationary behaviour

occurs. Finally, all the tests and tools are easy to apply

and are implemented in the R-package RecordTest.

The proposed inference tools are used to analyse the effect

of global warming on the extremes of the daily temperature

in Madrid. It is concluded that there is strong evidence of

non-stationary behaviour in the tails of the distribution that

affects the occurrence of records. This non-stationary

behaviour is statistically significant from approximately

1980, and it increases from 2000. The behaviour is stronger

in the upper tail, especially in the last years of the observed

period. Moreover, the behaviour among seasons is not

homogenous: it is significant in all seasons except spring. If

we focus on the behaviour in the lower tail, it is only

significant in winter.

The tests and graphical tools in this work are useful to

analyse the extremes of observed series. In addition, they

can also be used as tools for validating the capability to

reproduce the most extreme values of climate models

representing the entire distribution of a variable. This

feature is important since a misrepresentation of the tails

can yield important biases in their conclusions. The only

condition to apply the tools for validating the tails of a

climate model is that the model can generate trajectories of

the variable under study. Examples include Earth system

models (Wehner et al. 2020) and statistical models fitted by

Bayesian or other parametric methods. The general idea is

to apply the tools to the trajectories generated by the cli-

mate model and to the observed series and to compare the

results. The tests can also be used in other fields where the

study of records is important including hydrology, finance,

etc.

Electronic supplementary material The online version of this article

(https://doi.org/10.1007/s00477-021-02122-w) contains supplemen-

tary material, which is available to authorized users.

Acknowledgements The authors are members of the project

MTM2017-83812-P, and the research group Modelos Estocásticos
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Supplementary Material: Record tests to detect

non-stationarity in the tails with an application

to climate change
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1 Power of tests based on the upper records

1.1 Power for the alternative hypothesis H1,θm

Figure S.1 summarizes the power of the statisticsN , S and T based on the upper
records under the alternativeH1,θm using series with Normal noise term. We use
M series with different θm values generated from aN(0.0075, 0.005) distribution.
Values 0.0075 and 0.005 are the mean and standard deviation estimated from
the sample of trends obtained in the temperature series in Madrid.
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Figure S.1: Power analysis of tests based on upper records under the alternative
H1,θm using series with N(0, 1) noise term.
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1.2 Power for negative trends

Figure S.2 summarizes the power of the statistics N , S and T based on the
upper records, with series with N(0, 1) noise term and with negative trends.
The occurrence of upper records in a series with a negative trend is symmetric
to the occurrence of lower records with a positive trend. It is noteworthy that
with this alternative, S cannot be applied withM = 1, since its power is always
0. In effect, the strongest evidence of a negative trend that can be observed is
St = 0, for t ≥ 2; in that case, the value of S depends on T but its minimum
value is -1.48 (for T = 21). That means that the p-value P (S < S0) obtained
using the Normal approximation will be always higher than 0.069, and the null
hypothesis never will be rejected at a signification level α = 0.05.
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Figure S.2: Power analysis of tests based on upper records under the alternative
of series with negative trends and N(0, 1) noise term.
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2 Power analysis of tests joining information from
different types of records

2.1 Power for GP distributions

Figures S.3, S.4 and S.5 summarize the power of record tests S4 and B4 and
rank-based MK test, when they are applied to a series with noise term following
a GP distribution with different shape parameter ξ. Figure S.3 shows the case
ξ = 0, that is the Exponential distribution, Figure S.4 shows ξ = −0.5, and
Figure S.5, ξ = −1, that is the Uniform distribution (two-side bounded).
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Figure S.3: Power analysis of tests under the alternative of series with Exp(1)
noise term.
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Figure S.4: Power analysis of tests under the alternative of series with GP (−0.5)
noise term.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.005

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.01

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.025

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.05

MK S4 B4

Figure S.5: Power analysis of tests under the alternative of series with
Uniform(0, 1) noise term.

4



2.2 Power for GEV distributions

Figures S.6, S.7 and S.8 summarize the power of record tests S4 and B4 and
rank-based MK test, when they are applied to series with noise term following
a GEV distribution with different shape parameter ξ. Figure S.6 shows the case
ξ = 0, that is the Gumbel distribution, Figure S.7 shows ξ = 0.5 and Figure
S.8, with ξ = 1.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.005

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.01

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.025

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T=25
M=1

T=25
M=4

T=25
M=12

T=50
M=1

T=50
M=4

T=50
M=12

P
ow

er

θ = 0.05

MK S4 B4

Figure S.6: Power analysis of tests under the alternative of series with Gumbel
noise term.
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Figure S.7: Power analysis of tests under the alternative of series with GEV
ξ = 0.5 noise term.
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Figure S.8: Power analysis of tests under the alternative of series with GEV
ξ = 1 noise term.
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Abstract
The analysis of record-breaking events is of interest in fields such as climatology,
hydrology or anthropology. In connectionwith the record occurrence,we propose three
distribution-free statistics for the changepoint detection problem. They are CUSUM-
type statistics based on the upper and/or lower record indicators observed in a series.
Using a version of the functional central limit theorem, we show that the CUSUM-
type statistics are asymptotically Kolmogorov distributed. The main results under
the null hypothesis are based on series of independent and identically distributed
random variables, but a statistic to deal with series with seasonal component and serial
correlation is also proposed. A Monte Carlo study of size, power and changepoint
estimate has been performed. Finally, the methods are illustrated by analyzing the
time series of temperatures at Madrid, Spain. The R package RecordTest publicly
available on CRAN implements the proposed methods.

Keywords Brownian bridge · Climate change · CUSUM · Nonparametric ·
Record-breaking · Wiener process

1 Introduction

An observation in a time series is called an upper (lower) record if it is greater (smaller)
than all previous observations in the series. Therefore a new record is a remarkable
event that attracts great attention in numerous applications, whether in environmental
fields, economy, sports, physics or biology (see, e.g., Wergen 2013, and references
therein). Particularly interesting is the study of record events in environmental sciences
and their connection with climate change. For example, Benestad (2004) compared
the observed and expected number of records under stationarity by means of a χ2-test
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and graphical tools. Respectively, Coumou et al. (2013) and Lehmann et al. (2015)
found an increase in temperature and precipitation record-breaking events with respect
to a stationary climate on a global scale. In addition to its many applications, the main
foundations in the framework of theory of records can be found in the monographs
Arnold et al. (1998) and Nevzorov (2001).

An aspect of interest is the study of the evolution of the number of records over
time, in particular the identification of changes in their behavior. To analyze this type
of change, changepoint detection methods that make use of the record occurrence
should be considered.

The changepoint problem tries to identify times when the probability distribution
function of a time series changes. In general the problem concerns both detecting
whether or not a change has occurred and identifying its time of occurrence. Although
several changes might be considered, our work resides in the at most one changepoint
(AMOC) domain. The first results on changepoint detection start with Page (1954,
1955) who introduced a cumulative sum (CUSUM) statistic to locate a shift in the
mean of independent and identically distributed (IID) normal random variables (RVs).
Since then, several methods have been proposed, many of which can be found in the
monographs Brodsky and Darkhovsky (1993) and Csörgő and Horváth (1997). Note-
worthy is the importance of changepoint detection techniques in climatology (Reeves
et al. 2007), but also in very different fields such as economy, speech processing, etc.

Traditional changepoint detection methods attempt to find changes in location or
scale, more recently, changepoint detection in the extreme values has also been an
active area of research. For example, Dierckx and Teugels (2010) introduced tests
to detect changes in the parameters of the generalized Pareto distribution based on
its likelihood for models of excesses over threshold, Kojadinovic and Naveau (2017)
studied several tests for independent samples of block maxima, and e Silva et al.
(2020) proposed a changepoint model for the r-largest order statistics. Ratnasingam
and Ning (2021) proposed procedures based on the modified information criterion and
the confidence distribution for detecting changepoints in the three-parameter Weibull
distribution. Non-homogeneous Poisson processes have also been considered to study
changepoints in the occurrence of peaks over threshold (Achcar et al. 2010, 2016;
Rodrigues et al. 2019). To the best of our knowledge, there is no changepoint detec-
tion method based on the breaking of records. There are, however, tests for trend
detection based on the breaking of records. Foster and Stuart (1954) proposed two
simple statistics based on the number of records to test the hypothesis that T obser-
vations have been independently drawn from the same continuous distribution. These
tests were later improved by Diersen and Trenkler (1996) and more recently new tests
and graphical tools were introduced by Cebrián et al. (2022).

The aim of this paper is to develop changepoint detection tests based on the record
occurrence to detect changes in the tails of the distribution. The first use of the tests
introduced in this paper is to detect changes in the record occurrence and therefore in
the extreme values, however, they are also useful against other types of change such
as a change in location or scale. When there is a gradual change in location or scale, it
will generally take time to be significantly reflected in a change in the behavior of the
number of records, so the second use of the proposed methodology lies in analyzing
how long it takes a series from when a changepoint is detected using another method
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(see, e.g., Pettitt 1979, for a change in location), until that change is reflected in the
observed records. Beyond its theoretical and descriptive interest, the third use of these
changepoint detection tests based on records is that theywould be uniquely appropriate
whenever the original data are not available while records are.

The proposed tests make use of CUSUM-type statistics based on the record indi-
cator RVs. The functional central limit theorem for independent but nonidentically
distributed RVs is used to show that the functional evolution of the number of
records adequately standardized behaves asymptotically as a Wiener process and, as
a consequence, the CUSUM-type statistics follow the Kolmogorov distribution. This
characterization allows to obtain exact p-values for the tests. The use of weights in the
statistics can improve the power of the tests under certain scenarios.However,we prove
that the weighted statistics do not have the same asymptotic properties as the previous
ones and the p-value must be calculated using Monte Carlo techniques. An approach
to analyze series with seasonal component or serial correlation is also proposed. The
statistics based on the record indicators will allow studying the extreme values of
the distribution with the advantage of not needing the specification of an underlying
distribution for the data, i.e., they are distribution-free. Also, the requirement on the
variance of data as in other CUSUM-type statistics is avoided here.

The rest of the paper is organized as follows. Section 2 introduces our records
statistics, establishes their asymptotic distribution under the null hypothesis and pro-
poses some generalizations. Section 3 compares these tests under various scenarios by
means of Monte Carlo simulations. An application to temperature data is presented in
Sect. 4, and Sect. 5 concludes the paper with final comments, conclusions and future
work.

Finally, note that the proposed tests for changepoint detection are available from
the R (R Core Team 2021) package RecordTest (Castillo-Mateo 2021).

2 Tests based on theory of records

Let X1, . . . , XT be a sequence of IID continuous RVs. The sequences of upper and
lower record indicators, (It ) and (I Lt ), are defined by I1 = I L1 = 1 and for t =
2, . . . , T , by

It =
{
1 if Xt > max{X1, . . . , Xt−1},
0 otherwise,

I Lt =
{
1 if Xt < min{X1, . . . , Xt−1},
0 otherwise.

The sequence of differences in the upper and lower record indicators, (dt ), is given by
dt = It − I Lt , while the sequence of sums, (st ), is given by st = It + I Lt .

The following lemma is a well known distribution-free result within the theory of
records that characterizes the distribution of the record indicators, equally valid for
upper and lower records (Arnold et al. 1998; Nevzorov 2001).
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Lemma 2.1 Let X1, . . . , XT be a sequence of IID continuous RVs. Then, the record
indicators I1, . . . , IT are independent and

pt = P(It = 1) = 1

t
, t = 1, . . . , T .

It is easily checked that the expectations and variances for t = 2, . . . , T , are

E(It ) = 1

t
, Var(It ) = 1

t

(
1 − 1

t

)
,

E(dt ) = 0, Var(dt ) = 2

t
,

E(st ) = 2

t
, Var(st ) = 2

t

(
1 − 2

t

)
.

Given pt the probability of upper or lower record at time t , our aim is to construct
asymptotic tests with null hypothesis

H0 : pt = 1/t, 1 ≤ t ≤ T ,

against the two-sided alternative hypothesis given by

H1 : pt = 1/t, 1 ≤ t ≤ t0 and pt �= 1/t, t0 < t ≤ T , (2.1)

where t0 denotes the time of a possible change in the probabilities of observing new
records with respect to the stationary case. The alternative hypothesis supports many
nonstationary scenarios, for example a shift or a drift in location, variation or in one
or both tails.

2.1 Tests based on asymptotic results

To obtain a p-value from a changepoint detection test, the exact distribution of the
changepoint statistic is usually impractical, so it is generally preferable to have asymp-
totic results. Wiener processes, Brownian bridges and other Gaussian processes arise
as asymptotic distributions in many limit problems providing exact tail probabilities.
Our first objective is to build from the indicators above a random function WT (ν), for
ν ∈ [0, 1], in such a way that WT (ν) converges in distribution to a Wiener process.
For this purpose, we define the standardized record indicators, ξT1, . . . , ξT T as

ξT t = It − E(It )

σT
, (2.2)

where σ 2
t = ∑t

k=1 Var(Ik). We also define the standardized number of records
ST t = ∑t

k=1 ξT k , its variance νT t = ∑t
k=1 Var(ξTk) = σ 2

t /σ 2
T , and finally the
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random function

WT (ν) = ST t + ξT ,t+1
ν − νT t

νT ,t+1 − νT t
(2.3)

for ν ∈ [νT t , νT ,t+1]. Note that ST 1 = 0, νT 1 = 0 and νT T = 1. It is noteworthy
that the function WT (ν) is a random broken line connecting points in the plane with
coordinates (νT t , ST t ) for t = 1, . . . , T .

One of our major results is the asymptotic characterization of the functional evo-
lution of the standardized number of records, WT (ν), as a Wiener process. The result
is essentially a consequence of the functional central limit theorem for independent
but nonidentically distributed RVs (see, e.g., Gikhman and Skorokhod 1969). To be
under the conditions of the theorem, Lindeberg’s condition needs to be proved for the
variables ξT t in (2.2), which follows immediately from

lim
T→∞

T∑
t=1

E
(
ξ2T t × 1{|ξT t |>ε}

)
≤ lim

T→∞ 1{1/σT >ε} = 0

for all ε > 0, where 1{·} is the indicator function.

Theorem 2.1 Let X1, . . . , XT be a sequence of IID continuous RVs with WT (ν) in
(2.3). Then, as T → ∞,

WT (ν)
D−→ W (ν), ν ∈ [0, 1],

in the metric space C[0, 1], where W (ν) is a standard Wiener process.

Thus, the changepoint records statistic proposed is

KT = max
1≤t≤T

|BT (νT t )|, (2.4)

where BT (ν) = WT (ν) − νWT (1), ν ∈ [0, 1]. The time t where (2.4) takes its
maximum is the changepoint estimate t̂0. As a consequence of Theorem 2.1, BT (ν)

is asymptotically distributed as a standard Brownian bridge process. Moreover, the
distribution of the supremum of the absolute value of a Brownian bridge is known as
the Kolmogorov distribution. As sup0≤ν≤1 | f (ν) − ν f (1)| is a continuous functional
for f in C[0, 1], the asymptotic characterization under the null hypothesis of the
statistic KT is as follows.

Theorem 2.2 Let X1, . . . , XT be a sequence of IID continuous RVs with KT in (2.4).
Then, as T → ∞,

KT
D−→ K = sup

0≤ν≤1
|B(ν)|,

where B(ν) is a standard Brownian bridge process and K is a Kolmogorov distributed
RV.
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The null hypothesis is rejected when KT is too large to be explained by chance
variation. In particular, if the alternative hypothesis in (2.1) is true for some time t0,
then it follows that |BT (νT t0)| is large and can show statistical evidence that a change
occurred at time t0. Under the null hypothesis, the p-value of the two-sided test can
be calculated from any of the expressions of the Kolmogorov distribution

P(K ≥ x) = 2
∞∑
k=1

(−1)k−1 exp
{
−2(kx)2

}

= 1 −
√
2π

x

∞∑
k=1

exp

{
−

(
(2k − 1)π

2
√
2x

)2
}

.

To give a clear interpretation of KT , we define Nt = I1 + · · · + It the number of
records up to time t and Nt1:t2 = It1 + · · · + It2 the number of records between times
t1 ≤ t2. Then, BT (νT t ) can be rewritten as

BT (νT t ) = 1√
Var(NT )

(
(Nt − E(Nt )) − Var(Nt )

Var(NT )
(NT − E(NT ))

)
.

Weighting for differences in the effective sample sizes of the number of records in two
segments, {1, . . . , t} and {t +1, . . . , T }, BT (νT t ) can be viewed as a scaled difference
between Var(Nt )

−1(Nt − E(Nt )) and Var(N(t+1):T )−1(N(t+1):T − E(N(t+1):T )).
Consequently, KT compares the number of records in both segments for every t and
assigns as estimator, t̂0, the point that separates the segment that deviates the most
from the null hypothesis. The mean is E(BT (νT t )) = 0 and simple calculation leads
to Var(BT (νT t )) = νT t (1 − νT t ). The nonuniform variance, small when it is near
the ends of {1, . . . , T }, makes changepoints occurring near the beginning or the end
of the series more difficult to detect (see “Appendix A” for further details). This is a
common fact in CUSUM-type statistics.

The proposed statistic only uses the information from one tail of the distribution,
the right tail if upper records are used or the left tail if lower records are used. To study
both tails and collect more evidence with a single statistic, it is enough to consider
the variables dt and st . Since the dt ’s and st ’s also fulfill Lindeberg’s condition, all
the previous results are equally valid substituting ξT t in (2.2) by ξT t = dt/σT with
σ 2
t = ∑t

k=1 Var(dk), t = 1, . . . , T ; or respectively, ξT t = (st − E(st ))/σT with
σ 2
t = ∑t

k=1 Var(sk), t = 1, . . . , T . The statistic (2.4) based on dt can be used when
an increase in upper records and a decrease in lower records are expected with respect
to the null hypothesis, while the statistic based on st can be used when an increase in
both types of records is expected. In particular, the statistic based on dt can be useful
against the alternative hypothesis of a trend in location, while the statistic based on st
can be useful against a trend in variation.
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2.2 Tests with weighted statistics

Under the null hypothesis, the probability of record decreases as the series evolves.
To give more importance to the most recent records and thus to be able to increase the
power of the tests, we propose to give increasing weights, ωt , to the different records
according to their position in the series as

ξω
T t = ωt

It − E(It )

σT
, (2.5)

where σ 2
t = ∑t

k=1 ω2
k V ar(Ik), t = 1, . . . , T . According to Proposition 2.1 (proved

in “Appendix B”), these variables do not in general have an asymptotically normal
sum, so asymptotic results such as those of Theorem 2.1 are not available.

Proposition 2.1 Let X1, . . . , XT be a sequence of IID continuous RVs with the
sequence of RVs ξω

T t in (2.5) and ωt ∼ tn as t → ∞. If n > 0, then the central
limit theorem does not hold for the ξω

T t ’s.

Likewise, a KT -type statistic in (2.4) associated with the weighted variables can be
defined, and the distribution of which can be simulated by means of Monte Carlo
techniques under the null hypothesis.

In this work we consider two different weights. First, linear weights ωt = t − 1
(seeDiersen and Trenkler 1996, for a detailed explanation). Second, weights that make
the discrete sequence of times of the process, νT t = σ 2

t /σ 2
T , t = 1, . . . , T , equally

spaced, i.e., weights proportional to the inverse of the standard deviation (SD) of It ,
i.e., ω1 = 0 and ωt = Var(It )−1/2 = t/

√
t − 1 for t = 2, . . . , T . These weights

make the variance of BT (νT t ) symmetric in {1, . . . , T } (see “Appendix A”).
As above, the statistic has been defined in terms of the It ’s but it is equivalent for the

dt ’s or st ’s. The SD in these cases suggests that the weights making the observed times
of the process equally spaced are proportional to ω1 = 0, ωt = √

t for t = 2, . . . , T ,
for the statistic based on dt ; and ω1 = ω2 = 0, ωt = t/

√
t − 2 for t = 3, . . . , T , for

the statistic based on st .

2.3 Tests for seasonal series

Hirsch et al. (1982) introduced a seasonal version for tests of randomness based on
ranks. Following their ideas, we propose tests which are insensitive to the existence
of seasonality and serial correlation. If the time series data of interest are daily (or
monthly) data, then the null hypothesis of randomness where all the observations come
from the same continuous distribution may be too restrictive. For example, most series
of daily temperature or precipitation show very strongly the presence of seasonality
and serial correlation. Let X = (X1, . . . , XM ) be a sequence of series where Xm =
(X1m, . . . , XTm)′ is a series of RVs. That is,X is the entire series, made up of subseries
X1 throughXM (one for each day), and each subseriesXm contains annual values from
day m, for m = 1, . . . , M . Note that for further development the M subseries must
be independent, so in general a subset of these subseries will be used. That is, below
a subset of independent subseries is considered, but the notation is maintained for
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simplicity. Then, we define the t th upper record indicator for the mth subseries as
Itm = 1 if Xtm > max{X1m, . . . , Xt−1,m} and Itm = 0 otherwise; analogously for
lower records. That is, records are calculated independently for each subseries, and
the null hypothesis is relaxed allowing observations of different subseries not to come
from the same distribution. To define a KT -type statistic that joins the information of
all the subseries, we simply take the ξT t ’s in (2.2) as

ξω
T t = ωt

1
M

∑M
m=1 Itm − E(It )

σT
,

where σ 2
t = ∑t

k=1 ω2
k V ar(Ik)/M ; or their respective versions based on dt or st .

Thus, the alternative hypothesis is that of (2.1) with common changepoint t0 for all
the subseries. This approach not only allows the analysis of series with seasonal
component, it also joins the information from several series, so the number of records
and therefore the information used by the tests is greater.

3 Monte Carlo experiments

We investigate the empirical size, power and changepoint estimate of the changepoint
tests based on the records statistics introduced in Sect. 2. Nine records statistics are
considered: N ≡ KT in (2.4) with ξT t in (2.2), d and s ≡ KT in (2.4) substituting It in
(2.2) by dt and st , respectively; and the previous statistics with weights proportional to
the inverse of the SD of It , dt and st , respectively (superscript var); and linear weights
t−1 (superscript linear). Thus, three types of records statistics are analyzed.Wedenote
by N -type statistics to the statistic N and its weighted versions, equivalently for d and
s. Recall that, under the null hypothesis, the statistics N , d and s are asymptotically
Kolmogorov distributed, while weighted statistics need Monte Carlo simulations to
estimate their distribution (1000 replicates are considered).

3.1 Analysis of size

We simulate 10,000 replicates of M independent series formed by T independent
samples from the standard normal distribution, i.e.,

Ytm = εtm ∼ N (0, 1), for t = 1, . . . , T and m = 1, . . . , M .

The size results are generalizable to any other continuous distribution given the
distribution-free property of the tests under the null hypothesis. The size of the tests is
simulated for the combination of values T = 50, 100, M = 1, 12, 36 and for a large
series T = 500, M = 1.

Table 1 reports the empirical size results of the changepoint tests based on the
records statistics N , d and s for nominal values α = 0.01, 0.05, 0.10; i.e., we count
how often the records statistics exceed the 99, 95, 90th percentile of the Kolmogorov
distribution.Wedonot show the rejection frequencies of the tests basedon theweighted
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Table 1 Test size for α = 0.01, 0.05, 0.10 level tests

Statistic α T |M
50|1 100|1 500|1 50|12 100|12 50|36 100|36

N 0.01 0.011 0.011 0.012 0.006 0.008 0.005 0.005

0.05 0.040 0.043 0.048 0.029 0.033 0.030 0.034

0.10 0.068 0.076 0.083 0.059 0.068 0.068 0.075

d 0.01 0.004 0.005 0.008 0.005 0.006 0.005 0.006

0.05 0.023 0.027 0.033 0.027 0.033 0.029 0.034

0.10 0.051 0.057 0.065 0.057 0.064 0.059 0.066

s 0.01 0.009 0.009 0.010 0.005 0.006 0.004 0.006

0.05 0.036 0.037 0.042 0.032 0.032 0.030 0.032

0.10 0.067 0.076 0.082 0.065 0.074 0.061 0.068

statistics since their size is assured by simulating their p-value under the null hypothe-
sis. All tests show an acceptable size for the levels α considered. Most of the tests are
conservative, but their size approaches the nominal values as T increases. When M
is greater than 1, the size of the statistics is considerably less than the nominal value.
The size of d is particularly low, implying that these tests are very conservative.

