
2024 188

Rodrigo Aldana López

Distributed cooperation
under perception latency
and network constraints

Director/es
Aragües Muñoz, Rosario
Sagüés Blázquiz, Carlos

Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Rodrigo Aldana López

DISTRIBUTED COOPERATION UNDER
PERCEPTION LATENCY AND NETWORK

CONSTRAINTS

Director/es

Aragües Muñoz, Rosario
Sagüés Blázquiz, Carlos

Tesis Doctoral

Autor

2024

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Tesis Doctoral

Distributed cooperation under
perception latency and network constraints

Autor

Rodrigo Aldana López

Director/es

Rosario Aragües Muñoz
Carlos Sagüés Blázquiz

Escuela de Ingeniería y Arquitectura
Departamento de Informática e Ingeniería de Sistemas

2023

Repositorio de la Universidad de Zaragoza – Zaguan
http://zaguan.unizar.es

Ph.D. Thesis

Distributed cooperation under
perception latency and network constraints

Rodrigo Aldana López

Supervisors: Rosario Aragüés
Carlos Sagüés

December 2023

Ph.D. Thesis

Distributed cooperation under
perception latency and network constraints

Rodrigo Aldana López

Ph.D. Program in Systems Engineering and Computer Science
Universidad de Zaragoza

December 2023

Supervisors:
Rosario Aragüés Universidad de Zaragoza, Spain
Carlos Sagüés Universidad de Zaragoza, Spain
Examiners:

International reviewers:
David Gómez-Gutiérrez Intel Labs, México
Michael Defoort University of Valenciennes, France

ii

This work was supported by the following agencies/projects:

- MCIN/AEI/10.13039/501100011033, by ERDF A way of making Europe and by the
European Union NextGenerationEU/PRTR under projects PID2021-124137OB-I00
and TED2021-130224B-I00.

- Gobierno de Aragón under projects DGA T45-17R and DGA T45-23R.

- COMMANDIA SOE2/P1/F0638 (Interreg Sudoe Programme, ERDF).

- PGC2018-098719-B-I00 (MCIU/ AEI/ FEDER, UE)

- Universidad de Zaragoza and Banco Santander

- Consejo Nacional de Ciencia y Tecnología (CONACYT-Mexico) unders scholarship
number 739841.

Resumen

Los sistemas multi-robot están adquiriendo cada vez más importancia para tareas colab-
orativas, permitiendo aplicaciones que un solo robot no podría manejar por sí solo. Una
de estas complejas tareas es la coordinación de múltiples robots para seguir objetivos, con
aplicaciones en la transmisión deportiva, la vigilancia, la cinematografía y los sistemas de
transporte. Sin embargo, es esencial reconocer las limitaciones prácticas impuestas por
los recursos de hardware limitados en estos robots, lo que hace que la colaboración sea
aún más desafiante.

En esta tesis, nos centramos en abordar los desafíos en sistemas multi robot que operan
en entornos de hardware con recursos limitados, particularmente abordando problemas
relacionados con la latencia de percepción y las limitaciones de la red de comunicación.
Nuestro marco para el control colaborativo de formaciones alrededor de objetivos en
movimiento abarca diversos escenarios que toman en cuenta el uso de recursos. Inicial-
mente, exploramos escenarios en los que los robots tienen capacidades de percepción
a bordo, alimentando datos sin procesar a un mecanismo de percepción, introduciendo
una latencia que afecta a la auto-localización y localización del objetivo. Esto plantea
un compromiso en el cual una mayor latencia puede mejorar la calidad de la medición
a expensas de utilizar datos más antiguos. Además, analizamos situaciones en las que
los robots están sujetos a limitaciones de energía y recursos de CPU, lo que requiere la
calendarización de la latencia de percepción para aumentar el rendimiento. Por último,
analizamos la comunicación entre robots a través de una red, considerando instantes de
tiempo discretos asíncronos, sujetos a retrasos y a la conexión o desconexión espontánea
de otros robots.

En este contexto, presentamos varias herramientas para abordar incrementalmente
cada uno de los problemas previamente descritos en un entorno de control de formación
multi-robot y seguimiento de objetivos. En la primera parte de esta tesis, se introducen
técnicas de calendarización de latencia de percepción para el control local de un robot y
para la estimación del objetivo. Desde la perspectiva del control, discutimos el desafío de
mantener la estabilidad de lazo cerrado del sistema bajo la calendarización de latencia de
percepción y proponemos técnicas de calendarización que preservan la estabilidad. Desde
la perspectiva de la estimación del objetivo, discutimos técnicas de estimación óptima y
posibles explosiones combinatorias para el problema de programación. Proponemos una
solución eficiente y arbitrariamente precisa para este problema y verificamos su efectividad
en simulación y datos reales.

La segunda parte de este documento estudia la herramienta principal propuesta en

iii

iv

este trabajo para la colaboración en cuanto al intercambio de información: el consenso
dinámico. Introducimos el concepto de Consenso Dinámico Exacto (EDC por sus siglas
en inglés), que requiere que se logre la convergencia a la señal de consenso dinámico de
manera exacta, independientemente de si las variables de entrada están variando persis-
tentemente. Comenzamos estudiando las soluciones de EDC en tiempo continuo y en
redes de comunicación fijas. Luego extendemos progresivamente a redes abiertas donde
los agentes se conectan y desconectan de la red y al caso de comunicación en tiempo
discreto asíncrona bajo retrasos. En la tercera parte del documento, discutimos cómo las
técnicas de EDC pueden utilizarse para mejorar la localización del objetivo en un entorno
multi-robot y aplicamos estas estrategias a un problema de control de formación.

Una de las características más esenciales que distingue este trabajo del resto de la
literatura es el uso de algoritmos de consenso no lineales basados en modos deslizantes de
alto orden. Mostramos que estos algoritmos pueden superar a sus contrapartes lineales en
presencia de ruido y a sus contrapartes de modos deslizantes de primer orden existentes
bajo comunicación en tiempo discreto.

También discutimos cómo las soluciones propuestas en esta tesis se extienden más
allá del contexto del control de formación. Las técnicas de calendarización de latencia de
percepción pueden aplicarse a problemas genéricos de control y estimación. Además, las
técnicas de EDC sirven como soluciones genéricas de cómputo distribuido de derivadas.
Estas características hacen que nuestras herramientas sean atractivas para la estimación
de estado distribuida general para sistemas de entrada desconocida como alternativa al
filtrado de Kalman distribuido.

Parte de los resultados de esta tesis se han publicado en revistas de alto impacto: [1–3]
en Automatica, [4] en Information Fusion, [5] en ISA Transactions. Varios resultados se
han presentado en conferencias internacionales de alto impacto: [6] en 22th IFAC World
Congress, [7] en 21th IFAC World Congress, [8] en 59th IEEE Conference on Decision and
Control (CDC). Los resultados más recientes [9] se han enviado a IEEE Transactions on
Automatic Control. Además de estas publicaciones, participamos en el desarrollo de otros
trabajos relacionados resultantes de colaboraciones con diversos miembros del Departa-
mento de Informática e Ingeniería de Sistemas (DIIS) de la Universidad de Zaragoza,
así como colaboraciones fuera de la Universidad con instituciones en México, España,
Argentina, Austria, Francia e Italia [10–27].

Summary

Multi-robot systems are becoming increasingly important for collaborative tasks, allow-
ing for applications that a single robot could not handle alone. One such complex task
is coordinating multiple robots to track targets, which finds use in sports broadcasting,
surveillance, cinematography, and transportation systems. Yet, it’s essential to acknowl-
edge the practical limitations posed by constrained hardware resources in these robots,
making collaboration even more challenging.

In this thesis, we focus on addressing challenges in multi-robot systems operating
within resource-constrained hardware environments, particularly tackling issues related
to perception latency and communication network limitations. Our framework for col-
laborative formation control around moving targets encompasses various resource-aware
scenarios. Initially, we explore scenarios where robots possess onboard sensing capabil-
ities, feeding raw data to a perception mechanism, introducing a latency that affects
self-localization and target localization. This raises a trade-off in which an increasing
latency can enhance measurement quality at the cost of using older data. Additionally,
we analyze situations where robots are subject to limited power and CPU resources,
requiring scheduling of perception latency to increase performance. Lastly, we analyze
communication among robots through a network, considering asynchronous discrete time
instants, subject to delays and spontaneous connection or disconnection of other robots.

In this context, we present several tools to incrementally tackle each of the previously
described problems in a multi-robot formation control and target tracking setting. In the
first part of this document, perception latency scheduling techniques are introduced for
local control of a robot, and target estimation. From the control perspective, we discuss
the challenge of maintaining closed-loop stability of the system under perception latency
scheduling and propose stability-preserving scheduling techniques. From the target esti-
mation perspective, we discuss optimal estimation techniques and potential combinatorial
explosions for the scheduling problem. We propose an efficient and arbitrarily accurate
solution for this problem and verify its effectiveness in simulation and real data.

The second part of this document studies the primary tool proposed in this work
for collaboration regarding information exchange: dynamic consensus. We introduce the
concept of Exact Dynamic Consensus (EDC), which requires convergence to the dynamic
consensus signal to be achieved exactly, regardless if the input variables are persistently
varying. We start by studying EDC solutions in continuous-time and fixed communication
networks. We extend progressively to open networks where agents connect and disconnect
from the network and to the case of asynchronous discrete-time communication under

v

vi

delays. In the third part of the document, we discuss how EDC techniques can be used
to improve target localization in a multi-robot setting and apply these strategies to a
formation control problem.

One of the most essential features distinguishing this work from the rest of the liter-
ature is the usage of nonlinear consensus algorithms based on high-order sliding modes.
We show that these algorithms can outperform their linear counterparts in the presence
of noise and their existing first-order sliding mode counterparts under discrete-time com-
munication.

We also discuss how the solutions proposed in this thesis extend beyond the context
of formation control. The perception latency scheduling techniques can be applied to
generic control and estimation problems. In addition, the EDC techniques serve as generic
distributed differentiation solutions. These features make our tools appealing for general
distributed state estimation for unknown input systems as an alternative to distributed
Kalman filtering.

Part of the results in this thesis have been published in high-impact journals: [1–3]
in Automatica, [4] in Information Fusion, [5] in ISA Transactions. Several results have
been presented in high-impact international conferences: [6] in the 22th IFAC World
Congress, [7] in the 21th IFAC World Congress, [8] in the 59th IEEE Conference on
Decision and Control (CDC). The most recent results [9] have been submitted to IEEE
Transactions on Automatic Control. In addition to these publications, we participated
in the development of other related works resulting from collaborations with various
members of the Department of Computer Science and Systems Engineering (DIIS) of the
University of Zaragoza, as well as collaborations outside of the University with institutions
in Mexico, Spain, Argentina, Austria, France, and Italy [10–27].

Contents

1 Introduction 1
1.1 Resource Aware Systems . 3

1.1.1 Perception latency and accuracy trade-off 3
1.1.2 Network induced constraints . 6
1.1.3 Resource aware framework for formation control 7

1.2 Literature review . 9
1.3 Objectives . 11
1.4 Contributions . 11

1.4.1 Research output . 13
1.5 Document organization . 16

2 Perception Latency Scheduling In Control 17
2.1 Related work . 19
2.2 Problem statement . 20
2.3 Stability preserving perception schedules 22
2.4 Non-conservative admissibility checking 25

2.4.1 Regular points analysis . 26
2.4.2 Non-regular points analysis . 27
2.4.3 Admissibility checking algorithm 28

2.5 Towards optimal scheduling . 29
2.6 Simulation examples . 31

2.6.1 Double integrator . 31
2.6.2 Particle mobile robot . 34

2.7 Discussion . 35
2.8 Proofs . 36

2.8.1 Proof of Theorem 2.6 . 36
2.8.2 Proof of Theorem 2.7 . 37
2.8.3 Proof of Corollary 2.8 . 38
2.8.4 Proof of Theorem 2.11 . 38
2.8.5 Proof of Corollary 2.13 . 40
2.8.6 Proof of Proposition 2.14 . 40
2.8.7 Proof of Proposition 2.17 . 41
2.8.8 Proof of Proposition 2.18 . 41

vii

CONTENTS viii

2.8.9 Proof of Theorem 2.20 . 41

3 Perception Latency Scheduling In Estimation 43
3.1 Related work . 44
3.2 Problem statement . 44
3.3 Perception-latency aware estimation . 46
3.4 Scheduling policy . 47

3.4.1 Quantized covariance approach . 49
3.5 Moving horizon PLATE . 54
3.6 Numerical experiments . 55

3.6.1 Numerical covariance bound estimation 56
3.6.2 Cost comparison using qDP . 56
3.6.3 Moving-horizon PLATE scheduling 57

3.7 Evaluation on real data . 58
3.7.1 Evaluation framework . 60
3.7.2 Performance of the implemented pipeline 64

3.8 Discussion . 65
3.9 Proofs . 67

3.9.1 Proof of Theorem 3.4 . 67
3.9.2 Proof of Proposition 3.5 . 67
3.9.3 Proof of Proposition 3.6 . 68
3.9.4 Proof of Proposition 3.7 . 71
3.9.5 Proof of Theorem 3.8 . 71

4 Exact Dynamic Consensus (EDC) 73
4.1 Related work . 74
4.2 Problem statement . 75
4.3 The EDCHO algorithm . 76
4.4 Towards convergence of EDCHO . 77
4.5 Contraction property of EDCHO . 78

4.5.1 Contraction for tree graphs . 78
4.5.2 Contraction for general connected graphs 82

4.6 Parameter design for EDCHO . 84
4.7 Convergence of EDCHO . 84
4.8 Simulation examples . 86
4.9 Discussion . 87

5 Robust EDC For Open Networks 91
5.1 Related work and Problem statement . 92
5.2 REDCHO . 92
5.3 Towards convergence of REDCHO . 93
5.4 Convergence of the consensus components of REDCHO 96
5.5 Convergence of the consensus error . 97
5.6 Convergence of REDCHO . 103
5.7 Simulation examples . 104
5.8 Discussion . 107

ix CHAPTER 0

6 Distributed Differentiation Protocol 111
6.1 Related work . 112
6.2 Problem statement . 113
6.3 The protocol . 113
6.4 Protocol convergence . 115

6.4.1 Proof of Theorem 6.3 . 119
6.5 Simulation examples . 120
6.6 Discussion . 122

7 Perception Latency Aware Formation Control 125
7.1 Related work . 126
7.2 Problem statement . 127

7.2.1 Solution outline . 128
7.3 Smooth-output estimation . 129
7.4 Estimation fusion . 132
7.5 Formation control . 135
7.6 Simulation examples . 135

7.6.1 Single robot . 136
7.6.2 Multi-robot . 136
7.6.3 Ablation and parameter analysis 139

7.7 Discussion . 140
7.8 Proofs . 142

7.8.1 Proof of Theorem 7.5. 142
7.8.2 Proof of Lemma 7.8 . 143
7.8.3 Proof of Theorem 7.11 . 143

8 EDC Under Asynchronous Communication 145
8.1 Related work . 146
8.2 Problem statement and protocol proposal 146

8.2.1 Non-cooperative sampling . 149
8.2.2 Symmetric communication delays 150

8.3 Exact solution for the dynamic evolution 151
8.4 Convergence analysis . 152

8.4.1 Auxiliary results for nominal asynchronous communication 152
8.4.2 Convergence under nominal asynchronous communication 156
8.4.3 Non-nominal asynchronous communication 157

8.5 Numerical experiments . 158
8.6 Discussion . 159

9 Conclusions 163

Appendices 169

A Sampled-data stochastic linear systems 171

B C? sets and gauge functions 173

C Auxiliary results in vector and matrix analysis 175

CONTENTS x

D Auxiliary results in algebraic graph theory 177

E Exact differentiation 179

F Homogeneous differential inclusions 181

Bibliography 182

Notation

STANDARD SETS

N Natural numbers
Z Integer numbers
Q Rational numbers
R Real numbers
R≥0 Non-negative real numbers
R>0 Positive real numbers
R̄ R ∪ {−∞,∞}
Rn n-dimensional Euclidean space
{ak}k2

k=k1
Sequence {ak1 , . . . , ak2}, k1, k2 ∈ Z

SET OPERATIONS

|S| Cardinality of a set S
len(a) Length m of a sequence a = {ai}mi=1
A×B Cartesian product of sets A,B
An A× · · · ×A (n times) for set A
∂S Boundary of a set S ⊂ Rn
int(S) Interior of a set S ⊂ Rn (S \ ∂S)
P(S) Power set of S
min{•},max{•} Minimum and maximum operators
inf(•), sup(•) Infinimum and supremum operators

xi

NOTATION xii

VECTORS AND MATRICES

bold lower-case Vectors
bold Upper-case matrices
(•)> Transpose
tr(•) Trace operator
vec(•) Vectorization operator
blockdiag(•, . . . , •) Block diagonal operator
diag(x) ∈ Rn×n diagonal matrix with x ∈ Rn as the diagonal
diag(M) ∈ Rn Vector composed by the diagonal elements of M ∈ Rn×n
⊗ Kronecker product
[A]ij ,Aij element i, j of a matrix A
‖A‖F Frobenious norm

(√∑n
i=1
∑n
j=1[A]2ij

)
A � B A−B positive definite
A � B A−B positive semi-definite

STANDARD VECTORS AND MATRICES

1n n-dimensional vector of ones ([1, . . . , 1]> ∈ Rn)
1 Same as 1n, where n is understood by context
In n-dimensional identity matrix
I Same as I, where n is understood by context
0n×m n×m zero matrix
0 Same as 0n×m where n,m are understood by context

ANALYSIS

∂V
∂x

[
∂V
∂x1

, . . . , ∂V∂xn

]
for scalar function V : Rn → R

LFV Lie derivative of V : Rn → R with F : Rn → Rn

xiii CHAPTER 0

FUNCTIONS OF TIME

t, k Time variables in continuous and discrete time respectively
x(t) Continuous time signal
x[k] Evaluation of x(t) at instants {τk}∞k=0
ẋ(t), ẍ(t) First and second time derivatives of x(t)
x(µ)(t) µ-th time derivative of x(t)

PROBABILITY

N (x̄,P) Gaussian distribution with mean x̄ and covariance P
E{•} Expectation operator
cov{•, ∗} Covariance operator (E{(• − E{•})(∗ − E{∗})>})
cov{•} cov{•, •}

SPECIAL FUNCTIONS AND SYMBOLS

sign(x)


1 if x > 0
0 if x = 0
−1 if x < 0

dxcα |x|αsign(x)
dxcα [dx1cα , . . . , dxncα]> where x = [x1, . . . , xn]>
dMcα Similar to dxcα for each element of matrix M(
µ
ν

)
Binomial coeficient

NOTATION xiv

Acronyms

ANN Anytime Neural Network.

DAC Dynamic Average Consensus.

DAT Dynamic Average Tracking.

DC Dynamic Consensus.

DDP Distribution Differentiation Protocol.

DOE Discontinuous Optimal Estimation.

EDC Exact Dynamic Consensus.

EDCHO EDC of High Order.

FOSM First Order Sliding Modes.

GPS Global Positioning System.

HGO High Gain Observers.

HOSM High Order Sliding Modes.

IMU Inertial Measurement Units.

IoT Internet of Things.

LMI Linear Matrix Inequality.

MAP Mean Average Precision.

MPC Model Predictive Control.

MSE Mean Squared Error.

OMAS Open Multi-Agent Systems.

PLATE Perception LATency Aware Estimator.

RAS Resource Aware Systems.

xv

ACRONYMS xvi

RED Robust Exact Differentiators.

REDCHO Robust EDCHO.

RMS Root Mean Squared.

SDE Stochastic Differential Equation.

SLAM Simultaneous Localization and Mapping.

SOE Smooth-Output Estimation.

SP2 Stability Preserving Scheduling Policies.

SVO Semi-direct monocular Visual Odometry.

Chapter One

Introduction

Multi-robot systems are becoming increasingly important in our modern world. The use
of these systems involve developing and deploying robots capable of interacting and col-
laborating with each other and their environment in order to fulfill some prescribed task.
Multi-robot systems offer unique advantages, such as improved robustness, scalability,
and the ability to tackle complex tasks that would be challenging or impossible for a
single robot.

Formation control of multiple mobile robots for target tracking is an actively re-
searched problem with diverse applications [28, 29]. The objective is to enable a team of
robots to collaboratively detect the target’s location and strategically position themselves
around it to gather valuable information. This problem has garnered significant attention
due to its relevance in various domains. For instance, in sports broadcasting, a team of
robots can track athletes like skiers, runners, cyclists, and other sports enthusiasts, as de-
picted in Figure 1.1. The collected information can then be processed to create immersive
videos from multiple perspectives. However, the potential applications of formation con-
trol extend beyond sports broadcasting, finding uses in automated surveillance systems
[30, 31], aerial cinematography using drones [32], and intelligent transportation systems
[33], among numerous other examples.

Developing autonomous multi-robot systems requires to study the fundamental capa-
bilities of perception, control, planning, and communication [34].

Perception: It refers to the process of transforming raw sensor data into meaningful
information for the robot. For example, a robot with onboard cameras captures images
at regular intervals. During the perception stage, the pixel information from these images
can be processed to determine the robot’s position in relation to a known frame of ref-
erence. This perception problem referred to as localization, has been extensively studied
in the literature [35]. One possibility is to use markers or fiducials in the environment
that are detected by a camera, enabling measurement of the robot’s position relative to
these markers. Odometry, on the other hand, uses one or multiple cameras to measure
sequential displacements from an initial position. However, odometry can suffer from
error accumulation unless the robot incorporates environmental features to correct drift.
To solve this problem, a map can be constructed based on previous information. In this
context, Simultaneous Localization and Mapping (SLAM) is an active area of research

1

INTRODUCTION 2

Figure 1.1: A team of drones is deployed in order to track an athlete. In this example,
the robots, which produce measurements for the target using onboard sensors, coordinate
by sharing information (dotted lines) in order to improve the joint tracking performance.

with numerous solutions available [36, 37]. Additionally, other sensors like radar and lidar
can be integrated into these systems.

In addition to using exteroceptive sensors like vision, lidar, and radar, robots can incor-
porate proprioceptive sensors such as encoders to measure the positions and orientations
of internal links within the robot. Other sensors in this context are Inertial Measurement
Units (IMUs), which consist of accelerometers, gyroscopes, and magnetometers. Data
obtained from these sensors can be used to enhance the pose estimation of the robot [34].

Another perception problem of interest based on similar sensors is object detection in
the environment [38]. Object detection serves two purposes. Firstly, detected objects can
be used as high-level semantic features to enhance localization [39]. Secondly, objects are
detected to fulfill specific tasks such as target detection and tracking. Besides formation
control, target tracking had variety of other applications, including crowd analysis and
pedestrian intention prediction [40], gesture recognition [41], and traffic monitoring [42].

Planning: It refers to the process in which the robot determines its actions based
on its current configuration, the map, and the desired goal. The planning output typ-
ically consists of a trajectory that enables the robot to navigate the map and reach a
specific destination in the case of mobile robots. The plan can be composed of setpoints,
representing locations the robot needs to reach, a path in the map, or a comprehensive
time-dependent trajectory that considers velocities or other higher order dynamics. While
this process generates the motion plan, it is not responsible for executing it.

Control: Once the robot has information about its own state and the planned actions,
the control stage is in charge of computing and transmitting action commands to the
robot’s actuators. The actuators encompass various components such as servomotors,
wheel motors, or propeller motors, which depend on the specific mechanisms used by the
robot. The control commands are determined using the feedback provided by the error
between the current robot state and the desired state outlined in the motion plan. The
objective is to correct the state, ensuring the robot moves closer to its intended trajectory.

Communication: To enable cooperation among robots, some form of interaction
must be established. This interaction can be passive, where robots detect each other

3 CHAPTER 1

using the perception stage and adjust their plans accordingly. However, in many cases,
explicit information exchange between robots occurs through digital communication sys-
tems. This aspect has gained significance in recent times, particularly with the emer-
gence of Internet of Things (IoT) technologies, which have made fast and reliable wireless
communication devices more affordable. As a result, networked controlled systems in
numerous industrial applications have transitioned from wired sensor-actuator feedback
systems to wireless network systems. In these environments, robots can collaborate by
transmitting information to neighboring robots in the environment using on-board radios,
leveraging the capabilities of wireless communication for enhanced cooperation.

1.1 RESOURCE AWARE SYSTEMS

In addition to the previously discussed fundamental capabilities, the overall system’s per-
formance is also influenced by the characteristics of the hardware and software employed
in the platform. This aspect becomes crucial in cheap small robots, where such details
can no longer be overlooked. Factors such as sensor accuracy, processing time, sam-
pling frequency for sensors and actuators, and delays in the communication network can
significantly impact system performance.

Systems that take into account these considerations are referred to as Resource Aware
Systems (RAS) [43, 44]. Adopting a resource-aware perspective is essential for studying
the interplay between different robot capabilities. Within the scope of this work, two spe-
cific resource constraints are of particular interest: perception latency and communication
network limitations.

1.1.1 Perception latency and accuracy trade-off
The term perception latency has been defined in [45] as the time taken for the percep-
tion process to generate an output, starting from the moment when raw sensor data is
retrieved. In many algorithms, the perception latency significantly impacts the quality of
the perception output. For instance, in tasks such as localization, odometry, and SLAM,
improving the perception quality often involves using higher image resolutions, increasing
the number of features extracted from each image, or enhancing the map’s size or reso-
lution. However, these improvements generally come at the cost of increased perception
latency. This trade-off has been verified experimentally for visual odometry, localization,
and mapping in [46, 47]. In addition, it has been shown that deep learning models used
for perception share this type of trade-off as well [48].

To illustrate this perception-latency and accuracy trade-off, a study conducted in [46]
explored different parameter settings of a popular vision-based odometry solution called
Semi-Direct Monocular Visual Odometry (SVO) [48]. These results are summarized in
Figure 1.2, showing the relationship between perception error and perception latency. It
indicates that a robot (such as a drone) can obtain information about its position in the
environment with a perception latency that increases with the desired precision. In this
case, if greater accuracy is required, a more significant latency is introduced, which can
diminish the utility of the data for control purposes or render the measurements useless
if the latency becomes substantial. Moreover, while this decreasing behaviour for the
estimation error with respect to perception latency is usually expected, [46] discusses how

INTRODUCTION 4

increasing the latency may increase the error depending on the particular environment
conditions and motion of the robot.

90th percentile excecution time [ms]

E
st
im

at
io
n
er
ro
r
[m

] 0.05

0.06

0.04

0.03

0.02

30 4025 35
0.01

20

σZ

worst-case

σY

σX

Figure 1.2: Execution time (perception latency) vs estimation error experiments for the
Semi-Direct Monocular Visual Odometry (SVO) [48] used for localization on board of a
multi-rotor. Standard deviations σX, σY, σZ for the estimation error for each axis is shown
as well as the overall worst case error. The 90th percentile execution time is shown due the
variability across the experiment. Different configurations for SVO were tested, mainly
varying the maximum number of features used in the algorithm. As the execution time
increase, the error decreases for these experiments. Data borrowed from [46, Figure 9].

A similar trade-off appears in other forms of perception such as target or object
tracking. In this case a sensor (such as a camera) takes a raw measurement from the
environment (such as an image), and aims to detect in which pixels, or regions of pixels
an object of interest lies in the captured image or in a common frame of reference. The
impact of perception latency and quality becomes more apparent with the emergence of
many state-of-the-art neural network-based object detectors like [49–53]. These solutions
tend to follow scaling laws, leveraging the increasing network parameters to train on
larger datasets and achieve better generalization, enhancing object detection quality. As
expected, Figure 1.3 demonstrates how object detection accuracy increases with neural
network inference time for various popular architectures and configurations.

Therefore, the trade-off between perception latency and precision is a critical concern
in RAS. The most common approach to address this challenge is to establish a fixed
sampling step for the perception process, which is often dictated by the control task con-
sidering the mechanical speed and physical capabilities of the robot. This fixed sampling
step imposes a real-time constraint on the perception process, requiring it to produce
an output with a predetermined configuration to ensure stability guarantees in the con-
troller stage. This approach has been used repeatedly in the robotics literature, e.g. for
multi-rotor control using onboard vision sensors [18, 55, 56]

In certain cases, a known computing budget may be available for the perception
process to adapt. For instance, if higher-priority tasks are running on the computing
platform, the remaining computing resources can be estimated to allocate an appropriate

5 CHAPTER 1

Feature extractor
Inception Resnet V2
Inception V2

Inception V3

MobileNet
Resnet 101

VGG

Architecture

Faster RCNN

R-FCN

SSD

Inference time [ms]

M
ea
n
av
er
ag
e
pr
ec
is
io
n

40

35

30

25

20

15

10 2000 400 600 800 1000

Figure 1.3: Precision vs inference time experiments for different object detectors. Differ-
ent feature extractors and neural network architectures are tested (See [54] for a detailed
exposition for these variations). The mean average precision (MAP) is a composite metric
based on several other standard accuracy metrics, where a bigger MAP means a better
result. The results suggest that a bigger MAP can be obtained with diminishing returns
using configurations with bigger inference time. Data borrowed from [54, Figure 11].

perception process that fits within the budget. In this context, Anytime Neural Networks
(ANN) may be employed for neural-network-based perception methods. These networks
can produce successive output versions, gradually improving the quality until a desired
level is achieved. Such networks can be constructed using multiple hidden layers with
multiple early outputs, as demonstrated in [57, 58]. Recurrent iterative networks offer
another approach to obtaining ANN, where the network’s output is used as its input in
subsequent steps for further refinement [59].

Perception latency scheduling: Recent advancements in reconfigurable algorithms,
such as ANN with variable perception latency, suggest that control performance enhance-
ment via dynamically adjusting the perception latency based on the current system de-
mands may be possible. In specific scenarios, the required update rate for perception may
vary [60]. For instance, a stationary robot in a relatively static environment may not need
frequent perception updates compared to a fast-moving robot in a dynamic environment.
Moreover, some tasks may not prioritize precision, allowing for perception latency sav-
ings. Hence, adjusting the perception latency according to the particular situation can
be beneficial.

Furthermore, it is essential to consider that perception is just one of the tasks running
on the robot’s computing platform. Limited processing power is shared among various
tasks, including control, planning, communication, and higher-level functions like learn-
ing. Therefore, scheduling the perception latency to optimize CPU load becomes crucial

INTRODUCTION 6

for achieving autonomy in resource-constrained robots.
Moreover, sensors directly consume additional power, as observed with radar or lidar

devices. Considering the limited battery capacity carried by robots, it is energetically
sensible to maintain a small number of sensing events. Additionally, sensors typically
share I/O buses with other devices, and limiting the number of transaction events helps
prevent bus congestion.

1.1.2 Network induced constraints
To enable information exchange between multiple robots, a wireless communication net-
work is required, implying the use of radio devices and the implementation of specific
communication protocols. Various examples of communication protocols and network
stacks are employed for multi-robot systems and sensor networks, such as IEEE 802
specifications for Bluetooth [61], ZigBee [62], WiFi [63], or proprietary protocols.

However, as described in [64], these communication networks introduce certain imper-
fections that deviate from the expected nominal behavior. Several issues arising from the
network itself can be observed, including:

• Time delays: Information requires a certain amount of time to travel from one
network node to another. This delay is caused by physical travel delay, protocol
and software overhead, and re-transmissions due to errors or collisions between
communication packets.

• Clock synchronization issues among network nodes: In practical scenarios,
synchronization among nodes is imperfect. Even slight clock differences can result
in significant clock drifting over time. Moreover, this lack of synchronization hinders
agents from exchanging information periodically across the network.

• Time-varying packet transmission/sampling intervals: Despite the inten-
tion to transmit messages periodically within a single node, the protocol overhead,
network stack implementation, and re-transmissions due to errors lead to aperiodic
or asynchronous message transmission to other agents.

• Arbitrary connection and disconnection of nodes: In many real-world appli-
cations, the network configuration cannot be assumed to be static. Nodes may con-
nect or disconnect from the network based on distance constraints between robots
moving in the environment. Additionally, depending on the task at hand, it may
be beneficial to merge or split the network accordingly.

Robust open multi-robot systems: The challenges outlined earlier highlight the
need for robust solutions to address the imperfections inherent in communication sys-
tems. In this regard, the concept of Open Multi-Agent Systems (OMAS) [65] refers to a
collection of multiple agents that interact through a communication network, subject to
the random arrival and departure of agents and transmissions. Extending this concept
to develop algorithms for open multi-robot systems, resilient to time delays and irregular
transmissions becomes highly desirable in the context of this thesis.

Distributed, decentralized, and one-hop solutions: When robots use their lo-
cal sensors to gather information from the environment, there is distributed information
across the network. One approach to leverage this distributed information is to designate

7 CHAPTER 1

a leader robot or incorporate a central computing platform that receives all data and
obtains a centralized estimation of the environment. However, due to the potential issues
mentioned earlier, solutions that distribute decision-making among the robots in the net-
work are preferred over relying solely on a single leader robot or central computer. The
reason for favoring distributed decision-making is that the communication link connecting
the leader with the rest of the network, or the leader’s computational system itself, may
fail [66]. In contrast, each node in the network can act as a central node, aiming to receive
information from all other agents through a multi-hop communication setting. However,
this approach, known as flooding, also presents challenges. Firstly, information can be
further delayed due to multi-hop communication. Additionally, the network can become
congested with additional messages from each node to every other node. This renders
the flooding solution non-scalable concerning the network size, as the number of commu-
nication links grows quadratically. Furthermore, similar to a centralized framework, this
approach requires that each node has a unique identifier, which restricts its use in an
OMAS setting. As a result, a preferable RAS solution is a distributed and decentralized
framework, that uses single-hop communication [67].

1.1.3 Resource aware framework for formation control
To provide a unified perspective on the contributions of this thesis, we envision a practical
scenario where a group of robots is assigned to track a specific target, subject to the
resource constraints mentioned before. These robots are equipped with perception sensors
and wireless communication capabilities. They aim to work together to detect the target’s
location and position themselves accordingly, even if the target follows a complex and
dynamic trajectory.

We establish a shared architecture that underlies the majority of the findings presented
in this thesis, representing an abstract depiction of the capabilities of each robot involved,
as depicted in Figure 1.4. The properties of each component within this framework may
vary depending on the assumptions made about the actual real-world environment of
interest. The features of this model are described as follows:

• Hybrid system: We assume that the robot have continuous-time state space
dynamics. In contrast, we assume that the robot is equipped with a computing
platform that acts in a discrete-time setting for decision making. Henceforth, the
overall system is of hybrid nature.

• Adaptive perception modes: The robot is equipped with various sensors (cam-
eras, lidars, radars, IMUs) that capture raw samples to obtain information about
the robot’s state and the environment. This raw data is processed using a localiza-
tion module (e.g., SLAM algorithm) for robot position measurement and an object
detection module for obtaining information about the target of interest. The percep-
tion latency of these methods can be configured in real-time. This can be achieved
through a bank of interchangeable perception modules that can be swapped online,
or by anytime perception methods.

• Consensus-based information fusion: In the right section of Figure 1.4, the
object detection component generates positional information for the target. This
information may be incomplete due to occlusions or may be inaccurate. To ad-
dress these limitations, agents communicate via radio and employ information fusion

INTRODUCTION 8

Sensors (Cameras, IMU, etc.)

Target detectionLocalization

Fusion
State

estimator

Formation
reference
generationP

er
ce
p
ti
on

la
te
n
cy

sc
h
ed
u
le
r Radio

Actuators (Motors)

Perception

Control

Open
Network

Figure 1.4: Individual robot architecture for multi-robot formation control encompassing
all the features of interest in this thesis. The blue box consists on the software components
that run in the robot computing platform, with the green box being the perception stage.
Outside of the blue box are the components equipped on-board of the robot with which
it interacts with the environment: sensors, actuators and a radio to communicate with
other agents.

based on consensus techniques. The obtained positional information establishes a
formation reference for the robots, allowing them to position themselves relative to
the target within a shared frame of reference. Simplifying the planning stage, the
robots track a fixed displacement relative to the target’s position.

• Asynchronous communication over open networks: The radio depicted in
the rightmost part of Figure 1.4 allows the robot to communicate with the rest of
the robots in the network. However, we assume that the network is open in the
sense that it allows spontaneous connection or disconnection of robots, and that
only asynchronous discrete-time communication is possible.

• Perception latency aware estimation and control: In the left part of Figure
1.4, a state estimator that uses position measurements from the perception stage to
estimate the robot’s current state is included. This estimated state and the current
reference information from the planning or fusion stages are used in the control
stage. The control stage computes commands for the robot’s actuators, considering
both the estimated state and the desired reference information. These commands
are sent to the actuators, enabling the robot to execute the desired environmental

9 CHAPTER 1

movements and responses.

• Perception latency scheduling: In addition to the traditional control input
connected to the actuators, we introduce another control input or virtual actuator in
our system. This virtual actuator corresponds to the perception latency used in the
perception stage, which can be adaptively chosen. The adaptation of the perception
latency is achieved through a perception latency scheduler, whose objective is to
maintain system stability, ensure satisfactory tracking results, and optimize resource
usage. It is worth noting that the perception latency scheduler also can adjust the
control law employed by the actuators.

1.2 LITERATURE REVIEW

There are some important gaps in the literature related to the challenges of perception
latency scheduling, network constraints and resource management in the context of collab-
orative formation tracking of multi-robots. In this section, we provide a concise overview
of the main issues with current solutions and highlight notable works in each area. For a
more detailed discussion on related work, please refer to the corresponding chapters.

Perception latency schedulers for control: The literature contains various works
that highlight a similar trade-off between latency and accuracy in different contexts, in-
cluding communication in networked control systems and perception in robot systems
[46, 68, 69]. Some studies have explored scheduling sampling instants using dynamic pro-
gramming [58], event-triggered techniques [70, 71], delay-based analysis [72], and model
predictive controllers [46], among others. However, there is a lack of consideration for the
interplay between latency adaptation, resource usage, and the performance of control or
estimation tasks in general. For example, as will be explored later in this thesis, the sta-
bility of the overall closed-loop system may be compromised under arbitrary scheduling.

Perception latency schedulers for estimation: In the context of target trajec-
tory estimation with vision sensors, frame-skipping techniques have been employed to
reduce computational load. Some works have proposed event-triggered [60, 73] and ma-
chine learning-based [74] approaches for this purpose. While these methods demonstrate
promising experimental performance in specific scenarios, they heavily rely on heuristic
rules, making it difficult to provide formal guarantees on resource usage and estimation
quality for target tracking in general cases.

The multi-sensor scheduling problem is relevant in the perception scheduling context
[75, 76]. It involves scheduling multiple sensors to measure the state of a dynamical
system for control or estimation, considering a given cost function. This problem often
faces a combinatorial explosion due to the number of available sensors and the time
horizon for the cost function. There exist solutions for this problem in the literature, such
as looking only for periodic solutions [77–79], using pruning of schedules [80], applying
greedy solutions [81], or tailored made methods taking advantage the structure of the
cost function [82, 83]. However, these solutions are often very conservative or cannot be
extended for different performance metrics to be optimized, such as the RAS-based costs
we consider in this thesis.

Exact consensus under persistently varying input information: Average con-
sensus algorithms have become increasingly popular building blocks for more complicated
distributed one-hop algorithms such as distributed sensor fusion or distributed state es-

INTRODUCTION 10

timation. When the input information to be fused across the agents change in time,
dynamic consensus algorithms are employed, aiming to track time-varying average sig-
nals. The most popular approach for this problem is to rely on linear consensus [84]
updated at each agent based on information shared between neighbors. An extensive
survey of these techniques can be found in [67].

One of the most important drawbacks of these methods that draws the attention, is
that no exact convergence can be guaranteed under persistently varying input signals. In
fact, asymptotic convergence for the consensus error towards the origin is often highlighted
only when the inputs become constant asymptotically as well. In the general case, error
bounds are provided based on bounds of derivatives of the input signals. There are
algorithms in the literature achieving exact convergence even under persistently varying
inputs such as in [85], being one of the most prominent works in this context. However,
in order to achieve such exact convergence, the introduction of sliding mode control terms
need to be used in the consensus algorithm for continuous-time analysis, leading to the
introduction of chattering in actual discrete-time implementations [86].

Distributed state estimation: There are various strategies in the literature to fuse
local Kalman filter estimations through fusion centers [87, 88] or decentralized static con-
sensus methods [89], linear dynamic consensus filters [90, 91], and covariance intersection-
based consensus filters [92–94]. While most of these methods work in either continuous-
time or discrete-time, this thesis aims to incorporate a distributed state-estimator for
a hybrid system with continuous-time dynamics and discrete-time measurements due to
adaptive latency in the perception stage. However, applying standard filtering techniques
to this system for generating robot trajectories to track the target may lead to a lack of
asymptotic closed-loop stability, as discussed later in subsequent chapters.

Moreover, most of the distributed state estimation literature relies on Kalman fil-
tering theory. However, recent research has highlighted nonlinear estimation techniques
for linear systems using differentiation methods. For instance, in [95], the significance
of numerical exact differentiation for unknown-input observer design was discussed. In
this context, Robust Exact Differentiators (RED) [96] have been developed as non-linear
observers capable of achieving exact differentiation without noise for a specific class of
input signals with bounded high-order derivatives. In the presence of noise, the RED
demonstrates optimally shaped error bounds. Despite these advancements, there is a gap
in the literature as no distributed differentiator has been proposed that generalizes the
capabilities of the RED.

Asynchronous communication: Most existing distributed consensus algorithms
assume either continuous-time or discrete-time communication. In the case of discrete-
time communication, it is often assumed that communication instants are synchronized
across the network [97–99]. However, there are works that allow asynchronous commu-
nication intentionally [100–103]. Asynchronous communication can also be understood
in terms of communication delays [104, 105]. It is important to note that most of these
approaches use linear protocols, which have significant precision drawbacks as discussed
earlier. Event-triggered algorithms, such as the one proposed in [106], also produce asyn-
chronous communication instants. Despite this, it is assumed that these instants are a
controlled variable rather than arbitrary imperfections in the network, which limits their
applicability for the considered RAS context in this work.

11 CHAPTER 1

1.3 OBJECTIVES

As noted in the previous section, there is a notable gap in existing research and solutions
concerning the collaboration of robots in a setting that considers various challenges such
as perception latency, resource usage, and asynchronous communication. The main ob-
jective of this work is to advance the development of such problems in the context of the
architecture of Figure 1.4. For this purpose, the following objectives need to be addressed:

• Develop perception latency-aware scheduling solutions for control systems and tar-
get estimation, aiming for an improved resource usage.

• Develop novel information fusion techniques based on distributed, decentralized,
and one-hop dynamic average consensus.

• Develop perception latency-aware information fusion techniques for formation con-
trol.

• Analyze the performance of the proposed algorithms under network constraints such
as asynchronous communication and delays.

To fulfill these objectives, a formal framework will be employed, ensuring stability and
robustness, and proving a computational complexity analysis. The formal guarantees and
analysis in this thesis provide several practical insights as well, which will be important
when considering the implementation of RAS systems such as the one depicted in Figure
1.4.

1.4 CONTRIBUTIONS

The main contribution of this thesis is a comprehensive framework that addresses the
challenges of perception latency scheduling, network constraints and resource manage-
ment in the context of collaborative formation tracking of multi-robots. The developed
solution provides a practical framework and highlights the many challenges to be further
explored in future research.

This thesis follows an incremental approach, presenting results from simpler to more
complex settings. A modular philosophy is adopted, addressing individual modules of
Figure 1.4 separately for clarity and focus. By gradually integrating these modules, a
comprehensive understanding of the proposed solution is achieved. Table 1.1 categorizes
scenarios based on the presence or absence of perception latency affecting sensing (hor-
izontal axis) and the communication capabilities of the robots (vertical axis). The first
column and row represent mono-robot scenarios without communication or perception
latency and thus is not of interest in this work.

In this context, the contributions of this thesis are enlisted as follows:

• We provide the first-of-its-kind solutions for perception latency scheduling:

– Stability Preserving Scheduling Policies (SP2): A novel framework for
perception latency scheduling for control, ensuring closed-loop stability.

INTRODUCTION 12

Perception

Ideal Adaptive latency

C
om

m
un

ic
at
io
ns

No Standard mono-robot Control: SP2 (Chapter 2)
Estimation: PLATE (Chapter 3)

Continous-time EDCHO (Chapter 4)
Perception latency aware
formation control (Chapter 7)

OMAS REDCHO (Chapter 5)
DDP (Chapter 6)

Asynchronous
(Discrete-time) Asynchronous EDC (Chapter 8)

Table 1.1: Organization of the chapters in this thesis, according to how resource con-
straints in perception and communications are handled.

– Perception LATency Aware Estimator (PLATE): A novel estimation
framework for target tracking compatible with modern perception methods
using deep learning. Efficient approximate near-optimal solutions for percep-
tion latency scheduling are presented, addressing the combinatorial explosion
challenge.

While these results are presented in the context of a single-agent system, they can
be applied to multi-robot scenarios.

• As a basis for information fusion algorithms, we provide novel solutions for dynamic
consensus, introducing the concept of Exact Dynamic Consensus (EDC) for precise
convergence in finite time, even under persistently varying information sources of
information. Our framework effectively reduces chattering compared to existing
solutions in the literature. Three main algorithms are presented:

– EDC of High Order (EDCHO): The first EDC protocol that features high-
order sliding modes to reduce chattering.

– Robust EDCHO (REDCHO): An extension of EDCHO designed to work in
Open Multi-Agent Systems (OMAS), accommodating spontaneous connections
or disconnections of agents within the network.

– Distributed Differentiation Protocol (DDP): An extension of REDCHO
capable of accurately computing derivatives of the consensus signal, even in
the presence of measurement noise.

– Asynchronous EDC: We propose a new consensus protocol under asyn-
chronous discrete communication and OMAS. As a result, it can be directly

13 CHAPTER 1

applied in conjunction with other results in this thesis, with or without per-
ception latency scheduling, allowing to communicate only when the perception
stage produce new information.

• Perception latency aware formation control: We introduce an estimator de-
sign compatible with our consensus solutions, enabling information fusion for target
tracking under arbitrary perception latency schedules. This novel approach allows
for perception latency scheduling at each robot, marking the first incorporation of
perception latency scheduling effects in a multi-robot context.

All the methods and modules presented in this work come with a rigorous formal anal-
ysis including stability, robustness and computational complexity. Most proofs are based
on tools from control theory such as hybrid and switching systems analysis, stochastic
system analysis and optimal filtering, as well as Lyapunov and non-linear system analysis.

1.4.1 Research output
The results presented in this thesis are a compilation of several peer-reviewed publications
resulting from the work in this Ph.D.:

Journal articles:

1. R. Aldana-Lopez, R. Aragues, and C. Sagues, “Quasi-exact dynamic consensus un-
der asynchronous communication and symmetric delays,” Submitted to IEEE Trans-
actions on Automatic Control [9].

2. R. Aldana-Lopez, R. Aragues, and C. Sagues, “Perception-latency aware distributed
target tracking,” Information Fusion, p. 101857, 2023 [4].

3. R. Aldana-Lopez, R. Aragues, and C. Sagues, “PLATE: A perception-latency aware
estimator,” ISA Transactions, vol. 142, pp. 716–730, 2023 [5].

4. R. Aldana-Lopez, R. Aragues, and C. Sagues, “Latency vs precision: Stability pre-
serving perception scheduling,” Automatica, vol. 155, p. 111123, 2023 [3].

5. R. Aldana-Lopez, R. Aragues, and C. Sagues, “REDCHO: Robust exact dynamic
consensus of high order,” Automatica, vol. 141, p. 110320, 2022 [2].

6. R. Aldana-Lopez, R. Aragues, and C. Sagues, “EDCHO: High order exact dynamic
consensus,” Automatica, vol. 131, p. 109750, 2021 [1].

Conference articles:

1. R. Aldana-Lopez, R. Aragues, and C. Sagues, “Distributed differentiation with noisy
measurements for exact dynamic consensus,” IFAC-PapersOnLine, 2023. 22th IFAC
World Congress [6].

2. R. Aldana-Lopez, R. Aragues, and C. Sagues, “Attention vs. precision: latency
scheduling for uncertainty resilient control systems,” in 2020 59th IEEE Conference
on Decision and Control (CDC), pp. 5697–5702, 2020 [8].

INTRODUCTION 14

3. R. Aldana-Lopez, R. Aragues, and C. Sagues, “EDC: Exact dynamic consensus,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 2921–2926, 2020. 21th IFACWorld Congress
[7].

In addition to these publications, other related works were developed during the course
of the Ph.D. between 2019 and 2023, which were not included in the body of this thesis
for the sake of clarity and conciseness. These works resulted from collaborations with var-
ious members of the Department of Computer Science and Systems Engineering (DIIS)
of the University of Zaragoza, as well as collaborations outside of the University with
institutions in Mexico, Spain, Argentina, Austria, France, and Italy. These collaborative
efforts cover related topics on control theory, estimation, distributed systems and com-
munication systems. Moreover, they have contributed to a broader scope of research and
enriched the overall findings and impact of the Ph.D. project.

Other journal articles:

1. R. Aldana-Lopez, M. Aranda, R. Aragues, and C. Sagues, “Robust affine formation
tracking,” Submitted to IEEE Transactions on Automatic Control [27].

2. I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Remote estimation with bounded
uncertainty under dynamic event-triggered communication,” Submitted to IEEE
Transactions on Systems, Man, and Cybernetics [26].

3. R. Aldana-Lopez, E. Sebastian, R. Aragues, E. Montijano, and C. Sagues, “Dis-
tributed outer approximation of the intersection of ellipsoids,” IEEE Control Sys-
tems Letters, pp. 1–1, 2023 [107].

4. D. Gomez-Gutierrez, R. Aldana-Lopez, R. Seeber, M. T. Angulo, and L. Fridman,
“An arbitrary-order exact differentiator with predefined convergence time bound
for signals with exponential growth bound,” Automatica, vol. 153, p. 110995, 2023
[11].

5. I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Precise dynamic consensus under
event-triggered communication,” Machines, vol. 11, no. 2, 2023 [10].

6. R. Aldana-Lopez, R. Seeber, D. Gomez-Gutierrez, M. T. Angulo, and M. Defoort,
“A redesign methodology generating predefined-time differentiators with bounded
time-varying gains,” International Journal of Robust and Nonlinear Control, pp. 1–
16, 2022 [12].

7. R. Aldana-Lopez, D. Gomez-Gutierrez, R. Aragues, and C. Sagues, “Dynamic con-
sensus with prescribed convergence time for multileader formation tracking,” IEEE
Control Systems Letters, vol. 6, pp. 3014–3019, 2022 [13].

8. A. Ramirez-Perez, R. Aldana-Lopez, O. Longoria-Gandara, J. Valencia-Velasco,
L. Pizano-Escalante, and R. Parra-Michel, “Modular arithmetic cpm for sdr plat-
forms,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1,
2022 [14].

9. H. Haimovich, R. Seeber, R. Aldana-Lopez, and D. Gomez-Gutierrez, “Differentia-
tor for noisy sampled signals with best worst-case accuracy,” IEEE Control Systems
Letters, pp. 1–1, 2021 [15].

