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Resumen

La estimación de profundidad a partir de una sola vista se refiere a la capacidad de

obtener información tridimensional por pı́xel a partir de una imagen RGB bidimensional.

La profundidad a partir de una sola vista tiene gran relevancia en una amplia gama de

aplicaciones en campos como la realidad aumentada, la realidad virtual, la robótica, la

medicina o la conducción autónoma. Desde un punto de vista geométrico, la reconstrucción

3D a partir de una imagen es un problema mal condicionado, porque existen múltiples

soluciones de profundidad que explican una imagen 2D. Recientemente, las redes neuronales

profundas han demostrado ser muy eficaces para aprender los patrones de apariencia visual

que corresponden con ciertas estructuras 3D. Sin embargo, la mayorı́a de los métodos son

deterministas y no estiman la incertidumbre asociada a sus predicciones. Esto puede tener

consecuencias desastrosas cuando se aplica a campos como la conducción autónoma o la

robótica médica. En esta tesis hemos abordado este problema cuantificando la incertidumbre

de la profundidad de una sola vista para redes neuronales profundas bayesianas.

La estimación de la profundidad en una sola vista puede ser muy eficaz cuando se

dispone de suficientes datos de profundidad anotados para el entrenamiento supervisado. Sin

embargo, existen escenarios, por ejemplo nuestra aplicación con imágenes endoscópicas,

en los que no es posible obtener dichos datos. La estimación de profundidad a partir de

imágenes endoscópicas es un requisito para una amplia gama de tecnologı́as de asistencia

al personal médico basadas en IA, como la localización y medición precisas de tumores

o la identificación de zonas no inspeccionadas. En esta tesis, presentamos un método

que facilita la transición de los métodos entrenados en datos sintéticos al dominio real

teniendo en cuenta las incertidumbres asociadas. En concreto, introducimos una arquitectura

maestro-estudiante (teacher-student en inglés) consciente de la incertidumbre que se entrena

de forma autosupervisada, teniendo en cuenta la incertidumbre del maestro entrenado en un

conjunto de datos sintéticos.

Finalmente, en algunos dispositivos médicos como los endoscopios, la cámara y las

fuentes de luz están rı́gidamente unidas y situadas a una pequeña distancia de las superficies

a explorar. Como última contribución de esta tesis doctoral, modelamos el hecho de que

para cualquier albedo y superficie dados, el brillo del pı́xel es inversamente proporcional al

cuadrado de la distancia a la superficie y proponemos el uso de la iluminación como una

potente señal de autosupervisión de una sola vista para redes neuronales profundas.
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Abstract

Single-view depth estimation refers to the ability to derive three-dimensional information

per pixel from a single two-dimensional RGB image. Estimating depth from a single image

is required in a wide range of applications in fields such as augmented reality, virtual reality,

robotics, medicine or autonomous driving.

Single-view depth estimation is an ill-posed problem because there are multiple depth

solutions that explain 3D geometry from a single view. While deep neural networks have

been shown to be effective at capturing depth from a single view, the majority of current

methodologies are deterministic in nature. Accounting for uncertainty in the predictions can

avoid disastrous consequences when applied to fields such as autonomous driving or medical

robotics. We have addressed this problem by quantifying the uncertainty of supervised

single-view depth for Bayesian deep neural networks. When there is enough ground truth

depth data for supervised training, single-view depth estimation can be remarkably effective.

There are scenarios, especially in medicine in the case of endoscopic images, where such

annotated data is not available. Nevertheless, the estimation of depth information from

endoscopic images is a prerequisite for a wide range of AI-based technologies, such as

the accurate localisation and measurement of tumours or the identification of non-inspected

areas.

To alleviate the lack of data, we present a method that improves the transition from

synthetic to real domain methods. We introduce an uncertainty-aware teacher-student

architecture that is trained in a self-supervised manner, taking into account the teacher

uncertainty trained on a synthetic dataset.

Given the vast amount of unannotated data and the challenges associated with

capturing annotated depth in medical minimally invasive procedures, we advocate a fully

self-supervised approach that only requires RGB images and the geometric and photometric

calibration of the endoscope. In endoscopic imaging, the camera and light sources are

co-located at a small distance from the target surfaces. This setup indicates that brighter

areas of the image are nearer to the camera, while darker areas are further away. Building

on this observation, we exploit the fact that for any given albedo and surface orientation,

pixel brightness is inversely proportional to the square of the distance. We propose the use

of illumination as a strong single-view self-supervisory signal for deep neural networks.
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Chapter 1

Introduction

Vision is tremendously powerful; we as humans are able to navigate through the world and

most often it feels effortless, as our visual system has evolved through millennia to process

information seamlessly. However, even if humans generally excel at making qualitative

judgments about visual scenes, we are not so good on quantifying our perceptions. For

example, we can easily qualify an object as near or far, but when it comes to an accurate

quantitative measurement, such as estimating an object’s distance in centimetres, we might

be off by a gross margin. Looking at the more especific example in Figure 1.1, it is easy for

us to understand the rough geometry and the semantic structure of the scene. We can make

spatial sense of the space, inferring a back wall at the end of the two rows of posters, plan a

path to get there and navigate through the scene, even if it is crowded. Such understanding is

an extremely complex task, only made possible by our prior knowledge and our extraordinary

pattern recognition abilities.

Computer vision aims to emulate, and hopefully surpass, human visual perception.

In fact, computer vision’s capabilities have already begun to outpace human abilities in

specific areas [Kaufmann et al., 2023]. The field of computer vision is currently on a

growth curve never seen before. From the early days of deep learning, when convolutional

neural networks were used for image classification of some simple entities [LeCun et al.,

2015], to recent advances in visual transformers [Dosovitskiy et al., 2020] that masterfully

create features with a consistent global perspective across images or Neural Radiance

Fields [Mildenhall et al., 2020] (NERFs), the field of computer vision is experiencing an

extraordinary evolution. Even more recently, the introduction of diffusion models [Ho et al.,

2020] has started yet another revolution in generative modelling and opened up new avenues

in image synthesis and rendering.

As the capabilities of computer vision continue to expand and evolve, we expect it

to have a disruptive effect on technologies such as vision-assisted robotics or medical

image analysis. However, and despite the impressive recent advances, several computer

vision tasks remain unsolved. Specifically and among others, single-view depth estimation
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Figure 1.1: ICCV 2023 Poster Session

still presents significant challenges. Although depth can also be estimated from multiple

views, single-view depth may be relevant when only one view of the scene is available.

In addition, for deforming scenes, small camera motion or large illumination changes,

multi-view reconstruction may present significant challenges and single-view depth be a

reasonable alternative.

Single-view depth may be applied in a wide range use cases such as augmented

reality [Luo et al., 2020], computational photography [Barron et al., 2015] or medical

robotics [Kader et al., 2023]. This thesis addresses this specific topic, with particular

focus on endoscopic imaging, and our work contains several contributions and experimental

evaluations in this field with focus on self-supervision and uncertainty quantification.

1.1 Depth perception

Depth perception is a fundamental aspect of visual cognition. It refers to the ability to

perceive the 3D spatial relationships of the objects within a scene, from the sole input of

one or many 2D images. This cognitive capability is the basis for 3D reconstruction from

a single or multiple views. The importance of depth perception covers a wide range of

industries and applications.

In immersive technologies, depth perception is a must. For example, in augmented
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reality, it enables virtual objects to be placed in the real world with appropriate depth and

hence coherence with the rest of the viewed scene. In virtual reality, users can experience a

virtual environment while the device perceives the real environment and prevents collisions.

In robotics and self-driving cars, depth perception is a cornerstone to enable full autonomy.

3D reconstruction plays a crucial role in the understanding of a robot’s surroundings, as

autonomous robots should ground their behaviours on a comprehensive model of their

environment, whether navigating indoors or exploring outdoor terrain. 3D models estimated

from onboard sensor data provide robots with detailed spatial information, enabling among

others collision-free navigation, object recognition and safe interaction with the environment.

When focusing on 3D reconstruction, the task of single-view depth estimation has its

own unique challenges and importance. It is critical in scenarios where there is frequent

deformation, small baseline between frames, or the camera is frequently occluded. All these

aspects are frequent in the medical arena, that has adopted vision technologies in many

tasks. Nowadays, surgeons have the ability to visualise internal body structures in three

dimensions, which allows for more precise planning and execution of surgical procedures.

As another example, dentists also use 3D scanning to create accurate models for the design

and manufacture of dental appliances.

Recovering depth from images has been studied extensively in the computer vision

community. Multi-view, shape-from-X, and structure-from-motion are effective in

recovering the three-dimensional structure of a scene using multiple images taken from

different viewpoints. The estimation of depth from a single view is a potential complement

to the many challenging conditions that may occur in multi-view setups, like low textured

scenes, insufficient motion between views, deformations and illumination changes. While

3D reconstruction often leverages multiple views to recreate a scene or object in three

dimensions, single-view depth estimation seeks to achieve a similar goal from only one

perspective. However, it is an inherently complex problem due to its ambiguous nature.

This ambiguity arises because multiple 3D configurations can result in the same 2D

image, making it impossible from a general geometric perspective to identify the one that

produce the image. This challenge has motivated considerable research into the use of

additional cues or sophisticated algorithms to approximate depth more accurately. Despite its

complexity, mastering single-view depth estimation is critical for scenarios where multi-view

or motion-based methods are impractical or impossible, e.g., in endoscopy. As depth

estimation algorithms from single views mature in precision, they also offer potential for

integration into multi-view 3D reconstruction pipelines [Facil et al., 2017].

In this thesis, we tackle the problem of single-view depth from different perspectives,

but always in a data-driven manner and deep neural networks. Firstly, we use data-driven

methods and extract the uncertainty associated with depth maps. Secondly, we reduce the
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complexity of the problem by using illumination decline in the scenarios where the camera

and illumination are co-located.

Deep neural network developments have swiftly progressed, becoming the predominant

approach for various tasks within computer vision like semantic segmentation, classification

object detection, or depth estimation. Specifically, CNNs [LeCun et al., 2015] can identify

basic features in the early layers and more complex spatial associations in the deeper layers.

CNNs apply a composition of convolutions to the input image, extracting hierarchically

organized feature maps. The feature maps correspond to patterns in the input data such

as corners, edges, textures, and in general local or mid-level patterns in the image.

A pioneering work in the recovery of 3D from 2D images was done by Saxena et al.

[2005], who propose multi-spatial monocular clues that models the relative depths. Eigen

et al. [2014] were the first ones to demonstrate an effective use of deep learning in this

problem. They propose a supervised learning pipeline using a convolutional neural networks

with a coarse-to-fine architecture, being the input a RGB image and the target per-pixel depth

estimations. By improving the network architecture, Laina et al. [2016] proposed deeper

fully convolutional models and later Fu et al. [2018] formulated the problem from an ordinal

regression perspective in a discrete depth space.

Visual Transformers are the latest significant innovation in the field of deep learning.

Based on self-attention mechanisms, visual transformers weigh the relevance of different

image patches relative to each other. This mechanism helps to focus the attention on the

most important areas, having a global context of the image. In contrary to the fundamentals

of convolutional neural networks, visual patches are of fixed size and non-overlapping, that

help to learn recognize patterns across different patches of the image. The architecture of

transformers has been adapted to work with image patches visual transformers [Dosovitskiy

et al., 2020] and later applied to a single-view depth estimation [Ranftl et al., 2021].

Annotated depth data is very diverse depending of the captured scene (indoors or

outdoors), the nature of annotation (be it relative or absolute), and the accuracy (from

lasers, synthetic data, or Structure from Motion). Ranftl et al. [2020] proposed the

use of different source of depth using a scale and shifting invariant losses. In the

medical domain, single-view depth estimation has been extensively studied for endoscopic

purposes. Visentini-Scarzanella et al. [2017] used computed tomography renderings for

depth supervision in bronchoscopies. However, computed tomography scans in particular

and ground-truth depth annotations in general are very rare in endoscopy, which makes

self-supervision methods essential for a practical application of this technology.
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1.2 Self-supervised single-view depth

Capturing large volumes of annotated data is resource-intensive, often requires domain

expertise and specific hardware. In areas such as medical imaging, where expert

annotation is both essential and limited, the challenge is particularly pronounced. In

endoscopy, for example, the size of the endoscopes can make it challenging to obtain

such annotations. Self-supervised methods are emerging as an alternative to traditional

ground-truth supervision, especially given the vast difference between the amount of data

with and without annotations, the last one being several orders of magnitude larger.

In the field of single-view depth, seminal contributions have been made by Godard

et al. [2017]. They proposed a self-supervised learning method that enforces multi-view

photometric consistency using a left-right stereo camera. Similarly, Zhou et al. [2017]

explored the use of monocular ego-motion to enforce photometric consistency with a

monocular image, where the motion is predicted by a network. Godard et al. [2019]

introduced a pipeline for multi-scale self-supervision using monocular, stereo and combined

cameras. However, this type of supervision can introduce noise due to various factors

such as inaccuracies in camera motion estimation, perspective distortions, occlusions, and

non-Lambertian effects. In scenarios where obtaining real labeled data (or ground truth

data) is challenging or it is not possible, there has been a tendency to generate synthetic data

from simulators and apply learning techniques using synthetic data as reference. Even if the

progress of realistic simulations is notable, the issue of domain change (from simulation

to real) remains a persistent challenge. This domain change refers to the discrepancies

between synthetic data generated by simulators and real-world data, which can hinder the

performance of models trained only on simulated environments. The singularity of the

medical domain has resulted in considerable research in the transition from synthetic to

real-world scenarios. For example, the research by Shen et al. [2019] uses a conditional

GAN for depth recovery, incorporating SLAM and multiview data. Karaoglu et al. [2021]

focus on depth estimation from monocular images for broncoscopy navigation. The authors

propose a domain adaptive pipeline in two steps: training a network in synthetic labels and

use advesarial domain feature adaptation to enhance the performance on real images. In the

work of Chen et al. [2019b], a depth network is trained with synthetic images of a simple

colon model and fine-tuned with domain-randomized photo-realistic images rendered from

computed tomography scans. In this thesis, we have proposed several contributions in the

area of self-supervised learning for single-view depth. Firstly, in Chapter 3, we evaluate

how uncertainties affect the domain change scenario and propose an uncertainty aware

teacher-student architecture that mitigates the effect of domain change. Secondly, in Chapter

4, we introduce a new self-supervised learning technique that employs the information of the
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illumination decline as supervisory signal.

1.3 Single-view depth uncertainty

The aforementioned research on image-based depth detection uses deterministic deep

learning models. This means they always produce the same output for a same input without a

measure of how certain they are about the prediction. During training, a certain loss function

is minimized in order to find the set of parameters that will give the best performance in new

data. Such models do not take into account the inherent uncertainties in their predictions,

and this is relevant for their use in real-world scenarios. These uncertainties can occur due

to the distribution of the data, the lack of data or the inherent limitations of the models.