In conservative tests, Fisher and Robbins (2019) proposed a general method to
obtain a size closer to the nominal value and therefore increase the power of the tests.
For our proposed tests, the method simply consists of changing the KT -type statistic
by −√

T log(1 − KT /
√
T ). Although we do not apply this method in the present

paper, it may be a factor to consider in applications with low evidence since the power
can increase while maintaining a proper size.

3.2 Analysis of power

The power analysis consists of 10,000 simulations of M independent series with T
observations following two scenarios under the alternative hypothesis.

Scenario A. Linear drift model in the mean:

Ytm = μt + εtm, for t = 1, . . . , T and m = 1, . . . , M,

where εtm ∼ N (0, 1), and μt = 0 if 1 ≤ t ≤ t0 and μt = θ(t − t0) if
t0 < t ≤ T .

Scenario B. Linear drift model in the SD:

Ytm = σtεtm, for t = 1, . . . , T and m = 1, . . . , M,

where εtm ∼ N (0, 1), and σt = 1 if 1 ≤ t ≤ t0 and σt = 1+ θ(t − t0) if
t0 < t ≤ T .

We report results for T = 100, M = 1, 12, 36, t0 = 25, 50, 75 and the drift term
θ = −0.10,−0.09, . . . ,−0.02,−0.01,−0.005, 0.005, 0.01, 0.02, . . . , 0.09, 0.10
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for Scenario A and θ = 0.005, 0.01, 0.02, . . . , 0.09, 0.10 for Scenario B. N -type
statistics are analyzed against both scenarios, d-type statistics against Scenario A and
s-type statistics against Scenario B.

Figures 1 and 2 show, for α = 0.05, plots of the power of the tests versus the trend
θ for the Scenarios A and B, respectively. We make the following observations:

(1) All tests increase their power as themagnitude of the drift θ or the number of series
M increases. In Scenario A, d-type statistics have a symmetric behavior with
respect to a vertical line at θ = 0, but when the drift is negative, N -type statistics
have a power close to the nominal value unless M is large. This phenomenon is
due to the fact that the greatest effect that a negative trend can cause is that only
one record is observed in each series and under the null hypothesis it is likely to
find a single record in a small number of series but it is unlikely to find a single
record in many series. Finally, note that the power of tests with upper records
against a positive drift is equivalent to that of tests with lower records against a
negative drift.

(2) The power of the statistics according to the position of the changepoint depends
on the type of weight used. The tests have a lower power for a changepoint t0 close
to the end of the series, since the accumulated trend is smaller. The unweighted
statistics have a higher powerwhen the changepoint is at the beginning of the series
and lose power as it approaches the middle and especially the end of the series.
The statistics with weights proportional to the inverse of the SD, in Scenario A,
maintain the same power when the changepoint is in the first half of the series
and lose power if the changepoint is at the end; in Scenario B, they have a higher
power when the changepoint is in the middle of the series. The statistics with
linear weights have a higher power when the changepoint is in the middle or the
end of the series than at the beginning.

(3) For positive drifts and comparing statistics with the same type of weight. In Sce-
nario A, N -type statistics have a higher power than d-type for low M , but when
M is large this difference decreases and d-type have an equal or higher power
than N -type. In Scenario B, s-type statistics have a higher power than N -type.

(4) The statisticswithweights proportional to the inverse of the SD turn out to have the
overall best performance with the most balanced behavior. The statistics without
weights are those that have a higher powerwhen the changepoint is at the beginning
of the series, the statistics with weights proportional to the inverse of the SD have a
higher power when the changepoint is in the middle of the series and the statistics
with linear weights have a higher power when the changepoint is at the end of
the series. While the second show a power close to the best in each case, the first
and third have considerably less power than the others when they are not the most
powerful.

(5) Some cases in which the records tests reach a power between 0.85 and 1 for
T = 100 are given below. Under Scenario A, when t0 = 25, we would detect
θ = 0.05 with M = 1 for statistic N or θ = 0.02 with M = 12 for all statistics
except those with linear weights or θ = 0.01 with M = 36 for d. When t0 = 50,
we would detect θ = 0.10 with M = 1 for all statistics or θ = 0.03 with M = 12.
Under Scenario B, when t0 = 25, we would detect θ = 0.04 with M = 1 for the
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Fig. 1 Power functions of N and d-type statistics for Scenario A (T = 100)

statistic s or θ = 0.01 with M = 12 or θ = 0.005 with M = 36 for the statistics
s and svar . When t0 = 50, we would detect θ = 0.05 with M = 1 or θ = 0.01
with M = 12 for the statistics s and svar .

3.3 Analysis of changepoint estimation

The analysis of the changepoint estimation reports results for Scenarios A and B
considered in Sect. 3.2 for T = 100, M = 1 and θ = 0.10, and for T = 100, M = 36
and θ = 0.05, both for a wide range of changepoints t0 = 10, 20, . . . , 80, 90.

Figures 3 and 4 show boxplots of the estimated changepoint for the Scenarios A
and B, respectively. We remark the following conclusions:

(1) As itwas advanced in Sect. 2.1, the nonuniformvariance inCUSUM-type statistics
means that changepoints occurring near the data boundaries are more difficult to
detect, hence, they have trouble in detecting changes occurring away from the
middle of the series. This effect is reduced as the number of series M or the
magnitude of the drift θ increases.

(2) Comparing statistics with the same type of weight. In ScenarioA, N -type statistics
place the changepoint slightly better than d-type. In Scenario B, s-type statistics
place the chagepoint better than N -type.

(3) The performance of the changepoints depends on the type of weight used. The
statistics without weights properly place the changepoint when it is at the begin-
ning or the middle of the series, but not at the end. The statistics with weights
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Fig. 2 Power functions of N and s-type statistics for Scenario B (T = 100)

proportional to the inverse of the SD properly place the changepoint when it is not
found at the beginning or the end of the series. The statistics with linear weights
place the majority of changepoints in the second half of the series, so its estimate
is not reliable for practical use, although this effect is reduced by increasing M .

These changepoint detection tests based on the breaking of records only make use
of the record occurrence to determine the changepoint estimate. For that reason, the
estimated changepoint will usually be placed in the previous time of a record time, i.e.,
the effect of the drift is not immediately reflected in the observed record occurrence.
Thismeans that a proper estimate of the changepoint in the record occurrencewill often
be placed later in the series than the actual changepoint in the mean or variance. Thus,
the main question here is then whether the correctly detected, but possibly displaced,
changepoints are clustered near the actual value or not.

This section has been useful to illustrate the behavior of the tests against usual
alternative hypotheses. Other scenarios could be considered, e.g., (C) a shift model in
the mean, i.e., μt = θ if t0 < t ≤ T under Scenario A; or (D) a mixture model with
a drift in the right tail, i.e., Ytm = ε

(0)
tm if utm ≤ τ and Ytm = μt + ε

(1)
tm if utm > τ

where utm ∼ U (0, 1), τ a high quantile order (e.g., τ = 0.95), μt under Scenario A,
and ε

(0)
tm and ε

(1)
tm truncate N (0, 1) in (−∞,
−1(τ )) and (
−1(τ ),∞), respectively.

Preliminary analyzes show that the tests perform poorly against Scenario C, but have
great power against Scenario D, even outperforming commonly used changepoint
detection tests (e.g., the Pettitt test).
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Fig. 3 Boxplots without outliers of the estimated changepoint versus the actual changepoint of N and d-type
statistics for Scenario A (T = 100). Crosses represent the actual changepoint
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Fig. 4 Boxplots without outliers of the estimated changepoint versus the actual changepoint of N and s-type
statistics for Scenario B (T = 100). Crosses represent the actual changepoint
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4 Application to temperature series

To illustrate the practical use of the three types of records tests, we applied them to
the daily maximum temperature series measured in degree Celsius (◦C) from 1940 to
2019 atMadrid, Spain. Data are provided by European Climate Assessment &Dataset
(ECA&D; Klein Tank et al. 2002) available online at https://www.ecad.eu. Madrid is
located in the center of the Iberian Peninsula (40.4◦ N, 3.7◦ W) at 667 m a.s.l. and
its daily temperature series has a seasonal component and a strong serial correlation.
This series is analyzed using three different approaches to show the performance of
the tests in different situations. The first approach considers the series of annual max-
imum temperatures, which corresponds to the traditional block maxima. The second
approach considers the series of annual mean temperature. Finally, the series is con-
sidered on a daily scale. To do this, first we take 365 subseries each corresponding
to the data of a given day across years and then we select a subset of uncorrelated
subseries (Cebrián et al. 2022) on which the procedure of Sect. 2.3 is applied. The
three approaches have series of length T = 80, the first two with M = 1 and the third
with M = 58 uncorrelated series out of the 365 dependent subseries.

In the context of global warming, it is reasonable to assume an increasing trend in
location that can cause an increase in the number of upper records as well as decrease
the number of lower records with respect to the values expected under a stationary
climate, i.e., IID series. For this reason, only results for N and d-type statistics are
shown. These statistics are powerful against this scenario and obtained more evidence
than s-type statistics. To compare the detection time of a changepoint in location versus
a changepoint in the record occurrence, we consider the Pettitt (1979) test, which is a
nonparametric rank based test widely used to detect AMOC at location.

Figure 5 shows time series plots of annual maximum a and annual mean b tem-
perature at Madrid with their records and changepoint estimates. Table 2 shows for
the two previous series and for the series in daily scale the p-values and changepoint
estimates for the six records tests and the Pettitt test. Small p-values in the records
tests provide evidence against the null hypothesis of stationarity, in particular, all tests
are significant at a level α = 0.10, all but one are significant at a level α = 0.05 and
fourteen out of eighteen are significant at α = 0.01. The Pettitt test is also significant
for any usual significance level in both series with M = 1. The estimated change-
point for the annual maximum temperature series is t̂0 = 51 (year 1990) for all the
records statistics and t̂0 = 38 (1977) for the Pettitt test. The minimum p-value for the
records tests is 0.0013 for the statistic N var . The estimated changepoint for the annual
mean temperature series is t̂0 = 55 (1994) with the statistics without weights and with
weights proportional to the inverse of the SD, but it is t̂0 = 69 (2008) for the statistics
with linear weights and t̂0 = 41 (1980) for the Pettitt test. The minimum p-value of
the records tests is 0.0004 for the tests N var and Nlinear . For the daily scale series the
changepoint estimate is t̂0 = 38 (1977) for all records statistics and here the minimum
p-value is 4e-05 for dvar .

The results in Table 2 agree with the results obtained in Sect. 3. When M = 1,
N -type statistics obtain lower p-values than d-type, and the statistics with weights
proportional to the inverse of the SD are those that obtained the strongest evidence.
The changepoint estimate of the records tests is usually placed between 10 and 15 years
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Fig. 5 Annual maximum (a) and mean (b) temperature series, and lower and upper records at Madrid,
Spain. The vertical solid line is the estimated changepoint using the records tests, while the vertical dashed
line is the estimated changepoint using the Pettitt test

Table 2 Estimated changepoint t̂0 and p-value of the records tests and the Pettit test for the annualmaximum,
annual mean and daily scale temperature series at Madrid, Spain

Statistic Series

Annual maximum Annual mean Daily

t̂0 p-value t̂0 p-value t̂0 p-value

N 51 0.0031 55 0.0030 38 0.0003

Nvar 51 0.0013 55 0.0004 38 0.0002

Nlinear 51 0.0090 69 0.0004 38 0.0328

d 51 0.0443 55 0.0728 38 0.0013

dvar 51 0.0016 55 0.0015 38 4e-05

dlinear 51 0.0115 69 0.0018 38 0.0029

Pettitt 38 9e-07 41 8e-10 – –

The weighted statistics used 1,000,000 replicates to estimate the p-value

after the Pettitt test estimates a changepoint in location. The changepoint estimated by
the statistics with linear weights tend to locate the change very late. It is noteworthy
that the changepoint is always estimated just before a record (see Fig. 5), so the
changepoint estimate of a significant records test can be interpreted as the time from
which there is evidence that the record occurrence is no longer stationary and the tail
of the distribution begins to take on ever greater values, not previously seen. When
M > 1 the results are more stable, the estimated changepoint appears earlier as more
information is available and d-type statistics obtain smaller p-values than N -type.

Figure 6 plots the year versus the absolute value of the processes associated with
the records statistics for the annual maximum a and mean b temperature series along
with 95% confidence thresholds based on the Kolmogorov distribution (they are very
similar even for nonKolmogorov distributed statistics). These plots allow to see the
evolution of the processes and other possible pointswith greater record probability than
under the null hypothesis. Again, the stationary null hypothesis is rejected, indicating
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Fig. 6 Absolute value of the processes associated with the records statistics for changepoints of annual
maximum (a), annual mean (b) and daily (c) temperature series at Madrid, Spain. The horizontal dashed
line represents the 95th percentile of the Kolmogorov distribution

potential changepoint 1990 and 1994, respectively. The equivalent plot for the daily
scale temperature series is shown in c, showing a clear maximum in 1977.

5 Discussion, conclusions and future work

The interest in statistical tools to analyze nonstationary behaviors in the extreme values
of the distribution is growing. While extreme value analysis has been traditionally
based on block maxima and excesses over threshold, this paper proposes the use of
records to study changes in the tails of the distribution. In particular, this paper proposes
three novel distribution-free changepoint detection tests and some generalizations
based on the breaking of records to (1) detect changes in the extreme events of the
distribution, (2) learn about features of the record occurrence and (3) analyze data
when only their records are available.

The proposed statistics are CUSUM-type statistics based on the record indicators.
Statistics to deal with seasonal series have also been considered. Despite having a
very small sample information compared to the total of the series, the Monte Carlo
simulations have shown that the proposed records tests are capable of detecting devi-
ations from the null hypothesis and a reasonable changepoint at which this deviation
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becomes significant in the probabilities of record. However, care must be taken in the
interpretation of the changepoint estimate, on the one hand it is usually misplaced
when the actual changepoint is located in the ends of the series. On the other hand,
when it is well located, it is often slightly after the actual changepoint in location
or scale if it exists, i.e., the effect of the change is not immediately reflected in the
observed record occurrence.

The recommendation for use according to the power and changepoint estimate
accuracy of the tests is as follows. If an increase in the number of records with respect
to the stationary case is expected in a single tail of the distribution, the results show that
N -type statistics are usually recommended. If an increase in the number of records
is expected in both tails, then s-type statistics are preferred. The statistics without
weights have the advantage of having a known asymptotic distribution, while the
statistics with weights proportional to the inverse of the SD have shown to have a
more balanced behavior against the alternative hypothesis in the simulation results,
with the disadvantage that their distribution must be calculated using Monte Carlo
techniques.

The proposed tests join two important aspects in the study of climate change,
changepoint detectionmethods and record-breaking events. This last concern has been
made apparent when applying the tests on different summary series (block maxima
and annual mean) and on the series on a daily scale of temperatures at Madrid, Spain;
detecting significant evidence of warming since the late 1970s and early 1990s.

Future workmay go in different directions. (1) Combining the information from the
different statistics could be of interest to increase the power and decrease the chance
of mis-detection, e.g., the harmonic mean p-value by Wilson (2019) could be used to
have a single p-value of all tests. (2) The idea of splitting the series is fundamental to
dealing with seasonal behavior. Here we use the method by Cebrián et al. (2022) to
extract uncorrelated subseries. Another alternative to consider would be to implement
permutation tests, i.e., the test statistic under the null hypothesis would be obtained by
calculating all possible values of the test statistic under all possible rearrangements of
the observed years, t = 1, . . . , T . In this way we maintain the dependence structure
between the subseries without the need to have a subset of independent subseries.
(3) Our method has been developed within the AMOC domain, however its extension
to themultiple changepoint domain could be of interest. The simplest procedure would
be to split the series where the changepoint is detected and retest the two subseries
separately. However, this can cause the number of records in the new subseries to be
too small to detect new changepoints, so other alternatives should be studied.

Finally, it is noteworthy that the proposed changepoint detection records tests are
not only useful for analyzing the effect of global warming on the occurrence of records,
but also in other fields where records are important. Other applications of these tests
are in other environmental sciences in the presence of climate change, in the study of
extreme values in stock prices or in the influence that new sports equipment has on
the occurrence of sports records. To facilitate its use, all the statistical tools proposed
in this paper are included in the R package RecordTest (Castillo-Mateo 2021)
available from CRAN at https://CRAN.R-project.org/package=RecordTest.
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A Appendix: The variance of BT (�Tt)

Figure 7 shows the variance of BT (νT t ) for T = 100 and 1000 across t = 1, . . . , T .
In particular, it is shown for the unweighted statistic, the statistics with weights pro-
portional to the inverse of the SD and linear weights (see Sect. 2.2). While the second
one generates a symmetric variance in {1, . . . , T } by construction, this does not hap-
pen with the other two. In all three cases the variance is zero for t ∈ {1, T } and the
maximum value is 1/4.

The nonuniform variance makes changepoints occurring near the beginning or
the end of the series (small variance times) more difficult to detect. Under the null
hypothesis, the process reaches its maximum (in absolute value) with the highest
probability at time t where it has the highest variance. Then, deviations from the
null hypothesis at small variance times generate smaller deviations in BT (νT t ) than
deviations at times of maximum variance. Thus, it is expected that the unweighted
statistic will have more power when the changepoint is at the beginning of the series,
the statistic with weights proportional to the inverse of the SDwhen the changepoint is
in the middle of the series and the statistic with linear weights when the changepoint is
at the end of the series. These conclusions agree with the analysis of power in Sect. 3.2.
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B Appendix: Proof of Proposition 2.1

We prove that the weighted statistics with polynomial weights ωt ∼ tn as t → ∞ for
n > 0 do not have asymptotic Gaussian properties. In particular, the distribution of the
weighted number of records do not approach the normal distribution for increasing
T . This is verified by using its asymptotic skewness and showing that it is different
from 0 (the skewness of any normal RV) for n > 0. As a consequence, the asymptotic
distribution of the functional evolution of the weighted number of records does not
approach that of the Wiener process.

Proof (of Proposition 2.1) To prove that the ξω
T t ’s do not satisfy the central limit

theorem, it is sufficient to prove that the sum Nω
T = ∑T

t=1 ωt It does not have skewness
0 as T → ∞. Using the basic properties of the central moments of a RV,

μ ≡ μ1(N
ω
T ) = E(Nω

T ) =
T∑
t=1

ωt
1

t
,

σ 2 ≡ μ2(N
ω
T ) = E

[
(Nω

T − μ)2
]

=
T∑
t=1

ω2
t
t − 1

t2
,

μ3(N
ω
T ) = E

[
(Nω

T − μ)3
]

=
T∑
t=1

ω3
t
t2 − 3t + 2

t3
.

Then, the following is a consequence of the properties of the generalized harmonic
numbers, as T → ∞,

Skew(Nω
T ) = μ3(Nω

T )

σ 3 ∼
∑T

t=1 t
3n−1(∑T

t=1 t
2n−1

)3/2 −→ 2

3

√
2n.

Consequently the skewness of Nω
T is asymptotically different from 0 for n > 0. 
�
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This proposition is easily extended to the weighted statistics based on the dt ’s and
st ’s. The former requires the calculation of the kurtosis since its skewness is 0 because
it is a symmetric RV. We omit the details for the sake of brevity.
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Abstract

The study of non-stationary behavior in the extremes is important to analyze data
in environmental sciences, climate, finance, or sports. As an alternative to the classical
extreme value theory, this analysis can be based on the study of record-breaking events.
The R package RecordTest provides a useful framework for non-parametric analysis of
non-stationary behavior in the extremes, based on the analysis of records. The underlying
idea of all the non-parametric tools implemented in the package is to use the distribution
of the record occurrence under series of independent and identically distributed continuous
random variables, to analyze if the observed records are compatible with that behavior.
Two families of tests are implemented. The first only requires the record times of the series,
while the second includes more powerful tests that join the information from different types
of records: upper and lower records in the forward and backward series. The package also
offers functions that cover all the steps in this type of analysis such as data preparation,
identification of the records, exploratory analysis, and complementary graphical tools.
The applicability of the package is illustrated with the analysis of the effect of global
warming on the extremes of the daily maximum temperature series in Zaragoza, Spain.

Keywords: extreme value analysis, hypothesis of stationarity, non-parametric tests, records,
R.

1. Introduction
Time series data in many fields need to be examined for evidence of structural trends or shifts
over time. In general, these analyses focus on the study of changes in the mean behavior,
however changes in the extremes, i.e., in the tails of the distribution, are also of great interest.
Extreme events typically cause large impacts because society and ecosystems are not adapted
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to them, so that their study is essential. Examples of the importance of the analysis of the
extremes appear in environmental sciences (large wildfires), climate (heat waves), hydrology
(floods), finance (market risk), sports (limits of human capabilities), and many others.
The numerous studies about non-stationarity in the mean have been favored by the avail-
ability of easy-to-use software to compute non-parametric tests, e.g., the Mann-Kendall test
(MK; Mann 1945; Kendall and Gibbons 1990). However, there does not exist similarly sim-
ple software to analyze trends, change-points, or non-stationary behavior in the extremes.
Detection of this type of behaviors is complicated because extremes are rare by definition.
Specific tools are required since it is difficult to link its evolution to the mean; i.e., if the mag-
nitude of a trend in the mean is small in terms of the variability of the series, or if there are
changes in the variability, the effect on the extremes might not be evident. Tools to analyze
non-stationary behavior in the tails of the distribution are also required as validation tools in
statistical modeling. Specific analysis of the capability to reproduce the extremes is essential
in a validation analysis, since models that represent the entire distribution of a series tend to
badly fit the tails and to yield important biases in extreme value statistics.
In this situation, the need for statistical tools to analyze the non-stationary behavior in the
extremes and records of a series is clear. This is the aim of the R (R Core Team 2022)
package RecordTest (Castillo-Mateo 2022b) described in this paper; the package is avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=RecordTest and on GitHub at https://github.com/JorgeCastilloMateo/
RecordTest. The package includes non-parametric tests and graphical tools based on records
to detect non-stationary behavior, such as trends and change-points, in the extremes of a
series. These tools can be applied to serially correlated series with seasonal behavior, if they
are previously prepared applying an approach based on splitting the series. All the tools for
the data preparation are also implemented. In addition, the inferential tools in the package
are able to jointly analyze M ≥ 1 series with possibly different distributions. This property
is useful to analyze split series and also in spatial analysis, to study series from different
locations and obtain global conclusions over the area of interest.
Classical methods for the analysis of extreme events are the block maxima and the excesses
over threshold. Both of them require to fit the tails of the distribution using parametric
models such as generalized extreme value (GEV) and Pareto (GP) distributions, and Pois-
son processes (Coles 2001). The tools in RecordTest are based on a different approach, the
analysis of the occurrence of record events and its comparison with the behavior of records
in the classical record model (CRM; Arnold, Balakrishnan, and Nagaraja 1998). The CRM
describes the distribution of the records of a series (X1, . . . , XT )⊤ of independent and identi-
cally distributed (IID) continuous random variables (RVs). An important advantage of this
approach is that it yields non-parametric tools due to the probabilistic properties of records.
In particular, the fact that the distribution of the record occurrence under the CRM does not
depend on the underlying distribution of the Xt’s allows the use of distribution-free statistics
and Monte Carlo methods. RecordTest includes the tests of this type proposed by Foster and
Stuart (1954), Diersen and Trenkler (1996), Benestad (2003, 2004), Cebrián, Castillo-Mateo,
and Asín (2022), Castillo-Mateo (2022a), and some extensions thereof proposed in this paper.
The package also includes useful graphical tools based on the behavior of the record occur-
rence under the CRM. We found in Cebrián et al. (2022) that the power of the records tests
is high, e.g., it is between 0.80 and almost 1.00 for a sample size of M = 12 series of length
T = 50 and an alternative with a linear trend in the mean which has a magnitude of about
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2.5% of the standard deviation. The MK test for the mean is more powerful when the series
follow a normal distribution with a linear trend in the mean. However, records tests, which
focus on the tails of the distribution, tend to be more powerful than the MK test in series
with one or two-side bounded distributions or distributions with one or two light tails, such
as GEV and GP, often used in extreme value analysis.