15 CHAPTER 1

10. R. Aldana-Lopez, D. Gomez-Gutierrez, M. A. Trujillo, M. Navarro-Gutierrez, J. Ruiz-
Leon, and H. M. Becerra, “A predefined-time first-order exact differentiator based
on time-varying gains,” International Journal of Robust and Nonlinear Control,
vol. 31, pp. 5510–5522, 2021 [16].

11. R. Aldana-Lopez, D. Gomez-Gutierrez, E. Jimenez-Rodriguez, J. D. Sanchez-Torres,
and M. Defoort, “Generating new classes of fixed-time stable systems with prede-
fined upper bound for the settling time,” International Journal of Control, vol. 0,
no. 0, pp. 1–13, 2021 [17].

12. L. Campos-Macias, R. Aldana-Lopez, R. de la Guardia, J. I. Parra-Vilchis, and
D. Gomez-Gutierrez, “Autonomous navigation of mavs in unknown cluttered envi-
ronments,” J. Field Rob., vol. 38, no. 2, pp. 307–326, 2021 [18].

13. M. Trujillo, R. Aldana-Lopez, D. Gomez-Gutierrez, M. Defoort, J. Ruiz-Leon, and
H. M. Becerra, “Autonomous and non-autonomous fixed-time leader-follower con-
sensus for second-order multi-agent systems,” Nonlinear Dyn., vol. 102, pp. 1–18,
12 2020 [19].

14. R. Aldana-Lopez, D. Gomez-Gutierrez, E. Jimenez-Rodriguez, J. Sanchez-Torres,
and A. Loukianov, “On predefined-time consensus protocols for dynamic networks,”
Journal of the Franklin Institute, vol. 357, no. 16, pp. 11880–11899, 2020. Finite-
Time Stability Analysis and Synthesis of Complex Dynamic Systems [20].

15. J. D. Sanchez-Torres, A. J. Munoz-Vazquez, M. Defoort, R. Aldana-Lopez, and
D. Gomez-Gutierrez, “Predefined-time integral sliding mode control of second-order
systems,” International Journal of Systems Science, vol. 51, no. 16, pp. 3425–3435,
2020 [21].

16. J. Valencia-Velasco, O. Longoria-Gandara, R. Aldana-Lopez, and L. Pizano-Escalante,
“Low-complexity maximum-likelihood detector for IoT BLE devices,” IEEE Inter-
net of Things Journal, vol. 7, no. 6, pp. 4737–4745, 2020 [22].

Other conference articles:

1. I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Event-triggered consensus for
continuous-time distributed estimation,” IFAC-PapersOnLine, 2023. 22th IFAC
World Congress [25].

2. I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Event-based visual tracking in
dynamic environments,” in ROBOT2022: Fifth Iberian Robotics Conference (D. Tar-
dioli, V. Matellan, G. Heredia, M. F. Silva, and L. Marques, eds.), (Cham), pp. 175–
186, Springer International Publishing, 2023 [24].

3. E. Jimenez-Rodriguez, R. Aldana-Lopez, J. D. Sanchez-Torres, D. Gomez-Gutierrez,
and A. G. Loukianov, “Consistent discretization of a class of predefined-time stable
systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 628–633, 2020. 21st IFAC World
Congress [23].

INTRODUCTION 16

1.5 DOCUMENT ORGANIZATION

The document is conceptually divided in three parts.

1. The first part, (Chapters 2 and 3) deals with the blocks State estimator, Control and
Perception latency scheduler in Figure 1.4. Perception latency scheduling techniques
are introduced for local control of a robot and for target detection and tracking.

2. The second part (Chapters 4, 5 and 6) deals with the Fusion block in Figure 1.4
by discussing dynamic (average) consensus techniques, serving as a basis for infor-
mation fusion. We introduce novel techniques for dynamic consensus, discussing
robustness in open networks and distributed differentiation techniques.

3. The third part (Chapters 7 and 8) deals with the interplay between perception
latency scheduling techniques presented in the first part and consensus ideas in
the second part. Adaptation of the methods for both estimation and consensus is
performed to accommodate for the complete architecture. We present a solution
for distributed information fusion under perception latency scheduling, and an ex-
tension of our dynamic consensus methods for open networks with asynchronous
communications.

Chapter Two

Perception Latency Scheduling In Control

In this chapter, we explore the perception latency scheduling problem for control, ad-
dressing its complexity, main challenges, and proposing practical algorithms and formal
results in this context. Following the modular philosophy presented in Chapter 1, we
start by analysing the problem with a single robot. We consider an architecture of the
form depicted in Figure 2.1, incorporating the perception stage for self-localization of
the robot, a state estimator, and a controller. The primary objective is for the robot to
track a reference. This reference may originate from the specific single-robot application
or result from distributed observations of a target by multiple robots, as discussed in
subsequent chapters.

Sensors (Cameras, IMU, etc.)

Localization

State
estimator

P
er
ce
p
ti
on

la
te
n
cy

sc
h
ed
u
le
r

Actuators (Motors)

Perception

Control Reference

Figure 2.1: Model for the individual robot architecture with perception latency scheduler
for control.

Now, we explain the particular perception latency model we will use throughout this

17

PERCEPTION LATENCY SCHEDULING IN CONTROL 18

thesis. First, consider a robot model of the following form:

dx(t) = (Ax(t) + Bu[k]) dt+ dw(t) (2.1)

for intervals t ∈ [τk, τk+1) where x(t) ∈ Rn is the robot state (e.g. position and velocity
for a particle robot), u[k] ∈ Rnu is a zero-order hold input (e.g. representing the actuator
forces induced to the system by the robot) and a sequence of instants τ = {τk}∞k=0 with
τk ∈ R, τk < τk+1 and τ0 ≡ 0. The matrices A,B are of appropriate size.

We adopt a linear model represented by (2.1), as it facilitates the derivation of various
results in closed form, enhancing the understanding of the perception latency scheduling
problem. To account for potential non-modeled nonlinear dynamics or disturbances, we
introduce the n-dimensional stochastic process w(t). Consequently, (2.1) transforms into
a Stochastic Differential Equation (SDE).

Perception mechanism model: The robot is equipped with sensors such as IMU,
cameras, range sensors, GPS, etc. that produce raw measurements which, in order to be
used, they must be processed. For example, if both a camera and IMU sensor are em-
ployed, their raw measurements can be processed through SLAM (Simultaneous Localiza-
tion and Mapping) to determine the robot’s position and orientation. In general, for each
raw measurement, the system can choose between D different perception methods to pro-
duce a processed measurement for the position of the robot through a perception process.
Thus, processed measurements are available to be used by the system only at, perhaps
non-uniform, instants {τk}∞k=0 with τ0 = 0. Processed measurements are represented by
Cx[k] with some constant matrix C ∈ Rnz×n with (A,C) observable. Each method has a
different perception-latency in {∆1, . . . ,∆D}. Hence, if method pk ∈ {1, . . . , D} is chosen
at t = τk, a new measurement z[k] = Cx[k] + v[k] is available at t = τk + ∆pk where v[k]
is a noise modeling the accuracy of the perception method. Note that at t = τk + ∆pk

the robot is ready to take a new measurement, thus we set τk+1 = τk + ∆pk .
The perception-latency and accuracy relation for the perception method is modeled

by the covariance matrix Rpk = cov{v[k]} which capture the different noise levels of
the accuracy of methods 1, . . . , D. This corresponds to the actual practical behavior
of usual perception algorithms when different configurations are available [45–47, 68].
The values of the latency ∆pk and noise level Rpk for a concrete perception method pk
can be obtained offline through a statistical analysis of its performance. In practice, it is
expected that a longer latency ∆pk results in a more concentrated distribution N (0,Rpk).
For instance, in [68], Rpk is modeled to be inversely proportional to the latency, which is
also supported by the experimental data in [46, 47]. However, to allow our methods to be
tailored to any latency-precision model, we do not assume a particular relation between
the latency ∆pk and its corresponding noise level Rpk but that these might be different
between perception methods.

Any (perhaps infinite) sequence of perception modes p is referred to as a perception
schedule. We refer to a rule that generates a perception schedule p based on state infor-
mation as a scheduling policy.

There are two main characteristics of a schedule p which have a direct impact in the
resource usage of the computing platform onboard of the robot, and are independent of
the actual trajectories for the state x(t). These are:

• Attention: the attention att(p; I) of a perception schedule p for an interval of time
I ⊂ R≥0 corresponds to the amount of processed measurements generated by p in

19 CHAPTER 2

such interval. Keeping this number of sampling events small is desirable both from
an energetic point of view and to minimize the use of I/O buses when using the
sensors.

• CPU load: consider that the latency ∆pk is not used exclusively for perception, but
also that the method frees the computing unit for an interval of length (1−fpk)∆pk

with fpk ∈ [0, 1]. Thus, the perception CPU load in the interval I ⊂ R≥0 is

load(p; I) = 1
TI

α−1∑
k=0

fpk∆pk

where α = att(p; I) and TI = sup(I)− inf(I).

Regarding the tracking performance, the goal is to minimize the error x(t)−xref(t) with
respect to some exogenous reference xref(t). For the sake of simplicity, we set xref(t) = 0
during this chapter. However, the extension to general time-varying references is usually
straightforward by the use of appropriate feedforward terms in the controller u(t) and by
designing over the error system instead. In this sense, one interpretation for (2.1) is that
it corresponds to the error dynamics for the robot state, which we want to keep as close
to the origin as possible.

Consequently, in this chapter we propose a performance metric that captures both
tracking control performance and resource usage, such as CPU load and attention, to
be used as a figure of merit for effectively evaluating the proposed perception scheduling
methods. Additionally, the chapter aims to propose perception latency scheduling policies
with the objective of optimizing the performance metric. The contributions of this chapter
were also published in [3, 8].

2.1 RELATED WORK

The perception latency and accuracy trade-off has been studied for state estimation in
[68]. In addition, [69] studied another related type of latency trade-off arising from the
quality of a communication channel in networked systems. Nonetheless, these approaches
are mainly focused on the resulting estimation quality rather than the overall performance
of a closed-loop system using such an estimation framework. In [46], a control-estimator
co-design is proposed in a periodic setting, where the relationship between latency and
estimator quality is modeled and taken into account in a Model Predictive Control (MPC)
strategy. Thus, more emphasis is given to the feasibility of an optimization program rather
than on ensuring some form of stability outside the sliding window used in the MPC, which
is particularly important when switching between different perception modes.

The problem of perception latency scheduling is quite close to the notion of schedul-
ing sampling instants for which some works have used event-triggered and self-triggered
sampling [70]. In these sampling schemes, a state-dependent triggering rule for sampling
is obtained by employing sufficient stability conditions. In particular, [71] studies variable
sampling intervals to model information exchange instants in networked control systems
and schedule them accordingly using an event-triggered approach. However, these meth-
ods do not use a latency model in which shorter sampling intervals lead to poor state
estimates as in the latency-precision trade-off.

PERCEPTION LATENCY SCHEDULING IN CONTROL 20

Another approach is to model the effect of variable sampling intervals as a time-varying
delay [72]. However, these works mostly study robustness against arbitrary sampling
sequences. On the other hand, as mentioned before, variable sampling problems can be
studied using switching systems theory. Switching systems stability results may be divided
into two categories. The first one studies stability under arbitrary switching signals.
Examples of this type of analysis can be found in [108, 109] for continuous-time and in
[110, 111] for discrete-time. The switching signal can be considered a state-dependent
input in the second category. Examples of the study of stability under state-dependant
switching signals can be found in [112, 113] for continuous-time systems and in [113–117]
for discrete-time systems. However, as we show later, the connection between stability
and optimality may not be evident, particularly with the cost function considered in this
chapter. To this regard, the works [114, 118] deal with the optimality of state-dependent
switching signals for some particular forms of cost functions that do not extend to the
cost function modeling the latency-precision trade-off as we propose.

2.2 PROBLEM STATEMENT

In this section, we introduce the formal problem statement for perception latency schedul-
ing. First, in line with the linear model in (2.1), we assume Gaussian probabilistic models
for the initial conditions and disturbance process. This is, x(0) ∼ N (x0,P0) and w(t) is a
Wiener process with covariance function E{w(s)w(r)>} = W min(s, r) with W positive
semi-definite [119, Page 63].

Due to the the delay introduced by the perception mechanism, the only available
information at t = τk is {z[0], . . . , z[k − 1]}. Hence, a control is designed as

u[k] = Lpk x̂[k|k − 1]

where
x̂[k|k − 1] = E

{
x[k]

∣∣ z[0], . . . , z[k − 1]
}

is the conditional mean of x[k] using all available measurements. A recursive expression for
x̂[k|k − 1] in the form of a filter is given in Appendix A. Moreover, the gains L1, . . . ,LD
are assumed to be given, which may have been designed for each latency by separate,
provided that the pair (A,B) is controllable.

Under this conditions, the goal of this chapter is the following:

Problem 2.1 (Perception scheduling in control). Let an interval of interest [0, Tf] and
penalties 0 ≤ r1, . . . , rD, one for each perception method. Thus, given λx, λr, Tf > 0 and
Q,Qf positive semi-definite, the problem is to find a perception schedule p = {pk}∞k=0
such that

J (p) = λr
Tf

α−1∑
k=0

rpk + λxE

{
1
Tf

∫ Tf

0
x(t)>Qx(t) dt+ x(Tf)>Qfx(Tf)

}
(2.2)

with α = att(p; [0, Tf]), is minimized for system (2.1). Moreover, if there exists a sta-
bilizing perception schedule for system (2.1) under arbitrary Tf , then p must induce
lim
t→∞

E{x(t)} = 0.

21 CHAPTER 2

As usual in minimum variance control problems [119, Page 172] the persistent intro-
duction of uncertainty originated from disturbances in the model, and measurement noise
prevents a linear controller from making x(t) converge to the origin in the mean-squared
error sense. Hence, to concentrate our efforts on building a schedule p, it is more practical
to ensure convergence of E{x(t)} towards the origin, and deal with the effect of the second
order moment of x(t) during the finite interval of interest [0, Tf] by minimizing (2.2).

The cost in (2.2) is meant to model the latency-precision trade-off we described before
in the following way. The second term in (2.2) is composed of an expected quadratic
penalty for cost x(t) of (2.1), which penalizes deviations from the origin. On the other
hand, the first term in (2.2) is the accumulation of the penalties rp0 , rp1 , . . . over the
interval [0, Tf]. If r1 = · · · = rD = 1, this term is proportional to the attention of p. On
the other hand, using rpk = fpk∆pk then the last term corresponds to the CPU load over
[0, Tf].

Consider the last requirement in Problem 2.1. Note that the cost in (2.2) only penalizes
the schedule during the interval [0, Tf], which can be used to penalize a transient response.
In practice, it may be beneficial to pose a similar problem once [0, Tf] has elapsed in a
moving horizon fashion. However, this strategy won’t ensure asymptotic stability for
E{x(t)} on the long run for arbitrary values of λx, λr, Tf ,Q,Qf since the individual
terms in (2.2) are often conflicting. As an example, take λx = 0 and λr > 0 in which
the system’s error is not penalized and thus, minimizing (2.2) won’t ensure stability
regardless of Tf or how often the optimization problem is solved. Hence, a connection
between optimality and stability is not evident in general problem setting.

Our strategy is based on the following observation. Using Proposition A.2 in Appendix
A, it is obtained that x̄[k] := E{x[k]} is given by

x̄[k + 1] = Λ(∆pk)x̄[k], x̄[0] = x̄0 (2.3)

where
Λ(∆pk) := exp(A∆pk) +

∫ ∆pk

0
exp(Aτ)dτBLpk .

As a result, (2.3) is a switched system which switches between matrices

Λ(∆1), . . . ,Λ(∆D)

according to the perception schedule p as the switching signal. Hence, the asymptotic
stability character of Problem 2.1 is tied to the stability of the switching system in (2.3).
In this context, the outline of our solution has 3 main components:

• First, in Section 2.3 we analyze some results in the literature regarding stabilizing
switching signals for discrete-time systems. We provide an extension of the results
found in the literature to enable the construction of multiple scheduling policy
candidates for optimizing (2.2). These scheduling policies are all stabilizing for
(2.3) when an admissibility condition is attained.

• Second, for completeness, in Section 2.4 we provide a new algorithm to check if a
scheduling policy candidate is admissible.

• Third, in Section 2.5 we provide a new sub-optimal algorithm for Problem 2.1
based on the multiple scheduling policies previously constructed. We analyze its
theoretical performance and discuss some heuristics and approximations.

PERCEPTION LATENCY SCHEDULING IN CONTROL 22

For the sake of readability, all proofs for the formal results are placed at the end of
this chapter in Section 2.8.

2.3 STABILITY PRESERVING PERCEPTION SCHEDULES

In this section, we develop scheduling policies which ensure (2.3) is stable. In [115] an
interesting framework is proposed which provides sufficient and necessary conditions for
asymptotic stability of discrete-time switching linear systems as (2.3), and generates state-
dependant switching laws based on such conditions. In the following, we analyze some
related ideas and propose a framework suitable for Problem 2.1. This is required since
not only a single switching rule is needed, but several switching rule possibilities have to
be available as the search space for the optimization of (2.2). First, let us introduce the
following concept:

Definition 2.2. A set of schedules is any set of the form Γ = {γ1, . . . , γ|Γ|} with |Γ| <∞
where γi ∈ {1, . . . , D}len(γi) are individual schedules with len(γi) <∞, ∀i ∈ {1, . . . , |Γ|}.

We aim to construct stabilizing perception schedules by piecing together individual
finite-length schedules found in a set of schedules. Up to this point, sets of schedules are
arbitrary and can be constructed randomly. However, stabilizing switching signals cannot
arise for any set of schedules. In the following, we study which sets of schedules induce
stability. Consider the following objects: the hyper-ellipse

S0 := {x ∈ Rn : x>M0x ≤ 1}

for some arbitrary positive definite matrix M0 and

Sγ := {x ∈ Rn : x = Λ(∆γ0)−1 · · ·Λ(∆γ`−1)−1y,y ∈ S0}

where γ := {γk}`−1
k=0 is a schedule of finite length len(γ) = `. Thus, by construction, for

any x̄0 ∈ Sγ , then x̄[len(γ)] ∈ S0 for such schedule γ. This is verified as:

x̄[len(γ)] = Λγ x̄0 ∈ ΛγSγ
= {z ∈ Rn : z = Λγx, x = (Λγ)−1y, y>M0y ≤ 1}
= {z ∈ Rn : z = Λγ(Λγ)−1y, y>M0y ≤ 1}
= {z ∈ Rn : z>M0z ≤ 1} = S0

with Λγ := Λ(∆γ`−1) · · ·Λ(∆γ0) as the multiplication chain in (2.3) for the schedule γ.
Moreover, note that Sγ has the shape of an hyper-ellipse defined by the positive definite
matrix Mγ = (Λγ)>M0(Λγ) as

Sγ ≡ {x ∈ Rn : x>Mγx ≤ 1}.

The key idea is the following. Consider Γ to be a set of schedules γ. Thus, if the
interior of the set

S?Γ :=
⋃
γ∈Γ

Sγ

23 CHAPTER 2

contains S0, it means that for each initial condition, there exists a schedule γ ∈ Γ which
contracts S?Γ into itself after len(γ) steps. This is, if x̄0 ∈ S?Γ, thus

x̄[len(γ)] ∈ S0 ⊂ int(S?Γ)

for some γ ∈ Γ.

Definition 2.3 (Admissible set of schedules). A finite set of schedules Γ is admissible if
S0 ⊂ int(S?Γ).

As we show in a subsequent result, if Γ is admissible, a contracting schedule can be
found ∀x̄ ∈ Rn as:

γ?(x̄; Γ) := arg min
γ∈Γ

{r ∈ R : r = x̄>Mγ x̄} (2.4)

Using this switching rule for various admissible sets of schedules Γ1, . . . ,Γm, the following
strategy can be used online to compute a stabilizing perception method at each t = τk
given x̄[k].

Definition 2.4 (Stability Preserving Scheduling). The SP2 (Stability Preserving Schedul-
ing Policy) strategy is defined by Algorithm 2.2.

Remark 2.5. A similar rule to (2.4) was studied in [115] for a particular fixed set of
schedules Γ constructed through a combinatorial approach. This is, all possible combi-
nations of elements in {1, . . . , D} up to the first length at which admissibility is attained
[115, Algorithm 1]. As a result, a single scheduling policy is considered regardless of the
choice of (2.2), and with no additional degrees of freedom to improve performance. Unlike
the previous approach, we introduce an extra degree of freedom by constructing multiple
sets of schedules Γ1, . . . ,Γm. Then, as explained in detail in Section 2.5, a switching
law of the form (2.4) is used for each set of schedules as scheduling policy candidates to
optimize for (2.2). This makes our approach more beneficial for the perception scheduling
problem since intuitively, given an initial condition x̄[0], the approach with a single set of
schedules will result in a fixed schedule p, regardless of the cost (2.2) whereas our method
can adapt p to the cost.

Algorithm 2.1 Construction of a set of schedules
Input: `,D.
Output: Γ.

1: Γ = ∅
2: repeat
3: if ({1, . . . , D}` \ Γ = ∅) then
4: # If all schedules have been evaluated
5: Increase `
6: end if
7: # Generate a random sequence over {1, . . . , D} with random length `′ ≤ `.
8: `′ ← randomSample({1, . . . , `})
9: Γ← Γ

⋃
randomSample({1, . . . , D}`′ \ Γ)

10: until S0 ⊂ int(S?Γ) # Using Algorithm 2.3

PERCEPTION LATENCY SCHEDULING IN CONTROL 24

Algorithm 2.2 SP2 strategy
Input: x̄0.
Output: Perception schedule p.

1: γ ← ∅.
2: i← 0
3: for each instant τk, k = 0, 1, . . . do
4: if (i < len(γ)) then
5: pk ← γi #For chosen schedule γ, traverse its elements γ0, . . . , γlen(γ).
6: i← i+ 1
7: else
8: Γ← any set of schedules chosen from the admissible options Γ1, . . . ,Γm.
9: γ ← γ?(x̄[k]; Γ) from (2.4). #Once previous schedule has been consumed, choose

a new schedule
10: i← 0
11: end if
12: end for

In this sense, an alternative for the combinatorial approach is given in Algorithm 2.1 in
which random schedules are appended to Γ. These schedules are generated with length up
to a given value `, unless all schedules are contained in Γ, in which case ` is increased. This
procedure terminates once Γ is admissible and, similarly to the combinatorial approach,
this must happen if there exists a stabilizing schedule for (2.3). When compared to
the combinatorial approach, the advantage of using Algorithm 2.1 is two-fold. First,
depending on the initial value of the length `, longer sequences can be tested earlier.
This is complicated using the combinatorial approach due to the combinatorial explosion
involved in such a strategy. Note that even if the combinatorial approach is used starting
from an initial length ` > 1 to test longer sequences earlier, this strategy will neglect
short sequences, which may also be useful for rapid decision-making if available. Hence,
Algorithm 2.1 covers short and long sequences from the beginning. Moreover, Algorithm
2.1 allows us to generate multiple admissible sets of schedules, namely Γ1, . . . ,Γm useful
for our optimization strategy.

However, since in line 8 of Algorithm 2.2 we allow to change the set of schedules Γ to
any admissible one between the m options {Γ1, . . . ,Γm}, the scheduling policy in (2.4)
may be different each time in line 9 of Algorithm 2.2 is executed. The following results
show that even in this case, Algorithm 2.2 manages to stabilize (2.3).

Theorem 2.6. Assume that there exists at least one admissible set of schedules and that
the SP2 strategy is used in (2.3). Thus limk→∞ x̄[k] = 0.

Checking if a set of schedules is admissible is not a trivial task. [115, Remark 6]
proposes to check if there is at least one γ ∈ Γ such that S0 ⊂ int(Sγ) as a sufficient
condition for admissibility. However, this is a very conservative condition that won’t be
attained in general, even when Γ is admissible. Motivated by this, in the following section,
we provide a novel analysis to check if a set of schedules is admissible.

25 CHAPTER 2

2.4 NON-CONSERVATIVE ADMISSIBILITY CHECKING

The basis of a non-conservative admissibility checking is formulated as a nonlinear pro-
gram as follows.

Theorem 2.7. Let
R := min

x̄∈∂S?Γ
x̄>M0x̄. (2.5)

Then, S0 ⊂ S?Γ if and only if R > 1.

Hence, under the light of Theorem 2.7, studying if Γ is admissible is equivalent to
solving the nonlinear program in (2.5) and checking if R > 1. Note that the attempt
to solve numerically for local minima in (2.5) may fail since the condition R > 1 is only
useful when the global minimum is considered. To the best of our knowledge, there is no
previous work which solves for the global minimum of a non-convex program of the form
(2.5). Thus, the following efforts are dedicated to this task.

Note that most of the theory presented up to now remains the same even when S0
is not a hyper-ellipse. An arbitrary C? set as in Definition B.1 in Appendix B can be
used instead of a hyper-ellipse. For example, polyhedral sets are also considered in [115].
However, note that the set ∂S?Γ may be non-convex, implying that there might be many
local minima for (2.5), which complicates the analysis. Despite this, we show that for
the case where S0 is a hyper-ellipse, we can compute the global minimum of (2.5). The
strategy is the following: we split the nonlinear program in (2.5) into subprograms of the
following form:

min
x̄∈Rn

x̄>M0x̄

s.t. : hγ(x̄) := x̄>Mγ x̄− 1 = 0, ∀γ ∈ Γ′ ∈ P(Γ)
(2.6)

Where Γ′ is any subset of Γ, i.e. Γ′ is in the power set P(Γ). Intuitively, the sub-program
in (2.6) is useful since due to the shape of ∂S?Γ, the global optimum of (2.5) must lie either
in the boundary of a single hyper ellipse Sγ for some γ ∈ Γ which has the form hγ(x̄) = 0,
or in the intersection of the boundaries of multiple hyper-ellipses. As an example, consider
Γ = {p, q} with arbitrary schedules p, q. Hence, the global optimum of (2.5) must be the
global optimum of (2.6) with either Γ′ = {p}, Γ′ = {q}, which correspond to checking
points in ∂Sp, ∂Sq by separate or Γ′ = {p, q} which corresponds to checking points in
∂Sp ∩ ∂Sq where the two constraints hp(x̄) = 0, hq(x̄) = 0 are active. Therefore, the
solution for (2.5) comes from (2.6) for some Γ′ ∈ P(Γ) = {∅, {p}, {q}, {p, q}}. This idea
is formalized in the following:

Corollary 2.8. Let XΓ′ be the set of all critical points (local minima candidates) x̄∗ of
(2.6) such that x̄∗ /∈ Sγ for any γ ∈ Γ \Γ′ and any Γ′ ∈ P(Γ). Thus, the global minimum
R of (2.5) can be obtained as

R = min

r = x̄>M0x̄ : x̄ ∈
⋃

Γ′∈P(Γ)

XΓ′

 (2.7)

Corollary 2.8 implies that the solution of (2.5) can be obtained by solving programs
of the form (2.6), where critical points of (2.6) are rejected if such points are contained
in other hyper-ellipses not involved in (2.6) (written as x̄∗ /∈ Sγ ,∀γ ∈ Γ \ Γ′ in Corollary

PERCEPTION LATENCY SCHEDULING IN CONTROL 26

2.8). Moreover, all programs of the form (2.6) involve from one hyper-ellipse at the time,
to all combinations of Sγ ,∀γ ∈ Γ.

Remark 2.9. Note that if |Γ′| = n in (2.6), the set of all points x̄ with x̄>Mγ x̄ = 1,∀γ ∈
Γ′ contains only isolated points for almost all {Mγ}γ∈Γ. Moreover, the set of equations
x̄>Mγ x̄ = 1 are n polynomial equations with n variables which have nn complex solutions
due to the Bezout’s Theorem [120, Theorem 4.14]. Homotopy solvers such as the one in
[121] can track all such real solutions for polynomial systems or obtained explicitly if
n ≤ 2. Hence, all reals solutions can be checked directly to build the set XΓ′ . In contrast,
the case with |Γ′| > n can be ignored since those solutions are either contained in the
|Γ′| = n case or are nonexistent.

In general, an optimization program of the form (2.6) can be solved by the Lagrange
multipliers method. However, depending on the problem constraints, in this case, given
in the form hγ(x̄) = 0, not all local minima can be found through this method. Such
local minima are often called non-regular [122, Page 279]. Due to the fact that we look
for the global optimum of (2.6), we are forced to analyze both regular and non-regular
points. Formally, critical points in XΓ′ for (2.6) in which |Γ′| < n will be classified into
regular or non-regular points for their analysis as follows:

Definition 2.10. [122, Page 279] A critical point x̄ for (2.6) is said to be regular if the
vectors

∇hγ(x̄) = 2Mγ x̄, γ ∈ Γ′

are linearly independent.

In the next section, we use the Lagrange multiplier method to find the list of critical
regular points for (2.6). Then, we use a tailored analysis for the non-regular ones.

2.4.1 Regular points analysis
We start the study of (2.6) with the characterization of regular points by means of the
Lagrange multiplier theorem in [122, Proposition 3.1.1].

Theorem 2.11. Let λ := {λγ}γ∈Γ′ be a solution to the system of equations

tr(G(λ)†(Mγ −Mν)) = 0, γ, ν ∈ Γ′ (2.8a)
det G(λ) = 0 (2.8b)

where
G(λ) := M0 +

∑
γ∈Γ′

λγMγ (2.9)

and G(λ)† is the adjugate matrix of G(λ) [123, Page 22]. Thus, all regular critical points
x̄∗ of program (2.6) are in the kernel of G(λ) for some λ. This is, there exists a solution
λ of (2.8) such that G(λ)x̄∗ = 0 and have

(x̄∗)>M0(x̄∗) = −
∑
γ∈Γ′

λγ .

27 CHAPTER 2

Remark 2.12. Note that the number of equations in (2.8) are evidently more than |Γ′|.
However, most of them are linearly dependent. They can be arranged as |Γ′| independent
equations with |Γ′| variables by using |Γ′| − 1 equations of the form (2.8a) in addition to
(2.8b). These |Γ′| equations are independent for most choices of {Mγ}γ∈Γ. Moreover,
note that all equations in (2.8) are polynomials in λ and therefore, the number of solutions
can be counted by means of Bezout’s theorem and obtained similarly as pointed out in
Remark 2.9 using the algorithm in [121].

Moreover, the nullity (dimension of kernel) of the singular matrix G(λ) may be of
dimension up to n. However, among the possible singular matrices, ones with nullity
greater than one lie in a set of measure zero (with respect to the possible choices of
{Mγ}γ∈Γ). This fact is evidenced in the following result.

Corollary 2.13. Let λ satisfy (2.8), assume that G(λ) has nullity greater than 1, and
let Gij(λ) be the sub-matrix obtained by deleting the i-th row and j-th column of G(λ).
Then, λ complies with

det Gij(λ) = 0, ∀(i, j) ∈ {1, . . . n}2 (2.10)

As a result of Corollary 2.13, the case in which G(λ) has nullity greater than one
is is not common in a general setting since λ ∈ R|Γ′| would have to comply |Γ′| − 1
equations of the type (2.8a) in addition to n2 equations of the type (2.10). Henceforth,
we ignore such cases in our analysis. Now, for G(λ) with nullity 1, let g be any vector
in the kernel of G(λ). Thus, as a result of Theorem 2.11 the critical regular points for
such λ are parallel to g, and can be uniquely computed by scaling g in order to comply
(x̄∗)>M0x̄∗ = −

∑
γ∈Γ′ λγ as:

x̄∗ = ±g

√
−
∑
γ∈Γ′ λγ

g>M0g
(2.11)

and therefore, the condition x̄∗ ∈ Sγ for γ ∈ Γ \ Γ′ can be checked by computing if
(x̄∗)>Mγ(x̄∗) > 1 in order to build the set XΓ′ as required in Corollary 2.8.

2.4.2 Non-regular points analysis
Non-regular points for program (2.6) are points x̄ which comply x̄>Mγ x̄ = 1,∀γ ∈ Γ′
and the vectors {Mγ x̄}γ∈Γ′ linearly dependent. In general, linearly dependent vectors
are rare among all possible vectors, and hence is not surprising that non-regular points
won’t exist in arbitrary settings. In the following result, we characterize when they exist
by obtaining what additional concrete conditions must be satisfied.

Proposition 2.14. Let Y(x̄) an n×|Γ′|matrix whose columns are the vectors Mγ x̄,∀γ ∈
Γ′ and let Wα(x̄) be the |Γ′| × |Γ′| sub-matrix of Y(x̄) obtained by deleting n− |Γ′| rows
indexed in α ∈ A ⊂ {1, . . . n}n−|Γ′| with A containing all elements in {1, . . . n}n−|Γ′| with
non repeating entries. Therefore, any non-regular point for program (2.6) must comply
with

x̄>Mγ x̄ = 1, ∀γ ∈ Γ′ (2.12a)
det Yα(x̄) = 0, ∀α ∈ A (2.12b)

PERCEPTION LATENCY SCHEDULING IN CONTROL 28

Note that the amount of equations of the type (2.12b) are equivalent to the number
of sub-matrices of size |Γ′| × |Γ′| inside Y(x̄) which is exactly [123, Page 21]

n!
|Γ′|!(n− |Γ′|)! .

Note that there are at least n − |Γ′| + 1 independent equations of this type since that
correspond to the number of |Γ′|×|Γ′| sub-matrices of Y(x̄) with consecutive rows. Hence,
the number of equations in (2.12) are |Γ′| of the type (2.12a) and at least n− |Γ′|+ 1 of
type (2.12b). Equivalently, a non-regular point x̄ ∈ Rn would have to comply with at least
n+ 1 polynomial equations. One could solve n equations picked from (2.12) and check if
the results comply with the remaining equations. However, due to this over-determined
feature of equations in (2.12) non-regular points won’t exist in general.

2.4.3 Admissibility checking algorithm
Using the results in the previous sections, we summarize the methodology for admissibility
checking in the following. Consider Algorithm 2.3 which takes as an input the dimension
of the state space n, the matrix M0, the set of matrices M := {Mγ}γ∈Γ and the set of
schedules Γ. This function builds a set X of all global minima candidates of (2.5) and
checks minX > 1 as this condition is equivalent to admissibility due to Theorem 2.7. In
line 2, all subsets of schedules in Γ are checked, ranging from no schedules at all, one
schedule at the time, pairs of schedules, and so on. In line 3 we check if the constraint
space is of dimension n, since in such case the constraint space is comprised of just isolated
points, and we obtain critical points as in Remark 2.9 by calling IsolatedSolutions.
Otherwise, we obtain regular values by calling RegularSolutions. Cases in which the
constraint space is of dimension more than n are ignored. Algorithm 2.4 obtains critical
objective values when the constraint space contains only isolated points. This algorithm
looks for real solutions of the system of n equations and n variables {x̄>Mγ x̄ = 1,∀γ ∈ Γ}
in line 1. Then, for all solutions we check one by one if they are not contained in other
hyper-ellipses for γ ∈ Γ \Γ′. If any of those conditions are complied we reject such points
in line 3 in order to build the set XΓ′ required in Corollary 2.8. Algorithm 2.5 looks for
regular points of (2.5). We build a set of critical objective values in X and then return
r ← minX . First, we solve the system of equations in (2.8). Then, for all real solutions λ
of such polynomial equations we compute G(λ) and the critical point as in (2.11). These
points are rejected if they are contained in other hyper-ellipses Γ \Γ′ in line 7. Then, the
critical objective is given by −

∑
γ∈Γ′ λγ as obtained in Theorem 2.11.

Remark 2.15. Note that in Algorithm 2.3 we explicitly assumed that G(λ) has nullity 1
and that there are no non-regular points. This assumption is reasonable since the system
of equations made by (2.8a) in addition to (2.10) and the system of equations in (2.12)
are over-determined for almost any {Mγ}γ∈Γ.

Remark 2.16. Note that due to line 2 in Algorithm 2.3, the complexity of the admis-
sibility checking procedure grows as |P(Γ)| = 2|Γ|. Still, this procedure can be stopped
as soon as some value contained X is less than 1. Moreover, recall that checking for
admissibility is not required online for the SP2 strategy in Algorithm 2.2. Instead, this
procedure is used to construct admissible sets of schedules in Algorithm 2.1 offline.

29 CHAPTER 2

One important input for Algorithm 2.3 is the matrix M0 which acts as an hyper-
parameter for the overall system. Note that admissibility of the set of schedules Γ only
depends on some arbitrary choice of M0 as long as it is positive definite. Hence, setting
M0 = I can be considered a systematic default option. On the other hand, the choice
of M0 may affect the time until admissibility is concluded in Algorithm 2.3. However,
optimizing M0 to reduce such time is considered out of the scope of this chapter but
could be explored in future research.

2.5 TOWARDS OPTIMAL SCHEDULING

Up to this point, the analysis has been devoted to the stability aspect of Problem 2.1.
In this section, we focus on the optimality aspect of the problem based on the stability
results obtained so far. First, we study the inherent complexity of Problem 2.1. Due
to the possible conflicting objectives in (2.2), the most general setting of Problem 2.1 is
reduced to a combinatorial search between the possible scheduling decisions. This makes
it hard to expect that exact and efficient solutions for Problem 2.1 exist except for very
particular cases. This issue is formalized in the following result.
Proposition 2.17. Problem 2.1 is NP-hard.

Henceforth, our approach from this point will be to obtain approximate solutions to
Problem 2.1 and study their performance with respect to the optimal solution. Con-
sider m > 0 sets of schedules Γ1, . . . ,Γm constructed using Algorithm 2.1, leading to m
scheduling policies. Theorem 2.6 ensures that it is possible to choose between any of
these scheduling policies without compromising asymptotic stability. Hence, instead of
deciding between different perception configurations, a sub-optimal schedule for Problem
2.1 will be constructed by an appropriate decision sequence between the m scheduling
policies induced by Γ1, . . . ,Γm.

Using the dynamic programming framework [124], Algorithm 2.6 aims to obtain an
optimal schedule for Problem 2.1 when the schedule is constrained to be constructed
using the scheduling policies induced by Γ1, . . . ,Γm. Note that this algorithm proceeds
to evaluate all scheduling policies for the current state x̄0 as in line 3. Then, proceeds
to compute x̄(t),P(t) in line 7 for t ∈ [τ,min(τ+, Tf)] which is the interval in which the
schedule piece γ is active before t = Tf , as well as the cost for such interval in line 8.
Note that x̄(t),P(t) and the cost can be computed explicitly as a result of Proposition
A.2 in Appendix A. Then, τ+ < Tf it means that γ is not sufficiently long to fill the
entire window [0, Tf]. Hence, the remaining cost to go J+ and schedule p+ optimal for
t ∈ [τ+, Tf] is obtained by a recursive call in line 10. Otherwise, the terminal cost is
added in line 13. Once all m options have been evaluated, dynprog returns the one with
the best cost as well as the optimal schedule as in line 16, where ⊕ means concatenation
of schedules. The optimal properties of this algorithm are detailed in the following.
Proposition 2.18. Calling dynprog(Tf , 0, x̄0,P0) obtains the optimal schedule and cost
p∗, J∗ for Problem 2.1 for the case when the schedule is constrained to be constructed
using the scheduling policies for {Γ1, . . . ,Γm}. Moreover, the worst case complexity of
Algorithm 2.6 is O

(
mbTf/cc

)
where

c = min


len(γ)−1∑
k=0

∆γk : γ ∈ Γ1 ∪ · · · ∪ Γm
 .

PERCEPTION LATENCY SCHEDULING IN CONTROL 30

Algorithm 2.3 Admissibility
Input: n,M0, {Mγ}γ∈Γ,Γ.
Output:

(
S0 ⊂ int(S?Γ

)
)?

1: Set X ← ∅.
2: for Γ′ ∈ P(Γ) do
3: if |Γ′| = n then
4: X ← X ∪ {

IsolatedSolutions(n,M0, {Mγ}γ∈Γ,Γ,Γ′)}
5: else
6: if |Γ′| < n then
7: X ← X ∪ { RegularSolutions(n,M0, {Mγ}γ∈Γ,Γ,Γ′)}
8: end if
9: end if

10: end for
11: return minX > 1

Algorithm 2.4 IsolatedSolutions
Input: n,M0, {Mγ}γ∈Γ,Γ,Γ′.
Output: r.

1: XΓ′ ← real solutions of {x̄>Mγ x̄ = 1,∀γ ∈ Γ′} as in Remark 2.9.
2: for x̄ ∈ XΓ′ do
3: if exists γ ∈ Γ \ Γ′ such that x̄>Mγ x̄ < 1 then
4: XΓ′ ← XΓ′ \ {x̄}.
5: end if
6: end for
7: return r ← min{x̄>M0x̄ : x̄ ∈ XΓ′}

Algorithm 2.5 RegularSolutions
Input: n,M0, {Mγ}γ∈Γ,Γ,Γ′.
Output: r.

1: Set Y ← real solutions of (2.8) as in Remark 2.12
2: X ← ∅
3: for λ ∈ Y do
4: G(λ)←M0 +

∑
γ∈Γ′

λγMγ .

5: g← any element of ker(G(λ)).

6: x̄← g

√√√√√−
∑
γ∈Γ′

λγ

g>M0g
.

7: if x̄>Mγ x̄ > 1,∀γ ∈ Γ \ Γ′ then

8: X ← X ∪

−∑
γ∈Γ′

λγ


9: end if

10: end for
11: return r ← minX .

31 CHAPTER 2

Remark 2.19. Due to NP-hardness of Problem 2.1, it is not surprising that the dynamic
programming approach for this problem leads to an algorithm that does not have a
polynomial complexity in Tf . However, these types of algorithms, in which unrolling
the recursive calls lead to an exponentially growing tree as in Algorithm 2.6, are widely
studied. Hence, some performance improvements in terms of complexity and run-time
reduction can be made to Algorithm 2.6 such as applying a branch-and-bound technique
[124, Chapter 2.3.3]. In addition, heuristics and approximate solutions such as limited
look-ahead policies, roll-out algorithms, among others [124, Chapter 6] can be applied in
practice. For instance, a balanced SP2 strategy can be applied where the set of schedules
Γ in line 8 of Algorithm 2.2 is selected by calling

{−,−,Γ} = dynprog(T, 0, x̂[k|k − 1], P̂[k])

as a moving horizon strategy with a look-ahead window of size T .

Nevertheless, all heuristics and approximate approaches mentioned before will have
a relative performance loss with respect to the optimal schedule for Problem 2.1 only
when the solution is constrained to be constructed using the scheduling policies induced
by Γ1, . . . ,Γm, and not necessarily the real optimum of Problem 2.1. Despite this, in
the following result, we show that the solution of Algorithm 2.6 can approximate the
optimal performance for sufficiently large number of sets of schedules m, increasing the
computational power applied.

Theorem 2.20. Let p∗ be the optimal cost for the general setting of Problem 2.1 and
assume that (2.3) is stabilizable. Then, for any compact sets Bx̄ ⊂ Rn,BP ⊂ Rn×n and
any ε > 0 there exists Γ1, . . . ,Γm with m <∞ such that

|J (p∗)− J (p)| ≤ ε

with p from by Algorithm 2.6, for any x̄0 ∈ Bx̄, P0 ∈ BP.

2.6 SIMULATION EXAMPLES

2.6.1 Double integrator
As a first example consider system (2.1) with

A =
[
0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0], W = 1

as well as D = 2 with perception latencies ∆1 = 0.01,∆2 = 0.1 with their corresponding
covariances R1 = 0.5,R2 = 0.01. In addition, consider

L1 = L2 = [−1.5− 3],M0 =
[

3.53 −1.10
−1.10 1.36

]
where M0 was chosen as an arbitrarily positive definite matrix. To depict admissibility,
Algorithm 2.1 was used with ` = 20 to generate a set of schedules Γ and Algorithm 2.3
was used to check admissibility. Note that in Algorithm 2.3 the only meaningful subsets

PERCEPTION LATENCY SCHEDULING IN CONTROL 32

Algorithm 2.6 dynprog
Input: Tf , τ, x̄0,P0.
Output: p∗, J∗, Γ∗.

1: J∗ ←∞.
2: Γ∗ ← ∅
3: for Γ in {Γ1, . . . ,Γm} do
4: γ ← γ?(x̄0; Γ) from (2.4).

5: τ+ ← τ +
len(γ)−1∑
k=0

∆γk

6: α← att(γ, [τ,min(τ+, Tf)])
7: Compute x̄(t),P(t) for schedule γ using x̄(τ) = x̄0,P(τ) = P0 on (A.4) for t ∈

[τ,min(τ+, Tf)]

8: J ← λx

Tf

∫ min(τ+,Tf)

τ

x̄(t)>Qx̄(t) + tr(QP(t))dt +λr
Tf

α−1∑
k=0

rγk

9: if (τ+ < Tf) then
10: {p+, J+,Γ+} ← dynprog(Tf , τ+, x̄(τ+),P(τ+))
11: J ← J + J+

12: else
13: J ← J + λx

(
x̄(Tf)>Qf x̄(Tf) + tr(QP(Tf))

)
14: p+ ← ∅
15: end if
16: if J ≤ J∗ then
17: J∗ ← J
18: p∗ ← γ ⊕ p+

19: Γ∗ ← Γ
20: end if
21: end for

of schedules Γ′ in the power set P(Γ) are Γ′ containing either a single schedule, or pairs
of schedules as a result of the discussion in Remark 2.9. Moreover, note that in the case
of Γ′ containing a single schedule γ, (2.9) results in G(λ) = M0 + λMγ and therefore
possible solutions of Lagrange multipliers λ ∈ R are eigenvalues of M−1

0 Mγ . The resulting
nullity of G(λ) for any Γ′ in this experiment was 1 and hence regular critical points were
computed as in (2.11). In this case, there are no non-regular points, since for |Γ′| = 1
there is a single vector ∇hγ(x̄). For the case of |Γ′| = n = 2 critical points were obtained
by solving a polynomial system of equations given by the intersection of the two resulting
ellipses as in Remark 2.9. Hence, in this setting the admissibility value was obtained to
be R = 1.142 which indicates that Γ is admissible. Figure 2.2 shows S?Γ and S0 for this
example where it shown that S0 ⊂ int(S?Γ). Moreover, note that none of the individual
sets Sγ , γ ∈ Γ manage to cover S0 by separate.

Now, we show the performance of an heuristics implementation of the strategy pre-
sented in Section 2.5. To do so, we simulated system (2.1) using explicit Euler-Maruyama
method with time step h = 10−5 over the interval [0, Tf = 100] for each experiment. A
balanced SP2 strategy as described in Remark 2.19 was used with limited look-ahead

33 CHAPTER 2

-2 -1 1 2
-2

-1.5

-1

-0.5

0.5

1

1.5

2

S0

Sγ

S?Γ

x̄1

x̄2

Figure 2.2: Set S?Γ for the set of schedules Γ described in Section 2.6.1 as well as S0 to
show admissibility.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

{1, 1, . . .}

att = 10000

{2, 2, . . .}

att = 500

m = 5

att = 2287

m = 10

att = 1293

m = 20

att = 1205

F
re
qu

en
cy

Sample path cost Jsp

Figure 2.3: Resulting histograms for the sample path cost Jsp for example of Section
2.6.1 using the balanced SP2 strategy with m = 5,m = 10,m = 20 and static schedules
{1, 1, . . . }, {2, 2, . . . }. Average attention att is also shown.

PERCEPTION LATENCY SCHEDULING IN CONTROL 34

window of size T = 2. The performance is evaluated using the cost (2.2) for each sample
path with Q = Qf = diag([2, 1]), λx = 1, λr = 0.05. Moreover, r1 = r2 = 1 such that the
number of sampling events is penalized in the cost. Furthermore, 400 sample paths where
generated with x̄0 = [1, 1],P0 = I for m = 5,m = 10,m = 20 respectively. For compari-
son, the same amount of sample paths where obtained for schedules {1, 1, . . . }, {2, 2, . . . }
respectively to study the performance of the classical approach of maintaining the same
perception configuration during the whole experiment. The resulting histograms for the
sample path cost Jsp for the whole interval [0, Tf] are shown in Figure 2.3 for each case.
It can be observed that the average cost of our approach is reduced when compared to
the static approaches. Moreover, the results suggest that increasing the number of sets
of schedules m improves the cost Jsp and average attention att.

2.6.2 Particle mobile robot
Now consider a system with state x = [x1, . . . ,x6]>, and dynamics given

ẋ1 = x2, ẋ3 = x4, ẋ5 = x6

as well as
ẋ2 = u1/µ+ w1, ẋ4 = u2/µ+ w2, ẋ6 = u3/µ+ w3

with µ = 0.1. This system corresponds to the model of a particle mobile robot with
mass µ. This kind of system has been useful as a model for aerial vehicles such as
multi-rotors in [18, 125, 126] were [x1,x3,x5]> is the position of the multi-rotor and
[x2,x4,x6]> is the velocity. In fact, a common strategy for the multi-rotor control is adopt
a hierarchical control approach, where control signals u1,u2,u3 are designed exclusively
for position as a high-level controller. In a second stage, the resulting position controls
are used to construct a low level controller for the attitude of the multi-rotor. Moreover,
measurements for position are taken as Cx = [x1,x3,x5]> using visual perception [18]. In
this example we adopt the noise model from [68, Equation (9)] such that given a perception
latency ∆ the resulting measurement covariance is R(∆) = (b/∆)I with b = 0.2. This
model is reasonable for demonstrative purposes in this chapter. However, in a more
practical setting, R(∆) must be characterized according to the relation between latency
and precision of the actual perception algorithms and sensors used, following a similar
procedure to the one described in [46]. In this case, even when the measurement covariance
is reduced as ∆ is increased, the disturbance covariance Wd(∆), given in (A.3) from
Appendix A, increases.

Now, we test our scheduling approach assuming only two different latencies ∆1 =
1/30,∆2 = 4/30 corresponding to the frame-rate of a typical camera or 4 times the
frame-rate. Let R1 = R(∆1),R2 = R(∆2) with the covariance model R(∆) described
before and W0 = 0.5I. Moreover, consider penalties r1 = 0.9∆1, r2 = 0.2∆2 which
correspond to CPU loads of 90% and 20% respectively for each method. In addition,
the parameters Q = Qf = diag([2, 1, 2, 1, 2, 1]), λx = 1, λr = 0.1 were chosen. The SP2

strategy was tested similarly as in the example of Section 2.6.1 with time step h = 10−5,
Tf = 100 and limited look-ahead window length T = 10. Figure 2.4 shows the resulting
histograms for sample paths with x̄0 = [1, 1, 1, 1, 1, 1],P0 = I for our approach with
m = 20 and static schedules {1, 1, . . . }, {2, 2, . . . } with 400 sample paths in each case. It
is observed that our approach outperforms the static approaches in the sample cost Jsp.
Moreover, the average CPU load is reduced with respect to the worst case value of 90%.