Uncertainty allows us to assess the reliability of predictions, which can be used to guide

subsequent actions, particularly in fields such as medicine and autonomous driving, where

decisions can have fatal consequences. There are two types of uncertainty that can be

considered in deep learning: aleatoric uncertainty and epistemic uncertainty [Kiureghian

and Ditlevsen, 2009]. Aleatoric uncertainty is the uncertainty of the observations, and it is

inherent to the data, i.e. it would still exist even if more data is available. This uncertainty

can be thought of as noise in the sensor . For example, in the case of single-view depth,

when RGB-D cameras are used, the camera depth sensor noise is modelled by the aleatoric

uncertainty. Aleatoric uncertainty is further subdivided into homoscedastic uncertainty, that

is independent of the inputs (constant), and heteroscedastic uncertainty that is dependent

on the inputs to the model. Epistemic uncertainty refers to the uncertainty of the model,

and consequently, Bayesian deep learning is a natural way to capture epistemic uncertainty

in neural networks. In Bayesian deep learning, the epistemic uncertainty can be obtained

using a prior distribution p(θ) over the neural network parameters θ and computing its

posterior distribution p(θ|D) given a dataset D using Bayes rule: p(θ|D) = p(D|θ)p(θ)
p(D)

.

This equation is intractable for deep learning architectures. However, there are scalable

approaches to deep learning such as MC dropout and deep ensembles. In [Kendall and

Gal, 2017], a seminal effort is made to highlight the significant types of uncertainty in deep

learning, namely aleatoric and epistemic uncertainties. Kendall and Gal [2017] combine

epistemic and aleatoric uncertainty by using a MC dropout approximation of the posterior

distribution. Modelling aleatoric uncertainty as observational noise through a network output

and epistemic uncertainty as the variations in the prediction by several forward passes.

Deep ensembles [Lakshminarayanan et al., 2017] consist of training the same architecture

multiple times, assuming different random initialisation of its parameters. Each ensemble is

considered to be trained to a local minimum. The set of ensembles are an approximation of

the model distribution.
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For single-view self-supervised learning, Poggi et al. [2020] propose to extract depth

uncertainty of depth from labels of a pretrained self-supervised network by introducing a

teacher-student architecture. It is important to note that uncertainty measures are of limited

value unless they are calibrated with the corresponding errors. In this thesis, we explore

deeply MC dropout and deep ensembles in a supervised single-view depth setting, evaluating

both their relative and absolute calibration of uncertainty.

1.4 Endoscopic single-view depth estimation

Colonoscopy and gastroscopy are among the most common procedures performed in

hospitals. During an endoscopy, a physician uses an endoscope to examine a patient. This

procedure involves navigating through the patient’s body without damaging tissues and

identifying and treating areas that represent a health risk.

Navigating environments such as the colon is a complex task that largely depends on

the expertise of the doctor and the preparation of the patient. The primary tool aiding this

procedure is the endoscope, with the camera at its tip serving as the unique sensor. This

navigation relies heavily on a doctor prior anatomical knowledge and the real-time visual

and mechanical feedback from the endoscope. Despite these aids, there remains a risk of

perforation, emphasizing the need for enhanced depth perception to assist clinicians during

navigation.

Concretely, single-view depth estimation may potentially revolutionize endoscopic

mapping and navigation. This method emphasizes creating 3D maps of the inspected areas,

allowing for a more detailed understanding of the internal environment [Aides et al., 2020].

Given the predominance of monocular cameras in endoscopic procedures, deep learning

algorithms present significant promise for advancing this technology. However, images

from endoscopic procedures often contain challenges such as liquids, specular lighting,

tissue deformations, drastic illumination changes, camera movements, and minimal parallax.

Therefore, we argue in favor of systems based on single-view depth, which do not necessitate

calculations of the camera relative position.

During screening procedures, physicians aim to identify polyps and tissue anomalies.

Assessing these findings is crucial for timely and accurate intervention [Kader et al., 2023].

In this context, single-view depth can be instrumental in measuring polyps and in assessing

areas affected by conditions like Crohn’s disease.

Furthermore, the integration of single-view depth technology can significantly enhance

robot-assisted, computer-aided interventions. By offering enhanced perception during

navigation, single-view depth will benefit both robotic and manual procedures, potentially

reducing associated risks to patients.
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1.5 Our contribution to single-view depth:

The work described in this thesis presents significant improvements in the field of

single-view depth estimation by using deep neural networks. The improvements encompass

uncertainty quantification for single-view depth, a self-supervised approach based on a

teacher-student architecture that models the teacher uncertainty, and a new single-view

self-supervision method based on illumination decline.

Previous research have shown that deep neural networks have significant potential to

make depth estimations, which gives a promising basis to further develop their usage. They

offer an appearance-based approach to the ill-posed problem of depth perception from 2D

images. In addition, deep ensembles and MC dropout have shown to be a scalable alternative

to Bayesian deep learning methods.

The first of our contributions is the identification of deep ensembles as the best calibrated

method for scalable Bayesian depth deep learning methods. We demonstrate empirically

that adding dropout in all layers of the encoder delivers better results than other variations of

MC dropout. This result is of practical relevance in the estimation of depth and uncertainty,

because MC dropout requires much less memory than deep ensembles. It is particularly

attractive for systems with limited resources due to its reduced memory requirements. As

a result, MC dropout emerges as a potentially more adaptable approach when considering

a Bayesian approach for real-world applications. We also show the application of Bayesian

depth networks in the context of 3D reconstruction by applying pseudo-RGB Depth Iterative

Closest Point (ICP), showing that relative transformation can be improved by excluding the

points with higher uncertainties.

Supervised methods outperform self-supervised methods in terms of accuracy, primarily

because the benefit from training with accurate and annotated data. There are situations

where acquiring labeled data is difficult, being an inclination to use synthetic data from

simulators as a reference for learning. However, the domain shift problem is still a challenge

because of the difference between synthetic and real images. In medical settings, especially

in procedures like colonoscopies, the challenges presented by domain change become

especially pronounced.

We pioneer the exploration of uncertainty quantification for single-view depth

specifically focusing on medical colonoscopy images, marking a novel contribution to the

existing literature. Colonoscopy images are particularly difficult as they present many

challenges. They have numerous discontinuities mainly due to partial occlusions in folds

or haustra. The lighting conditions within the colon can vary significantly depending on the

endoscope electronics, leading to frequent illumination changes. On top of that, the presence

of specular light, which results from the reflection of light off the wet surfaces inside the
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colon, adds another layer of complexity to the image interpretation. Due to this conditions,

colonoscopy images are an ideal benchmark for evaluating the effectiveness and reliability

of single-view depth estimation methods. The importance of understanding uncertainty in

this domain is crucial, as inaccurate or misleading predictions could lead to misdiagnoses

or oversight of critical medical conditions. Therefore, it is critical to have a robust system

that not only estimates depth, but also provides a measure of the uncertainty associated with

that estimation. Our main research advance is the introduction of a self-supervised method

anchored in an uncertainty-aware teacher-student architecture. Our results demonstrate that

our approach excels other types of learning in terms of depth and uncertainty quantification.

Moreover, the results show the advantages of weakly supervised learning with respect to

self-supervised learning.

Until now, single-view depth has traditionally been classified in two categories:

supervised learning, which relies on depth annotations or annotations derived from

a multi-view system; and self-supervised learning, which leverages geometric and/or

photometric consistency across multiple views. We introduce a new form of depth

supervision derived from the illumination decline principle. The main result of our work

is a unique single-view self-supervised learning method for depth estimation. This method

is applicable in dark environments, where the light source and camera are co-located. Such

conditions are prevalent in numerous real-world scenarios, including within the human body

as seen in clinical procedures which involve examining the interior of hollow organs or

cavities, underwater domains like in submarines or specific seabed regions, enclosed natural

formations such as caves, rigid enclosures often encountered during engine inspections or

examinations of other mechanical parts, and confined cylindrical spaces like pipes or other

similar structures that are typically hard to access.

For the development of this method, we grounded our research within a medical

context, specifically focusing on endoscopes including procedures like colonoscopies and

gastroscopies.

The medical field, especially when it comes to gastroscopy, is full of challenges

reminiscent of those described for colonoscopy. Gastroscopy images often show foam,

varying textures, numerous specular reflections and a variety of shapes that differ from

what we observe in other endoscopic procedures, particularly when examining regions such

as the stomach or other related areas. Despite these complexities, this environment is a

natural platform for our research. The particularity lies in endoscopic imaging, where the

imaging device is the only light source illuminating the scene. The foundation of our

approach is based on a simple yet profound observation: In endoscopic images, brighter

areas tend to be closer to the camera, while darker areas tend to be further away. This

insight differs significantly from conventional self-supervised learning paradigms. Our
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method is unique in that it requires only a single reference image during the learning

process. Our technique not only outperforms other self-supervised methods, but also rivals

depth-supervised strategies. In the scientific literature, self-supervised techniques have

always lagged far behind supervised ones, being ours the first method that is competitive with

ground truth supervision. An additional point in favour of our single-view self-supervision

is its resilience to domain changes. Specifically, a distinct advantage of our method is the

capability to refine the depth estimations on-the-fly at test time, which opens the way for

improved predictions.

In addition to predicting depth, our technique is adept at assessing the albedo of the

tissue. This advance is also significant, given the inherent value of this prediction mode.

By predicting the albedo, our method can become instrumental in detecting flat lesions and

texture variations, which are critical in identifying conditions such as Barrett’s oesophagus in

gastroscopy or Crohn’s disease indications in colonoscopy. In particular, albedo predictions

can improve the effectiveness of other machine learning systems. These diverse applications

highlight the transformative potential of our method in medical diagnostics.
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1.7 Manuscript organization

This thesis is organized as follows. In Chapter 2, we discuss about scalable Bayesian

deep neural networks for supervised learning of single-view depth and we explore the

importance of uncertainty quantification in robotics perception. In Chapter 3, we discuss

about uncertainty of deep ensembles applied to different types of learning for single-view

depth from colonoscopy images. In Chapter 4, we discuss the advantages of using a

physical-model light-camera based to introduce the first single-view self-supervised method

for depth learning. Finally, in Chapter 5, we summarize the conclusions of the thesis work.
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Chapter 2

Bayesian deep neural networks for
supervised learning of single-View depth

Understanding and quantifying uncertainty is crucial when using deep neural networks in

real-world scenarios. The aim of this chapter is to explain how uncertainty can be quantified

for deep neural networks and to evaluate the calibration of the captured uncertainty. We

distinguish between two forms of uncertainty: aleatoric and epistemic. Aleatoric uncertainty

arises from the inherent randomness or variability in the data, and represents the intrinsic

noise of the system. Epistemic uncertainty, on the other hand, arises from either insufficient

knowledge or a lack of data. However, as more data are collected and models refined,

epistemic uncertainty can be reduced or even eliminated. To investigate these uncertainties,

our approach focuses on modelling the aleatoric directly in the network and capturing the

epistemic using two scalable techniques: MC dropout and deep ensembles. With respect to

MC dropout, we explore the importance of dropout layers within the network architecture.

Deep ensembles are a form of Bayesian model averaging, and in practice they can be used

as an approximation of the full posterior.

2.1 Introduction

The quantification of the uncertainty is critical in robotics, in order to implement systems

that are robust and reliable in real-world applications. Point estimators, which dominate

the landscape of multi-view [Engel et al., 2017] and single-view [Fu et al., 2018, Godard

et al., 2019] scene reconstruction, do not typically compute the full distribution but just

the maximum-likelihood state. Higher-level decision blocks have no means to judge how

accurate these estimates are, and hence its use for safe planning might be questionable.

Uncertainty is often present in the formulation of model-based estimators (e.g., [Barfoot,

2017]), but much less in the training of deep learning models. Furthermore, learning-based

approaches tend to overfit on standard datasets, which might lead us to assume a reasonable
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Figure 2.1: Bayesian single-view depth predicton for a SceneNet image. In the middle row
the small depth error, and how the total uncertainty models it accurately. In the bottom
row how epistemic and aleatoric sources are both significant and relevant for uncertainty
quantification.

general performance while they are strongly biased. In such cases, their outputs should not

be trusted in real-world applications, for which we would need generalizable and self-aware

models. Bayesian learning is one of the approaches that can address such application

challenges. In a supervised learning approach using depth annotations, we investigate

epistemic and aleatoric uncertainties to determine the accuracy of the model’s predictions

and its suitability for use in robotic environments. In neural networks, uncertainty can

stem from the input data or the network weights. For the latter, scalable approaches to

Bayesian deep learning have shown to be effective to model uncertainty [Gustafsson et al.,

2020]. Figure 2.1 shows the output of our Bayesian framework for supervised single-view

depth learning. The small depth error is noticeable, but more importantly, the fact that

this error is mostly coherent with the predicted uncertainty. Note also how the aleatoric

uncertainty is greater in this case, but the epistemic uncertainty is still relevant for an accurate

quantification. In this chapter, we provide a unified framework and a thorough evaluation

of scalable uncertainty estimation methods, namely Monte Carlo (MC) dropout and deep

ensembles, for supervised single-view depth learning with deep convolutional networks. We

propose to apply MC dropout in the encoder, contrary to recent works [Gustafsson et al.,

2020, Poggi et al., 2020] that apply it in the decoder. We demonstrate in our evaluations

that, in the particular task of single-view depth supervised learning, the dropout in the
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encoder achieves a better performance than the dropout in the decoder. Such a result has

relevant practical implications, as MC dropout has a lower memory footprint than deep

ensembles. Finally, we also provide results in pseudo-RGBD ICP, a potential application

for our single-view depth uncertainty models. In our experiments, we demonstrate that our

uncertainty estimates are reasonably well calibrated and has significant potential to provide

accurate and scaled motion estimates from monocular views.

2.2 Background and related work

2.2.1 Structure estimation and learning from images

Reconstructing a 3D scene from visual data has been addressed from a wide variety of

perspectives, the more typical being based on multiple images either alone [Mur-Artal and

Tardós, 2017, Engel et al., 2017] or fused with other sensors (e.g., visual-inertial setups [Qin

et al., 2018]). However, multi-view and visual-inertial pipelines present two limitations: they

require sufficiently textured scenes to find correspondences, and also sufficient motion for

observability. Single-view depth estimation can help with these two issues, although it is

significantly more challenging due to its ill-posed nature.

Following the seminal work of Saxena et al. [2005] on single-view depth, Eigen et al.

[2014] were the first ones that used depth supervision to train a deep network for such

task. Many works followed with different contributions: Laina et al. [2016] proposed

deeper fully convolutional models. Fu et al. [2018] proposed a spacing-increasing depth

discretization that learns depth from an ordinal regression perspective. Dijk and de Croon

[2019] evaluated a self-trained networks to investigate which visual cues they use. From

their conclusions, depth networks favor vertical positions and disregard obstacles in their

apparent size. Similarly, we contribute to understanding the behavior of depth networks

from a Bayesian perspective.

Several works have proposed self-supervised approaches, using photometric reprojection

losses between stereo or multiple views [Godard et al., 2017, Zhou et al., 2017].

Self-supervised approaches still underperform compared to supervised ones. For this reason,

we focus on supervised methods.

2.2.2 Bayesian deep learning

Bayesian deep learning combines the strengths of deep neural architectures with the

uncertainty quantification of probabilistic (Bayesian) learning and inference methods.