Many questions of interest in the analysis of non-stationary behavior in the tails are directly
related to records, and the tools in RecordTest are specifically useful for this type of analysis.
The study of records is common in sports (Gembris, Taylor, and Suter 2002, 2007), but it is
also essential in environmental sciences, for the study of floods (Vogel, Zafirakou-Koulouris,
and Matalas 2001), earthquakes (Van Aalsburg, Newman, Turcotte, and Rundle 2010; Yoder,
Turcotte, and Rundle 2010), or avalanches (Shcherbakov, Davidsen, and Tiampo 2013). In
the context of climate change, an important question is the effect of global warming on
the number of record-breaking temperatures and precipitation events (Benestad 2003, 2004;
Coumou, Robinson, and Rahmstorf 2013; Wergen and Krug 2010; Lehmann, Coumou, and
Frieler 2015; Lehmann, Mempel, and Coumou 2018). The study of records is also of interest
in physics, in the theory of spin-glasses or high temperature superconductors, in evolutionary
biology, or in finances for the study of stock prices (see Wergen 2013, and references therein).

There are many packages for analyzing the existence of trends and non-stationary behav-
ior using non-parametric tests, but most of them focus on the analysis of the mean of the
distribution. For example, in R, Kendall (McLeod 2022) computes the MK test, and mod-
ifiedmk (Patakamuri and O’Brien 2021) implements modified versions of trend tests for se-
rially correlated data. trend (Pohlert 2020) includes a great variety of tests such as Cox-
Stuart, (seasonal) MK and Hirsch-Slack tests for trend detection, and Lanzante, Pettitt and
Buishand tests for change-point detection. pyMannKendall (Hussain and Mahmud 2019) is
a Python (Van Rossum et al. 2011) implementation of non-parametric MK trend analysis,
which brings together eleven types of tests. The R package npcp (Kojadinovic 2023) provides
non-parametric CUSUM change-point detection tests sensitive to changes in the mean, the
variance, the covariance, or the autocovariance in univariate or multivariate observations, as
well as a test for detecting changes in the distribution of independent block maxima. Fo-
cusing on the analysis of extremes, there are quite a few R packages, such as evir (Pfaff
and McNeil 2018), which even includes the function evir::records() for extracting records.
Some of them include relevant tools for testing and modeling non-stationarity. For example,
extRemes (Gilleland and Katz 2016) and ismev (Heffernan and Stephenson 2018) include non-
stationary models for univariate extremes, evd (Stephenson 2002) has some functionality for
non-stationary estimation but the main emphasis is on bivariate extremes, SpatialExtremes
(Ribatet 2022) and texmex (Southworth, Heffernan, and Metcalfe 2020) analyze a multivari-
ate framework, and NHPoisson (Cebrián, Abaurrea, and Asín 2015) fits non-homogeneous
Poisson processes for peak over threshold analysis. All these packages offer a parametric
approach based on the fit of GEV, GP, and Poisson processes. A similar approach is used
in the Python package pyextremes (Bocharov 2022), which includes methods such as block
maxima, peaks over threshold and fitting of GEV and GP distributions; and in the MAT-
LAB (The MathWorks Inc. 2022) package NEVA (Cheng, AghaKouchak, Gilleland, and Katz
2014), which allows the fitting of both stationary and non-stationary GEV and GP distribu-
tions in a Bayesian framework. However, as far as we know, there does not exist any statistical
software package for testing a non-stationary behavior in records. The aim of RecordTest
is to fill this gap and provide a comprehensive toolkit to assess significant deviations from
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a stationary behavior in the tails of the distribution and to characterize when it occurs and
which features are affected. The study of records provides a new approach from a different
point of view than the block maxima and excesses over threshold approaches. Beyond the
intrinsic interest of the records, there are some differences that make this approach useful for
other types of analysis. An advantage of the inference tools in RecordTest is that no previous
modeling is needed. In addition, the study of records allows the simultaneous analysis of the
lower and upper tails of the distribution by including both upper and lower records in the
analysis.
The outline of the paper is as follows. Section 2 introduces some basic definitions and proper-
ties of the main variables related to the record occurrence. Section 3 describes the functions
and capabilities of the package, including data preparation, exploratory analysis, statistical
tests and graphical tools. Section 4 illustrates the use of RecordTest to analyze the non-
stationary behavior in the tails of the daily maximum temperature series in Zaragoza, Spain.
A summary of the paper and some future work are given in Section 5.

2. Classical record model and deviations from stationarity
The statistical tools for detecting non-stationarity in the extremes implemented in RecordTest
are based on the properties of the record occurrence in series of IID continuous RVs, i.e., the
CRM. This section reviews some basic concepts and the probabilistic results that are the
basis of those tools.

2.1. Variables to characterize the record occurrence
Let (X1, . . . , XT )⊤ be a series of RVs. An observation Xt is called an upper record (or simply a
record) if its value exceeds that of all previous observations, i.e., if Xt > max{X1, . . . , Xt−1}.
By virtue of this definition, X1 is always a trivial record. Analogously, Xt is a lower record if
Xt < min{X1, . . . , Xt−1}. Let (I1, . . . , IT )⊤ be the series of record indicator RVs defined by

It =
{

1 if Xt is a record,

0 otherwise.
(1)

Then, the number of records is defined by the record counting process, (N1, . . . , NT )⊤, where

Nt = I1 + I2 + · · · + It, (2)

and subsequently, the series of record times, (L1, . . . , LNT
)⊤, is defined by

Li = min {t | Nt = i} . (3)

Finally, although they are not directly related to the occurrence, the series (R1, . . . , RNT
)⊤

of record values is defined by Ri = XLi .
All the tools implemented in this package assume that there are M independent series of
length T available, i.e., there is a sequence X = (X1, . . . , XM ) of independent series where
Xm = (X1m, . . . , XT m)⊤ for m = 1, . . . , M . However, most of the tools can be applied
even with M = 1. The M series can be the result of splitting the original series, or series
measured at different spatial points, for example. Given X, we define the sequences of record
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indicators, I = (I1, . . . , IM ), and the sequences of the number of records, N = (N1, . . . , NM ),
where Im = (I1m, . . . , IT m)⊤ and Nm = (N1m, . . . , NT m)⊤ for m = 1, . . . , M . In a similar
way, obvious definitions deal with record times and record values, L and R, respectively.

2.2. Probabilistic properties of the record occurrence
Arnold et al. (1998) present the essential topics related to the theory of records. An important
result states that, in the CRM, the series (I1, . . . , IT )⊤ consists of mutually independent RVs
with Bernoulli(pt) distribution where pt, the probability of observing a new record at time t,
is

pt = P(It = 1) = 1
t
, t = 1, . . . , T. (4)

As a consequence, the distribution of It, Nt, and Li does not depend on the common con-
tinuous distribution of the Xt’s. This property allows the definition of the non-parametric
statistical tests and graphical tools available in RecordTest.
Concerning the number of records, under the CRM, NT converges in distribution as T → ∞
to a normal distribution with mean and variance

E(NT ) =
T∑

t=1

1
t

and VAR(NT ) =
T∑

t=2

1
t

(
1 − 1

t

)
. (5)

These expressions are obtained from the fact that NT is a sum of independent Bernoulli
RVs. To give some intuition about the model, note that E(NT ) ≈ log T + γ and VAR(NT ) ≈
log T +γ−π2/6 where γ is the Euler constant, and both expressions tend to infinity. However,
under the CRM, records are not common and their occurrence becomes scarcer for larger
values of T .
Turning to the notation with M independent series, if we assume that the M series have
the same probabilities of record, i.e., ptm ≡ pt, the maximum likelihood estimates (MLEs) of
these probabilities are

p̂t = It1 + · · · + ItM

M
, t = 1, . . . , T, (6)

where the sum of record indicators above follows an exact binomial distribution with M trials
and probabilities of success pt = 1/t. If M = 1, the variability associated with the estimates is
large. As the number of series M increases, the estimates become more accurate and precise.

2.3. Analysis of non-stationarity in the tails of the distribution
The aim of all the inference tools in RecordTest is to detect a non-stationary behavior in
the occurrence of records in a time series, and more generally in the upper (and lower) tail
of the distribution of the series. When we refer to a non-stationary behavior we mean any
deviation from the CRM in the generating system of records. The underlying idea in all
the tools is to study if the occurrence of observed records is compatible with the expected
behavior of the occurrence of records under the CRM, i.e., in a series of IID continuous RVs.
Under the assumption that the RVs in the series are independent, any deviation from the
expected behavior of records will give evidence of a change over time in the distribution, i.e.,
non-stationarity. In many real problems, a non-stationary behavior in a non-seasonal series
is due to the existence of any type of trend.
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The tests in the package are based on record probabilities. Since these probabilities are known
under the CRM, the null hypothesis of all the tests is

H0 : ptm = 1/t, for all t = 1, . . . , T, and m = 1, . . . , M, (7)

with ptm = P(Itm = 1). Different alternative hypotheses, one-sided, two-sided or the existence
of a change-point, can be of interest, and tests for each of them are proposed in RecordTest.
The one-sided alternative claims that the probabilities of record are either greater or less
than the values given by the null hypothesis. This increase or decrease may be originated by
the existence of a positive or a negative trend in location, or by an increase or decrease of
variability.
Two different families of tools are implemented in the package, the first only requires to know
the record times of the series, while the second requires to have the entire series available. The
idea of the second family, first suggested by Foster and Stuart (1954), is that more powerful
tests are obtained by joining the information from different types of records instead of using
only one type. More precisely, from one series (X1, . . . , XT )⊤, four different types of records
can be computed: the upper and lower records in the forward and in the backward series
(or directions). The backward series (XT , . . . , X1)⊤ is obtained by reversing the order of the
terms. For example, the upper record indicators in the backward series are

I
(BU)
t =

{
1 if XT −t+1 > max{XT , . . . , XT −t+2},

0 otherwise.
(8)

To distinguish what type of records a statistic or RV refers to, the corresponding superscripts
F (forward), B (backward), U (upper), or L (lower) are added between brackets. Given the
symmetry of the problem, under the CRM, the probability of record pt is 1/t for the four
types of records.

3. Functions and capabilities
RecordTest provides a framework for the analysis of non-stationary behavior in the extremes
of a series using records. It covers all the steps in the analysis: data preparation, identification
of the records, exploratory analysis, a wide range of statistical tests, and complementary
graphical tools. This section describes the functions grouped according to their objective.

3.1. Data preparation and record variables
The main argument of the inference functions in the package is a vector (X1, . . . , XT )⊤ or
a matrix X. If only the record times are available, they have to be transformed into a
series (X1, . . . , XT )⊤ with those record times. This transformation is implemented by the
function series_record(), whose arguments are the record times, L_upper or L_lower, and
optionally the record values, R_upper or R_lower. Note that inference based on this new
series only makes sense for the tools that use the types of records that are introduced as an
argument: upper, lower, or both.
All the functions allow missing values represented by NA. The way to deal with this is to
replace them by -Inf for upper records and Inf for lower records, so they are records only if
they appear at t = 1.



Journal of Statistical Software 7

Split series
In many real problems, the original series has to be split into M subseries, for instance, to
remove the seasonal behavior (Hirsch, Slack, and Smith 1982). As an example, if a daily
series with annual seasonality, (X1,1, X1,2, . . . , X1,365, X2,1, X2,2, . . . , XT,365)⊤ where Xtm is
the variable on day m within year t, is split into 365 series, one for each day within year,




X1,1 X1,2 · · · X1,365
X2,1 X2,2 · · · X2,365

...
...

...
XT,1 XT,2 · · · XT,365




T ×365

, (9)

the resulting subseries (columns) do not show seasonal behavior. In addition, since the con-
secutive observations in each subseries are now separated by one year, the serial correlation
can be assumed to be zero. The distribution of the 365 series, which correspond to series
at different calendar days, will not be the same due to the seasonal effect. However, the T
RVs in each series, which correspond to variables measured at the same calendar day across
years, may be identically distributed. Note that the null hypothesis H0 of the inference tools
in RecordTest is that each of the M series available are sequences of IID continuous RVs, but
no assumption about the equal distribution of the M series is required. This functionality
is implemented by series_split() that splits the series in argument X into Mcols subseries
and arrange them as the matrix in (9).

Uncorrelated series
All the statistical methods implemented in the package assume that the M series under study
are independent. If we have a set of dependent series, we should extract a subset of inde-
pendent series from them before applying the inference tools. The function series_uncor()
extracts a subset of uncorrelated series from the set available. This function has the arguments
test.fun, a function to implement the desired correlation or dependence test, and alpha, that
establishes the significance level. The default function is the standard stats::cor.test()
with a significance level α = 0.05, i.e., two series are considered uncorrelated if the Pearson
correlation between them is not significantly different from zero at that significance level. Al-
though zero correlation does not imply independence, this is a usual approach in most real data
problems because dependence manifests itself as some level of linear correlation and testing
dependence is not possible in general. However, more sophisticated functions could be used for
testing dependence in other particular situations. For example, extRemes::taildep.test()
or evd::evind.test() could be considered to test dependence at the extremes of the series.
We explain the algorithm with test.fun = stats::cor.test as an illustration. The itera-
tive procedure to be used for selection is specified by the argument type. If the series have
a sequential order, for example they are measured in consecutive days, the argument type =
"adjacent" should be used and the following approach is applied: given that the kth series
is in the subset, correlation between series k and k + 1 is tested; if the correlation is not
significant, series k + 1 is included in the subset, otherwise correlation between series k and
k+2 is tested. This step is repeated until a series k+j that is not significantly correlated with
series k is found. This approach does not test the pairwise correlation of all the series in the
final set, but it is adequate in situations where dependence is expected between consecutive
series. If we want to test the pairwise correlation of all the series we use type = "all".
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This procedure only keeps series that are not significantly correlated with any other selected
series, which gives more evidence in favor of the correlation matrix of the chosen series being
diagonal.

Breaking record ties
The CRM assumes that the Xt’s are continuous RVs so that the probability of ties is zero.
However, ties and weak records (observations equal to the current record value) can occur
in a series even if the variable is continuous because the measured values are rounded. The
function series_ties() gives the percentage of weak records in a series. It is important to
know this percentage since, if it is high, the number of records will be lower than expected
under the CRM, even if the series is IID (Wergen, Volovik, Redner, and Krug 2012).
If the number of weak records is high, the function series_untie(), which applies a simple
procedure to break ties, should be used. It adds to each element in the series a uniform
random value in the range (−u/2, u/2), where u is the precision unit of the observations,
so that weak records disappear. This procedure reproduces the fact that some of the weak
records would have been records if they had not been rounded.

Backward series
The function series_rev() gives the backward series of the argument X. X can be a vector
or a matrix, and in the last case the output is the backward series of each column.

Record variables
RecordTest includes functions to compute all the record RVs introduced in Section 2.1, given
a series (X1, . . . , XT )⊤ or a matrix X. I.record() computes the record indicators I, using a
S3 method, and N.record() computes the observed cumulative number of records up to time
t, N. Additionally, the record times L and record values R are computed by L.record() and
R.record(), respectively. The arguments of all these functions are: X, the vector or matrix
to analyze; record, a character string, "upper" or "lower", indicating the type of records to
be calculated; and weak, a logical argument to indicate whether weak records are considered.
The function p.record() computes the MLEs p̂t’s in (6).
Under the CRM, Nt follows a Poisson binomial distribution. The package includes functions,
dpoisbinom(), ppoisbinom(), qpoisbinom(), and rpoisbinom(), to compute the density,
distribution, and quantile function, and a random generation for the Poisson binomial distri-
bution using the algorithm by Hong (2013).

3.2. Exploratory data analysis

Records plot. The function records() plots the time series (X1, . . . , XT )⊤ and identifies
the upper and lower records observed in the series; one or both directions can be specified
in argument direction = c("forward", "backward", "both"). This plot helps to detect
asymmetries between the four types of records. If we have to analyze the extreme behavior
of M series, an alternative is to summarize them into a single series, calculating the mean
or the maximum in each time t and apply this function. Another alternative is the following
plot.
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Plot of the times of record. The function L.plot() plots the record times in M series,
(Lim, m), for i = 1, . . . , NT m, and m = 1, . . . , M . The M series are represented in the
vertical axis, and the record times in each series in the horizontal axis. The display includes
four panels, one for each type of records, FU, FL, BU, and BL. This plot helps to study the
hypothesis of the CRM since clear differences, especially in the number of points in the second
half of the plots, suggest non-stationarity in the tails.

3.3. Tests and plots for non-stationarity based on one type of records
The tools described in this section can be applied even when the only information available
is the record times. Three families of tests, based on the number of records, the probabilities
of record and the likelihood of the record indicators, are implemented.

Number of records
The function N.test() includes several tests based on statistics related to the number of
records. The general expression of the statistic is

Nω =
M∑

m=1

T∑

t=1
ωtItm, (10)

where the ωt’s are weights given to the records according to their position in the series. The
reason of using weights is that records at high values of t are less likely to occur so that,
if they occur, they give more evidence against the null hypothesis H0. Thus, the use of
weights makes records at high t to increase more the value of the statistic. The weights are
controlled by the argument weights that must be a function. Diersen and Trenkler (1996)
recommend linear weights ωt = t − 1, i.e., weights = function(t) t - 1. Cebrián et al.
(2022) propose a score-sum test that is a particular case of this statistic with weights ω1 = 0
and ωt = t2/(t − 1) (t = 2, . . . , T ), i.e., weights = function(t) ifelse(t == 1, 0, tˆ2
/ (t - 1)). Both types of weights are asymptotically equivalent and increase the power of
the test (Cebrián et al. 2022).
Under the null hypothesis H0 in (7), Nω is asymptotically normal as M → ∞ with mean and
variance

E0(Nω) = M
T∑

t=1
ωt

1
t

and VAR0(Nω) = M
T∑

t=2
ω2

t

1
t

(
1 − 1

t

)
. (11)

When ωt = 1, Nω is the raw number of records, it follows an exact Poisson binomial distri-
bution, and it is asymptotically normal also in T . The argument distribution indicates the
distribution to compute the p value, "normal" or "poisson-binomial". With wt’s which are
not equal to 0 or 1, only distribution = "normal" can be used. Alternatively, in any situ-
ation, the p value can be estimated using Monte Carlo simulations with simulate.p.value
= TRUE. This is not often necessary since, even when Nω is not asymptotically normal in T ,
the size based on the normal distribution is reasonably satisfactory even with M = 1.
Another test is based on an estimation of the variance instead of the variance under the null
hypothesis H0,

Ñω
S = Nω − E0(Nω)√

V̂AR(Nω)
, (12)
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where V̂AR(Nω) is the unbiased sample variance. The resulting test can be applied when
M > 1, and it is more robust against serial correlation. Under the null hypothesis H0, Ñω

S

follows an asymptotic tM−1 distribution, and it is implemented using distribution = "t".
All the tests in N.test() can be applied to any of the four types of records (FU, FL, BU,
or BL). The argument record indicates the type of records, "upper" or "lower", to be
analyzed. If backward records were desired, series_rev(X) has to be used as argument.
Other arguments of the function are alternative, that indicates the alternative hypothesis,
"greater" or "less". The argument correct indicates whether a continuity correction
should be made in the normal or t distribution approximations, which is recommended. The
last arguments can be used in most of the tests in the package.
The output of N.test() and most tests in the package is a list of class ‘htest’, which
contains the components statistic, parameter, p.value, alternative, estimate, method,
and data.name.

Plot of the number of records. The asymptotic results described above can be used to
analyze graphically the null hypothesis H0. The function N.plot() plots the observed values
(t, N̄ω

t ), where N̄ω
t = ∑M

m=1
∑t

j=1 ωjIjm/M , together with the expected values under the null
hypothesis H0, E0(N̄ω

t ). As an alternative to confidence intervals of E(N̄ω
t ), reference intervals

(RIs) defined by the lower and upper α/2th percentiles of the distribution of N̄ω
t under the

null hypothesis H0 are plotted, i.e.,

E0
(
N̄ω

t

)
± zα/2

√
VAR0

(
N̄ω

t

)
, (13)

with E0(N̄ω
t ) and VAR0(N̄ω

t ) in (11) taking account of the average instead of the sum, and
zα/2 the upper α/2th percentile of the standard normal distribution. If the observed data
follow the null distribution, they are expected to lie inside a particular RI 100(1 − α)% of the
time. It is noteworthy that the resulting RIs are not independent and the resulting bands are
not reference bands at a 1−α confidence level. However, they are useful to observe deviations
from stationarity in the evolution of the number of records, and to identify the time point
from which this deviation is significant.
Different weights can be specified with the argument weights. Several types of records can
be plotted in the same graph using the argument record, which is a logical vector of length
four (FU, FL, BU, and BL) that specifies the records to be plotted. There are two options
to calculate the backward records, backward = "T" indicates that the backward number of
records up to time t are calculated in the series observed up to time T , (XT , . . . , X1)⊤, and
backward = "t" in the series observed up to time t, (Xt, . . . , X1)⊤.

Probabilities of record

F test for linear regression. The function p.regression.test() implements a test based
on the fit of a regression model to the record probabilities pt as a function of time. Under
the null hypothesis H0, the MLEs p̂t’s in (6) satisfy E0(p̂t) = 1/t. p.regression.test()
implements an F test to compare the null model M0 : E(tp̂t) = 1 against a model M1
where the expectation is a function of t, specified by the argument formula. The default is
M1 : E(tp̂t) = β0 + β1t, t = 2, . . . , T , that is y ~ x. More complicated time trends can be
used, e.g., a quadratic trend with formula = y ~ poly(x, degree = 2).
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Given that the response p̂t has a non-constant variance even under the null hypothesis H0,
the regression model has to be fitted using weighted least squares with weights 1/VAR0(tp̂t).
A simulation study showed that the size of this test is satisfactory for M > 10. As in
previous test functions, the p value can be estimated using Monte Carlo simulations with
simulate.p.value = TRUE.

Plot of the probabilities of record. The function p.plot() represents the points (t, tp̂t)
for t = 1, . . . , T , and the fitted linear model described in p.regression.test(), to evalu-
ate the goodness of fit of the model. The fitted regression line can be replaced, e.g., by a
locally estimated scatterplot smoothing (LOESS), using smooth.method = stats::loess.
RIs based on the binomial distribution of Mp̂t when the null hypothesis H0 is true are added
to the plot if conf.int = TRUE. These RIs are independent and they are helpful to detect
any substantial departure from the CRM at particular times t. The plot can be displayed
on different scales: using plot = "2", p̂t is represented against t; and using plot = "3", a
logarithmic scale is used in both axes.