35 CHAPTER 2

15 20 25 30 35 40 45
0

10

20

30

40

50

60

F
re
qu

en
cy

Sample path cost Jsp

{1, 1, . . .}

load = 0.9

{2, 2, . . .}

load = 0.2

m = 20

load = 0.32

Figure 2.4: Resulting histograms for the sample path cost Jsp for the example of
Section 2.6.1 using the balanced SP2 strategy with m = 20 and static schedules
{1, 1, . . . }, {2, 2, . . . }. Average CPU load load is also shown.

2.7 DISCUSSION

This chapter focused on the study of a control problem under a latency-precision trade-off
and perception latency scheduling, for a simplified robot model with linear controller. It
was shown that the stability of the closed-loop model is tied to the stability of a switch-
ing system. Moreover, the latency-precision trade-off was modeled by means of a cost
function taking into account control precision and a penalty for each perception mode to
incorporate energetic and CPU load points of view. Three main tools were proposed in
this context to solve the problem: scheduling policy candidate construction using switch-
ing systems theory, an admissibility checking algorithm for policy candidates, and sub-
optimal strategies based upon the scheduling policy candidates. Different from general
switching systems theory, we take advantage of the particular structure of the problem
to provide new insights on the construction of multiple scheduling policies for optimiza-
tion purposes and on its theoretical complexity. Finally, some illustrative examples were
provided, including one application for a mobile robot.

In this chapter, the focus was specifically on the control aspect of the overall architec-
ture depicted in Figure 1.4. The cooperation between multiple agents was not considered,
and the task for the robot was assumed to be given. However, as discussed earlier, this
task can be presented in the form of an exogenous time-varying reference. If this ref-
erence is constructed using an additional perception scheduler for target tracking and
information fusion across a team of robots, the results obtained in this chapter can still
be leveraged to locally optimize resources and tracking performance. In the upcoming
chapter, we will delve into the complementary problem of observing an unknown input
system, such as the state of a target of interest, using perception processes.

PERCEPTION LATENCY SCHEDULING IN CONTROL 36

2.8 PROOFS

2.8.1 Proof of Theorem 2.6
In order to show Theorem 2.6 we first provide 2 auxiliary technical lemmas:

Lemma 2.21. Let Γ be an admissible set of schedules and let γ? := γ?(x̄0; Γ) be a
schedule obtained from (2.4) for the initial condition x̄0 ∈ S?Γ. Thus, if the SP2 strategy
is used in (2.3) then x̄[len(γ?)] ∈ S0 ⊆ int

(
S?Γ
)
.

Proof: Since x̄0 ∈ S?Γ then there exist a non empty set Γ′ ⊆ Γ such that x̄0 ∈ Sγ
∀γ ∈ Γ′. Moreover, x̄>0 Mγ x̄0 ≤ 1 for any γ ∈ Γ′ and x̄>0 Mγ x̄0 > 1 for γ ∈ Γ \ Γ′. Hence,
γ? = γ?(x̄0; Γ) ∈ Γ′ and x̄0 ∈ Sγ? . Therefore, by construction of the set Sγ? , system
(2.3) after len(γ?) steps will result in x̄[len(γ?)] ∈ S0 ⊂ S?Γ.

Lemma 2.22. Let Γ be an admissible set of schedules, Ψ(•;S?Γ) be its corresponding
gauge function and let γ? := γ?(x̄0; Γ) be a schedule obtained from (2.4) for the initial
condition x̄0 6= 0. Thus, if the SP2 strategy is used in (2.3) then

1. Ψ(x̄[len(γ?)];S?Γ) < Ψ(x̄0;S?Γ)

2. Ψ(x̄[len(γ?)];S0) < Ψ(x̄0;S0)

Proof: Note that by Lemma B.2-3) in Appendix B it is obtained that x̄0 ∈ ∂(α0S?Γ)
with

α0 := Ψ(x̄0;S?Γ).

Similarly, one can obtain that x̄[len(γ?)] ∈ ∂(αS?Γ) with α := Ψ(x̄[len(γ?)];S?Γ). Moreover,
since x̄0/α0 ∈ ∂S?Γ, then Lemma 2.21 implies that

x̄[len(γ?)]
α0

∈ S0 ⊆ int(S?Γ).

Hence, ∂(αS?Γ) ⊂ int(α0S?Γ) strictly, unless α0 = 0 which is not possible since x̄0 6= 0.
However, for that to be true, we require α < α0 which is exactly item 1). For item 2),
since Γ is admissible then S0 ⊂ S?Γ and therefore

1 = Ψ
(

x0

α0
;S?Γ
)
< Ψ

(
x̄0

α0
;S0

)
by Lemma B.2-5). Equivalently α0 < Ψ(x̄0;S0). Recall that x̄[len(γ?)]/α0 ∈ S0 and
therefore

Ψ
(

x̄[len(γ?)]
α0

;S0

)
≤ 1

or equivalently
Ψ(x̄[len(γ?)];S0) ≤ α0 < Ψ(x̄0;S0).

37 CHAPTER 2

Now, we are in position to prove Theorem 2.6. Note that as a consequence of the
previous lemma, both Ψ(•;S?Γ) and Ψ(•;S0) are Lyapunov function candidates for (2.3).
Note that Ψ(•;S?Γ) can be used for a similar setting. However, we use Ψ(•;S0) instead
to take advantage of the fact that this Lyapunov function is independent of the set of
schedules used. Henceforth, switching between admissible sets of schedules as in line 8
of Algorithm 2.2 is possible. Let {`κ}∞κ=0 be the sequence of switching time instants
obtained by using the strategy SP2 on (2.3). Moreover, define

y[κ] := x̄[`κ]

as the state at instants where the schedule changes. Consider the Lyapunov function
candidate

V (y[κ]) := Ψ(y[κ];S0).
Lemma 2.22 implies V (y[κ+ 1])− V (y[κ]) < 0 which in turn implies

lim
κ→∞

y[κ] = lim
κ→∞

x̄[`κ] = 0.

For any x̄[k] with k /∈ {`κ}∞κ=0, i.e. values of x̄ not at schedule change instants, it can be
obtained from (2.3) that

x̄[k] = Λ(∆pk−1)Λ(∆pk−2) · · ·Λ(∆p`′)x̄[`′]

with
`′ = max{` ∈ {`κ}∞κ=0 : ` < k}.

Hence ‖x̄[k]‖ ≤ ρk‖x̄[`′]‖ with ρk the spectral radius of Λ(∆pk−1)Λ(∆pk−2) · · ·Λ(∆p`′),
which since

lim
`′→∞

x̄[`′] = lim
κ→∞

y[κ] = 0

implies that limk→∞ x̄[k] = 0 too.

2.8.2 Proof of Theorem 2.7
First, note that due to Lemma B.2-6) in Appendix B, R > 1 if and only if

Ψ(x̄;S0) > 1,∀x̄ ∈ ∂S?Γ,

where Ψ(•; ∗) is the gauge function given in Definition B.1 from Appendix B. Now, we
show that if R > 1 then S0 ⊂ S?Γ. We proceed by contradiction: let’s assume that there
exists x̄ ∈ S0 such that Ψ(x̄;S?Γ) > 1. Let

β := Ψ(x̄;S?Γ)

and thus x̄/β ∈ ∂S?Γ due to Lemma B.2-3). Henceforth, since R > 1, then Ψ(x̄/β;S0) > 1
or equivalently Ψ(x̄;S0) > β > 1 due to Lemma B.2-4) and due to the assumption
β = Ψ(x̄;S?Γ) > 1. However, for x̄ to belong in S0 we require Ψ(x̄;S0) < 1 which leads to
a contradiction. Therefore,

β = Ψ(x̄;S?Γ) ≤ 1
for all x̄ ∈ S0. Hence,

x̄ ∈ ∂(βS?Γ) ⊆ βS?Γ ⊆ S?Γ

PERCEPTION LATENCY SCHEDULING IN CONTROL 38

due to Lemma B.2-3) and Lemma B.2-1) for any x̄ ∈ S0 and thus S0 ⊆ S?Γ. Finally, note
that since all points x̄ ∈ ∂S?Γ have x̄>M0x̄ > 1 (by the assumption R > 1), then they do
not belong to S0. Thus,

S0 ∩ ∂S?Γ = ∅

and then S0 ⊂ int(S?Γ). Now, we show that if S0 ⊂ int(S?Γ), then R > 1. From here, note
that S0 ⊆ int(S?Γ). We proceed by contradiction: assume that there exists x̄ ∈ ∂S?Γ such
that x̄>M0x̄ ≤ 1. Hence,

x̄ ∈ S0 ⊆ int(S?Γ)

which is a contradiction. Therefore, R > 1 for all x̄ ∈ ∂S?Γ which concludes the proof.

2.8.3 Proof of Corollary 2.8
Let x̄∗ be the critical point of (2.5) which leads to the global minimum R and note that
x̄∗ ∈ ∂S?Γ. Hence, x̄∗ ∈ ∂Sγ for at least one γ ∈ Γ and at most all γ ∈ Γ. Let Γ′ be
the set of all those γ ∈ Γ and note that Γ′ ∈ P(Γ). Therefore, (x̄∗)>Mγ(x̄∗) = 1 for all
γ ∈ Γ′ and is a local minimum of (2.6) for such Γ′. Since x̄∗ ∈ ∂S?Γ and x̄∗ ∈ ∂Sγ only
for γ ∈ Γ′, thus x̄∗ /∈ Sγ for γ ∈ Γ \ Γ′, and thus x̄∗ ∈ XΓ′ . Now, for x̄∗ to be the global
minimum, critical points x̄ comply (x̄∗)>M0(x̄∗) ≤ x̄>M0x̄ in (2.7).

2.8.4 Proof of Theorem 2.11
In order to show Theorem 2.11 we proceed by duality analysis, which is summarized in
the following two technical lemmas.

Lemma 2.23. Any x̄∗ which is a regular critical point of program (2.6) comply with

G(λ)x̄∗ = 0
(x̄∗)>Mγ(x̄∗) = 1 ∀γ ∈ Γ′

for some unique λ = {λγ}γ∈Γ′ .

Proof: Let
L(x̄,λ) = x̄>M0x̄ +

∑
γ∈Γ′

λγ(x̄>Mγ x̄− 1)

be the Lagrangian for (2.6) with Lagrange multipliers λ. Moreover, L(x̄,λ) can be written
as

L(x̄,λ) = x̄>G(λ)x̄−
∑
γ∈Γ′

λγ (2.13)

According to [122, Propositon 3.1.1], all regular critical points x̄∗ must satisfy (x̄∗)>Mγ x̄∗ =
1, ∀γ ∈ Γ′ and ∇x̄L(x̄∗,λ) = 0 or equivalently G(λ)x̄∗ = 0 for some unique Lagrange
multipliers λ.

Lemma 2.24. Let λ∗ be any critical point of the dual problem of (2.6) and G(λ) be its
dual objective (in the sense of [127, Chapter 5]). Moreover, let (x̄∗)>M0(x̄∗)−G(λ∗) be
the duality gap between the primal in (2.6) and its dual. Then, any regular critical point

39 CHAPTER 2

x̄∗ of the primal has zero duality gap. Consequently, the duality gap is zero if and only
if λ∗ is also a critical point of

max
λ

−∑
γ∈Γ′

λγ


s.t. det G(λ) = 0

(2.14)

Proof: First, we compute the dual function (see [127, Page 216]) of the objective in
(2.6) as

G(λ) = inf
x̄∈Rn

L(x̄,λ) =
(

inf
x̄∈Rn

x̄>G(λ)x̄
)
−
∑
γ∈Γ′

λγ

where L(x̄,λ) is the Lagrangian given in (2.13). Therefore, we conclude that

G(λ) =

 −
∑
γ∈Γ′

λγ if G(λ) � 0 or det G(λ) = 0

−∞ otherwise

since the infimum of the form x̄>G(λ)x̄ is either zero (for G(λ) � 0 or detG(λ) = 0 with
x̄ in the kernel of G(λ)) or −∞ (see [127, Page 220]). Hence, the dual program results in

max
λ

−∑
γ∈Γ′

λγ


s.t. G(λ) � 0

making the constraints explicit (see [127, Page 224]), ignoring the case when G(λ) = −∞.
Note that due to Lemma 2.23 it is true that G(λ∗)x̄∗ = 0 for some λ∗. Hence, we can
multiply

(x̄∗)>G(λ∗)x̄∗ = (x̄∗)>M0(x̄∗) +
∑
γ∈Γ′

λ∗γ(x̄∗)>Mγ(x̄∗)

= (x̄∗)>M0(x̄∗) +
∑
γ∈Γ′

λ∗γ = (x̄∗)>M0(x̄∗)−G(λ∗)

= 0

which results in zero duality gap, only possible if λ∗ is a critical point of the dual prob-
lem by the definition of G(λ). Note that zero duality gap plus the condition that
(x̄∗)>Mγ(x̄∗) = 1 implies x̄∗ 6= 0. Then, G(λ∗)x̄∗ = 0 if and only if det G(λ∗) = 0
and x̄∗ in the kernel of G(λ∗).

Using these results, we proceed to show Theorem 2.11. Build a Lagrangian for (2.14)
as

L′(λ, µ) = −
∑
γ∈Γ′

λγ + µ det G(λ)

with Lagrange multiplier µ ∈ R. Thus, λ∗ comply with

∇λL′(λ∗, µ) = 0

PERCEPTION LATENCY SCHEDULING IN CONTROL 40

from [122, Proposition 3.1.1] and

∂L′

∂λγ
= −1 + µ tr(G(λ∗)†Mγ) = 0

using Jacobi’s formula for the derivative of the determinant [123, Page 29]. Thus,

tr(G(λ∗)†Mγ) = 1
µ

or equivalently
tr(G(λ∗)†Mγ) = tr(G(λ∗)†Mν), ∀γ, ν ∈ Γ′

This result, in addition to the condition det G(λ∗) = 0 result in (2.8). From Lemma 2.24
we can also conclude that any critical point complies with (x̄∗)M0(x̄∗) = −

∑
γ∈Γ′ λ

∗
γ

since this condition is equivalent to the zero duality gap property of (2.14). Finally, due
to Lemma 2.23, we know that G(λ∗)x̄∗ = 0 and this is true only if x̄∗ is in the kernel of
G(λ∗).

2.8.5 Proof of Corollary 2.13
Recall that the rank of G(λ) is equivalent to the size of the largest invertible sub-matrix
G(λ) [123, Page 12]. We proceed by contradiction: assume that λ doesn’t comply with at
least one equation (2.10) for some pair (i, j). This would mean that Gij(λ) is invertible
resulting in the rank of G(λ) to be n− 1. However, the nullity of G(λ) was greater than
1. Then, by the rank-nullity theorem [123, Page 6] the rank should have been less than
n− 1 leading to a contradiction.

2.8.6 Proof of Proposition 2.14
Let V = {v1, . . . ,vr} be arbitrarily r = n− |Γ′| vectors v1, . . . ,vr ∈ Rn. Build a matrix

YV (x̄) = [Y(x̄),v1, . . . ,vr].

The vectors {Mγ x̄}γ∈Γ′ are linearly dependent if and only if the matrix YV (x̄) is singular
for any choice of v1, . . . ,vr. Using the Laplace expansion of the determinant of YV (x̄)
[123, Page 8] we obtain

det YV (x̄) =
∑
α∈A

qα(V)det Wα(x̄)

where qα(V) are polynomials in the components of the vectors in V . In order to comply
det YV (x̄) = 0 for any set of vectors V , then det Yα(x̄) = 0 for all α ∈ A.

41 CHAPTER 2

2.8.7 Proof of Proposition 2.17
The proof follows by performing a Karp reduction [128, Definition 15.15] of the 3-SAT
problem, known to be NP-complete [128, Theorem 15.22], to an instance of Problem 2.1.
First, consider an instance of Problem 2.1 with A = 0,B = I and ∆1 = · · · = ∆D =
∆, Tf = α∆, α ∈ N with

(I + L1∆), . . . , (I + LD∆)

being 0− 1 left stochastic matrices. Moreover, let P0 = 0,W0 = 0,Σ1 = · · · = ΣD = 0 as
well as Q = 0, λr = 0, λx = 1 and Qf = diag(c) for some 0− 1 vector c. Finally, consider
the initial condition x̄0 to be a 0− 1 vector as well. This results in Λ(∆pk) = I + Lpk∆
being 0− 1 matrices and as a consequence x̄[α] is a 0− 1 vector. Thus,

J (p) = x̄[α]>diag(c)x̄[α] = c>x̄[α].

Hence, solving this instance of Problem 2.1 requires to find a schedule P0, . . . , pα−1 such
that the linear function c>x[α] is minimized, or equivalently −c>x[α] is maximized. Thus,
the Problem [118, Problem (P)] for stochastic matrices, initial condition and vector c all
with 0−1 components can be reduced to Problem 2.1. Finally, the proof of [118, Theorem
3.1] implies that the 3-SAT problem can be reduced to this instance of [118, Problem (P)].

2.8.8 Proof of Proposition 2.18
The proof of correctness follows by a direct application of the dynamic programming
algorithm [124, Page 23]. For the complexity, note that the largest amount of recursive
calls in Algorithm 2.6 is obtained when the schedule covering the smallest amount of time
c over [0, Tf] is chosen repeatedly. In this case, the depth of recursive calls to dynprog is
bTf/cc. Hence, due to line 2 in Algorithm 2.6, the total number of recursive calls is at
most mbTf/cc.

2.8.9 Proof of Theorem 2.20
For the proof, for any matrix P let ‖P‖ denote its matrix norm [123, Section 5.6] induced
by the Euclidean norm. To show Theorem 2.20 we provide the following.

Lemma 2.25. Let p be a fixed perception schedule over [0, Tf]. Moreover, let any
compact sets Bx̄ ∈ Rn,BP ∈ Rn×n and any ε > 0. Then, there exists δx̄, δP > 0 such
that for any x̄0, x̄′0 ∈ Bx̄ and any P,P′ ∈ BP with ‖x̄0 − x̄′0‖ < δx̄ and ‖P − P′‖ < δP
implies

|J (p; x̄0,P0)− J (p; x̄′0,P′0)| < ε.

Proof: First, let
rx̄ = sup{‖x̄‖ : x̄ ∈ Bx̄}.

Then, we leverage continuity of solutions of (A.4) with respect to initial conditions. Con-
cretely, using the bound in [129, Page 356 - Equation (9.28)] applied to (A.4) for the
compact interval [0, Tf] it follows that

‖x̄(t)− x̄′(t)‖ ≤ ‖x̄0 − x̄′0‖ exp(cx̄Tf) ≤ δx̄ exp(cx̄Tf),∀t ∈ [0, Tf]

PERCEPTION LATENCY SCHEDULING IN CONTROL 42

for some constant cx̄ ∈ R. A similar reasoning leads to obtain

‖P(t)−P′(t)‖ ≤ δP exp(cPTf),∀t ∈ [0, Tf]

for some constant cP ∈ R. Moreover,

|x̄(t)>Qx̄(t)− x̄(t)′TQx̄′(t)| = |(x̄(t) + x̄′(t))>Q(x̄(t)− x̄′(t))| ≤ 2rx̄‖Q‖δx̄ exp(cx̄Tf)

using the matrix norm properties in [123, Section 5.6]. Similarly,

|tr(QP(t))−tr(QP′(t))| = |tr(Q(P(t)−P ′(t)))| ≤ n‖Q(P(t)−P ′(t))‖ ≤ n‖Q‖δP exp(cPTf).

Hence, using these results on

e := |J (p; x̄0,P0)− J (p; x̄′0,P′0)|

which using (A.5) leads to conclude that for appropriate (sufficiently small) δx̄, δP > 0:

e ≤ 2λxrx̄δx̄(‖Q‖+ ‖Qf‖) exp(cx̄Tf) + nλxδP(‖Q‖+ ‖Qf‖) exp(cPTf)) ≤ ε

We proceed to show Theorem 2.20. First, given ε > 0 and Bx̄,BP choose δx̄, δP as
in Lemma 2.25 and note that this values are independent on initial conditions as long as
they lie in Bx̄,BP . Hence, there is N > 0 such that we can partition the compact set Bx̄
into regions B1

x̄, . . . ,BNx̄ which cover all Bx̄ and

‖x̄− x̄′‖ ≤ δx̄,∀x̄, x̄′ ∈ Bix̄,∀i ∈ {1, . . . , N}.

A similar partition of N sections can be performed for BP as well. Now, choose any
x̄i0 ∈ Bix̄,Pi

0 ∈ BiP for partition i and denote with p∗i the optimal schedule in this case for
the general setting of Problem 2.1. As a consequence of Lemma 2.25, the cost of p∗i for
any x̄′0 ∈ Bix̄,P′0 ∈ BiP differs from the optimal one in that partition by at most ε. Now,
let Γ be any admissible set of schedules. Moreover, since p∗i is a solution of Problem 2.1,
then it must be a stabilizing perception schedule for x̄[0] = x̄i0. Thus, there exists `i <∞
(sufficiently large) with

Tf ≤
`i−1∑
k=0

∆p∗ik

such that
‖x̄[`i]‖2 < ‖M0‖−1 min

γ∈Γ
(x̄i0)>Mγ x̄i0

for the truncated schedule γi = {p∗ik }
`i−1
k=0 . This last relation implies

(x̄i0)>Mγi x̄i0 = (Λγi x̄i0)>M0(Λγi x̄i0) = x̄[`i]>M0x̄[`i] ≤ ‖M0‖‖x̄[`i]‖2 < min
γ∈Γ

(x̄i0)>Mγ x̄i0.

Hence, Γi = Γ∪{γi} is admissible and complies γ?(x̄i0; Γi) = γi by (2.4) and similarly for
any x̄0 ∈ Bix̄ and δx̄ sufficiently small. Therefore, the result follows by choosing m = N
and all Γ1, . . . ,Γm constructed in this way, one for each partition. The reason is that for
any x̄0 ∈ Bx̄,P0 ∈ BP, a schedule with cost differing from the optimal one by at most ε
is always evaluated in Algorithm 2.6.

Chapter Three

Perception Latency Scheduling In Estimation

In this chapter, we explore the perception latency scheduling problem for estimation,
which is particularly relevant in target tracking tasks where a robot aims to estimate
the state of a target using onboard sensors such as cameras, lidar, or radar. The main
focus of this chapter centers around the estimation aspect, abstracting away the control
components within the robot architecture. As a result, our architecture takes the form
illustrated in Figure 3.1, with the Target Estimation Block set to evolve into a fusion
block once multiple agents are integrated in subsequent chapters.

Sensors (Cameras, lidar, radar, etc.)

Target detection

Target
State Estimation

P
er
ce
p
ti
on

la
te
n
cy

sc
h
ed
u
le
r

Perception

Target trajectory

Figure 3.1: Individual robot architecture with perception latency scheduler for target
state estimation.

Within this context, the robot’s objective is to use measurements from onboard sen-
sors, apply a perception process to detect the target’s position of interest, and reconstruct
its trajectory. This trajectory can then be used to construct formation references or enable

43

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 44

tracking control.
The architecture depicted in Figure 3.1 forms the basis of the framework introduced

in this chapter, referred to as PLATE (Perception LATency aware Estimator). PLATE
combines a target state estimator with a scheduling policy. Its primary objective is to
obtain an estimate for the target state while optimizing a performance metric akin to
that in Chapter 2, encompassing estimation performance and resource usage in terms of
attention and CPU load.

As discussed in Chapter 2, the perception scheduling problem is susceptible to a com-
binatorial explosion. Thus, the main contribution of PLATE lies in an efficient scheduling
methodology for approximating optimal scheduling. While PLATE is supported by rig-
orous formal analysis, it is also validated through several experiments, including one
involving standard benchmark datasets with real-world data. The contributions of this
chapter were also published in [5].

3.1 RELATED WORK

In the context of target tracking, anytime neural networks were used in [58] in order to
schedule different deep learning jobs with latency chosen such that real-time deadlines
are maintained with the best possible accuracy overall. However, being a general deep
learning scheduler, [58] does not take into account that for a tracking problem, while a
longer latency might lead to a better accuracy for the detector, the model uncertainty
might increase as well due to the delay introduced by the perception-latency [8].

Instead of using an adaptive perception-latency, some works have used frame-skipping
techniques in order to reduce computational load. In [60], the authors propose an event-
triggered rule in which the detection is only updated under certain events, based on the
expected motion of the target. This approach reduces the computational burden of the
perception task by effectively skipping frames when the expected motion of the target does
not require to. Other approaches follow a similar idea such as the one in [73] in which the
perception task goes to an idle state depending on the expected state of the environment,
obtaining an energy efficient use of battery powered smart cameras. Similarly, in [74] a
neural network is trained based on examples in order to make a decision on whether or not
the detection for some target should be updated. Although some of these methods shows
good experimental performance in certain scenarios, they are mostly based in several
heuristic rules from which it is hard to provide formal guarantees on the impact over the
resource usage and quality for target tracking in the general case.

3.2 PROBLEM STATEMENT

Consider the following target model, with state x(t) ∈ Rn e.g. containing the target’s
position, and possibly higher order dynamics such as velocity. Assume a simplified motion
model given by the following Stochastic Differential Equation (SDE):

dx(t) = Ax(t)dt+ Bdw(t), t ≥ 0 (3.1)

where A ∈ Rn×n,B ∈ Rn×nw and w(t) is a nw-dimensional Wiener processes with covari-
ance cov{w(s),w(r)} = W min(s, r) [119, Page 63]. As usual, the process w(t) models
disturbances, unknown inputs for the target and non-modeled dynamics. Moreover, x(0)
is normally distributed with mean x0 and covariance P0.

45 CHAPTER 3

The goal is to construct an estimation framework for the state x(t) using available sen-
sors, e.g. vision or range. Consider a similar perception mechanism model as in Chapter
2. However, we use additional simplifications which will aid the development of efficient
scheduling algorithms. First, assume that the sensors produce the raw measurements
with a minimum sampling period of ∆s. Similarly as before, the system can choose from
D different perception methods to process each raw measurement, producing the posi-
tion of the target through a detection process. Processed measurements are represented
by Cx[k] with some constant matrix C ∈ Rnz×n with (A,C) observable. Each method
has a different perception-latency in {∆1, . . . ,∆D}. These latencies are multiples of the
sampling period ∆s of the sensors leading to a frame-skipping technique. As in Chapter
2, if method pk ∈ {1, . . . , D} is chosen at t = τk, a new measurement z[k] = Cx[k] + v[k]
is available at t = τk + ∆pk where v[k] is a noise modeling the accuracy of the perception
method and the perception-latency and accuracy relation for the perception method is
modeled by the covariance matrix Rpk = cov{v[k]}.

The main issue we address in this chapter is to obtain an estimate of the target state
x(t) at any time t ≥ 0 and choose which perception method to use at each time slot
[τk, τk+1) provided some performance measure is optimized:

Problem 3.1 (Perception scheduling in estimation). Design a causal estimator which
picks a perception method pk at each t = τk and produces an estimate x̂(t) of x(t) with
P̂(t) := cov{x(t)− x̂(t)} using only information prior to the instant t. Moreover, the
estimator output must minimize

J (x̂, p) = 1
Tf

(∫ Tf

0
tr
(
P̂(t)

)
dt
)

+ λα
Tf

(
α∑
k=0

rpk

)
(3.2)

for some window of interest [0, Tf], where α := att(p; [0, Tf]), λα > 0 and rpk ≥ 0 are
additional penalties assigned to each perception method. Recall, that att(p; [0, Tf]) is the
attention of p in the interval [0, Tf] as defined in Chapter 2.

Remark 3.2. The cost function in (3.2) is used to capture the perception latency-
accuracy trade-off. The integral term measures the mean expected squared error of x̂(t)
by evaluating

E(x̂(t)− x(t))>(x̂(t)− x(t)) ≡ tr(P̂(t)).

Thus, the first term in (3.2) represents the quality of the estimation x̂(t). The summation
term in (3.2) introduces the rewards r1, . . . , rD just as in Chapter 2, in order to enable
the cost to incorporate the use of resources in the form of attention or CPU load.

We propose PLATE as a strategy to compute the optimal schedule p and the optimal
estimations x̂(t) in the sense of Problem 3.1. Causality in Problem 3.1 is required in an
online target tracking context. Thus, PLATE works as a causal estimator as is summa-
rized in Algorithm 3.1 and is comprised by the combination of an estimation stage and a
perception-latency scheduling policy.

For the sake of readability, all proofs for the formal results are placed at the end of
this chapter in Section 3.9.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 46

Algorithm 3.1 PLATE loop
1: τs ← 0, k ← 0
2: for sampling event t = τs do
3: # Estimation stage:
4: Use x0 and {z[0], . . . , z[k − 1]} to compute x̂[k].
5: Read raw data from sensors.
6: # Perception latency scheduling:
7: Decide which perception method pk ∈ {1, . . . , D} to use.
8: Wait ∆pk units of time until the perception-latency has elapsed to produce z[k],

i.e. τs ← τs + ∆pk .
k ← k + 1

9: end for

3.3 PERCEPTION-LATENCY AWARE ESTIMATION

In this section, we establish the structure of the estimation stage of PLATE. To do so,
and in order to study the latency-precision trade-off under a cost of the form (3.2), it
is useful to study an equivalent model of (3.1) as a sampled-data system. The following
result follows from [130, Section 4.5.2]:

Proposition 3.3. Consider a perception schedule p. Hence, the solution x(t) of (3.1)
satisfy:

x(t) = Ad(t− τk)x[k] + wd(t) (3.3a)
x[k + 1] = Ad(∆pk)x[k] + wd[k] (3.3b)

for t ∈ [τk, τk+1), k ≥ 0 where Ad(t−τk) := exp(A(t−τk)) and wd(t) normally distributed
with cov{wd(t)} given as

Wd(t− τk) =
∫ t−τk

0
Ad(τ)BWB>Ad(τ)>dτ

The discrete-time nature of the perception process is made explicit by (3.3), which
is equivalent to (3.1). As a result, we adopt (3.3) as the motion model throughout the
manuscript.

The following result shows the computation of an optimal estimation x̂(t) or x(t)
provided an optimal schedule p.

Theorem 3.4. Let p be the optimal schedule for Problem 3.1. Thus, the optimal estima-
tion for (3.1) at t ∈ [τk, τk+1) is given by the conditional mean E

{
x(t)

∣∣ z[0], . . . , z[k − 1]
}

and can be computed as:

x̂(t) = Ad(t− τk)x̂[k]
P̂(t) = cov{x(t)− x̂(t)} = Ad(t− τk)P̂[k]Ad(t− τk)> + Wd(t− τk)

(3.4)

47 CHAPTER 3

for t ∈ [τk, τk+1) with x̂[k], P̂[k] generated according to

x̂[0] = x0, P̂[0] = P0

L[k] = Ad(∆pk)P̂[k]C>
(
CP̂[k]C> + Rpk

)−1

x̂[k + 1] = Ad(∆pk)x̂[k] + L[k] (z[k]−Cx̂[k])
P̂[k + 1] = (Ad(∆pk)− L[k]C) P̂[k] (Ad(∆pk)− L[k]C)> + L[k]RpkL[k]> + Wd(∆pk)

(3.5)

3.4 SCHEDULING POLICY

Now that the estimation stage of PLATE has been established, we turn our attention to
obtaining the optimal scheduling policy, minimizing (3.2). In contrast to the estimations
x̂(t) which may take arbitrary values in Rnx , the perception schedule p is of discrete
nature.

One possible way to obtain the optimal schedule that solves Problem 3.1 is to use
Algorithm 3.2 by calling dynProg(0, P̂[0], Tf). This algorithm is essentially an exhaustive
search for the optimal schedule, organized as a dynamic programming recursive algorithm.

Figure 3.2 illustrates how our dynamic programming algorithm works. The algorithm
starts at time τ+ = 0 when calling dynProg(0, P̂[0], Tf) and tries out each of the D
possible perception methods. For each method, it computes a cost-to-arrive J (line 6 of
Algorithm 3.2) and checks whether the current schedule length τ+ is less than the desired
length Tf . If τ+ < Tf , the algorithm must continue exploring other scheduling options
that may extend the current schedule. This process is represented by the black nodes
in Figure 3.2. On the other hand, if τ+ ≥ Tf , the algorithm has found a valid schedule
that covers the entire time window [0, Tf]. This is represented by the white nodes in the
figure.

At each step of the algorithm, a recursive call to the function is made using the current
schedule length τ+ and the updated covariance state P̂[k + 1]. The recursion continues
until the algorithm reaches the end of the time window Tf . At that point, the algorithm
returns the optimal schedule decision pk and the final cost for that schedule.

The correctness and complexity of the algorithm are established in the following result:

Proposition 3.5. Calling

{p, J} ← dynProg(0, P̂[0], Tf)

and computing x̂(t) using the PLATE structure in (3.4) for such p, results in the op-
timal estimations, schedule and cost x̂, p,J (x̂, p) ≡ J for Problem 3.1 with worst case
complexity given by O (Dαmax) where

αmax := bTf/min{∆1, . . . ,∆D}c.

The previous result evidences some important complications of Problem 3.1. First, as
shown in Proposition 3.2, the complexity of the exact solution in Algorithm 3.2 increases
exponentially as Tf increases. This is not surprising, since the discrete nature of the
perception schedule p suggests that the problem is subject to a combinatorial explosion.
Moreover, due to the transient behaviour of P̂(t), choosing pk just to minimize a one step

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 48

dynProg(0, P̂0, Tf)

p0 = 1

p0 = 2

p0 = D

...

...

...

dynProg(∆p0 , P̂[1], Tf)

p1 = 1

p1 = 2

p1 = D

...

...

...

pα = 1

pα = 2

pα = D

...

τ+ < Tf

τ+ = ∆p0 τ+ = ∆p0 + ∆p1 τ+ = ∆p0 + · · · + ∆pα...
τ+ ≥ Tf

dynProg(∆p0 + · · · + ∆pα−1 , P̂[α], Tf)

Figure 3.2: Graphical depiction of Algorithm 3.2. At each step, all scheduling method
options are explored in a recursive fashion with a maximum depth until the condition∑α
k=0 ∆pk ≥ Tf where α = att(p; [0, Tf]) is reached.

Algorithm 3.2 dynProg

Input: τ, P̂[k], Tf
Output: p, J

1: J ←∞
2: p← ∅
3: for ρ ∈ {1, . . . , D} do
4: τ+ ← τ + ∆ρ

5: p+ ← ∅

6:

Jρ ←
1
Tf

(
λαr

ρ +
∫ min(τ+,Tf)

τ

tr(Wd(t− τ))dt+

∫ min(τ+,Tf)

τ

tr(Ad(t− τ)P̂[k]Ad(t− τ)>)dt
)

7: if τ+ < Tf then
8: Compute P̂[k + 1] with (3.5) for ρ and P̂[k]
9: {p+, J+} ←dynProg(τ+, P̂[k + 1], Tf)

10: Jρ ← Jρ + J+

11: end if
12: if Jρ < J then
13: J ← Jρ
14: Append ρ to the start of p+ and assign the result to p
15: end if
16: end for

ahead of the cost in line 6 of dynProg may not be sufficient to find an exact solution
for the problem without having to explore future scheduling method options over the
window [0, Tf]. Some performance improvements can be made to Algorithm 3.2 such as
applying a branch-and-bound technique [124, Chapter 2.3.3] or general approximations
or heuristics [124, Chapter 6]. However, seeking for tailor-made approximate solution

49 CHAPTER 3

and studying its performance gap with respect to the optimal is more appropriate for a
practical implementation.

3.4.1 Quantized covariance approach
We provide an approximate alternative to Algorithm 3.2 in order to make it computa-
tionally feasible for use in PLATE. This approximation is sub-optimal, but can be made
as close to optimal as desired, jeopardizing the computational complexity. The key idea
is to observe that as the window [0, Tf] is traversed during Algorithm 3.2, the set of pos-
sible states of the covariance P̂[k] increase exponentially in size as well. This is evident
from Figure 3.2 which shows how the nodes at each level of the exploration tree increase
exponentially as all possible combinations of perception methods are tested. However, if
the amount of nodes at each level of the tree in Figure 3.2 is managed to keep a bound
regardless of Tf , the complexity of the algorithm can be reduced. This can be performed
by grouping similar values of P̂[k] into a single element of Rnx×nx through quantization.
The result is a compressed exploration graph with a non-growing number of nodes per
level.

The quantization procedure for the covariance values is described as follows. Consider
a compact set B0 ⊂ Rnx×nx containing only positive semi-definite matrices, characterized
by a bound B0 > 0 such that

‖P̂[k]‖F ≤ B0,∀P̂[k] ∈ B0.

Now, given some δ > 0, partition B0 intoQ0(δ) ∈ N non-overlapping regions B1, . . . ,BQ0(δ)
such that

sup
P̂′[k],P̂′′[k]∈Bq

‖P̂′[k]− P̂′′[k]‖F ≤ δ, ∀q ∈ {1, . . . , Q0(δ)}

and
Q0(δ)⋃
q=1
Bq = B0

. Moreover, pick a representative P̂q ∈ Bq as an identifier for all other P̂[k] ∈ Bq. Finally,
let the quantization function

Q : B0 → {P̂1, . . . , P̂Q0(δ)}

which takes any P̂[k] ∈ B0 and maps it to the P̂q such that P̂[k] ∈ Bq. Note that
we do not require to use a uniform quantization procedure. In fact, for practical pur-
poses it is convenient to use a non-uniform quantization scheme in which Q0(δ) points
P̂1, . . . , P̂Q0(δ) ∈ B0 are provided instead, e.g. sampled from B0, from which the maxi-
mum distance δ > 0 is obtained.

The idea is to track how the identifiers P̂q with q ∈ {1, . . . , Q0(δ)} are related between
them using the PLATE estimation stage evolution in (3.5). To do so, a weighted directed
graph (V, E , ρ) is constructed with vertex set V = {1, . . . , Q0(δ)}. Moreover, each edge
e = (i, j) ∈ E corresponds to a connection between i, j ∈ {1, . . . , Q0(δ)} when P̂j =
Q(P̂[k + 1]) with P̂[k + 1] computed using (3.5) for P̂[k] = P̂i and a weight function
ρ : E → {1, . . . , D} with ρ(e) = pk.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 50

However, it might be the case that P̂[k+1] lies outside of B0 for some pk and P̂[k] = P̂q,
q ∈ {1, . . . , Q0(δ)}. To account for these cases, we apply the steps described in Algorithm
3.3 adding new states outside B0 as required. The result is a graph G with Q(δ) ≥ Q0(δ)
states where P̂q ∈ B,∀q ∈ {1, . . . , Q(δ)} and B is a region of Rnx×nx with B0 ⊂ B, and
its corresponding bound ‖P̂[k]‖F ≤ B, ∀P̂[k] ∈ B. When Algorithm 3.3 finishes, it is
ensured that if P̂[0] ∈ B0, then the quantized covariance trajectories will be contained in
B for any perception schedule.

Algorithm 3.3 expandB

Input: δ,B0 with ‖P̂[0]‖ ≤ B0
Output: B,G
Quantize B0 into Q0(δ) patches {B1, . . . ,BQ0(δ)} with identifiers {P̂1, . . . , P̂Q0(δ)}
q ← 0
V ← {1, . . . , Q0(δ)}
E ← ∅
B ← B0
Q(δ)← Q0(δ)
while q ≤ Q(δ) do
for p ∈ {1, . . . , D} do
Compute P̂[k + 1] from (3.5) using P̂[k] = P̂q for pk = p

if P̂q′ 6= Q(P̂[k + 1]) for any q′ ∈ {1, . . . , Q(δ)} then
Q(δ)← Q(δ) + 1
V ← V ∪ {Q(δ)}
Create a new patch BQ(δ) and identifier P̂Q(δ) such that P̂Q(δ),Q(P̂[k + 1]) ∈
BQ(δ) and supP̂,P̂′∈BQ(δ)

‖P̂− P̂′‖ = δ

B ← B ∪ BQ(δ)
end if
Add edge e = (q, q′) to E with weight ρ(e) = p

end for
q ← q + 1

end while
Construct G using V, E and its weights from line 16.

It is beneficial for practical purposes, to estimate how Q(δ) grows with respect to
original size of B0 as a result of Algorithm 3.3. The following result ensures that Algorithm
3.3 finishes with finite Q(δ). In addition, we provide an explicit upper bound for B, from
which a worst case of Q(δ) can be computed depending on the actual quantization scheme.

Proposition 3.6. Algorithm 3.3 finishes for any compact set B0 ⊂ Rn×n and δ > 0. In
addition, the resulting bound B for B complies

B ≤ Bs := √nx

(
λmax(Ω)
λmin(Ω)

)(
B0 + G

1− γ

)
(3.6)

where Ω ∈ Rnx×nx and Yi ∈ Rnx×nz , i ∈ {1, . . . , D} satisfy the following Linear Matrix

51 CHAPTER 3

Inequality (LMI): [
γΩ (ΩAd(∆i)−YiC)>

(ΩAd(∆i)−YiC) Ω

]
� 0,

i = 1, . . . , D, Ω � 0
(3.7)

for some 0 < γ < 1. Moreover, λmin(Ω), λmax(Ω) are the minimum and maximum
eigenvalues of Ω respectively and

G := max
i∈{1,...,D}

‖(Lpk)Rpk(Lpk)> + Wd(∆pk)‖F

with Lpk = Ω−1Ypk .

1

2

Q(δ)

...

1

2

Q(δ)

1

2

Q(δ)

...

1

2

Q(δ)

...

V V V V
t = ∆s

Edge e with ρ(e) = 1

Edge e with ρ(e) = 2
D = 2

q0 = 1

t = 2∆s t = 3∆s t = 4∆s

Figure 3.3: Transition graph example for covariance evolution using G. In this example
D = 2. Each node labeled in 1, . . . , Q(δ) is connected to other nodes through one of the
two perception decisions, either one or two steps ahead since ∆1 = ∆s,∆2 = 2∆s for this
example.

Using the graph G, the evolution of covariance states in V can be tracked from an
initial condition q0 ∈ V as time advances in [0, Tf]. This can be visualized using a
transition diagram, as shown in Figure 3.3 which depicts an example with D = 2 and
∆1 = ∆s,∆2 = 2∆s. Here, at t = 0 the initial state is q0 corresponding to P̂q0 = Q(P [0]).
We consider a discrete time t = `∆s as integer multiples of the minimum sampling
interval. As ` increases, edges e ∈ E connect states between time steps, with different
perception decisions ρ(e). Note that, under this perspective, number of states at each
time step is maintained constant. Hence, a dynamic programming algorithm for finite-
state deterministic systems can be applied in order to obtain the optimal schedule p [124,
Page 64]. In this context, the optimal p corresponds to the shortest route starting at q0,
which traverses the transition diagram of G until it reaches any state at stage ` = bTf/∆sc
with distance measured by J (x̂, p).

The concrete steps required to run this dynamic programming solution, called qDP,
are described in Algorithm 3.4 and are discussed as follows. First, auxiliary matrices

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 52

MQ,MP ,MJ are computed from Algorithm 3.5 given an initial state q0. In line 6 of
Algorithm 3.5 time steps up to αmax are traversed. Moreover, in line 7 all possible states
q at time ` are evaluated as well. Furthermore, for each of these states q, in line 8 all
perception options ρ are checked. In this way, Algorithm 3.5 tracks optimal routes where
[MJ]q,` stores the best cost-to-arrive from q0 to q after ` time steps. Moreover, [MQ]q′,`
stores the best state q connected to q′ at time step `, where the perception decision is
stored in [MP]q′,` defining how many stages separate both states as well. These matrices
are used in Algorithm 3.4 to trace-back the optimal scheduling.

Algorithm 3.4 qDP
Input: q0, Tf ,G computed from Algorithm 3.3
Output: p, J
{MQ,MP ,MJ} ←qDPMatrices (q0, Tf ,G)
Set J and q to the best cost and state at the last column of MJ

p← ∅
Use MP to trace back the optimal schedule ending at state q
`← bTf/∆sc
while ` > 0 do
ρ← [MP]q,`
Append ρ at the start of p
q ← [MQ]q,`
`← `−∆ρ/∆s

end while

The sense in which we verify correctness of the dynamic programming as from Algo-
rithm 3.4 and its complexity is established in the following:

Proposition 3.7. Consider the qDP algorithm and assume that the evolution of P̂[k] is
constrained to evolve according to the structure in G and that P̂[0] ∈ {P̂1, . . . , P̂Q(δ)}.
Thus, qDP obtains the optimal value of (3.2) for such constrained trajectories. Moreover,
the worst-case of complexity of qDP is O(αmaxQ(δ)D) where αmax = bTf/∆sc.

Proof: The proof can be found in Section 3.9.4.

As evidenced by the previous result, the complexity of the quantized covariance ap-
proach is reduced to something linear in Tf . Nonetheless, since this is an approximate
solution, there will be a trade-off between complexity and the performance gap of the
quantized solution with respect to the true optimal. Note that by decreasing δ, the num-
ber of patches Bq needed to cover B will increase. However, it is expected that as δ → 0,
the resulting sub-optimal solution perfomance improves. These ideas are formalized in
the following result.

Theorem 3.8. Let J be the optimal cost for Problem 3.1 and P[0] ∈ B0. Then, for any
ε > 0 there exists sufficiently small δ > 0 such that

|J − JQ(δ)| ≤ ε

where JQ(δ) is the cost obtained from qDP in Algorithm 3.4 for such δ and initial condition
Q(P̂[0]) ∈ B0.

53 CHAPTER 3

Algorithm 3.5 qDPMatrices
Input: q0, Tf ,G
Output: MQ,MP ,MJ

αmax ← bTf/∆sc
MQ ← [0] ∈ {0, 1, . . . , Q(δ)}Q(δ)×(αmax+1)

[MQ]q′,`: best state q connected to q′ at step `
MP ← [1] ∈ {0, 1, . . . , D}D×(αmax+1) # [MP]q′,`: Perception connecting best q con-
nected to q′ at step `
MJ ← [∞] ∈ R̄Q(δ)×(αmax+1)

≥0

[MJ]q,`: best cost from q0 to q in ` steps
[MJ]q0,0 ← 0
for ` ∈ {1, . . . , αmax} do
for q ∈ {1, . . . , Q(δ)} do
for ρ ∈ {1, . . . , D} do
q′ ← state connected to q through edge with weight ρ
τ ← (`− 1)∆s

τ+ ← τ + ∆ρ

J ← 1
Tf

(
λαr

ρ +
∫ min(τ+,Tf)

τ

Wd(t− τ)dt+

∫ min(τ+,Tf)

τ

tr(Ad(t− τ)P̂qAd(t− τ)>)dt
)

[MJ]q,` + J is the cost-to-arrive from q0 to q′ in `+ ρ steps
if [MJ]q,` + J < [MJ]q′,`+ρ then

[MJ]q′,`+ρ ← [MJ]q,`
[MQ]q′,`+ρ ← q
[MP]q′,`+ρ ← ρ

end if
end for

end for
end for

Henceforth, we have established that the PLATE strategy with estimation stage in
(3.5) and perception-scheduling policy obtained using qDP is a sub-optimal for Problem
3.1, with mild computational complexity in terms of the window size Tf and can ap-
proximate the optimal solution with arbitrary precision if more computational power is
available.

Remark 3.9. It is important to note that only the perception schedule computation is
impacted by quantization, while the actual estimator in (3.4) and (3.5) is not quantized.
Therefore, the quantization step δ only affects the resulting quality of the perception
schedules in terms of the cost (3.2). We provide an analysis of the asymptotic effect of
quantization on the cost in Theorem 3.8. While decreasing δ is expected to increase the
quality of the perception schedules, it is not obvious whether the performance can be
made arbitrarily close to the optimal one. However, this accuracy feature is ensured by
Theorem 3.8. Obtaining closed-form guarantees for a given performance for a value of
δ > 0 is challenging and will be explored in future work.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 54

Remark 3.10. Our approach can be extended to filter structures different than (3.5)
such as a particle filter, as long as a similar transition graph for the covariance matrix is
obtained for its use in Algorithm 3.3. However, obtaining similar theoretical guarantees
as in this chapter for other filter structures is not a trivial task and require more in depth
analysis.

3.5 MOVING HORIZON PLATE

One property of the qDP method used in PLATE is that given an initial condition P̂[0],
a schedule p for the whole time window [0, Tf] is obtained. Thus, it only suffices to
compute the schedule at the beginning and traverse it element by element in line 5
of Algorithm 3.1 after each perception method is used. However, in a more practical
target tracking scenario, there will be missing measurements as a result of occlusions,
or distinguishability problems between targets in a multi-target setting. An appropriate
re-detection of the targets may be performed by a maintenance mechanism as widely
discussed in the literature. This may alter the quality of the pre-computed perception
schedule.

In addition, the processed measurement quality, represented by the covariances R1,
. . . , RD may not remain fixed in a practical setting. Instead, it is usual to use the current
estimation for the state of the target to improve the quality of subsequent measurements
as in [53, 131, 132]. Moreover, the detection method may include some measure of un-
certainty of their current output, e.g. through Bayesian techniques [133], or data-driven
methods [134]. Thus, an online covariance estimate R[k] for the processed measurements
may be available and may not be any of the nominal covariances. This discussion moti-
vates to change the perception schedule according to the current state of the system by
using qDP as a predictive policy.

To do so, we propose to use moving-horizon scheme for PLATE in the following way.
First, we construct the transition graph G as described in the previous section for nominal
covariances {R1, . . . ,RD}. Now, the dynamic programming algorithm qDP is used at τk
with initial condition given by the current q0 = Q(P̂[k]) to obtain a perception schedule
p′ = qDP(q0, Tf ,G) for the next window [τk, τk + Tf]. As a result, we apply the first
perception method of p′ during [τk, τk + ∆pk) and repeat the procedure for the next
interval.

Furthermore, every time a new perception output is obtained, the PLATE correction in
(3.5) is computed with the actual processed measurement uncertainty R[k] if available,
otherwise with its nominal covariance. When there are no measurements, we simply
predict the state of the target and its covariance using (3.4). This procedure is summarized
in Algorithm 3.6 which describes the steps that must be performed in line 5 of Algorithm
3.1 in order to implement this strategy.

Moreover, the latency of executing qDP at each τk can be considered negligible if two
of the following approaches is used. First, since P̂[k] is quantized through Q(•) there are
onlyQ(δ) possible outcomes for which their resulting perception method obtained through
qDP can be pre-computed offline. On the other hand, similarly to what is suggested in
[8], taking P̂[k] and converting it to a perception method in {1, . . . , D} is a classification
problem with a low dimensional input. Thus, the perception decision can be learned by
a classifier.

55 CHAPTER 3

Algorithm 3.6 Moving-horizon PLATE
Offline:
Pre-compute G using Algorithm 3.3, alternatively pre-compute qDP(Q(P̂q,G, Tf) for all
P̂q, q ∈ {1, . . . , Q(δ)}.
Online:
if There is new processed measurement then
Update P̂[k] using (3.5) for the previous scheduling decision pk−1 and its resulting
perception uncertainty R[k − 1].

else
Predict P̂[k] using (3.4) for the previous scheduling decision pk−1.

end if
p′,_← qDP(Q(P̂[k]),G, Tf)
pk ← first element of p′

Remark 3.11. Comparing our approach with previous work, note that the perception
scheduling policy as in Algorithm 3.6 acts as a frame-skipping technique similar to [60, 73,
135]. However, unlike prior frame-skipping approaches which are based on heuristic rules,
we provide an actual performance guarantees for our sub-optimal perception schedules as
given in Theorem 3.8. On the other hand, note that unlike related multi-sensor scheduling
approaches in the literature as in [77–83], Algorithm 3.4 can be extended for different cost
function expressions by modifying line 12 of Algorithm 3.5, which makes our proposal
more versatile.