Regarding uncertainty, we must differentiate between what the model does not know and

what is missing from the input data. Accordingly, the uncertainty sources can be classified
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into two: aleatoric and epistemic. Aleatoric (also referred to as statistical) uncertainty,

refers to the variations caused by the realization of different experiments with stochastic

components. In our models, it encodes the variability in the different inputs from the test data

and hence cannot be reduced by increasing the amount of training data. Some models assume

that the aleatoric uncertainty is homoscedastic; that is, it is independent of the input data. In

this chapter, we train the network to predict the uncertainty for each input datum resulting in

a heteroscedastic uncertainty model [Kendall and Gal, 2017, Der Kiureghian and Ditlevsen,

2009]. Epistemic (also known as systematic) uncertainty, represents the lack of knowledge

of a trained model. This type of uncertainty is deeply related to the training data and the

model ability to generalize. For example, epistemic uncertainty is high for out-of-distribution

data or extrapolation in regions where training data was scarce. In Bayesian deep learning,

the epistemic uncertainty can be estimated from the uncertainty in the model parameters,

assuming that the model architecture is correct. In this case, epistemic uncertainty can be

obtained using a prior distribution p(θ) over the neural network parameters θ and computing

its posterior distribution p(θ|D) given a dataset D using Bayes rule: p(θ|D) = p(D|θ)p(θ)
p(D)

.

In general, this equation is intractable for state-of-the-art deep architectures, but there are

several approaches to tackle this problem that we describe below.

Variational inference (VI).

VI proposes the use of a tractable approximation q(θ) to the posterior distribution p(θ|D).

Mean-field variational inference assumes an isotropic Gaussian distribution for q(θ) ∼
N (θ|µ, Iσ). The parameters of the approximate distribution q(θ) are optimized by

minimizing the KL-divergence between the approximate distribution and the true posterior

D(q||p). Mean-field variational inference with Gaussian approximation suffers from

the soap-bubble effect, reducing the predictive performance as most samples fall in a

ring. The Radial Bayesian Neural Networks [Farquhar et al., 2020] avoid that effect,

but the distribution is biased towards the center resulting in uncertainty underestimation.

Furthermore, VI methods are very sensitive to calibration and configuration. A

natural-gradient VI method [Osawa et al., 2019] was introduced to improve the robustness

of the optimization. However, it requires strong approximations of the Hessian, resulting in

lower performance.

Monte Carlo (MC) dropout.

MC dropout can be used to approximate the posterior distribution, as proposed by Gal and

Ghahramani [2016]. It can be considered as a specific case of VI, where the variational

distribution includes a set of binary random variables that represent the corresponding unit

to be turned off or dropped. The approximation makes the computation tractable and
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robust. MC dropout is able to approximate multimodal distributions. However, the epistemic

distribution on the weight-space only has discrete support. Kendall and Gal [2017] presented

a framework to combine both aleatoric and epistemic uncertainty, where MC dropout is

used to obtain epistemic uncertainty, while the function mapping the aleatoric uncertainty is

learned from the input data.

Deep ensembles.

Deep ensembles [Lakshminarayanan et al., 2017] involves training the same architecture

many times optimizing some MAP loss, but starting from different random initialization

of its parameters. Therefore, deep ensembles are not truly a Bayesian approach as the

samples are distributed according to the different local optima. Conversely, these models

in an ensemble perform reasonably well, even considering the small number of random

samples considered in practice, as all of the models are optimized and have a high likelihood.

Therefore, deep ensembles can be considered an approximate Bayesian model average,

although, in practice, they can also be used as a rough posterior approximation. Contrary

to MC dropout, where the model weights are shared between samples, in the case of deep

ensembles, each sample is trained independently. Therefore the number of model parameters

required grows linearly with the number of samples. Furthermore, deep ensembles also result

in a distribution with discrete support on the weight-space.

2.2.3 Bayesian deep learning in computer vision

Evaluating uncertainty correctly is still in open discussion, as it is task-related. Mukhoti

and Gal [2018] evaluated MC dropout for semantic segmentation and designed the metrics

for such case. Similarly, Gustafsson et al. [2020] designed a framework to explore

uncertainty metrics for semantic segmentation and depth completion, using MC dropout

and deep ensembles. Ilg et al. [2018] compare different strategies and techniques for

quantifying the uncertainty of optical flow. They also introduce a multi-hypothesis

network based on a winner-takes-all loss function that penalizes the best hypothesis result.

However, disentangling aleatoric and epistemic uncertainty could be an arduous task in

multi-hypothesis approaches. The network that merge all hypotheses contains its own

epistemic uncertainty that is not taking into account. Nevertheless, they show to be

competitive in comparison to deep ensemble and MC dropout. For depth estimation, Yang

et al. [2019] proposes a multinomial distribution to learn uncertainty based on discretizing

the depth space.

For our case of single-view depth regression, Poggi et al. [2020] evaluated the uncertainty

in self-supervised learning, which leverage photometric consistency between views. They
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observed that depth accuracy is improved by uncertainty estimation along the training

paradigms. This thesis complements the ones mentioned in this section by evaluating

uncertainty quantification in a supervised regression setting.

2.3 Bayesian single-view depth learning from supervised
data

MC dropout and deep ensembles provide a sample representation of the posterior distribution

over the network parameters. Here, we introduce a unified formulation to analyze the

posterior and predictive distribution for these sample representations. We have particularized

our framework for depth perception applications, although it could be extended to other

tasks.

2.3.1 Architecture and loss

We adapt a U-Net [Ronneberger et al., 2015] encoder-decoder architecture as in [Godard

et al., 2019, Poggi et al., 2020]. Our encoder is a Resnet18 [He et al., 2016] pre-trained in

ImageNet [Russakovsky et al., 2015]. Table 2.1 summarizes our decoder architecture.

Depth Decoder
layer # filters inputs activation
upconv5 256 econv5 ELU
iconv5 256 ↑upconv5, econv4 ELU
upconv4 128 iconv5 ELU
iconv4 128 ↑upconv4, econv3 ELU
depth unc4 2 iconv4 -
upconv3 64 iconv4 ELU
iconv3 64 ↑upconv4, econv3 ELU
depth unc3 2 iconv3 -
upconv2 32 iconv3 ELU
iconv2 32 ↑upconv2, econv1 ELU
depth unc2 2 iconv2 -
upconv1 16 iconv2 ELU
iconv1 16 ↑upconv1 ELU
depth unc1 2 iconv1 -

Table 2.1: Decoder architecture. Kernels are always 3 × 3 with stride 1. ↑ stands for 2 × 2
nearest-neighbor upsampling.

Our training data D = {{I1, d1}, . . . , {IN , dN}} is composed by N supervised pairs,

each pair i ∈ {1, . . . , N} containing a RGB image Ii ∈ {0, . . . , 255}w×h×3 and its ground

truth depth di ∈ Rw×h
>0 . For a single input image, the network fθ(I) outputs two channels:

per-pixel depth d̂(I) and uncertainty σd(I). The later corresponds to aleatoric uncertainty,

which can also be interpreted as heteroscedastic observation noise. We incorporate both

output channels in a single loss per image by using a standard Laplace log-likelihood

[Kendall and Gal, 2017]:
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L(θ) = 1

w · h
∑
j∈Ω

||d[j]− d̂[j]||
σd[j]

+ log σd[j] (2.1)

where j ∈ Ω is the pixel index in the image domain Ω.

For deep ensembles, the loss function is evaluated independently for each sample model

as they are trained separately, resulting in M sets of parameters {θm}Mm=1. Although the

sample models are not drawn from the posterior distribution, it still can be considered an

approximation in practice. Deep ensembles are especially suitable for our problem as we

need to maintain the number of samples small to keep it tractable. Therefore, it is important

that we are not wasting valuable resources in low probability models that might reduce

the overall performance. In the case of MC dropout, the loss function can be used for

approximate variational inference on the posterior distribution of the weights by training

with dropout after every layer. The actual Monte Carlo phase is done by also performing

random dropout at test time to sample from the variational distribution computed during

training [Kendall and Gal, 2017]. This sampling at test time results again in a set of {θm}Mm=1

different parameters. This time they are all generated from the same trained model, resulting

in a much lower memory and computational footprint compared to deep ensembles or other

variational methods.

In practice, we found that adding dropout at every layer reduced the predictive

performance considerably for our application, which is consistent with previous results

[Mukhoti and Gal, 2018]. Therefore, in section 2.4.3, we study different configurations of

dropout and compare their quality both in terms of depth error and uncertainty quantification.

2.3.2 Bayesian prediction of sample-based deep networks

The predictive distribution for a pixel depth can be computed by integrating over the model

parameters. We use the same strategy for MC dropout and deep ensembles, as they both use

sample representations of the model parameters:

p(d|I,D) =

∫
p(d|I, θ)p(θ|D)dθ

≈
M∑
m=0

p(d|I, θm)
(2.2)

As our architecture generates a Gaussian prediction for the pixel depth N (d̂, σ2
d), the

sample-based output is a mixture of Gaussians that can be approximated by a single

Gaussian. In particular, for the {θm}Mm=1 model samples (MC dropout) or models (deep

ensembles) with respective outputs d̂(m) and σd(m), we approximate the total predictive
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Figure 2.2: Variations of MC dropout in our experiments.

distribution per pixel as a Gaussian p(d|I,D) ≈ N (d̂t, σ
2
t ) with:

d̂t =
1

M

M∑
m=1

d̂m

σ2
t =

1

M

M∑
m=1

(
d̂t − d̂(m)

)2
︸ ︷︷ ︸

epistemic

+
1

M

M∑
m=1

σ2
d(m)︸ ︷︷ ︸

aleatoric

(2.3)

In the experiments section, we will show that identifying and quantifying the epistemic

from the aleatoric uncertainty will be fundamental to finding the uncertainty source and

improving the quality of the model and the predictions.

2.4 Experiments

2.4.1 Datasets

SceneNet RGB-D dataset [McCormac et al., 2016] contains photorealistic sequences of

synthetic indoor scenes from general camera trajectories, along with their ground truth. Our

models are trained over 210, 000 synthetic images of 700 scenes and tested on 90, 000 images

of 300 different scenes. We chose this dataset as it provides a wide variety of viewpoints and

scenes, challenging occlusions and different lighting conditions, which are relevant for the

network generalization.

NYU Depth V2 [Nathan Silberman and Fergus, 2012] consists of 120, 000 RGB-D

images in 464 indoor scenes. For training, we use 36, 253 images of 249 scenes as proposed

by Lapdepth [Song et al., 2021]. We test our models in the official split of 654 images [Eigen

et al., 2014].
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2.4.2 Metrics

We use the depth error metrics that are standard in literature: Absolute Relative difference:

Normalize per pixel error according to the real depth, reducing the effect of large error with

the distance Eq. 2.4, Square Relative difference: penalize larger square errors, Root mean

square error (RMSE), Root mean square error Log (RMSELog) and δ < 1.25i with i ∈
{1, 2, 3} [Eigen et al., 2014]:

AbsRel =
1

w · h
∑
j∈Ωi

|d[j]− d̂[j]|
d̂[j]

(2.4)

SqRel =
1

w · h
∑
j∈Ωi

(d[j]− d̂[j])2

d̂[j]
(2.5)

RMSE =
1

w · h
∑
j∈Ωi

(d[j]− d̂[j])2)1/2 (2.6)

RMSELog = (
1

w · h
∑
j∈Ωi

(log d[j]− log d̂[j])2)1/2 (2.7)

δ < 1.25i =
1

w · h
∑
j∈Ωi

max(
d[j]

d̂[j]
,
d̂[j]

d[j]
) < 1.25i (2.8)

For uncertainty, we use the Area Under the Calibration Error curve (AUCE) and

Area Under the Sparsification Error curve (AUSE) [Gustafsson et al., 2020]. Since our

methods output a Gaussian distribution N (d̂, σ2) per pixel, we generate prediction intervals

d̂ ± ϕ−1(p+1
2
)σ of confidence level p ∈ [0, 1] being ϕ the CDF of the standard normal

distribution. In a perfectly calibrated model, the proportion of pixels for which the prediction

intervals covers the ground truth coincides the confidence level. AUCE is an absolute

uncertainty metric, we use AUSE, in terms of RMSE, as relative measure of uncertainty.

This metric compares the ordering of the per-pixel uncertainties against the order of the

per-pixel depth errors. The ordering should be similar for a well-calibrated uncertainty, as

uncertain predictions will tend to have larger errors.

For the pseudo-RGBD Bayesian ICP in Section 2.4.4, we report the translational and

rotational RMSE.

2.4.3 Bayesian single-view depth

We evaluate several variations of MC dropout and deep ensembles. Specifically, for MC

dropout, we report depth and uncertainty metrics for dropouts at different layers and with

p = 0.3 and p = 0.5, p being the probability of an element to be zeroed.
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MC dropout.

We consider seven variations (see Figure 2.2 for a summary plot): In the decoder, dropout

after every convolutional layer, (MC Dropout Complete Decoder), the first two convolutional

layers (MC Dropout First Decoder), and the last convolution layer of the decoder (MC
Dropout Last Decoder). And, in the encoder, dropout after every convolutional layer (MC
Dropout Complete Encoder), the first convolutional layer (MC Dropout First Encoder), and

after the last convolution layer (MC Dropout Last Encoder). Finally, in NYU RGB-D v2 we

also evaluate the effect of the dropout in all layers of the architecture (MC Dropout Complete

Encoder-Complete Decoder).

Deep ensembles.

We examine uncertainty and depth by averaging an ensemble composed of a variable

number of networks. We initialise the network weights with different seeds from a normal

distribution N (0, 10−2).

Results.

Table 2.2 shows the depth and uncertainty metrics for the MC dropout variations and deep

ensembles on SceneNet RGB-D. We observe that the uncertainty metric for deep ensembles

outperforms all variants of MC dropout. This is due to the fact that deep ensembles are

optimized to be close to a minimum. However, the depth error metrics are consistently better

for MCD CEnc, which also show the second best uncertainty metrics.

The performance of the different MC dropout models varies significantly, which is a

novel result of our analysis. We found that introducing dropout in all layers of the encoder

(MCD CEnc) improves the results with respect to applying it to a few layers of the encoder

(MCD FEnc, LEnc) or to the decoder (MCD FDec, LDec and CDec). Again, this result

Model M Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253 AUSE
MCD CEnc p=0.3 64 0.1231 0.1222 0.6396 0.1982 0.8719 0.9635 0.9850 0.0985
MCD CEnc p=0.5 64 0.1243 0.1228 0.6484 0.2023 0.8675 0.9615 0.9842 0.0968
MCD FEnc p=0.3 64 0.1291 0.1326 0.6688 0.2047 0.8591 0.9591 0.9834 0.1210
MCD FEnc p=0.5 64 0.1320 0.1363 0.6633 0.2062 0.8583 0.9586 0.9833 0.1229
MCD LEnc p=0.5 64 0.1244 0.1245 0.6582 0.2010 0.8658 0.9607 0.9846 0.1219
MCD LEnc p=0.3 64 0.1244 0.1248 0.6769 0.2000 0.8629 0.9595 0.9848 0.1327
MCD CDec p=0.3 64 0.1316 0.1322 0.6781 0.2044 0.8567 0.9597 0.9841 0.1268
MCD CDec p=0.5 64 0.1369 0.1378 0.6988 0.2080 0.8494 0.9579 0.9835 0.1323
MCD FDec p=0.5 64 0.1263 0.1252 0.6690 0.2035 0.8604 0.9593 0.9841 0.1353
MCD FDec p=0.3 64 0.1264 0.1263 0.6622 0.2016 0.8641 0.9604 0.9842 0.1304
MCD LDec p=0.5 64 0.1336 0.1371 0.6866 0.2065 0.8568 0.9588 0.9833 0.1241
MCD LDec p=0.3 64 0.1293 0.1303 0.6782 0.2042 0.8589 0.9593 0.9837 0.1285
Deep ensembles 18 0.1283 0.1244 0.6529 0.1993 0.8617 0.9613 0.9850 0.0838

Table 2.2: Depth and uncertainty metrics for several variations of MC Dropout and Deep
ensembles in SceneNet RGB-Depth. Best results are boldfaced, second best ones are
underlined.
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Figure 2.3: Comparison of MC dropout variations and deep ensembles for different numbers
of forward passes M . Left: RMSE. Right: AUSE. The higher M is, the better the
performance, but with slight improvements for M > 18.

is of relevance as MC dropout is commonly applied in the decoder for depth estimation

[Gustafsson et al., 2020, Poggi et al., 2020]. Our rationale for this result is as follows: we

believe that applying MC dropout only in the decoder makes the network learn deterministic

representations (the encoder is deterministic). In contrast, applying MC dropout in the image

encoder allows us to learn probabilistic representations modeling uncertainty in the feature

space. This seems to be a more appropriate choice for Bayesian image processing.