χ2 goodness-of-fit test. The function p.chisq.test() implements a Pearson’s χ2 test,

M
T∑

t=2
(p̂t − E0 (p̂t))2

( 1
E0 (p̂t)

+ 1
1 − E0 (p̂t)

)
, (14)

comparing the observed and expected probabilities of record and no-record (see Benestad
2003, 2004, for more details). Under the null hypothesis H0, the distribution of the statistic
is asymptotically χ2

T −1.
The size of the test is not appropriate for small M . In those cases, the function gives a
warning message and it is convenient to estimate the p value using Monte Carlo simulations
with simulate.p.value = TRUE.

Likelihood ratio and score tests
The functions lr.test() and score.test() compute the family of tests by Cebrián et al.
(2022) to study the null hypothesis H0 based on the likelihood and the score function of the
record indicators I. The main difference with the previous tests is that they can be used to
test both one-sided and two-sided alternatives. Although a different statistic has to be used
in each case, we only have to indicate the adequate alternative in the argument alternative
which can take values "two.sided", "greater", or "less".
The default alternative in the two functions is that all the T × M probabilities ptm may be
different, with any restriction. Using probabilities = "equal", both statistics are modified
to study a particular case, that the probabilities in the M series are equal, although possibly
different to 1/t. According to Cebrián et al. (2022), those tests are less powerful than the
tests for the general alternative, even if the probabilities in the M series are equal. In general,
the tests in score.test() are more powerful and are recommended.

3.4. Tests and plots for non-stationarity based on different types of records
The power of the tests based on one type of records is improved by joining the information from
the four types of records. Two families of this type of test are implemented in RecordTest. In
both cases, the first step is to obtain the statistic described in the previous section for each
type of records, and then build a joint statistic, or combine the p values of the resulting tests.
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Tests based on joint statistics
The function foster.test() implements the tests based on joint statistics developed by
Foster and Stuart (1954), with the possibility of adding weights, as suggested by Diersen and
Trenkler (1996). Seven different statistics can be selected with statistic = c("D", "d",
"S", "s", "U", "L", "W"). All the tests, apart from "S" and "s", study the stationarity
against the alternative of a trend in the mean. The statistics "d", "D" and "W" analyze
non-stationary behavior in both tails using two or four types of records,

dω = Nω,(U) − Nω,(L) =
M∑

m=1

T∑

t=1
ωt

(
I

(U)
tm − I

(L)
tm

)
, (15)

Dω = dω,(F ) − dω,(B) =
M∑

m=1

T∑

t=1
ωt

(
I

(F U)
tm − I

(F L)
tm − I

(BU)
tm + I

(BL)
tm

)
, (16)

W ω =
T∑

t=1
ωt

(
I

(F U)
tm + I

(BL)
tm

)
. (17)

The statistics in "U", Uω = Nω,(F U) − Nω,(BU), and "L", Lω = Nω,(BL) − Nω,(F L), only use
the two types of upper or lower records and they are useful to detect trends only in the right
or the left tail, respectively. The statistics in "S" and "s" study the existence of a trend
in variation, and they are defined as sω = Nω,(U) + Nω,(L) and Sω = sω,(F ) − sω,(B). The
statistics without weights are asymptotically normal in both T and M , and the weighted
statistics only in M ; although their size based on the normal distribution is satisfactory even
with M = 1.
As explained in the definition of Ñω

S in (12), more robust statistics against serial correlation are
obtained when the above statistics are standardized in mean and sample variance. The new
statistics have an asymptotic tM−1 distribution and they are computed with distribution
= "t".

Plot of the Foster-Stuart statistics. The function foster.plot() plots the observed
values of one of the statistics defined above, selected with statistic, obtained with the series
observed up to time t, for every t = 1, . . . , T . The plot also includes the expected values and
RIs based on the normal approximation of the distribution of the statistic under the null
hypothesis H0. It is useful to detect the time t for which the stationarity hypothesis fails.

Global test. The function global.test() also computes a joint statistic, but it com-
bines the statistic selected in FUN, say X , which must be one of the two-sided tests in
p.regression.test(), p.chisq.test(), lr.test(), or score.test(). By default, the
global statistic X G = X (F U) + X (F L) + X (BU) + X (BL) is used, but some terms can be
omitted using argument record. The distribution of X G is unknown, but the p value is
estimated by Monte Carlo simulations.

Tests based on combined p values
The functions brown.method() and fisher.method() compute tests that combine the p val-
ues resulting from applying the tests with asymptotic normal distribution to the different
types of records.
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The function fisher.method() implements the general Fisher’s method to combine the p val-
ues from any set of independent tests with the same null hypothesis; the vector of p values
is the only argument. It can be applied to any test but, in the context of records, it is used
to join the p values of the records that are asymptotically independent, i.e., FU and FL, BU
and BL, FU and BL, or FL and BU.
The function brown.method() implements an algorithm to combine the p values of the tests in
N.test() to any subset of the four types of records, selected with record. Since the p values
are dependent, the algorithm is based on the Brown’s method: the combined p values,

−2
(
log(pv(F U)) + log(pv(F L)) + log(pv(BU)) + log(pv(BL))

)
, (18)

follow a cχ2
f distribution with scale parameter c and degrees of freedom f that depend on the

covariances of the p values. In general, this test is more powerful than the previous ones and
the (seasonal) MK test when the series follow a GP or some types of GEV distributions with
a linear drift in location (see Cebrián et al. 2022, for the details).

3.5. Tests for change-point detection
The function change.point() implements a family of tests to study the null hypothesis H0
against the alternative hypothesis of an unknown change-point t0, i.e.,

H1 : ptm = 1/t, t = 1, . . . , t0 and ptm ̸= 1/t, t = t0 + 1, . . . , T, (19)

for m = 1, . . . , M . Note that these tests aim to detect the beginning of the non-stationary
behavior in the tails, not in the mean. The test statistic given by Castillo-Mateo (2022a) is

Kω = max
1≤t≤T

∣∣∣∣∣∣
Nω

t − E0(Nω
t )√

VAR0(Nω
T )

− VAR0(Nω
t )

VAR0(Nω
T )

Nω
T − E0(Nω

T )√
VAR0(Nω

T )

∣∣∣∣∣∣
, (20)

where Nω
t = ∑M

m=1
∑t

j=1 ωjIjm, and the estimated change-point t̂0 is the value t where Kω

attains its maximum. Kω is asymptotically Kolmogorov distributed as T → ∞ if ωt = 1; oth-
erwise, the p value has to be estimated by Monte Carlo simulations using simulate.p.value
= TRUE. Weights equal to 1 or proportional to the inverse of the standard deviation of It are
recommended. The test has been defined in terms of the number of upper or lower records
Nω

t , but it can also be defined in terms of dω
t = N

ω,(U)
t − N

ω,(L)
t or sω

t = N
ω,(U)
t + N

ω,(L)
t ,

depending on record = c("upper", "lower", "d", "s").

4. An example: Daily maximum temperature in Zaragoza
This section illustrates how package RecordTest can be used to analyze the effect of global
warming on the records and extremes of a daily maximum temperature series, the series in
Zaragoza, Spain. It is shown how the functions in the package cover all the steps of the
analysis: data preparation, exploratory analysis, and inference to study the non-stationary
behavior of the extremes and to identify the time, the periods of the year, and the features
where the non-stationary behavior appears.
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Figure 1: Daily maximum temperature at Zaragoza, Spain (1951–2020). LOESS (solid red),
and upper (red) and lower (blue) records.

4.1. Dataset
The ‘data.frame’ TX_Zaragoza included in RecordTest contains two columns: DATE, the
dates in ‘Date’ format, spanning from "1951-01-01" to "2020-12-31"; and TX, the daily max-
imum temperature series at Zaragoza Airport (Spain), in tenths of degree Celsius (◦C). The
dataset has been downloaded from the European Climate Assessment & Dataset (ECA&D;
Klein Tank et al. 2002) and modified by eliminating all the observations from the 29th of
February. This is because when the series is split, these days would yield a four-year time
series that is difficult to join to the analysis of the other yearly time series. The series with
the 29th of February is also available as TX_Zaragoza29F. The series has three missing obser-
vations indicated by NA corresponding to "1951-03-31", "1965-01-04", and "1965-10-05".
The dataset can be accessed after loading the package:

R> library("RecordTest")
R> Tx <- TX_Zaragoza$TX / 10

4.2. Data preparation and exploratory analysis
Most daily temperature series present a clear seasonal component and a high serial correlation.
That also is the case for the Zaragoza series, which can easily be seen by plotting the series
using the function records() (see Figure 1). The output of this and all the plot functions
in RecordTest are ‘ggplot’ objects. Consequently, the plots can be easily improved using
ggplot2 (Wickham 2016) functions; an example of how to add a LOESS is shown in the
following chunk,

R> records(Tx) +
+ ggplot2::geom_smooth(formula = y ~ x, method = stats::loess,
+ mapping = ggplot2::aes(y = Tx), se = FALSE, col = "red")

The plot reveals the seasonal behavior and a weak long-term time trend in the mean, summa-
rized by the LOESS. The upper and lower records in the forward direction are also plotted,
but their behavior is difficult to be analyzed due to the seasonality of the series.
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Since the series shows annual seasonality, we use the function series_split() with Mcols
= 365 to apply the split procedure described in Section 3.1, and it returns 365 subseries of
length T = 70. Then, we use series_uncor() to extract from them a subset of uncorre-
lated subseries, and it returns M = 76 subseries of length T = 70. We do not change the
default option test.fun = stats::cor.test given that dependence in temperature data is
usually linked to correlation. The default significance level is alpha = 0.05. Multiple test-
ing corrections are not implemented in this example since, in order to apply the tests, it is
more important to guarantee that the selected series are uncorrelated, while the problem of
rejecting series which are uncorrelated is less problematic. The indexes of the subset of the
selected series are shown with the argument return.value = "indexes". As we can see, a
separation between 2 and 14 days yields uncorrelated series.

R> TxZ365 <- series_split(Tx, Mcols = 365)
R> TxZ <- series_uncor(TxZ365)
R> dim(TxZ)

[1] 70 76

R> series_uncor(TxZ365, return.value = "indexes")

[1] 1 5 13 16 20 25 29 34 40 48 54 62 76 80 83 88 95
[18] 100 104 108 111 118 122 126 133 138 143 152 156 162 169 176 179 188
[35] 194 197 199 202 205 207 209 212 215 220 223 226 229 238 241 245 251
[52] 257 261 267 270 274 277 286 292 298 306 308 312 314 317 321 325 333
[69] 337 339 342 345 350 357 361 364

The temperature series is rounded to the tenth of ◦C. Given that the rounding is small with
respect to the value of the temperature, the assumption of continuous RVs is reasonable. The
existence of a high percentage of ties may affect the validity of the tests, that are developed
for continuous RVs, so it is advisable to apply series_ties() to check this percentage. The
output is a ‘list’ with three elements: (i) number, a vector with the total number of records,
the number of “strong” and weak records, and the expected number of records under IID
series, (ii) percentage, the percentage of record ties out of the total number of records, and
(iii) percentage.position, the percentage of record ties by time t, e.g., 4.76% of records
were ties at t = 5. NaNs indicate that there were no records of any type, e.g., at t = 19.

R> lapply(series_ties(TxZ, record = "upper"), round, digits = 2)

$number
Total Strong Weak Expected under IID
391.0 375.0 16.0 367.3

$percentage
[1] 4.09

$percentage.position
1 2 3 4 5 6 7 8 9 10
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Figure 2: Daily maximum temperature of the 11th of June at Zaragoza, Spain (1951–2020).
Upper (red) and lower (blue) records in the forward (solid) and backward (dashed) directions.
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R> lapply(series_ties(TxZ, record = "lower"), round, digits = 2)

Since the percentage of ties is about 4.09% for upper records and 3.74% for lower records
(output omitted), it does not seem to be necessary to apply the function series_untie() to
break the ties.
In series without seasonality, the analysis of records is easier. As an example, Figure 2 shows
the plot obtained with the chunk below, which includes the upper and lower records in the
forward and backward directions of the temperature measured on the 11th of June (30th
column in TxZ).

R> records(TxZ[, 30], direction = "both") +
+ ggplot2::scale_x_continuous(name = "Year", breaks = c(10, 30, 50, 70),
+ labels = c("1960", "1980", "2000", "2020"))

The plot shows evidence of an increasing trend, since no lower records occur after 7 time units
in the forward series, and the last upper record occurs at time point 3 in the backward series.
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Figure 3: Plot of the times of record for the 76 uncorrelated subseries at Zaragoza, Spain
(1951–2020).

The function L.plot() is used to summarize the times of the four types of records in each of
the 76 uncorrelated subseries by means of the plot of the times of record,

R> L.plot(TxZ)

Figure 3 shows that as time evolves there are less FL and BU records than FU and BL records.
This suggests non-stationary behavior since the pattern in the four plots should be similar in
IID series. This effect is difficult to be observed in only one subseries; however, when the 76
subseries are plotted together the evidence is clearer.

4.3. Inference tools to study non-stationarity in the extremes

Tests to detect deviations from stationarity
The effect of global warming on the extremes of the temperature series may appear in the
upper, the lower, or in both tails. We are interested in analyzing those hypotheses both jointly
and individually, but in all cases by means of the null hypothesis H0 in (7). The M = 76
subseries available correspond to different days within a year so they are not identically
distributed. Consequently, under the alternative hypothesis the probabilities of record ptm

may be different in the M subseries.

Analysis of one tail. To analyze the behavior of the upper tail, we study the upper records.
In the context of global warming, the alternative hypothesis of interest is

H1 : p
(F U)
tm > 1/t, for at least one t = 1, . . . , T, and m = 1, . . . , M. (21)

This alternative hypothesis is quite general since it includes the existence of a monotonous pos-
itive trend in the mean, but also other types of non-stationarity, such as some non-monotonous
trends. To test this hypothesis, we implement the weighted test in N.test() using the simple
linear weights ωt = t − 1 and default arguments,
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R> N.test(TxZ, weights = function(t) t - 1)

Test on the weighted number of upper records with weights = t - 1

data: TxZ
Z = 3.3138, p-value = 0.0004602
alternative hypothesis: true 'N' is greater than 4952.704
sample estimates:

N E VAR
6335.000 4952.704 173877.950

The hypothesis of stationarity is rejected at any usual significance level α. N.test() calculates
the value of the statistic N, its standardized version Z with a continuity correction by default,
and its expected value and variance under the null hypothesis H0, E and VAR, respectively.
The Monte Carlo p value obtained with the argument simulate.p.value = TRUE is very
similar (not shown), indicating that the normal approximation is good.
To analyze the behavior of the lower tail, we also use N.test(). Under the alternative
hypothesis of a positive trend in the mean, the probability of lower records is less than
under the null hypothesis H0, and we have to use the arguments record = "lower" and
alternative = "less". A significant behavior against stationarity is also observed in the
lower tail, since the following yields a p value equal to 0.001044 (output omitted).

R> N.test(TxZ, weights = function(t) t - 1, record = "lower",
+ alternative = "less")

Given that the complete series is available, we can add more information to the study of one
tail using the backward series and the more powerful tests implemented in foster.test().
Here, we apply the statistic Uω defined in Section 3.4, based on the forward and backward up-
per records. The alternative for a positive trend in the mean must be the default alternative
= "greater". The p value is lower than that obtained with N.test() so more evidence to
reject the null hypothesis H0 is found,

R> foster.test(TxZ, weights = function(t) t - 1, statistic = "U")

Forward - backward upper records test with weights = t - 1

data: TxZ
Z = 4.0641, p-value = 2.411e-05
alternative hypothesis: true 'statistic' is greater than 0
sample estimates:
statistic E VAR

3110.0 0.0 585579.8

Analysis of both tails. To carry out a joint analysis of both tails, we use the Dω statistic
in (16) based on the four types of records. The alternative for a positive trend is again the
default alternative = "greater",
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R> foster.test(TxZ, weights = function(t) t - 1, statistic = "D")

Foster-Stuart D-statistic test with weights = t - 1

data: TxZ
Z = 5.1889, p-value = 1.058e-07
alternative hypothesis: true 'statistic' is greater than 0
sample estimates:
statistic E VAR

5692 0 1203318

The more robust version of the statistic against serial correlation as defined in (12) but for
Dω can be calculated using the argument distribution = "t". The null hypothesis H0 is
also rejected at any usual significance level α,

R> foster.test(TxZ, weights = function(t) t - 1, statistic = "D",
+ distribution = "t")

Foster-Stuart D-statistic test with weights = t - 1

data: TxZ
t = 5.263, df = 75, p-value = 6.507e-07
alternative hypothesis: true 't' is greater than 0

Another option to carry out a joint analysis is to apply Brown’s method using the default
option that combines the p values of N.test() for the four types of records. Although it is
the default option, we specify the alternative hypothesis for the four types of records with
alternative, as an example of use,

R> brown.method(TxZ, weights = function(t) t - 1,
+ alternative = c("FU" = "greater", "FL" = "less", "BU" = "less",
+ "BL" = "greater"))

Brown's method on the weighted number of records with weights = t - 1

data: TxZ
X-squared = 38.669, df = 4.7592, c = 1.6810, p-value = 2.088e-07

It is noteworthy that the tests joining the information of the four types of records give the
lowest p values, on the order of 10−7. They lead to conclude, at any usual significance level
α, that the probabilities of record are greater for FU and BL records, and less for FL and
BU records, than expected under the CRM. This gives evidence of non-stationarity in the
occurrence of records in the subseries and, consequently, the existence of an increasing positive
trend in daily maximum temperature that affects the occurrence of extremes.

Graphical tools to detect deviations from stationarity
We have formally tested the existence of a significant non-stationary behavior both in the
upper and lower tails of temperature. Our next aim is to characterize that behavior using
graphical tools, to identify when it appears, which features are affected, etc.
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Figure 4: Plot of the number of records for the 76 uncorrelated subseries at Zaragoza,
Spain (1951–2020). Expected values and 90% RIs (mean, 5th and 95th percentiles of the
distribution of N̄ω

t under the null hypothesis H0) for the four types of records (gray shaded
area). Left: Unweighted statistics. Right: Weighted statistics with linear weights.

First, we analyze the behavior of the four types of records with the plot of the number
of records using N.plot(). To facilitate the comparison, all types of records are displayed
together using the default argument record.

R> N.plot(TxZ)
R> N.plot(TxZ, weights = function(t) t - 1)

The chunk above gives the plots by default, but Figure 4 is obtained adding ggplot2 functions
to draw the time axis for the forward and backward series; the complete code is available in
the supplementary material. The left plot shows that the number of FU records in the 80s
is slightly lower than expected in a stationary series. From that point onward, the number
of records increases until the end, although it does not become significantly high. FL records
have a stationary behavior up to the 90s, but its number starts to be lower than expected
thereafter. Backward records show more clear deviations of stationarity, and this suggests
that non-stationary behavior is stronger in the last part of the observed period. Both types of
backward records are outside the RIs from the first 30 observations, which correspond to the
period spanning from 1991 to 2020. The non-stationary behavior observed in the four types of
records is the behavior expected in a series with a positive trend in the mean. The right plot
is obtained using linear weights to give more importance to the occurrence of records in high
values of t, where the probability of record is lower. It shows that the use of weights leads to
clearer evidence of non-stationarity: the deviation of the forward records is now significant
and the deviation in the backward series is detected even earlier.
To analyze both tails jointly, we combine the information of the four types of records in
one signal. We can show a plot equivalent to the previous one based on the Foster-Stuart
Dω statistic in (16) with foster.plot(), whose expected value under the null hypothesis H0
is zero. We do not show the ggplot2 functions for simplicity,

R> foster.plot(TxZ, weights = function(t) t - 1)
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Figure 5: Plot of the mean value of the Foster-Stuart Dω statistic with linear weights for the
76 uncorrelated subseries at Zaragoza, Spain (1951–2020), observed up to time t, t = 1, . . . , T .
Expected values and 90% RIs under the null hypothesis H0 (gray shaded area).

Figure 5 shows a significant non-stationary behavior from the latest 90s onward and the
statistic shows a strong increasing trend starting around 2010.
Another approach to characterize non-stationarity is the analysis of the probabilities of
records. We plot tp̂t against t using p.plot() with the default argument plot = "1", for
FU records. Under the null hypothesis H0, the fitted regression to those points should be a
horizontal line, but different alternatives may be fitted; here, a quadratic trend is considered,

R> p.plot(TxZ, record = c("FU" = 1, "FL" = 0, "BU" = 0, "BL" = 0),
+ smooth.formula = y ~ poly(x, degree = 2))

The top plot in Figure 6 shows that the fitted curve is clearly different from zero and many
values tp̂t from the late 90s onward are outside the RIs. This plot helps us to identify the years
where the probability of record is much higher than expected. To characterize the lower tail,
the FL and BL records are shown in the same plot but with different colors using point.col,

R> p.plot(TxZ, record = c("FU" = 0, "FL" = 1, "BU" = 0, "BL" = 1),
+ point.col = c("FU" = NA, "FL" = "blue", "BU" = NA, "BL" = "red"))

The bottom plot in Figure 6 shows that FL records are less informative in the case of an
increasing trend. In effect, in that case, FL probabilities tend to decrease, but given that
they are always bounded by zero, points lower than the low interval bound cannot appear.
To formally check if the deviation from the CRM is significant, we apply the F test in
p.regression.test() to study E(tp̂t) = 1. Since the previous function p.plot() suggests a
quadratic trend as an alternative, we use

R> p.regression.test(TxZ, formula = y ~ poly(x, degree = 2))

Regression test on the upper records probabilities
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Figure 6: Plot of the normalized probabilities of record for the 76 uncorrelated subseries at
Zaragoza, Spain (1951–2020). Expected values and 90% RIs for t × p̂t (gray shaded area).
Top: FU records with quadratic time trend. Bottom: FL and BL records with linear time
trend.

data: TxZ
F = 9.0496, df1 = 3, df2 = 66, p-value = 4.225e-05
alternative hypothesis: two-sided for record probabilities
null values:

(Intercept) poly(x, degree = 2)1 poly(x, degree = 2)2
1 0 0

sample estimates:
(Intercept) poly(x, degree = 2)1 poly(x, degree = 2)2

1.265065 4.028521 2.337520
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Figure 7: Annual mean temperature at Zaragoza, Spain (1951–2020). Change-point estimate
(vertical solid red), and upper (red) and lower (blue) records.

We also apply the F test to the BL records using series_rev() to calculate the backward
series, and the argument records = "lower" (output omitted),

R> p.regression.test(series_rev(TxZ), record = "lower")

The resulting p value is 0.039. Both tests suggest that the ptm’s are significantly different
from 1/t. The evidence in BL records is not so strong but still significant, as it is observed in
the number of points outside the RIs in the bottom plot in Figure 6.

Tests for change-point detection
Once we have found evidence of a trend in the tails of the temperature distribution, our aim is
to identify the time point where this trend starts. First, we consider a series without seasonal
behavior, the annual mean temperature. Figure 7 shows the annual mean temperature at
Zaragoza, together with the change-point estimate, and its upper and lower records, resulting
from

R> TxZmean <- rowMeans(TxZ365, na.rm = TRUE)
R> records(TxZmean) +
+ ggplot2::scale_x_continuous(name = "Year", breaks = c(10, 30, 50, 70),
+ labels = c("1960", "1980", "2000", "2020")) +
+ ggplot2::geom_vline(xintercept = change.point(TxZmean)$estimate,
+ color = "red")

It seems reasonable to check the null hypothesis H0 against the alternative hypothesis H1 in
(19) using a change-point test based on upper records without weights,

R> change.point(TxZmean)

Records test for single changepoint detection
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data: TxZmean
Kolmogorov = 3.7425, p-value = 1.366e-12
alternative hypothesis: two.sided
sample estimates:
probable changepoint time

38

The p value of order 10−12 yields to reject the null hypothesis H0 at any usual significance
level α, and the estimated change-point t̂0 = 38 corresponds to the year 1988.
The change-point test can also be applied to the 76 uncorrelated subseries as given in the
chunk below (output omitted). The estimated change-point on a daily scale is t̂0 = 36 (1986),
and the p value 0.0003547 is significant at any usual significance level α.