Remark 3.12. The moving horizon PLATE proposal allows us to change the system
parameters online as in line 3 of Algorithm 3.6, where we use an uncertainty R[k − 1]
which need not to be any of the nominal ones for the perception methods. This poses
an important advantage with respect to the philosophy of some multi-sensor scheduling
works such as [77, 78] which rely on periodic schedules or other strategies that are highly
dependant on the problem structure.

3.6 NUMERICAL EXPERIMENTS

In order to evaluate PLATE we consider the following scenario. First, let a target with
sate x = [x, vx, y, vy]> describing its position and velocity on the plane. Let camera
images available every ∆s = 1/30 seconds, coinciding with the usual frame rate of a
camera. In addition, the position [x, y]> is measured through a detection process from
which there are D = 2 available perception configuration. First, a lightweight detector
with latency ∆1 = 3∆s and nominal covariance R1 = diag(0.5, 0.5). Second, a more
accurate detector with latency ∆2 = 9∆s and nominal covariance R2 = diag(0.05, 0.05).
We consider CPU loads of f1 = 0.5 and f2 = 0.8 resulting in penalties r1 = 0.5∆1 and
r2 = 0.8∆2. The system matrices in this scenario are:

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,C =
[
1 0 0 0
0 0 1 0

]

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 56

In addition, let the process covariance W = diag(0.5, 0.5). This double integrator target
model is often used for generic targets in the literature. In the following, we evaluate the
different aspects of our proposals for this setting.

3.6.1 Numerical covariance bound estimation
We start by building a transition graph G. To do so, we set B0 ∈ Rn×n as the set of all
positive definite matrices P with ‖P‖F ≤ B0 := 1 and use the mechanism in Algorithm
3.3. In order to depict the result in Proposition 3.6, we explicitly obtain a bound for B.
First, note that the LMI (3.7) has a solution for γ = 0.98 as

Y1 =


0.031 0
0.037 0

0 0.031
0 0.037

 ,Y2 =


0.122 0
0.137 0

0 0.122
0 0.137


with a resulting bound (3.6) of Bs = 4.922. Figure 3.4 depicts how given initial conditions
P [0] ∈ B0 and a randomly generated perception schedule, the magnitude of the PLATE
covariance complies ‖P̂[k]‖F ≤ Bs,∀k ≥ 0.

‖P̂(τk)‖F

Figure 3.4: Covariance norm evolution, showing the bound Bs as well as ‖P̂(τk)‖ for
PLATE with 100 random initial conditions P̂[0] and schedules p with ‖P̂[0]‖F ≤ B0 = 1.

3.6.2 Cost comparison using qDP

Now, in order to depict Theorem 3.8 through this example, we use different levels of
quantization for evaluation. Note that the results presented until now don’t require
uniform quantization. In fact, in the following examples for simplicity we use non-uniform
quantization by sampling a fixed number of points P̂1, . . . , P̂Q(δ) ∈ B0 and quantizing any
other P̂ ∈ B0 through a nearest neighbor rule under the ‖ • ‖F norm. Next, we expand G
through Algorithm 3.3 to obtain B. We use Q(δ) = 50, 500, 5000 which after this process
results in δ = 10.45, 4.23, 2.14 respectively for these arbitrarily selected points, in order
to analyze the impact of the quantization step in the tracking quality.

57 CHAPTER 3

We evaluate qDP for 100 random samples for P [0] over B and compute their resulting
cost (3.2). First, consider Tf = 1, λα = 5. In this case, it is possible to obtain the
minimum cost Jmin by evaluating all schedules covering the window [0, Tf]. We show the
results in the first row of Figure 3.5 where the histograms depict the frequency of the
distance |Jmin − Jp| where Jp is the cost obtained for a schedule p. The schedules tested
where obtained through qDP for graphs G using the previously described values of Q(δ),
as well as the static schedules p = {1, 1, . . . } and p = {2, 2, . . . }. The results show that as
the quanitization gets finer, the cost concentrate more and more towards the minimum,
i.e. |Jmin − Jp| becomes smaller. In addition, it is observed that even with a coarse
discretization Q(δ) = 50, the cost of qDP is almost always less than the cost for the static
schedules. Moreover, the average CPU load seems to decrease as well as the discretization
gets finer. A similar behaviour is obtained when using Tf = 10, λα = 100, as depicted in
the second row of Figure 3.5. In this case, Jmin is computed for 10000 different randomly
selected perception schedules aiming to approximate the otherwise intractable exhaustive
search for the true optimal cost.

Another interesting experiment is obtained by increasing λα = 15 such that the cost
of the covariance is negligible to the one of the penalties rpk in (3.2). In this case, Jmin
is directly the static schedule p = {1, 1, . . . } which is the schedule with less CPU load.
In addition, since the particular values of covariance P̂[k] have little impact on the final
cost, it only suffices to use a single point Q(δ) = 1 in the discretization of the covariance
space. Hence, the result of qDP is the static schedule p = {1, 1, . . . } regardless of the
initial condition P̂[0] as shown in the third row of Figure 3.5.

3.6.3 Moving-horizon PLATE scheduling
We simulate (3.1) for x0 = 0, P [0] = 4I using the Euler-Maruyama discretization with
time step ∆t = 10−3 and run the loop in Algorithm 3.1 under the moving-horizon schedul-
ing of Algorithm 3.6 where qDP is configured similarly as in the previous examples, with
Tf = 10, λα = 5, Q(δ) = 5000, B0 = 5 (Algorithm 3.3). Figure 3.6 depicts the time
evolution of x(t) as well as the PLATE estimate x̂(t), where we show only x and vx for
convenience, since y and vy behave similarly. In addition, we show confidence intervals
of 3 times the standard deviation for each coordinate obtained from P̂(t). In addition,
we show the scheduling decision pk at each time. In order to compare the cost in this
experiment we show tr(P̂(t)) for the moving-horizon scheduling, as well as for the static
schedules. It is worth noting that the best quality measured with tr(P̂(t)) is obtained
by the static schedule with pk = 2. However, it has the highest CPU load of 0.8. The
moving-horizon PLATE strategy manages to have an intermediate quality between the
two static schedules, with a CPU load of 0.65 for this experiment. Thus, PLATE manages
to obtain a better trade-off between quality and resource usage. In addition, an occlusion
is simulated in the interval t ∈ [4, 6] which shows how uncertainty increases during this
period, but recovers once new measurements arrive.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 58

F
re
qu
en
cy

F
re
qu
en
cy

F
re
qu
en
cy

with

with

with

load

with

with

with

with

load

load

load load

load

load

load

load

load

load

load

Figure 3.5: Resulting histograms for the cost difference |Jmin − Jp| with the schedule
obtained from the approximate dynamic programming approach for 100 random initial
conditions for P [0] as described in Section 3.6.2. The parameters T, λα of the cost function
in (3.2) were changed for three different scenarios as well as the number of quantization
points Q(δ). In addition, only the average CPU load for all experiments is shown for
convenience.

3.7 EVALUATION ON REAL DATA

In this section, we evaluate PLATE on a real target tracking task. We use the MOT16
benchmark from [136] since it is part of a public standard data-set, widely used to evaluate
target tracking algorithms. In the simplest setting, the task is to take images from
a monocular camera and track a target of interest across multiple frames. As usual,
and for the sake of simplicity, we are interested in tracking the pixel position of the
geometric center of a bounding box surrounding the target. For this example, we model
the pixel position with a two-dimensional single integrator with fixed nx = nz = nw = 2,

59 CHAPTER 3

0 2 4 6 8

20

0

0 2 4 6 8

5

0

5

0 2 4 6 8
0

1

0 2 4 6 8

10 0

t

t

t

t

x(t)
x̂(t)
Ix(t)

vx(t)
v̂x(t)
Ivx(t)

pk

tr(P̂(t)) with qDP

tr(P̂(t)) with pk = 1

tr(P̂(t)) with pk = 2

Figure 3.6: Behaviour of the target model (3.1) and the output of PLATE using the
moving-horizon scheduling with Tf = 10 and Q(δ) = 5000 when an occlusion occurs for
t ∈ [4, 6]. Moreover, Ix(t) and Ivx(t) represent confidence intervals around x̂(t) and v̂x(t)
of 3 times their standard deviation.

A = 0 ∈ R2×2,B = C = I ∈ R2×2.
In the following, we describe a target tracking pipeline that consists of a perception

stage composed of three different target detection methods based on neural networks, each
exhibiting varying latency and accuracy performance, and a scheduling stage responsible
for deciding which of these methods to use at each time. The objective of this section is to
demonstrate that PLATE is the best choice for the scheduling stage. For this purpose, we
compare the tracking performance of PLATE with two other approaches: 1) a standard
neural network-based method, which involves using the perception methods separately
with no scheduling, 2) event-triggered approaches for frame-skipping.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 60

Name Target IDs fps Usage

MOT16-05 2,37,41,124,128 14 T
MOT16-13 13,14,29,30,76,77,79,81,95,124 25 T

MOT16-02 3,19,20,32,33,34,35 30 E
MOT16-04 2,67,70,80,83,98,99,100 30 E
MOT16-09 12,13,19,20,23 30 E
MOT16-10 1,2,4,7,18,24 30 E
MOT16-11 1,3,4,5,6,11,25,27,29 30 E

Table 3.1: Ground-truth target IDs, as provided by the MOT16 data-set, picked for each
video sequence in our evaluation. Frames per second is abbreviated as fps. The last
column indicates T or E if the target tracks in the corresponding video sequence are used
for training or for evaluation respectively.

3.7.1 Evaluation framework
The MOT16 data-set includes 7 video sequences, each with labeled bounding-boxes for
different moving targets. We manually selected several targets for each sequence. We
recorded their ground-truth positions and the corresponding portion of the sequence,
which we refer to as target tracks from now on. We chose targets that provided longer
experiments, in order to obtain more comprehensive results. Our evaluation data consists
of 50 target tracks across all 7 video sequences, whose ground-truth IDs are shown in Table
3.1 as a reference. Note that for all video sequences the frame rate is set to 30 frames per
second except for MOT16-05 and MOT16-13 with frame rates of 14 and 25 frames per
second respectively. As a result, target tracks for MOT16-13 and MOT16-05 (15 tracks
in total) were used exclusively to estimate the nominal detection covariance for each
perception method as described later, and the covariance W in (3.1). This process is
called training in Table 3.1. The rest of the 35 target tracks contained in the remaining 5
video sequences were used to evaluate the online performance of PLATE. From this point
onward, all experiments (both for our proposal and other proposals used for comparison)
were conducted on a PC equipped with an Intel Core i7-8700, along with the aid of an
NVIDIA GeForce GTX 1080 Ti graphics card.

To evaluate the performance of PLATE, it is necessary to use a setup that includes
a bank of perception methods. However, the purpose of this chapter is not to evaluate
the individual performance of these methods, but rather to measure the advantages of
PLATE in terms of target state estimation quality and resource usage, such as CPU load.
Therefore, we selected well-established perception methods from the public model zoo of
Detectron2 [137]. This repository provides many neural network-based target detection
algorithms with varying levels of latency and precision, making it suitable for our work.
Specifically, we chose the faster_rcnn_R_50_FPN_3x and faster_rcnn_R_101_C4_3x
models (hereinafter referred as the fast and slow networks respectively), which represent
the clearest examples in the zoo of low quality detection with short latency and good

61 CHAPTER 3

quality detection with long latency, respectively. These models have a reported latency
of 0.038s and 0.104s on a standard computing platform, which were verified in our own
setup. To further simplify the experiments, for the fast network we sub-sample the input
image in a factor of two, reducing the latency to roughly 1/(30fps) ≈ 0.033s which is the
inverse of the frame rate. With these two networks we propose 3 perception methods as
follows:

• pk = 1: This method uses the fast network with a latency of 1/(30fps). This means
that this method does not skip any frame and has a CPU load of 100%.

• pk = 2: It uses the slow network with a processing latency of 0.104s. This means
that the network is computed over four frames, causing it to skip three frames,
processing only the first one. Consequently, the CPU load over these four frames is

0.104s
4frames/(30fps) = 78%.

• pk = 3: In order to have an option which favours a low CPU load, we use the fast
network, but deliberately skip the next 4 frames. This means that the perception
quality of this method is the same as pk = 1 but with a CPU load of 1/30 s

5frames/(30fps) =
20% and longer overall latency.

These perception method options are depicted graphically in Figure 3.7. The previous
framework has a disadvantage in terms of memory consumption, as the adaptive strategy
requires storing both neural networks, leading to higher memory usage compared to using
the perception methods individually. However, it is worth noting that depending on the
application, it may be possible to use a single ANN, as demonstrated in [57], which can
offer different latency and quality levels with a fixed amount of memory space. As

pk = 3

pk = 2

pk = 1

100%

78%

20%

Skipped frame

CPU load

τk τk + ∆s τk + 2∆s τk + 3∆s τk + 4∆s

Figure 3.7: Different features of the three perception methods described in Section 3.7.1.
The number of skipped frames as well as the CPU load in each method is depicted.

depicted in Figure 3.8, the output of each of the neural networks is a list of bounding

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 62

Data association

Estimator-Predictor
Equations (5)-(6)

Input Image

pk = 1 pk = 2 pk = 3

Moving horizon
Algorithm 4

x̂(t), P̂ (t)

1 2 3

z[k]

pk

Perception Process

PLATE

1 2 3

Figure 3.8: Implemented Pipeline for the PLATE evaluation framework described in
Section 3.7.1

boxes for all the detected objects in the image. Therefore, a data association stage is
necessary to select the appropriate bounding box for the target object in each experiment.
There exist many data association techniques in the literature, such as those based on
similarity measures using neural networks [138] or end-to-end detection and association
siamese networks [139]. These methods are highly dependent on the training procedure,
which might have an undesired effect when evaluating the scheduling feature of PLATE
by itself. Hence, since the goal of this chapter is to evaluate PLATE for a fixed perception
framework, we use a more standard approach. We compare the predicted position of the
target, limt→τ−

k
x̂(t), from (3.4) at the time τk when the image was captured, and use

the Hungarian algorithm to select the most suitable bounding box candidate [135]. The
computational latency of this procedure is negligible and can be ignored for simplicity in
subsequent discussions. Figure 3.8 shows that the output of the data association stage is
the best bounding box candidate for the target of interest from which a processed position
measurement z[k] is obtained as its geometric center.

In this setting, ∆s = 1/30,∆1 = ∆s,∆2 = 3∆s,∆3 = 5∆s. In addition, the CPU
loads are f1 = 1, f2 = 0.78, f3 = 0.2. We estimate the nominal error covariance for each
perception method R1,R2,R3 by comparing the outputs of each perception method with

63 CHAPTER 3

the ground-truth data across all images in the 15 training target tracks. The resulting
covariance matrices are

R1 = diag(13.122, 25.872),R2 = diag(9.942, 17.062),R3 = R1

The matrix W was estimated using the training target tracks as well, following a standard
parameter estimation procedure described in [134]. As described in Section 3.5, we also
aim to evaluate PLATE when an online estimation of the current covariance R[k] is
available besides the nominal covariances. As a result, we adapt the standard parameter
estimation in [134] for this setting, using the resulting performance of previous detections
compared to the estimation x̂(t). Let Ipk [k] = {` ≤ k : p` = pk, k− ` ≤ Nw} be the set of
all discrete instants ` corresponding to the moments τ` in which the perception method
pk was used prior to the current τk, in a moving window picked here of Nw = 10 samples.
Thus, if pk is to be picked at t = τk one can estimate the current covariance for such
method as:

R[k] = 1
Nw

∑
`∈Ipk [k]

e[`]e[`]> −CP̂−(τk)C> (3.8)

where e[`] = Cx̂[`]− z[`] and P̂−(τk) = limt→τ− P̂(t) from (3.4).
The PLATE module, depicted in Figure 3.8, executes the estimator-predictor equa-

tions specified in (3.4) and (3.5), and implements the scheduler algorithm presented in
Algorithm 3.6. This module employs a moving-horizon PLATE with Tf = 10s and uti-
lizes pre-computed schedules for each quantized covariance value P̂q, which are based on
nominal R1,R2, and R3. When a new processed measurement z[k] is obtained, the pre-
computed values for line 7 in Algorithm 3.6 for all possible P̂[k] in a compact set enable
the computation of the new scheduling decision pk with negligible computing latency.
Additionally, the computation time required for (3.4) and (3.5) in this example’s state
space dimensions is negligible compared to the latencies ∆1,∆2, and ∆3. The values of
Q(δ) will be varied between 50, 500, 5000 as in previous examples with B0 as the set of
all positive definite matrices P with ‖P‖F ≤ B0 = 20.

Remark 3.13. The cost function (3.2) was set using λα = 1 and

rpk = λloadf
pk∆pk + λatt. (3.9)

The term λloadf
pk∆pk penalizes the CPU load, while λatt penalizes the attention, weighted

by λload, λatt. Minimizing these objectives while providing the best possible accuracy are
conflicting goals, but can be balanced by adjusting λload, λatt. If λload = λatt = 0, the offline
construction of pk results in pk = 1 for every P̂q, maximizing the attention regardless
of the quantization step. Conversely, we verified numerically that for λload = 1 and
λatt > 15, pk = 3 for all P̂q, minimizing the attention, regardless of the quantization step
as well. For other values of λload, λatt, the schedule pk changes according to the current
P̂q, achieving a balance between these objectives.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 64

3.7.2 Performance of the implemented pipeline
In this section, we evaluate the proposed pipeline on the 35 evaluation target tracks. The
performance evaluation metric used is the Mean Squared Error (MSE) of x̂(k∆s), k =
0, 1, . . . compared to the ground-truth data available in the MOT16 data-set. Addition-
ally, the CPU load for all experiments is recorded, as well as the attention measured as the
percentage of non-skipped frames compared to the total number of frames. To illustrate
the trade-off between the previously described metrics, a combined cost is computed as
(MSE) + λload(CPU load) + λatt(Attention) as an sampled version of the cost (3.2) under
penalties (3.9).

In the following, we used λload = λatt = 1/2 in (3.9) which results in a trade-off between
accuracy, CPU load and attention, producing different pk through time for PLATE. The
results are shown in Table 3.2 where we compare the performance of the proposal under
different values of Q(δ) as well as using nominal R[k] ∈ {R1,R2,R3} or adaptive R[k]
in (3.8).

There are three main conclusions that can be obtained from these results. First,
note that using adaptive R[k] produces an improvement with respect to the nominal
case, particularly with low Q(δ) where an improvement of (35.76− 32.78)/35.76 ≈ 8% in
MSE is obtained when Q(δ) = 50. Second, consistent with Theorem 3.8, increasing Q(δ)
improves the MSE as well, with diminishing returns as Q(δ) increases. Third, the CPU
load and attention remain roughly the same meaning that high values of Q(δ) might not
be needed in practice to maintain reasonable values for these objectives.

Now, we compare PLATE with other ideas in the literature. As a baseline for the
comparison we used a framework which does not use scheduling. This is, the neural
network method to be used for perception is chosen at the beginning, and remains fixed
at all times. The results are shown in the first three rows of Table 3.3. Note that the
configuration in row 1) of Table 3.3 (fixed pk = 1) obtains the best MSE among all
experiments at the expense of high CPU load and attention. In addition, row 3) of
Table 3.3 (fixed pk = 3) produces the best results in terms of CPU load and attention
at the expense of high MSE. However, recall from Remark 3.13 that with appropriate
configuration of the penalties (3.9), PLATE can produce either fixed pk = 1 or pk = 3
and obtain the best performance for MSE, CPU load or attention by separate.

Moreover, we evaluated frame-skipping techniques [60, 73, 135] which rely on an event-
triggered condition to determine whether a new frame needs processing. To evaluate a
similar approach, we decided at each new frame whether to use pk = 1 or skip the frame
entirely. Send-on-delta strategies are commonly employed, where a frame is processed if
tr(P̂(k∆s)) ≥ δET with a threshold δET > 0. The results for different δET are shown in
rows 4) and 5) of Table 3.3.

Finally, row 6) of Table 3.3 shows the best configuration for PLATE as obtained in
Table 3.2. For comparison, note that while fixed pk = 2 yields a small MSE, CPU load
and attention values remain high. In contrast, PLATE in row 6) of Table 3.3 also has a
small MSE with the advantage of reducing the CPU load from 78% to 43.5% and attention
from 75% to 43.4%, when compared to fixing pk = 2.

The event-triggered approach in row 4) of Table 3.3 shows a small improvement in
the MSE can be obtained when compared to PLATE in row 6) of Table 3.3. Despite
this, the CPU load and attention values are considerably bigger for the event triggered
alternative. More concretely, PLATE in row 6) of Table 3.3 improves the CPU load from

65 CHAPTER 3

71.2% to 43.5% (a relative improvement of 38.9%) when compared to the event triggered
approach in row 4) of Table 3.3, even with a similar MSE performance. This trade-off is
clear since PLATE obtains the best performance among all options as ilustrated with the
combined cost in the last column of Table 3.3.

Hence, using PLATE with appropriate configuration in (3.9) can obtain a good trade-
off between accuracy, CPU load and attention, with improved performance with respect to
static perception configurations. In addition, PLATE provides a clear connection via the
cost function (3.2) and the penalty (3.9) to achieve in each situation different behaviors,
prioritizing CPU load and attention or MSE.

Remark 3.14. The performance of the proposal is highly dependent on the parameters
Q(δ), λload, and λatt, as evident from the results presented in Tables 3.2 and 3.3. It is
important to note that the optimal parameter selection generally varies based on the
specific application and target dynamics under consideration. However, as discussed in
this section, conducting several experimental tests can help determine the most suitable
parameters for the user. Our experiments demonstrate a range of potential performance
values obtained by varying the parameter Q(δ), allowing for selection based on specific
application requirements and resource availability. In addition, regarding the penalties
λload, and λatt, these values should reflect the application specifications. Still, it is ben-
eficial to identify parameter sets for these penalties that exhibit similar behavior to the
ones described in Remark 3.13. This knowledge becomes particularly valuable when the
user needs to make a trade-off between accuracy and resource usage. More principled
design rules are not trivial to obtain and will be considered in our future work.

3.8 DISCUSSION

This chapter focused on a specific aspect of the architecture presented in Figure 1.4
from Chapter 1. The primary objective was to address the complementary problem of
observing an unknown input system, specifically for target tracking applications. This
contrasts the previous Chapter 2, where we tackled a control problem. For this purpose,
we introduced PLATE as a perception-latency aware estimator. PLATE leverages a bank
of perception methods with different latency-precision trade-offs to adaptively select the
best method for the current estimation task. The proposed algorithm allows for skipping
input frames, reducing CPU load and resource usage while maintaining high tracking
accuracy. Unlike other frame-skipping techniques, PLATE’s algorithm is based on a
formal dynamic programming argument rather than heuristics. We found that while the
exact solution of the problem is subject to a combinatorial explosion, an approximate
solution can be obtained with efficient computational complexity. We evaluated PLATE
using both simulations and real-world data sets. We found that it outperforms other state-
of-the-art approaches in terms of both tracking accuracy and computational efficiency.

The ideas presented here for perception-based target estimation can be used to gener-
ate references for control tasks in a multi-agent context, which will be explored in Chapter
7. So far, we haven’t considered cooperation between robots, but upcoming chapters will
present various cooperation strategies, including information fusion and averaging using
consensus algorithms.

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 66

R[k] Q(δ) MSE [px] CPU load [%] Attention [%] Combined cost

1) Nominal 50 35.76 44.5 44.1 80.06
2) Adaptive 50 32.78 44.0 43.9 76.73
3) Nominal 500 32.14 44.1 43.9 76.14
4) Adaptive 500 32.02 43.8 43.6 75.72
5) Nominal 5000 31.54 43.9 43.6 75.29
6) Adaptive 5000 30.04 43.5 43.4 73.49

Table 3.2: Evaluation of the implemented pipeline for PLATE on MOT16 data as de-
scribed in Section 3.7. MSE stands for Mean-Squared-Error with respect to ground-
thruth data. The attention column corresponds to the percentage of non-skipped frames
with respect to the total number of frames. The penalty in (3.9) is configured with
λload = λatt = 1/2. Moreover, to illustrate the trade-off between the previously described
metrics, a combined cost is computed as (MSE) + λload(CPU load) + λatt(Attention) as
an sampled version of the cost (3.2) under penalties (3.9).

Method Configuration MSE [px] CPU load [%] Attention [%] Combined cost

1) No scheduling fixed pk = 1 19.61 100 100 119.61
2) No scheduling fixed pk = 2 29.05 78 75 105.55
3) No scheduling fixed pk = 3 73.73 20 20 93.73
4) Event-triggered δET = 5 25.04 71.2 69.2 95.24
5) Event-triggered δET = 50 64.74 35.9 35.2 100.29
6) PLATE Q(δ) = 5000 30.04 43.5 43.4 73.49

Table 3.3: Evaluation of the implemented pipeline. The evaluation metrics are the
MSE, CPU load and attention as well as the combined cost taking into account all
previous metrics weighted by λload = λatt = 1/2. The methods under evaluation
are: 1) No scheduling with fixed pk = 1, corresponding to using only the fast neu-
ral network faster_rcnn_R_50_FPN_3 at all times without additional frame skipping.
2) No scheduling with fixed pk = 2 corresponding to using only the slow neural net-
work faster_rcnn_R_101_C4_3x at all times without additional frame skipping. 3)
No scheduling with fixed pk = 3 corresponding to using only the fast neural network
faster_rcnn_R_50_FPN_3 followed by 4 skipped frames repeatedly. 4) and 5) Event trig-
gered approach with different δET. 6) The best configuration for PLATE as obtained from
Table 3.2.

67 CHAPTER 3

3.9 PROOFS

3.9.1 Proof of Theorem 3.4
First, we show an following auxiliary result.

Lemma 3.15. Let the state equation (3.3) and the measurement model z[k] = Cx[k] +
v[k] available at t = τk + ∆pk with cov{v[k]} = Rpk and a fixed latency schedule p. Thus,
the estimate at time t ∈ [τk, τk+1) of x(t) based on measurements {z[0], . . . , z[k]} which
minimize tr(P̂(t)), is given by E{x(t)|z[0], . . . , z[k − 1]} and satisfies (3.4).

Proof: First, consider estimates for x[k], given that x[k] evolves according to the
discrete-time system (3.3b). Moreover, note that the measurement z[k] is available at
t = τk+1. Then, [119, Page 228 - Theorem 4.1] implies that the structure in (3.5), inherited
from a Kalman filter with predictor, satisfies x̂[k+1] ≡ E{x[k+1]|z[0], . . . , z[k]}. For any
other t ∈ (τk, τk+1) the measurement z[k] is not available. Thus, E{x(t)|z[0], . . . , z[k−1]}
can be computed using E{x[k]|z[0], . . . , z[k− 1]} through the same structure in (3.5) but
applied to (3.3a) with C = 0 resulting in (3.4). Now that x̂(t) = E{x(t)|z[0], . . . , z[k−1]}
has been established for any t ∈ [τk, τk+1), [119, Page 228 - Theorem 4.1] implies that
a>P̂(t)a is minimized for this estimate with arbitrary vector a ∈ Rnx . This means that
for any other estimation x̂′(t) of x(t) with covariance P̂′(t) := cov{x(t)− x̂′(t)} we have

a>P̂(t)a ≤ a>P̂′(t)a,∀a ∈ Rn.

Hence, P̂(t) � P̂′(t) from which tr(P̂(t)) ≤ tr(P̂′(t)) follows using Lemma C.2 from C for
any other estimation x′(t).

We are now ready to show Theorem 3.4. First, note that for fixed perception schedule
p, the term

∑α
k=0 r

pk in (3.2) is constant. Moreover, Lemma 3.15 implies that x̂(t) =
E{x(t)|z[0], . . . , z[k − 1]} computed recursively using (3.4) and (3.5) leads to an optimal
trajectory of the signal tr(P̂(t)). This means that for any other estimation x̂′(t) of x(t)
with P̂′(t) := cov{x(t)− x̂′(t)} one has tr(P̂(t)) ≤ tr(P̂′(t)). Integrating both sides of the
previous inequality leads to conclude that∫ Tf

0
tr(P̂(t))dt ≤

∫ Tf

0
tr(P̂′(t))dt

which implies J (x̂, p) ≤ J (x̂′, p). Hence, the estimation x̂(t),∀t ∈ [0, Tf] from (3.4)
solves Problem 3.1 provided that p is the optimal schedule as well.

3.9.2 Proof of Proposition 3.5
To show correctness, first note that a direct application of the dynamic programming
principle [124, Page 23] leads to conclude that p as obtained from dynProg(0, P [0], Tf) is
optimal for the cost (3.2) whenever the estimations {x̂(t) : t ∈ [0, Tf]} are of the form
(3.4) as required in lines 4 and 6 of dynProg. In addition, Theorem 3.4 implies that
the optimal estimations are computed from (3.4), from which optimality of both x̂(t)
and p using dynProg follows, solving Problem 3.1. For the complexity, note that the
largest amount of recursive calls in Algorithm 3.2 is obtained when pk = i at line 3 of
dynProg with i = argmin{∆j}Dj=1. In this case, bTf/min{∆1, . . . ,∆D}c recursive calls

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 68

to dynprog are required to cover the whole window [0, Tf], i.e. for τ+ ≥ Tf in line 7 of
dynProg. Hence, due to line 3 in dynProg, the total number of recursive calls is at most
DbTf/min{∆1,...,∆D}c.

3.9.3 Proof of Proposition 3.6
First we show that Algorithm 3.3 finishes. Note that for any initial condition in a compact
set B0, the result in [140, Lemma 6.1] ensures that the covariance P̂[k] a the filter of the
form (3.5) is uniformly bounded from above. This means that there exists a compact
set B ⊂ Rn×n such that P̂[k] ∈ B,∀k ≥ 0 and P̂0 ∈ B0. Existence of such compact set
in the quantized setting is ensured as well. The reason is that quantization only adds
a disturbance term ‖ΠQ[k]‖ ≤ δ to (3.5) which can be absorbed into the covariance
W (∆pk). Now, note that since quantization patches obtained in Algorithm 3.3 are non
overlapping and comply

sup
P̂[k],P̂[k]′∈BQ(δ)

‖P̂[k]− P̂[k]′‖ = δ

thus, there exists a maximum finite number Q̄(δ) of regions of this kind covering B due
to compactness. Hence, Algorithm 3.3 finishes in at most Q̄(δ) steps.

For the rest of the proposition, the proof outline is described in the following. Note
that obtaining an explicit bound for P̂[k] in (3.5) is not trivial due to the nonlinearity
of the update equation for the covariance. In addition, the bound in [140, Lemma 6.1]
is very overestimated. Hence, we follow a similar idea as in [140] which is to study an
artifact filter whose bound can be obtained explicitly and use it as a proof tool, appealing
to the optimality of PLATE to conclude that a covariance bound of the artifact filter is
a bound for PLATE as well. In this case, instead of the structure in (3.5) where the gain
L[k] depends on P̂[k], we use a gain Lpk ∈ {L1, . . . ,LD} so that the artifact filter takes
the form:

x̂s[k + 1] = Ad(∆pk)x̂s[k] + Lpk(z[k]−Cx̂s[k]) (3.10)

with x̂s[0] = x0. Hence, we require to design the gains Lpk to make the filter asymptoti-
cally stable, making it feasible for the bound to exist. This cannot be done by designing
each Lpk by separate. The reason is that, the error x̃s[k] = x[k]− x̂s[k] for (3.10) satisfies

x̃s[k + 1] = Λpk x̃s[k] + Lpkv[k] + wd[k] (3.11)

with Λpk = Ad(∆pk) +LpkC. Hence, (3.11) is a switched system which switches between
system matrices Λpk with the schedule pk as switching signal. In the following auxiliary
technical lemmas, we aim to ensure asymptotic stability of the filter, by designing Lpk
through the method of the common Lyapunov function [108, Page 22].

Lemma 3.16. Consider the filter (3.10) for some perception schedule p. Then, %s[k] :=
vec(P̂s[k]) with P̂s[k] := cov{x[k]− xs[k]} satisfies:

%s[k + 1] = (Λpk ⊗Λpk)%s[k] + ω[k],%s[0] = vec(P0) (3.12)

where
ω[k] = vec((Lpk)Rpk(Lpk)> + Wd(∆pk))

69 CHAPTER 3

Proof: First, compute P̂s[k + 1] by applying cov(•) to both sides of (3.11) as:

P̂s[k + 1] = (Λpk)P̂s[k](Λpk)> + (Lpk)Rpk(Lpk)> + Wd(∆pk)

Then, apply vec(•) to both sides of the previous equation as well as the identity

vec((Λpk)P̂s[k](Λpk)>) ≡ (Λpk ⊗Λpk)vec(P̂s[k])

to obtain (3.12). Finally, P̂[0] = cov{x[0]− x0} = P0.

Lemma 3.17. Consider Ω, γ,Yi, i ∈ {1, . . . , D} satisfy (3.7). Henceforth, the following
nonlinear matrix inequality is satisfied:(

(Λpk)>Ω(Λpk)⊗ (Λpk)>Ω(Λpk)
)
� γ2(Ω⊗Ω) (3.13)

with Λi = Ad(∆i)− LiC and Li = Ω−1Yi, i ∈ {1, . . . , D}.

Proof: Equivalence between (3.7) and (Λpk)>Ω(Λpk) � γΩ follows from the well known
relationship of the Schur complement similarly as in [141]. Now, apply Lemma C.3 with
M1 = (Λpk)>Ω(Λpk) and M2 = γΩ to obtain (3.13).

Lemma 3.18. Consider the assumptions in Lemmas 3.16 and 3.17. Moreover, let

V (%s[k]) :=
√
%s[k]>(Ω⊗Ω)%s[k].

Then, the following inequality is satisfied:

V (%s[k + 1]) ≤ γV (%s[k]) + λmax(Ω)G (3.14)

where λmax(Ω) is the maximum eigenvalue of Ω and

G := max
i∈{1,...,D}

‖(Lpk)Rpk(Lpk)> + Wd(∆pk)‖F

.

Proof: First, note that since Ω is positive definite, henceforth

‖ • ‖Ω⊗Ω :=
√

(•)>(Ω⊗Ω)(•)

is a norm [123, Page 321] and V (%s[k]) ≡ ‖%s[k]‖Ω⊗Ω. Now compute V (%s[k + 1]) from
(3.12) as:

V (%s[k + 1]) = ‖(Λpk ⊗Λpk)%s[k] + ω[k]‖Ω⊗Ω ≤ ‖(Λpk ⊗Λpk)%s[k]‖Ω⊗Ω + ‖ω[k]‖Ω⊗Ω

using the triangle inequality [123, Definition 5.1.1-(3)]. Furthermore, use Lemma 3.17 to
obtain:

‖(Λpk ⊗Λpk)%s[k]‖Ω⊗Ω =
√
%s[k]> ((Λpk)>Ω(Λpk)⊗ (Λpk)>Ω(Λpk))%s[k]

≤
√
γ2%s[k]>(Ω⊗Ω)%s[k] = γ‖%s[k]‖(Ω⊗Ω) ≡ γV (%s[k])

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 70

Moreover, note that

ω[k]>(Ω⊗Ω)ω[k] ≤ λmax(Ω⊗Ω)‖ω[k]‖2

by the Rayleigh inequality [123, Theorem 4.2.2]. Furthermore, note that

‖ω[k]‖ = ‖(Lpk)Rpk(Lpk)> + Wd(∆pk)‖F .

Thus, ‖ω[k]‖Ω⊗Ω ≤ λmax(Ω)G. Then, (3.14) is the combination of the previous results.

We are now ready to show the rest of Proposition 3.6. First, consider a scalar signal
v[k] ∈ R satisfying:

v[k + 1] = γv[k] + λmax(Ω)G,

with λmax(Ω)G as in Lemma 3.18, γ ∈ (0, 1) and

v[0] =
√

vec(P0)>(Ω⊗Ω)vec(P0).

It can be verified that the solution to the previous linear difference equation satisfies:

v[k] = γkv[0] + λmax(Ω)G
(

1− γk
1− γ

)
≤ v[0] + λmax(Ω)G

1− γ ,∀k ≥ 0

In addition, note that

v[0] ≤
√
λmax(Ω⊗Ω)vec(P0)>vec(P0) = λmax(Ω)‖P0‖F

by means of the Rayleigh inequality [123, Theorem 4.2.2] and the identity ‖vec(P0)‖ ≡
‖P0‖F . Combine the previous results to conclude that v[k] ≤ B′s,∀k ≥ 0 with

B′s = λmax(Ω)
(
‖P0‖F + G

1− γ

)
.

Recall that V (%s[k]) complies (3.14) by Lemma 3.18. Use the comparison lemma in [23,
Lemma 13] together with V (%s[0]) = v[0] to conclude that V (%s[k]) ≤ v[k],∀k ≥ 0 which
leads directly V (%s[k]) ≤ B′s. Now, Rayleigh inequality is used again to conclude that

λmin(Ω)‖%s[k]‖ ≤ V (%s[k]) ≤ B′s

equivalently
‖%s[k]‖ = ‖P̂s[k]‖F ≤

B′s
λmin(Ω) ≡

Bs√
nx

with Bs defined in (3.6). Use the same arguments as in the the proof of Lemma 3.15 to
conclude that P̂[k] � P̂s[k] where P̂[k] is obtained from PLATE in (3.5). Hence, use the
same arguments as in the proof of Lemma C.2-b) in C to obtain

‖P̂[k]‖F ≤
√
nx‖P̂s[k]‖F ≤ Bs.

71 CHAPTER 3

3.9.4 Proof of Proposition 3.7
Similar to the proof of Proposition 3.5, optimality of the solution of Algorithm 3.4 comes
from the dynamic programming principle [124, Page 23]. As for the complexity, note that
combining lines 6, 7 and 9 of Algorithm 3.5 results in αmaxQ(δ)D iterations needed to
compute MP ,MJ ,Mα. In addition, the number of steps in lines 2 and 5 in Algorithm
3.4 are Q(δ) and αmax respectively. Hence, the asymptotic complexity of Algorithm 3.4
is only given by the term αmaxQ(δ)D.

3.9.5 Proof of Theorem 3.8

In this section, we denote with Fpk the function that computes P̂[k + 1] = F pk(P̂[k])
according to (3.5). Moreover, in order to show Theorem 3.8, we provide an auxiliary
lemma.
Lemma 3.19. Let a given K ∈ N and consider the systems:

P̂[k + 1] = F pk(P̂[k]), P̂[0] = P0

P̂′[k + 1] = F pk(P̂′[k]) + ΠQ[k], P̂′[0] = P′0
with ‖P̂[0]− P̂′[0]‖F ≤ δ and ‖ΠQ[k]‖F ≤ δ, ∀k ∈ {1, . . . ,K}. Therefore, for any ε′ > 0
there exists δ > 0 such that ‖P̂[k]− P̂′[k]‖F ≤ ε′,∀k ∈ {1, . . . ,K}.
Proof: First, note that for any ε0 > 0, there exists δ > 0 such that

‖P̂[1]−P̂′[1]‖F = ‖Fp0(P̂[0])−Fp0(P̂′[0])−ΠQ[0]‖F ≤ ‖Fp0(P̂[0])−Fp0(P̂′[0])‖F+δ ≤ ε0

due to continuity of Fp0(•). The same reasoning applies for the remaining K − 1 steps,
making P̂[k] arbitrarily close to P̂′[k] by choosing δ > 0 sufficiently small.

Using the previous result, the proof of Theorem 3.8 follows. First note that the initial
condition P0 for the original problem and the quantized version P̂q0 = Q(P0) comply
‖P0 − P̂q0‖F ≤ δ. Note that if P̂[k] ∈ {P̂1, . . . , P̂Q(δ)}, then∥∥∥Fpk(P̂[k])−Q

(
Fpk(P̂[k])

)∥∥∥
F
≤ δ

Thus, in the quantized setting, P̂′[k] evolves according to P̂′[k+ 1] = F pk(P̂′[k]) + ΠQ[k]
where ΠQ[k] is the quantization noise complying ‖ΠQ[k]‖F ≤ δ and initial condition
P̂′[0] = P̂q0 . Thus, Lemma 3.19 implies that for any ε′ > 0 there is sufficiently small
δ > 0 such that true optimal trajectory for the covariance P̂[k] and the quantized one
P̂′[k] comply ‖P̂[k] − P̂′[k]‖F ≤ ε′ equivalently P̂[k] − P̂′[k] = P̃[k] for some P̃[k] with
‖P̃[k]‖F ≤ ε′. Now, with τ+

k+1 := min(τk+1, Tf):

|J − JQ(δ)| ≤ 1
Tf

len(p)∑
k=0

∫ τ+
k+1

τk

∣∣tr(Ad(t− τk)P̃[k]Ad(t− τk)>)
∣∣dt

≤ 1
Tf

len(p)∑
k=0

(
τ+
k+1 − τk

)
sup

τk≤τ≤τk+1

∣∣tr(Ad(τ)P̃[k]Ad(τ)>)
∣∣

≤ max
0≤k≤len(p)

sup
τk≤τ≤τk+1

∣∣tr(Ad(τ)P̃[k]Ad(τ)>)
∣∣

PERCEPTION LATENCY SCHEDULING IN ESTIMATION 72

However, since ‖P̃[k]‖F ≤ ε′, one can choose δ > 0 sufficiently small to make ε′ > 0 and
as a consequence

∣∣tr(Ad(τ)P̃[k]Ad(τ)>)
∣∣ to be arbitrarily small for any τ ∈ [τk, τk+1], k ∈

{1, . . . , len(p)}. Thus, |J − JQ(δ)| ≤ ε for some δ > 0.

Chapter Four

Exact Dynamic Consensus (EDC)

In this chapter, we explore scenarios involving the cooperation of multiple robots. Our
focus lies in studying the fusion of information from time-varying signals among multiple
robots in a distributed manner. We start with the simplest scenario, aiming to compute
the average of time-varying exogenous signals, with each robot having its own signal.
Here, we assume rapid communication between agents, modeled by continuous-time in-
teractions. However, in subsequent chapters, we introduce additional communication
challenges, such as Open Multi-Agent Systems (OMAS) and asynchronous discrete-time
communication. Following a modular methodology, we abstract away the control aspects
of the robot and the origin of the exogenous signals, which could represent, for instance,
the measured target position at each robot. When solely addressing these distributed
problems without incorporating the robot model and control, we adopt the term agent
instead of robot for the sake of simplicity and to maintain consistency with the existing
literature on this topic. In this context, the architecture considered in this chapter is
shown in Figure 4.1.

Exogenous time− varying signals
(measurements, estimations, etc...)

Radio

Fused (average) information

Fusion

and derivatives

and derivatives

Static
Network

Figure 4.1: Individual agent architecture for distributed information averaging. Red lines
denote derivatives, which are important for full-state estimation if the exogenous signals
are the output of a state space system, or if the fused information needs to be used to
construct time-varying references for a trajectory tracking controller.

73

EXACT DYNAMIC CONSENSUS (EDC) 74

In this particular setting, the agent is assumed to have knowledge of the exogenous
time-varying signal and its derivatives at all times. Moreover, it can communicate with its
neighbors in continuous-time under a static communication network. As an output, the
agent obtains the time-varying average of all exogenous signals as well as its derivatives.
We consider the following multi-agent system model, which will be used through the rest
of the thesis.

Multi-agent system model: the system is composed by N agents. For convenience
in the presentation, each of the agents is labeled by an index i ∈ I := {1, . . . ,N}. The
communication network between agents is modeled by a graph G = (I, E), where I is
the node set and E ⊂ I × I is the edge set. An edge (i, j) ∈ E represents a single
communication link between agents i, j ∈ I.

Each agent i has access to a local signal zi(t) which is (m + 1)-times differentiable.
The goal is to compute the time varying average signal

z̄(t) = z1(t) + · · ·+ zN(t)
N

in a distributed fashion. Of particular interest are algorithms capable of not only comput-
ing z̄(t) but also its derivatives. This becomes particularly useful when z̄(t) is intended
for constructing time-varying references for the robots.

If the problem is solved successfully, each agent ends up computing the same signal,
leading to consensus among all agents. As a consequence, this problem has been referred
to in the literature as Dynamic Consensus (DC), Dynamic Average Consensus (DAC), or
Dynamic Average Tracking (DAT).

However, the time-varying nature of the average signal makes this problem particu-
larly challenging. Furthermore, the aspect of differentiation in this context has not been
addressed in the existing literature. Therefore, the primary objective of this chapter is
to present novel advancements we have introduced in this field. Specifically, we pro-
pose a comprehensive framework capable of computing the time-varying average and its
derivatives exactly, introducing the concept of Exact Dynamic Consensus.

Throughout this chapter, we introduce our main algorithm and provide a formal sta-
bility analysis for it. Additionally, we include simulations to validate and demonstrate
the advantages of the proposed algorithm. The contributions of this chapter were also
published in [1, 7].

4.1 RELATED WORK

Static consensus, where all subsystems (herein referred as agents) manage to agree on a
static value such as the average of certain quantities of interest, is a widely studied topic,
see for example [142, 143]. On the other hand, consensus towards a time-varying quan-
tity has recently attracted attention due to its potential applications such as distributed
formation control [144], distributed unconstrained convex optimization [145], distributed
state estimation [146] and distributed resource allocation [147] just to give some examples.

The typical approach, which is widely exposed in [67], relies in a linear protocol.
However, in this case, only practical stability towards consensus can be guaranteed, where
the accuracy of the steady state depends on the bounds of the derivative of the reference
signals, and it is improved as the connectivity is increased.

75 CHAPTER 4

In DAT applications, dynamic consensus algorithms are used as virtual observers for
the average of some time-varying reference signals, which can be tracked by a controller
for a local physical system at each agent [84, 148]. Depending on the order of the system it
may be desirable for the dynamic consensus observer to obtain derivatives of the average
signal [84]. In this context, the works [67, 142, 149] propose linear dynamic consensus
algorithms for scalar systems. However, these algorithms have the disadvantage of having
a non-zero terminal error bound for some classes of reference signals. This issue has been
tackled for scalar systems in [85, 150] and second order systems in [148, 151–153] by
means of First Order Sliding Modes (FOSM), allowing exact convergence for more general
classes of reference signals. However, these approaches suffer from the so-called chattering
effect due to the discontinuous character of the FOSM [86, Chapter 3]. This makes the
system sensitive to delays and noise. For the high-order case, some algorithms are able to
obtain the average signal and its derivatives with exact convergence for vanishing reference
differences in [84] and reference differences with a bounded high-order derivative in [154].
Nonetheless, these approaches impose a higher communication burden since agents share
all high-order errors instead of a single scalar.

4.2 PROBLEM STATEMENT

In the following, we describe more formally what we mean by EDC. Assuming that
each agent i ∈ I has access to its local signal zi(t), we assume that it is also capable of
performing computations, storing memory and communicate with its neighbors according
to G. Moreover, we define the outputs for each agent as ẑi,0(t), . . . , ẑi,m(t) which will serve
as estimations for z̄(t) and its first m derivatives.

Definition 4.1 (Exact Dynamic Consensus). The multi-agent system is said to achieve
EDC, if there exists T > 0 such that the individual output signals for each agent reach

ẑ1,µ(t) = ẑ2,µ(t) = · · · = ẑn,µ(t) = z̄(µ)(t)

∀t ≥ t0 + T , ∀µ ∈ {0, . . . ,m} and

z̄(t) = 1
N

N∑
i=1

zi(t)

Problem 4.2 (High order exact average consensus). Given the set of local signals z1(t),
. . . , zN(t), the problem consists in designing a distributed one-hop algorithm such that
the multi-agent system achieve EDC.

EXACT DYNAMIC CONSENSUS (EDC) 76

4.3 THE EDCHO ALGORITHM

The EDCHO (EDC of High Order) algorithm proposed in this chapter to obtain EDC
has the following structure:

Protocol:

χ̇i,µ(t) = kµ
∑
j∈Ni

dẑi,0(t)− ẑj,0(t)c
m−µ
m+1 + χi,µ+1(t), 0 ≤ µ < m

χ̇i,m(t) = km
∑
j∈Ni

dẑi,0(t)− ẑj,0(t)c0

Output:

ẑi,µ(t) = z
(µ)
i (t)− χi,µ(t).

(4.1)

where i ∈ {1, . . . , 2N}. Hence, each agent has an internal state χi = [χi,0, . . . ,χi,m]>,
and shares only ẑi,0 to its neighbors, in contrast to sharing all ẑi,0, . . . , ẑi,m which is
not necessary, reducing communication load. In this chapter, we consider the following
assumption.

Assumption 4.3. The initial conditions for (4.1) are set to be such that

N∑
i=1

χi,µ(t0) = 0,∀µ ∈ {0, . . . ,m}.

Note that Assumption 4.3 is trivially satisfied without the need of any global infor-
mation if all agents set χi,µ(t0) = 0,∀µ ∈ {0, . . . ,m}. However, this assumption does
not allow connection or disconnection of agents as in an OMAS context. An extension
to account for this case is considered in Chapter 5. Moreover, the algorithm depends on
the the gains k0, . . . , km > 0 which will be designed as described later in order for (4.1)
to achieve EDC provided that the following assumption holds.

Assumption 4.4. The time varying signals z1(t), . . . , zN(t) all satisfy∣∣∣z̄(m+1)(t)− z(m+1)
i (t)

∣∣∣ ≤ L,∀t ≥ t0
with a known L > 0.

Remark 4.5. Note that (4.1) is a high order system with discontinuous right hand side.
Hence, solutions to (4.1) are properly understood in the sense of Filippov [155]. This is,
(4.1) is studied as a differential inclusion with d0c0 = [−1, 1].

Remark 4.6. Note that if m = 0, (4.1) resembles some of the basic results proposed in
[85], hence being subsumed by the approach in this chapter.

The following is the main result of this chapter, which states that there exist a non-
empty set of possible values for the gains k0, . . . , km such that (4.1) achieves EDC.

Theorem 4.7. Let Assumptions 4.3 and 4.4. Moreover, let

kµ = λµk
m−µ

m−(µ−1)
µ−1

77 CHAPTER 4

for µ = 1, . . . ,m with λ1, . . . , λm parameters chosen such that system (E.1) is finite time
stable for θ = 0. Therefore, there exists sufficiently large k0 > 0 and T > 0 such that the
EDC property is achieved for (4.1).

The proof of Theorem 4.7 can be found in Section 4.7 after some needed results which
are developed in the following sections.