Our experiments show that there is small variations in the MC samples when we solely

apply dropout close to the code, as done in MCD FDec or MCD Lenc. This results in

worse calibrated models and also less satisfactory depth estimations. We also observed that

applying MC dropout after the first and before the last layers of the network leads to poor

performance (see MCD LDec, MCD FEnc).

Comparing the two dropout probabilities, p = 0.3 and p = 0.5, we observe that the depth

prediction is usually better for p = 0.3 but the uncertainty is better calibrated for p = 0.5,

as it introduces greater variability. One or the other should be preferred depending on the

application.

MC dropout has a much smaller memory footprint than deep ensembles and our results

indicate that the MCD CEnc performs similarly to ensembles, so it could be relevant option in

certain applications. Specifically, only 56 Mb are required for our MC dropout models, while

the memory for deep ensembles grows linearly with the number of samples (for M = 18,

around 1 Gb). The run time grows linearly with the number of samples in both cases (around

3–4 ms per forward pass). All data stems from a NVIDIA GeForce RTX 3090 GPU.

Figure 2.3 shows the evolution of the metrics with the number of forward passes M .

We can take M = 1 as the baseline, since there is no epistemic contribution. In general,

predictions improve as M increases. However, such improvements are hardly noticeable
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(a) AUCE Deep ensembles (b) AUCE MCD CEnc p=0.5

(c) AUCE MCD CDec p = 0.3 (d) AUSE Deep ensembles M=18

(e) AUSE MCD CEnc p=0.5 M=64 (f) AUSE MCD CDec p=0.3 M=64

Figure 2.4: Calibration curves (AUCE and AUSE) for MC dropout and deep ensembles.
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for M > 18. Interestingly, for MCD CDec, the epistemic uncertainty results in a worse

uncertainty calibration in comparison to a single forward pass.

Figure 2.4 shows the calibration error curves and sparsification error curves from where

AUSE and AUCE were extracted. In these figures it can be seen that all models are

overconfident, and the similarity between the sparsification error curves that leads to similar

AUSE values.

Table 2.3 shows the metrics for depth and uncertainty on NYU Depth v2. We evaluate

three MC dropout variations: MCD CEnc, MCD CDec, and MCD CEnc-CDec. In this

dataset, deep ensembles show the best results in terms of uncertainty and depth metrics. As

in SceneNet, applying dropout in the complete encoder (MCD CEnc) shows better results

than applying it in the decoder (MCD CDec) or in the whole network (MCD CEnc-CDec).

In this last case, the worse performance is caused by a too strong regularization effect. It

is worth mentioning that the network is unable to recover the object boundaries and that

the aleatoric uncertainty becomes diffuse for the high dropout rate case p = 0.5. This effect

becomes more noticeable when the decoder contains dropout layers. Figure 2.8 shows results

for one sample image. Observe that the areas with higher error correspond with the areas

with higher uncertainty.

For all methods, increasing the number M of forward passes improves the performance

in uncertainty and depth (see Figure 2.7). We do not see a noticeable improvement, though,

for M > 18 for deep ensembles and M > 32 for MC dropout.

Aleatoric uncertainty appears mainly in depth discontinuities, at object edges, and

regions with sharp contrast in lighting (see Figure 2.5). As additional examples, Figure 2.6

shows highly uncertain depth predictions for three out-of-distribution images. It indicates

high uncertainty values for unfamiliar objects not seen during training, like the dog and the

door in the background of the first picture, the unrealistic patterns of the painting “Bedroom

in Arles” by Van Gogh in the second one, and the person in the third one.

Model Abs Rel Sq Rel RMSE RMSE Log δ1 δ2 δ3 AUCE AUSE
Deep Ensembles 0.1431 0.1052 0.5842 0.1973 0.8157 0.9596 0.9894 0.1302 0.1588

MCD CENC-CDEC p=0.3 0.1560 0.1250 0.6332 0.2155 0.7867 0.9454 0.9849 0.1453 0.1703
MCD CDec p=0.3 0.1574 0.1286 0.6307 0.2160 0.7850 0.9460 0.9851 0.1382 0.1770
MCD CEnc p=0.3 0.1495 0.1173 0.6180 0.2090 0.8006 0.9491 0.9858 0.1436 0.1653

MCD CENC-CDEC p=0.5 0.1642 0.1385 0.6592 0.2264 0.7671 0.9385 0.9824 0.1356 0.1668
MCD CEnc p=0.5 0.1525 0.1220 0.6239 0.2127 0.7942 0.9467 0.9848 0.1377 0.1720
MCD CDec p=0.5 0.1578 0.1291 0.6326 0.2164 0.7861 0.9457 0.9843 0.1286 0.1716

Table 2.3: Depth and uncertainty metrics for several variations of MC Dropout and Deep
ensembles in NYU Depth V2. Best results are boldfaced, second best ones are underlined.
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Figure 2.5: Depth and uncertainty predictions in a SceneNet RBG-D image.

Figure 2.6: Predictions for three out-of-distribution images, showing high uncertainty for
unfamiliar objects and textures. Top row: the aleatoric uncertainty is large in depth
discontinuities and object boundaries, and the epistemic one concentrates in unknown
patterns (the dog and the door). Middle row: aleatoric and epistemic uncertainties are both
large due to large differences in appearance with respect to the training data. Bottom row:
prediction in NYU Depth V2 image by an ensemble trained in SceneNet. The uncertainty is
only very high for the human, not present in the training data.
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Figure 2.7: Comparison of MCD CDec, CEnc and Deep ensembles for forward passes M .
Up: RMSE. Center: AUSE. Down: AUCE. The higher M is, the better the performance, but
with slight improvements for M > 18.
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Figure 2.8: Depth and uncertainty results in NYU Depth v2 for MC dropout variations and
deep ensembles. Top Row: input image and ground truth depth. First column: predicted
depth. Second column: predicted uncertainty. Third column: depth error. Colors are
equalized per image for better visualization.
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2.4.4 Bayesian pseudo-RGBD ICP

In this section, we evaluate the application of Bayesian depth neural networks for two-view

relative motion. Relative motion can be directly computed from deep neural networks where

the inductive bias can be used to estimate absolute values even for uncalibrated cameras and

blurry or poorly illuminated images. But geometric methods are more precise in a multi-view

setting with a known baseline for scale disambiguation and sensible features can be tracked

between multiple views [Zhou et al., 2020b]. In this work, we present a mixed approach

where we use a two-view geometric method (ICP) to accurately compute the relative motion

based on the depth prediction from neural networks. Thus, our approach is able to work with

poor quality images and provide an unambiguous 3D transformation.

Our proposal leverages the depth predicted by a network to augment monocular images

into what we call pseudo-RGBD views, and then aligns them using Iterative Closest

Point (ICP). Similar ideas were proposed recently by Tiwari et al. [2020] and Luo et al.

[2020]. Differently from us, they rely on Structure from Motion [Schonberger and Frahm,

2016] or visual SLAM [Mur-Artal and Tardós, 2017] to estimate the motion from the

pseudo-RGBD views. Also, we use depth uncertainty for a more informed point cloud

alignment, specifically excluding highly uncertain points from ICP.

Percentile .30 .50 .75 .90 .95 .99 1.00
RMSE t [m] 0.238 0.216 0.188 0.182 0.179 0.190 0.190
RMSE r [◦] 1.992 1.911 1.936 1.847 1.888 1.912 1.891

Table 2.4: ICP errors for percentiles .30, .50, .75, .90, .95, .99, 1.00. Best are boldfaced,
second best underlined.

Our experimental setup is as follows. We selected 1408 random image pairs, separated

by at least 4 frames, from SceneNet RGB-D. We excluded pairs with large areas without

ground-truth depth (e.g., windows) and small overlap (rotations larger than 60◦). We kept

the image pairs for which there is sufficient evidence that ICP converged.

For each pair, we back-projected the estimated depth distributions into a point clouds

and applied ICP to the following percentiles of the most certain points according to our

estimation: .30, .50, .75, .90, .95, .99, and 1.00 (the percentile 1.00 corresponds to the

full point clouds). We used our deep ensemble model, as it showed the best uncertainty

calibration in Table 2.2.

Figure 2.9 illustrates our hypothesis with an example. The left point cloud is the original

one, and the right one corresponds to the percentile .90. The points highlighted in red

represent the 10% most uncertain points according to our uncertainty estimation, and clearly

correspond to highly erroneous ones, as they lie on depth discontinuities. Removing such

points from ICP will improve its accuracy.
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Figure 2.9: Left: Single-view reconstruction. Right: Same reconstruction, with the 10%
most uncertain points plotted in red. These points corresponds to spurious or high error
points that will degrade the performance of ICP.

Table 2.4 shows the translational and rotational errors for all evaluated pairs. As

motivated before, removing the most uncertain points (corresponding in well calibrated

models to the most errouneous ones) reduces the estimation errors. The best results are for

percentiles .90 and .95 (1.00 corresponds to the original point cloud). When the percentage

of points removed is higher the error grows. This effect becomes obvious for percentiles .30

and .50, for which 70% and 50% of the points with the highest uncertainty were removed

respectively. In these cases, the number of points removed is too large and the estimation

becomes less accurate.

2.5 Conclusions

In this chapter, we evaluated MC dropout and deep ensembles as scalable Bayesian

approaches to uncertainty quantification for single-view supervised depth learning.

We demonstrate empirically that using MC dropout in the encoder outperforms other

variations used in the literature, which is a result of practical relevance. The placement

of dropout in the architecture indeed has a significant effect in the estimation of depth

and uncertainty. As a second conclusion of our analysis, deep ensembles have the best

calibrated uncertainty estimations. However, applying dropout in the encoder performs only

slightly worse than deep ensembles. As MC dropout needs much less memory than deep

ensembles, it may be considered the Bayesian approach with more potential for applications.

In our experimental results, we also show the application of Bayesian depth networks to
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pseudo-RGBD ICP, with the result that relative transformation can be improved by excluding

the points with highest uncertainties.
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Chapter 3

On the uncertain single-view depths in
colonoscopies

Colonoscopy images, due to their complex nature and the environment they capture, are

notoriously difficult for computer vision to interpret and analyze. The presence of folds

or haustra results in discontinuities. Furthermore, reflections from the wet surfaces inside

the colon create specular light, adding another dimension of complexity to understanding

the images. This chapter explores scalable Bayesian deep networks to predict depth and

uncertainty in these challenging images under different learning paradigms. Specifically,

we first benchmark thoroughly, in synthetic data, supervised and self-supervised learning

approaches in the colonoscopic domain. We address the problem of domain change

and demonstrate that deep ensembles models trained on synthetic data can be transferred

adequately to similar real domains. We propose a novel uncertainty aware teacher-student

method that models the uncertainty of the teacher in the learning pipeline. Furthermore, we

quantify the generalization of depth and uncertainty to real scenarios.

3.1 Introduction

Depth perception inside the human body is one of the cornerstones to enable automated

assistance tools in medical procedures (e.g. virtual augmentations and annotations, accurate

measurements or 3D registration of tools and interest regions) and, in the long run, the full

automation of certain procedures and medical robotics. Monocular cameras stand out as very

convenient sensors, as they are minimally invasive for in-vivo patients, but estimating depth

from colonoscopy images is a challenge. Multi-view approaches are accurate and robust in

many applications outside the body, e.g. Schonberger and Frahm [2016], but assume certain

rigidity, texture and illumination conditions that are not fulfilled in in-body images. As

mentioned in Chapter 2, single-view 3D geometry is ill-posed, since infinite 3D scenes can

explain a single 2D view [Hartley and Zisserman, 2003]. As discussed in such chapter, deep
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Figure 3.1: Depth and uncertainty predictions for a colonoscopy image. Dark/bright colors
stands for near/far depths, blue/red stands for low/high uncertainties. Note the higher
uncertainties in darker and farther areas and in reflections.

neural networks have shown impressive results in last years [Eigen et al., 2014, Fu et al.,

2018, Godard et al., 2019]. However, the vast majority of deep learning models lack any

metric or intuition about their predictive accuracy. In a critical environment such as the inside

of the human body, uncertainty quantification is essential. Specifically, in medical robotics

it allows us to properly account for uncertainty in control and decision making, and in

SLAM [Durrant-Whyte and Bailey, 2006] to safely navigate inside the body. It also provides

confidence intervals in in-body measurements (e.g., polyps), which is valuable for doctors

to decide how to act. Uncertainty quantification is, a must-have for robust, interpretable and

safe AI systems. Bayesian deep learning perfectly combines the fields of deep learning and

uncertainty quantification in a sound and grounded approach. However, for high-dimensional

deep networks, accurate Bayesian inference is intractable. Only bootstrapping methods such

as deep ensembles [Lakshminarayanan et al., 2017] have shown to produce well-calibrated

uncertainties in many computer vision tasks at reasonable cost [Gustafsson et al., 2020].
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3.2 Preliminaries and related work

Bayesian deep learning is a form of deep learning that performs probabilistic inference

on deep network models. This enables uncertainty quantification for the model and

the predictions. For high-dimensional deep networks, Bayesian inference is intractable

and some approximate inference methods such relying on variational inference or

Laplace approximations might perform poorly. In practice, sampling methods based on

bootstrapping, such as deep ensembles [Lakshminarayanan et al., 2017], or Monte Carlo,

like MC dropout [Gal and Ghahramani, 2016], have shown to be the most scalable, reliable

and efficient approaches for depth estimation and other computer vision tasks [Gustafsson

et al., 2020]. In particular, deep ensembles have shown to perform extremely well even

with a reduced number of samples, because each random sample of the network weight

is optimized using a maximum a posteriori (MAP) loss LMAP = LLL + Lprior, resulting

in a high probability sample. The MAP loss requires a prior distribution, which unless

otherwise stated, we assume to be a Gaussian distribution over the weights Lprior = ||θ||2.
Similarly as chapter 2, for the data likelihood LLL, we use a loss function based on the

Laplace distribution for which the predicted mean µ(x) and the predicted scale σ(x) come

from the network described in Section 3.3, with two output channels [Kendall and Gal,

2017]. The variance associated with the scale term represents the uncertainty associated

with the data, also called aleatoric uncertainty or σa(x). Furthermore, in deep ensembles,

the variance in the prediction from the multiple models of the ensemble is the uncertainty

that is due to the lack of knowledge in the model, which is also called epistemic uncertainty

or σe(x). For example, data uncertainty might appear in poorly illuminated areas or with

lack of texture, while model uncertainty arises from data that is different from the training

dataset. Note that while the model uncertainty can be reduced with larger training datasets,

data uncertainty is irreducible. Model uncertainty is particulary relevant to address domain

changes. To illustrate that, in Section 3.5 we present results of models trained on synthetic

data and tested on real data.