R> change.point(TxZ)

5. Summary and future work
The study of non-stationary behavior in the extremes and the tails of a distribution is im-
portant in data analysis in many fields, such as environmental sciences, climate, finance, or
sports. However, most of the available software packages to analyze non-stationarity focuses
on the study of the mean. As far as we know, the R package RecordTest is the only available
software package for the analysis of record-breaking events. In addition, the use of records
provides a useful general framework for a fully non-parametric analysis of non-stationary be-
havior in the extremes. The underlying idea of all the inference tools implemented in the
package is to use the distribution of the record occurrences under the classical record model,
and study if the observed records are compatible with that behavior.
The package offers functions that cover all the steps in this type of analysis. This includes
functions to prepare the data, obtaining a set of uncorrelated series with no seasonal behavior
from the original series, identify the variables for characterizing the record occurrence, and
implement graphical tools for exploratory analysis. The main functionality of the package
is the implementation of all the tests to detect non-stationarity based on records currently
available in the literature, and complementary graphical tools. The null hypothesis H0 of all
the tests is that the series are sequences of IID continuous RVs, expressed in terms of the
probabilities of record, i.e., pt = 1/t. There are two main families implemented, the first one
can be applied even when the only information available are the times of record, and this
includes tests based on the number of records, the probabilities of record, and the likelihood
of the record indicators. The second family requires to know the entire series but it includes
the most powerful tests. The underlying idea is to combine the information from four types of
records, the upper and lower records in the forward and backward series, using joint statistics
or joint p values. Different alternative hypothesis, one-sided, two-sided or even the existence
of a change-point can be studied with the wide range of available tests.
The applicability of the package to analyze real data is illustrated with the analysis of the
effect of global warming on the extremes of the daily maximum temperature in Zaragoza,
Spain. The availability of the tools implemented in RecordTest will favor the realization of
studies for analyzing records and non-stationarity in the extremes in many fields.
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Future work will focus on the implementation of permutation tests, although this approach
requires further development in the literature. This procedure will capture the dependence
between the M series, so the tests will not require independent series. It will be especially
useful to jointly analyze series with spatio-temporal dependence.
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Statistical analysis of extreme and record-breaking daily maximum 
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A B S T R A C T   

This work analyses the effects of global warming in the upper extremes of daily temperature series over Spain. 
This objective implies specific analysis, since time evolution of mean temperature is not always parallel to 
evolution of the extremes. We propose the use of several record tests to study the behavior of the extreme and 
record-breaking events in different temperature signals, at different time and spatial scales. The underlying idea 
of the tests is to compare the occurrence of the extreme events in the observed series and the occurrence in a 
stationary climate. Given that under global warming, an increasing trend, or an increasing variability, can be 
expected, the alternative is that the probability of the extremes is higher than in a stationary climate. Some of the 
tests, based on a permutation approach, can be applied to sets of correlated series and this allows the analysis of 
short periods of time and regional analysis, where series are measured in close days and/or locations. Using these 
tests, we evaluate and compare the effects of climate change in temperature extreme and record-breaking events 
using 36 series of daily maximum temperature from 1960 to 2021, all over peninsular Spain. We also compare 
the behavior in different Spanish regions, in different periods of the year, and in different signals such as the 
annual maximum temperature. Significant evidences of the effect of an increasing trend in the occurrence of 
upper extremes are found in most of Spain. The effects are heterogeneous within the year, being autumn the 
season where the effects are weaker and summer where they are stronger. Concerning the spatial variability, the 
Mediterranean and the North Atlantic region are the areas where the effects are more and less clear, respectively.   

1. Introduction 

In the framework of climate change, there are many works that 
analyze the evolution of mean temperature over time, and the existence 
of an increasing trend is generally accepted; see Sánchez-Lugo et al. 
(2019) for a review and Peña-Angulo et al. (2021) for a study on the 
Spanish mainland. However, changes in variability and extremes of 
temperature are also relevant (Schär et al., 2004). The interest of 
analyzing whether the occurrence of extreme and record-breaking 
temperatures is affected by climate change is clear (Kysely, 2010; Cou
mou et al., 2013; Saddique et al., 2020; Om et al., 2022). The reason is 
that some of the most serious consequences of global warming on human 
health and other fields, such as agriculture or energy consumption, are 
often related to the occurrence of increasingly intense extremes (Tan 
et al., 2007; Coumou and Rahmstorf, 2012). The Mediterranean region 
has been referenced as a hot spot of climate change, this is, a region 
whose climate is especially responsive to global warming (Diffenbaugh 
and Giorgi, 2012; Lionello and Scarascia, 2018; Tuel and Eltahir, 2020). 

In fact, this region has suffered warming 20% faster than the rest of the 
globe (MedECC, 2020). This makes the study of temperature extremes in 
the Spanish mainland of special interest (Cos et al., 2022). 

The numerous studies to analyze the evolution of mean temperature 
have been favored by the availability of simple distribution-free statis
tical tests, such as Mann–Kendall (MK) test (Mann, 1945; Kendall and 
Gibbons, 1990) and easy-to-use software to compute them. Extreme- 
and record-event type statistics exist since the 70s (Feller, 1991; Arnold 
et al., 1998; Bunge and Goldie, 2001) but they have not been widely 
applied within the climate community. The existing analysis of record- 
breaking temperatures usually aim to describe observed records and to 
identify the role of different factors in their occurrence (Xu et al., 2021; 
Zhang et al., 2021). Other works analyze the projected behavior of 
extreme records under different emission scenarios (Xu and Wu, 2019; 
Fischer et al., 2021; Yu et al., 2023). 

Specific tools are required to analyze the tails of temperature dis
tribution since their evolution may not be parallel to the evolution of the 
mean. In addition, if the magnitude of a trend in the mean is small in 
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terms of the variability of the series, the effect on the extremes of that 
trend may be difficult to detect. This is the case of global warming trends 
in daily temperatures. On the other hand, in aggregated data like global 
mean temperatures, the natural variability is smaller and the effect of 
the climate change is easier to detect. For this reason, the studies to 
quantify the effects of global warming in the extremes have focused on 
the analysis of annual or monthly summaries of temperatures (Zorita 
et al., 2008; Coumou et al., 2013; van der Wiel and Bintanja, 2021; 
Salameh et al., 2019), although in this context the study of the effect in 
daily temperatures is more important because averaged or summarized 
data can under-represent warm or cool periods with a persistence of only 
a few days (Yosef et al., 2021). 

Some works to analyze the effects of climate change on record- 
breaking temperatures use probabilistic properties of the occurrence 
of records in independent and identically distributed (i.i.d.) series to 
quantify their evolution (Redner and Petersen, 2006; Coumou et al., 
2013; Wergen et al., 2014). Gouet et al. (2020) characterize the prob
abilities of record in sequences of variables with a linear trend in loca
tion, but they require restrictive assumptions about the distribution of 
temperature. In this context, it is of great interest to use the probabilistic 
properties of records to develop formal statistical tools, however, only a 
few works try to provide hypothesis tests to objectively establish the 
effects of climate change in the extreme and record-breaking tempera
tures. In this line, Benestad (2003), Benestad (2004) proposed record- 
statistic tests to detect non-stationarities based on records in forward 
and backward series and Monte Carlo integration, and applied them to 
analyze spatially aggregated monthly mean temperatures. Benestad 
(2008) underscored the utility of these tests in terms of evaluating trends 
in extremes. Meehl et al. (2009) and Anderson and Kostinski (2011) 
studied the ratio of daily and monthly record high maximum tempera
tures to record low minimum temperatures averaged across the US and 
compared it with the expected ratio under stationary conditions. 
Cebrián et al. (2022) and Castillo-Mateo (2022) provide a wide family of 
distribution-free record tests which can be applied without any 
assumption about the temperature distribution. Another important 
advantage of these tests is their high power even when the underling 
trend is small compared to the variability of data, what makes them 
useful to the analysis of any type of temperature signals, including daily 
signals. They can be applied both locally and regionally. Given that the 
effects of climate change show important differences depending on the 
climate and region, these tests are useful tools to assess and evaluate 
those differences. The analysis using these tools is highly facilitated by 
the R package (R Core Team, 2022) RecordTest (Castillo-Mateo, 2023; 
Castillo-Mateo et al., 2023). All the tests and graphical tools used in this 
work, as well as other tools based on records (Foster and Stuart, 1954; 
Diersen and Trenkler, 1996; Benestad, 2003; Benestad, 2004), are 
implemented in this package. 

The contribution of this work is the use of the statistical tools 
developed by Cebrián et al. (2022) and Castillo-Mateo (2022) to assess 
and analyze the effect of global warming in the extreme and record- 
breaking events in different signals of 36 daily maximum temperature 
series in peninsular Spain over 1960–2021. In addition, a modification 
of the tests based on a permutation approach is proposed. This new 
approach can be used with correlated series, which allows the applica
tion of the tests in smaller regions and shorter periods of time. Using 
these tests, we evaluate and compare the effects of climate change in the 
extremes over different Spanish regions, globally and in different pe
riods of the year. 

The outline of the paper is as follows. Section 2 presents the time 
series of observed temperature data in 36 Spanish stations and an 
exploratory data analysis. Subsequently, the section introduces the 
methodology to detect non-stationarity in the occurrence of extreme and 
record-breaking events. Section 3 shows the analysis of the evolution 
over time of extreme and record-breaking temperatures in different 
daily temperature signals using Spanish series. It also shows relation
ships between records in the observed series and in temperature series at 

geopotential levels from ERA5 reanalysis. Section 4 concludes the paper 
with a discussion and conclusions. 

2. Data and methods 

2.1. Data 

The database in this study has been extracted from the European 
Climate Assessment & Dataset (ECA&D; Klein Tank et al., 2002). It in
cludes surface observations of daily maximum temperature (Tx) in ◦C in 
36 stations located in the Spanish territory within the Iberian Peninsula, 
in the period 1960–2021, see Fig. 1. The Iberian Peninsula includes 
areas with very different climates (Chazarra-Bernabé et al., 2022). To a 
great extent, climate in inland Spain is temperate with a dry summer (Cs, 
Köppen classification), but some areas in the Central Plateau, Southeast 
of Andalusia and Ebro valley have a semi-arid climate (BS). North coast 
and Atlantic North coast show a temperate climate with no dry season 
(Cf). Mediterranean coast has a Cs climate in the North and BS in the 
Southeast. Our database includes series representing the different 
climate zones and also different elevation, 13 stations are over 500 m a. 
s.l., 5 stations over 800 m a.s.l. and one in the Central Mountains reaches 
1894 m a.s.l. Climate summary measures of the locations are shown in 
TableS1 from Supplementary material. 

All the series in the database have less than 100 missing observations 
in the considered period, this is, less than 0.5% of data are missing. 
Missing data are not removed from the series since the statistical tools 
applied in the analysis are weakly affected by a small percentage of 
missing data. Observations corresponding to February 29 are removed 
from the dataset for convenience. Furthermore, observed temperature 
data was rounded to the nearest tenth of a ◦C, resulting in a small 
probability of ties. Our analysis only considers strong records, this is, 
values strictly higher than the existing record. This means that the re
sults are conservative in the sense that the number of records without 
the rounding effect could be around a 3% higher. 

2.1.1. Exploratory data analysis 
This sections shows some exploratory analysis to describe how the 

distribution of Tx has changed in time over the observed period 
1960–2021. In particular, we compare the evolution over time of the 
median and the 5th and 95th percentiles of daily temperature. The aim 
of this analysis is to study if the effects of climate change are similar in 
the center and in the tails (extremes) of temperature distribution. If 
there exist relevant differences, the conclusions about the effects of 
global warming in the mean would not be valid for the tails, revealing 
the need of a specific analysis for the evolution of extreme and record- 
breaking temperatures. 

To compare the evolution of the distribution of Tx, we plot a kernel 
density estimation of Tx for July 15, in two reference periods 1961–1990 
and 1991–2020, and the corresponding 5th, 50th and 95th empirical 
percentiles. The densities are estimated using data in a centered window 
of 21 days. Fig. 2 shows the plots for Sevilla and Barcelona-Fabra, as an 
illustration of two different climates. Same plots for San Sebastián and 
Zaragoza, and plots for January 15 are shown in Figs.S1 and S2 from 
Supplementary material, respectively. In Sevilla, a clear positive shift of 
the entire distribution is observed in the last period. However, 
Barcelona-Fabra shows a different evolution in the center of the distri
bution and in the extremes, since the increase of the median is higher 
than in the 5th and 95th percentiles. Figs.S3 and S4 from Supplementary 
material show the difference between both 30-year periods in the mean 
value and the standard deviation across days within year for Sevilla, 
Barcelona-Fabra, Zaragoza, and San Sebastián. 

Fig. 3 represents the difference between the period 1991–2020 
minus the period 1961–1990 of the median and the 95th percentile of 
Tx. The percentiles are computed daily using a centered window of 31 
days. The different evolution of the differences between the two periods 
reveals that the long-term trend in the center of the distribution is 
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different to the trend in the extremes. In Barcelona-Fabra, the difference 
between the two periods is always positive in both the median and the 
95th percentile. In Sevilla, the difference is also positive except for the 
95th percentile in the early autumn. In Sevilla, the difference in the 
mean is primarily higher or equal than the difference in the 95th 
percentile throughout the year. This effect is observed in Barcelona- 
Fabra only during the summer. 

To analyze spatially the different evolution of the median and the 
95th percentile, we estimate a linear trend over time (◦C/decade) of the 
median and the 95th percentile of Tx in each location and month using 
quantile regression. We calculate the difference between those trends 
and we plot, for each location, the mean of those differences in the 12 
months versus elevation (m a.s.l.) at the location, see left plot in Fig. 4. 
Positive values indicating trends of the median higher than trends in the 

95th percentile are observed in 29 locations, in particular in all locations 
over 500 m a.s.l. Negative values are observed only in 7 locations near 
the coast: San Sebastián, Bilbao and Santiago (Cantabrian coast), and 
Tortosa, Barcelona-Fabra, Barcelona-Airport and Almería (Mediterra
nean coast). This suggests that, in some areas near the coast, the increase 
of the extremes tends to be stronger than the increase in the mean. More 
details for Sevilla, Barcelona-Fabra, Zaragoza, and San Sebastián are 
shown in Fig.S5 from Supplementary material. 

To study if the behavior of the trends is different within the year, the 
right plot in Fig. 4 summarizes, for each month, the differences between 
trends in the 36 locations using a boxplot. It shows that positive dif
ferences are observed in most of the locations (positive boxplot-median) 
in all the months except, January, April and November. That means in 
particular that, in most locations, trend in the median is higher than in 

Fig. 1. Map of the 36 Spanish stations, with different climate regions: North Atlantic (green square), Continental (red dot), and Mediterranean (blue triangle).  

Fig. 2. Kernel density estimation of Tx in Sevilla and Barcelona-Fabra on July 15 in the periods 1961–1990 (blue dashed) and 1991–2020 (red solid). Vertical lines 
show the 5th, 50th and 95th empirical percentiles. 
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the 95th percentile in the extended summer period from May to October. 
To sum up, the exploratory analysis shows that the time evolution of 

the central part of the distribution of Tx is not always parallel to the 
evolution of the tails. Consequently, the estimated effect of global 
warming in the mean should not be used to describe the effects in re
cords and extreme temperatures. Due to the characteristics of extremes, 
which are rare by definition, specific statistical tools are needed to 
analyze their evolution. Another important feature of the series to be 
considered in their analysis is the spatial and temporal dependence 
between them. 

2.2. Methods 

Given a series (Xt), an observation Xi is called an upper record if it 
has a higher value than the previous observations, this is, if 
Xi > maxt<i{Xt}. Analogously, Xi is called a lower record if 
Xi < mint<i{Xt}. All the properties for upper records are valid for lower 
records because mint<i{Xt} = − maxt<i{ − Xt}. The sequence of record 
indicator binary variables (It), with It taking value 1 if a record is 
observed at time t and 0 otherwise, characterizes the occurrence of re
cords in a series. From this sequence, the number of records up to time t 
is defined by Nt =

∑t
i=1Ii. 

There are some probabilistic results that characterize the occurrence 
of records in a series (Xt) of i.i.d. continuous random variables. The first 
result states that the variables (It) are mutually independent with It 
following a Bernoulli(pt) distribution, where the probability of record at 
time t is 

pt = P(It = 1) = 1/t, t = 1, 2,….

This means that in a stationary climate, the probability of observing a 
record decreases over time but there is always a positive probability of 
occurrence. Concerning the behavior of the number of records in i.i.d. 
series, the variables Nt have an asymptotic normal distribution where 
the expected number of records is E[Nt ] =

∑t
i=1pi =

∑t
i=11/i and the 

variance Var[Nt ] =
∑t

i=2pi(1 − pi). 

2.2.1. Record tests for non-stationarity detection 
The null hypothesis H0 of the tests used in this work is that the 

probability of record at each time t in a series of length T is the proba
bility of record under the stationary condition characterized by i.i.d. 
series, this is, 1/t. Under climate change, it is expected that temperatures 
show an increasing trend and/or an increasing variability. Under those 
conditions, the probabilities of upper record are higher than in i.i.d. 
series. Consequently, the following one-sided alternative hypothesis is 

Fig. 3. Differences of the median (blue) and the 95th percentile (red) between the periods 1961–1990 and 1991–2020 of Tx in Sevilla (left) and Barcelona- 
Fabra (right). 

Fig. 4. Mean over the 12 months of the differences between the time trend of the median and the 95th percentile of Tx for each location versus elevation; positive 
values in red (left). Boxplots by month of the previous differences between trends in the 36 locations; months with positive medians of the differences in red (right). 
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considered, 

H0 : pt = 1/t, t = 2,…, T.
H1 : pt > 1/t, for ​ at ​ least ​ one t = 2,…,T. (1) 

The details of the tests can be found in Cebrián et al. (2022). They 
proposed a family of distribution-free tests to detect deviations from i.i. 
d. series in the tails of the distribution using the probabilistic properties 
of the occurrence of records. The underlying idea of these tests is to 
compare the expected behavior of the occurrence of records in i.i.d. 
series with the behavior over time of the observed records. Although the 
tests detect any deviation from i.i.d. series, if the analyzed series is 
formed by independent observations with no seasonal behavior, de
viations from the i.i.d. hypothesis suggest the existence of trends or 
changing variability, which are the usual features expected under 
climate change. 

The tests assume the availability of M⩾1 mutually independent series 
of length T. These series can be series measured at different spatial 
points or series obtained from splitting the original data. It is noteworthy 
that the tests do not require that the M series have the same distribution. 
From these M series, the series of binary variables (It1),(It2),…,(ItM), and 
the series of number of records (Nt1), (Nt2),…, (NtM) are obtained. 

Record tests based onNT. The most basic statistic is the total number of 
records in the observed period of length T in the M series: 

N =
∑M

m=1
NTm =

∑M

m=1

∑T

t=1
Itm.

Under the null hypothesis H0,NT is asymptotically normal when T and/ 
or M tend to ∞. The power of N is improved by weighting the record 
indicators according to their position in the series, this is, 

N =
∑M

m=1

∑T

t=1
wtItm.

The idea is to use weights which are increasing functions of t since, given 
that records become less likely for increasing time, the occurrence of a 
record at a high t gives more evidence against the null hypothesis H0. 
Although different weights can be used, Cebrián et al. (2022) shows that 
the weights wt = t2/(t − 1) (w1 = 0) give the locally most powerful un
biased score test. Under the null hypothesis H0,N is still asymptotically 
normal in M. Using this asymptotic distribution, the p-value of the test to 
study the previous hypothesis is P(Z > (N 0 − 0.5 − μ)/σ) where μ and σ2 

are the mean and variance of the statistic under the null hypothesis H0,

N 0 is the observed statistic, Z is a standard normal variable and 0.5 is a 
continuity correction. These tests are implemented with the function N. 
test in Recordtest. 

Further, the asymptotic normal distribution of the statistics N and N 

can be used to compute reference intervals (RI’s) of the number of re
cords and of the weighted number of records up to time t. This is useful 
to implement plots to analyze the evolution of the number of records 
over time. These graphical tools are implemented with the function N. 
plot (Castillo-Mateo et al., 2023). 

Joining information from different types of records. It is noteworthy that 
four different types of records can be obtained from one series. The 
upper and lower records in the forward series, X1,X2,…,XT, and in the 
backward series obtained when the order of the variables is reversed, XT,

…,X2,X1. Fig. 5 illustrates the times of occurrence of the four types of 
records in Tx series for June 30 in Barcelona-Fabra. The advantage of 
considering four types of records is that many different hypotheses can 
be studied combining them adequately. Further, the power of the tests 
based on different types of records is higher than those using only one 
type (Foster and Stuart, 1954; Diersen and Trenkler, 1996; Cebrián 
et al., 2022). Herein, the superscripts L and B indicate lower records and 
records in backward series. For example, IL

t denotes the binary variables 
for lower records, and IBL

t for lower records in the backward series. 
Under the null hypothesis of i.i.d. series, all variables It , IL

t , I
B
t , I

BL
t 

follow a Bernoulli(1/t) distribution. Using this property, it is easy to 
combine the information provided by them in different statistics that 
allow the study of different alternative hypotheses. It is noteworthy that 
by considering different types of records in different subseries and in the 
forward and the backward series, we obtain information from the tails of 
temperature distribution, not only from the observed record events. 
Similarly to other approaches to study the extremes of a distribution, 
such as annual maxima or peak over threshold methods, this informa
tion can be used to characterize the behavior of the upper tail, or even 
both tails, of temperature distribution. 

In particular, we can define statistics to analyze:  

• The effect of an increasing trend in the upper tail, by considering the 
upper records in the forward and also in the backward subseries, 
N upp = N − N B.  

• The effect of an increasing trend in the lower tail, by considering now 
the lower records, N low = N BL − N L.  

• The effect of an increasing trend in both tails, by considering both the 
lower and the upper records in both the forward and the backward 
subseries, N both = N − N L − N B + N BL. 

Note that the sign of the statistic for each type of record is positive or 
negative according to whether a higher or lower number of records is 
expected under the considered alternative hypothesis H1. The effect of 
an increasing trend in the lower tail implies that the probability of lower 
record is smaller than 1/t. In the backward series an increasing trend 
becomes a decreasing trend so the probabilities of upper and lower re

Fig. 5. Tx series for June 30 in Barcelona-Fabra and occurrence times of upper records (red) and lower records (blue) in the forward (left) and backward 
(right) series. 
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cords under H1 are respectively lower and higher than 1/t; see Fig. 5 as 
illustration. 

We can also analyze the effect of an increasing variability in the tails, 
taking into account that the increase will lead to a higher number of 
lower and upper records in the forward series and lower in the back
ward, 

N var = N +N L − N B − N BL.

Under H0, all these statistics have an asymptotic normal distribution 
with zero mean, and the corresponding p-values can be obtained as 
usual. The function foster.test in RecordTest implements these 
tests. The power of these tests with M > 12 and T > 50 is high even with 
trends in location around 1% of the standard deviation but it decreases 
with lower M (Cebrián et al., 2022). 

2.2.2. Record tests for change-point detection 
Castillo-Mateo (2022) proposed three distribution-free statistics to 

detect a change-point if the record occurrence stops being stationary. 
The statistics test the null hypothesis H0 in (1) against the two-sided 
alternative hypothesis 

H1 : pt = 1/t, t = 1,…, t0, and pt ∕= 1/t, t = t0 + 1,…, T,

where t0 is the change-point. The test statistic for change-point detection 
in the record occurrence is K = max1⩽t⩽T |KT(t)|, where 

KT(t) =
Nt − E(Nt)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(NT)

√ −
Var(Nt)

Var(NT)

NT − E(NT)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(NT)

√ .