4.4 TOWARDS CONVERGENCE OF EDCHO

First, we provide some results which are required to show that (4.1) achieves EDC. As it
will be evident latter, it is convenient to write (4.1) with a different set of gains per edge,
just as a mere tool for the proof. This is, let Kµ = diag([k1,µ, . . . , k`,µ]),∀µ ∈ {0, . . . ,m}
where ` is the number of edges. Then, the modified version of (4.1) is

χ̇µ(t) = χµ+1(t) + DKµ

⌈
D>ẑ0(t)

⌋m−µ
m+1 for 0 ≤ µ ≤ m− 1,

χ̇m(t) = DKm

⌈
D>ẑ0(t)

⌋0
ẑµ(t) = z(µ)(t)− χµ(t)

(4.2)

where

χµ(t) =

χ1,µ(t)
...

χn,µ(t)

 , ẑµ(t) =

ẑ1,µ(t)
...

ẑn,µ(t)

 , z(t) =

z1(t)
...

zN(t)


and D is the incidence matrix of G. Moreover, Assumption 4.4 implies

Pz(m+1)(t) ∈ [−L,L]N

with
P = (I− (1/N)11>).

The following is an interesting property of (4.2) which basically states that under As-
sumption 4.3, the trajectories of (4.2) are orthogonal to 1.
Lemma 4.8. Under Assumption 4.3, the following identity is satisfied for (4.1):

1>χµ(t) = 0, ∀t ≥ t0, ∀µ ∈ {0, . . . ,m}

Proof: Denote sµ = 1>χµ. We proceed by induction: let µ = m as induction base

ṡm = 1>χ̇m = −1>DKm

⌈
D>ẑ0

⌋0 = 0.

Hence, the value of sm(t) = sm(t0) = 0 remains constant ∀t ≥ t0 under Assumption 4.3.
Now, assume sµ+1(t) = sµ+1(t0) = 0, ∀µ ∈ {0, . . . ,m−1} remains constant ∀t ≥ t0, then,

ṡµ =1>χ̇µ = 1>
(
χµ+1(t) + DKµ

⌈
D>ẑ0

⌋m−µ
m+1

)
=1>χµ+1(t0) + 1>DKµ

⌈
D>ẑ0

⌋m−µ
m+1 = 0

where Assumption 4.3 was used. Then, 1>χµ(t) = 0,∀µ ∈ {0, . . . ,m}, ∀t ≥ t0 which
concludes the proof.

EXACT DYNAMIC CONSENSUS (EDC) 78

It also can be shown that if protocol (4.2) converges, it will converge to a state
which complies with the EDC property. To show so, let z̃µ(t) = Pẑµ(t) with P =(
I− (1/N)11>

)
. Then, its dynamics are given by

˙̃zµ(t) = z̃µ+1(t)−DKµ

⌈
D>z̃0(t)

⌋m−µ
m+1 for 0 ≤ µ ≤ m− 1,

˙̃zm(t) = Pz(m+1)(t)−DKm

⌈
D>z̃0(t)

⌋0 (4.3)

Corollary 4.9. If there exists T > 0 such that the state z̃µ(t) = 0,∀µ ∈ {0, . . . ,m},
∀t ≥ t0 + T is reached, then (4.2) achieves EDC.

Proof: If z̃µ(t) = 0, then

ẑµ(t) = 1
N11

>ẑµ(t) = 1
N11

>(z(µ)(t)− χµ(t)) = z̄(µ)1

by Lemma 4.8.

4.5 CONTRACTION PROPERTY OF EDCHO

In this section we show the so called contraction property as described in [96]. This prop-
erty states that there exists a non-empty set of gains K0, . . . ,Km such that trajectories
of z̃µ(t),∀µ ∈ {0, . . . ,m} gather arbitrary close to the origin in an arbitrary small amount
of time. First, we show that it is indeed the case for tree graphs, and then we use this
result to show contraction for arbitrary connected graphs.

4.5.1 Contraction for tree graphs
According to Proposition D.4 in Appendix D, it is always possible to write z̃µ(t) = Dσµ(t)
for some σµ(t) ∈ R` where ` is the number of edges in G. Now, consider that G is a tree
graph. Note that, in this case, from Proposition D.2-(4) in Appendix D, smin(D) > 0
since the flow space of a tree graph has dimension 0 and therefore D>D is a full rank
matrix. Thus, by writing z(t) = z̄(t)1+ Dz̃(t), then under Assumption 4.4,

z̃(m+1)(t) ∈ [−L̃, L̃]`

with L̃ =
√

NL/smin(D) by Proposition C.5 in Appendix C.
In the following, we study the behaviour of the system, introducing in (4.3) the change

z̃µ(t) = Dσµ(t) to obtain

σ̇µ(t) = σµ+1(t)−Kµ

⌈
D>Dσ0(t)

⌋m−µ
m+1 , for 0 ≤ µ ≤ m− 1

σ̇m(t) = z̃(m+1)(t)−Km

⌈
D>Dσ0(t)

⌋0 (4.4)

By Corollary 4.9, if σµ = 0,∀µ ∈ {0, . . . ,m} is reached, then EDC is achieved. Before
showing contraction of (4.4) we provide some auxiliary results. Write (4.4) in the recursive

79 CHAPTER 4

form
σ̇0(t) = σ1(t)−Λ0

⌈
D>Dσ0(t)

⌋ m
m+1

Hm



σ̇1(t) = σ2(t)−Λ1 dσ1(t)− σ̇0(t)c
m−1
m

...
σ̇µ(t) = σµ+1(t)−Λµ dσµ(t)− σ̇µ−1(t)c

m−µ
m−(µ−1)

...
σ̇m(t) = −Λm dσm(t)− σ̇m−1(t)c0 + z̃(m+1)(t)

(4.5)

by using the fact that

σµ(t)− σ̇µ−1(t) = Kµ−1
⌈
D>Dσ0(t)

⌋m−(µ−1)
m+1

and defining
Kµ = ΛµK

m−µ
m−(µ−1)
µ−1

for µ = 1, . . . ,m and K0 = Λ0. This change introduces some advantages because the
dynamics in Hm are decoupled for each component of σµ(t), and most importantly the
dynamics of each component of σµ(t) correspond exactly to the Levant’s differentiator
error system in recursive form (E.1). Hence, by showing that σ̇0(t) resembles the prop-
erties of the signal θ in Appendix E, contraction towards the origin for σµ(t), µ ≥ 1 is
guaranteed.

Lemma 4.10. For any δ > 0, Ω0, . . . ,Ωm > 0 and any trajectory of (4.5) starting from
‖σµ(t0)‖ ≤ Ωµ,∀µ ∈ {0, . . . ,m}, there exists K > 0 such that∫ t0+δ

t0

‖σ̇0(t)‖dt < K.

Proof: Choose an arbitrary τ > δ. Hence, the trajectory of (4.5) for t ∈ [t0, t0 + τ]
satisfying ‖σµ(t0)‖ ≤ Ωµ, also satisfy that ‖σµ(t)‖ ≤ Ω̄µ in t ∈ [t0, t0 + T] for some
unknown bounds Ω̄µ. Moreover, denote with sΛ = smax(Λ0). Therefore,∫ t0+δ

t0

‖σ̇0(t)‖dt ≤
∫ t0+δ

t0

`
1

2m+2 sΛ
(
smax(D>D)

) m
m+1 ‖σ0(t)‖

m
m+1 + ‖σ1(t)‖dt

≤
∫ t0+δ

t0

`
1

2m+2 sΛ
(
smax(D>D)

) m
m+1 Ω̄

m
m+1
0 + Ω̄1dt

=
(
`

1
2m+2 sΛ

(
smax(D>D)

) m
m+1 Ω̄

m
m+1
0 + Ω̄1

)
δ = K

where Corollary C.4-(1) was used with α = m
m+1 and Proposition C.5 in Appendix C to

introduce sΛ and smax(D>D).

The utility of Lemma 4.10 is that we can use Proposition E.1 to fix a desired bound
for σ1(t) in the first equation of (4.5) at least for a desired time interval [t0, t0 + δ].
Then, we can treat σ1(t) as a disturbance with known bound, and focus our attention to
designing λ0 := min diag Λ0 such that σ0(t) reaches an arbitrarily small vicinity of the
origin before that interval ends. This is shown in the following:

EXACT DYNAMIC CONSENSUS (EDC) 80

Lemma 4.11. Let G be a tree and

σ̇0(t) = d(t)−Λ0
⌈
D>Dσ0

⌋ m
m+1 (4.6)

σ0(t),d(t) ∈ R`, d > 0,Ω0 > 0, and the bounds ‖Dσ0(t0)‖ ≤ Ω0, ‖d(t)‖ ≤ d,∀t ∈
[t0,+∞). Then, for any δ > 0 and any 0 < ω0 < Ω0 there exists 0 < λ0 = min diag Λ0
(sufficiently big) such that ‖Dσ0(t)‖ ≤ ω0,∀t ∈ [t0 + δ,+∞).

Proof: First, let the consensus error ξ = Dσ0. Then,

ξ̇(t) = Dd(t)−DΛ0
⌈
D>ξ(t)

⌋ m
m+1 .

Choose the Lyapunov function candidate V (ξ) = (1/2)ξ>ξ. Hence, in the interval starting
from ‖ξ(t0)‖ ≥ ω0 and in which ‖ξ(t)‖ ≥ ω0 is maintained, the following is satisfied

V̇ = ξ>ξ̇ = ξ>
(
Dd−DΛ0

⌈
D>ξ

⌋ m
m+1

)
≤ −λ0ξ

>D
⌈
D>ξ

⌋ m
m+1 + ‖ξ‖‖Dd‖

≤ −λ0‖D>ξ‖
m
m+1 +1 + smax(D)‖ξ‖‖d‖ ≤ −ω0

(
λ0(smin(D)ω0) m

m+1 +1 − smax(D)d
)

≤ −η

where Corollary C.4-(2) and Proposition C.5 were used, and by choosing

λ0 ≥ (smin(D)ω0)
−m
m+1−1(ηω−1

0 + smax(D)d)

for any η > 0. Henceforth, V will decay towards the origin with rate η until the condition
‖ξ‖ ≥ ω0 is no longer maintained. Hence, in order to reach such condition before the
interval [t0, t0 + δ] ends, choose

η ≥ δ−1(V (ξ(t0))− (1/2)ω2
0)

for any δ > 0. Therefore, by the comparison Lemma [129, Lemma 3.4], V̇ ≤ −η implies

V (ξ(t)) ≤ V (ξ(t0))− η(t− t0) ≤ V (ξ(t0))− ηδ ≤ (1/2)ω2
0

for t ∈ [t0, t0 + T] where t0 + T ≤ t0 + δ is the moment in which ‖ξ(t0 + T)‖ = ω0. Then,
the condition ‖ξ(t)‖ = ‖Dσ0(t)‖ ≤ ω0 will be reached and maintained ∀t ∈ [t0 + δ,+∞)
concluding the proof.

We also show that σ̇0(t) can be driven towards an arbitrarily small vicinity of the
origin. Hence, σ̇0 can play the role of θ in the results from Appendix E.

Lemma 4.12. Let G be a tree, consider system (4.6) under the same conditions from
Lemma 4.11 and the additional condition that there exists d̃ > 0 such that ‖ḋ(t)‖ ≤
d̃,∀t ∈ [t0,+∞). Then, for any δ̃ > 0 and any ω̃0 > 0 there exists 0 < λ̃0 = min diag Λ0
(sufficiently big) such that ‖σ̇0(t)‖ ≤ ω̃0,∀t ∈ [t0 + δ̃,+∞).

Proof: Let γi(t) be the i-th component of D>Dσ0(t). Then, by the fact that

d

dt
dγi(t)c

m
m+1 = m

m+ 1 |γi(t)|
m
m+1−1γ̇i(t),

81 CHAPTER 4

hence,

d
dt
⌈
D>Dσ0(t)

⌋ m
m+1 = m

m+ 1

|γ1(t)| mm+1−1γ̇1(t)
...

|γ`(t)|
m
m+1−1γ̇`(t)

 = m

m+ 1J(t)D>Dσ̇0(t)

where
J(t) = diag

([
|γ1(t)| mm+1−1, . . . , |γ`(t)|

m
m+1−1

])
.

Now, let change of variables ζ = Dσ̇0 which leads to

ζ̇(t) = Dḋ(t)− m

m+ 1DΛ0J(t)D>ζ(t)

Additionally let λ0 ≤ λ̃0 with λ0 chosen such that

‖D>Dσ0(t)‖ ≤ ω0,∀t ∈ [t0 + δ,+∞)

from Lemma 4.11. Then, each component γi(t) will satisfy

|γi(t)|
m
m+1−1 ≥ ω

m
m+1−1
0 ,∀t ∈ [t0 + δ,+∞)

since m
m+1 − 1 < 0. Choose the Lyapunov function V (ζ) = (1/2)ζ>ζ and an arbitrary

Z > 0. Hence, in the interval starting from ‖ζ(t0)‖ ≥ Z and in which ‖ζ(t)‖ ≥ Z is
maintained, the following is satisfied

V̇ = ζ>
(

Dḋ− m

m+ 1DΛ0JD>ζ
)
≤ smax(D)‖ζ‖‖ḋ‖ − λ̃0m

m+ 1ζ
>DJD>ζ

≤ smax(D)d̃‖ζ‖ − λ̃0m

m+ 1c(G)ω
m
m+1−1
0 ‖ζ‖2 ≤ −‖ζ‖

(
λ̃0m

m+ 1c(G)ω
m
m+1−1
0 ‖ζ‖ − smax(D)d̃

)
≤ −Z

(
λ̃0m

m+ 1c(G)ω
m
m+1−1
0 Z − smax(D)d̃

)
≤ −η

by the fact that

ζ(t)>DJ(t)D>ζ(t) = ω
m
m+1−1
0 ζ(t)DD>ζ(t) ≥ ω

m
m+1−1
0 c(G)‖ζ(t)‖2

using Proposition D.2-(2), with c(G) as the algebraic connectivity of G and by choosing

λ̃0 ≥ max
{
λ0,

m+ 1
mZc(G)ω

1− m
m+1

0
(
smax(D)d̃+ Z−1η

)}
for any η > 0. From this point, the proof follows exactly as the proof of Lemma 4.11

to conclude that ‖ζ(t)‖ ≤ Z will be reached an maintained for t ∈ [t0 + δ̃,+∞) for any
Z, δ̃ > 0. Hence, since G is a tree, we can choose Z = ω̃0/smin(D) and obtain

‖σ̇0(t)‖ ≤ smin(D)−1‖Dσ̇0(t)‖ ≤ smin(D)−1‖ζ(t)‖ ≤ ω̃0,

which concludes the proof.

EXACT DYNAMIC CONSENSUS (EDC) 82

Using these results, we provide the proof of the contraction property for tree graphs.

Lemma 4.13. Consider (4.4) and G to be a tree. Then, for any 0 < ωµ < Ωµ, T > 0,
there exists some gain matrices K0, . . . ,Km (with sufficiently big diagonal entries) such
that any trajectory of (4.4) satisfying ‖σµ(t0)‖ ≤ Ωµ will satisfy ‖σµ(t)‖ ≤ ωµ,∀t ∈
[T,+∞),∀µ ∈ {0, . . . ,m}.

Proof: Let σ̇µ(t) = [σ̇µ,1(t), . . . , σ̇µ,n(t)]>. Since |σ̇µ,i(t)| ≤ ‖σ̇µ(t)‖ then, from Lemma
4.10 we know that for any δ there exists K > 0 such that∫ t0+δ

t0

|σ̇0,i(t)|dt ≤
∫ t0+δ

t0

‖σ̇0(t)‖dt ≤ K.

Henceforth, from Propositions E.1 and E.2 in Appendix E we can choose an arbitrary Ω′µ
with Ψµ > Ω′µ > Ωµ such that there exists δ > 0 for which

‖σµ(t)‖ ≤ Ω′µ ≤ Ψµ,∀t ∈ [t0, t0 + δ].

Moreover,

‖σ̇1‖ ≤ ‖σ2‖+smax(K1)` 1
2m+2 ‖D>Dσ0‖

m−1
m+1 ≤ Ψ2+smax(K1)` 1

2m+2 (smax(D>D)Ψ1)
m−1
m+1 .

Therefore, both ‖σ1(t)‖ and ‖σ̇1(t)‖ remain bounded in the interval t ∈ [t0, t0+δ) and will
remain bounded (by the same bounding constants) in t ∈ [t0 + δ,+∞) by Proposition E.2
provided that ‖σ̇0(t)‖ ≤ ω̃0,∀t ∈ [t0+δ,+∞) and sufficiently small ω̃0. Choose 0 < δ̃ < δ.
Hence, we can identify d(t) = σ1 from Lemma 4.11 and Lemma 4.12 and choose λ̃0 =
min diag Λ0 = min diag K0 big enough such to obtain ‖σ̇0(t)‖ ≤ ω̃0,∀t ∈ [t0 + δ,+∞)
and ‖Dσ0(t)‖ ≤ ω0,∀t ∈ [t0 + δ,+∞), obtaining the contraction for ‖σ0‖. Contraction
for ‖σµ(t)‖, µ > 0 follows directly from Proposition E.2, since z̃(m+1) ∈ [−L̃, L̃]`, and by
adjusting ω̃0 < θ, concluding the proof .

4.5.2 Contraction for general connected graphs
Now, in order to show the same contraction property but for general graphs, consider the
following setting. Let GA and GB be two graphs with corresponding incidence matrices
DA = [D̃A,Ds] and DB = [D̃B ,Ds] where Ds corresponds to the edges which appear in
both GA and GB . Suppose that protocol (4.2) works for each of the graphs. Then, we
aim to conclude that the protocol works for their union by means of switching between
them, and applying the averaging principle. However, in average, the edges that appear
in both graphs contribute twice to the protocol. Hence, we take advantage of the different
gains per-edge to attenuate such contribution. This is, choose some gain matrices KA

µ

and KB
µ ,∀µ ∈ {0, . . . ,m} for each graph to implement protocol (4.2) in the following

form: KA
µ = blockdiag(2K̃A

µ ,Ks
µ) and KB

µ = blockdiag(2K̃B
µ ,Ks

µ) where Ks
µ corresponds

to gains for the edges in Ds and 2K̃A
µ , 2K̃B

µ for D̃A, D̃B respectively. Now, to study the
switching between GA and GB , let

Fµ(t, z̃0; ε) =


DAKA

µ

⌈
D>Az̃0

⌋m−µ
m+1 , t− t0 ∈ [0, ε/2)

DBKB
µ

⌈
D>B z̃0

⌋m−µ
m+1 , t− t0 ∈ [ε/2, ε)

Fµ(t− ε, z̃0; ε), t− t0 ≥ ε

83 CHAPTER 4

and write the dynamics of z̃µ for this switching protocol as a differential inclusion,

˙̃zµ(t) = z̃µ+1(t)− Fµ(t, z̃0(t); ε), for 0 ≤ µ ≤ m− 1
˙̃zm(t) ∈ [−L,L]N − Fm(t, z̃0(t); ε)

(4.7)

since Pz(m+1) ∈ [−L,L]N by Assumption 4.4. Note that explicit dependence of time
in (4.7) comes only from the terms of the form Fµ(t, z̃0; ε) and therefore from switching.
Now, we obtain the average system, by averaging the right hand side of (4.7) in the
interval t− t0 ∈ [0, ε). Note that terms of the form Fµ(t, z̃0; ε) are averaged as

1
ε

∫ t0+ε

t0

Fµ(t, z̃0; ε)dt = 1
2

(
DAKA

µ

⌈
D>Az̃0

⌋m−µ
m+1 + DBKB

µ

⌈
D>B z̃0

⌋m−µ
m+1

)
= DABKAB

µ

⌈
D>AB z̃0

⌋m−µ
m+1

where DAB = [D̃A, D̃B ,Ds] is the incidence matrix of the superposition of GA and GB ,
and KAB

µ = blockdiag(K̃A
µ , K̃B

µ ,K
s
µ). From, this we obtain the following conclusion about

(4.7) with respect to the averaged version of it.

Lemma 4.14. Let z̃µ(t), 0 ≤ µ ≤ m be a solution of (4.7) with initial conditions z̃µ(t0)
and let the averaged system

˙̃zaµ(t) = z̃aµ+1(t) + DABKAB
µ

⌈
D>AB z̃a0(t)

⌋m−µ
m+1 for 0 ≤ µ ≤ m− 1,

˙̃zam(t) ∈ [−L,L]N + DABKAB
m

⌈
D>AB z̃a0(t)

⌋0 (4.8)

with z̃aµ(t0) = z̃µ(t0). Then, for any r > 0, there exists R > 0, ε > 0 such that

‖z̃µ(t)− z̃aµ(t)‖ ≤ r, ∀t ∈ [t0, t0 +R/ε)

Proof: Note that the right hand sides of (4.7) and (4.8) are locally Lipschitz. Following
from [155], every locally Lipschitz function at a point is one-sided Lipshitz in a neighbor-
hood of such point. Hence, rigorous justification of the averaging argument comes from
the Bogoliubov’s first theorem for one-sided Lipschitz differential inclusions [156, Section
2.2].

Using this result, we show contraction for general graphs.

Lemma 4.15. Consider (4.4) and G to an arbitrary connected graph. Then, for any
0 < ωµ < Ωµ, T > 0, there exists some gain matrices K0, . . . ,Km (sufficiently big)
such that any trajectory of (4.4) satisfying ‖z̃µ(t0)‖ ≤ Ωµ will satisfy ‖z̃µ(t)‖ ≤ ωµ,∀t ∈
[T,+∞),∀µ ∈ {0, . . . ,m}.

Proof: In order to show the result for graphs G let N be the dimension of its flow
space and proceed by induction. The induction base with N = 0 is shown in Lemma
4.13. Now, assume that the result is true for graphs with flow space of dimension N − 1
with contraction neighborhood of radius ωµ(N − 1) and GAB be any graph with flow
space dimension N . Then, by Proposition D.3 there exists two connected graphs GA
and GB with flow space dimension N − 1 whose union corresponds to GAB . Choose
ωµ(N − 1) = ωµ(N) − r with arbitrary 0 < r < ωµ(N) such that there exists KA

µ and

EXACT DYNAMIC CONSENSUS (EDC) 84

KB
µ for GA and GB respectively and ‖z̃µ(t)‖ ≤ ωµ(N − 1),∀t ≥ T with T ≤ ε/2 for each

of the two networks by the assumption about the N − 1 case. Hence, since both schemes
contract to an arbitrarily small neighborhood of the origin before the switching instants at
t−t0 = ε/2 and t−t0 = ε, the same conclusion applies for the switching system (4.7) before
t − t0 = ε. Contraction for GAB comes from Lemma 4.14 since (4.8) corresponds to the
dynamics in (4.3) for such graph, and the bound ‖z̃aµ(t)‖ ≤ ωµ(N − 1) + r = ωµ(N).

4.6 PARAMETER DESIGN FOR EDCHO

By inspecting the results from the previous sections, in particular the proof of Lemma
4.13, it can be noticed that the parameters needed for (4.1) to reach consensus are closely
related to the parameters used for a Levant’s differentiator to converge. In fact, all
parameters, except for k0 can be found using this reasoning, simplifying the parameter
design methodology. This is shown in the following Corollary:

Corollary 4.16. Let λ1, . . . , λm be parameters chosen such that (E.1) is finite time stable
for θ = 0. Thus, there exists k0 > 0 large enough such that the conclusion of Lemma 4.15
follows with kµ = λµk

m−µ
m−(µ−1)
µ−1 for µ = 1, . . . ,m.

Proof: First, consider the case of tree graphs. The proof follows directly from the fact
that (4.4) can be written recursively as (4.5). The result is then a consequence of the
reasoning in Section 4.5.1, where the last m equations of (4.5) correspond precisely to
a vector form of (E.1). This leaves only the condition that k0 > 0 needs to be large
enough. The case of general graphs is no different, since the gains used in such scheme
can be chosen the same as the ones for tree graphs, as long as the contraction time is
small enough from the arguments of the proof of Lemma 4.15. However, increasing k0
decreases such contraction time too, which concludes the proof.

Note that finding feasible sequences of parameters λ1, . . . , λN for (E.1) is by now a
well studied topic in the literature. In fact, not only in the original work [96] some
feasible parameters were found by computer simulation for L = 1, but also other works
such as [157] give different possible values by means of a Lyapunov function condition.
Hence, these parameters can be consulted and used directly, scaled appropriately for any
L > 0. Moreover, motivated by the methodology in [96], k0 can be found by computer
simulation for a concrete topology, by incrementally searching for an appropriate k0 > 0
until convergence is obtained.

4.7 CONVERGENCE OF EDCHO

In this section, we show the proof of Theorem 4.7. The proof follows by contraction and
by noticing that trajectories of (4.2) are invariant to a particular transformation, referred
as the homogeneity in [96].

Lemma 4.17. Let η > 0. Then, the trajectories of (4.3) are preserved by the transfor-
mation (t, z̃µ) 7→ (ηt, ηm−(µ−1)z̃µ).

85 CHAPTER 4

Proof: Let t′ = ηt and z̃′µ(t′) = ηm−(µ−1)z̃µ(ηt). Then, for µ = 0, . . . ,m− 1,

dz̃′µ
dt′ = ηm−(µ−1) dz̃µ

dt′ = ηm−µ ˙̃zµ

= ηm−µ
(
η−(m−µ)z̃′µ+1 −DKµ

⌈
D>η−(m+1)z̃′0

⌋m−µ
m+1

)
= z̃′µ+1 −DKµ

⌈
D>z̃′0

⌋m−µ
m+1

Similarly, for µ = m it is obtained

dz̃′m
dt′
∈ [−L,L]N −DKm

⌈
D>z̃′0

⌋0
.

Then, trajectories z̃′µ(t′) are equivalent to z̃µ(t).

Similarly as the work in [96], both contraction and homogeneity of (4.4) can be used
to produce sequential contractions towards an equilibrium point, reaching it in a finite
amount of time.

Proof: (Of Theorem 4.7) Let (4.2) with Kµ = kµI recovering (4.1). Then, Lemma 4.15
implies that for sufficiently large k0, . . . , km > 0 there exists a finite time Tc > 0 such that
if ‖z̃µ(t0)‖ ≤ Ωµ then ‖z̃µ(t0+Tc)‖ < κΩµ for any 0 ≤ κ < 1. Then, from Lemma 4.17 the
similar contraction follows: if ‖z̃µ(t0)‖ ≤ ηm−µ+1Ωµ then ‖z̃µ(t0 + ηTc)‖ ≤ κηm−µ+1Ωµ.
Hence, for 0 < η < 1 choose κ = ηm−µ+1. Therefore, convergence is shown in a sequence
of countable steps for ν = 0, 1, . . . of sequential contraction. For ν = 0, let ‖z̃µ(t0)‖ ≤ Ωµ
be contracted to

‖z̃µ(t0 + Tc)‖ ≤ ηm−µ+1Ωµ.

Then, for ν = 1,
‖z̃µ(t0 + Tc)‖ ≤ ηm−µ+1

is contracted to
‖z̃µ(t0 + Tc + ηTc)‖ ≤ η2(m−µ+1)Ωµ.

Furthermore, for any ν, the contraction∥∥z̃µ(t0 + Tc(1 + η + η2 + · · ·+ ην))
∥∥ ≤ η(ν+1)(m−µ+1)Ωµ

is obtained. Hence, limν→+∞ η(ν+1)(m−µ+1) = 0 and

lim
ν→+∞

Tc(1 + η + η2 + · · ·+ ην) = Tc
1− η

using the geometric series. Therefore, with T = Tc/(1−η), ‖z̃µ(t)‖ = 0,∀t ∈ [t0+T,+∞).
Moreover, convergence towards the EDC property follows from the conclusion of Corollary
4.9. Finally, using the parameter design from Corollary 4.16 concludes the proof.

EXACT DYNAMIC CONSENSUS (EDC) 86

4.8 SIMULATION EXAMPLES

For the purpose of demonstrating the advantages of the proposal, a simulation scenario
is described here with the following configuration. There are n = 8 agents connected by
a graph G shown in Figure 4.2. The EDCHO algorithm (4.1) was implemented using
explicit Euler method with time step h = 10−4. In this example we use m = 3 and the
gains kµ are chosen as 7.5, 19.25, 17.75, 7 for all agents.

Moreover, consider initial conditions χi,µ(0) = 0, ∀µ > 0 and χi,0(0) given by [18.69,
−4.17, −2.02, −1.49, −4.65, −4.52, 0.16, −2.00] respectively. Note that this initial
conditions comply with Assumption 4.3.

In the first experiment, each agent has internal reference signals

zi(t) = ai cos(ωit+ φi), i = 1, . . . , 8

with amplitudes ai of [0.99, 0.27, 0.02, 0.48, 0.18, 0.24, 0.65, 0.50], frequencies ωi of [2.44,
1.70, 1.12, 0.26, 0.68, 1.73, 2.33, 0.02] and phases φi of [1.25, 1.92, 6.25, 3.82, 0.70, 7.63,
9.93, 6.80]. The individual trajectories for this experiment are shown in Figure 4.3, as
well as the target z̄(t) and its derivatives in red. Note that all agents are able to track
not only z̄(t) but also ˙̄z(t), ¨̄z(t) and z̄(3)(t). The magnitudes of z̃0, . . . , z̃3 are shown in
4.4-(Up), where it can be noted that exact convergence is achieved. Compare this with
the behaviour of a linear protocol [67, Equation (11)] and the first order sliding mode
(FOSM) protocol in [85, Equation (5)] under the same conditions. As shown in Figure
4.4-(Up), the linear protocol achieves only bounded steady state error whereas the FOSM
achieves exact convergence in the input and its derivatives. However, both linear and
FOSM approaches are only able to track z̄(t) and not its derivatives.

Now, consider the reference signals as zi(t) = ait
3, i = 1, . . . , 8 with ai of [0.99,

0.27, 0.02, 0.48, 0.18, 0.24, 0.65, 0.50]. The error convergence is shown in Figure 4.4-
(Bottom) where EDCHO achieves exact convergence whereas both the linear and the
FOSM protocol errors grow to infinity.

All previous experiments were conducted by simulating the algorithms using Euler’s
discretization with small step size of ∆t = 10−6 in order to inspect their performance
as close as possible to their continuous time theoretical version. Increasing the value
of ∆t have an effect on the performance of both EDCHO and FOSM protocols due to
discretization errors and chattering. Thus, we repeated the experiment with sinusoidal
reference signals using ∆t = 10−3 instead, in order to make this effects more apparent.
The results of this experiment are shown in Figure 4.5 for both ∆t = 10−6 and ∆t = 10−3.
The parameters of the FOSM were chosen such to roughly match the settling time of
EDCHO for the sake of fairness. Note that in both cases the error signal ‖z̃0(t)‖ for
EDCHO is almost one order of magnitude less than the FOSM protocol. Moreover, it can
be noted that the chattering effect is almost negligible for EDCHO when compared to
FOSM which greatly suffers from it. Additionally, the accuracy in steady state degrades
as ∆t is increased, specially for the higher order signals ‖z̃µ(t)‖, µ > 0 as expected from
HOSM systems [96, Theorem 7].

87 CHAPTER 4

1 2

5 6

3

7

4

8

Figure 4.2: The graph G considered in the examples

ẑ
0
(t
)

ẑ
1
(t
)

ẑ
2
(t
)

ẑ
3
(t
)

Figure 4.3: Components of the vectors ẑ0(t), . . . , ẑ3(t) as well as z̄(t), ˙̄z(t), ¨̄z(t) and z̄(3)(t)
in red.

4.9 DISCUSSION

In this chapter, the EDCHO algorithm has been presented, where the agents are able
to maintain zero steady-state consensus error, when tracking the average of time-varying
signals and its derivatives. EDCHO works under reasonable assumptions about the initial
conditions and bounds of certain high order derivatives of the reference signals. An in-
depth study on its stability characteristics was provided from which a simple design
procedure arises. The simulation scenario presented here, exposes the effectiveness of our
approach in addition to show its advantages when compared to other approaches.

EDCHO serves as a main building block for cooperation and information fusion in
further developments in this thesis. While the current assumptions for EDCHO are
still restrictive, we will consider robustness to agent connection and disconnection, noise,
asynchronous discrete-time communication, and delays in subsequent chapters. Similarly,
in Chapters 7 and 8, we will explore how EDCHO fits in the context of perception latency

EXACT DYNAMIC CONSENSUS (EDC) 88

‖z̃0(t)‖, ‖z̃1(t)‖, ‖z̃2(t)‖, ‖z̃3(t)‖,EDCHO

‖z̃0(t)‖, Linear

‖z̃0(t)‖,FOSM

‖z̃0(t)‖, ‖z̃1(t)‖, ‖z̃2(t)‖, ‖z̃3(t)‖,EDCHO

‖z̃0(t)‖, Linear

‖z̃0(t)‖,FOSM

Figure 4.4: Comparison of the magnitude of z̃µ(t) for EDCHO with a similar measure
for a linear protocol and a first order sliding mode (FOSM) in the case of (Up) sinusoidal
and (Bottom) polynomial references signals.

scheduling.

89 CHAPTER 4

‖z̃0(t)‖, ‖z̃1(t)‖, ‖z̃2(t)‖, ‖z̃3(t)‖,EDCHO

‖z̃0(t)‖,FOSM

‖z̃0(t)‖, ‖z̃1(t)‖, ‖z̃2(t)‖, ‖z̃3(t)‖,EDCHO

‖z̃0(t)‖,FOSM

Figure 4.5: Comparison of the magnitude of z̃µ(t) for EDCHO with a similar measure
for the first order sliding mode (FOSM) in the case of sampling steps of ∆t = 10−6 (Up)
and ∆t = 10−3 (Bottom) sinusoidal references signals. To improve clarity, this figure is
plotted in logarithmic vertical axis

EXACT DYNAMIC CONSENSUS (EDC) 90

Chapter Five

Robust EDC For Open Networks

In this chapter, we build upon the discussion initiated in Chapter 4 concerning the de-
velopment of exact dynamic consensus algorithms. As mentioned previously, the ED-
CHO protocol successfully achieves EDC under certain conditions, such as noiseless time-
varying signals, continuous-time communications, and a static graph G. However, these
conditions are limiting, motivating the need for further design in more general settings.

In particular, this chapter focuses on scenarios where agents can connect or disconnect
from the network at arbitrary points in time, enabling an OMAS setting. The challenge in
this setting is that Assumption 4.3 from Chapter 4, which pertains to the initial conditions
of EDCHO, is no longer valid. With agents joining or leaving, new initial conditions and
a transient for consensus emerge.

Exogenous time− varying signals
(measurements, estimations, etc...)

Radio

Fused (average) information

Fusion

and derivatives

and derivatives

Network
Open

Figure 5.1: Individual agent architecture for distributed information averaging.

The goal of this chapter is to extend EDCHO into what we term Robust EDCHO
(REDCHO). The objective is to eliminate the need for Assumption 4.3 from Chapter 4
and accommodate the connection and disconnection of agents from the network. Similarly
as in Chapter 4, we provide a formal stability analysis for REDCHO as well as illustrative
simulation examples. The contributions of this chapter were also published in [2].

91

ROBUST EDC FOR OPEN NETWORKS 92

5.1 RELATED WORK AND PROBLEM STATEMENT

First, we extend the definition of EDC in Chapter 4 in order to emphasize the features
of an OMAS we are interested in this chapter:

Definition 5.1 (Robust Exact Dynamic Consensus). Let the average signal z̄(t) :=
1
N
∑N
i=1 zi(t). Then, the multi-agent system is said to achieve robust EDC, if the individ-

ual output signals for each agent comply

lim
t→∞

∣∣∣ẑi,µ(t)− z̄(µ)(t)
∣∣∣ = 0,

for all µ ∈ {0, . . . ,m}, i ∈ {1, . . . ,N} regardless of isolated events of spontaneous connec-
tion or disconnection of agents.

It is important to note that the problem of dealing with robustness to connection and
disconnection of agents, hereby violating Assumption 4.3 is known in the literature for
particular protocols. In fact, dedicated discussions for this issue can be found for linear
protocols in [67] and FOSM in [85].

The proposed approach involves adding linear damping terms using the internal mem-
ory variable (χi,µ(t) in this thesis), which enables the asymptotic vanishing of the initial
condition mismatch. The convergence analysis with these damping terms can be carried
out using standard techniques for linear systems such as pole placement analysis. Ad-
ditionally, the convergence analysis for the nonlinear FOSM protocol is feasible using a
simple Lyapunov function due to the first-order nature of the algorithm.

However, it is important to note that these convergence analysis ideas cannot be
directly applied to EDCHO, as demonstrated in this chapter. While REDCHO introduces
linear damping terms into EDCHO to achieve robustness to spontaneous connection or
disconnection of agents from the network, similar to solutions in the literature, the main
contribution of this chapter lies in its non-trivial convergence analysis. The complexity
in the analysis results from the high-order and nonlinear nature of the proposed protocol,
making the application of linear systems theory or the identification of an appropriate
Lyapunov function challenging.

Therefore, REDCHO offers similar advantages as EDCHO when compared to linear
protocols and FOSM. Additionally, REDCHO introduces a new feature that enables basic
OMAS by allowing for connection or disconnection of agents from the network.

5.2 REDCHO

We propose a new algorithm, REDCHO, which manages to achieve robust EDC under
mild assumptions on the reference signals. To present the algorithm, first let the auxiliary
matrices

Γ =



−γ0 1 0 · · · 0

0 −γ1 1
... 0
... . . . −γm−1 1
0 · · · · · · 0 −γm


,G =


C

CΓ
...

CΓm

 (5.1)

93 CHAPTER 5

for design parameters γ0, . . . , γm > 0 and C = [1, 0, . . . , 0] ∈ R1×(m+1). The structure of
the REDCHO algorithm is proposed as

Protocol:

χ̇i,µ(t) = kµθ
µ+1

∑
j∈Ni

dẑi,0(t)− ẑj,0(t)c
m−µ
m+1 + χi,µ+1(t)− γµχi,µ(t), 0 ≤ µ < m

χ̇i,m(t) = kmθ
m+1

∑
j∈Ni

dẑi,0(t)− ẑj,0(t)c0 − γmχi,m(t)

Output:

ẑi,µ(t) = z
(µ)
i (t)−

m∑
ν=0

Gµ+1,ν+1χi,ν(t).

(5.2)
where Gµ+1,ν+1 with µ, ν ∈ {0, . . . ,m} are the components of the matrix G and θ ≥ 1

is a design parameter. Furthermore, we consider the following assumption:

Assumption 5.2. Let

si(t) =
(
z̄(m+1)(t)− z(m+1)

i (t)
)

+
m∑
µ=0

lµ

(
z̄(µ)(t)− z(µ)

i (t)
)

where l0, . . . , lm are the coefficients of the polynomial

(λ+ γ0) · · · (λ+ γm) = λm+1 +
m∑
µ=0

lµλ
µ.

Thus, |si(t)| ≤ L,∀t ≥ t0 for fixed γ0, . . . , γm and known L > 0.

It is easy to show that EDCHO is a particular limiting case of REDCHO and can be
recovered by choosing γ0 = · · · = γm = 0 and θ = 1.

5.3 TOWARDS CONVERGENCE OF REDCHO

The REDCHO algorithm (5.2) can be written in partially vectorized form as:

χ̇µ(t) = χµ+1(t) + kµθ
µ+1D

⌈
D>ẑ0(t)

⌋m−µ
m+1 − γµχµ(t) for 0 ≤ µ < m,

χ̇m(t) = kmθ
m+1D

⌈
D>ẑ0(t)

⌋0 − γmχm(t)

ẑµ(t) = z(µ)(t)−
m∑
ν=0

Gµ+1,ν+1χν(t),∀µ ∈ {0, . . . ,m}

where we define

χµ(t) :=

x1,µ(t)
...

xn,µ(t)

 , ẑµ(t) :=

ẑ1,µ(t)
...

ẑN,µ(t)

 , z(t) :=

z1(t)
...

zN(t)



ROBUST EDC FOR OPEN NETWORKS 94

and D is the incidence matrix of G. Moreover, let

χ(t) :=

χ0(t)
...

χm(t)

 , ẑ(t) :=

 ẑ0(t)
...

ẑm(t)

 , ze(t) :=


(
z(0)(t)

)
...(

z(m)(t)
)


and

F(ẑ0(t); θ) =


k0θD

⌈
D>ẑ0(t)

⌋ m
m+1

...
kmθ

m+1D
⌈
D>ẑ0(t)

⌋0


Using this notation we obtain the fully vectorized form of the algorithm:

χ̇(t) = (Γ⊗ IN)χ(t) + F(ẑ0(t); θ)
ẑ(t) = ze(t)− (G⊗ IN)χ(t)

Both partial and fully vectorized versions of the algorithm will be used throughout this
chapter. Moreover, note that G is the observability matrix of the pair (Γ,C) which is
invertible. Then, the dynamics of ẑ(t) result in

˙̂z(t) = że(t)− (G⊗ IN)(Γ⊗ IN)χ(t)− (G⊗ IN)F(ẑ0(t); θ)
= że(t) + (G⊗ IN)(Γ⊗ IN)(G−1 ⊗ IN)(ẑ(t)− ze(t)) + (G⊗ IN)F(ẑ0(t); θ)
= że(t) + (GΓG−1 ⊗ IN)(ẑ(t)− ze(t))− (G⊗ IN)F(ẑ0(t); θ)

(5.3)

since χ(t) = −(G−1⊗IN)(ẑ(t)−ze(t)), and (G⊗IN)(Γ⊗IN)(G−1⊗IN) = (GΓG−1⊗IN).
We will show that ẑ(t) converges towards the average consensus vector z̄(t)1N

...
z̄(m)(t)1N


asymptotically achieving EDC. This analysis is performed by decomposing

ẑ(t) = (Im+1 ⊗ 1N)ζ(t) + z̃(t) ∈ R(m+1)n

in the consensus component

ζ(t) = (Im+1 ⊗ 1>N /N)ẑ(t) ∈ Rm+1

and in the consensus error z̃(t) = (Im+1⊗P)ẑ(t) ∈ R(m+1)n with P = (IN− (1/N)1N1
>
N).

Therefore, convergence of ẑ(t) can be established by means of showing that ζ(t) converges
exponentially to [z̄(t), . . . , z̄(m)(t)]> and z̃(t) converges in finite time to the origin as we
do in the following sections. First, we provide some results regarding structural properties
of the matrices Γ,G and their relation to the signals zi(t) and si(t) from Assumption 5.2.
These notions will be useful in subsequent proofs.
Lemma 5.3. Let the change of variables

s(t) =

 s0(t)
...

sm(t)

 = (G−1 ⊗ IN)ze(t)

95 CHAPTER 5

with sµ(t) ∈ RN,∀µ ∈ {0, . . . ,m}. Moreover, define

sm+1(t) = z(m+1)(t) +
m∑
µ=0

lµz(µ)(t) (5.4)

where l0, . . . , lm are the coefficients of the polynomial

(λ+ γ0) · · · (λ+ γm) = λm+1 +
m∑
µ=0

lµλ
µ.

Then, we conclude that

że(t) = (Γ̃⊗ IN)ze(t) + (B⊗ IN)sm+1(t) (5.5)

and
ṡ(t) = (Γ⊗ IN)s(t) + (B⊗ IN)sm+1(t) (5.6)

with B = [0, . . . , 0, 1]> ∈ R(m+1)×1 and

Γ̃ =



0 1 0 · · · 0
... 0
...

... 0
0 0 · · · 0 1
−l0 −l1 · · · · · · −lm

 . (5.7)

Proof:
First, let zµ(t) := z(µ)(t) and note that

żµ(t) = zµ+1(t)

for 0 ≤ µ < m and

żm(t) = sm+1(t)−
m∑
µ=0

lµzµ(t)

from the definition in (5.4). Writing this in complete vector form leads to (5.5) directly.
Now, rewrite (5.4) as

sm+1(t) =
(
dm+1

dtm+1 +
m∑
µ=0

lµ
dµ

dtµ

)
z(t) =

(
d
dt + γm

)
· · ·
(

d
dt + γ0

)
z(t) (5.8)

by the relation between the coefficients l0, . . . , lm and γ0, . . . , γm. Thus, define v0(t) =
z0(t) and recursively

vµ+1(t) =
(

d
dt + γµ

)
vµ(t)

for 0 ≤ µ < m from which

sm+1(t) =
(

d
dt + γm

)
vm(t)

ROBUST EDC FOR OPEN NETWORKS 96

is obtained using (5.8). Equivalently, we have

v̇µ(t) = vµ+1(t)− γµvµ(t), 0 ≤ µ < m

and v̇m(t) = sm+1(t)− γmvm(t). Written in vector form, ve(t) := [v0(t)>, . . . ,vm(t)>]>
satisfies

v̇e(t) = (Γ⊗ IN)ve(t) + (B⊗ IN)sm+1(t).
Now, we obtain the matrix which maps ve(t) to ze(t) by noting that with

v0(t) ≡ z0(t) = (C⊗ IN)ve(t)

it follows that

z1(t) = ż0(t) = (CΓ⊗ IN)ve(t) + (CB⊗ IN)sm+1(t) = (CΓ⊗ IN)ve(t)

since CB = 0 and continuing this procedure to obtain zµ(t) = żµ−1(t) = (CΓµ⊗IN)ve(t)
since CΓµ−1B = 0 for 0 ≤ µ < m. This can be written as ze(t) = (G ⊗ IN)ve(t) or
equivalently ve(t) = (G−1 ⊗ IN)ze(t) = s(t). Therefore, s(t) satisfy (5.6) concluding the
proof.

Corollary 5.4. Let Γ̃,B be defined as in Lemma 5.3. Then, Γ̃ = GΓG−1 and GB = B.

Proof: Let the change of variables from Lemma 5.3 as ze(t) = (G⊗ IN)s(t). Then,

że = (G⊗ IN)(Γ⊗ IN)s + (G⊗ IN)(B⊗ IN)sm+1 = (GΓG−1 ⊗ IN)ze + (GB⊗ IN)sm+1

Comparing with (5.5) completes the proof.

5.4 CONVERGENCE OF THE CONSENSUS COMPONENTS OF RED-
CHO

In this section we show the behaviour of

ζ(t) =
(

Im+1 ⊗
1>N
N

)
ẑ(t)

as given in the following result.

Lemma 5.5. Let ẑ(t) ∈ Rn(m+1). Then, with any γ0, . . . , γm > 0 and any initial condi-
tions ẑ(t0) for (5.3) it is satisfied that ζ(t) converge asymptotically towards

z̄(t) =
(

Im+1 ⊗
1>N
N

)
ze(t) =

 z̄(t)1N
...

z̄(m)(t)1N

 .
Proof: First, recall that GΓG−1 = Γ̃ from Corollary 5.4 and obtain the dynamics of
ζ(t) by multiplying (5.3) by (Im+1 ⊗ 1>N /N) from the left:

ζ̇(t) = ˙̄z(t) + (Im+1 ⊗ 1>N /N)(Γ̃⊗ IN)(ẑ(t)− ze(t)) + (Im+1 ⊗ 1>N /N)(G⊗ IN)F(ẑ0(t); θ)
= ˙̄z(t) + Γ̃(ζ(t)− z̄(t)) + G(Im+1 ⊗ 1>N /N)F(ẑ0(t); θ)

97 CHAPTER 5

since

(Im+1 ⊗ 1>N /N)(Γ̃⊗ IN) = (Γ̃⊗ 1>N /N) = (Γ̃⊗ I1)(Im+1 ⊗ 1>N /N) = Γ̃(Im+1 ⊗ 1>N /N).

Moreover,
G(Im+1 ⊗ 1>N /N)F(ẑ0(t); θ) = 0

since 1>N D = 0 [158, Page 280]. Hence, we obtain

ζ̇(t) = ˙̄z(t) + Γ̃(ζ(t)− z̄(t)).

Define the error e(t) := ζ(t) − z̄(t) to obtain ė(t) = Γ̃e(t). Finally, note that Γ̃ is given
in (5.7) and has characteristic polynomial

m∏
µ=0

(λ+ γµ) = 0.

Then, with γ0, . . . , γm > 0, Γ̃ has negative eigenvalues and ζ(t) − z̄(t) asymptotically
converge to the origin.

5.5 CONVERGENCE OF THE CONSENSUS ERROR

In this section we show the behaviour of z̃(t) = (Im+1 ⊗ P)ẑ(t) where P = (IN −
(1/N)1N1

>
N). First, we obtain how the dynamics of z̃(t) relate to EDCHO.

Lemma 5.6. Let z̃(t) = (Im+1 ⊗ P)ẑ(t) where P = (IN − (1/N)1N1
>
N) and ẑ(t) satisfy

(5.3). Moreover, let

s(t) :=

 s0(t)
...

sm(t)

 = (G−1 ⊗ IN)ze(t)

with sµ(t) ∈ RN,∀µ ∈ {0, . . . ,m} and Θ = diag(1, θ−1, . . . , θ−m). Then,

y(t) :=

y0(t)
...

ym(t)

 = (ΘG−1 ⊗ IN)z̃(t)

with yµ(t) ∈ RN, satisfy

ẏµ(t) = θ
(
yµ+1(t)− kµD

⌈
D>y0(t)

⌋m−µ
m+1 − (γµ/θ)yµ(t)

)
for 0 ≤ µ ≤ m− 1,

ẏm(t) = θ
(
Psm+1(t)/θm+1 − kmD

⌈
D>y0(t)

⌋0 − (γm/θ)ym(t)
) (5.9)

with sm+1(t) defined in (5.4).

Proof: First, obtain the dynamics of z̃(t) using (5.3) and Γ̃ = GΓG−1 from Corollary
5.4:

dz̃(t)
dt = (Im+1 ⊗P)że(t) + (Γ̃⊗ IN)z̃(t)− (Γ̃⊗P)ze(t)− (G⊗P)F(ẑ0(t); θ)

ROBUST EDC FOR OPEN NETWORKS 98

However, note that (Im+1⊗P)że(t) = (Γ̃⊗P)ze(t)+(B⊗P)sm+1(t) from (5.5) in Lemma
5.3. Then,

dz̃(t)
dt = (Γ̃⊗ IN)z̃(t)− (G⊗P)F(ẑ0(t); θ) + (B⊗P)sm+1(t)

Moreover,
(G⊗P)F(ẑ0(t); θ) = (G⊗ IN)F(ẑ0(t); θ)

since PD = (IN − (1/N)1N1
>
N)D = D. Furthermore, the dynamics of y(t) are

ẏ(t) = (ΘG−1 ⊗ IN)dz̃(t)
dt

= (ΘG−1Γ̃GΘ−1 ⊗ IN)y(t)− (Θ⊗ IN)F(ẑ0(t); θ) + (ΘG−1B⊗P)sm+1(t)
= (ΘΓΘ−1 ⊗ IN)y(t)− (Θ⊗ IN)F(ẑ0(t); θ) + θ−m(B⊗ IN)Psm+1(t)

where Corollary 5.4 was used and

(ΘB⊗P) = θ−m(B⊗ IN)(I1 ⊗P) = θ−m(B⊗ IN)P.