Single-View Depth Learning has demonstrated a remarkable performance recently.

Some methods rely on accurate ground truth labels at training [Eigen et al., 2014, Fu et al.,

2018, Song et al., 2021], which is not trivial in many application domains. Self-supervision

without depth labels was achieved by enforcing multi-view photometric consistency

during training [Zhou et al., 2017, Zhan et al., 2018, Godard et al., 2019]. In the medical

domain, supervised depth learning was addressed by Visentini-Scarzanella et al. [2017] with

autoencoders and by [Shen et al., 2019] with GANs, both using ground truth from phantom

models. Other works based on GANs were trained with synthetic models [Chen et al.,
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2019b, Mahmood et al., 2018, Mahmood and Durr, 2018, Rau et al., 2019], and [Cheng

et al., 2021] added a temporal consistency loss.

Self-supervised learning is a natural choice for endoscopies to overcome the lack of

depth labels on the target domain [Sharan et al., 2020, Ozyoruk et al., 2021, Recasens et al.,

2021]. Although depth or stereo are not common for in-vivo procedures, several works

use them for training [Luo et al., 2019, Xu et al., 2019, Huang et al., 2021]. Others train

in phantoms [Turan et al., 2018] or synthetic data [Freedman et al., 2020, Hwang et al.,

2021], facing the risk of not generalizing to the target domain. We study the limits of

such generalization. SfM supervision was addressed by Liu et al. [2020] using siamese

networks and by Widya et al. [2021] using GANs. Note that none of these references

address uncertainty quantification, which we cover in this work. Kendall and Gal [2017]

combine epistemic and aleatoric uncertainty by using a MC Dropout approximation of the

posterior distribution. This approach obtains pixel-wise depth and uncertainty predictions

in a supervised setting. Traditional self-supervised losses to regress depth are limited due

to the aleatoric uncertainty of input images [Li et al., 2021]. Poggi et al. [2020] address

such problem by introducing a teacher-student architecture to learn depth and uncertainty.

As key advantages, teacher-student architectures provide aleatoric uncertainty for depth and

avoid photometric losses and pose regression networks, which are frequently unstable. In

this chapter, we present the evaluation for supervised and self-supervised approaches in

colonoscopies images and propose a novel teacher-student approach that includes teacher

uncertainty during training. Among the scalable Bayesian methods for single-view depth

prediction, deep ensembles show the best calibrated uncertainty as demonstrated at Chapter

2 Rodrı́guez-Puigvert et al. [2022] and hence we choose them as our model.

3.3 Supervised learning using deep ensembles

Let our dataset D = {{I1, d1}, . . . , {IN , dN}} be composed by N samples, where each

sample i ∈ {1, . . . , N} contains the input image Ii ∈ {0, . . . , 255}w×h×3 and per-pixel

M Deep Ensembles

Figure 3.2: Forward propagation of supervised deep ensembles. Our deep ensembles model
a Gaussian distribution N(d̂, σ̂2

t ). d̂ comes from averaging all ensembles depth output and
σ̂2
t from joining data and model uncertainties
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Figure 3.3: Supervised training of a single ensemble m. Depth d̂m and aleatoric uncertainty
σa,m, estimation for a target image I. We define graphically the loss for a single ensemble.
d̂m depth prediction, d depth target and σa,m the aleatoric uncertainty of the ensemble.

depth labels di ∈ Rw×h
>0 . Regarding our network, we use an encoder-decoder architecture

with skip connections, inspired by Monodepth2 [Godard et al., 2019], with two output layers.

Thus, for every new image I the network predits its pixel-wise depth d̂(I,θ) ∈ Rw×h
>0 and

data variance σ̂2
a(I,θ) ∈ Rw×h

>0 . As commented in Section 3.2, we use a MAP loss, with

Lprior = ||θ||2 and :

LLL =
1

w · h
∑
j∈Ωi

(
||d[j]− d̂[j] ||1

σ̂a[j]
+ log σ̂a[j]

)
(3.1)

where [·] is the sampling operator and j ∈ Ω refers to the pixel coordinates in the image

domain Ω. The per-pixel depth labels d can be obtained from ground truth depth dGT or

from SfM 3D reconstructions dSfM [Schonberger and Frahm, 2016]. Figure 3.3 presents the

training of a single ensemble. A deep ensemble model is composed by M networks with

weights {θm}Mm=1, each of them trained separately starting from different random seeds. We

denote as (d̂m, σ̂
2
a,m) the output of the mth ensemble (see Figure 3.2). We obtain the mean

depth of the ensemble d̂ and its epistemic uncertainty σ̂2
e using the total mean and variance

of the full model. The total uncertainty σ̂2
t = σ̂2

a + σ̂2
e combines the data σ̂2

a and model σ̂2
e

uncertainties which results from the law of total variance.

d̂ =
1

M

M∑
m=0

d̂m, σ̂
2
a =

1

M

M∑
m=0

σ̂2
a,m, σ̂

2
e =

1

M

M∑
m=0

(
d̂− d̂m

)2
(3.2)

3.4 Self-supervised learning using deep ensembles

Self-supervised methods aim at learning without depth labels, the training data being D =

{I1, . . . , IN} and the supervision coming from multi-view consistency. For each instance m

of a deep ensemble, two deep networks are used [Godard et al., 2019].

The first one learning depth and a photometric uncertainty parameter û and the second

one learning to predict relative camera motion. We use a pseudo-likelihood for the loss
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Figure 3.4: Self-supervised training of deep ensembles.

function, that uses both networks for photometric consistency:

LLL,m =
1

w · h
∑
j∈Ωi

(
Fp[j]

ûm[j]
+ log ûm[j]

)
(3.3)

where Fp is the photometric residual and ûm an uncertainty prediction (See Figure 3.4)

The photometric residual Fp[j] of pixel j in a target image Ii is the minimum –between

the warped images Ii′→i from the previous and posterior images Ii′ to the target one Ii–
of the sum of the photometric reprojection error and Structural Similarity Index Measure

(SSIM) [Wang et al., 2004]:

Fp[j] = min((1− α)∥Ii[j]− Ii′→i[j]∥1 +
α

2
(1− SSIM(Ii, Ii′→i, j)) (3.4)

being α ∈ [0, 1] the relative weight of the addends; and Ii[j] and Ii′→i[j] = Ii′ [j′] the color

values of pixel j of the target image Ii and of the warped image Ii′→i. To obtain this latter

term, we warp every pixel j from the target image domain Ωi to that of the source image Ωi′

using:

j ′ = π
(
Ri′iπ

−1(j, d̂i[j]) + ti′i

)
(3.5)

Ri′i ∈ SO(3) and ti′i ∈ R3 are the rotation and translation from Ωi to Ωi′ , and π and π−1

the projection and back-projection functions (3D point to pixel and vice versa). In this

case, the prior loss also incorporates an edge-aware smoothness term Fs, regularizing the

predictions [Godard et al., 2019]. Thus, the prior term becomes Lprior = ||θ||2 + λuFs[j],

where λu calibrates the effect of the smoothness in terms of the reprojection uncertainty.

This prior term is then combined to obtain LMAP as described in Section 3.2. We obtain the

ensemble prediction by model averaging as in the supervised case (Eq. 3.2). In this case,

the data uncertainty for the depth prediction σ̂2
a,m cannot be extracted from the photometric

uncertainty parameter û. Due to this, only model uncertainty will be considered in the

experiments (σ̂2
t = σ̂2

e ).
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3.5 Teacher-student with uncertain teacher

M Deep Ensembles

Teacher

Student

Figure 3.5: Self-supervised training by a teacher-student approach.

In the endoscopic domain, accurate depth training labels can only be obtained from

RGB-D endoscopes (which are highly unusual) or synthetic data (that is affected by domain

change). We propose the use a of a Bayesian teacher trained on synthetic colonoscopies

that produces depth and uncertainty labels. The teacher’s epistemic uncertainty allows us to

overcome the domain gap automatically. Specifically, our novel teacher-student architecture

models depth labels from the predictive posterior of the teacher d ∼ N (d̂, σ2
T ) (σ2

T is the

total teacher variance). Thus, the likelihood must incorporate both the teacher and student

distributions, which is used in the training loss. As before, the loss is based on a Laplacian

likelihood

LLL,m =
1

w · h
∑
j∈Ωi

(
||d̂T [j]− d̂[j] ||1

σ̂m[j]
+ log σ̂m[j]

)
(3.6)

where the per-pixel variance is the sum of the teacher predictive variance and the aleatoric

one predicted by the student σ̂2
m = σ̂2

T + σ̂2
a,m. Our student is hence aware of the label

reliability, which will be affected by the domain change.

3.6 Experimental results

We present findings on both simulated and real colonoscopies. Our first dataset is the one

generated by [Rau et al., 2019], containing RGB images rendered from a 3D model of the

colon in 15 different textures and illumination conditions. The second one, the EndoMapper

dataset [Azagra et al., 2022] consists of real monocular colonoscopies.

Synthetic colon dataset.

We evaluate three training alternatives: GT (ground truth) depth supervision, SfM

supervision and self-supervision. We use 6,550 images for training and 720 images for
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testing. We observed that training more than 18 networks per ensemble does not improve

the performance significantly, so we use this number in our experiments.

Figure 3.6: Multi-view reconstruction from the colonoscopy synthetic images.

In SfM-related experiments, we use COLMAP [Schonberger and Frahm, 2016]. Figure

3.6 shows the 3D reconstruction from SfM. Since dSfM is up to scale, we compute a scale

correction factor si per image Ii as follows:

sSfMi =
median(dGTi )

median(dSfMi )
(3.7)

This scale correction is also applied to predictions of self-supervised and supervised SfM

models that are also up-to-scale. Table 3.1 shows the metrics for the depth error and its

uncertainty.

Supervising a deep ensemble with dGT labels achieves the best depth metrics. In terms

of uncertainty, self-supervised and supervised with SfM are underconfident, in contrast to

supervised with GT depth, which is overconfident and presents higher (worse) absolute

AUCE. Figure 3.7 shows that the aleatoric uncertainty supervised by GT is high around

the haustra and in dark areas. The epistemic uncertainty grows with the scene depth. The

uncertainty supervised by SfM is high in areas where there are typically holes in SfM

reconstructions. Similarly to models trained with GT, the aleatoric uncertainty is also visible

in the haustras and the epistemic in the deepest areas. Photometric self-supervision tends to

offer the worst performance.

Approach AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253 AUCE
Supervised GT 0.050 0.335 2.996 0.102 0.978 0.993 0.997 +0.190
Supervised SfM 0.172 2.568 7.409 0.269 0.852 0.939 0.962 -0.116
Self-supervised 0.179 1.774 7.601 0.243 0.792 0.938 0.972 -0.152

Table 3.1: Depth and uncertainty metrics in the synthetic dataset. RMSE in mm.
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Figure 3.7: Qualitative depth and uncertainty examples of (supervised learning, supervised
learning SfM) and self supervised learning in synthetic images. a) Supervised GT, b)
Supervised SfM and c) Self-supervised

EndoMapper dataset.

This experiment evaluates Bayesian depth networks in real colonoscopies. We use the model

previously trained with synthetic ground truth depth (“Supervised GT”) to analyse the effect

of the domain change. In addition, we also present results from self-supervised training,

a baseline teacher-student method [Poggi et al., 2020] and our novel uncertain teacher

approach. In real colonoscopies viewpoints change abruptly, images might be saturated or

blurry, a considerable amount of liquid might appear and the colon itself produces significant

occlusions. For this reasons, we remove images with partial or total visibility issues. We

finally use 6,912 images out of the 14,400 images in the complete colonoscopic procedure.

In order to obtain depth and uncertainty metrics, we create a 3D reconstruction of the colon

using COLMAP (see Figure 3.8). We also use 18-network ensembles for all methods. Table

3.2 shows the results. Our “Uncertain teacher” shows in general the smallest depth errors

and the highest correlation between depth errors and predicted uncertainties.

Approach AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253 AUCE
Supervised GT 0.240 0.644 2.595 0.308 0.645 0.898 0.962 -0.148
Self-supervised 0.371 1.260 4.603 0.431 0.417 0.721 0.886 -0.273
Teacher-student 0.234 0.600 2.532 0.301 0.657 0.903 0.963 -0.328

Uncertain teacher (ours) 0.230 0.572 2.458 0.298 0.667 0.906 0.964 -0.129

Table 3.2: Depth and uncertainty metrics in the EndoMapper dataset.

For self-supervised methods, this real setting is challenging due to reflections, fluids and

deformations, all of them aspects that are not considered in the photometric reprojection

model of self-supervised losses. “Supervised GT” is affected by domain change, as it
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Figure 3.8: Multi-view reconstruction from the real colonoscopy images of the EndoMapper
project using COLMAP.

was trained on synthetic data. However, we observe that it successfully generalizes to

the real domain and outperforms the self-supervised method. Based on this observation,

we use synthetic supervision in the “Teacher-student” baseline and our “Uncertain

teacher”. In general, teacher-student depth metrics outperform the models trained with GT

supervision in the synthetic domain and with self-supervision in the real domain. However,

“Teacher-student” presents the worst AUCE metric, as the teacher uncertainty is not taken

into account at training time. Our “Uncertain teacher” is the one presenting the best depth and

uncertainty metrics, as it appropriately models the noise coming from domain transfer in the

depth labels. Figure 3.9 shows qualitative results for the “Supervised GT”, “Teacher-student”

and “Uncertain teacher” models. Note that the data uncertainty captures light reflection and

depth discontinuities in supervised learning. On the other hand, the model uncertainty grows

for the deeper areas. Observing these results, we can conclude that the domain change from

synthetic to real colon images is not significant. Models trained on synthetic data generalize

to real images and outperform models trained with self-supervision on the target domain,

due to the challenges mentioned in the previous paragraphs. Finally, figure 3.10 shows a 3D

reconstruction based on depth from our method “Uncertain teacher” and the input image.

3.7 Conclusions

All systems building on depth predictions from color images benefit from uncertainty

estimates, in order to obtain robust, explainable and dependable assistance and decisions. In

this chapter, we have explored for the first time supervised and self-supervised approaches

for depth and uncertainty single-view predictions in colonoscopies. From our experimental

results, we extract several conclusions. Firstly, using ground truth depth as supervisory

signal outperforms self-supervised learning and results in better calibrated models. Secondly,

approaches based on photometric self-supervision and on SfM supervision coexist in the
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Figure 3.9: Qualitative depth and uncertainty examples for a) supervised, b) self-supervised,
and c) uncertain teacher-student learning in real images.

53



Figure 3.10: 3D reconstruction based on input image and depth from our Uncertain teacher
method.
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literature and there is a lack of analysis and results showing which type is more convenient.