The change-point t̂0 is defined as t̂0 = arg max1⩽t⩽T |KT(t)|. Under the 
null hypothesis H0, the distribution of K is Kolmogorov in the limit as 
T→∞. Thus in a two-sided test for a change-point in the record occur
rence, the null hypothesis H0 is rejected if K > kα/2, where kα/2 is the 
upper α/2th quantile of the Kolmogorov distribution and α is the sig
nificance level for the test; and a significant change-point occurs at time 
t̂0 if the null hypothesis H0 is rejected. 

Henceforth, according to Castillo-Mateo (2022), the change-point 
statistic also considers M series and weights for the record indicators 
with wt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
t2/(t − 1)

√
(w1 = 0). The statistic does not follow the Kol

mogorov distribution, but the p-value can be estimated using Monte 
Carlo simulations. Castillo-Mateo (2022) also includes a detailed Monte 
Carlo analysis of the power and ability of this statistic to detect the 
actual change-point. The estimator is right-sided biased, which can be 
usefully interpreted as the time when the underlying process that drives 
the temperature distribution truly affects the records in the observed 
data. In other words, the change-point is determined by the occurrence 
of a record; if no records are observed, there is no change-point. This 
bias decreases significantly when the number of series M is increased or 
when the effect of the change becomes greater under the alternative 
hypothesis H1. This test is implemented with the function change. 
point in RecordTest. 

2.2.3. Applying the tests to temperature series 
Temperatures, as most environmental time series, measured in an 

intra-annual temporal scale show seasonal behavior and often serial 
correlation. Since the previous record tests detect any deviation from i.i. 
d. series, when the aim is to detect deviations provoked by climate 
change (increasing trend or changing variability), we need to remove 
first seasonality and serial correlation from the series. Another practical 
limitation of the previous tests is that they require M independent series, 
and independence is a quite restrictive assumption in climate series. This 
section shows how to prepare the data and a modification of the tests to 
solve these limitations. 

Seasonal and serially correlated series. A common approach in envi
ronmental studies to deal with seasonality and serial correlation is to 
split the series of daily observations into 365 series, so that each series 

contains the observations from one calendar day across T years: 

The series in each column consists of independent observations with no 
seasonal behavior and no serial correlation. The resulting 365 series do 
not necessarily have the same distribution because the distribution in 
December is probably different from the distribution in August. How
ever, this is not an assumption of the tests, since the probability of record 
under the null hypothesis H0 does not depend on the distribution of the 
series. 

The transformation of one series into M = 365 subseries is also useful 
to obtain a high number M of series to apply the tests, and consequently 
to increase their power. The problem is that, given that the series are 
measured in consecutive times (days in this case), they will probably 
show a strong dependence between them, and the tests require inde
pendent series. If the number of dependent series is high enough, the 
simplest option is to extract among them a subset of M independent 
series. This can be done, selecting series separated by a fixed distance 
(for example, 10 days) or applying an approach based on Pearson cor
relation tests (Castillo-Mateo et al., 2023). A second option is to use tests 
that allow dependent series, as described below. 

Tests for a set of M dependent series. The asymptotic distribution of the 
record statistics relies on the assumption that the M studied series are 
independent. To avoid this restriction, we propose an alternative 
approach where the p-values of the statistics defined in Section 2.2.1 are 
computed using permutation techniques. 

Permutation tests only rely on the assumption of exchangeability 
under the null hypothesis (Welch, 1990). A sample is exchangeable if 
any permutation of it has the same joint probability distribution. In the 
record tests, there is a sample of t = 1,…,T observations of a vector of M 
variables (Xt1,Xt2,…,XtM). Under the null hypothesis, the T observations 
of the vector (Xt1,Xt2,…,XtM) are independent with the same multi
variate distribution, so that permutations of rows, see the data structure 
in (2), are exchangeable. Note that the M variables in the vector may be 
correlated between them or may have different marginal distributions, 
the only required assumption is that the multivariate distribution of the 
vector is the same over the T years. 

If observations are exchangeable under H0, and all the possible 
permutations are considered to compute the p-value, the resulting test 
yields the exact significance level. In general, a random sample of 
possible permutations must be used because the total number of 
different permutations is too high. The p-value is computed as the pro
portion of samples whose statistic value is greater or equal than the 
observed statistic. A number of 10,000 permutations gives a good 
approximation to the p-value. 

3. Results 

3.1. Analysis of daily temperature series in one location 

This section aims to show how the record tests previously defined 
work, and the different hypotheses that can be analyzed with them. To 
that end, a detailed analysis is presented using the longest series avail
able, the daily maximum temperature series in Barcelona-Fabra from 
1914 to 2021. 

The observed number of upper and lower records in the period 
2001–2021 in the 365 daily series is 224 and 23, respectively. The 
number of upper records is 10 times the number of lower records while, 
in a stationary climate, the expected number of records in both cases is 
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the same and equal to 78.5. In this case, where the observed period is 
T = 108 years long, even this simple exploratory analysis suggests the 
effects of an increasing trend, but in many series, the observed period is 
shorter and more formal inference tools are needed to evaluate the effect 
of global warming. 

Before applying the record tests, given the seasonal behavior and 
serial correlation of daily temperature in Barcelona-Fabra, the process
ing tools described in Section 2.2 have to be used. The resulting final 
data is a subset of M = 46 uncorrelated series of length T = 108 with no 
seasonal behavior and no serial correlation. 

We start by analyzing graphically the evolution of the number of 
records over time, to detect possible deviations from the stationary 
behavior and to identify when they appear. To that end, the mean, in M 
series, of the number of records up to time t,Nt =

∑M
m=1

∑t
i=1Iim/M, for 

t = 1,…,T, is plotted versus t together with RI’s for the number of re
cords in i.i.d. series. An analogous plot is obtained for the weighted 
number of records N t =

∑M
m=1

∑t
i=1wiIim/M. Fig. 6 summarizes the 

evolution of the four types of records, in both cases. In the four types of 
records there is a significant evidence of a non-stationary behavior in the 
upper tail (forward and backward upper records), and even earlier in the 
lower tail (forward and backward lower records). The evidence is 
clearer, and consequently it is detected earlier, in the backward series 
and using weights. 

To obtain more formal conclusions about the effect of global 
warming in extreme temperature, we can apply the record tests and 
study different hypotheses. To analyze the behavior of the upper re
cords, we apply the test N with the alternative that the probabilities of 
the upper records are higher than in i.i.d. series. The p-value is 1.8e − 05, 
so that the null hypothesis is rejected at any usual significance level. To 
analyze the behavior of the upper extreme temperatures, not only the 
records, we apply the test N upp; the null hypothesis is also rejected with 
a p-value 8.4e − 7. To study the lower tail and both tails simultaneously, 
we have to use the statistics N low, and N both, respectively, they yield p- 
values equal to 7.5e − 7, and 8.8e − 12. We conclude that there is evi
dence of the effect of an increasing trend in both the upper and the lower 
tail and this evidence is stronger when information of both tails is joined. 
Since effects of an increasing trend are detected in both tails, it can be 
expected that the variability is not increasing; this is confirmed with the 
p-value of N var test, 0.5066, that leads to not reject the null hypothesis. 
Finally, the change-point test detects a significant change-point at time 
t̂0 = 64 (1977) with a p-value 0.0029. 

3.2. Spatial analysis of temperatures 

Climate change is a spatial phenomenon, so the interest lies in the 
analysis of the behavior of the temperature records and extremes over 
the peninsular Spain. To make fair comparisons of the behavior across 
different locations, the same period of time should be analyzed in all of 

them, so that the set of 36 series from 1960 to 2021 introduced in 
Section 2.1 is considered. 

It is noteworthy that since 36 series are analyzed, corrections for 
multiple comparisons should be applied. Given that the test statistics 
from nearby locations will be possibly dependent, and although this 
dependence may become negligible between the farthest locations, we 
opted for applying the conservative Benjamini-Yekutieli method (Ben
jamini and Yekutieli, 2005). This method controls the expected pro
portion of false rejections and can be applied to p-values from dependent 
statistics. 

3.2.1. Analysis of daily temperature series 
The first hypotheses that we study are the effect of an increasing 

trend in the upper records and in the upper tail using statistics N and 
N upp, respectively. Fig. 7 shows the maps summarizing the results. 
These maps show with points in a red color scale the locations where the 
p-value is lower than α = 0.1, and in a blue color scale, higher values. 
For the upper tail there are 29, 25, and 22 series with significant p-values 
at level α = 0.10,0.05 and 0.01 respectively, and for the upper records, 
23, the same 23, and 18. There are evidences of the effect of an 
increasing trend in both upper records and upper tail in most of the 
studied locations; as expected, there are more evidences in the upper 
tail, where more information is available. Only in the North area, and 
specially in the Cantabrian coast, there is no significant evidence of the 
effects of an increasing trend. The effects are weaker also in other lo
cations in the coast, for example Huelva, in the South, and Castellón and 
nearby locations in the Levante coast. 

Analysis within the year. It is known that effects of climate change may 
not be homogeneous over the year, so that it is necessary to analyze the 
potential effects of a trend in shorter periods of time within the year, 
seasons or even months. In those cases, M, the number of independent 
series available is usually small, so that the power of the asymptotic tests 
is low with weak trends. Then, it is preferable to apply the tests based on 
permutations described in Section 2.2.1, using all the daily series 
available in the considered period. Observations from subsequent days 
are dependent, but permutation tests allow for the analysis of dependent 
columns in matrices like (2). Fig. 8 shows the p-values from the tests to 
study the effect in the upper tail of the daily maximum temperature in 
each season: winter (DJF), spring (MAM), summer (JJA) and autumn 
(SON). It is clear that the effects are not homogeneous over the year: 
autumn is the season where the effects are weaker, being clearly sig
nificant only in the North part of the Mediterranean coast. On the other 
hand, in summer, significant evidences are found all over Spain except in 
Cantabrian coast and some nearby locations. Note that in this area, only 
in winter, there are some weak evidences of the effect of the trend in the 
extremes. The analysis of the upper records shows a similar pattern to 
the upper extremes, although the p-values tend to be slightly higher. In 
particular, in autumn, significant evidences at a α = 0.05 significance 

Fig. 6. Mean (left) and mean weighted (right) number of records up to time t versus t, in daily maximum temperature in Barcelona-Fabra (1914–2021).  
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level are found only in some areas in the Mediterranean coast, see right 
plot in the last row in Fig. 8. 

Even within seasons, the behavior may not be homogeneous, so that 
the same tests are applied by month (maps not shown). Concerning the 
upper extremes, no significant effect of a positive trend is found in any 
location, in February, March and November, and in September only in 
two Mediterranean locations (Barcelona-Fabra and Tortosa). On the 
other hand, June, July and August are the months with largest areas of 
Spain with evidences of the effects of a trend, both in the upper tail and 
the upper records. As an example, the p-values from the upper tail in 
June are shown in Fig. 8. 

Regional analysis. Since global warming is a spatial phenomenon, it is 
of interest to analyze its effects at a regional scale, by joining informa
tion from all the series available in a region. The proposed tests can be 
used to study this type of hypothesis, using the permutation approach if 
it cannot be assumed that the series available in a region are indepen
dent, as it is often the case. Note that the regional analysis will be more 
powerful since joining series from different locations, more information 
is provided to the tests. 

Here, we consider three regions with different climate characteris
tics: the North Atlantic, the Continental and the Mediterranean areas. 
See in Fig. 1 the locations by color in each region. The effect of a positive 
trend in the upper tail and in the upper records is significant at a sig
nificance level α = 0.05 in all the regions in the four seasons. Table 1 
shows the years identified by the change-point test to detect when the 
upper record occurrence is significantly different from the occurrence in 
i.i.d. series, in each season and in the whole year. The behavior is quite 
homogeneous all over Spain, with slight differences between the three 
regions, but relevant differences appear between seasons. Winter is the 
season where the evidences of non-stationarity in the upper records 
appear first, around 1975, while in autumn the change-points occur 30 
year later. In spring and summer the non-stationarity is detected from 
around 1985. 

The regional analysis is also developed by month, and the resulting 
p-values are summarized in Fig. 9. Again, the different p-values are 
shown in a red–blue scale according to their significance. In this case, in 
each region, the 12 p-values corresponding to one month are corrected 
using the Benjamini-Yekutieli approach. The results show that February, 
September and November are the months where the upper extremes and 
upper records are less affected by global warming, with no significant 
effect in any of the climate regions. In contrast, April and October are the 
months where a significant behavior is observed all over Spain. The 
Mediterranean region is the area where the number of months with 
strong evidences is higher, in all the year except the three months pre
viously mentioned, while the North Atlantic region is the area where less 
evidences of non-stationarity occur; only in April and October a 

significant behavior is detected. Concerning the upper records, the same 
pattern is observed, although the effects are slightly weaker. 

3.2.2. Analysis of annual maximum and annual minimum of Tx 
In this section, the behavior of the records and both tails of the 

annual maxima and the annual minima of Tx, the daily maximum 
temperature, are analyzed. Unlike the case of daily series, only one series 
per location is available for this analysis. Given that with M = 1, the 
power of the test is low for weak trends, only the regional analysis is 
carried out. Table 2 summarizes the p-values of the tests to assess the 
effect of an increasing trend in the upper tail, the upper records, the 
lower tail and the lower records in the annual maximum and in the 
annual minimum of Tx, in the three climate regions. The effect in the 
tails, both in upper and lower, is significant at a significance level α =

0.05 in all the regions. In the records, the effect is slightly weaker, 
specially in the lower records of the annual maxima, where the p-values 
are not significant at a α = 0.05 level in any region. This implies that 
there are not enough evidence to state that the occurrence of lower re
cords is not lower than 1/t in that signal, and could suggest an increase 
of variability. However, the tests to detect variability, based on statistic 
N var, are not significant at any usual significance level, with p-values 
0.16, 0.53 and 0.74; this means that there is no significant evidence of an 
increase of variability in annual maximum temperature in any of the 
three considered regions. 

3.3. Records in Tx and daily temperatures at geopotential levels 

The aim of this section is to analyze the occurrence of records in 
temperatures at geopotential levels, 850, 700, 500 and 300 hPa, to 
identify whether it is related to the occurrence of records in the surface 
temperature. 

3.3.1. Data and exploratory analysis 
The considered database includes the daily temperature series at 

850, 700, 500 and 300 hPa levels, measured at 12:00 from 1960 to 2021, 
in the 176 points from the 1◦ × 1◦ grid 35◦N–45◦N and 10◦W–5◦E that 
covers the Iberian Peninsula. This database is obtained from the 5th 
generation ECMWF reanalysis database ERA5 available in Climate Data 
Store (CDS) of Copernicus Climate Change Service (C3S) (Hersbach 
et al., 2023), see map in Fig.S6 from Supplementary material. 

As in surface temperature signals, the effects of global warming are 
clear in the mean evolution of air temperature at 850, 700, 500 and 300 
hPa geopotential levels. The mean temperature at the four levels shows 
an increase in the period 1960–2021, but the magnitude of that increase 
and the spatial variability are different. The effect of relief on the spatial 
behavior is more clear on temperature at 850 hPa level, where the 

Fig. 7. P-values from the analysis of the effect of a trend in the upper records (left) and in the upper tail (right) in daily Tx series during the entire year in 
Spanish locations. 
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increasing trend over time of temperature varies from 0.20 in the North- 
West to 0.35◦C/decade in the center of the Iberian Peninsula. At upper 
levels, the spatial variability is lower with trends from around 0.20 to 
0.26◦C/decade, with the highest increases in the South-West. Maps of 
the estimated trend at each geopotential level are shown in Fig.S7 from 
Supplementary material. 

Working with the original time series, an absolute record is defined 

to be a value that exceeds all previous values in the series. Considering 
the 704 daily series of temperatures, one associated to each of the four 
geopotential levels in each of the 176 grid-points, the median number of 
absolute records since 1962 is 6. Given that four air temperature series 
are available at each grid-point we identify simultaneous records, based 
on the idea of compound events (Zscheischler et al., 2020), that repre
sent the occurrence of a highly extreme situation in the geopotential 
temperature series. A “compound record” at a grid-point in a day is 
defined when simultaneous absolute records occur in at least 2 geo
potential level series. Table 3 on the left summarizes dates since 1971 
with compound records in at least 6 points of the grid. It shows on the 
right dates when the absolute record occurs simultaneously in more than 
two Tx series. Simultaneous compound records are temporally close to 
simultaneous absolute records in Tx series, for example, the episode 
13–16 August 1987, or the unprecedented heatwave in 26–29 June 
2019, that caused record-breaking high temperatures in about one-third 
areas of Europe (Sousa et al., 2019; Xu et al., 2021). An exploratory 
analysis of these compound records is shown in TablesS2 and S3 in the 

Fig. 8. P-values from the analysis of the effect of an increasing trend in the upper extremes in Tx by season in 36 Spanish locations (first and second row). Same map 
only for June (left plot last row) and for the upper records in autumn (right plot last row). 

Table 1 
Time points identified by the change-point test to detect when the upper record 
occurrence is significantly different from the occurrence in i.i.d. series, in each 
season and in the whole year.  

Region Series  

Year winter spring summer autumn 

North Atlantic 1976 1976 1980 1988 2010 
Continental 1986 1973 1988 1986 2003 
Mediterranean 1979 1973 1986 1986 2008  
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Supplementary material. 

3.3.2. Time evolution of records in daily temperature at geopotential levels 
Our aim in this section is to compare the time evolution of the 

number of records and the time where non-stationary behavior is 
detected in surface and geopotential level temperature series. To that 
end, the weighted cumulative number of records, N t , in the observed 
temperature series Tx in a location and in temperature series at a given 
geopotential level in the four grid-points around that location, are 
plotted in the same graph. In the same plot, we show the years where the 
estimated change-point occurs in each of the five series. Fig. 10 shows, 
as an illustration, the graph for Barcelona-Fabra in July for the four 
geopotential levels. At 850 and 500 levels, the time evolution of the 
records and the estimated change-points are very similar in Tx and in the 
four grid-points and, at 700 hPa, in two of the grid-points. However, the 
estimated change-point at 300 hPa occurs later, around 1998. The same 
plots for Barcelona-Fabra in January and Sevilla in July are shown in 
Figs.S8 and S9, respectively; and a similar plots based on the 36 series is 
shown in Fig.S10 in the Supplementary material. 

4. Discussion and conclusions 

This work aims to analyze and evaluate the effects of global warming 
in the upper tail (extreme and record-breaking events) of daily 
maximum temperature series over peninsular Spain. Since, an 

exploratory analysis shows that the time evolution of the central part of 
the distribution of daily maximum temperature is not parallel to the 
evolution of the tails, it is necessary to perform a specific analysis of 
records and extreme temperatures. Here, we propose the use of statis
tical tools and record tests described in Cebrián et al. (2022) and Cas
tillo-Mateo (2022) to assess the effect of global warming in the upper tail 
in different temperature signals in Spain, at different time and spatial 
scales. The analysis of short periods of time, for example months, and 
regional analysis imply the study of series measured in close days and/or 
in close locations, which are correlated. Given that the previous tests 
require independent series, we propose a modification based on a per
mutation approach to compute the p-values, which can be used with 
correlated series. Using these tests, we evaluate and compare the effects 
of climate change in the extremes and the record-breaking events all 
over Spain, in different Spanish regions, and in different periods of the 
year. All the record tests and statistical tools used in the analysis are 
freely available in the R package RecordTest. The proposed tests can 
be applied to analyze the evolution of extremes and records in observed 
series and also in gridded data obtained from reanalysis or Earth System 
Models, taking into account the spatial dependence between them. 

As far as we know, this is the first study of temperature records 
developed in Spain that does not focus on a particular event. Sousa et al. 
(2019) described the intense heatwaves striking the Iberian Peninsula in 
early August 2018 and late June 2019. They found the Saharan air in
trusions as a relevant mechanism for Iberian heatwaves. Their results are 
in agreement with the compound events and absolute records on late 
June 2019 observed in our work. Also there are some analyses about 
extremes, for example, Serrano-Notivoli et al. (2022) studied the heat
waves in Spain with a high-resolution gridded daily temperature dataset 
1940–2014. They found a tipping point in the early 1980s from which 
heatwaves became more frequent, this is compatible with our results in 
Table 1 for summer. In other regions of the world, some authors found 
similar results about temperature records. McBride et al. (2022) studied 
the record-breaking frequencies of the highest daily maximum temper
ature in South Africa for the 1951–2019 period. As in this work, they 
found that the number of records is higher than the theoretically ex
pected in a stationary climate. They also found that mainland stations 

Fig. 9. P-values from the analysis of the effect of a positive trend in the upper tails (top) and upper records (bottom) in Tx by month in the three climate regions.  

Table 2 
P-values of the effect of an increasing trend in the upper tails (UT), the upper records (UR), the lower tail (LT) and the lower records (LR) in annual maximum and 
minimum of Tx.   

Annual max. Annual min. 

Region UT UR LT LR UT UR LT LR 

North Atlantic 0.000 0.002 0.023 0.104 0.007 0.009 0.013 0.013 
Continental 0.000 0.000 0.021 0.121 0.041 0.067 0.005 0.002 
Mediterranean 0.011 0.007 0.012 0.056 0.008 0.013 0.039 0.013  

Table 3 
Dates from 1971 with compound records in at least 6 points of the grid. Right 
column shows next dates with absolute record simultaneously in more than two 
Tx series.  

Compound event Absolute record in more than 2 stations 

1980–8–2  
1983–7–30  
1987–8–13, 1987–8–16 1987–8–12, 1987–8–13 
2019–6–26, 2019–6–27 2019–6–29 
2021–7–10   
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are more affected by the increasing number of records than stations 
close to the coast. 

Our results yield the following conclusions about the evolution of 
extreme temperatures over Spain:  

• Significant evidences of the effect of an increasing trend in the 
occurrence of upper extreme and record-breaking events in daily 
maximum temperature have been found in most of Spain, when the 
whole year is studied. Only in the North and the Cantabrian Coast 
areas the effects are not significant.  

• The effects are heterogeneous within the year. Autumn is the season 
where the effects are weaker; only on the coast of Catalonia, the 
evidences are significant. On the other hand, summer is the season 
where the effects are stronger: in all the locations, except 5 locations 
in the North coast area, significant effects are found.  

• Concerning the spatial variability, the Mediterranean region is the 
area where the number of months with strong evidences is higher, 
while the North Atlantic region is the area where less evidences of 
non-stationarity occur. 

• No evidence of an increase of variability in daily maximum tem
perature has been found. 

Many of these results are in agreement with those found in other 
areas. In Romania, Busuioc et al. (2015) detected significant increasing 
trends for the temperature extremes in all seasons, except for autumn; 
they found the highest increasing rate in summer, and that it is possibly 
associated with the the Atlantic multidecadal oscillation. Tošić et al. 
(2023) also found that, in Serbia, there are significant changes in tem
perature extremes consistent with warming, specially in summer, and 
that they have a highly positive correlation with the East Atlantic 
pattern. Sánchez-Benítez et al. (2020) summarized the connection be
tween Iberian heat waves, and atmospheric circulation patterns in four 
weather regimes, and found that those heatwaves are associated with 
ridge conditions in western Europe. 