In addition, note that

(Θ⊗ In)F(ẑ0(t); θ) =


IN 0 · · · 0

0 INθ
−1

... 0
0 · · · 0 INθ

−m



k0θD

⌈
D>ẑ0(t)

⌋ m
m+1

...
kmθ

m+1D
⌈
D>ẑ0(t)

⌋0
 = θF(ẑ0(t); 1)

To simplify the ΘΓΘ−1 term, denote the nilpotent matrix A0 := Γ +diag(γ) which does
not depend on any of the parameters γ = [γ0, . . . , γm]> and for which it can be verified
ΘA0 = θA0Θ. Hence,

ΘΓΘ−1 = (ΘA0 −Θdiag(γ))Θ−1 = (θA0Θ− diag(γ)Θ)Θ−1 = θ(A0 − diag(γ/θ)) = θΓθ

Where Γθ := A0 − diag(γ/θ). Moreover, the first row of GΘ−1 is C which leads to
y0(t) = ẑ0(t). Hence, combining all these facts,

ẏ(t) = (θΓθ ⊗ IN)y(t)− θF(y0(t); 1) + θ−m(B⊗ IN)Psm+1(t)

= θ
(

(Γθ ⊗ IN)y(t)− F(y0(t); 1) + θ−(m+1)(B⊗ IN)Psm+1(t)
)

Writing this equation in partially vectorized form we recover (5.9), which completes the
proof.

Now, if we show that y(t) converge to the origin in finite time, the same conclusion
will apply to z̃(t). Note that for given γ0, . . . , γm,

Psm+1(t)/θm+1 ∈ [−L,L]N/θm+1 ⊆ [−L,L]N

under Assumption 5.2 and θ ≥ 1. Therefore, comparing (5.9) with the EDCHO error
system (4.3) in Chapter 4, it would be the case that y(t) reaches the origin if γ0 = · · · =

99 CHAPTER 5

γm = 0. In the following we will use homogeneity to show that even with those terms,
stability of REDCHO will still be valid locally. To do so, we will decompose the right
hand side of (5.9) in two parts, one similar to the right hand side of the EDCHO error
system and the other with the remaining linear terms. Let h : Rn(m+1) ⇒ Rn(m+1) and
q : Rn(m+1) → Rn(m+1) be defined as

h(y) =


y1
...

ym
[−L,L]N

− F(y0; 1), q(y) =

 −(γ0/θ)y0
...

−(γm/θ)ym

 (5.10)

Then, (5.9) is equivalent to the differential inclusion

ẏ(t) ∈ θ(h(y(t)) + q(y(t))).

Moreover, let r = [r01
>, . . . , rm1

>] with rµ := m + 1 − µ,∀µ ∈ {0, . . . ,m}. Then, it
can be verified that h(•) and q(•) are r-homogeneous of degrees −1 and 0 respectively
in the sense of in the sense of Definition F.2 in Appendix F:

Lemma 5.7. Let r = [r01
>, . . . , rm1

>] with rµ = m + 1 − µ,∀µ ∈ {0, . . . ,m}. Then,
h defined in (5.10) and the identity map Id(y) = y are r-homogeneous in the sense of
Definition F.2 in Appendix F of degrees −1 and 0 respectively.

Proof: First, note that r0
m−µ
m+1 = rµ+1 and rµ+1 = rµ − 1. Moreover, note that the

dilation

∆r(λ)y =

 λ
r0y0
...

λrmym

 .
Furthermore, by splitting

h(y; ρ) =

h0(y; ρ)
...

hm(y; ρ)


then,

hµ(∆r(λ)y; ρ) = λrµ+1 − ρµ+1kµD
⌈
D>λr0y0(t)

⌋m−µ
m+1

= λrµ+1yµ − λrµ+1ρµ+1kµD
⌈
D>λr0y0(t)

⌋m−µ
m+1

= λ−1+rµ
(

yµ − ρµ+1kµD
⌈
D>λr0y0(t)

⌋m−µ
m+1

)
= λ−1λrµhµ(y; ρ)

for µ ∈ {0, . . . ,m− 1}. For hm, Note that rm = 1 and

hm(∆r(λ)y; ρ) = hm(y; ρ) = λ−1λrmhm(y; ρ).

Hence,
h(∆r(λ)y; ρ) = λ−1∆r(λ)h(y; ρ).

ROBUST EDC FOR OPEN NETWORKS 100

Then, h is r-homogeneous in the sense of Definition F.2 of degree −1. For Id(y) =
[Id>0 (y), . . . , Id>m(y)]> with Idµ(y) = yµ,

Idµ(∆r(λ)y) = −γµλrµyµ = λrµ Idµ(y)

Hence, Id(∆r(λ)y) = λ0∆r(λ)Id(y) and Id is r-homogeneous in the sense of Definition
F.2 of degree 0.

Lemma 5.8. Let G be a connected graph and the pair h(•), q(•) defined in (5.10).
Moreover, let some fixed γ0, . . . , γm > 0 so that there exists L for which Assumption 5.2
is complied and k0, . . . , km chosen as in Theorem 4.7 in Chapter 4 for such L. Then,
there exists a neighborhood R0 ⊂ Rn(m+1) of the origin such that if y(t0) ∈ R0, then the
solution of

ẏ(t) ∈ θ(h(y(t)) + q(y(t)))
converge to the origin in finite-time. Moreover, R0 can be made arbitrarily big by
increasing θ.

Proof: Consider γ0 = · · · = γm = 0, θ = 1. Then, ẏ ∈ h(y) is globally finite-time
stable towards the origin by Theorem 4.7 from Chapter 4. Moreover, recall that h(•)
is r-homogeneous of degree −1. Hence, by Proposition F.5 in Appendix F there exists
scalar functions V (y),W (y) which are r-homogeneous of degrees k and k−1 respectively
and comply

V̇ (y(t)) = LhV (y(t)) ≤ −W (y(t)) ≤ −βmV (y(t))
k−1
k

with
0 < βm = inf{W (y) : V (y) = 1}

using Proposition F.3. Now consider γ0, . . . , γm > 0 with arbitrary θ ≥ 1 and the same
Lyapunov function V (y) as before. In this case

V̇ (y(t)) = θ (LhV (y(t)) + LqV (y(t))) ≤ θ
(
−βmV (y(t))

k−1
k + LqV (y(t))

)
Note that from Proposition F.4

LqV (y) = ∂V

∂y q(y)

is r-homogeneous of degree k since q(•) is r-homogeneous of degree 0. Hence, LqV (y) ≤
βMV (y) by Proposition F.3 and

βM = sup{LqV (y) : V (y) = 1}.

Note that LqV (y) may be positive for some y. Therefore, βM may be positive too.
Moreover,

V̇ (y(t)) ≤ θ
[
−βmV (y(t))

k−1
k + βMV (y(t))

]
≤ −θ

[
βm − βMV (y(t)) k

k−1

]
V (y(t))

k−1
k

Denote with R0 ⊆ Rn(m+1) any region in which

−
[
βm − βMV (y) k

k−1

]
≤ −c (5.11)

101 CHAPTER 5

is complied for some c > 0 so that

V̇ (y(t)) ≤ −θcV (y(t))
k−1
k

for any y(t) ∈ R0. If βM ≤ 0, then (5.11) is complied for c = βm regardless of y so that
we can set R0 = Rn(m+1). On the other hand, if βM > 0 then (5.11) is complied when

V (y) k
k−1 ≤ (βm − c)/βM

which is possible only for c ∈ (0, βm). Then, choose R0 with c = βm/2 so that (5.11) is
complied whenever V (y) ≤ βm/(2βM). We can write explicitly

R0 = {y ∈ Rn(m+1) : V (y) ≤ βm/(2βM)}

so that
V̇ (y(t)) ≤ −(θβm/2)V (y(t))

k−1
k

for any y(t) ∈ R0 regardless of βM . Note that due to Proposition F.5, V (y) is
continuously differentiable and we can write

βM = sup
{
−

m∑
µ=0

(γµ/θ)
∂V

∂yµ
yµ : V (y) = 1

}
= β̃M/θ

where

β̃M := sup
{
−

m∑
µ=0

γµ
∂V

∂yµ
yµ : V (y) = 1

}
is a constant for fixed γ0, . . . , γm. Thus,

βm/(2βM) = θ(βm/(2β̃M))

can be made arbitrarily big by increasing θ, so that R0 can be made arbitrarily big as
well. Finally, note that since (k − 1)/k ∈ (0, 1), then V (y) will reach the origin in finite
time [159, Corolary 4.25] and so will y(t) whenever y(t0) ∈ R0, completing the proof.

The previous result shows that trajectories of

ẏ(t) ∈ θ(h(y(t)) + q(y(t)))

reach the origin if y(t0) ∈ R0 which motivates to study if diverging trajectories can be
obtained for some y(t0) /∈ R0. In the following, we show that this is not possible and
only a terminal bounded error is allowed.

Lemma 5.9. Let the conditions of Lemma 5.8 be satisfied. Thus, for any initial condi-
tions y(t0) ∈ Rn(m+1), there exists T > 0 and a bounded neighborhood of the origin R∞
such that solution of

ẏ(t) ∈ θ(h(y(t)) + q(y(t)))
comply y(t) ∈ R∞ for t ≥ T + t0. Moreover, such neighborhood can be made arbitrarily
big by increasing θ.

ROBUST EDC FOR OPEN NETWORKS 102

Proof: We proceed very similarly to the proof of Lemma 5.8. Consider only ẏ(t) =
θq(y(t)) using (5.10) and a Lyapunov function

V (y) =
m∑
µ=0

(y>µ yµ)
m+1
2rµ

with
rµ := m+ 1− µ,∀µ ∈ {0, . . . ,m}

obtaining

V̇ (y(t)) =
m∑
µ=0

m+ 1
rµ

(yµ(t)>yµ(t))
m+1
2rµ −1yµ(t)> (−γµyµ(t)) ≤ −γminV (y(t))

since γmin := min{γ0, . . . , γm} ≤ γµ and 1 ≤ m+1
rµ

, ∀µ ∈ {0, . . . ,m}. Moreover, note that

V (∆r(λ)y) =
m∑
µ=0

(λ2rµy>µ yµ)
m+1
2rµ = λm+1V (y)

and thus V (y) is r-homogenenous of degree m+ 1 under the dilation

∆r(λ)y =

 λ
r0y0
...

λrmym

 .
Let the same Lyapunov function for

ẏ(t) ∈ θ(h(y(t)) + q(y(t)))

so that

V̇ (y(t)) = θ (LqV (y(t)) + LhV (y(t))) ≤ −γminV (y(t)) + θLhV (y(t)).

Note that from Proposition F.4 LhV (y) is r-homogeneous of degree m since h(•) is
r-homogeneous of degree −1. Hence,

LhV (y) ≤ β′MV (y) m
m+1

by Proposition F.3 and
β′M = sup{LhV (y) : V (y) = 1}.

Thus,
V̇ (y(t)) ≤ −

[
γmin − θβ′MV (y(t))− 1

m+1

]
V (y(t)).

Denote with Rc∞ ⊂ Rn(m+1) any region in which

−θ
[γmin

θ
− β′MV −

1
m+1

]
≤ −θc′ (5.12)

for some c′ > 0 so that
V̇ (y(t)) ≤ −θc′V (y(t))

103 CHAPTER 5

for any y(t) ∈ Rc∞. If β′M ≤ 0, then we can set Rc∞ = Rn(m+1) with c′ = γmin/θ. On the
other hand if β′M > 0, (5.12) is equivalent to

V (y)1/(m+1) ≥ β′M/(γmin/θ − c′).

Then, choose c′ = γmin/(2θ) so that we can write

Rc∞ = {y ∈ Rn(m+1) : V (y)1/k ≥ 2θβ′M/γmin}

so that
V̇ (y(t)) ≤ −(γmin/2)V (y(t))

for any y(t) ∈ Rc∞. Therefore, for any initial condition y(t0) ∈ Rn(m+1) the trajectory of
V (y(t)) will converge to

R∞ := Rn(m+1) \ Rc∞
after a finite time T + t0 and comply y(t) ∈ R∞ for all t ≥ T + t0. Finally, note that R∞
can be made arbitrarily large by increasing θ.

5.6 CONVERGENCE OF REDCHO

In this section we formally state the main result of this chapter.

Theorem 5.10. Let G be a connected graph and the pair h(•), q(•) defined in (5.10).
Moreover, let some fixed γ0, . . . , γm > 0 so that there exists L for which Assumption 5.2
is complied and k0, . . . , km chosen as in Theorem 4.7 in Chapter 4 for such L. Then,
there exists neighborhoods R,R′ ⊂ Rn(m+1) around consensus such that if the initial
conditions comply [ẑ1,0(t0), . . . , ẑn,m(t0)]> ∈ R, the REDCHO algorithm in (5.2) achieves
robust EDC. On the other hand, if [ẑ1,0(t0), . . . , ẑn,m(t0)]> /∈ R, (5.2) will achieve at most
a uniformly bounded terminal error [ẑ1,0(t), . . . , ẑn,m(t)]> ∈ R′,∀t ≥ T around dynamic
consensus after some finite time T > 0. Moreover, the neighborhoods R,R′ can be made
arbitrarily big by increasing θ ≥ 1.

Proof: First, decompose

ẑ(t) = (I ⊗ 1N)(Im+1 ⊗ 1>N/N)ẑ(t) + (Im+1 ⊗P)ẑ(t) = (Im+1 ⊗ 1)ζ(t) + z̃(t).

Now, note that Lemma 5.8 implies the existence of a neighborhood R0 such that if
y(t0) ∈ R0 with

y(t) := (ΘG−1 ⊗ IN)z̃(t)

then convergence of y(t) is achieved towards the origin. Hence, consider the biggest ball
of radius R(θ),

B0(θ) = {y ∈ Rn(m+1) : y>y ≤ R(θ)2}

such that B0(θ) ⊆ R0 and R(θ) is an increasing function of θ due to the last part of
Lemma 5.8. Now,

R(θ)2 ≥ y>y = z̃>(Θ(G−1)>G−1Θ⊗ IN)z̃ ≥ θ−2mz̃>((G−1)>G−1 ⊗ IN)z̃

ROBUST EDC FOR OPEN NETWORKS 104

This implies that convergence of z̃(t) towards the origin happens for any

z̃(t0) ∈ {z̃ ∈ Rn(m+1) : z̃>((G−1)>G−1 ⊗ IN)z̃ ≤ (θmR(θ))2}

where the previous region can be made arbitrarily big by increasing θ. This implies the
existence of R ∈ Rn(m+1) as required by the theorem. An identical argument can be
made for R′ ∈ Rn(m+1) but using Lemma 5.9 instead to conclude uniformly bounded
trajectories for z̃(t) implying uniformly bounded steady state error around dynamic
consensus. Furthermore, Lemma 5.5 imply that ζ(t) converge asymptotically towards
z̄(t) = (Im+1 ⊗ 1>N /N)ze(t) =

[
z̄(t)1>N , . . . , z̄(m)(t)1>N

]>. Hence, when ẑ(t0) ∈ R, then
ẑ(t) converge asymptotically towards (Im+1 ⊗ 1N)z̄(t). Equivalently, ẑµ(t) → z̄(µ)(t)1N.
Since no initialization condition is required, then (5.2) achieves robust EDC.

Remark 5.11. Note that since the γ0, . . . , γm are fixed, the class of signals for which
Assumption 5.2 is complied can be checked before-hand, so that the method remains fully
distributed. On the other hand, showing the same stability properties in the case when all
agents have different parameters γi0, . . . , γim > 0, i ∈ {1, . . . , n} require more complicated
computations, but is straightforward using similar arguments as in this chapter. Thus,
only the case with a single set of parameters for all agents is provided here for simplicity.

5.7 SIMULATION EXAMPLES

In the following we show some simulation scenarios designed to show the properties of
the REDCHO protocol. The simulations were implemented using explicit Euler method
with time step ∆t = 10−6 over (5.2).

In order to show the convergence properties as described in the analysis from the
previous sections, we simulated (5.2) for the network topology G shown in Figure 5.2.
Moreover,the number of agents is n = 8 and the signals zi(t) = ai cos(ωit) with amplitudes

ai = 0.95, 0.34, 0.58, 0.22, 0.75, 0.25, 0.50, 0.69

and frequencies
ωi = 0.70, 0.75, 0.27, 0.67, 0.65, 0.16, 0.11, 0.49.

Thus, we choose m = 2, γ0 = γ1 = γ2 = 3, k0 = 6, k1 = 11, k2 = 6, θ = 1.5. Furthermore,
initial conditions for (5.2) were generated from a normal distribution with mean 1 and
variance r = 1. Figure 5.3 shows the convergence of ẑ0(t), ẑ1(t), ẑ2(t) towards the signals
z̄(t)1, ˙̄z(t)1, ¨̄z(t)1 in the first column. Moreover, by letting ζ(t) = [ζ0(t), . . . , ζm(t)]>, we
show the average consensus error eµ(t) := ζµ(t)−z̄(µ)(t)1, µ = 0, 1, 2 in the second column
of Figure 5.3, which converges asymptotically to the origin as expected from Lemma
5.5. The third column of Figure 5.3 shows how the consensus errors z̃0(t), z̃1(t), z̃2(t)
converge to the origin in finite time as expected from Lemma 5.8. This same experiment
was repeated for different values of r for which the norm of the average consensus errors
‖ẑµ(t) − z̄(µ)(t)1‖, µ = 0, 1, 2 is shown in Figure 5.4. This experiment shows that even
for big initial conditions, the algorithm manages to converge to EDC. This is consistent
with Lemma 5.9 which implies that no diverging error trajectories are possible.

In order to show the robustness properties of the REDCHO protocol when the topology
suffers from sudden changes, we simulated (5.2) for the network topology shown in Figure

105 CHAPTER 5

5.5 which changes from Gt<5 to Gt≥5 at t = 5. Consider the same configuration and
signals as in the previous example. Figure 5.6 shows how the outputs of the REDCHO
algorithm converge to EDC approximately at t = 0.5. At t = 5 the topology changes,
but the REDCHO protocol manages to make all agents, the first four and the new ones,
converge to EDC again even when the states did not comply neither

∑4
i=1 χi,µ(0) = 0 nor∑8

i=1 χi,µ(5) = 0 as required in EDCHO. For comparison, consider EDCHO obtained by
setting γ0 = γ1 = γ2 = 0 in REDCHO. Moreover, initial conditions are changed so that∑4
i=1 χi,µ(0) = 0. Figure 5.7 shows the trajectories for the protocol in this case, where

EDC is achieved before t = 5. However, when the new agents merge to the network, the
agents output converge to consensus towards a signal that diverges.

1 2 3 4

5678

Figure 5.2: The network topology G considered in the first example of Section 5.7.

In the previous examples we showed the effectiveness of REDCHO against its non-
robust version (EDCHO). In the following we compare against other state of the art
dynamic consensus methods, with particular focus on terminal precision for the EDC
goal.

In this example, we compare REDCHO with the Boundary-layer (B-layer) approach
from [154] and the High-Order Linear protocol (HOL) from [84]. Both previous methods
are able to achieve consensus towards the average signal and its derivatives, but are not
robust and require to share a whole vector between agents. In addition, we compare
with the First-Order Linear (FOL) protocol in [67] and the First-Order Sliding Mode
(FOSM) protocol in [85]. Both protocols are robust, but cannot obtain the derivatives
of the average signal by construction. Thus, a robust exact differentiator [96] is applied
locally at each agent to obtain derivatives of the average signal.

In this setting, consider G constructed as a ring topology of n = 20 agents. Similarly
as before, consider signals zi(t) = ai cos(ωit) where the ai, ωi are not shown for brevity.
Note that all approaches can handle these type of signals, with at least a bounded terminal
consensus error regardless of the order of the algorithm. An order of m = 2 was used for
REDCHO, B-layer and HOL, and an exact differentiator of order m is applied for FOL
and FOSM. Hence, all algorithms are able to obtain up to the second derivative of the
average signal. All algorithms were implemented with parameters of similar magnitude,
chosen such to roughly match same settling time for the sake of fairness. Moreover, we
show the resulting consensus errors for all algorithms with h = 10−6 as shown in Figure
5.8 and ∆t = 10−3 in Figure 5.9 to show how they degrade as the discretization becomes
coarser. In addition, we simulated that agent 1 fails at t = 25 and resets its state, allowing
us to evaluate robustness of the algorithms.

As it can be observed, HOL and FOL methods have similar low precision in all cases
before t = 25. The reason is that neither of these methods are able to achieve exact con-
vergence for sinusoidal signals. However, their performance does not degrade significantly

ROBUST EDC FOR OPEN NETWORKS 106

ẑ0(t) e0(t) z̃0(t)

ẑ1(t) e1(t) z̃1(t)

ẑ2(t) e2(t) z̃2(t)

Figure 5.3: Convergence of the REDCHO algorithm for the scenario considered in the
first example of Section 5.7. The first column shows convergence of ẑ0(t), ẑ1(t), ẑ2(t)
towards the signals z̄(t)1, ˙̄z(t)1, ¨̄z(t)1. The second column shows the average consensus
error eµ(t) := 1>eµ(t)/N with eµ(t) := ζµ(t) − z̄(µ)1(t), µ = 0, 1, 2. The third column
shows the consensus errors z̃0(t), z̃1(t), z̃2(t).

when the time step is increased. On the other hand, it can be noted that the FOSM ap-
proach have better performance than the linear approaches when ∆t = 10−6 due to its
theoretically exact convergence. However, it degrades significantly when h is increased
as shown in Figure 5.9. The reason is that this method suffers from the chattering effect
which is amplified for the higher order derivatives due to the exact differentiator. Note
that the B-layer and REDCHO approaches have similar performance before t = 25 with
both sampling step sizes and outperform the other methods with at least one order of
magnitude of precision improvement when ∆t = 10−3 as shown in Figure 5.9. However,
after t = 25 both B-layer and HOL converge to consensus only up to a constant error due
to their lack of robustness as shown by the ‖ẑ0(t)− z̄(t)1‖ curves in both Figures 5.8 and
5.9. Although other methods manage to recover from the failure of agent 1, REDCHO is
the one with the best performance in all cases.

107 CHAPTER 5

‖ẑ
0
(t

)
−

z̄
(t

)1
‖

‖ẑ
1
(t

)
−

˙̄ z
(t

)1
‖

‖ẑ
2
(t

)
−

¨̄ z
(t

)1
‖

Figure 5.4: Convergence of the REDCHO algorithm for different magnitudes of initial
conditions considered in the first example of Section 5.7.

1

2 3

4

1

2 3

4

5

6 7

8

t = 5

Gt<5

Gt≥5

Figure 5.5: The network G considered in the network merging example in Section 5.7.

5.8 DISCUSSION

In this chapter we proposed the REDCHO protocol. This new protocol achieves exact
consensus towards the average of time varying signals and its derivatives distributed

ROBUST EDC FOR OPEN NETWORKS 108

ẑ
0
(t
)

ẑ
1
(t
)

ẑ
2
(t
)

Figure 5.6: Trajectories for the REDCHO protocol in the scenario of Figure 5.5.

ẑ
0
(t
)

ẑ
1
(t
)

ẑ
2
(t
)

Figure 5.7: Trajectories for EDCHO in the scenario of Figure 5.5.

109 CHAPTER 5

t = 25

‖ẑ
0
(t

)
−

z̄
(t

)1
‖

‖ẑ
1
(t

)
−

˙̄ z
(t

)1
‖

‖ẑ
2
(t

)
−

¨̄ z
(t

)1
‖

REDCHO
FOL
FOSM
HOL
B− layer

Figure 5.8: Comparison of the magnitude of the average consensus errors for REDCHO,
FOL, FOSM, HOL and B-layer in the case of a sampling step ∆t = 10−6.

REDCHO
FOL
FOSM
HOL
B− layer‖ẑ

0
(t

)
−

z̄
(t

)1
‖

‖ẑ
1
(t

)
−

˙̄ z
(t

)1
‖

‖ẑ
2
(t

)
−

¨̄ z
(t

)1
‖

t = 25

Figure 5.9: Comparison of the magnitude of the average consensus errors for REDCHO,
FOL, FOSM, HOL and B-layer in the case of a sampling step ∆t = 10−3.

ROBUST EDC FOR OPEN NETWORKS 110

through a network. Proofs of convergence of the algorithm are given even when agents
connect or disconnect from the network. Simulation scenarios were designed to confirm
the advantages of the proposed protocol.

This extension of EDCHO allows to consider a mild class of OMAS systems, where
changes in the connectivity between agents occur as infrequent isolated events. Consid-
ering general switching topologies is currently beyond the scope of this thesis. However,
REDCHO still provides many advantages that make it applicable in various practical sce-
narios. In particular, in subsequent chapters, the ideas presented in this chapter will be
extended to the context of asynchronous discrete-time communication, delays, and mea-
surement noise. Moreover, REDCHO is directly applied to a formation control problem
under perception latency in Chapter 7.

Chapter Six

Distributed Differentiation Protocol

The problem of online derivative computation or simply differentiation is fundamental in
this thesis. To give an illustrative example of why differentiation algorithms are impor-
tant, consider the dynamics of a single coordinate x(t) for an arbitrary robot with second
order dynamics ẍ(t) = u(t) where u(t) is a scalar control input. If a reference xref(t) is
constructed for x(t) to follow, we can design a controller as

u(t) = ẍref(t)− κ1(x(t)− xref(t))− κ2(ẋ(t)− ẋref(t)) (6.1)

for design parameters κ1, κ2 > 0. The error e(t) = x(t)−xref(t) has closed-loop dynamics
ë(t) = −κ1e(t)− κ2ė(t) with stable origin, effectively achieving trajectory tracking.

However, even if the robot is able to measure x(t), xref(t), the values of ẋ(t), ẋref(t),
ẍref(t) required in (6.1), have to be computed numerically in general. For instance, con-
sider xref(t) = x̂target(t)+d where x̂target(t) is an estimated target coordinate at time t and
d ≥ 0 is a fixed displacement. Since estimations x̂target(t) are produced by sensors, there
is no explicit expression of xref(t) so that its derivatives cannot be computed in closed
form beforehand. Instead, ẋref(t), ẍref(t) are estimated at time t using prior and current
data for xref(t). Such numerical procedure is called a differentiator.

Exogenous time− varying signals
(measurements, estimations, etc...)

Radio

Fused (weighted average) information

Fusion

and derivatives

Network
Open

Noise

Figure 6.1: Individual agent architecture. No knowledge of input exogenous signal’s
derivatives is assumed. Measurement noise at the input is considered.

111

DISTRIBUTED DIFFERENTIATION PROTOCOL 112

In a multi-agent setting, it can be beneficial to compute derivatives of quantities for
which only local information is available. For example, computing derivatives of the
consensus signal z̄(t) in Chapters 4 and 5. As will be discussed in Chapter 7, such
solution can enable distributed target tracking and formation control. While EDCHO
and REDCHO appear to compute the first m derivatives z̄(t), they still have important
limitations in more practical scenarios. In particular, both EDCHO and REDCHO make
some restrictive assumptions:

1. Having perfect knowledge of the local signal zi(t) at agent i ∈ I.

2. Having knowledge of the m derivatives of zi(t) at each agent i ∈ I (see the output
equations for EDCHO and REDCHO in (4.1) and (5.2) respectively).

Assuming perfect knowledge of zi(t) is very restrictive in the context of perception
latency, where such signals may originate from perception measurements which are prone
to noise. For the second assumption, estimating high-order derivatives of sensor data can
be very challenging in practice, specially since an inappropriate differentiation method
may amplify the measurement noise.

Henceforth, in this chapter we focus on a setting as in Figure 6.1. We present two
main contributions in this setting which account for the two main drawbacks of prior
EDC techniques mentioned before. First, we analyze techniques to mitigate measurement
noise at the inputs through weighted averaging. Second, in order to avoid additional
noise amplification, we develop a workaround to compute derivatives of the consensus
signal without requiring knowledge of the derivatives of the inputs. To the best of our
knowledge this is the first dynamic consensus protocol with a noise analysis of this kind.
The contributions of this chapter were also published in [6].

6.1 RELATED WORK

The problem of numerical differentiation is closely related to estimating the state of a
chain of integrators linear system with an unknown input [95]. This connection moti-
vates the use Kalman filtering to estimate derivatives. Hence, the problem of distributed
differentiation can be recasted as a distributed Kalman filtering problem for which many
solutions exist in the literature [87, 94, 142, 160]. However, these type of protocols won’t
be able to compute the exact derivatives of the average signal even without measurement
noise under persistently varying signals, due to their linear nature. A similar kind of
differentiators are the linear High Gain Observers (HGO) [161] for the case of a single
agent. In this case, arbitrarily small differentiation error can be achieved by increasing a
gain in the algorithm for the noiseless case. However, this same feature makes it sensitive
in the presence of noise. Similar linear strategies to the HGO have been extended for
dynamics consensus such as in [84, 98, 162]. Nonetheless, these approaches still suffer
from the problem that they cannot attain exact convergence even without noise, and may
be sensitive to noise if high gains are used.

On the other hand, Robust Exact Differentiators (RED) [96] are non-linear observers
that attain exact differentiation without noise for a class input signals with bounded
high-order derivative. It was shown that the RED reaches optimally shaped error bounds.
Despite this, there does not exist a distributed differentiator in the literature generalizing
the capabilities of the RED. It is precisely this gap the one tackled in this chapter,
presenting the first of its kind exact distributed differentiator.

113 CHAPTER 6

6.2 PROBLEM STATEMENT

Consider the same network model as in Chapters 4 and 5 with the exception that each
agent i has access to a local noisy signal

zεi (t) = zi(t) + εi(t)

with (m + 1)-times differentiable nominal signal zi(t) and noise εi(t). The goal of the
distributed differentiation problem is for the agents to estimate the weighted average
signal

z̄(t) = w1z1(t) + · · ·+ wNzN(t)
w1 + · · ·+ wN

(6.2)

for locally known w1, . . . , wN > 0, as well as its first m ∈ N derivatives

z̄(1)(t), . . . , z̄(m)(t),

in a decentralized fashion.

Remark 6.1. Computing (6.2) is useful for robust estimation under noisy measurements
or imperfect communication since wi can be assigned with a lower value depending on
the quality of node i. For example, in a sensor network measuring the same quantity
z̄(t) = z1(t) = · · · = zN(t) with noise εi(t) ∼ N (0, σ2

i), one can choose wi = 1/σ2
i

such that (6.2) corresponds to the optimal estimate for z̄(t) due to the inverse-covariance
average structure.

In the following section we propose a Distributed Differentiation Protocol (DDP) in
continuous time, able to estimate (6.2).

6.3 THE PROTOCOL

The proposed DDP has the following structure. We construct a new virtual graph Ga =
(Ia, Ea) with the same local information as G in the following way. First, Ia = I ∪ {N +
1, . . . , 2N} where N virtual nodes are created, one for each i ∈ I. Second, E ⊂ Ea with
the only difference being that any virtual node i+ N ∈ {N + 1, . . . , 2N} is only connected
to node i ∈ I. In this sense, we say that agent i ∈ I owns both i, i + N ∈ Ia virtual
nodes. Moreover, the resulting adjacency matrix Aa for Ga is

Aa =
[
A IN
IN 0N×N

]
where A ∈ {0, 1}N×N is the adjacency matrix of G.

The DDP is based on the new graph Ga. An arbitrary agent i ∈ I has internal
variables {χi,µ(t),χi+N,µ(t)}mµ=0 and output estimations {ẑi,µ(t)}mµ=0 for the derivatives

DISTRIBUTED DIFFERENTIATION PROTOCOL 114

{z̄(µ)(t)}mµ=0. The internal dynamics of the DDP and its output are defined according to

Protocol:

χ̇i,µ(t) = (kµ/wi)θµ+1
2N∑
j=1

Aa
ijFµ(yi(t)− yj(t)) + χi,µ+1(t)− γµχi,µ(t), 0 ≤ µ < m

χ̇i,m(t) = (km/wi)θm+1
2N∑
j=1

Aa
ijFm(yi(t)− yj(t))− γmχi,m(t)

yi(t) =
{
zεi (t)− χi,0(t) i ∈ {1, . . . ,N}
−χi,0(t) i ∈ {N + 1, . . . , 2N}

Output:

ẑi,µ(t) = −2
m∑
ν=0

Gµ+1,ν+1χi+N,ν(t)

(6.3)
where i ∈ {1, . . . , 2N}, Fµ(•) = d•c

m−µ
m+1 , µ ∈ {0, . . . ,m}, Aa

ij are the components of Aa,
Gµ+1,ν+1 are the components of the matrix G in (5.1), the θ, {γµ, kµ}mµ=0 are design
parameters and wi+N = wi, i ∈ {1, . . . ,N}.

Note from (6.3) that an arbitrary node i ∈ {1, . . . , 2N} only requires knowledge of
its local weight value wi, and no condition is imposed on these weights other than being
strictly positive.

Remark 6.2. Some important comments must be made for the DDP in (6.3). First, it
can be observed that each agent i ∈ I only needs to communicate yi(t) to its neighbors.
On the other hand, each agent i ∈ I must run the dynamics for both {χi,µ(t)}mµ=0
and {χi+N,µ(t)}mµ=0. Moreover, the output of the DDP in (6.3) does not require local
estimations for the derivatives of zi(t). This allows the accuracy of (6.3) under noise to
depend only on the protocol parameters and the graph G.

Intuitively, the extra node i+ N added to the virtual graph Ga act as a differentiator
estimating z

(µ)
i (t), in a way that its performance is tightly coupled to the rest of the

protocol.

Theorem 6.3. Let, w1, . . . , wN > 0, G be a connected graph and the noise signals satisfy
|εi(t)| ≤ ε, ∀t ≥ T , ε ∈ [0, εmax] for some εmax > 0. Then, for any εmax > 0 there exist
γmax > 0 sufficiently small with γ0, . . . , γm ∈ (0, γmax] such that if Assumption 5.2 holds,
there exists:

• convergence time T > 0 and sufficiently big θ, {kµ}mµ=0,

• admissible balls R0, . . . ,Rm ⊂ R for the initial conditions {χi,µ(0)}mµ=0,

• m-times differentiable consensus signal ζ(t),

such that the DDP in (6.3) complies:

1. |ζ(µ)(t)− ẑi,µ(t)| ≤ cµε
m−µ+1
m+1 , ∀t ≥ T and all i ∈ {1, . . . , N} with constants cµ > 0

which only depend on the protocol parameters, G and εmax.

115 CHAPTER 6

2. limt→∞ |ζ(t)− z̄(t)| = 0.

3. The balls R0, . . . ,Rm can be made arbitrarily large by increasing θ.

Remark 6.4. The best possible differentiator accuracy under noise of magnitude ε > 0
must be proportional to ε

m−µ+1
m+1 when the clear-of-noise signal has bounded m-th deriva-

tive [96]. This is the case of item 1 of Theorem 6.3 under Assumption 5.2. Moreover, as
will be shown in Section 6.5, a linear version of (6.3) with Fµ(•) = (•) will have error
bounds growing linearly with ε. This implies that the proposed DDP can outperform the
linear protocols in the presence of noise.

6.4 PROTOCOL CONVERGENCE

The convergence proof strategy for the DDP is the following. First, we show convergence
with ε = 0 and γ0 = · · · = γm = 0. Then, we extend the result to the case with
γ0, . . . , γm > 0. Finally, we extend the result for the case with ε > 0. These arguments
follow a very similar reasoning as in Chapters 4 and 5 and are organized in the following
technical lemmas.

Lemma 6.5. Let G be connected, fixed ε = 0, θ = 1, Assumption 5.2 hold with γ0 =
· · · = γm = 0 and initial conditions for (6.3) comply

2N∑
i=1

wiχi,µ(0) = 0.

Then, there exists T > 0 and sufficiently big {kµ}mµ=0 such that

|ẑi,µ(t)− z̄(µ)(t)| = 0,∀t ≥ T

Proof: First, we write (6.3) in compact form as follows. Define zi(t) = 0,∀i ∈ {N +
1, . . . , 2N}. Let

χµ(t) =

 χ1,µ(t)
...

χ2N,µ(t)

 , z(t) =

 z1(t)
...

z2N(t)

 , yµ(t) = z(µ)(t)− χµ(t).

In this notation, (6.3) with ε = γ0 = · · · = γm = 0, θ = 1 can be written as:

χ̇µ(t) = χµ+1(t) + kµW−1D
⌈
D>y0(t)

⌋m−µ
m+1 for 0 ≤ µ ≤ m− 1,

χ̇m(t) = kmW−1D
⌈
D>y0(t)

⌋0 (6.4)

with W = diag(w),w = [w1, . . . , w2N]> and D the incidence matrix of Ga. More-
over, the assumption on the initial conditions can be written as w>χµ(0) = 0. Note
that w>χ̇m(t) = 0 since w>W−1D = 1>D = 0 [158, Page 280]. Hence, the quan-
tity w>χm(t) = 0 remains invariant ∀t ≥ 0. This implies w>χµ(t) = 0,∀t ≥ 0,∀µ ∈

DISTRIBUTED DIFFERENTIATION PROTOCOL 116

{0, . . . ,m} by induction over µ. Now, let the consensus error ỹµ(t) = Pyµ(t) with
P = (IN − 1w>/(1>w)). The dynamics of ỹµ(t) can be written as:

˙̃yµ(t) = ỹµ+1(t)− kµW−1D
⌈
D>ỹ0(t)

⌋m−µ
m+1 for 0 ≤ µ ≤ m− 1,

˙̃ym(t) = z̃(m+1)(t)− kmW−1D
⌈
D>ỹ0(t)

⌋0
with z̃(t) = Pz(t). Note that z̃(m+1)(t) is uniformly bounded for all t ≥ 0 due to
Assumption 5.2. Hence, it follows that there exists T > 0 and sufficiently big {kµ}mµ=0
such that ỹµ(t) = 0,∀t ≥ T, ∀µ ∈ {0, . . . ,m} as per Theorem 4.7 in Chapter 4. Therefore,
yµ(t) = ȳµ(t)1,∀t ≥ T and some scalar functions ȳ0(t), . . . , ȳm(t). Moreover,

ȳµ(t) = w>yµ(t)
w>1 = w>z(µ)(t)

w>1 =
∑N
i=1 wiz

(µ)
i (t)

2
∑N
i=1 wi

= z̄(µ)(t)
2

(6.5)

due to w>χµ(t) = 0 and zi+N(t) = 0, wi+N = wi for i ∈ {1, . . . ,N}. Finally, γ0 = · · · =
γm = 0 implies G = Im such that ẑi,µ(t) = −2χi+N,µ(t) = 2yi+N,µ(t) from (6.3) where
{yi,µ(t)}2N

i=1 are the components of yµ(t). Hence, the result follows since

|ẑi,µ(t)− z̄(µ)(t)| = |2yi+N,µ(t)− z̄(µ)(t)| = |2ȳµ(t)− z̄(µ)(t)| = 0,∀t ≥ T.

Lemma 6.6. Theorem 6.3 is true for εmax = 0.

Proof: First, consider the recursive sequence of filters

s0(t) = z(t), sµ+1(t) =
(

d
dt + γµ

)
sµ(t) (6.6)

for µ ∈ {0, . . . ,m} with z(t) = [z1(t), . . . , zN(t), 0, . . . , 0]>. Note that

sm+1(t) =
(

d
dt + γm

)
· · ·
(

d
dt + γ0

)
z(t) = z(m+1)(t) +

m∑
µ=0

lµz(µ)(t)

where l0, . . . , lm are defined in Assumption 5.2. Now, define yµ(t) = sµ(t) − χµ(t) with
χµ(t) = [χ1,µ(t), . . . ,χ2N,µ(t)]>. Decompose yµ(t) = ȳµ(t)1 + ỹµ(t) in the consensus
component ȳµ(t) = (w>/(1>w))yµ(t) and the consensus error ỹµ(t) = Pyµ(t) with
P = (IN − 1w>/(1>w)). Then, the dynamics of the consensus error ỹµ(t) complies

˙̃yµ(t) = Pṡµ(t)− kµθµ+1PW−1D
⌈
D>y0(t)

⌋m−µ
m+1 −Pχµ+1(t) + γµPχµ(t)

= −kµθµ+1W−1D
⌈
D>ỹ0(t)

⌋m−µ
m+1 + P(sµ+1(t)− χµ+1(t))− γµP(sµ(t)− χµ(t))

= −kµθµ+1W−1D
⌈
D>ỹ0(t)

⌋m−µ
m+1 + ỹµ+1(t)− γµỹµ(t)

˙̃ym(t) = −kmθm+1W−1D
⌈
D>ỹ0(t)

⌋0 + Psm+1(t)− γmỹm(t)
(6.7)

for µ ∈ {0, . . . ,m − 1} by using PW−1D> = W−1D>, D>P = D>, ṡµ(t) = sµ+1(t) −
γµsµ(t) from (6.6) and that y0(t) = z(t) − χ0(t). Note that (6.7) reduces to (6.4) when

117 CHAPTER 6

γ0 = · · · = γm = 0, θ = 1. Hence, from Lemma 6.5 and an homogeneity argument [2, 163],
existence of θ, {kµ}mµ=0 is guaranteed for fixed γ0, . . . , γm > 0 such that ỹµ(t) = 0,∀t ≥ T
provided that the initial conditions ỹµ(0) are sufficiently close to the origin. This ensures
the existence of the admissible balls {Rµ}mµ=0 for the initial conditions {χi,µ(0)}mµ=0 and
its dependence with respect to θ.

Now, the dynamics of the consensus component ȳµ(t) can be obtained in a similar
fashion as:

˙̄yµ(t) = ȳµ+1(t)− γµȳµ(t)
˙̄ym(t) = w>sm+1(t)/(1>w)− γmȳm(t)

(6.8)

Note that w>z(t)/(1>w) = z̄(t)/2 from (6.5). By the definition of the matrix G, the
transformation

ẑµ(t) := 2
m∑
ν=0

Gµ+1,ν+1ȳµ(t)

transforms the linear system (6.8) into the canonical form:
˙̂zµ(t) = ẑµ+1(t)

˙̂zm(t) = z̄(m+1)(t)−
m∑
µ=0

lµ(ẑµ(t)− z̄(µ)(t)) (6.9)

by the definition of sm+1(t). Let ẑ(t) := ẑ0(t) such that ẑ(µ) = ẑµ(t), µ ≤ m is obtained
from (6.9). Hence, defining the error z̃(t) = ẑ(t)− z̄(t) one obtains

z̃(m+1)(t) = −
m∑
µ=0

lµz̃
(µ)(t)

which by definition of {lµ}mµ=0 is a linear system with poles in −γ0, . . . ,−γm < 0 and
thus converge to the origin asymptotically. Therefore, ẑ(µ)(t) converge towards z̄(µ)(t)
asymptotically. Similarly as before, due to the definition of G, it follows that

z(µ)(t) =
m∑
ν=0

Gµ+1,ν+1sν(t)

is the inverse transformation of (6.6). Then, define the consensus derivative estimation
as

ẑµ(t) := 2
(

z(µ)(t)−
m∑
ν=0

Gµ+1,ν+1χν(t)
)

(6.10)

= 2
m∑
ν=0

Gµ+1,ν+1yν(t) = ẑ(µ)(t)1+ 2
m∑
ν=0

Gµ+1,ν+1ỹν(t)

using the decomposition of
yµ(t) = ȳµ(t)1+ ỹµ(t)

as well as from the definition

ẑ(µ)(t) = ẑµ(t) = 2
m∑
ν=0

Gµ+1,ν+1ȳν(t)

DISTRIBUTED DIFFERENTIATION PROTOCOL 118

given before. Hence, for t ≥ T , ẑµ(t) = ẑ(µ)(t)1 from which the outputs ẑi,µ(t) in (6.3)
can be identified with the lower half of the components of ẑµ(t) due to zi(t) = 0, i ∈
{N + 1, . . . , 2N} completing the proof.

Lemma 6.7. Let W = diag(w),w = [w1, . . . , w2N]> and the differential inclusion:

˙̃yµ(t) = −kµθµ+1W−1D
⌈
D>(ỹ0(t) + ε(t))

⌋m−µ
m+1 + ỹµ+1(t)− γµỹµ(t)

for 0 ≤ µ ≤ m− 1,
˙̃ym(t) ∈ −kmθm+1W−1D

⌈
D>(ỹ0(t) + ε(t))

⌋0 + [−L′, L′]2N − γmỹm(t)

(6.11)

for ỹµ(t) ∈ R2N, L′ > 0. Moreover, let θ, {kµ}mµ=0 be chosen such that (6.11) is finite
time stable with ε = 0 and any γ0, . . . , γm ∈ [0, 1). Then, for every εmax > 0 there
exists γmax > 0 such that if γ0, . . . , γm ∈ [0, γmax) and the noise is uniformly bounded
as ‖ε(t)‖∞ ≤ ε with ε ∈ [0, εmax) then there exist T, c̃0, . . . , c̃m > 0 such that ‖ỹµ(t)‖ ≤
c̃µε

m−µ+1
m+1 ,∀t ≥ T .

Proof: Note that for fixed γ = [γ0, . . . , γm]> ∈ [0, 1)m+1, existence of sufficiently big
parameters θγ , {kγµ}mµ=0 such that (6.11) is finite time stable with ε = 0 is guaranteed
by Lemma 6.6 since (6.11) is equivalent to (6.7) under Assumption 5.2. Hence, the
parameters supγ θγ , {supγ kγµ}mµ=0 exist and ensure finite time stability of (6.11) for ε = 0
and any γ0, . . . , γm ∈ [0, 1). Now, pick some ε′ > 0 and let η = (ε′/ε)1/(m+1). Then, set
γmax = (ε′/εmax)1/(m+1). Consider the change of coordinates

t′ = ηt, ỹ′µ(t) = ηm−µ+1ỹµ(t), ε′(t) = ηm+1ε(t)

Hence,
dỹ′µ
dt′ = η−1 ˙̃y′µ

= ηm−µ ˙̃yµ = ηm−µỹµ+1 − γµηm−µỹµ − kµθµ+1W−1ηm−µD
⌈
D>(ỹ0 + ε)

⌋m−µ
m+1

= ỹ′µ+1 − (γµ/η)ỹ′µ − kµθµ+1W−1D
⌈
D>(ηm+1ỹ0 + ηm+1ε)

⌋m−µ
m+1

= ỹ′µ+1 − (γµ/η)ỹ′µ − kµθµ+1W−1D
⌈
D>(ỹ′0 + ε′)

⌋m−µ
m+1

dỹ′m
dt′ ∈ −kmθ

m+1W−1D
⌈
D>(ỹ′0 + ε′)

⌋0 + [−L′, L′]2N − (γm/η)ỹ′m.

Therefore, the dynamics of ỹ′µ(t′) are equivalent to the ones in (6.11) with the new noise
ε′(t′) and the new gains

γ0/η, . . . , γm/η < γmax/η = (ε/εmax)1/(m+1) ≤ 1.

Moreover, the new noise comply

|ε′(t′)| = ηm+1|ε(t′)| ≤ ηm+1ε = ε′

by the definition of η. If we pick ε′ = 0 in the noiseless case, then by assumption ỹ′µ(t′) is
finite time stable towards the origin since all γµ/η ∈ (0, 1). Hence, there exist sufficiently
small ε′ > 0 and constants T ′, c′0, . . . , c′µ such that

‖ỹ′µ(t′)‖ ≤ c′µ,∀t′ ≥ T ′

119 CHAPTER 6

by continuity of solutions. This means that there exists T = T ′/η > 0 such that by
setting

c̃µ = c′µ(ε′)
µ−m+1
m+1

and using ‖ỹ′µ(t)‖ ≤ c′µ, η = (ε′/ε)1/(m+1) we have that (6.11) complies the following
∀t ≥ T :

‖ỹµ(t)‖ = ηµ−m−1‖ỹ′µ(t)‖ ≤ c̃µε
m−µ+1
m+1 ,

completing the proof.

Lemma 6.8. Let fixed c̃0, . . . , c̃m > 0 and define

Iµ(ε) := 2
m∑
ν=0

c̃µGµ+1,ν+1ε
m−ν+1
m+1 .

Then, for any εmax > 0 there exists cµ > 0 such that ∀ε ∈ [0, εmax] it follows that
Iµ(ε) ≤ cµε

m−µ+1
m+1 .

Proof: First, note that G is a lower triangular matrix with only ones in the diagonal.
Hence,

Iµ(ε) = 2c̃µε
m−µ+1
m+1 + 2

µ−1∑
ν=0

c̃νGµ+1,ν+1ε
m−ν+1
m+1

≤ 2ε
m−µ+1
m+1

(
c̃µ +

µ−1∑
ν=0

c̃νGµ+1,ν+1ε
µ−ν
m+1

)
where Gµ+1,µ+1 = 1 and Gµ+1,ν+1 = 0, ν > µ was used. Thus, since ε ∈ [0, εmax] and
µ > ν then, the result follows with

cµ = 2
(
c̃µ +

µ−1∑
ν=0

c̃νGµ+1,ν+1(εmax)
µ−ν
m+1

)
> 0.

6.4.1 Proof of Theorem 6.3
Similar to the proof of Lemma 6.6, define yµ(t) = sµ(t)− χµ(t) with

χµ(t) =

 χ1,µ(t)
...

χ2N,µ(t)


and compute the dynamics of the consensus error ỹµ(t) = Pyµ(t) with P = (IN −
1w>/(1>w)):

˙̃yµ(t) = −kµθµ+1W−1D
⌈
D>(ỹ0(t) + ε(t))

⌋m−µ
m+1 + ỹµ+1(t)− γµỹµ(t)

˙̃ym(t) = −kmθm+1W−1D
⌈
D>(ỹ0(t) + ε(t))

⌋0 + Psm+1(t)− γmỹm(t)

DISTRIBUTED DIFFERENTIATION PROTOCOL 120

This is, the dynamics of ỹµ(t) are equivalent to (6.11) since by Assumption 5.2, we have
that Psm+1(t) is bounded in [−L′, L′]2N for some L′ > 0. Hence, Lemma 6.6 ensures
the existence of gains θ, {kµ}mµ=0 such to make (6.11) converge to the origin when ε = 0.
Thus, given εmax > 0 pick γmax > 0 and gains as in Lemma 6.6 to conclude that

‖ỹµ(t)‖ ≤ c̃µε
m−µ+1
m+1 ,∀t ≥ T

for some T, c̃0, . . . , c̃m > 0 using Lemma 6.7. Let ẑµ(t) defined as in (6.10). Then, the
consensus derivative estimation Pẑµ(t) complies

‖Pẑµ(t)‖ ≤ 2
m∑
ν=0

Gµ+1,ν+1‖ỹν(t)‖ ≤ 2
m∑
ν=0

c̃µGµ+1,ν+1ε
m−ν+1
m+1 = Iµ(ε)

with Iµ(ε) defined in Lemma 6.8. Thus, ‖Pẑµ(t)‖ ≤ cµε
m−µ+1
m+1 with cµ as in Lemma

6.8. Henceforth, following a similar reasoning as in the decomposition in (6.10), ẑµ(t)
converge towards consensus around ẑ(µ)(t) except for an error of magnitude proportional
to ε

m−µ+1
m+1 . Finally, the rest of the items are inherited from Lemma 6.6 as well.