Thirdly, our experiments show that models trained in synthetic colonoscopies generalize to

real colonoscopy images. Finally, we have proposed a novel teacher-student architecture that

incorporates the teacher uncertainty in the loss, and have shown that it produces lower depth

errors and better calibrated uncertainties than previous teacher-student architectures.
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Chapter 4

LightDepth: single-view depth
self-supervision from illumination decline

In this chapter, we introduce a novel self-supervision methodology that exploits illumination

decline data of systems where source light and cameras are co-located, paving the way for

enhanced depth estimation in endoscopic settings. Several works have proposed methods

based on supervised learning, which struggle with simulation to real domain shifts. On

the other hand, methods based on multi-view self-supervision face challenges related to

the specific endoscopic domain, such as deformations and small baselines. Assuming both

limitations, we approach the problem from a different perspective by including a light model

in the method. Our experiments show that by doing that we are able to outperform both

limitations in the literature, outperforming all previous approaches.

4.1 Introduction

Minimally invasive medical procedures such as gastroscopies, colonoscopies and

bronchoscopies rely on endoscopes that should be as small as possible. As a result, they

usually house a single camera and several light points, but neither depth nor stereo cameras.

3D reconstruction is relevant in endoscopies, as it may unlock several functionalities such

as the accurate estimation of the size and shape of tumors. However, both single- and

multi-view depth estimation methods present significant challenges in this domain. The lack

of sufficient depth annotated data hinders the use of supervised depth learning. The presence

of fluids that either obscure the view or generate specularities, the sudden illumination

changes, the paucity of texture and the surface deformations hamper multi-view methods

both for self-supervising deep networks and for geometry estimation. Real in-body textures

and fluids are hard to simulate realistically, and the synthetic-to-real gap may be large.

We propose a novel approach to depth in endoscopies that overcomes all the above

challenges related to depth supervision, multi-view estimation and synthetic-to-real gaps.
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Figure 4.1: Single-view depth self-supervision in LightDepth. A two-headed deep
network predicts albedo and depth from a single image and estimates surface normals from
predicted depths. These are used to render a new image, that takes into account illumination
decline and the endoscope’s photometric calibration, and can be compared to the original
one. Minimizing the difference between the original and rendered images is used at training
time to compute the network weights and at inference time to refine the depth predictions.

Our key insight is that, by exploiting a key property of endoscopic imagery, we can provide

strong depth self-supervision signals from just one view. In endoscopes, the light source

is rigidly located next to the camera and is close to the surface to be reconstructed. As

a result, unlike in traditional shape-from-shading (SfS), points with the same albedo are

imaged darker the further they are, being the decrease of intensity a function of the square

distance to the light source. To exploit this, we introduce a deep network, as depicted

by Figure 4.1, that estimates depths and albedos from the image, infers normals from

depths, and then renders an image while taking into account the attenuation factor due

to the distance between the light source and the surface. At training time, we minimize

the difference between the original and rendered images. This enforces consistency of

the depths, normals, and albedos and provides the required self-supervision without depth

annotations. At inference, we use our trained network to predict depth from a RGB image

and then, as our method is fully self-supervised, we can perform test-time refinement (TTR)

for every monocular image, minimizing the difference between the input and rendered views,

further refining the predicted depths. Our quantitative evaluation on a phantom colon dataset,

where ground-truth is available, shows that our self-supervised approach delivers results
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that are very close to that of the best supervised one, and significantly superior to that

of multi-view self-supervision and synthetic-to-real transfer methods. Crucially, we show

quantitatively that our method keeps working on real data, for which there is no ground-truth

data that can be used for training and self-supervised alternatives underperform. The main

specific contributions that led to such results are 1) the inclusion of illumination decline

and the endoscope’s photometric calibration in the rendering equation, which provides a

strong supervisory signal, and 2) a single-view self-supervised method using such renders,

including two-headed network architectures LightDepth U-Net and LightDepth DPT that

can be trained in large colonoscopy datasets without requiring ground truth labels and even

further refined online in the test views.

4.2 Related work

Generic single-view depth estimation.

It has enjoyed a renaissance after the seminal work by Eigen et al. [2014], which

demonstrated the effectiveness of deep neural networks for supervised pixel-wise depth

regression in natural images. Subsequent research efforts have made contributions in many

different directions. To name a few, network architectures evolved to fully convolutional

in the work of Laina et al. [2016] and more recently to transformers [Ranftl et al., 2021,

Bhat et al., 2021, Li et al., 2022]. Some of those works [Bhat et al., 2021, Li et al., 2022]

also discretize the continuous depth space into bins and formulate the problem as an ordinal

regression, as done by Fu et al. [2018]. Other advances include interpretability [Dijk and

de Croon, 2019], uncertainty quantification [Poggi et al., 2020, Rodrı́guez-Puigvert et al.,

2022], and modeling camera intrinsics [Facil et al., 2019, Gordon et al., 2019]. All these

approaches are supervised and require depth ground-truth data, which can be difficult and

expensive to acquire.

Self-supervised methods seek to overcome this limitation and reduce the need for

ground-truth data, often by exploiting multi-view photometric consistency [Godard et al.,

2017, Zhou et al., 2017, 2018a, Yang et al., 2018, Johnston and Carneiro, 2020, Godard

et al., 2019]. This also enables depth refinement at test time [Chen et al., 2019c, Tiwari

et al., 2020, Luo et al., 2020, Shu et al., 2020, Watson et al., 2021, Izquierdo and Civera,

2023]. Unfortunately, this kind of supervision can be noisy, due to inaccuracies in the camera

motion estimation, perspective distortions, occlusions or non-Lambertian effects, among

others. As result, state-of-the-art self-supervised methods typically suffer from significantly

larger inaccuracies than supervised ones. By contrast, our approach avoids these sources of

errors and delivers accuracies that are close to those of supervised techniques.
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Endoscopic single-view depth estimation

Single-view depth estimation has been extensively studied for endoscopic purposes.

Visentini-Scarzanella et al. [2017] used CT renderings for depth supervision in

bronchoscopies. However, CT scans in particular and ground-truth depth data in general are

very rare in endoscopy, which makes self-supervision a quasi necessity. Many works explore

multi-view integration [Luo et al., 2019, Xu et al., 2019, Huang et al., 2021] combined with

tracking and SLAM pipelines [Recasens et al., 2021, Ozyoruk et al., 2021, Ma et al., 2021].

Others propose video-based training schemes [Karaoglu et al., 2021, Freedman et al., 2020,

Hwang et al., 2021]. Unfortunately multi-view self-supervision is even more challenging in

endoscopy than in other areas due to the presence of deformations and weak texture.

Due to the specificity of the domain, synthetic to real transfer has also been extensively

explored. For example, a conditional GAN is used for depth recovery while integrating

SLAM and multi-view inputs by Shen et al. [2019]. Chen et al. [2019b] trained

a depth network with synthetic images of a simple colon model and fine-tuned with

domain-randomized photorealistic images rendered from CT scans. Many other works

address the domain shift between simulated and real colons [Mahmood et al., 2018,

Mahmood and Durr, 2018, Rau et al., 2019, Karaoglu et al., 2021, Cheng et al., 2021,

Rodriguez-Puigvert et al., 2022]. Learning in supervised and transferring the knowledge

using uncertainty [Liu et al., 2020] uses monocular videos and multi-view stereo to provide

weak depth supervision. We will show in the results section that our approach yields

more accurate results, especially given that our approach to self-supervision allows further

refinement of the estimates at inference time.

Shape from Shading (SfS).

Depth estimation from a single image can be traced back to the early SfS methods

summarized by Zhang et al. [1999], and in particular to traditional shape-from-shading [Horn

and Brooks, 1989]. However, these older techniques rely on strong assumptions that do not

hold in endoscopic imagery: the camera and directional point light model are located at

infinity; the reflectance is Lambertian; the albedo is constant, and the surfaces are smooth.

Importantly, lights at infinity result in ill-posed problems [Prados and Faugeras, 2005].

By contrast, when the light source is co-located with the camera that is not distant from

the target surfaces, there is a 1/d2 attenuation of pixel intensity with distance d to the

surface, which makes the problem well-posed when the albedo is assumed to be constant.

Experimental validation shows that this still holds when the light source is translated with

respect to the optical centre is provided in [Collins and Bartoli, 2012a, Visentini-Scarzanella

et al., 2012], but still assuming constant and known albedo. Photometric stereo infers depth
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capturing several images from the same monocular camera under lights at different locations,

but requires endoscopic hardware modifications [Hao et al., 2020a, Parot et al., 2013, Collins

and Bartoli, 2012b].

More recently, the topic was revisited by SIRFS (Shape, Illumination, and Reflectance

from Shading) [Barron and Malik, 2015] that model the interdependences between

shape, illumination and reflectance, and introduces statistical priors on these quantities to

disentangle their effects. In subsequent works [Lettry et al., 2018, Li et al., 2020, Sang

and Chandraker, 2020, Lichy et al., 2021, Zhang et al., 2022, Sengupta et al., 2018], priors

are learned by deep neural networks using supervision, synthetic-to-real or multi-view

self-supervision. In contrast, our approach does not require such priors, which makes its

deployment easier.

The SfS methods applied to endoscopy require an accurate geometrical and

photometrical model of the camera and light source. This can be obtained with endoscope

calibration [Modrzejewski et al., 2020, Hao et al., 2020b, Azagra et al., 2022, Batlle et al.,

2022].

4.3 LightDepth

We use a self-supervised single-view approach to train a neural network to predict the albedo,

depth, and normals at every pixel of an image so that the image can be resynthesized from

these values in a differentiable rendering pipeline (Figure 4.2). We exploit this property

using a dual-branch network that outputs pixel-wise depths and albedos. The normals are

estimated analytically from the depths, and, together with the albedos, are used to render

images that should be as close as possible to the original ones. At the heart of this approach

is the fact that the renderer takes into account light decline as a function to distance to the

surface. This is what provides the necessary self-supervisory signal.

4.3.1 Photometric model

As in the work of Batlle et al. [2022] and Modrzejewski et al. [2020], we model scene

illumination as coming from a single spotlight source located at xl ∈ R3 in the camera

reference frame, as depicted by Figure 4.3. Spotlights usually emit with different intensities

in each direction. Hence, we adopt the spotlight model (SLS) of Modrzejewski et al. [2020].

For surface point xi with off-axis angle ψi, we write its radiance as

σSLS(xi, ψi) =
σ0

∥xi − xl∥2
R(ψi) (4.1)

R(ψi) = e−µ(1−cos(ψi)) (4.2)
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Figure 4.2: Differentiable Rendering: The input image is fed into a neural network that
predicts albedo and depth values for each pixel. From the estimated depths, we compute
the normals at each pixel surface using a kernel-based approach. Then, the depths, albedos,
and normals are sent to a differentiable renderer that takes into account illumination decline
and the endoscope’s photometric model, and generates a synthetic image that should be as
similar as possible to the original one. We also use specular reflections in saturated pixels to
self-supervise normals.
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where σ0 is the maximum radiance and R(ψi) is the radial attenuation controlled by a spread

factor µ. Note that the light reaching the surface is subject to the inverse-square law and

decays with the propagation distance from xl to xi.

Figure 4.3: Spotlight illumination model, a spotlight source at position xl illuminates the
surface point xi. The emission has R(ψi) radial fall-off, suffers from an inverse-square
decline with xl → xi and attenuates with the incidence angle (θi). li, ni, ri and si are unit
vectors.

Light decline.

In endoscopes, the camera and the light source move jointly in a dark environment. Hence,
the attenuation of the illumination is an indirect indicator of scene depth as seen from the
camera. More specifically, for each pixel, we can write the rendering equation

I(di, ρi, g) =
(

σ0
∥diri − xl∥2

R(ψi) cos (θi) ρi g

)1/γ

, (4.3)

where di is the depth of the i-th pixel with image coordinates ui, ri = π−1(ui) is the camera

ray such that xi = diri and π−1(·) is the inverse projection model of the camera. θi stands

for the light’s incidence angle with respect to the surface normal ni, such that, cos θi = li ·ni.
ρi represents the albedo of the surface at that point. g denotes the gain applied by the camera

and γ is the gamma correction commonly applied by cameras to adapt images to human

perception. The resulting I(di, ρi, g) is the color captured by the camera.

Our model assumes Lambertian reflections, meaning that the light hitting the surface is

scattered equally in all directions. The percentage of reflected light is known as albedo.

Specular reflections, which are prevalent in endoscopic images, are not captured by this

model but we will consider them in a specific loss that we describe in Section 4.3.2.

Calibration.

Each endoscope has different geometric and photometric parameters, the former affecting the

inverse project model π−1 and the latter impacting both the light position xl and spread R.

We can estimate these parameters for a particular endoscope by minimizing the reprojection

and photometric errors on images of a calibration target, similar to [Azagra et al., 2022,
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Batlle et al., 2022]. In our case, the auto-gain values of the endoscope are not known, so

radiance measurements of the camera are unitless. Thus, we arbitrarily set g = 1, σ0 = 1

and obtain up-to-scale reconstructions. Our calibration errors are between ±3 gray levels.

4.3.2 Self-supervision losses

Formally, the network of Figure 4.2 takes as input an image I ∈ [0, 1]w×h×3, estimates a

depth map d̂ ∈ (0,∞)w×h and an albedo map ρ̂ ∈ [0, 1]w×h×2 . It infers normals n̂ from d̂,

and uses d̂, n̂, and ρ to render an image Î ∈ [0, 1]w×h×3 that should be as similar as possible

to I . To train this network, we minimize a loss

L = Lp + λsLs + λspLsp , (4.4)

where λs and λsp are scalar weights and Lp, Ls, and Lsp are the loss terms described below.

Lp is a photometric loss and we take it to be the squared L2 distance between the original

image I and the rendered one Î . Note that because our rendering model is fully differentiable,

we can perform end-to-end training.

Lp =
∑
i∈Ω

(Ii − Îi)
2, where Îi = I(i, d̂i, ρ̂i, g) (4.5)

As in [Godard et al., 2019], Ls is a regularization term that minimizes depth gradients

except in areas of high color gradients, that may correspond to depth discontinuities. We

write

Ls = |∂xd̂|e−|∂xI| + |∂yd̂|e−|∂yI| (4.6)

Finally, recall that we made a Lambertian assumption in Eq. 4.3, which prevents us to

account properly for specular reflections and the overexposed pixels they produce. This is

a potential source of error and fails to exploit the very useful information that specularities

provide about normals. To remedy this, we introduce specular loss Lsp. Given image location

i, the corresponding direction li from the surface to the light source and the normal of a the

surface n̂, the law of reflection states that

si = li − 2n̂i (n̂i · li) (4.7)

is the specularly reflected direction. Hence, we take our specular loss term to be

Lsp =
∑
i∈Ω

(mi (si · (−ri)− 1))2 , (4.8)

mi =

{
1 Ii > th
0 otherwise
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which minimizes the discrepancy between the expected specular reflection si and the actual

direction (−ri) where the camera observes the reflection, resulting in pixel with high

intensity th = 0.98.

Our method takes a single image as input, which makes 3D shape recovery solely from

pixel colors an underconstrained problem. According to Eq. 4.3, a change in the brightness

of a pixel can be due to changes in depth, albedo, camera exposure or surface normal.

For example, if a given pixel is very bright, it can be because the pixel is close to the

camera/light; the surface has a different albedo, resulting in more light being reflected; the

surface normal is aligned to the light/camera, which increases the reflected light; the camera

exposure and digital gain have been increased, which impacts brightness values in the whole

image. Given the albedo at each surface point and the camera auto-gain, we could resolve

these ambiguities. However, in medical endoscopy, true albedos are unknown, and auto-gain

is not provided by the hardware manufacturer.