The results from this work suggest that more analyses in a spatio- 
temporal framework about the occurrence of records and extreme 
temperature events in Spain are needed, and they can open new research 
lines. In particular, more research to study the relation between records 
and the atmospheric situation expressed by air temperature at different 
geopotential levels is of interest, and also with teleconnection patterns 
to find plausible physical mechanisms. It is also of interest to develop 
space–time models for the occurrence of records. These models should 
include long-term trends, space–time dependence in the tails and 
random effects, so that Bayesian models can provide an adequate 
framework. Models including atmospheric variables as covariates would 
be also useful as statistical downscaling models, and they could be used 
to obtain future projections of the behavior of records under different 
climate scenarios. 
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S1 Exploratory data analysis

S1.1 Distribution of daily maximum temperature
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Figure S1: Kernel density estimation of Tx in Sevilla, Barcelona-Fabra, Zaragoza and San
Sebastián on July 15 in the periods 1961–1990 (blue dashed) and 1991–2020 (red solid).
Vertical lines show the 5th, 50th and 95th empirical percentiles.
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Figure S2: Kernel density estimation of Tx in Sevilla, Barcelona-Fabra, Zaragoza and San
Sebastián on January 15 in the periods 1961–1990 (blue dashed) and 1991–2020 (red solid).
Vertical lines show the 5th, 50th and 95th empirical percentiles.
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Figure S3: Mean value and standard deviation of Tx estimated by regression, using a linear
model with harmonic terms for seasonality, in reference periods 1961–1990 (blue) and 1991–
2020 (red), in Sevilla, Barcelona-Fabra, Zaragoza and San Sebastián.

Figure S3 shows the mean and standard deviation of Tx for every day within year using
a moving window of 31 days. The period 1961–1990 in blue and 1991–2020 in red. The
plots on the right express the change in the standard deviation between the two periods.
The increase in the mean value varies spatially and depending on the time of the year.
Particularly interesting is the change observed in the standard deviation in San Sebastián,
where the variability has increased in spring, but decreased in winter.
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Figure S4: Mean value and standard deviation of Tx, obtained using a moving windows of 31
days, in reference periods 1961–1990 (blue) and 1991–2020 (red), and change between two
periods. In Sevilla, Barcelona-Fabra, Zaragoza and San Sebastián.
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S1.2 Trend in the mean and the quantiles
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Figure S5: Median (solid) and 95th percentile (dashed) of Tx using a moving window of 31
days, in reference periods 1961–1990 (blue) and 1991–2020 (red), and change of standard
deviation between two periods. In Sevilla, Barcelona-Fabra, Zaragoza and San Sebastián.
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January July
Summary Linear trend Summary Linear trend

Station x̄ sd q95 x̄ sd q95 x̄ sd q95 x̄ sd q95
TX.229 14.2 2.6 18 0.14 0.04 0.22 22.2 4.3 30 0.37 0.07 0.51
TX.230 10 2.9 14.6 0.17 0.08 0.22 18.9 4.5 26.4 0.35 0.06 0.49
TX.231 17.2 2.5 21.4 0.21 0.04 0.25 21.8 3 27 0.19 -0.06 0.11
TX.232 2.8 4.7 10.5 0.28 0.17 0.54 8 5.5 17.2 0.65 0.11 0.89
TX.233 9.1 3.5 14.5 0.33 0.05 0.53 17.3 4.6 25.3 0.36 0.05 0.49
TX.234 11.2 3.8 17.3 0.11 -0.08 0.05 15.1 4.3 23.2 0.42 0.1 0.57
TX.236 15 3.6 21 0.16 -0.01 0.16 22.2 3.7 27.9 0.36 0.07 0.42
TX.237 16.8 3.3 22.5 0.32 0.05 0.46 21.2 3.1 26.7 0.25 -0.03 0.21
TX.238 11 3.9 17.3 0.29 -0.01 0.39 20.4 4.4 27.5 0.49 0.05 0.57
TX.335 11.8 3 16.9 0.43 0.06 0.57 17.8 3.2 22.9 0.38 0.04 0.4
TX.336 11 3.4 16.2 0.27 0.08 0.36 19 4.5 26.5 0.32 0.03 0.38
TX.414 7.3 3.4 12.8 0.29 -0.02 0.28 15 4.7 23.2 0.54 -0.02 0.5
TX.416 11.1 3.2 16.2 0.2 0.11 0.42 20.3 4.7 28.2 0.41 0.05 0.47
TX.420 13.6 2.2 17 0.17 -0.04 0.09 16.6 2.9 22 0.44 0.09 0.6
TX.421 17.2 3.5 22.9 0.27 0.07 0.41 23.6 3.6 29.5 0.25 -0.02 0.2
TX.423 16.3 2.4 19.6 0.12 0.05 0.18 23.9 4 31 0.31 0.01 0.34
TX.424 8.2 3.9 15 0.29 0.08 0.41 15.2 5 23.8 0.35 -0.02 0.34
TX.1393 13.5 3.7 19.4 0.17 -0.03 0.21 18.1 4.4 26 0.52 0.08 0.6
TX.1394 11.3 2.5 15.3 0.1 -0.05 -0.01 16.7 4.9 26.4 0.46 0.15 0.73
TX.1396 9.5 3.4 15 0.34 0 0.36 18.5 5.3 27.4 0.49 0.1 0.76
TX.1397 7.3 3.5 13.4 0.14 0.02 0.14 15.3 4.7 23.6 0.19 0.01 0.34
TX.1398 10.4 3.8 16.6 0.34 0.04 0.43 18.6 4.6 26.2 0.55 -0.04 0.46
TX.1399 8.6 3.6 13.8 0.21 -0.03 0.23 18 4.5 26 0.49 0.08 0.62
TX.1401 14.5 3 19.7 0.28 0.04 0.42 19.7 2.9 24.6 0.3 -0.01 0.27
TX.2969 14 2.7 18.1 0.28 0.01 0.4 18.5 2.5 22.9 0.32 0.03 0.38
TX.3905 9.2 3.5 15 0.3 -0.05 0.3 16.2 4.8 24.6 0.6 -0.05 0.46
TX.3908 17 2 20 0.17 0.02 0.17 21.3 2.6 26.5 0.3 0.05 0.47
TX.3910 13.8 3.1 19.4 0.24 -0.04 0.18 16 2.5 20.4 0.2 -0.01 0.24
TX.3921 12.2 2.6 16.3 0.18 0.03 0.24 19.9 4.3 27.6 0.3 -0.03 0.28
TX.3922 13.3 3.1 18.8 0.22 -0.07 0.22 15.8 3.1 21.8 0.31 0.04 0.44
TX.3924 15.6 3.1 21.3 0.07 0.02 0.17 21 3 26 0.28 -0.02 0.24
TX.3937 16.5 2.4 20.1 0.05 0.05 0.09 22.4 3.5 29 0.1 -0.02 0.07
TX.3943 10.3 4.4 17.2 0.23 0.01 0.43 21.2 4 27.4 0.42 0.02 0.45
TX.3963 15.9 2.4 19.5 0.19 0 0.15 22.8 4 30 0.33 -0.01 0.26
TX.3970 7.6 3.2 12.5 0.07 -0.05 0.1 16 4.4 23.7 0.29 0.01 0.33
TX.3971 10.1 3.6 15.4 0.22 0.05 0.27 17.8 5 26.1 0.5 0.02 0.54

Table S1: Mean (x̄), standard deviation (sd), and 95th percentile (q95) of Tx series (◦C)
for the reference period 1991–2020 in January and July. The least squares linear trend
(◦C/decade) for those summaries.
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S2 Records in daily maximum temperature and daily

temperatures at geopotential levels

Year Month Day # records # in contiguous days

Absolute records: Simultaneously more than 2 stations

1975 7 16 3 3
1978 7 16 3 6
1981 7 29 4 6
1982 7 6 3 8
1982 7 7 5 9
1987 8 12 3 7
1987 8 13 4 7
1995 7 24 4 6
2003 8 4 3 3
2010 8 27 3 3
2012 8 10 4 4
2017 7 13 3 3
2019 6 29 3 4

Records in January: Simultaneously more than 5 stations

1975 1 29 6 9
2003 1 27 6 8

Table S2: Dates when there are simultaneous records in several stations, number of stations
and number of stations with absolute record from previous to following days. Absolute
records in the series and absolute records in January subseries are summarized.
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Year Month Day # affected grid-points

Compound event based on absolute records

1980 8 2 6
1983 7 30 8
1987 8 13 8
1987 8 16 7
2019 6 26 6
2019 6 27 7
2021 7 10 6

Compound event based on absolute records of January

1981 1 21 6
1988 1 2 11
1998 1 3 41
2016 1 31 8

Compound event based on absolute records of July

1981 7 30 13
1982 7 6 6
1983 7 30 10
1995 7 24 16
1998 7 28 10
2021 7 10 8

Table S3: Dates with compound events in at least 6 points of the grid. Compound events
are based on absolute records in the series and absolute records in January subseries and
July subseries. Only dates from 1971 are shown.
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Figure S6: Grid of ERA5 reanalysis over Iberian peninsula.
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Figure S7: Map for the estimated linear trend (◦C/decade) of the daily temperature series
in every point of the 1◦×1◦ ERA5 grid, at geopotential levels, upper 850 (left) and 700 hPa,
bottom 500 (left) and 300 hPa.
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S2.1 Records in the monthly maximum series

Figures S8 and S9 are explained in Section 3.3.2 from the Main text. Next, we consider
the records in the series defined as the monthly maximum of Tx series in each station.
We compare the evolution of extreme events in Tx, globally for the Iberian Peninsula, and
in daily temperature in geopotential levels. In particular subseries of January and July are
separately studied. In order to summarize the grid at each geopotential level, ERA5 statistics
are obtained joining records of 4 corner points of ERA grid points, defined by 35N–45N
and 10W–5E. Figure S10 represents evolution of N̄t, the weighted cumulative number of
records, joining the records of monthly maximum in each of Spanish Tx series (red). Results
for January are shown in the left panel and for July in the right. The change-point is
represented with a vertical red line. Equivalent statistics for records of monthly maximum
of daily temperature series at 850 (orange), 700 (green), 500 (blue) and 300 (black) hPa.
Overlapped vertical lines indicate the estimated change–point with the corresponding color.
In July, results show an increasing for high levels more intense that the Spanish series and
earlier in 850 hPa. In January, the change–point of Spanish station is estimated in 1998,
coinciding with 700 hPa and near of 850 hPa result.
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Figure S8: Mean weighted number of records up to time t versus t, in Tx Barcelona, January
1960–2021, and similar statistics in daily temperatures at 850, 700, 500 and 300 hPa, in 4
points of grid around Barcelona.
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Figure S9: Mean weighted number of records up to time t versus t, in Tx Sevilla, July 1960–
2021, and similar statistics in daily temperatures at 850, 700, 500 and 300 hPa, in 4 points
of grid around Sevilla.
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Figure S10: Mean weighted number of records up to time t versus t, in Spanish Tx, and
similar statistics of daily series of temperature at 850 (orange points), 700 (green), 500
(blue) and 300 hPa (black), in 4 corner points of grid. Left, January. Right, July.
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Chapter 4

Discussion

This chapter will try to give a global discussion of the research papers that constituted

the main body of this Thesis.

Firstly, the Thesis was focused on the development of a space-time model for

the Aragón dataset in the basic geostatistical setting with Gaussian errors. The

published paper Castillo-Mateo et al. (2022) aimed to learn about basic features

of temperatures; it developed a Bayesian hierarchical mixed effects autoregressive

model that characterized the mean of the response distribution; it incorporated some

new features such as two temporal scales and four GPs to model spatially varying

coefficients. A MCMC algorithm was designed to fit the model and Bayesian kriging

was used for interpolation at unobserved locations, this was a recurrent approach in

all subsequent objectives. Next, this model resulted especially useful for carrying

out model-based inference. The unpublished work Cebrián et al. (2023) proposes

model-based tools including predictive spatial probability surfaces and spatial extents

for an event; it uses the output from the mean model to make inference around the

center of the distribution. Particular cases of these tools were used to give a formal

probabilistic definition for extents of EHEs. The published paper Cebrián, Aśın, et al.

(2022) used the output from the Schliep et al. (2021) model and the model-based tools

to define concepts and learn about characteristics of EHEs.

Secondly, this Thesis was focused on more general space-time models, for all

quantile levels of the response, particularly high quantiles. The published research

paper Castillo-Mateo, Aśın, Cebrián, Gelfand, et al. (2023) aimed to learn about

the features of temperatures in high quantiles and compare them with the mean; it

extended the mean model to the multiple QAR context using the AL distribution,

and offered an attractive approach to obtain marginal quantiles from the conditional

quantiles in the autoregression with the AL specification. From a theoretical point

of view, joint QRs offers more opportunities for inference but a bigger challenge. The

published research paper Castillo-Mateo et al. (in press) aimed to propose methodology
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to advance in the development of joint QAR models; it proposed a novel specification

through Kumaraswamy distributions and extended it to the spatial setting.

Thirdly and lastly, this Thesis was focused on the study of the occurrence of

the most extreme observed values for the response—record-breaking events. The

results from mean and QR gave strong evidence of the distinct behavior between

the central part and the tails of the distribution, which led to the study of records

in particular. The first aim was to make available an accessible framework for the

statistical analysis of records. The published research papers Cebrián, Castillo-Mateo,

et al. (2022) and Castillo-Mateo (2022) considered the framework of records across

series for each calendar day. They developed statistical hypothesis tests to explore

the null hypothesis of a stationary behavior against a trend or a change-point in the

probabilities of record, respectively. Given the great importance of the study of records

in several fields, the published research paper Castillo-Mateo, Cebrián, et al. (2023a)

described the R package RecordTest (Castillo-Mateo, 2023b), which implements most

of the statistical hypothesis tests and graphical tools based on the occurrence of

records available in the literature. A limitation of the proposed tests was that they

required independent series. The published research paper Castillo-Mateo, Cebrián,

et al. (2023b) proposed a modification of the tests using permutation techniques; it

implemented those tools to analyze the Spanish dataset. The second aim was to bring

together the Bayesian hierarchical spate-time modeling framework and the analysis of

records. The unpublished work Castillo-Mateo, Gelfand, et al. (2023) comes back to

the Bayesian framework to propose a mixed effects logistic regression model with a

very novel specification for the record indicators; it offers model-based full inference

regarding any characteristic related to the occurrence of records.
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Chapter 5

Conclusions and future work

This chapter will provide a concluding overview of the project by summarizing the

main methodological contributions and research findings in connection with the initial

objectives. It will also address the significance of the contributions and their limitations

and suggest potential avenues for future research.

5.1 Summary and implication of the contributions

This project aimed to develop spatiotemporal statistical methodology for analyzing

extreme temperature events, focusing on EHEs, high quantiles, and record-breaking

events in Aragón and Spain. The objectives included assessing changes in EHEs

duration and frequency, characterizing distribution behavior, comparing long-term

trends between the mean and high quantiles, studying record occurrences against

stationary behavior, and quantifying trends across time and space.

Contributions to Bayesian geostatistics. Acknowledging that climate change

with regard to temperature is occurring both temporally and spatially, the contribution

to the “basic” Bayesian geostatistical framework has included a very rich space-time

mean model for daily maximum temperatures. The specification is continuous in

space and autoregressive in time. With two time scales, autoregression was examined

annually and also daily for the summer season within each year. Novel spatial structures

have been found including spatially varying intercepts and trend coefficients as well as

spatially varying autoregression coefficients and variances.

Posterior predictive samples of daily temperature time series on a fairly fine grid

scale generated from particular choices of Bayesian space-time models have been used

to asses space-time changes. Exceedance events for local reference values of the

temperature distribution have been analyzed. Two basic ideas have been offered:

probability surfaces which capture the spatial variation in the chance of an exceedance
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event and provide climate risk maps; and spatial extents which, for a subregion of

interest, capture the expected proportion of incidence of a given exceedance event over

the region. For a specified region, for a given day, the definition of spatial extent takes

the form of a block average over the region. It is an average of indicator variables which

identify the exceedance of a local reference value by the daily maximum temperature

for the day at each location within the region. It has been demonstrated that extents

can be calculated through Monte Carlo integration and realizations can be obtained

from the space-time models for daily maximum temperatures.

Exceedance events have been defined in terms of a local mean value or increments

between two decades. Also, because notions of the spatial extent of EHEs have

only been considered informally and descriptively in the climate community, a formal

probabilistic definition for extents of EHEs has been introduced. These quantities are

defined at daily scale and can be averaged to any other temporal scale of interest.

Comparison of temperature evolution has been presented at daily and seasonal scale

both temporally between decades and spatially between subregions.

Contributions to quantile regression. The contributions to QR include a

modeling approach to predict a specific quantile in a spatiotemporal framework. A

spatial conditional autoregressive model has been specified on a daily scale using the AL

distribution for the errors. The considered specification enables spatial autoregression

at a daily scale that captures serial correlation and facilitates assessment of persistence.

The flexibility of the model is increased by considering two scales of time as well as

seasonal behavior, time trend, and four GPs that represent the spatial dependence of

the intercept, the trend, the serial dependence, and the scale of the AL errors. Bayesian

model fitting enables full posterior inference for a given quantile. Although the model

gives conditional quantiles, an attractive approach to obtain marginal quantiles at daily

scale has been offered. These marginal quantiles enable interpolation. The approach

can also provide marginal quantiles associated with averages of the response variable,

both spatially and dynamically. Posterior inference to evaluate changes between

marginal quantiles of spatial and time averages can also be implemented.

Subsequently, modeling for joint (non-quantile crossing) QAR has been presented

and consequentially expanded. In particular, the QAR(1) setting has been

characterized in a way that allows for a more flexible autoregression structure than

the one in the seminal paper by Koenker and Xiao (2006). This has been extended

to the QAR(p) case. A novel multivariate time series version has been offered using a

Gaussian copula. A spatial version has also been elaborated, using a GP copula based

upon a GP in conjunction with four additional GPs. This model enables spatially
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varying quantile functions. The modeling is entirely parametric through the use of the

Kumaraswamy distributions.

Contributions to record-breaking analysis. This project has proposed several

statistical tests based on the likelihood of the record indicators and complementary

graphical tools to detect the existence of non-stationary behavior in the occurrence of

records. It has also proposed three novel change-point detection tests whose statistic is

of the CUSUM type based on the record indicators. The record tests use the properties

of the occurrence of records in c.i.i.d. series, which makes them distribution-free, this

is, the null hypothesis over the probabilities of record is H0 : pt = 1/t. Statistics to deal

with seasonal series have also been considered. P-values are obtained through the exact

distribution, the asymptotic distribution, Monte Carlo simulations, and permutations.

Despite having a very small sample information compared to the total of the series, the

Monte Carlo simulations have shown that the proposed record tests are powerful for

detecting deviations from the null hypothesis and the change-point tests return a biased

change-point estimate. The change-point estimate should be interpreted as the time

since which an underlying trend has been impacting the observed record occurrences.

A substantial contribution is the R package RecordTest. As far as I know,

this is the only available software package for the analysis of record-breaking

events. It provides a useful general framework for a fully non-parametric analysis

of non-stationary behavior in the extremes and the records in particular. The package

offers functions that cover all the steps in this type of analysis. This includes functions

to prepare the data, identify the variables for characterizing the record occurrence,

and implement graphical tools for exploratory analysis. The main functionality of

the package is the implementation of all the tests to detect non-stationarity based on

records currently available in the literature, and complementary graphical tools.

Finally, this project has taken up the first fully developed modeling attempt

to analyze the incidence of record-breaking temperatures. The modeling needed to

effectively explain the incidence of record-breaking over this region during this period

required careful specification of the probabilities of the indicator functions which

define record-breaking sequences. Key features have included: explicit trend behavior,

necessary autoregression, significance of distance to coast, useful interactions, spatial

random effects, and very strong daily random effects.

Contributions to the analysis of climate change in Aragón and Spain. The

above contributions were motivated through time series spanning over 60 years of daily

temperatures from 18 and 40 sites in Aragón and Spain, respectively. Some interesting
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results include a global increment of summer temperatures in Aragón in the period

1956–2015 of 0.21◦C/decade in the mean and approximately 0.10◦C/decade in the

high quantiles. However, the spatial patterns for these trends in space vary a lot across

quantile levels. A clear increase of the extent of EHEs across time is observed. For

example, the posterior probability of the yearly average extent across summer months

in the decade 2006–2015 being higher than in 1966–1975 is higher than 0.8. Also the

first day of the summer where the extent of EHEs is higher than 10% has decreased

around seven days. In a different direction, the joint QAR model has allowed to capture

autoregression structure in daily temperature data, which is not strictly increasing in

τ , but decreasing in both tails.

The record tests have found significant evidences of the effect of an increasing trend

in the occurrence of record-breaking events in daily maximum temperature in most of

Spain with the exception of the Cantabrian Coast. The stronger evidence in time is

observed during summer. The model suggests that in 90% of the region there is a

significantly higher number of records compared to the stationary case, and the total

number of records in decade 2012–2021 has almost doubled compared to a stationary

situation.

The proposed modeling and complementary tools can be adapted to other

regions. The models are highly adaptable, allowing for different response variables in

spatiotemporal contexts, consideration of other geographical covariates, and excluding

or including specific spatial processes as needed. The flexible autoregression terms can

express behavior in series where serial correlation is an important source of variation.

Overall, the project provides valuable tools for understanding and addressing the effects

of climate change on the central part of the distribution as well as EHEs, quantiles,

and record-breaking events with a wide range of applications in climate studies.

5.2 Limitations, improvement opportunities and

future work

Small versus big n data. A limitation of the present analysis is the relatively

sparse spatial coverage with only 18 monitoring stations in Aragón and 40 in Spain.

This limited spatial sampling can lead to challenges in accurately characterizing spatial

surfaces in the modeling, potentially resulting in less accurate spatial predictions.

Future work in this domain could explore different regions that offer a more extensive

network of spatial monitoring locations. With a big number of spatial locations,

reduced rank approximations to GPs may be used to address the computational

bottleneck, e.g., the Gaussian predictive process (Banerjee et al., 2008) or the
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nearest-neighbour GP (Datta et al., 2016).

Fusion techniques for downscaling and climate projections. Working within

the same region, there is a growing body of literature on data fusion techniques,

particularly within the context of data assimilation with computer model output.

The proposed models for observed station data could be extended to incorporate

information from environmental computer models which provide output—rather than

real data—for grid cells at some spatial scale. Data fusion would aim to integrate

these two data sources to provide additional insights into the spatiotemporal responses

over the same region and time period to enhance spatial interpolation accuracy.

However, aligning data layers that may differ in spatial and temporal resolutions can

be challenging. In this regard, addressing this misalignment issue when downscaling

numerical model output to point-level observations becomes fundamental. For

example, a straightforward extension of the mean or quantile autoregression models

could incorporate the downscaler model by Berrocal et al. (2010) that regresses the

observed data on the numerical model output using spatially varying coefficients.

Also, there can be measurement error concerns when downscaling. To address

this, the two models proposed by Berrocal et al. (2012) could be considered: (i) a

Gaussian Markov random field smoothed downscaler, and (ii) a smoothed downscaler

with spatially varying random weights. Moreover, future research directions could

involve projecting temperature changes under different climate scenarios downscaling

atmospheric variables, encompassing both mean and multiple quantile models, as well

as forecasting spatial extents under various climate projections.

Software, model fitting, and MCMC. The spatiotemporal models proposed

provide extensive opportunities for full inference, although their proper implementation

might require expertise in multi-level stochastic modeling. The development of the

MCMC algorithms necessary to fit these models can be complicated and specific. There

are currently numerous tools available for fitting Bayesian models, specific R packages

like spBayes (Finley et al., 2015; Finley & Banerjee, 2020) or spTimer (Bakar &

Sahu, 2015), and probabilistic programming languages like JAGS (Plummer, 2003) or

Stan (Carpenter et al., 2017). The proposed models cannot be fitted using these tools,

in the former case because the models they provide are highly specific, and in the latter

case due to the high computational cost. The R package spTReg is under development

and aims an easy and general implementation of the mean and quantile models. The

development of user-friendly statistical tools and software packages for these models

will greatly benefit the broader scientific community. Simplifying the implementation

295



of these models would enable researchers with varying levels of statistical expertise to

contribute to this important field.