6.5 SIMULATION EXAMPLES

In these examples we consider a circular network G of N = 10 nodes. In addition, for the
sake of brevity, we only consider m = 1 such that the problem is reduced to computing
a first order derivative of the weighted average signal. In all cases, we consider nominal
signals of the form zi(t) = Ai cos(ωit+φi) where {Ai, ωi, φi}N

i=1 and {χi,µ(0)}2N,m
i=1,µ=0 were

chosen randomly. We used parameters θ = 2, k1 = 1, k2 = 2, γ1 = γ2 = 1. Moreover, for
the sake of generality we chose w1, . . . , wN randomly on the interval (0, 1). Protocol (6.3)
was simulated using an explicit Euler discretization with time step ∆t = 10−7. Noise
values εi(t) were sampled from a uniform distribution over [−ε, ε] according to a given
noise level ε > 0.

First, consider the noiseless case ε = 0. Figure 6.2 shows the behaviour of the deriva-
tive estimates {ẑi,1(t)}N

i=1 for ˙̄z(t) as well as the error curves {|ẑi,1(t)− ˙̄z(t)|}N
i=1. It can

be noted convergence towards consensus is obtained in finite time and asymptotic conver-
gence is obtained towards ˙̄z(t). Moreover, note that there is no steady state error. Now,
consider the same experiment with noise level ε = 0.1. Figure 6.2 shows analogous results
to the previous experiment in this case. Note that exact convergence is not obtained.
Despite this, the protocol manages to estimate ˙̄z(t) with a maximum error of up to 0.4,
even with noise. Similar results are obtained for the estimates {ẑi,0(t)}N

i=1 for z̄(t) which
are not shown for the sake of brevity.

In order to quantify the effect to the noise in the protocol performance, the experiment
was repeated with 100 noise levels ε ∈ [0, 1]. Figure 6.3 shows the value of the maximum
consensus error after convergence for each experiment. Moreover, the curve c1

√
ε is

shown for comparison according to item 1 of Theorem 6.3 where the value of c1 = 1.35
was adjusted numerically afterwards. It is observed that the maximum error values grow
approximately at the same rate as c1

√
ε as expected.

For comparison, the same experiment was repeated for a linear version of the protocol
(6.3) with Fµ(•) = (•), µ ∈ {0, . . . ,m}. In order to make a fair comparison, the same
gains as in the nonlinear experiment were used in this case. This strategy corresponds

121 CHAPTER 6

0 20
t

0 20
t

0 20
t

0 20
t

0.5

−0.5

0

0.5

−0.5

0

0

0.4

0

0.4

˙̄z(t)

˙̄z(t)

ẑ
i,
1
(t
) ε = 0

ε = 0

ε = 0.1

ε = 0.1

ẑ
i,
1
(t
)

|ẑ
i,
1
(t
)
−

˙̄ z
(t
)|

|ẑ
i,
1
(t
)
−

˙̄ z
(t
)|

Figure 6.2: Behaviour of {ẑi,1(t)}N
i=1 and {|ẑi,1(t) − ˙̄z(t)|}N

i=1 for the DDP protocol in
the context of the experiment of Section 6.5 with no noise ε = 0 and with noise level of
ε = 0.1. Without noise, the protocol manages to obtain exact convergence towards ˙̄z(t).
With noise, the protocol manages to obtain an estimation of ˙̄z(t) with a maximum error
of at most 0.4 after the transient.

to an adaptation of well established linear dynamic consensus protocols from [67] to the
distributed differentiation problem presented in this chapter. As observed in Figure 6.3,
even with ε = 0 the linear protocol cannot obtain exact convergence. Moreover, the
differentiation error grows linearly with ε instead of with the optimal order

√
ε. An

upper bound of the form c′1ε + c′2 with c′1 = 4.01, c′2 = 0.25 was obtained numerically
afterwards as well.

DISTRIBUTED DIFFERENTIATION PROTOCOL 122

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

c1

√
ε

max error(ε) with Fµ(•) = ⌈•⌋
m−µ

m+1

ε

c
′

1
ε+ c

′

2

max error(ε) with Fµ(•) = (•)

Figure 6.3: Maximum distributed differentiation error as a function of the noise level ε
for (6.3) with both nonlinear and linear protocol versions. An upper bound of the form
c1
√
ε is shown according to item 1 of Theorem 6.3 for the nonlinear version of (6.3). In

addition, an upper bound of the form c′1ε + c′2 is shown for comparison for the linear
version of (6.3).

6.6 DISCUSSION

This chapter proposed a new protocol to tackle the distributed differentiation problem.
Unlike previous works, this protocol can achieve exact convergence to a weighted average
signal in a decentralized fashion. Weighted averaging can be used to cope with different
noise levels at each agent. For example, we discussed how if Gaussian measurement noise
exists at each agent, the weights can be selected using a simple inverse-covariance rule
to obtain an optimally fused measurement. Moreover, the structure of the new protocol
does not require additional local differentiators. This is highly relevant in the context
of perception latency, where the input signals are prone to noise, and no expression or
measurement for their derivatives is generally available. Hence, not having to differentiate
the inputs first, avoids additional noise amplification.

It was formally shown that the error bounds under noisy measurements are similar to
the best possible differentiation accuracy found in single-agent robust exact differentia-
tors. One of the most important takeaways of this chapter is that the advantages of the
nonlinear EDC structure used in this thesis are made apparent when compared to stan-
dard linear consensus techniques. In particular, we show that the performance bounds
for linear consensus grow significantly faster than our algorithms. This makes our EDC-
based distributed differentiator a remarkably robust alternative for dynamic consensus

123 CHAPTER 6

and state estimation problems.
In the subsequent chapters, we maintain a REDCHO-like structure similar to the

one presented in Chapter 5 for the sake of simplicity. However, the analysis conducted
in this chapter, which considers persistent measurement noise and additional weights to
account for an inherent quality assigned to each node, can still be applied to the rest of
the consensus algorithms presented in this thesis.

DISTRIBUTED DIFFERENTIATION PROTOCOL 124

Chapter Seven

Perception Latency Aware Formation Control

In this chapter, we explore a scenario that involves cooperation between agents and per-
ception latency scheduling to achieve formation control around a moving target. We will
focus on developing distributed information fusion techniques to enhance target position
estimation, effectively combining target detections across the robot network while con-
sidering perception latency. Moreover, we explore the requirements need in such target
estimation for the formation control strategy. This problem allows to study the joint
application of the ideas presented in previous chapters, revealing various challenges that
need to be addressed for these algorithms to function effectively when used in conjunction.

Sensors for target localization

Fusion

Formation
reference
generationP

er
ce
p
ti
on

la
te
n
cy

sc
h
ed
u
le
r Radio

Actuators (Motors)

Control

Sensors for self localization

Target detection

Perception

State
estimator

Open
Network

Figure 7.1: Model for the individual robot architecture with perception latency scheduler.
Perception latency is only assumed for target detection for the sake of simplicity.

The architecture considered in this chapter is depicted in Figure 7.1. In this setup,
we consider continuous-time communication and perception latency scheduling only for
the target detection branch. We incorporate an arbitrary perception-latency scheduler,
which dictates the quality and latency schedules for the perception stage output. With
this setting, our objective is to propose a distributed information fusion module. The aim

125

PERCEPTION LATENCY AWARE FORMATION CONTROL 126

of this module is to merge the multiple target detections across the network of robots,
resulting in an enhanced target position estimation. This estimation is subsequently
employed to construct references for the robot controller, enabling the formation of robots
around the time-varying target position.

One of the most challenging aspects of this problem is dealing with perception latency,
where only discrete-time measurements for the target position are available, possibly
with substantial time gaps between them. Hence, when these measurements are used for
trajectory generation in a formation control setting, this sparsity in conjunction with the
continuous-time and possibly fast dynamics of the robots may be incompatible in the
sense that trajectory tracking requires smooth trajectories compatible with the robot
dynamics. For example, second integrator dynamics requires the trajectories to have
a second order derivative almost everywhere, enabling precise trajectory tracking. In
fact, the question on how to generate smooth trajectories using discrete-time irregularly
spaced perception measurements is not trivial and if not done correctly may prevent
asymptotic stability of the robot system as will be explored later in this chapter. The
reason is that due to the hybrid nature of the problem, if standard techniques such as a
Kalman filter are used, they may induce persistent transients in the robot behavior due
to possible discontinuities in the filter’s output. As a result, this can lead to reduced
tracking performance.

The goal of this chapter is to propose EDC-based distributed information fusion tech-
niques for combining target position estimations across the network and achieve accu-
rate formation control around the target. Additionally, we introduce smooth estimation
techniques that enable compatible formation trajectory generation for each robot. The
contributions of this chapter were also published in [4].

7.1 RELATED WORK

Several strategies have been proposed in the literature in order to fuse local Kalman fil-
ter estimations either using a fusion center as in [87, 88] or in a decentralized fashion
as is of interest in this chapter. In this context, in [89] local Kalman filter estimations
are combined using discrete-time static consensus protocols, ignoring cross-correlations
between agents. However, these only achieve exact convergence when an infinite number
of iterations for the consensus protocol are performed at each sampling step. In con-
trast, the works [90, 91] use linear dynamic consensus filters [67] which do not have the
previously mentioned issue. Despite this, as discussed in [1], linear dynamic consensus
protocols cannot exhibit exact convergence with persistently varying references. Other
recent fusion strategies have been proposed which improve the fusion quality by using the
covariance intersection method [92–94]. The issue with all of the previously mentioned
fusion methods is that they mainly work in discrete time. This means that synchronous
measurements and updates might be assumed, which is incompatible with the perception-
latency setting. On the other hand, the discontinuity issue in the estimations prevails in
all these methods, since a continuous time-prediction must be computed in-between filter
updates as well.

127 CHAPTER 7

7.2 PROBLEM STATEMENT

Consider a team of N mobile robots located at positions pi(t) ∈ Rn, i ∈ {1, . . . ,N} where
n is the dimension of the workspace of the robots. For simplicity, each robot is modeled
to be holonomic with m-th order integrator dynamics

ẋi(t) = Axi(t) + Bui(t), (7.1)

where ui(t) ∈ Rn is a local control input,

xi(t) =


p(0)
i (t)
...

p(m−1)
i (t)

 ,
and we consider the following matrix definitions

A = A0 ⊗ In, B = B0 ⊗ In, C = C0 ⊗ In

A0 =
[

0m Im
0 0>m

]
,B0 = [0m, 1]>,C0 = [1,0>m]

We assume that each robot is able to measure its own state xi(t) using local sensors, or
through a state estimator as in Figure 7.1, which we assume to provide the state directly.
The robots are able to share information between them according to a communication
network modeled by an undirected graph G. In addition, a target of interest with position
p(t) ∈ Rn is assumed to have dynamics with similar integrator dynamics as in (7.1).
Moreover, since the input at the target is unknown, we model it in a stochastic fashion
as

dx(t) = Ax(t)dt+ Bdu(t) (7.2)
where p(t) = Cx(t) and u(t) ∈ Rn is a n-dimensional Wiener processes with covari-
ance cov{u(s),u(r)} = W min(s, r) [119, Page 63]. As usual, the process u(t) models
disturbances, unknown inputs at the target, and non-modeled dynamics.

Perception mechanism: Consider a similar percetion model as in Chapters 2 and
3 where the robot i uses available sensors such as vision, range, etc, to produce raw mea-
surements of the environment. For each raw measurement, a processed measurement for
the position of the target is obtained through a detection process at, perhaps non-uniform,
processing instants τi = {τi,k}∞k=0, τi,0 = 0. Processed measurements are detections of
p(τi,k) = Cx(τi,k). According to the current processing and energy budget of robot i, a
perception latency ∆i,k ∈ [∆min,∆max] with ∆min,∆max > 0 is chosen for the detection
process at t = τi,k and the processed measurement zi(τi,k) = Cx(τi,k) + vi(τi,k) is avail-
able at t = τi,k + ∆i,k. Here, vi(τi,k) is a Gaussian noise modeling the accuracy of the
perception method. In general, R(∆i,k) = cov{vi(τi,k)} decreases in magnitude as more
processing time ∆i,k is employed.

Remark 7.1. In order to focus in the estimation and information fusion aspects of this
chapter, we consider that the process for which the perception latencies {∆i,k}∞k=0 are
chosen at robot i is already given. The schedulers from Chapters 2 and 3 can be applied
where only D available perception methods can be used, and the perception-latency
schedule ∆i,k ∈ {∆j}Dj=1 is chosen to minimize a local performance function.

PERCEPTION LATENCY AWARE FORMATION CONTROL 128

The goal is for the robots to achieve a given formation provided known displacements
d1, . . . ,dN ∈ Rn around the target. However, given that target localization is imperfect,
an approximate scheme must be adopted. The strategy is to obtain local estimates x̂i(t)
of the target state at each robot given the local perception-latency schedule {∆i,k}∞k=0,
and then combine them into a single global estimate p̄G(t) for the trajectory p(t) in a
distributed and decentralized fashion. Then, achieve a formation around p̄G(t) instead.
This is, given a reference pr

i(t) = p̄G(t) + di, reach

Goal: lim
t→∞

‖pi(t)− pr
i(t)‖ = 0,∀i ∈ {1, . . . ,N} (7.3)

The reference should be smooth enough for (pr
i)(m)(t),∀t ≥ 0 to exist and achieve tra-

jectory tracking at each robot. Nonetheless, this is incompatible with existing optimal
estimation techniques taking into account the hybrid nature of the problem.

7.2.1 Solution outline
To solve the problem, the proposal contains the following ingredients:

• Smooth-output estimation: We propose an alternative to classical filtering ob-
taining a smooth trajectory of the estimate x̂i(t) of x(t) locally at robot i.

• Estimation fusion: A distributed and decentralized consensus filter is used to fuse
the local information of x̂i(t) into the single estimate p̄G(t) of p(t).

• Formation control: A local controller ui(t) is designed for the robot i to achieve
the formation goal in (7.3) using the estimation framework.

Figure 7.2 presents a high-level outline of the processing flow for our proposal. In
particular, we assume that the target detection process is already given, taking raw
measurements of the environment and producing detections for the target as zi(τi,k).
The Smooth-Output Estimation (SOE) block is described in detail in Section 7.3, which
takes the output of the detection process, and computes smooth information vector and
matrix ŷi(t), Q̂i(t) associated with the estimation x̂i(t) and its covariance P̂i(t) for the
state of the target. The fusion algorithm is described in detail in Section 7.4, and is
composed of two modules. First, a consensus stage computes a fused version of the
information vector and matrix yi,0(t),Qi,0(t) for the target state as well as its derivatives
{yi,µ(t),Qi,µ(t)}mµ=1. Then, the fusion output stage uses them to compute the actual joint
estimation p̄G(t) for the target position p(t) and its first m derivatives. These estimations
are stored in the local variables {pi,µ(t)}mµ=0. Finally, these signals are used to compute
a local trajectory tracking control for each robot, which is described in Section 7.5.

The main advantage of the architecture depicted in Figure 7.2, is that the smooth
estimation block allows the fusion and control blocks to be designed independently from
the detection procedure, providing more versatility than in prior literature. In addition,
the smooth output estimation and fusion greatly reduces the estimation and tracking
errors as shown in the experiments provided in Section 7.6.

129 CHAPTER 7

raw measurements

Detection
process

SOEzi(τi,k) ŷi(t)

Q̂i(t)

Consensus
stage

Output
stage

Local
controller

ui(t)

yi,µ(t) Qi,µ(t)

pi,µ(t)i-th robot
dynamics

Eq. (7.7)
Eq. (7.9) and (7.10)

Algorithm 7.1Eq. (7.11)Eq. (7.1)

Fusion algorithm

Figure 7.2: High-level of the processing flow for our proposal as described in Section 7.2.1.

7.3 SMOOTH-OUTPUT ESTIMATION

In this section, we focus on the local target estimation at each robot. To simplify the
presentation, we drop the index i when there is no ambiguity given that all variables are
assumed to be local. First, given a sequence of local sampling instants τ = {τk}∞k=0, adopt
the notation x[k] := x(τk) and note that a sampled-data version of the target dynamics
(7.2) for x(t) is obtained similarly as in [130, Section 4.5.2]:

x(t) = Ad(t− τk)x[k] + ud(t), t ∈ [τk, τk+1] (7.4)

where ud(t) is a normal random variable of zero mean and cov{ud(t)} = Wd(t − τk) =∫ t
0 Ad(τ)BWB>Ad(τ)>dτ with Ad(τ) = exp(Aτ).

Every robot can use its observations of the target z[0], . . . , z[k − 1] and compute
a causal optimal filter for (7.4) at the sampling instants t ∈ τ of the form x̂∗[k] =
E{x[k]|z[0], . . . , z[k − 1]} which does not take into account z[k] due to the perception
latency. By applying [119, Page 228 - Theorem 4.1] to system (7.4) evaluated at t = τk+1,
the recursive filter structure to obtain x̂∗[k] and P̂∗[k] = cov{x[k]−x̂∗[k]} has the following
form:

L[k] = Ad(∆k)P̂∗[k]C>
(
CP̂∗[k]C> + R(∆k)

)−1

x̂∗[k + 1] = Ad(∆k)x̂∗[k] + L[k] (z[k]−Cx̂∗[k])
P̂∗[k + 1] = (Ad(∆k)− L[k]C) P̂∗[k] (Ad(∆k)− L[k]C)> + L[k]R(∆k)L[k]> + Wd(∆k)

(7.5)
assuming knowledge of some initial values for x̂∗[0], P̂∗[0]. On the other hand, an optimal
estimation x̂∗(t|k) := E{x(t)|z[0], . . . , z[k−1]} for t ∈ (τk, τk+1) can be obtained by using
a model based prediction of (7.4) as:

x̂∗(t|k) = Ad(t− τk)x̂∗[k]
P̂∗(t|k) = cov{x(t)− x̂∗(t|k)}

= Ad(t− τk)P̂∗[k]Ad(t− τk)T + Wd(t− τk)
(7.6)

Note that the expressions in (7.6) can be defined for all t ≥ 0. However, we use x̂∗(t) to
refer to the whole optimal causal estimated trajectory constructed piecewise as x̂∗(t) :=

PERCEPTION LATENCY AWARE FORMATION CONTROL 130

x̂∗(t|k) and P̂∗(t) := P̂∗(t|k) for t ∈ [τk, τk+1). Note also that (7.5) is a Kalman filter
[119, Chapter 7]. Hence, the standard discrete-time Kalman filter coincides with the DOE
at t = τk.
Remark 7.2. Note that x̂∗(t) is a smooth function of time for all t /∈ τ . However, x̂∗(t)
may be discontinuous at t ∈ τ due to the measurement corrections performed in (7.5).
Hence we refer to x̂∗(t) as a Discontinuous Optimal Estimation (DOE). If x̂∗(t) is used
to construct a reference for the robot, such discontinuities can cause persistent transients
in the closed loop behaviour of the robot compromising asymptotic stability. An example
of this is shown in Section 7.6.1.

We propose a near-optimal alternative estimation x̂(t) which does not have the dis-
continuity issue at t ∈ τ . The idea is to combine the current optimal estimate x̂∗(t|k)
for t ∈ [τk, τk+1) with the continued prediction from the previous estimate x̂∗(t|k− 1) for
t ≥ τk, using a smooth transition between both.

In order to perform such transition, consider the following auxiliary function:
Definition 7.3 (Transition function). η(•;α) : [0, 1] → R is a transition function if it
complies that ∀µ ∈ {1, . . . ,m}:

1. η(µ) (t;α) exists ∀t ∈ [0, 1].

2. η(µ) (0;α) = η(µ) (1;α) = 0.

3. η (0;α) = 0, η (1;α) = 1.

4. limα→0 η(t, α) = 1,∀t ∈ (0, 1]
An example of a transition function is provided in the following which can be assumed

to be fixed as such through the rest of the manuscript.

Proposition 7.4. Let α > 0 and η(τ ;α) = Φ(τ)
Φ(τ) + Φ(α(1− τ)) with Φ(τ) = τm+1.

Then, η(τ ;α) satisfy Definition 7.3.
Proof: Item 1 follows from smoothness of Φ(τ) leading to smoothness of η(τ, α) for
any τ ∈ [0, 1]. Note Φ(µ)(0) = 0,∀µ ∈ {1, . . . ,m} and hence η(µ)(τ, α) = 0 as well
from the product rule. Moreover, η(τ ;α) = 1 − η(α(1 − τ);α−1) so that η(µ)(1;α) =
−η(µ)(0;α) = 0,∀µ ∈ {1, . . . ,m} showing item 2. Item 3 of Definition 7.3 is complied by
evaluating η(τ ;α) = 0,η(τ ;α) = 1. Finally, note that for fixed τ ∈ (0, 1), it follows that
limα→0 Φ(α(1− τ)) = 0 point-wise, implying item 4.

Hence, given α > 0, a transition function, and by defining the information matrix
Q̂∗(t|k) = P̂∗(t|k)−1 and information vector ŷ∗(t|k) = Q̂∗(t|k)x̂∗(t|k), let the Smooth
Output Estimation (SOE):

λ1(t|k) = 1− η((t− τk)/∆k;α)
λ2(t|k) = η((t− τk)/∆k;α)

Q̂(t) = λ1(t|k)Q̂∗(t|k − 1) + λ2(t|k)Q̂∗(t|k)
ŷ(t) = λ1(t|k)ŷ∗(t|k − 1) + λ2(t|k)ŷ∗(t|k)
P̂(t) = Q̂(t)−1

x̂(t) = Q̂(t)−1ŷ(t)

(7.7)

131 CHAPTER 7

for t ∈ [τk, τk+1). Similarly as with x̂∗(t), we drop the dependence on k in the notation
for the SOE estimation x̂(t) in order to refer to the whole sub-optimal trajectory. Now,
we establish some important properties of (7.7).

Theorem 7.5. Given α > 0, the SOE in (7.7) complies with the following:

1. (Smoothness) The information vector and matrix ŷ(t), Q̂(t) are m-times differ-
entiable ∀t ≥ 0. As a consequence, x̂(t) is m-times differentiable ∀t ≥ 0.

2. (Unbiasedness) E{x(t)− x̂(t)} = 0,∀t ≥ 0.

3. (Tight consistency) P̂∗(t) � cov{x(t)− x̂(t)} � P̂(t),∀t ≥ 0 with equality for all
t /∈ τ as α→ 0.

Proof: For the sake of readability, the proof can be found at the end of this chapter in
Section 7.8.1.

Remark 7.6. Different from a discrete-time Kalman filter or the DOE, the SOE is en-
sured to have a sufficiently smooth output for any t ≥ 0, even under large perception
latency. There are two basic smooth-output alternatives to the SOE proposed in (7.7):
interpolation techniques and low-pass filtering. In the case of interpolation, an m-th or-
der spline may be used in a moving horizon fashion to fill in the spaces between samples
{ŷ∗[k], Q̂∗[k]}∞k=0 for all t /∈ τ . On the other hand, an m-th order low-pass filter can be
used on top of (7.6) to obtain smooth versions of ŷ∗(t), Q̂∗(t) as well. Therefore, an anal-
ogous to property i) of Theorem 7.5 is obtained for both of these alternatives. However,
neither unbiasedness nor consistency can be ensured for such types of estimations. In
addition, contrary to the alternatives, the tight near-optimal quality of the estimation of
our proposal can be adjusted appropriately by modifying the parameter α > 0 as shown
in item iii) of Theorem 7.5.

Remark 7.7. In practice, Visual Target Detectors (VTDs) such as the ones in [49,
51, 52] are prone to data association problems when false positives or miss-detections
occur, and under false negatives and occlusions where the procedure cannot detect the
target. However, a VTD in conjunction with target tracking using state-based predictions
provide a more robust alternative since predicted targets can be matched with detections.
For instance, [131] provides some examples in which state-based predictions are used to
improve the accuracy of the target detector. In this context, the SOE can be used as
a state-based prediction by evaluating (7.7) at any time until a new sample is available,
which can then be used for data association.

PERCEPTION LATENCY AWARE FORMATION CONTROL 132

7.4 ESTIMATION FUSION

Using the SOE in (7.7), each robot i is able to compute a near-optimal local estimation
x̂i(t) and a consistent covariance matrix P̂i(t) with their corresponding smooth infor-
mation vector and matrix ŷi(t), Q̂i(t) as a result of Theorem 7.5. Hence, we turn our
attention to the task of fusing this information across all robots in the communication
network. Note that even when processed measurements are uncorrelated, the estimations
x̂i(t) are correlated since both depend on the same noise process u(t) driving system (7.2).
However, keeping track of the cross-correlations between estimates at different robots is
not scalable with respect to the network size. Therefore, we ignore cross-correlations and
fuse estimation information according to:

Q̄G(t) = 1
N

N∑
i=1

Q̂i(t), ȳG(t) = 1
N

N∑
i=1

ŷi(t)

x̄G(t) = Q̄G(t)−1ȳG(t), p̄G(t) = Cx̄G(t)

(7.8)

Note that the matrix P̄G(t) = Q̄G(t)−1 is consistent in the sense that cov{x(t)− x̄G(t)} �
P̄G(t) since Q̄G(t) is a convex combination of the information matrices {Q̂i(t)}N

i=1 and by
the covariance-intersection principle from [164, Section 2.1]. The same idea of computing
a consistent inverse-covariance fusion estimate as in (7.8), ignoring cross-correlations, has
shown to be very successfully in different state estimation contexts such as [165].

If every robot had access to the global quantity p̄G(t) from (7.8), hence a local trajec-
tory pr

i(t) = p̄G(t) + di can be constructed for each agent to follow. However, in order to
construct a controller ui(t) to achieve trajectory tracking of (7.1) towards pr

i(t), knowl-
edge of the derivatives (pr

i)(µ)(t) = p̄(µ)
G (t), µ ∈ {1, . . . ,m} is required as we discuss in

Section 7.5. While the expressions in (7.8) constitute a transformation between informa-
tion and state representations, the following result provides an equivalent transformation
between the derivatives of p̄G(t) and the ones of Q̄G(t), ȳG(t).

Lemma 7.8. Let p̄G(t).Q̄G(t), ȳG(t) defined in (7.8) and P̄G(t) = Q̄G(t)−1. Then, for
any µ ∈ {1, . . . ,m}:

1. P̄(µ)
G (t) = −P̄G(t)

∑µ−1
ν=0

(
µ
ν

)
Q̄(µ−ν)

G (t)P̄(ν)
G (t).

2. p̄(µ)
G (t) = C

∑µ
ν=0

(
µ
ν

)
P̄(ν)

G (t)ȳ(µ−ν)
G (t).

Proof: For the sake of readability, the proof can be found at the end of this chapter in
Section 7.8.2.

Computing (7.8) as well as the derivatives in Lemma 7.8-2 in a decentralized fashion
under time-varying ŷi(t), Q̂i(t) is not trivial. In the following we provide an algorithm to
compute such quantities asymptotically without steady state error using exact dynamic
consensus tools, even under persistently varying ŷi(t), Q̂i(t). The fusion algorithm is
composed by two sequential stages. First, we use a consensus stage where information
fusion is performed to compute ȳG(t), Q̄G(t) and its first m derivatives using local infor-
mation {ŷi(t), Q̂i(t)}N

i=1 in a decentralized fashion. Second, we use an output stage where
the outputs of the consensus stage are organized in order to compute p̄G(t) and its first
m derivatives based on the transformations given in (7.8) and Lemma 7.8.

133 CHAPTER 7

Based on the REDCHO algorithm from Chapter 5 with parameters {kµ, γµ}mµ=0 and
θ, the consensus stage is composed by consensus protocols for the information vector

yi,µ(t) = ŷ(µ)
i (t)−

m∑
ν=0

Gµ+1,ν+1vi,ν(t)

v̇i,µ(t) = kµθ
µ+1

∑
j∈Ni

dyi,0(t)− yj,0(t)c
m−µ
m+1 + vi,µ+1(t)− γµvi,µ(t),

for 0 ≤ µ < m

v̇i,m(t) = kmθ
m+1

∑
j∈Ni

dyi,0(t)− yj,0(t)c0 − γmvi,m(t)

(7.9)

and for the information matrix

Qi,µ(t) = Q̂(µ)
i (t)−

m∑
ν=0

Gµ+1,ν+1Vi,ν(t)

V̇i,µ(t) = kµθ
µ+1

∑
j∈Ni

dQi,0(t)−Qj,0(t)c
m−µ
m+1 + Vi,µ+1(t)− γµVi,µ(t),

for 0 ≤ µ < m

V̇i,m(t) = kmθ
m+1

∑
j∈Ni

dQi,0(t)−Qj,0(t)c0 − γmVi,m(t)

(7.10)

where aij are the components of the adjacency matrix of G, Gµ+1,ν+1 with µ, ν ∈
{0, . . . ,m} are the components of G defined in (5.1).

The protocols in (7.9) and (7.10) take as an input the local information ŷi(t), Q̂i(t),
and have outputs

{yi,µ(t),Qi,µ(t)}mµ=0

computed through the internal variables

{vi,µ(t),Vi,µ(t)}mµ=0.

The purpose of (7.9) is that yi,0(t), . . . ,yi,m(t) will converge towards ȳG(t) and its first
m derivatives for each robot i ∈ {1, . . . ,N}. Similarly, Qi,0(t), . . . ,Qi,m(t) will converge
towards Q̄G(t) and its first m derivatives. In addition, the structure of the protocol
allows each agent to communicate only yi,0(t) and Qi,0(t) to its neighbors. It is clear
that each robot requires to compute {ŷ(µ)

i (t), Q̂(µ)
i (t)}mµ=0 locally as observed in equations

for yi,µ(t),Qi,µ(t) in (7.9) and (7.10). These can be computed explicitly from (7.7) since
the expression for the transition function η(•;α) and the model based predictions in (7.6)
are known explicitly as well.

Moreover, note that each component of the equations in (7.9) and (7.10) is an inde-
pendent instance of the REDCHO protocol in (5.2). As a result, (7.9) and (7.10) can be
alternatively implemented using nm + nm(nm + 1)/2 REDCHO instances, one for each
non-repeated component of yi,m(t) ∈ Rnm,Qi,m(t) ∈ Rnm×nm provided that Qi,m(t) is
symmetric.

In the output stage, m+ 1 outputs are obtained from {yi,µ(t),Qi,µ(t)}mµ=0 as given in
Algorithm 7.1 which is based on the transformation of Lemma 7.8. In fact, the structure
in Algorithm 7.1 is equivalent to the one in Lemma 7.8 assuming that {yi,µ(t),Qi,µ(t)}mµ=0
have already converged towards ȳG(t), Q̄G(t) and their firstm derivatives. Hence, in order
to ensure convergence we adopt the following assumption.

PERCEPTION LATENCY AWARE FORMATION CONTROL 134

Algorithm 7.1 Estimation fusion output stage
Input: {yi,µ(t),Qi,µ(t)}mµ=0 computed from (7.9) and (7.10)
Output: {pi,µ(t)}mµ=0

1: Pi,0(t)← Qi,0(t)−1

2: pi,0(t)← CPi,0(t)yi,0(t)
3: for µ ∈ {1, . . . ,m} do
4: Pi,µ(t)← −Pi,0(t)

∑µ−1
ν=0

(
µ
ν

)
Qi,µ−ν(t)Pi,ν(t)

5: pi,µ(t)← C
∑µ
ν=0

(
µ
ν

)
Pi,ν(t)yi,µ−ν(t)

6: end for

Assumption 7.9. Let gains γ0, . . . , γm > 0 and zi(t) be an arbitrary component of ŷi(t)
or Q̂i(t). Hence, {zi(t)}N

i=1 satisfy Assumption 5.2 in Chapter 5 for some L > 0.

Remark 7.10. Due to item i) of Theorem 7.5, Assumption 7.9 is complied for t on any
compact interval and sufficiently big L > 0. However, this assumption can be complied
for any t ≥ 0 as well by assuming that the motion of the target has bounded derivatives,
which is mild in practical scenarios.

Theorem 7.11. Let Assumption 7.9 hold and G be a connected network. Moreover,
let the initial conditions and gains for each REDCHO instance configured to satisfy the
conditions of Theorem 5.10 in Chapter 5. Then, there exists an m-times differentiable
consensus signal p̃(t) ∈ Rn and T > 0 such that the outputs of Algorithm 7.1 satisfy that
for all µ ∈ {0, . . . ,m}:

p̃(µ)(t) = p1,µ(t) = · · · = pN,µ(t),∀t ≥ T

In addition, limt→∞

∣∣∣p̃(µ)(t)− p̄(µ)
G (t)

∣∣∣ = 0

Proof: For the sake of readability, the proof can be found at the end of this chapter in
Section 7.8.3.

Remark 7.12. The interpretation of the convergence result in Theorem 7.11 is that the
outputs of Algorithm 7.1 for all robots will converge to some arbitrary consensus signal
p̃(t) in finite time, which is not necessarily the average p̄G(t). Achieving consensus in
finite time is interesting from the point of view of formation control since it allows to
the observer and the controller to be designed independently without compromising the
stability of the overall system as discussed in Section 7.5. Moreover, all robots will place
themselves around the same formation center p̃(t) in finite time, which will converge
towards p̄G(t) according to Theorem 7.11.

135 CHAPTER 7

7.5 FORMATION CONTROL

Equipping all agents with the previously presented tools for distributed estimation we
construct a local controller of the form:

ui(t) = pi,m(t)− κ0(pi(t)− pi,0(t)− di)−
m−1∑
µ=1

κµ(p(µ)
i (t)− pi,µ(t)) (7.11)

where the roots of the polynomial λm +
m−1∑
µ=0

κµλ
µ have negative real part.

Proposition 7.13. Let the conditions of Theorem 7.11 hold. Define, pr
i(t) := p̄G(t) + di

with p̄G(t) in (7.8). Then, the closed loop system (7.1) under controller (7.11) satisfies
the formation goal in (7.3) regardless of xi(0).

Proof: First, note that due to Theorem 7.11, then there exists T > 0 such that pi,µ(t) ≡
p̃(µ)(t). Moreover, the outputs pi,µ(t) remain bounded for t ∈ [0, T]. The closed loop
system (7.1) under (7.11) is input to state stable with respect to ui(t). Thus, there are
no finite-time escapes of xi(t) for any t ∈ [0, T]. For t ≥ T , (7.11) takes the form

ui(t) = p̃(m)(t)− κ0(pi(t)− p̃(t)− di)−
m−1∑
µ=1

κµ(p(µ)
i (t)− p̃(µ)(t))

Now, define e(t) = pi(t) − p̃(t) − di to obtain e(m)(t) = −
m−1∑
µ=0

κµe(µ)(t) which is

asymptotically stable towards the origin. Hence, pi(t) converge asymptotically towards
p̃(t) + di which converge towards p̄G(t) + di due to Theorem 7.11, implying (7.3).

Remark 7.14. Note that a linear controller was proposed in (7.11), whose design is
decoupled from the sampling instants τi arising from the perception mechanism. As
evident from the proof of Proposition 7.13 and since the outputs of the estimation fusion
technique from Algorithm 7.1 converge to all m+ 1 derivatives of p̄G(t), then these ideas
can be extended directly to other trajectory tracking controllers, without requiring a co-
design between the perception mechanism and the controller in order to ensure stability.

7.6 SIMULATION EXAMPLES

For simplicity in the presentation, we assume that each of the n coordinates is uncorrelated
both in the detection and in the target model (7.2). Hence, it suffices to analyse each
coordinate by separate. Equivalently, we consider n = 1. Now, let m = 2 for (7.1) and
(7.2) to represent second-order integrators. All REDCHO instances are configured with
m = 2 and gains k0 = 6, k1 = 11, k2 = 6, γ0 = γ1 = γ2 = 1, θ = 40 obtained using the
tuning rules from [1, 2]. Similarly, all robots use the controller (7.11) with κ0 = 1, κ1 = 2.

As characterized by [54], it is expected that a standard target detector based on, e.g.,
convolutional neural networks, improve its performance when more computing power is

PERCEPTION LATENCY AWARE FORMATION CONTROL 136

employed, effectively increasing its perception latency. Hence, to illustrate the perfor-
mance of our proposal under this perception latency and detection quality trade-off, the
perception mechanism is configured with two possible perception methods with latencies
∆1 = 1,∆2 = 0.5. These correspond to a computation-intensive detection method and
a lighter one, respectively. As a result, for illustration purposes, we choose covariance
matrices R1 = 0.01,R2 = 0.1 respectively to simulate that the first method performs
better than the second one at the expense of large computing time.

Furthermore, let W = 1 for the noise process in (7.2). The stochastic system (7.2)
was simulated using Euler-Maruyama with time step ∆t = 10−6 whereas the REDCHO
instances in (5.2) were simulated using explicit Euler method with the same time step.

7.6.1 Single robot
In this section, we consider N = 1 in order to evaluate the performance of the SOE from
Section 7.3. Consider a randomly generated sequence of perception latencies {∆1,k}∞k=0
with ∆1,k ∈ {1, 0.5} leading to a sequence of sampling instants τ1 = {τ1,k}∞k=1. Figure
7.3 shows a realization x(t) of (7.2), and the SOE x̂1(t) from (7.7) for α = 1. Similarly,
we show the output x̂∗1(t) for the DOE in (7.6) for comparison which coincides with the
Kalman filter at t ∈ τ1. We construct a control input analogous to (7.11) as:

ui(t) = p̈r
1(t)− κ0(p1(t)− pr

1(t))− κ1(ṗ1(t)− ṗr
1(t)) (7.12)

for all t /∈ τ1, where pr
1(t) = Cx̂1(t) + d1 for the SOE and pr

1(t) = Cx̂∗1(t) + d1 for
the DOE. The expressions for the derivatives p̈r

1(t), ṗr
1(t) can be obtained explicitly from

(7.6) and (7.7) and are omitted here for brevity. Moreover, note that p̈r
1(t), ṗr

1(t),∀t ∈ τ1
does not exist when using the DOE. Figure 7.4 shows the trajectory tracking performance
of the robot (7.1) using the controller (7.12) for each case. It can be observed that the
tracking error converges to zero when using the SOE. On the other hand, persistent
transients are observed when using the DOE due to the discontinuities in the reference
at t ∈ τ1.

7.6.2 Multi-robot
Now, consider a communication network of N = 10 robots connected in a ring topology.
The estimation fusion protocol was implemented by separate for the X and Y components
of a two dimensional target trajectory p(t). Figure 7.5 shows the convergence of the first
components of yi,0(t),yi,1(t),yi,2(t) for the estimation of the X coordinate, where it can
be observed that all agents converge to a common signal in finite time, and then converge
asymptotically to the first component of the centralized signal ȳG(t) and its derivatives.
The convergence of the rest of the components of yi,0(t),yi,1(t),yi,2(t) as well as for
Qi,0(t),Qi,1(t),Qi,2(t) is similar and is omitted here for the sake of brevity. In addition,
we use the Root Mean Squared (RMS) error performance index in this experiment to
measure the impact of using the fusion block. For a single experiment of duration T , the
RMS value for an arbitrary scalar signal x(t) is computed as

RMS{x(t)} :=

√
1
T

∫ T

0
x(t)2dt

137 CHAPTER 7

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Cx(t)

Cx̂(t),α = 1
Cx̂

∗(t)

[m
]

t [s]

Figure 7.3: A realization of the target position Cx(t) as well as its corresponding esti-
mations Cx̂(t) and Cx̂∗(t) for the SOE and the DOE respectively. Note that the SOE is
always a smooth estimation whereas the DOE is discontinuous at the sampling instants.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

[m
]

t [s]

|p1(t)− p
r

1
(t)|, using x̂

∗(t) (DOE)

|p1(t)− p
r

1
(t)|, using x̂(t) with α = 1 (SOE)

Figure 7.4: Trajectory tracking performance of a single robot (7.1) under the control
input (7.12). Note that the reference is always smooth when using the SOE, resulting in
asymptotic convergence for the tracking error. However, the reference is discontinuous
when using the DOE, which leads to persistent transients in the robot performance,
preventing asymptotic convergence of the tracking error.

PERCEPTION LATENCY AWARE FORMATION CONTROL 138

Furthermore, we compute the average RMS value for arbitrary scalar signals {xi(t)}N
i=1

as RMSavg{xi(t)}N
i=0 := 1

N
∑N
i=1 RMS{xi(t)}. The estimation error after the output stage

of Algorithm 7.1 is shown in Figure 7.6 where it can be observed that the overall global
estimate reduces the RMS error in a factor of 3.5 with respect to the average RMS of the
individual local estimations. In addition, Figure 7.7 shows the actual formation behaviour
of the robots on the plane. Here, the robots start at random positions and converge to a
circular formation around the target estimation p̄G(t).

0

0.5

0

100

-200

200

0
-2000

2000

0

0.5

-10

20

-400

400

-4000

4000

10 0 0.2

|[
y
i
,0
(
t
)
] 1

−
[ȳ

G
(
t
)
] 1
|

[y
i
,0
(
t
)
] 1

[
m
]

[y
i
,1
(
t
)
] 1

[
m
]

[y
i
,2
(
t
)
] 1

[
m
]

t [s] t [s]

0 10 0 0.2t [s] t [s]

0 10 0 0.2t [s] t [s]

0 10 0 0.2t [s] t [s]

Figure 7.5: Trajectories for the first components of yi,0(t),yi,1(t),yi,2(t) denoted as
[yi,0(t)]1, [yi,1(t)]1, [yi,2(t)]1, shown to converge to [ȳG(t)]1, [˙̄yG(t)]1, [¨̄yG(t)]1 which ap-
pear in solid red color. Figures on the left show trajectories in the interval t ∈ [0, 10] to
depict the asymptotic convergence behavior of the algorithm towards the global signals.
On the other hand, figures on the right show convergence towards consensus which occurs
in the interval t ∈ [0, 0.2].

139 CHAPTER 7

9
0

3

0 t [s]

‖p(t)− p̂i(t)‖
‖p(t)− p̄G(t)‖
RMS{‖p(t)− p̂i(t)‖}
RMS{‖p(t)− p̄G(t)‖}

0.2184

0.8033

Figure 7.6: Error comparison between the actual realization of the target position p(t),
local SOE estimates p̂i(t) (gray) and the collaborative estimation p̄G(t) (blue). Moreover,
average Root Mean Squared (RMS) values are shown in each case, where an improvement
of a factor of 3.5 is observed when comparing the collaborative estimate with respect to
the local ones.

0 6

2

8

1

2

3

4

56

7
8

9

10

0 20

‖
p
i
(t
)
−

p
r i
(t
)‖

[m
]

0

8

Y[m]

X[m] t[s]

p(t)
p̄G(t)
pi(t)

Figure 7.7: (Left) Actual target trajectory p(t) on the plane as well as the global estima-
tion p̄G(t) and individual robot trajectories pi(t) which converge to the circular formation
around p̄G(t). (Right) Formation error between the robot position pi(t) and the reference
pr
i(t) = p̄G(t) + di.

7.6.3 Ablation and parameter analysis
In this section, we study the influence of the parameter α in the SOE as well as the
fusion block. For this purpose, we perform NMC = 100 Monte-Carlo runs, for each of the
following configurations. We use a similar setting as in Section 7.6.2 with N = 10 robots
connected in a ring topology. We test the SOE with different values of the parameter α ∈
{0.1, 1, 10} as well as the DOE. In addition, for each value of α, we test the performance
of the system when using the fusion block or not for computation of the reference signal
p̄G(t). In the case of the DOE, we do not include the fusion block, since the output of
such estimator does not satisfy Assumption 7.9 due to the discontinuities in the output,
regardless of the motion of the target. When the fusion block is not used, we compute
p̂i(t) = Cx̂i(t) from the SOE (7.7) or the DOE (7.6) depending on the configuration.
Otherwise, we compute p̂i(t) = p̂i,0(t) as the output of the estimation fusion output
stage from Algorithm 7.1.

PERCEPTION LATENCY AWARE FORMATION CONTROL 140

For each experiment, a different trajectory of the target (7.2) was generated in the
interval t ∈ [0, T] with T = 100, as well as different initial conditions for the robots in
(7.1). As performance indicators, use the value of the estimation error RMSavg{‖p̂i(t)−
p(t)‖}N

i=1 and the tracking error RMSavg{‖p̄G(t) + di−pi(t)‖}N
i=1 where recall that pi(t)

is the position of the i-th robot. In addition, we measure the control effort by means of
RMSavg{‖ui(t)‖}N

i=1 and

PEAK{ui(t)}N
i=1 := max

i∈{1,...,N}
sup
t∈[0,T]

‖ui(t)‖

The results of these simulations are summarized in Table 7.1. The performance indi-
cators in the rows of Table 7.1 were averaged over all 100 experiments for each column
of the table. It can be observed that the DOE performs the best in terms of the esti-
mation error among the configurations which do not use fusion. However, the SOE in
conjunction with the fusion method is able to outperform the DOE in all cases, being the
best configuration with α = 0.1 due to the tight consistency of the estimations ensured
by Theorem 7.5. The disadvantages of the DOE are more evident when looking at the
tracking error, where it performs the worst up to 1 order of magnitude. The reason is that
the the discontinuities in the DOE cause the persistent transients illustrated in Figure
7.4 whereas the SOE does not have this problem in any configuration.

On the other hand, the bad tracking performance of the DOE is balanced by the
resulting small control effort both in RMS and peak values, outperforming the SOE
in all cases. The reason is that the the DOE ignores the values of the derivatives of the
estimation at the discontinuities since they are undefined for those instants. However, the
SOE is able to compute these derivatives for all time. Due to the fact that as α→ 0 one
recovers a discontinuous behaviour, the derivatives can grow unbounded at the sampling
instants as α is decreased. Since these derivatives are used explicitly in the control
law (7.11), hence the control effort is impacted by the value of α in a similar fashion.
Moreover, an equivalent behaviour happens when α increases, requiring a compromise for
this parameter in terms of control effort. For example, the value of α = 1 obtains good
results for the control effort when compared to α = 0.1, 10.

7.7 DISCUSSION

A combination of a smooth-output estimator and an estimation fusion stage was proposed
for distributed target estimation. It was shown that, in contrast to the non-smooth
optimal alternative, the formation control is able to achieve asymptotic convergence to
the formation goal. This allows the control design to be decoupled from the perception-
latency decisions. The advantages of the proposal where discussed through simulation
examples, when compared to a non-smooth optimal alternative. The proposal is yet to
be validated in real-world platforms, which imposes an interesting but highly non-trivial
challenge to be explored in a future work.

It’s important to note that the architecture considered in this chapter is closely related
to the one discussed around Figure 1.4 in Chapter 1. We omitted the perception latency
scheduling analysis for the local control branch. However, the ideas presented in Chapter
2 can be applied in such a case if the sensors used for self-localization are independent
of those used for target detection. Another element not considered in this chapter is

141 CHAPTER 7

Estimator DOE SOE
α = 0.1

SOE
α = 1

SOE
α = 10

Fusion 7 7 3 7 3 7 3

RMSavg{‖p̂i(t)− p(t)‖}N
i=1 0.74 0.79 0.19 0.85 0.23 0.92 0.34

RMSavg{‖p̄G(t) + di − pi(t)‖}N
i=1 56.4 2.84 2.81 2.82 2.84 2.83 2.84

RMSavg{‖ui(t)‖}N
i=1 6.23 18.43 22.74 10.75 9.24 15.22 16.81

PEAK{ui(t)}N
i=1 8.65 70.83 75.98 30.21 34.45 65.01 63.78

Table 7.1: Ablation and parameter analysis for the proposal. The DOE is compared with
our proposal using different configurations. Moreover, different performance indicators
are depicted, where the best value for each row is marked in bold font. In particular the
first two rows represent the estimation and tracking RMS errors measured in [m]. The
last two rows depict the control effort in terms of RMS and peak values, both measured
in [m/s2].

asynchronous discrete-time communication. Since target detections only occur at discrete-
time instants, it may be more natural to communicate only when new measurements are
available rather than on a continuous-time basis, as explored in this chapter. This problem
will be tackled in the next chapter.

PERCEPTION LATENCY AWARE FORMATION CONTROL 142

7.8 PROOFS

7.8.1 Proof of Theorem 7.5.

For item i), note that ŷ(t), Q̂(t) are m-times differentiable for any t /∈ τ from the expres-
sions in (7.6) and (7.7) and item 1 of Definition 7.3. For t ∈ τ , take an arbitrary τk ∈ τ
and compute the µ-th derivative of ŷ(t) with µ ∈ {0, . . . ,m} as t→ τ+

k as:

lim
t→τ+

k

ŷ(µ)(t) = lim
t→τ+

k

µ∑
ν=0

(
µ

ν

)
λ

(ν)
1 (t|k)(ŷ∗)(µ−ν)(t|k − 1)

+
(
µ

ν

)
λ

(ν)
2 (t|k)(ŷ∗)(µ−ν)(t|k) = (ŷ∗)(µ)(τk|k − 1)

where the µ-th derivative product rule was used as well as by noting that
(
µ
0
)

= 1 and

lim
t→τ+

k

λ1(t|k) = 1− η(0;α) = 1

lim
t→τ+

k

λ2(t|k) = η(0;α) = 0

lim
t→τ+

k

λ
(ν)
1 (t|k) = −η(ν)(0;α) = 0

lim
t→τ+

k

λ
(ν)
2 (t|k) = η(ν)(0;α) = 0

for any ν ∈ {1, . . . ,m} by items 2 and 2 of Definition 7.3. Now, for t → τ−k consider
ŷ(t) = λ1(t|k−1)ŷ∗(t|k−2)+λ2(t|k−1)ŷ∗(t|k−1) for t ∈ [τk−1, τk) from (7.7). Similarly
as before,

lim
t→τ−

k

ŷ(µ)(t) = lim
t→τ−

k

µ∑
ν=0

(
µ

ν

)
λ

(ν)
1 (t|k − 1)(ŷ∗)(µ−ν)(t|k − 2)

+
(
µ

ν

)
λ

(ν)
2 (t|k − 1)(ŷ∗)(µ−ν)(t|k − 1) = (ŷ∗)(µ)(τk|k − 1)

where the following identities were used:

lim
t→τ−

k

λ1(t|k − 1) = 1− η((τk − τk−1)/∆k−1;α) = 0

lim
t→τ−

k

λ2(t|k − 1) = η(1;α) = 1

lim
t→τ−

k

λ
(ν)
1 (t|k − 1) = −η(ν)(1;α) = 0

lim
t→τ−

k

λ
(ν)
2 (t|k − 1) = η(ν)(1;α) = 0

due to (τk−τk−1) = ∆k−1 and Definition 7.3. Hence, the two-sided limit limt→τk ŷ(µ)(t) =
(ŷ∗)(µ)(τk|k − 1) exists for arbitrary τk ∈ τ . The proof is the same for Q̂(t). For item
ii) note that x̂(t|k) is unbiased since it comes from the Kalman filter structure of (7.5)

143 CHAPTER 7

and (7.6). Hence, x̂(t) is unbiased by linearity of E{•} and by the definition of x̂(t) from
(7.7) as a convex combination of unbiased estimates since λ1(t|k) + λ2(t|k) = 1. For item
iii) note that P̂∗(t|k), P̂∗(t|k− 1) for t ∈ [τk, τk+1) are covariances for x̂∗(t|k), x̂∗(t|k− 1)
but that cov{x(t)− x̂∗(t|k),x(t)− x̂∗(t|k − 1)} 6= 0 since both estimations are correlated
by their dependence of the noise process {u(t′)|t′ ≤ t} in (7.2). However, note that the
expression of Q̂(t) is a convex combination of Q̂∗(t|k), Q̂∗(t|k−1). Hence, the covariance-
intersection principle from [164, Section 2.1] ensures consistency of P̂(t) i.e., P̂∗(t) � P̂(t).
Finally, note that by letting α → 0 we have λ1(t|k) = 0, λ1(t|k) = 1 for all t ∈ (τk, τk+1)
using item 4 from Definition 7.3. Hence, limα→0 P̂(t) = P̂∗(t|k) = P̂∗(t),∀t /∈ τ .