Albedo constancy.

We observe that endoscopy images exhibit a limited range of colors, with brighter tones being

present in close areas and darker tones in deeper regions. Consequently, we hypothesize

a significant correlation between albedo and the chromatic attributes, namely Hue and

Saturation, in the HSV color space, as well as between depth and the Value Channel. In

this way, we constrain the palette of colors that can be explained by the albedo decoder and

we enhance the disentanglement between depth and albedo by setting V = 100 for all albedo

values. Hence, to predict the albedo map ρ̂, our network predicts just two channels per pixel,

for Hue and Saturation, and assumes Value to be one to convert to the RGB space, in which

the loss is formulated.

4.3.3 Network architecture

Our network outputs depth and albedo maps. In Figure 4.4 and Figure 4.5, we provide a

more detailed depiction of our encoder-decoder architecture. We have tested two different

versions. The first one is a U-net with two decoders and skip connections, with a ResNet18

[He et al., 2016] serving as the backbone, initialized with the weights from ImageNet [Deng

et al., 2009]. Our decoders design is inspired by [Godard et al., 2019], our albedo decoder

uses sigmoid activation function and our depth decoder ELU+1 activation function after

the last convolution. The second one relies on visual transformers for depth estimation

[Ranftl et al., 2021], adding a branch for the prediction of albedo decoder. For the depth

estimation, we initialize the encoder and depth decoder with DPT Hybrid weights. For

albedo estimation, we train the albedo decoder from scratch. In our pipeline, we use the
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half of resolution than the original images for training, upsampling the outputs with bilinear

interpolation. As a backbone, we use a Resnet-50 (DPT-Hybrid) and two decoders that

reassemble the tokens and apply attention heads.

In both versions, to compute the normals at any given pixel, we use a convolution kernel

with six-neighborhood (N, NE, E, S, SW, and W) in the depth map. We define six triangles

using the central pixel as reference, with each triangle having its own normal. The normal of

the central pixel is computed as the average of the normals of the triangles weighted by their

area. The use of six neighbors lets us reuse triangles during the convolution pass to speed up

computation.

encoder
(ResNet)

albedo 
decoder

depth 
decoder

skip connections

LightDepth U-Net

Figure 4.4: LightDepth U-Net is based on a standard U-Net [Ronneberger et al., 2015] with
two decoding branches.

LightDepth DPT

Embed
(Resnet)

transformed
tokens

Albedo 
Transformer

Depth 
Transformer

tokens

transformed
tokens

Reassemble

FusionReassemble

Fusion Head

Head

Figure 4.5: LightDepth DPT is based on the DPT-Hybrid architecture [Ranftl et al., 2021],
with a second decoder branch added for the albedo.
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4.4 Results

4.4.1 Datasets

We evaluated LightDepth and relevant baselines on three endoscopy datasets: An in-house

synthetic colon, C3VD [Bobrow et al., 2022], and EndoMapper [Azagra et al., 2022]. With

these, we can show quantitative and qualitative results with several levels of realism.

Synthetic colon.

We simulate a real Olympus CF-H190L endoscope consisting on a fish-eye camera and a

spot-light source, both calibrated as in Azagra et al. [2022]. This is in contrast to other

synthetic datasets that simulate arbitrary camera and illumination configurations, typically

pinhole cameras with no or arbitrary distortion and ideal light sources with no radial falloff

[Rau et al., 2019, Zhang et al., 2020, Ozyoruk et al., 2021, Rau et al., 2022]. We rendered the

images using ray-casting techniques, in which the colon’s geometry and albedo are defined

by a triangle mesh obtained from a CT scan of a real colon [İncetan et al., 2021]. We ignore

global illumination effects and assume Lambertianity, so there are no specular reflections.

The influence of these two effects will be assessed in the two other datasets. Our synthetic

data is hence composed by 1620 fish-eye RGB frames annotated with per-pixel albedo, depth

and normals. We split it into 1168 images for training and 452 images for test. Figure

4.6 depicts samples from the synthetic dataset, which contains ground truth data on depth,

albedo, and normals.

Figure 4.6: Samples from in-house Fish-eye lambertial synthetic dataset.

Colonoscopy 3D Video Dataset

C3VD [Bobrow et al., 2022] contains real images recorded in a phantom with ground-truth

depth. The images have been captured by a real Olympus CF-HQ190L endoscope in a

phantom silicone model of a human colon. The data is annotated with ground-truth depth

and normals by applying 2D-3D registration of the 3D phantom models. The authors claim

that the silicone material is opaque, hence we can assume that the only light source available

is in the endoscope. Finally, it includes a geometrical calibration based on the Scaramuzza

67



model [Scaramuzza et al., 2006]. C3VD provides a good compromise between realism (real

endoscope, global illumination effects and specular highlights) and ground-truth labels for

quantitative evaluation. Of the 10,088 images available, we use 7,200 for training and 2,888

for testing. Table 4.1 shows which sections of the C3VD were used for training / testing. We

split into sections to ensure a fair comparison along the dataset. Regarding real endoscopy

images, we use with the sequence 051, 009 and 058 of the EndoMapper dataset.

Model Texture Video Frames Stage
Cecum 1 b 765 Train
Cecum 2 b 1120 Train
Cecum 2 c 595 Train
Cecum 4 a 465 Train
Cecum 4 b 425 Train

Sigmoid Colon 1 a 800 Train
Sigmoid Colon 2 a 513 Train
Sigmoid Colon 3 b 536 Train

Transcending Colon 1 a 61 Train
Transcending Colon 1 b 700 Train
Transcending Colon 2 b 102 Train
Transcending Colon 4 b 595 Train
Descending Colon 4 a 74 Train

Cecum 1 a 275 Test
Cecum 2 a 370 Test
Cecum 3 a 730 Test

Descending Colon 4 a 74 Test
Sigmoid Colon 3 a 610 Test

Transcending Colon 2 a 194 Test
Transcending Colon 3 a 250 Test
Transcending Colon 4 a 382 Test

Table 4.1: Dataset Split for C3VD

EndoMapper

EndoMapper [Azagra et al., 2022] provides the most challenging data, as it contains real

colonoscopy and gastroscopy procedures inside the human body, performed by endoscopists

on a day-to-day basis. Here we find real textures such as veins, blood and dirt, and other

effects such as blur, water and frames very close or even hitting the mucosa. Foam and

bubbles are indeed very common in endoscopy images and are usually ignored. LightDepth

is capable of disentangling these as part of the albedo and not of the depth. Before processing

the dataset, we perform a manual inspection of the selected sequences and we eliminate

occluded and excessively blurred frames.

Finally, we train in three procedures, consisting of two colonoscopies and one

gastroscopy. There are a total of 24,444, 23,456 and 3,032 frames, respectively.
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4.4.2 Metrics, baselines, and training details

We report results using a median-based scale alignment for all methods, even those

supervised with real-scale depth, for fairness. In our experiments, we compare against

models that use depth supervision and multi-view self-supervision. For depth supervision,

we use two different architectures, U-Net with L1 loss as a representative of convolutional

architectures and DPT-Hybrid [Ranftl et al., 2021] as a state-of-the-art representative of

transformer-based models, learning inverse depth with an scale invariant loss.

For a fair comparison, we also evaluate our LightDepth using the same U-Net and DPT

architectures. The U-Net is pre-trained on ImageNet dataset [Deng et al., 2009]. For DPT,

we initialize with the author-provided weights for encoder and depth decoder. The albedo

decoder is trained from scratch. During training, we select a smoothing weight λs = 0.1

in Eq. 4.4 and a learning rate of 10−4 for the Adam optimizer. In the synthetic dataset, we

trained our network with λsp = 0, as synthetic dataset has no specular reflections. In C3VD

and EndoMapper, we use λsp = 1.

Test-Time Refinement (TTR)

As our LightDepth enables single-view self-supervision, we can continuously refine the

depth predictions online, obtaining much more accurate reconstructions. In the results

denoted as “(TTR)”, we perform online test-time refinement for each test image separately

during N = 20 optimization steps, using the loss L in Equation 4.4, as in training time. To

mitigate the risk of catastrophic forgetting, we load again the original model trained in the

train split after TTR for each image.

Note in Table 4.3 how TTR improves significantly the metrics with respect to LightDepth

without TTR for U-Net and DPT architectures. Remarkably, observe how TTR even

outperforms the metrics achieved by Depth GT supervision. Figure 4.8 and Figure 4.9 show

the improvement given by TTR in the network prediction of depth, normals and albedo and

overall in the 3D reconstruction. Inference time is ∼ 5ms for LightDepth U-Net and ∼ 22 ms

for LightDepth DPT on a NVIDIA GeForce RTX 3090. We can do TTR in ∼ 90 ms per

optimization step in U-Net and ∼ 190 ms in DPT.

4.4.3 Quantitative and qualitative results on synthetic and phantom
Synthetic colon.

In Table 4.2, we report depth and normal metrics for a U-Net supervised with Depth GT,

and our self-supervised LightDepth U-Net architecture. Observe that the metrics are similar.

This is notable, as self-supervision is consistently reported in the literature to underperform

with respect to depth supervision, and suggests that illumination decline provides a very
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Depth [mm] Normals [◦]
Architecture Backbone Supervision MAE ↓ MedAE ↓ RMSE ↓ RMSElog ↓ AbsRel ↓ SqRel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓

U-Net ResNet18 Depth GT 4.37 2.99 6.38 0.1251 0.0965 0.0008 0.9057 0.9931 0.9997 25.1
LightDepth U-Net ResNet18 Light 4.76 2.47 8.60 0.1375 0.0903 0.0011 0.9180 0.9820 0.9935 15.2

Table 4.2: Depth and normal metrics for several architectures and supervision modes. Best
results per dataset are boldfaced, second best underlined.
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Figure 4.7: Qualitative examples of LightDepth in Synthetic dataset.

strong self-supervisory signal in endoscopies, which our experiments in the other two

datasets confirm. Furthermore, light self-supervision outperforms Depth GT supervision

in MedAE and δ < 1.25, which means that most of the error distribution is lower for light

self-supervision and only a small fraction of large errors are better with depth supervision.

We observed that it is in far and dark areas where light self-supervision is weaker and this

produces a higher depth MAE and RMSE. Observe the significantly lower error in normal

with our light self-supervision, due to the lower errors in most pixels.

C3VD Phantom.

Depth [mm] Normals [◦]
Architecture Backbone Supervision MAE ↓ MedAE ↓ RMSE ↓ RMSElog ↓ AbsRel ↓ SqRel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓
U-Net ResNet18 Depth GT 4.15 3.29 5.52 0.1139 0.0902 0.0007 0.9172 0.9943 0.9994 26.5
DPT-Hybrid ResNet50 Depth GT 3.22 2.77 4.10 0.0860 0.0699 0.0004 0.9640 0.9865 0.9913 15.1
Monodepth2 ResNet50 Multi-View 14.27 9.59 18.64 0.3921 0.2971 0.0070 0.4897 0.7313 0.8611 43.6
CADepth ResNet18 Multi-View 52.35 17.04 87.43 0.9144 1.1916 0.2650 0.3664 0.5653 0.6679 67.2
XDCycleGAN ResNet Cycle 17.16 11.91 22.43 0.4953 0.3616 0.0105 0.4291 0.6615 0.7910 64.4
LightDepth U-Net ResNet18 Light 4.37 2.92 6.31 0.1183 0.0856 0.0007 0.9315 0.9934 0.9994 24.0
LightDepth DPT ResNet50 Light 3.94 2.67 5.60 0.1080 0.08046 0.0006 0.9476 0.9965 0.9994 21.3
LightDepth U-Net ResNet18 Light (TTR) 3.72 2.59 5.43 0.1060 0.0770 0.0005 0.9505 0.9971 0.9994 23.5
LightDepth DPT ResNet50 Light (TTR) 3.70 2.58 5.27 0.1073 0.0780 0.0005 0.9525 0.9961 0.9992 22.5

Table 4.3: Depth and normal metrics for several architectures and supervision modes. Best
results per dataset are boldfaced, second best underlined.

We report depth and normal metrics on the real phantom images of the C3VD dataset in
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Figure 4.8: LightDepth and LightDepth TTR on C3VD. Our light decline captures the correct
shape of the cecum in the first image and the shape of the polyp in the second. Note how the
estimates of normals and albedo are similar before and after TTR. By optimising depth by
reducing illumination, DepthLight achieves a darker appearance and improvements in depth
estimation.
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Figure 4.9: LightDepth and LightDepth TTR on C3VD. Quantitative examples of
LightDepth U-Net in C3VD.
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Table 4.3. Our self-supervised architectures LightDepth U-Net and LightDepth DPT with

TTR outperform supervision with Depth GT in MedAE, while the rest of the metrics are

very close. As in the case of the synthetic dataset, this is a remarkable result because

self-supervised architectures typically lag behind supervised ones in single view depth

estimation. The fact that LightDepth MedAE is better and RMSE is worse suggests that

our errors are better in most of the distribution, and there are a few regions with large errors

where Depth GT supervision is able to offer an advantage. Table 4.4 details metrics on

the quality of the rendered image, which suggest the strength of the self-supervision signal.

Observe the improvement of this metrics for the TTR case.

In Table 4.3, observe that the multi-view self-supervised baselines, Monodepth2 [Godard

et al., 2019] and CADepth [Yan et al., 2021], have a poor performance in our the phantom

colon, worse in comparison than results in other datasets. This could be due to the weak

textures and changing lighting in the colonoscopy images, resulting in noisy estimations for

relative motion and uninformative photometric residuals. Being single-image, our approach

is impervious to such difficulties.

Dataset Architecture Supervision SSIM ↑ MAE ↓
Synthetic LightDepth U-Net Light 0.9901 0.0192

C3VD

LightDepth U-Net Light 0.9765 0.0657
LightDepth DPT Light 0.8873 0.0599
LightDepth U-Net Light (TTR) 0.9811 0.0276
LightDepth DPT Light (TTR) 0.8977 0.0329

Table 4.4: SSIM and MAE for rendered images in C3VD. Test-time refinement (TTR) gives
a substantial improvement.

Domain shift

As synthetic-to-real is common in endoscopies to address the lack of ground-truth depth for

supervision, we also evaluated XDCycleGAN [Mathew et al., 2020] as a baseline. Note that

the domain shift is still affecting the results. Our single-view LightDepth self-supervision

enables training in the target domain, and hence removes completely the domain shift,

achangedchieving significantly lower errors.

Table 4.5 elaborates further on domain shift by showing depth and normals metrics

for a U-Net architecture in these cases. Specifically, we trained a U-Net model with

Depth GT supervision and light self-supervision in our synthetic dataset and evaluated their

performance in the synthetic and C3VD test sets. Observe how the domain shift affects all

metrics significantly. Interestingly, the model trained with light self-supervision and without

TTR generalizes significantly better to the C3VD data, as our LightDepth self-supervised

model is closer to the physical phenomena than Depth GT supervision. Again, note that

single-view self-supervision removes completely the domain shift effect, as models can be
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Dataset Depth [mm] Normals [◦]
Train Test Supervision MAE ↓ MedAE ↓ RMSE↓ MAE ↓

Synt. Synt.
Depth GT 4.37 2.99 6.38 25.1
Light 4.76 2.47 8.60 15.2

Synt. C3VD

Depth GT 9.44 5.79 12.83 73.7
Light 5.09 3.51 7.14 27.7
Depth GT (TTR) 4.96 3.14 7.11 25.4
Light (TTR) 3.80 2.51 5.54 23.6

C3VD C3VD
Depth GT 4.15 3.29 5.52 26.5
Light 4.37 2.92 6.31 24.0
Light (TTR) 3.72 2.59 5.43 23.5

Table 4.5: Synthetic-to-real domain shift. Best results in C3VD test set are boldfaced, second
best are underlined. Note the domain shift effect between Synt. and C3VD test data in
the bigger errors, and how TTR removes the domain shift effect completely. Notably, our
LightDepth TTR delivers similar errors than the models without domain shift, trained in
C3VD.

trained directly in the target domain. Very remarkably, the performance of our models with

domain shift after TTR matches the performance of the models without domain shift.