Joint QAR. It is important to note that covariates have not been introduced into

the joint QAR modeling in order to achieve simple conditions for non-crossing of

quantiles. In order to consider coherent implementation of covariates, conditions have

to be imposed on the support for the covariates. Current work is in progress to bridge

our modeling with the work of Yang and Tokdar (2017). The univariate QAR with

covariates case could be addressed considering a suitable bounded prior guess in their

so-called constraint-free parameterization. The spatial version could build upon the

Chen and Tokdar (2021) modeling work with dependent quantile levels, but including

spatially varying quantiles is in progress.

An obvious critique of the linear QARmodel comes from the observation that, when

the QAR slope coefficient depends upon τ , there must be a subregion of the support

of Yt for which the ordering of quantiles is reversed. Thus, the linear in lagged Yt’s

formulation must be regarded as a useful local approximation over a bounded support.

One remedy for this assumption will be to resort to nonlinear expressions of the QAR

model. For example, Chen et al. (2009) explore one approach to models of this type

based on copula specifications, and Xu and Reich (2023) offer a nonlinear QR that

expands the pdf in I-spline basis functions where the covariate-dependent coefficients

are modeled using neural networks. Greater flexibility comes at a price, the nonlinear

specification loses the nice linear interpretation of the lags or covariate effects.

Record-breaking analysis. Numerous opportunities have emerged in the analysis

of record-breaking events. For example, a typical approach in change-point analysis

is to execute the statistical investigation based on a fixed sample size. Alternatively,

Chu et al. (1996) developed a sequential test procedure for linear regression models.

Current joint work with Lajos Horváth from University of Utah consists of extending

their monitoring scheme in the context of record occurrences.

A different direction consists on the exploration of δ-records (Gouet et al., 2020),

pooling information with values that are close from the record should improve

prediction accuracy and give a better picture of climate change. The main idea consists

of introducing a multinomial probit or logit model for three categories: records, values

that are −δ units below the record, and all other values. Another interesting question

arising in the analysis of records is the joint evolution of upper and lower records.

Similar models that take into account upper and lower records in daily maximum

and minimum temperatures, which will lead to a bivariate multinomial probit or logit

296



model, are under consideration.

In a similar direction, more research to study the relation between records and the

atmospheric situation expressed by air temperature at different geopotential levels is of

interest, and also with teleconnection patterns to find plausible physical mechanisms.

Again, models including atmospheric variables as covariates would be also useful as

statistical downscaling models, and they could be used to obtain future projections of

the behavior of records under different climate scenarios.

5.3 Concluding remark

In conclusion, this Thesis delved into the intricate relationship between climate change

and extreme temperature events. The project developed various statistical models

and methodologies to decipher the changing landscape of these events over time and

space. The findings underscore the impact of climate change on temperature trends,

highlighting the need for comprehensive strategies to address its repercussions on

public health, agriculture, and the economy. Furthermore, this project has contributed

valuable insights into the analysis of extreme events and the development of innovative

statistical tools for their assessment. The hierarchical modeling approach fitted within

a Bayesian framework offering a fully model-based perspective has proven key in

achieving these research objectives. Also, simpler statistical tools accessible to climate

scientists and practitioners may become popular as climate change continues to have

a significant impact on humanity. As I conclude this chapter, I emphasize the urgency

of continued research in this critical field to better understand, adapt to, and mitigate

the effects of climate change on our world.
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Conclusiones y trabajo futuro

Este caṕıtulo proporcionará un resumen final del proyecto resumiendo las principales

contribuciones metodológicas y hallazgos de la investigación en relación a los objetivos

iniciales. También abordará la importancia de las contribuciones y sus limitaciones y

sugerirá posibles v́ıas para futuras investigaciones.

5.1 Resumen e implicación de las contribuciones

Este proyecto tuvo como objetivo desarrollar una metodoloǵıa estad́ıstica

espaciotemporal para analizar eventos de temperatura extrema, centrándose en eventos

de calor extremo (EHEs, por su acrónimo en inglés), cuantiles altos y eventos récord en

Aragón y España. Los objetivos inclúıan evaluar cambios en la duración y frecuencia

de los EHEs, caracterizar el comportamiento de la distribución, comparar tendencias a

largo plazo entre la media y los cuantiles altos, estudiar las ocurrencias de récord frente

al comportamiento estacionario y cuantificar tendencias en el tiempo y el espacio.

Contribuciones a la geoestad́ıstica bayesiana. Reconociendo que el cambio

climático con respecto a la temperatura está ocurriendo tanto temporal como

espacialmente, la contribución al marco geoestad́ıstico bayesiano “básico” ha incluido

un modelo muy rico de medias espacio-tiempo para las temperaturas máximas diarias.

La especificación es continua en el espacio y autorregresiva en el tiempo. Con dos escalas

de tiempo, la autorregresión se examinó anualmente y también diariamente para la

temporada de verano de cada año. Se han encontrado nuevas estructuras espaciales

que incluyen interceptos y coeficientes de tendencia que vaŕıan espacialmente, aśı como

coeficientes autorregresivos y varianzas que vaŕıan espacialmente.

Para evaluar los cambios espaciotemporales se han utilizado muestras predictivas

a posteriori de series temporales de temperatura diaria en una resolución de malla

bastante fina generadas a partir de elecciones particulares de modelos bayesianos

espacio-tiempo. Se han analizado eventos de exceso para valores de referencia locales

de la distribución de temperatura. Se han ofrecido dos ideas básicas: superficies de
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probabilidad que capturan la variación espacial en la probabilidad de un evento de

exceso y proporcionan mapas de riesgo climático; y extensiones espaciales que, para

una subregión de interés, capturan la proporción esperada de incidencia de un evento

de exceso dado en la región. Para una región espećıfica, para un d́ıa dado, la definición

de extensión espacial toma la forma de un promedio por bloques sobre la región. Se

trata de un promedio de variables indicadoras que identifican la superación de un valor

de referencia local por parte de la temperatura máxima diaria para el d́ıa en cada

ubicación dentro de la región. Se ha demostrado que las extensiones se pueden calcular

mediante la integración de Monte Carlo y se pueden obtener realizaciones a partir de

modelos espacio-tiempo para las temperaturas máximas diarias.

Los eventos de exceso se han definido en términos de un valor promedio local o

incrementos entre dos décadas. Además, dado que las nociones sobre la extensión

espacial de EHEs solo se han considerado de manera informal y descriptiva en la

comunidad climática, se ha introducido una definición probabiĺıstica formal para las

extensiones de EHEs. Estas cantidades se definen a escala diaria y se pueden promediar

a cualquier otra escala temporal de interés. La comparación de la evolución de la

temperatura se ha presentado a escala diaria y estacional, tanto temporalmente entre

décadas como espacialmente entre subregiones.

Contribuciones a la regresión cuant́ılica. Las contribuciones a la regresión

cuant́ılica (QR, por su acrónimo en inglés) incluyen un enfoque de modelización para

predecir un cuantil espećıfico en un marco espaciotemporal. Se ha especificado un

modelo autorregresivo condicional espacial a escala diaria utilizando la distribución

asimétrica de Laplace (AL) para los errores. La especificación considerada permite

la autorregresión espacial a escala diaria que captura la correlación serial y facilita la

evaluación de la persistencia. La flexibilidad del modelo se incrementa al considerar dos

escalas de tiempo, aśı como comportamiento estacional, tendencia temporal y cuatro

procesos gaussianos (GPs, por su acrónimo en inglés) que representan la dependencia

espacial del intercepto, la tendencia, la dependencia serial y la escala de los errores

AL. El ajuste del modelo bayesiano permite una inferencia completa a posteriori para

un cuantil dado. Aunque el modelo proporciona cuantiles condicionales, se ha ofrecido

una aproximación atractiva para obtener cuantiles marginales a escala diaria. Estos

cuantiles marginales permiten la interpolación. El enfoque también puede proporcionar

cuantiles marginales asociados con promedios de la variable respuesta, tanto espacial

como dinámicamente. La inferencia a posteriori para evaluar los cambios entre cuantiles

marginales de promedios espaciales y temporales también se puede implementar.

Posteriormente, se ha presentado y consecuentemente ampliado la modelización de
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autorregresión de cuantiles (QAR, por su acrónimo en inglés) conjunta (sin cruce de

cuantiles). En particular, se ha caracterizado el caso QAR(1) de manera que permita

una estructura de autorregresión más flexible que la que se presenta en el trabajo

fundacional de Koenker y Xiao (2006). Esto se ha extendido al caso QAR(p). Se

ha ofrecido una novedosa versión para series temporales multivariantes utilizando

una cópula gaussiana. También se ha elaborado una versión espacial, utilizando un

proceso de cópula gaussiana basada en un GP junto con cuatro GPs adicionales. Este

modelo permite funciones de cuantiles que vaŕıan espacialmente. La modelización es

completamente paramétrica mediante el uso de las distribuciones de Kumaraswamy.

Contribuciones al análisis de récords. Este proyecto ha propuesto varios

test estad́ısticos basados en la verosimilitud de los indicadores de récord y

herramientas gráficas complementarias para detectar la existencia de comportamientos

no estacionarios en la ocurrencia de récords. También ha propuesto tres novedosos

test de detección de un punto de cambio cuyo estad́ıstico del tipo CUSUM se basa en

los indicadores de récord. Los test de récord utilizan las propiedades de la ocurrencia

de récords en series continuas independientes e idénticamente distribuidas (c.i.i.d.), lo

que los hace libres de distribución. Esto es, la hipótesis nula sobre las probabilidades

de récord es H0 : pt = 1/t. También se han considerado estad́ısticos para tratar con

series estacionales. Los p-valores se obtienen a través de la distribución exacta, la

distribución asintótica, simulaciones Monte Carlo y permutaciones. A pesar de contar

con una cantidad muy limitada de información muestral en comparación con el total de

la serie, las simulaciones Monte Carlo han demostrado que los test de récord propuestos

son potentes para detectar desviaciones de la hipótesis nula y que los test de punto de

cambio devuelven una estimación del punto de cambio sesgada. La estimación del punto

de cambio debe interpretarse como el tiempo desde el cual una tendencia subyacente

ha estado afectando las ocurrencias de récords observados.

Una contribución importante es el paquete de R RecordTest. Hasta donde tengo

conocimiento, este es el único paquete de software disponible para el análisis de

eventos récord. Proporciona un marco general útil para un análisis completamente

no paramétrico del comportamiento no estacionario en los extremos y en los récords

en particular. El paquete ofrece funciones que abarcan todos los pasos en este tipo de

análisis. Esto incluye funciones para preparar los datos, identificar las variables que

caracterizan la ocurrencia de récords e implementar herramientas gráficas para análisis

exploratorio. La funcionalidad principal del paquete es la implementación de todos los

test actualmente disponibles en la literatura para detectar la no estacionariedad basada

en récords, junto con herramientas gráficas complementarias.
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Finalmente, este proyecto ha abordado el primer intento de modelización

completamente desarrollado para analizar la incidencia de temperaturas récord. La

modelización necesaria para explicar de manera efectiva la incidencia de récords en esta

región durante este peŕıodo requeŕıa una especificación cuidadosa de las probabilidades

de las funciones indicadoras que definen secuencias de récords. Las caracteŕısticas

clave han incluido: comportamiento de tendencia expĺıcito, autorregresión necesaria,

significación de la distancia a la costa, interacciones útiles, efectos aleatorios espaciales

y efectos aleatorios diarios muy fuertes.

Contribuciones al análisis de cambio climático en Aragón y España. Las

contribuciones mencionadas fueron motivadas a través de series temporales que abarcan

más de 60 años de temperaturas diarias de 18 y 40 sitios en Aragón y España,

respectivamente. Algunos resultados interesantes incluyen un incremento global de

las temperaturas de verano en Aragón en el peŕıodo 1956–2015 de 0,21◦C/década

en la media y aproximadamente 0,10◦C/década en los cuantiles altos. Sin embargo,

los patrones espaciales de estas tendencias vaŕıan considerablemente a través de los

cuantiles a distintos niveles. Se observa un claro aumento en la extensión de los EHEs

a lo largo del tiempo. Por ejemplo, la probabilidad a posteriori de que la extensión

promedio anual durante los meses de verano en la década 2006–2015 sea mayor que en

1966–1975 es superior a 0,8. Además, el primer d́ıa del verano en el que la extensión de

los EHEs es superior al 10% ha disminuido alrededor de siete d́ıas. En otra dirección,

el modelo QAR conjunto ha permitido capturar la estructura de autorregresión en los

datos diarios de temperatura, que no es estrictamente creciente en τ , sino que disminuye

en ambas colas.

Los test de récord han encontrado evidencias significativas del efecto de una

tendencia creciente en la ocurrencia de eventos que baten récords en la temperatura

máxima diaria en la mayor parte de España, con la excepción de la costa cantábrica. Las

evidencias más sólidas en términos temporales se observan durante verano. El modelo

sugiere que en el 90% de la región hay un número significativamente mayor de récords

en comparación con la situación estacionaria, y el número total de récords en la década

2012–2021 casi se ha duplicado en comparación con una situación estacionaria.

La modelización propuesta y las herramientas complementarias pueden adaptarse

a otras regiones. Los modelos son altamente adaptables, lo que permite diferentes

variables de respuesta en contextos espaciotemporales, consideración de covariables

geográficas adicionales y la inclusión o exclusión de procesos espaciales espećıficos según

sea necesario. Los flexibles términos autorregresivos pueden expresar el comportamiento

en series donde la correlación serial es una fuente importante de variación. En general, el
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proyecto proporciona herramientas valiosas para comprender y abordar los efectos del

cambio climático en la parte central de la distribución, aśı como en los EHEs, cuantiles

y eventos récord, con una amplia gama de aplicaciones en estudios climáticos.

5.2 Limitaciones, oportunidades de mejora y

trabajo futuro

Datos con n grande frente a pequeño. Una limitación del análisis actual es

la cobertura espacial relativamente escasa, con solo 18 estaciones de monitorización

en Aragón y 40 en España. Este muestreo espacial limitado puede plantear desaf́ıos

para caracterizar con precisión las superficies espaciales en la modelización, lo que

posiblemente resulte en predicciones espaciales menos precisas. Trabajos futuros en

este ámbito podŕıan explorar diferentes regiones que ofrezcan una red más extensa de

ubicaciones de monitorización espacial. Con un gran número de ubicaciones espaciales,

las aproximaciones para reducir el rango de los GPs pueden utilizarse para abordar el

cuello de botella computacional, e.g., el proceso predictivo gaussiano (Banerjee et al.,

2008) o el GP del vecino más cercano (Datta et al., 2016).

Técnicas de fusión para reducción de escala y proyecciones climáticas.

Trabajando dentro de la misma región, hay un creciente cuerpo de literatura sobre

técnicas de fusión de datos, especialmente en el contexto de la asimilación de datos con

salidas de modelos por ordenador. Los modelos propuestos para los datos observados

de las estaciones podŕıan ampliarse para incorporar información de los modelos por

ordenador medioambientales que proporcionan salidas—en lugar de datos reales—para

las celdas de una malla a alguna escala espacial. La fusión de datos tendŕıa como

objetivo integrar estas dos fuentes de datos para proporcionar información adicional

sobre las respuestas espaciotemporales en la misma región y peŕıodo de tiempo, con el

fin de mejorar la precisión de la interpolación espacial. Sin embargo, alinear capas de

datos que pueden diferir en resoluciones espaciales y temporales puede ser un desaf́ıo.

En este sentido, abordar este problema de desalineación al reducir la escala de las

salidas de modelos numéricos a observaciones a nivel de puntos se vuelve fundamental.

Por ejemplo, una extensión sencilla de los modelos autorregresivos de medias o cuantiles

podŕıa incorporar el modelo de reducción de escala propuesto por Berrocal et al.

(2010), que ajusta los datos observados a las salidas de modelos numéricos utilizando

coeficientes que vaŕıan espacialmente. Además, puede haber preocupaciones sobre

errores de medición al reducir la escala. Para abordar esto, se podŕıan considerar los dos

modelos propuestos por Berrocal et al. (2012): (i) un modelo de reducción de escala
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suavizado basado en un campo aleatorio de Markov gaussiano, y (ii) un modelo de

reducción de escala suavizado con pesos aleatorios que vaŕıan espacialmente. Además,

las futuras direcciones de investigación podŕıan involucrar la proyección de cambios

de temperatura bajo diferentes escenarios climáticos, reduciendo la escala de variables

atmosféricas, abarcando tanto el modelo de medias como el de cuantiles múltiples, aśı

como la predicción de extensiones espaciales bajo diversas proyecciones climáticas.

Software, ajuste de modelos y MCMC. Los modelos espaciotemporales

propuestos ofrecen amplias oportunidades para una inferencia completa, aunque

su implementación adecuada podŕıa requerir experiencia en modelado estocástico

multinivel. El desarrollo de los algoritmos MCMC necesarios para ajustar estos modelos

puede resultar complicado y espećıfico. Actualmente existen numerosas herramientas

disponibles para el ajuste de modelos bayesianos, paquetes de R espećıficos como

spBayes (Finley et al., 2015; Finley & Banerjee, 2020) o spTimer (Bakar & Sahu,

2015), y lenguajes de programación probabiĺısticos como JAGS (Plummer, 2003)

o Stan (Carpenter et al., 2017). Los modelos propuestos no pueden ajustarse con

estas herramientas, en el primer caso porque los modelos que proporcionan son muy

espećıficos, y en el segundo caso por el alto coste computacional. El paquete de R

spTReg está en desarrollo y tiene como objetivo una implementación fácil y general

de los modelos de media y cuantiles. El desarrollo de herramientas estad́ısticas y

paquetes de software fáciles de usar para estos modelos beneficiará en gran medida

a la comunidad cient́ıfica en general. Simplificar la implementación de estos modelos

permitiŕıa a los investigadores con diversos niveles de experiencia estad́ıstica contribuir

a este importante campo.

QAR conjunta. Es importante notar que no se han introducido covariables en

la modelización QAR conjunta para lograr condiciones simples que eviten el cruce

de cuantiles. Para considerar una implementación coherente de covariables, deben

imponerse condiciones en el soporte de las covariables. Actualmente, se está trabajando

en la integración de nuestro modelo con el trabajo de Yang y Tokdar (2017). El caso

QAR univariante con covariables podŕıa abordarse considerando una a priori acotada

adecuada en su denominada parametrización sin restricciones. La versión espacial

podŕıa basarse en el trabajo de modelización de Chen y Tokdar (2021) con niveles

de cuantiles dependientes, pero la inclusión de cuantiles que vaŕıan espacialmente está

en proceso.

Una cŕıtica evidente del modelo lineal de QAR viene de la observación de que,

cuando el coeficiente de pendiente QAR depende de τ , debe existir una subregión en el

304



soporte de Yt en la que se invierte el orden de los cuantiles. Por lo tanto, la formulación

lineal en los retardos de Yt debe considerarse como una útil aproximación local sobre

un soporte acotado. Un remedio para esta suposición seŕıa recurrir a expresiones no

lineales del modelo QAR. Por ejemplo, Chen et al. (2009) exploran un enfoque de

modelos de este tipo basados en especificaciones de cópulas, y Xu y Reich (2023)

ofrecen una QR no lineal que expande la función de densidad de probabilidad (pdf, por

su acrónimo en inglés) en funciones de base I-spline donde los coeficientes dependientes

de covariables se modelan mediante redes neuronales. Mayor flexibilidad tiene un precio,

la especificación no lineal pierde la agradable interpretación lineal de los retardos o los

efectos de las covariables.

Análisis de récords. Han surgido numerosas oportunidades en el análisis de eventos

récord. Por ejemplo, un enfoque t́ıpico en el análisis de puntos de cambio es llevar a cabo

la investigación estad́ıstica basada en un tamaño de muestra fijo. Alternativamente,

Chu et al. (1996) desarrollaron un procedimiento de prueba secuencial para modelos

de regresión lineal. El trabajo conjunto actual con Lajos Horváth de la University of

Utah consiste en extender su esquema de monitoreo en el contexto de ocurrencias de

récord.

Una dirección diferente consiste en la exploración de δ-récords (Gouet et al., 2020),

donde la combinación de información con valores cercanos al récord debeŕıa mejorar

la precisión de la predicción y ofrecer una mejor visión del cambio climático. La

idea principal consiste en introducir un modelo probit o logit multinomial para tres

categoŕıas: récords, valores que están −δ unidades por debajo del récord y todos los

demás valores. Otra pregunta interesante que surge en el análisis de los récords es la

evolución conjunta de los récords superiores e inferiores. Se están considerando modelos

similares que tienen en cuenta los récords superiores e inferiores en las temperaturas

máximas y mı́nimas diarias, lo que llevará a un modelo probit o logit multinomial

bivariante.

En una dirección similar, se necesita más investigación para estudiar la relación

entre los récords y la situación atmosférica expresada por la temperatura del aire

a diferentes niveles geo-potenciales, aśı como con patrones de teleconexión para

encontrar mecanismos f́ısicos plausibles. Una vez más, los modelos que incluyen

variables atmosféricas como covariables también seŕıan útiles como modelos estad́ısticos

de reducción de la escala, y podŕıan utilizarse para obtener proyecciones futuras del

comportamiento de los récords bajo diferentes escenarios climáticos.
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5.3 Observación final

En conclusión, esta Tesis profundizó en la intrincada relación entre el cambio climático

y los eventos de temperatura extrema. El proyecto desarrolló varios modelos y

metodoloǵıas estad́ısticas para descifrar el cambiante panorama de estos eventos a lo

largo del tiempo y el espacio. Los hallazgos subrayan el impacto del cambio climático en

las tendencias de temperatura, destacando la necesidad de estrategias integrales para

abordar sus repercusiones en la salud pública, la agricultura y la economı́a. Además,

este proyecto ha aportado valiosas ideas en el análisis de eventos extremos y en el

desarrollo de herramientas estad́ısticas innovadoras para su evaluación. El enfoque de

modelización jerárquico dentro de un marco bayesiano, que ofrece una perspectiva

totalmente basada en modelos, ha demostrado ser fundamental para alcanzar estos

objetivos de investigación. Además, herramientas estad́ısticas más simples, accesibles

para cient́ıficos y profesionales del clima, pueden volverse populares a medida que

el cambio climático continúa teniendo un impacto significativo en la humanidad. Al

concluir este caṕıtulo, enfatizo la urgencia de seguir investigando en este campo cŕıtico

para comprender, adaptarse y mitigar los efectos del cambio climático en nuestro

mundo.
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Garćıa-Gil, A., & Edo-Romero, V. (2019). Assessment of the role of snowmelt

310

https://doi.org/10.1201/b16018
https://doi.org/10.1201/b16018
https://doi.org/10.1088/1742-5468/abb4dc
https://doi.org/10.1088/1742-5468/abb4dc
https://doi.org/10.1214/06-BA105
https://doi.org/10.1214/06-BA105
https://doi.org/10.1002/wics.1537
https://doi.org/10.1002/wics.1537
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.1146/annurev-economics-063016-103651
https://doi.org/10.2307/1913643
https://doi.org/10.1198/016214506000000672
https://doi.org/10.1198/016214506000000672
https://doi.org/10.1007/978-1-4612-0173-1
https://doi.org/10.1007/978-1-4612-0173-1
https://doi.org/10.1007/s10113-018-1290-1
https://doi.org/10.1214/12-BA708
https://doi.org/10.1214/12-BA708
https://doi.org/10.1016/j.jhydrol.2022.128025
https://doi.org/10.1016/j.jhydrol.2022.128025
https://doi.org/10.3390/w12040997
https://doi.org/10.3390/w10040465


in a flood event in a gauged catchment. Water, 11 (3), 506. https://doi.org/10.
3390/w11030506

Mateo-Lázaro, J., Sánchez-Navarro, J. Á., Garćıa-Gil, A., Edo-Romero, V., &
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