Figure 4.11 shows examples of Open3d [Zhou et al., 2018b], in-house, U-Net and TFtN

[Fan et al., 2021] used in the analysis.

Normals from depth

The literature details different manners to obtain surface normals from a depth map,

e.g., [Fan et al., 2021, Boulch and Marlet, 2016]. Table 4.10 shows a MAE analysis of

the most promising ones in C3VD. Specifically, we evaluate four methods: a U-net trained

to regress normals from depth, the recent TFtN method [Fan et al., 2021], the implementation

in Open3D [Zhou et al., 2018b] that computes normals from a k-nearest neighbourhood in

the point cloud, and an in-house method that uses six-neighbourhood in the image. Figure

4.11 shows examples of Open3d [Zhou et al., 2018b], in-house, U-Net and TFtN [Fan et al.,

2021] used in the analysis. Our analysis shows that an analytic average in a neighbourhood

is significantly better than a U-Net and TFTN, and our in-house method that considers a

neighbourhood in the image is slightly better, so this last one was our choice.

Method MAE [◦]
U-Net 16.24

TFtN [Fan et al., 2021] 3.89
Open3D [Zhou et al., 2018b] 1.67

In-house 1.32

Figure 4.10: Normal’s MAE for baseline methods.
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Figure 4.11: Quantitative results of different approaches to obtaining surface normals from
a depth map.

Ablation study on the loss

In Table 4.6, we ablate the terms of our loss function. The smoothness prior (Ls term) is

remarkably beneficial for both depth and normal prediction. When we do not take advantage

of the information of the specular reflections (no Lsp term), we obtain worse results. Adding

this new loss term, we see how all the depth and normal metrics improve, especially in

the median error, which outperforms the supervised and now matches that obtained in the

simulation experiment. Still, the depth MAE and RMSE are slightly higher than those of the

baseline due to the far spurious points.

4.4.4 Qualitative results in real endoscopy

We now turn to real images of a human colon from the EndoMapper dataset and present

qualitative results in Figure 4.12, Figure4.13 and Figure 4.14. Some details are recovered

very accurately, such as the normal maps showing clearly the tubular shape; the depth maps

reflecting the discontinuities in the Haustras; the albedos capturing the blood vessels, in

particular in the 5th column; and the bubbles and fluids colors in the 6th and 7th columns,

which make the 3d reconstruction of these bubbles and fluids very plausible.

Unfortunately, there is no ground-truth data available for this dataset, which prevent us

from presenting quantitative results, and we do not know of any other dataset with real

colonoscopy images that includes ground-truth data. Nevertheless, visual inspection of our

Depth [mm] Color Normals [◦]
Loss MAE ↓ MedAE ↓ RMSE↓ MAE ↓ MAE ↓
Lp 6.05 3.93 8.79 0.0637 35.5

Lp + Ls 4.95 3.04 7.23 0.0690 24.6
Lp + Ls + Lsp 4.37 2.92 6.31 0.0657 24.0

Table 4.6: Ablation study of the losses with LightDepth U-Net in C3VD dataset. Observe
the improvement given by each term.
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Figure 4.12: Qualitative results on EndoMapper with LightDepth DPT. In colonoscopies,
observe that the normals exhibit a tubular shape specific of the colon. The albedo prediction
captures disruptions such as veins, dirt, foam and specularites. Note the influence of light
decline in the image and the correlation with the estimated depths.
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Figure 4.13: Qualitative results on EndoMapper with LightDepth DPT. The albedo
prediction captures blood. Note the influence of light decline in the image and the correlation
with the estimated depths.
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Figure 4.14: Qualitative results on EndoMapper with LightDepth DPT.
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results hints that the strengths of our techniques demonstrated quantitatively in Section 4.4.3

will carry over on truly realistic scenarios like this one.

4.5 Limitations and discussion

As mentioned in Section 4.3.2, our depth predictions are up-to-scale. Even if the camera

auto-gain were available, the albedo scale may be challenging to learn, so estimating the real

scale is not straightforward. In any case, other methods such as multi-view self-supervision

or synthetic-to-real cannot guarantee an accurate estimation of the scale either. We assume

that Lambertian reflectance is prevalent in most tissues, and for areas where this does not

hold, we use a basic model to capture specularities. Further research could focus on the

application of more sophisticated photometric models that cover specularities, e.g., the

Phong model.

Thanks to our priors on albedo and depth, we successfully disentangle both factors in

our experiments. However, our V = 100 prior might not hold in areas of clotted blood or

with very dark albedos, e.g., because of a disease. These priors might need to be tuned in

new application domains for enhanced performance. Finally, although we demonstrate this

technology in the context of endoscopy, its principles are applicable in any setup in which

the only light source is close to the target surface and rigidly attached to the camera. In other

words, our LightDepth has the potential to open research avenues in many other domains.

4.6 Conclusions

In this chapter, we have proposed, for the first time, a single-view self-supervision

method for depth learning, which we denote LightDepth, that exploits and is limited to

the case of a single spotlight source co-located with a monocular camera, a case that

includes, among others, the relevant application of medical endoscopy. As our main

contribution, we developed the specific self-supervised learning setup that models the

quadratic light decline and enables self-supervised learning. We have implemented two

different architectures, a first one based on convolutions and a second one based on

transformers, and evaluated their performance against ground-truth supervision, multi-view

self-supervision, and domain transfer approaches. Our results show that LightDepth

outperforms multi-view self-supervision and synthetic-to-real transfer and matches the

performance of fully supervised approaches. Not only that, its training and test-time

refinement setup is significantly simpler: LightDepth only requires a reasonable endoscope

calibration and does not require camera motion estimation nor ground-truth labels nor

realistic simulations, all of them challenging in endoscopies. This unlocks, from a practical

79



point of view, relevant potential applications in the medical domain.
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Chapter 5

Conclusions and Future work

In this thesis, we investigate several aspects related to depth estimation from a single

view, presenting a number of contributions. Specifically, our contributions focus on

self-supervision and uncertainty quantification.

In the work described in the first chapter, we have made several findings related to

uncertainty quantification with Bayesian deep neural networks for supervised learning of

single-view depth. Among the most relevant it is the insight that the specific layers in

which MC dropout is applied in a Bayesian neural architecture plays a critical role in

determining the accuracy of both depth and uncertainty estimates. In our experiments,

deep ensembles stand out as the method with the best uncertainty calibration. However,

the application of MC dropout, when done in the encoder, manifested a performance

that outperformed other variants highlighted in the literature. We observed that aleatoric

uncertainty is relatively straightforward to capture. Nonetheless, it is important to highlight

the relevance of epistemic uncertainty, which our research identified as a significant part

of the total uncertainty. Current scalable methods still have room for improvement, and

achieving a reasonable calibration of the uncertainty remains an open goal.

In Chapter 3, on the uncertain single-view depths in colonoscopies, we conduct

research on single-view depth uncertainty quantification, in this case with focus in medical

colonoscopy images, bringing a novel perspective to the established literature. Our main

motivation is highlighting the importance of both accurate depth and uncertainty estimations

in medical imaging. Specifically, in colonoscopy images, depth uncertainty is most prevalent

in specular reflections and overexposed regions, dark areas where the color signal is weaker

and depth discontinuities such as haustra. We demonstrate empirically that the uncertainty

captured by deep ensembles behaved coherently when a domain change occurred. This

finding has a high relevance, as in the endoscopic domain it is very difficult or impossible to

have ground truth annotations, and hence simulation-to-real domain transfer is common.

Our research also led to the development of a novel self-supervised method based on

an uncertainty-aware teacher-student architecture. Our novel architecture incorporates
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the teacher uncertainty into the learning pipeline. Our experiments show a notable

efficiency in reducing depth errors and improving the uncertainty calibration compared to its

predecessors. While our method represents a promising advance, its effectiveness is largely

dependent on the skill of the teacher model. New techniques need to be developed not only

to capture uncertainty, but also to be able to apply it to deep learning.

Finally, in the fourth chapter, we propose a new single-view self-supervised learning

that models quadratic light attenuation and unlocks single-view self-supervised learning in

natural medical images. Our so-called LightDepth method offers an original approach to

depth self-supervision. It enables consistent depth estimation without the need for ground

truth supervision, based on the use of illumination as a supervisory signal for depth. Our

research shows that the illumination-decline self-supervision is significantly superior to

multi-view self-supervision, and even matches ground truth supervision. Moreover, and as a

result of using just a single view for self-supervision, a distinct advantage of our method is

its ability to refine on-the-fly during testing, which further improves the depth predictions.

Our results indicate that while supervised approaches can often be effective for

endoscopic vision, their performance is also limited by the particularities of the use case,

specifically the lack of depth sensors in minimally invasive procedures and hence the

difficulty of capturing data with depth annotations. We also observed that multi-view

self-supervision is limited by the difficulties of estimating relative motion from colonoscopy

images, which is also a research challenge in itself. We believe that our results open

a promising path, as our single-view self-supervision overcomes the limitations of both

approaches and does only requires RGB data, which does not pose serious difficulties for

being acquired .
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Conclusiones y trabajo futuro

En esta tesis, se investiga varios aspectos relacionados con la estimación de profundidad

desde una única vista. Las contribuciones se enfocan en sistemas de aprendizaje

autosupervisado y en la cuantificación de incertidumbre en redes neuronales profundas. En

el primer capı́tulo, hemos aportado varios descubrimientos relativos a la cuantificacion de

incertidumbre para la estimación de profundidad con redes bayesianas profundas en un

aprendizaje supervisado utilizando una única vista. Entre los más relevantes se encuentra

la observación de que la aplicación de MC dropout en diferentes capas de la arquitectura de

la red tiene un papel determinante respecto a la precisión de la estimación de profundidad

e incertidumbre. En nuestros experimentos, deep ensembles destaca como el método con

mejor calibración de incertidumbre. Sin embargo, la aplicación de MC dropout, cuando se

hace en el encoder, ha demostrado un rendimiento mayor que otras variantes de la literatura.

Hemos observado que la incertidumbre aleatórica es razonablemente fácil de capturar. No

obstante, es importante destacar la relevancia de la incertidumbre epistémica como una parte

significativa de la incertidumbre total. Los métodos escalables tienen todavı́a potencial

de mejora, dado que, lograr una calibración perfecta de la incertidumbre sigue siendo un

objetivo abierto.

En el Capı́tulo 3, realizamos una investigación sobre la cuantificación de la incertidumbre

respecto a la estimación de profundidad. En este caso, nos enfocamos en las imágenes

médicas de colonoscopia, aportando una perspectiva novedosa a la literatura establecida.

Nuestra motivación es resaltar la importancia de estimaciones precisas y calibradas con

respecto a la profundidad y la incertidumbre en las imágenes médicas. En concreto, en

las imágenes de colonoscopia, la incertidumbre de profundidad es más pronunciada en los

reflejos especulares y las regiones sobreexpuestas, en zonas oscuras donde la señal de color

es más débil y también las discontinuidades de profundidad, como las haustras. Se demuestra

empı́ricamente que la incertidumbre capturada por deep ensembles se comporta de forma

coherente cuando se produce un cambio de dominio. Este hallazgo tiene una gran relevancia,

ya que en el dominio endoscópico es muy difı́cil disponer de anotaciones ground truth y, por

lo tanto, la transferencia de dominio de simulación a real es una práctica común.

En nuestra investigación proponemos un novedoso método autosupervisado basado en
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una arquitectura teacher-student que incorpora la incertidumbre del teacher en el proceso

de aprendizaje. Nuestros experimentos muestran que existe una notable eficacia a la

hora de reducir los errores de profundidad y mejorar la calibración de la incertidumbre

en comparación con otros métdos de aprendizaje. Nuestro método representa un avance

prometedor, aunque su eficacia depende en gran medida de la habilidad del teacher.

Por último, en el cuarto Capı́tulo, proponemos un nuevo aprendizaje autosupervisado

desde una única vista, el cual modela la atenuación cuadrática de la luz y desbloquea el

aprendizaje autosupervisado de una sola vista para imágenes médicas naturales. Nuestro

método denominado LightDepth ofrece un nuevo enfoque para la autosupervisión de la

profundidad, ya que permite una estimación de profundidad sin la necesidad de supervisión

con ground truth, basándose en el uso de la iluminación como señal supervisora. Nuestra

investigación demuestra que la autosupervisión utilizando la información de la iluminación

es significativamente superior a la autosupervisión multivista, e incluso iguala a los métodos

de supervisión con ground truth. Dado que el aprendizaje propuesto requiere únicamente el

uso de una sola vista para el entrenamiento, hace que nuestro método sea capaz de refinar

sus predicciones con una optimización local, lo que mejora aún más las predicciones de

profundidad.

Nuestros resultados indican que, aunque los métodos supervisados pueden ser eficaces

para la visión endoscópica, su rendimiento se ve limitado por las particularidades del entorno.

La falta de sensores de profundidad en los procedimientos mı́nimamente invasivos supone

una dificultad a la hora de capturar datos con anotaciones de profundidad ground truth,

valiosos para el entrenamiento supervisado. Finalmente, observamos que la autosupervisión

multivista se ve limitada por las dificultades para estimar el movimiento relativo de la cámara

entre imágenes, lo que también constituye un reto de investigación en sı́ mismo. Creemos que

nuestros resultados abren un camino prometedor, la autosupervisión de una sola vista supera

las limitaciones de ambos enfoques y sólo requiere datos RGB, que no plantean dificultades

para ser adquiridos.
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Kağan İncetan, Ibrahim Omer Celik, Abdulhamid Obeid, Guliz Irem Gokceler,

Kutsev Bengisu Ozyoruk, Yasin Almalioglu, Richard J Chen, Faisal Mahmood, Hunter

Gilbert, Nicholas J Durr, et al. VR-Caps]: a virtual environment for capsule endoscopy.

Medical image analysis, 70:101990, 2021.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1125–1134, 2017.

Yuji Iwahori, Shun Emoto, Kenji Funahashi, M. K. Bhuyan, Aili Wang, and Kunio Kasugai.

Recovering shape and size from a single endoscope image using optimization. In 2022

12th International Congress on Advanced Applied Informatics (IIAI-AAI), pages 331–334,

2022. doi: 10.1109/IIAIAAI55812.2022.00073.

Sergio Izquierdo and Javier Civera. Sfm-ttr: Using structure from motion for test-time

refinement of single-view depth networks. In IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2023.

Adrian Johnston and Gustavo Carneiro. Self-supervised monocular trained depth estimation

using self-attention and discrete disparity volume. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4756–4765, 2020.

Rawen Kader, Anton Cid-Mejias, Patrick Brandao, Shahraz Islam, Sanjith Hebbar,
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