7.8.2 Proof of Lemma 7.8
For item 1, take the µ-th derivative of the identity Im = Q̄G(t)P̄G(t) yielding:

0 =
µ∑
ν=0

(
µ

ν

)
Q̄(µ−ν)

G (t)P̄(ν)
G (t) = Q̄G(t)P̄(µ)

G (t) +
µ−1∑
ν=0

(
µ

ν

)
Q̄(µ−ν)

G (t)P̄(ν)
G (t)

where
(
µ
µ

)
= 1 was used and from which the expression in item i) is obtained by solving

for P̄(µ)
G (t). Finally, item 2 is obtained by applying the µ-th derivative to the definition

p̄G(t) = CP̄G(t)ȳG, completing the proof.

7.8.3 Proof of Theorem 7.11
First, note that each component of the equations in (7.9) and (7.10) is a REDCHO
block of the form (5.2). Each individual REDCHO block in (7.9) (resp. (7.10)) has
scalar input zi(t) given by one component of ŷi(t) (resp. Q̂i(t)), internal scalar vari-
ables {vi,µ(t)}mµ=0 given by one component of each {vi,µ(t)}mµ=0 (resp. {Vi,µ(t)}mµ=0) and
outputs {si,µ(t)}mµ=0 given by one component of each {yi,µ(t)}mµ=0 (resp. {Qi,µ(t)}mµ=0).
Hence Assumption together with item Theorem 5.10 in Chapter 5 imply that there exists
T > 0 such that

ỹ(µ)(t) = y1,µ(t) = · · · = yN,µ(t)
Q̃(µ)(t) = Q1,µ(t) = · · · = QN,µ(t)

for all µ ∈ {0, . . . ,m} for some consensus signals ỹ(t) ∈ Rnm, Q̃(t) ∈ Rnm×nm. Moreover,
define P̃(t) = Q̃(t)−1 Hence, for all t ≥ T and i ∈ {1, . . . , N} the expressions in Algorithm
7.1 reads:

pi,0(t) ≡ CP̃(t)ỹ0(t)

Pi,µ(t) ≡ −P̃(t)
µ−1∑
ν=0

(
µ

ν

)
Q̃(µ−ν)(t)Pi,ν(t)

pi,µ(t) ≡ C
µ∑
ν=0

(
µ

ν

)
Pi,ν(t)ỹ(µ−ν)(t)

(7.13)

Now, Theorem 5.10 in Chapter 5 imply that ỹ(t), Q̃(t) converge to ȳG(t), Q̄G(t) as t→∞.
Hence, the expressions in (7.13) converge to p̄G(t), P̄(µ)

G (t), p̄(µ)
G (t) respectively due to

Lemma 7.8, completing the proof.

PERCEPTION LATENCY AWARE FORMATION CONTROL 144

Chapter Eight

EDC Under Asynchronous Communication

One element of the architecture proposed in Chapter 1, as depicted in Figure 1.4, which
has not been discussed thus far is the possibility of having discrete-time asynchronous
communication between agents. In this thesis, cooperation between agents for information
fusion has been successfully addressed using modular EDC tools, but only under the
assumption of continuous-time communication. To complement the presentation of the
tools in this thesis, we now analyze new EDC tools under asynchronous communication,
where communication instants are determined by an exogenous scheduler, as depicted in
Figure 8.1. This scheduler can coincide with the perception latency scheduler, ensuring
that agents communicate with their neighbors only when new measurements for the target
of interest are available, which aligns well with practical considerations.

Exogenous time− varying signals
(measurements, estimations, etc...)

Radio

Fused (average) information

Fusion

and derivatives

and derivatives

Network
Open

Scheduler

Figure 8.1: Individual agent architecture for distributed information averaging.

In this chapter, we specifically focus on considering an arbitrary sequence of commu-
nication instants for each agent. The primary objective remains similar to the standard
REDCHO algorithm, which is to compute the time-varying average of a set of signals
distributed across an OMAS. We also analyse robustness to symmetric propagation de-
lays. For simplicity, we do not consider weighted averages or self-contained distributed
differentiation as discussed in Chapter 6. However, it is important to note that the con-
cepts introduced in this chapter can be extended to include those aspects as well. The

145

EDC UNDER ASYNCHRONOUS COMMUNICATION 146

contributions of this chapter were also published in [9].

8.1 RELATED WORK

Dealing with network constraints such as asynchronous sampling and delays is not trivial,
leading many authors to simplify the problem by assuming continuous-time communica-
tion [85, 154, 162, 166] or periodic discrete-time communication [97–99] without con-
sidering communication delays in many cases. Nonetheless, in [167], the authors study
the robustness of consensus algorithms concerning delays in communication. In addi-
tion, some works such as those based on the concept of event-triggered control, allow
asynchronous communication by construction [100, 101].

In general, the study of exogenous asynchronous communication instants and commu-
nication delays can be tackled by tools from hybrid systems [168]. Similarly, tools from
the literature on analysis of systems under time-varying delays can be used to study both
of these problems, as exposed in [72, 169]. The following are some examples of works
which have used these tools in the context of consensus. In [170], a static consensus pro-
tocol is proposed, which works under asynchronous communication instants. The authors
in [102] also deal with a static consensus problem under the presence of non-cooperative
agents and asynchronous communication. In [103], a leader-follower protocol is proposed,
robust to asynchronous communication in the network. A similar problem is tackled in
[106], where the asynchronous communication instants come from an event-triggered rule
rather than an arbitrary sequence of time instants. Other works analyze transmission
delays as in [104] under an event-triggered setting and in [105] for asynchronous switched
networks.

An existing work that is closely related is [171], where multiple agents can synchronize
to a time-varying function despite asynchronous communication. However, the protocol is
linear, and only achieves bounded steady-state error. Additionally, the protocol converges
towards a time-varying signal that is not related to the average of the references at each
agent.

8.2 PROBLEM STATEMENT AND PROTOCOL PROPOSAL

Consider a multi-agent system distributed in a network G. In the following, G is an
undirected connected graph of N nodes where each edge in the graph corresponds to an
available communication link between two agents. Denote with Ni ⊆ {1, . . . ,N} the index
set containing the neighbors of agent i. We consider that each agent i has access to a
local (m+1)-times differentiable reference signal zi(t). In addition, in order to reduce the
communication burden, messages between agents can only be exchanged at discrete-time
instants. Agent i can only initiate an information exchange with its neighbors at some
scheduled (perhaps irregular) time instants t ∈ τi := {τi,k}∞k=0, referred as transaction
instants. At these instants, agent i transmits and then receives information from its
neighbors. These instants are assumed to comply with 0 < τi,k+1 − τi,k ≤ ∆ for a fixed
∆ > 0 as well as limk→∞ τi,k =∞ to avoid Zeno-behaviour.

The goal of the agents is to share information between them in order to collectively
estimate the following dynamic average signal in a distributed fashion

z̄(t) = z1(t) + · · ·+ zN(t)
N

147 CHAPTER 8

We aim to obtain quasi-exact performance meaning that z̄(t) is recovered exactly at all
agents when ∆→ 0 and t→∞.

The algorithm proposal is divided in two parts: a communication protocol and an
estimation algorithm.

Communication protocol: First, at any time t ≥ 0, each agent i ∈ {1, . . . ,N} has
a local estimation ẑi(t) for the global average signal z̄(t). At each transaction instant
t = τi,k ∈ τi, agent i sends its own estimate ẑi(τi,k) to its neighbors j ∈ Ni and asks them
for their estimate ẑj(τi,k) at that time. Then, agent i stores the difference ẑij(τi,k) =
ẑi(τi,k)− ẑj(τi,k). This difference is not only updated at t ∈ τi but also at t ∈ τj , j ∈ Nj
when a neighbor j sends agent i its own estimate first. This protocol is depicted in
Figure 8.2. Denote with τij(t) the last instant in which the link (i, j) was updated under
this setting, this is, either triggered by a transaction instant at agent i or at agent j.
Concretely, τij(t) = max{τ ∈ (τi ∪ τj) : τ ≤ t} which complies τij(t) = τji(t). Hence,
since the difference ẑij(t) is updated symmetrically at both sides of the communication
link, then ẑij(t) = −ẑji(t) for any t ∈ (τi ∪ τj). Equivalently, the difference ẑij(t) stored
at agent i coincides with the difference ẑji(t) stored at agent j except for a change of sign.

i

j

t ∈ τ i

t ∈ τ j

ẑi(t) ẑj(t)

Initiated by i

Initiated by j

send receive

Figure 8.2: The communication protocol from the perspective of agent i exchanging
information with agent j is depicted under nominal asynchronous communication where
no delays are present.

So far, we have described the scenario referred in this chapter as nominal asynchronous
communication, where we do not consider communication delays, and each agent can
sample from zi(t) at any time t ≥ 0. However, in the subsequent sections, we broaden the
scope and consider scenarios that include communication delays and situations in which
zi(t) can only be sampled at specific times t ∈ τi.

Estimation algorithm: Now, we present the algorithm that computes the local
estimation ẑi(t) for z̄(t) at agent i ∈ {1, . . . ,N}. To do so, each agent i stores m + 1
internal variables denoted as {χi,µ(t)}mµ=0. The evolution of these variables as well as the

EDC UNDER ASYNCHRONOUS COMMUNICATION 148

definition of the estimation output is subject to the following:

Dynamic evolution:

χ̇i,µ(t) = kµθ
µ+1

∑
j∈Ni

Fµ(ẑij(τij(t))) + χi,µ+1(t)

−γµχi,µ(t), for µ ∈ {0, . . . ,m− 1}

χ̇i,m(t) = kmθ
m+1

∑
j∈Ni

Fm(ẑij(τij(t)))− γmχi,m(t)

Output:
ẑi(t) = ẑi,0(t)

ẑi,µ(t) = z
(µ)
i (t)−

∑m
ν=0 Gµ+1,ν+1χi,ν(t)

(8.1)

where Fµ(•) = d•c
m−µ
m+1 , {Gµ+1,ν+1}m,mν=0,µ=0 are the components of the matrix G and

θ, {kµ, γµ}mµ=0 are all positive design parameters. For conciseness, and to aid the anal-
ysis, the evolution of {χi,µ(t)}mµ=0 is written in terms of a differential equation in (8.1).
However, there is an explicit expression for these trajectories provided in Appendix 8.3,
removing the necessity to use approximations to solve for trajectories of (8.1).

To show convergence of (8.1), we rely on the following assumption:

Assumption 8.1. Let

si(t) = z
(m+1)
i (t) +

m∑
µ=0

lµz
(µ)
i (t)

where {lµ}mµ=0 are the coefficients of the polynomial

(λ+ γ0) · · · (λ+ γm) = λm+1 +
m∑
µ=0

lµλ
µ.

Thus, |si(t)| ≤ L,∀t ≥ 0 for fixed {γµ}mµ=0 and known L ≥ 0.

In the following, we present the main result of this chapter, which is the convergence
characterization of (8.1) for nominal asynchronous communication.

Theorem 8.2. Let, G be a connected graph. Consider arbitrary scheduled transaction
instants with ∆ ∈ (0,∆max], ∆max > 0. Then, for any ∆max > 0 there exist γmax > 0
sufficiently small with γ0, . . . , γm ∈ (0, γmax] such that if Assumption 8.1 holds, there
exists:

• convergence time T > 0 and sufficiently big θ, {kµ}mµ=0,

• admissible intervals R0, . . . ,Rm ⊂ R for the initial conditions {χi,µ(0)}mµ=0,

• m-times differentiable consensus signal ζ(t),

such that algorithm (8.1) complies:

1. |ζ(µ)(t) − ẑi,µ(t)| ≤ cµ∆m−µ+1, ∀t ≥ T, ∀i ∈ {1, . . . , N} with positive constants
{cµ}mµ=0 depending only on the algorithm parameters, G and ∆max.

149 CHAPTER 8

2. limt→∞ |ζ(t)− z̄(t)| = 0.

3. The intervals R0, . . . ,Rm can be made arbitrarily large by increasing θ.

Proof: The proof is provided Section 8.4.2.

Remark 8.3. Item 1 of Theorem 8.2 implies that ẑi(t) = ẑi,0(t) converges exactly to ζ(t)
when ∆ → 0. This leads to asymptotic convergence towards z̄(t) without any steady-
state error, resulting in quasi-exact performance. This is an advantage with respect to
linear techniques such as [67, 98, 171] where exact convergence cannot be obtained for
persistently varying signals even in the continuous-communication limit.

Remark 8.4. Algorithm 8.1 is based on sliding modes, which results in chattering due
to the discontinuous term in the equation for χ̇i,m(t). However, Theorem 8.2 shows that
the chattering has a worst-case effect proportional to ∆m+1 on the estimation of z̄(t).
This improvement is due to the HOSM in (8.1), which reduces chattering, and is superior
to FOSM approaches for dynamic consensus, such as [85].

Remark 8.5. Note that the output in (8.1) for µ = 0 leads to

ẑi(t) = ẑi,0(t) = zi(t)− χi,0(t)

which can be computed without requiring any derivatives of zi(t). In addition, the re-
maining {ẑi,µ(t)}mµ=1 are not utilized in computing the dynamic evolution in (8.1) or ẑi(t).
However, if the derivatives of zi(t) are available, Theorem 8.2 implies that the derivatives
z̄(µ)(t) can be estimated via ẑi,µ(t) at each agent. This property is shared with other
high-order EDC protocols such as [1, 2, 10] and is important for applications such as
formation tracking for mobile robots [172].

8.2.1 Non-cooperative sampling
Note that in order to update the dynamic evolution of the algorithm in (8.1), it suffices
to sample the signal zi(t) at t ∈ τ̄i :=

⋃
j∈Ni τj ∪ τi, which we refer here as cooperative

sampling. The reason comes from the way the differences ẑij(τij(t)) are constructed,
which samples from ẑi(t) only at transaction instants in τ̄i. Hence, continuous sampling
for zi(t) is not required for the algorithm to work. However, in the case of non-cooperative
sampling, the signal zi(t) is only sampled at the scheduled instants τi, instead of τ̄i. This
case requires the following modification of Algorithm 8.1. Consider a new piece-wise
constant output ẑi,µ(t) of the form

ẑi,µ(t) = z
(µ)
i (τi,k)−

m∑
ν=0

Gµ+1,ν+1χi,ν(τi,k), (8.2)

for t ∈ [τi,k, τi,k+1) instead of the output in (8.1). Hence, a similar result as the one from
Theorem 8.2 is obtained.

Corollary 8.6. The statement of Theorem 8.2, replacing the output in (8.1) with (8.2),
is true.

Proof: The proof is provided in Section 8.4.3

EDC UNDER ASYNCHRONOUS COMMUNICATION 150

8.2.2 Symmetric communication delays
In the previous exposition, it was assumed that the exchange of messages between agents
occurred instantly. However, in practice, there is a finite delay between the time an
agent i transmits a message and the time it is received at agent j. While the single-trip
delay cannot be directly measured, the round-trip delay can be measured when agent j
responds back to the message. This is, when agent i sends a message at a specific time
t = τaij ∈ τi, agent j receives it at a later time t = τ bij > τaij , and then responds to agent
i. This response message arrives at agent i at a later time t = τ cij > τ bij . Therefore, agent
i can determine the round-trip delay as dij = τ cij − τaij . In this context, it is reasonable
to assume that the single-trip delays are symmetric, meaning that the time it takes for a
message to travel from agent i to j is equal to the time it takes for the response message
to travel from agent j to i. This assumption implies that τ bij − τaij = τ cij − τ bij = dij/2
for all i and j. This assumption is reasonable in practice, specially when nodes exchange
information through one-hop communication [173].

With this information, updates for the difference ẑij(τij(t)) can be synchronized as
described in Figure 8.3. First, agent i request a transaction with agent j at time t = τaij .
The message is received at agent j at time t = τ bij from which it sends its current estimate
ẑj(τ bij). This message is received at agent i at t = τ cij and it can compute dij = τ cij − τaij .
Then, it transmits its previous estimate ẑi(τ cij − dij/2) = ẑi(τ bij).

The end of the transaction is denoted as τdij , which is the time when the last message
is received at agent j, or equivalently, τdij = τ cij + dij/2 from the perspective of agent
i. At t = τdij , both agents have synchronized versions of ẑi(τ bij) and ẑj(τ bij), allowing
them to compute the difference ẑi(τ bij) − ẑj(τ bij). We set τij(t), dij(t) to the last end
of transaction instant before some time t for link (i, j) and its corresponding round-
trip delay respectively. In the example in Figure 8.3, if t ≥ τdij and before any other
transaction instant occurs for the link (i, j), then τij(t) = τdij and ẑi(τ bij) − ẑj(τ bij) =
ẑi(τij(t) − dij(t)) − ẑj(τij(t) − dij(t)) Therefore, using the information available at each
agent we can define

ẑij(τij(t)) = ẑi(τij(t)− dij(t))− ẑj(τij(t)− dij(t)) (8.3)

which is a delayed version of the original ẑij(τij(t)) satisfying ẑij(τij(t)) = −ẑji(τji(t)) as
well. With this new protocol, we obtain an equivalent version of Theorem 8.2 as follows.

Corollary 8.7. Consider any delay dij(t) ∈ [0, d],∀t ≥ 0 for some maximum delay d > 0.
Hence, the statement of Theorem 8.2, replacing ẑij(τij(t)) with (8.3) and ∆ replaced by
∆ + d, is true.

Proof: The proof is provided in Section 8.4.3

It is important to note that at t = τ cij in Figure 8.3, agent i must transmit a past
estimate ẑi,j(τ cij − dij/2) and not its current estimate ẑi,j(τ cij). It may seem that it
implies agent i must store all previous values of ẑij(τ),∀τ ∈ [t− (d+ ∆), t] for this to be
possible, since τ cij − dij/2 do not need to belong to τ̄i. Evidently, storing all these infinite
values is impossible. However, if agent i at time t has stored the finite number of values
ẑi(τ), τ ∈ τ̄i∩[t−(d+∆), t] in a buffer, then it can recover all other ẑi(τ),∀τ ∈ [t−(d+∆), t]
through the explicit expression of the solutions of (8.1) provided in the next Section.

151 CHAPTER 8

i

j

ẑj(t2)
receive

τaij = τi,k ∈ τ i

τ bij

τ cij

dij

request

τdij

τi,k+1 ∈ τ i

send
ẑi(τ

c
ij − dij/2)

Figure 8.3: Communication protocol with symmetric round-trip delays from the perspec-
tive of agent i communicating with agent j.

8.3 EXACT SOLUTION FOR THE DYNAMIC EVOLUTION

In this section, we provide exact solutions for (8.1) without requiring to use any dis-
cretization or approximation. We use the following notation for simplicity. Let

gi,µ(t) = kµθ
µ+1

∑
j∈Ni

dẑij(τij(t))c
m−µ
m+1

gi(t) = [gi,0(t), . . . , gi.m(t)]>

xi(t) = [χi,0(t), . . . ,χi,m(t)]>.

Moreover, let τ̄i =
⋃
j∈Ni τj ∪τi be the set of all transaction instants at agent i including

the ones started by i and the ones started by its neighbors. Then, consider arbitrary
consecutive instants τk, τk+1 ∈ τ̄i with τk < τk+1. Hence, an explicit expression of the
trajectories of (8.1) for the interval t ∈ [τk, τk+1) is provided in the following.

Proposition 8.8. The unique solution to (8.1) for the interval t ∈ [τk, τk+1) is

xi(t) = exp(Γ(t− τk))xi(τk) + Γ−1(exp(Γ(t− τk))− Im)gi(τk) (8.4)

Proof: First, write (8.1) in vector form as

ẋi(t) = Γxi(t) + gi(t) (8.5)

Then, note that due to how the differences ẑij(τij(t)) are constructed, then gi(t) = gi(τk)
remains constant for all t ∈ [τk, τk+1). Then, for such interval, (8.5) is a linear ordinary
differential equation with a constant input, whose solution is given by

xi(t) = exp(Γ(t− τk))xi(τk) +
∫ t

τk

exp(Γ(t− τ))dτgi(τk)

which reduces to (8.4).

EDC UNDER ASYNCHRONOUS COMMUNICATION 152

8.4 CONVERGENCE ANALYSIS

8.4.1 Auxiliary results for nominal asynchronous communication
In this section we derive the necessary results in order to show Theorem 8.2 which
considers cooperative sampling and non-delayed asynchronous communication. First,
we write (8.1) in compact form as follows. Let χµ(t) = [χ1,µ(t), . . . ,χN,µ(t)]>, z(t) =
[z1(t), . . . , zN(t)]> and ẑµ(t) = [ẑ1,µ(t), . . . , ẑN,µ(t)]>. Now, denote with bi ∈ RN the i-th
standard unit vector. Let E represent the set of directed edges of G picking an arbi-
trary orientation, and D its incidence matrix. Each column of D corresponds to a link
in E . Hence, for the link (i, j) ∈ E , the corresponding column of D can be written as
bij = bi − bj .

For arbitrary link (i, j), it follows that ẑi(t) = b>i ẑ0(t) and therefore,

ẑij(τij(t)) = b>i ẑ0(τij(t))− b>j ẑ0(τij(t)) = b>ij ẑ0(τij(t))

Moreover, let δij(t) := t−τij(t) such that ẑ0(τij(t)) = ẑ0(t−δij(t)) and thus, ẑij(τij(t)) =
b>ij ẑ0(t − δij(t)). Note that |δij(t)| ≤ ∆,∀t ≥ 0,∀(i, j) ∈ E by construction of the
transaction instants. Now, use the fact that ẑij(τij(t)) = −ẑji(τij(t)) to write (8.1) in
compact form as follows:

χ̇µ(t) = kµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>ij ẑ0(t− δij(t))

⌋m−µ
m+1 + χµ+1(t)

− γµχµ(t), for µ ∈ {0, . . . ,m− 1}

χ̇m(t) = kmθ
m+1

∑
(i,j)∈E

bij
⌈
b>ij ẑ0(t− δij(t))

⌋0 − γmχm(t)

(8.6)

Consider the recursive sequence of filters

s0(t) = z(t), sµ+1(t) =
(

d
dt + γµ

)
sµ(t) (8.7)

for µ ∈ {0, . . . ,m} with z(t) = [z1(t), . . . , zN(t)]>. Note that

sm+1(t) =
(

d
dt + γm

)
· · ·
(

d
dt + γ0

)
z(t)

= z(m+1)(t) +
m∑
µ=0

lµz(µ)(t)

where l0, . . . , lm are defined in Assumption 8.1. Define yµ(t) = sµ(t)− χµ(t). We make a
decomposition of yµ(t) in a consensus component

ȳµ(t) = (1>/N)yµ(t)

and a consensus error
ỹµ(t) = Pyµ(t)

with P = (IN − 11>/N). Consequently,

yµ(t) = ȳµ(t)1+ ỹµ(t).

In the following lemma, we provide characterization of the trajectories of ȳµ(t).

153 CHAPTER 8

Lemma 8.9. Let ȳµ(t) = (1>/N)yµ(t) with yµ(t) = sµ(t) − χµ(t) and χµ(t) subject to
(8.6). Finally, define

ζµ(t) =
m∑
ν=0

Gµ+1,ν+1ȳν(t) (8.8)

Hence, limt→∞ |ζµ(t)− z̄(µ)(t)| = 0,∀µ ∈ {0, . . . ,m}.

Proof: First, note that 1>bij = 0 for any link (i, j) ∈ E such that 1>χ̇µ(t) contains
only the linear terms in (8.6). Hence,

˙̄yµ(t) = (1>/N)(ṡµ(t)− χ̇µ(t))
= (1>/N)(sµ+1(t)− γµsµ(t)− χµ+1(t) + γµχµ(t))
= ȳµ+1(t)− γµȳµ(t)

for µ ∈ {0, . . . ,m− 1} and similarly

˙̄ym(t) = (1>/N)sm+1(t)− γmȳm(t)

equivalently ˙̄y(t) = Γȳ(t) + bm+1(1>/N)sm+1(t) where ȳ(t) = [ȳ0(t), . . . , ȳm(t)]>. Ac-
cording to [2, Corollary 5] it follows that:

GΓG−1 =
[

0m×1 Im
−l0 −[l1, . . . , lm]

]
,Gbm+1 = bm+1

So that (8.8), transforms the dynamics of ȳµ(t) into the canonical form:

ζ̇µ(t) = ζµ+1(t)

ζ̇m(t) = (1>/N)sm+1(t)−
m∑
µ=0

lµζµ(t)

= z̄(m+1)(t)−
m∑
µ=0

lµ(ζµ(t)− z̄(µ)(t))

where we used
(1>/N)sm+1(t)

= (1>/N)z(m+1)(t)/N +
m∑
µ=0

lµ(1>/N)z(µ)(t)

= z̄(m+1)(t) +
m∑
µ=0

lµz̄
(µ)(t)

Note that ζµ(t) = ζ
(µ)
0 (t) and define z̃(t) = ζ0(t)− z̄(t) to obtain

z̃(m+1)(t) = −
m∑
µ=0

lµz̃
(µ)(t)

which is a linear system with stable poles at −γ0, . . . ,−γm. Thus, z̃(µ)(t) = ζµ(t)− z̄(µ)(t)
converge to the origin as t→∞.

EDC UNDER ASYNCHRONOUS COMMUNICATION 154

Now, we characterize the behaviour of the consensus error ỹµ(t). First, we obtain its
dynamics according to (8.6). To simplify the exposition, denote with

fµ(ẑ0; δ(t)) = kµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>ij ẑ0(t− δij(t))

⌋m−µ
m+1 (8.9)

where δ(t) ∈ R|E| is a vector coining all the δij(t), (i, j) ∈ E .

Lemma 8.10. Let Assumption 8.1 hold and ỹµ(t) = Pyµ(t) with P = (IN − 11>/N),
yµ(t) = sµ(t) − χµ(t) and χµ(t) subject to (8.6). Hence, ỹµ(t) satisfies the following
differential inclusion:

˙̃yµ(t) ∈ −fµ(ỹ0; [0,∆]|E|) + ỹµ+1(t)− γµỹµ(t)
for µ ∈ {0, . . . ,m− 1}

˙̃ym(t) ∈ −fm(ỹ0; [0,∆]|E|)− γmỹm(t) + [−L,L]N
(8.10)

with set valued function fµ(ỹ0; [0,∆]|E|) := {f ∈ RN : f = fµ(ỹ0; δ),∀δ ∈ [0,∆]|E|}.

Proof: First, note that by definition, ẑ0(t) = y0(t) due to (8.7) so that fµ(ẑ0; δ(t)) =
fµ(y0; δ(t)). Moreover, note that

Pbij = (IN + (1/N11>))bij = bij

since 1>bij = 0 and for the same reason b>ijz0(t) = b>ijỹ0(t). Hence, Pfµ(z0; δ(t)) =
fµ(ỹ0; δ(t)). Now, compute the dynamics of ỹµ(t) as

˙̃yµ(t) = Pṡµ(t)−Pfµ(ỹ0; δ(t))−Pχµ+1(t) + γµPχµ(t)
= −fµ(ỹ0; δ(t)) + P(sµ+1(t)− χµ+1(t))
− γµP(sµ(t)− χµ(t))
= −fµ(ỹ0; δ(t)) + ỹµ+1(t)− γµỹµ(t)

˙̃ym(t) = −fm(ỹ0; δ(t))− γmỹm(t)−Psm+1(t)

(8.11)

The inclusion (8.10) follows from (8.11) by the definition of fµ(ỹ0; [0,∆]|E|) and by noting
that Psm+1(t) ∈ [−L,L]N due to Assumption 8.1.

The following lemmas derive some important properties of the inclusion (8.10).

Lemma 8.11. Let G be connected and set ∆ = 0 in the inclusion (8.10). Then, there
exists T > 0, sufficiently big θ, {kµ}mµ=0, and admissible balls R̃0, . . . , R̃m ⊂ RN containing
the origin such that if ỹµ(0) ∈ R̃µ for all µ ∈ {0, . . . ,m}, then ‖ỹµ(t)‖ = 0,∀t ≥ T for all
µ ∈ {0, . . . ,m}. Moreover, the balls R̃0, . . . , R̃m can be made arbitrarily big by increasing
θ > 0.

Proof: The proof follows by noticing that with ∆ = 0 then

fµ(ẑ0; 0N×1) = kµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>ij ẑ0(t)

⌋m−µ
m+1

= kµθ
µ+1D

⌈
D>ẑ0(t)

⌋m−µ
m+1

155 CHAPTER 8

where D is the adjacency matrix of G with columns given by bij . Hence, with ∆ = 0,
(8.10) is equivalent to (6.11) in Chapter 6 without noise and with equal agent weights.
The result follows from Lemma 6.7 in Chapter 6 for such special case.

Lemma 8.12. Let θ, {kµ}mµ=0 be chosen such that (8.10) is finite time stable with ∆ = 0
and any γ0, . . . , γm ∈ [0, 1). Then, for every ∆max > 0 there exists γmax > 0 such that
if γ0, . . . , γm ∈ [0, γmax) and ∆ ∈ [0,∆max) then, there exist T, c̃0, . . . , c̃m > 0 such that
‖ỹµ(t)‖ ≤ c̃µ∆m−µ+1,∀t ≥ T .
Proof: Note that for fixed γ = [γ0, . . . , γm]> ∈ [0, 1)m+1, existence of sufficiently big
parameters θγ , {kγµ}mµ=0 such that (8.10) is finite time stable with ∆ = 0 is guaranteed by
Lemma 8.11. Hence, the parameters supγ θγ , {supγ kγµ}mµ=0 exist and ensure finite time
stability of (8.10) for ∆ = 0 and any γ0, . . . , γm ∈ [0, 1). Now, pick some ∆′ > 0 and let
η = ∆′/∆. Then, set γmax = ∆′/∆max. Consider the change of coordinates

t′ = ηt, ỹ′µ(t′) = ηm−µ+1ỹµ(t′/η)

Now, since ∆′ = η∆, and ỹ′0(t′) = ỹ′0(ηt) = ηm+1ỹ0(t) then

fµ(ỹ0; [0,∆]|E|) = kµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>ijỹ0(t− [0,∆])

⌋m−µ
m+1

= kµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>ijη−m−1ỹ′0(ηt− η[0,∆])

⌋m−µ
m+1

= ηµ−mkµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>ijỹ′0(t′ − [0,∆′])

⌋m−µ
m+1

= ηµ−mfµ(ỹ′0; [0,∆′]|E|)

Henceforth,
dỹ′µ
dt′ = η−1 ˙̃y′µ = ηm−µ ˙̃yµ

∈ ηm−µ
(
−fµ(ỹ0; [0,∆]|E|) + ỹµ+1(t)− γµỹµ(t)

)
= ηm−µ

(
− ηµ−mfµ(ỹ′0; [0,∆′]|E|)

+ ηµ−mỹ′µ+1(t′)− ηµ−m−1γµỹ′µ(t′)
)

= −fµ(ỹ′0; [0,∆′]|E|) + ỹ′µ+1(t′)− (γµ/η)ỹ′µ(t′)
dỹ′m
dt′ ∈ −fm(ỹ′0; [0,∆′]|E|)− (γm/η)ỹ′m(t′) + [−L,L]N

Therefore, the dynamics of ỹ′µ(t′) are equivalent to the ones in (8.10) with the new
∆′ and the new gains γ0/η, . . . , γm/η < γmax/η = ∆/∆max ≤ 1. Picking ∆′ = 0 for
continuous-time communication, then by assumption ỹ′µ(t′) is finite time stable towards
the origin since all γµ/η ∈ (0, 1). Hence, there exist sufficiently small ∆′ > 0 and constants
T ′, c′0, . . . , c

′
µ such that ‖ỹ′µ(t′)‖ ≤ c′µ,∀t′ ≥ T ′ by continuity of solutions [174, Page 87],

similarly as argued in [175]. This means that there exists T = T ′/η > 0 such that
by setting c̃µ = c′µ(∆′)µ−m+1 and using ‖ỹ′µ(t′)‖ ≤ c′µ, η = ∆′/∆ we have that (8.10)
complies the following ∀t = t′/η ≥ T = T ′/η:

‖ỹµ(t)‖ = ηµ−m−1‖ỹ′µ(t′)‖ ≤ c̃µ∆m−µ+1

EDC UNDER ASYNCHRONOUS COMMUNICATION 156

completing the proof.

Lemma 8.13. Let fixed c̃0, . . . , c̃m > 0 and define

Iµ(∆) :=
m∑
ν=0

c̃µGµ+1,ν+1∆m−ν+1

Then, for any ∆max > 0 there exists cµ > 0 such that ∀∆ ∈ [0,∆max] it follows that
Iµ(∆) ≤ cµ∆m−µ+1.

Proof: First, note that G is a lower triangular matrix with only ones in the diagonal.
Hence,

Iµ(∆) = c̃µ∆m−µ+1 +
µ−1∑
ν=0

c̃νGµ+1,ν+1∆m−ν+1

≤ ∆m−µ+1

(
c̃µ +

µ−1∑
ν=0

c̃νGµ+1,ν+1∆µ−ν

)
where Gµ+1,µ+1 = 1 and Gµ+1,ν+1 = 0, ν > µ were used. Thus, since ∆ ∈ [0,∆max] and
µ > ν then, the result follows with cµ =

(
c̃µ +

∑µ−1
ν=0 c̃νGµ+1,ν+1∆µ−ν

max

)
> 0

8.4.2 Convergence under nominal asynchronous communication
In this section, we provide a proof of Theorem 8.2, using results developed in the previous
section to show convergence of (8.1) without communication delays or sampled inputs.
Recall the decomposition yµ(t) = ȳµ(t)1 + ỹµ(t). Recall from Lemma 8.10 that ỹµ(t)
satisfies the inclusion (8.10). Hence, given ∆max > 0 pick γmax > 0 and gains as in
Lemma 8.12 to conclude that ‖ỹµ(t)‖ ≤ c̃µ∆m−µ+1,∀t ≥ T for some T, c̃0, . . . , c̃m > 0.
Recall that

z(µ)(t) =
m∑
ν=0

Gµ+1,ν+1sµ(t)

is the inverse transformation of (8.7) such that ẑµ(t) defined from (8.1) comply

ẑµ(t) = z(µ)(t)−
m∑
ν=0

Gµ+1,ν+1χν(t) =
m∑
ν=0

Gµ+1,ν+1yν(t)

since yν(t) = sν(t)− χν(t). Hence, Pẑµ(t) complies

‖Pẑµ(t)‖ ≤ 2
m∑
ν=0

Gµ+1,ν+1‖ỹν(t)‖ ≤ 2
m∑
ν=0

c̃µGµ+1,ν+1∆m−ν+1 = Iµ(∆)

with Iµ(∆) defined in Lemma 8.13. Thus, ‖Pẑµ(t)‖ ≤ cµ∆m−µ+1 with cµ as in Lemma
8.13. On the other hand, we have that

(1>/N)ẑµ(t) =
m∑
ν=0

Gµ+1,ν+1ȳν(t) = ζµ(t)

157 CHAPTER 8

with ζµ(t) defined in (8.8). Therefore, (1>/N)ẑµ(t) = ζµ(t) converge towards z̄(µ)(t) as
t → ∞ according to Lemma 8.9. Consider the decomposition ẑµ(t) = (1>/N)ẑµ(t)1 +
Pẑµ(t) = ζ(µ)(t)1 + Pẑµ(t) with ζ(t) := ζ0(t) and ζ(µ)(t) = ζµ(t) as a result from the
proof of Lemma 8.9. Hence,

‖ẑµ(t)− ζ(µ)(t)1‖ = ‖Pẑµ(t)‖ ≤ cµ∆m−µ+1

which completes the proof for item 1 of the Theorem. Items 2 and 3 follow from Lemmas
8.9 and 8.11 respectively.

8.4.3 Non-nominal asynchronous communication
In this Section, we provide the proofs for Corollaries 8.6 and 8.7 for the cases of non-
cooperative sampling and symmetric communication delays respectively.

Proof of Corollary 8.6 (non-cooperative sampling): Similarly as in the proof
of Theorem 8.2, we write (8.1) in compact form with the new output (8.2). Recall the
definition of ẑ0(t) = z(t) − χ0(t) from Section 8.4.1. Hence, for arbitrary link (i, j), it
follows that ẑi(t) = b>i ẑ0(τi,k),∀t ∈ [τi,k, τi,k+1) and therefore, ẑij(τij(t)) = b>i ẑ0(τii(t))−
b>j ẑ0(τjj(t)) recalling that by construction τii(t) = max{τ ∈ τi|τ ≤ t} is the last sampling
instant of agent i before t, similarly for agent j. Let δi(t) := t−τii(t) such that ẑ0(τii(t)) =
ẑ0(t− δi(t)) and,

ẑij(τij(t)) = b>i ẑ0(t− δi(t))− b>j ẑ0(t− δj(t))

Note that |δi(t)| ≤ ∆,∀t ≥ 0,∀i ∈ {1, . . . ,N} by construction. Define

δ(t) = [δi(t), . . . , δi(t)]> ∈ RN.

Now, use the fact that ẑij(τij(t)) = −ẑji(τij(t)) to write (8.1) as follows:

χ̇µ(t) = fµ(z0; δ(t)) + χµ+1(t)− γµχµ(t) for µ ∈ {0, . . . ,m− 1}
χ̇m(t) = fm(z0; δ(t))− γmχm(t)

where we redefined fµ(z0; δ(t)) in (8.9) as

fµ(ẑ0; δ(t)) = kµθ
µ+1

∑
(i,j)∈E

bij
⌈
b>i ẑ0(t− δi(t))− b>j ẑ0(t− δj(t))

⌋m−µ
m+1

Note that 1>fµ(ẑ0; δ(t)) = 0 such that Lemma 8.9 is still valid. An equivalent version
of Lemma 8.10 follows, with the new fµ(ẑ0; δ(t)) instead of fµ(ỹ0; δ(t)). Moreover, note
that with ∆ = 0, then b>i ẑ0(t− δi(t))− b>j ẑ0(t− δj(t)) = b>i ẑ0(t)− b>j ẑ0(t) = b>ij ẑ0(t).
Hence, the continuity of solutions argument in Lemma 8.11 applies as well. Therefore,
the proof of Theorem 8.2 in Section 8.4.2 follows in the same way, completing the proof
of the Corollary.

Proof of Corollary 8.7 (symmetric delays): Similarly as in Section 8.4.1, we can
write ẑij(τij(t)) = b>ij ẑ0(τij(t)−dij(t)). Now, let δij(t) := dij(t)+(t−τij(t)) such that we
can write ẑij(τij(t)) = ẑij(t−δij(t)). The new delay signal satisfies |δij(t)| ≤ d+∆,∀t ≥ 0.
Hence, the rest of the reasoning in Section 8.4.1 follows equivalently by replacing ∆ with
∆ + d, completing the proof.

EDC UNDER ASYNCHRONOUS COMMUNICATION 158

8.5 NUMERICAL EXPERIMENTS

In order to test the proposal, we consider the following scenario. First, we set the number
of agents in the network as N = 10 and the communication network to be modeled by
the graph G shown in Figure 8.4. In addition, we set the dynamic reference signals to
zi(t) = Ai cos(ωit+ φi) where

{Ai}N
i=1 = {0.4, 0.96, 0.17, 0.12, 0.13, 0.5, 0.02, 0.9, 0.8, 0.01}

{ωi}N
i=1 = {0.95, 0.55, 0.9, 0.64, 0.39, 0.5, 0.6, 0.54, 0.92, 0.9}

{φi}N
i=1 = {0.17, 0.3, 0.13, 0.8, 0.34, 0.94, 0.6, 0.87, 0.84, 0.9}

Note that the signals {zi(t)}N
i=1 are persistently varying for all t ≥ 0 and satisfy Assump-

tion 8.1 for any order m provided a suitable choice of L. In this case, for illustrative
purposes, we choose m = 3 and γ0 = · · · = γ3 = 1 such that Assumption 8.1 is com-
plied with L = 2.43. As evident from the proof of Theorem 8.2, the parameters of
(8.1) are related to the ones of the REDCHO protocol. Hence, we choose θ = 1 and
{kµ}mµ=0 = {16.87, 24.71, 12.16, 2.44} according to the parameter design rules provided in
[1, 2]. In addition, for the sake of generality, initial conditions {χi,µ(0)}mµ=0 where drawn
randomly from a uniform distribution over [−10, 10].

The transaction instant sequences τi where generated by setting τi,k+1 = δi,k + τi,k
where δi,k was drawn randomly from a uniform distribution over [0,∆]. Hence, τi is an
asynchronous sequence of time instants, different between agents. In addition, we enforce
communication delays as in Figure 8.3, all fixed at the maximum delay size d. Therefore,
we consider three possible degrees of freedom to stress the proposal. First, by varying
the maximum time step ∆. Second, by varying the maximum delay d. Third, by using
non-cooperative sampling as described in Section 8.2.1.

As a baseline, we first consider d = 0, a small time step ∆ = 10−5 and cooperative
sampling. Figure 8.5 shows the behaviour of estimation outputs {ẑi(t)}N

i=1 for the average
signal z̄(t). As expected from items i) and ii) of Theorem 8.2, it can be observed that
the outputs reach consensus in finite time towards a neighborhood of a signal ζ(t), which
reaches z̄(t) asymptotically.

In addition, we use this example to introduce the two main approaches for which
we compare. To the best of our knowledge, no dynamic consensus protocols exist in the
literature designed for the scenario considered in this chapter. However, two modifications
of (8.1) can yield algorithms which are closely related to other works in the literature.
First, we compare with a linear analog of our proposal, using Fµ(•) = (•) in (8.1). This
is very similar to the protocols in [67, 98, 171], but tailored to the asynchronous setting
considered in this chapter. Second, we compare with (8.1) usingm = 0, which corresponds
to a FOSM protocol. This is equivalent to the protocols used in [85, 160]. Figure 8.6
shows the consensus error in each case. Note that our proposal and the FOSM protocol
outperform the linear protocol regardless of the persistent dynamics of the reference
signals. On the other hand, the linear protocol can only ensure bounded steady-state
error, which depends on how the reference signals are changing.

We now test the algorithm with a larger value for the maximum time-step, specifically
∆ = 3 × 10−3. Figure 8.7 shows the total error of the protocol’s outputs with respect
to the average signal z̄(t) in this case. It can be observed that the performance of our
proposal is degraded as ∆ is increased when compared to smaller values of ∆. However,

159 CHAPTER 8

our proposal still outperforms FOSM and linear protocols. Note that, contrary to the
FOSM protocol which degrades very quickly by increasing ∆, the linear protocol produces
more consistent results with different values of ∆.

In order to test the protocols under non-nominal asynchronous communication, we
start by considering non-cooperative sampling and ∆ = 3× 10−3. The results are shown
in Figure 8.8, where it can be observed that the performance degrades when compared to
the results in Figure 8.7 with cooperative sampling. In Figure 8.9, we use ∆ = d = 3×10−3

to test the performance of the protocols under symmetric communication delays. It can be
observed that the performance degrades with respect to the case of ∆ = 3×10−3 without
delay. In both Figure 8.8 and Figure 8.9 the robustness of our method is emphasized
when compared with the FOSM and linear approaches since it outperforms the rest of
the protocols. Figure 8.10 showcases the versatility of our proposal, (8.1), under various
configurations of ∆, d and cooperative or non-cooperative sampling. All scenarios are
shown in the same scale for easy comparison. It’s worth noting that all results are
obtained using the same parameters in (8.1). However, Theorem 8.2 suggests that the
method’s accuracy can be adjusted by modifying the gains {kµ, γµ}mµ=0 for a particular
application due to their influence in the constants {cµ}mµ=0.

1 2

3

4

5

67

8

9

10

Figure 8.4: Undirected graph G used in the experiments of Section 8.5.

8.6 DISCUSSION

In this chapter, we have proposed a distributed algorithm for computing the dynamic
average of a set of time-varying reference signals distributed across a communication
network. The proposed algorithm ensures convergence even under asynchronous com-
munication. Furthermore, we studied the robustness of the algorithm with respect to
symmetric communication delays and sampled reference signals. The proposal is based
on the HOSM framework, which guarantees EDC when continuous-time communication
is used, yielding quasi-exact performance. When discrete-time communication is used,
reduced chattering is observed in the proposed algorithm. We provided a formal con-
vergence analysis and several numerical experiments to confirm the advantages of the
proposal.

EDC UNDER ASYNCHRONOUS COMMUNICATION 160

0 5 10 15 20 25 30

t

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

t

ẑi(t)

ζ(t)

z̄(t) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-6

-4

-2

0

2

4

6

8

10

t

ẑi(t)

ζ(t)

z̄(t)

Figure 8.5: Baseline trajectories for the outputs ẑi(t) of algorithm (8.1) for the scenario
described in Section 8.5. The configuration of (8.1) has ∆ = 10−5, d = 0 and cooperative
sampling. At around t ≈ 0.7, all outputs agree on the signal ζ(t), which approaches a
small neighborhood around z̄(t) over time. The neighborhood size is roughly 10−4, which
is better appreciated in Figure 8.6. The vertical axis is shown in the range [−1.5, 3] to
emphasize the behaviour of z̄(t). Additionally, a closer look at the consensus transient is
provided for the time interval t ∈ [0, 0.8] with a vertical axis range of [−6, 10].

0 5 10 15 20 25 30

10 -4

10 -3

10 -2

10 -1

100

101

t

√ ∑
N i=

1
(ẑ

i(
t)
−
z̄(
t)

)2

Our proposal
Linear
FOSM

Figure 8.6: Total errors for the outputs ẑi(t) of algorithm (8.1) when compared to z̄(t)
for the scenario described in Section 8.5. The configuration of (8.1) has ∆ = 10−5, d = 0
and cooperative sampling. Our proposal performs the best in this case whereas the linear
protocol has the worse performance due to its steady-state error.

The results in this chapter, when combined with those in Chapter 7, lead to an
architecture that closely resembles the goal presented in Figure 1.4 in Chapter 1. This
integration provides a solid foundation for tackling formation control of multiple robots
under perception-latency and resource trade-offs.

161 CHAPTER 8

t

√ ∑
N i=

1
(ẑ

i(
t)
−
z̄(
t)

)2
Our proposal
Linear
FOSM

0 5 10 15 20 25 30

10 -4

10 -3

10 -2

10 -1

100

101

Figure 8.7: Total errors for the outputs ẑi(t) of algorithm (8.1) when compared to z̄(t) for
the scenario described in Section 8.5. The configuration of (8.1) has ∆ = 3× 10−3, d = 0
and cooperative sampling. Our proposal performs the best in this case whereas the FOSM
has the worse performance due to chattering.

Our proposal
Linear
FOSM

0 5 10 15 20 25 30
t

10 -3

10 -2

10 -1

100

101

√ ∑
N i=

1
(ẑ

i(
t)
−

z̄(
t)

)2

Figure 8.8: Total errors for the outputs ẑi(t) of algorithm (8.1) when compared to z̄(t) for
the scenario described in Section 8.5. The configuration of (8.1) has ∆ = 3× 10−3, d = 0
and non-cooperative sampling. The performance of our proposal and the FOSM protocol
is degraded with respect to the case with cooperating sampling whereas the linear protocol
maintains a similar performance.

EDC UNDER ASYNCHRONOUS COMMUNICATION 162

Our proposal
Linear
FOSM

0 5 10 15 20 25 30
t

10 -3

10 -2

10 -1

100

101

√ ∑
N i=

1
(ẑ

i(
t)
−
z̄(
t)

)2

Figure 8.9: Total errors for the outputs ẑi(t) of algorithm (8.1) when compared to z̄(t)
for the scenario described in Section 8.5. The configuration of (8.1) has ∆ = d = 3×10−3

and cooperative sampling. The performance of our proposal and the FOSM protocol is
degraded with respect to the case with cooperative sampling and no delay, whereas the
linear protocol maintains a similar performance.

0 5 10 15 20 25 30

10 -4

10 -3

10 -2

10 -1

10 0

10 1

t

√ ∑
N i=

1
(ẑ

i,
0
(t

)
−
z̄(
t)

)2

∆ = 10−5, d = 0, C-S
∆ = 3 × 10−3, d = 0, C-S
∆ = 3 × 10−3, d = 0, non C-S
∆ = d = 3 × 10−3, C-S
∆ = 3 × 10−2, d = 0, C-S

Figure 8.10: Summary of the accuracy results for the outputs ẑi(t) of algorithm (8.1)
when compared to z̄(t) with different values of ∆, d and where C-S stands for cooperative
sampling.

Chapter Nine

Conclusions

In this thesis, we have explored various perception latency-aware solutions and consensus-
based cooperation strategies for information fusion in multi-agent systems. These ap-
proaches are particularly relevant when multiple robots aim to track a target of interest
using their onboard sensors while contending with resource constraints such as percep-
tion latency and network imperfections. Given the complexity of the overall problem,
we adopted a modular strategy throughout this thesis. By studying perception latency
scheduling problems independently of distributed consensus, we aimed to gain a deeper
understanding of the specific challenges posed by each aspect.

Chapter 2 explored a control problem involving discrete-time measurements with per-
ception latency and accuracy trade-offs. The objective was to develop perception-latency
schedulers that optimize control performance and resource usage. However, we encoun-
tered significant challenges related to stability and complexity. Our main approach was
to identify scheduling policy candidates that preserve stability, which led to an interesting
connection between this problem and the stability of switching systems. While we made
progress in ensuring stability, we discovered that finding the optimal stability-preserving
schedule is an NP-hard problem, making it impractical to obtain optimal solutions. De-
spite this limitation, our framework demonstrated that stability is maintained for any
schedule, opening possibilities for future research to explore more efficient sub-optimal
algorithms. While the problem complexity remains a challenge, the insights gained from
this chapter lay the groundwork for developing practical and effective perception-latency
scheduling algorithms in control systems.

Chapter 3, PLATE, focuses on the complementary problem of state estimation for
an unknown input system, such as a target of interest, using sensors with perception
latency and accuracy trade-offs. As with Chapter 2, this problem also faces challenges
related to the combinatorial nature of the solution space. In response, we proposed
an efficient approximate solution to tackle the state estimation problem under perception
latency constraints. The approach was validated using real-world data in a frame-skipping
context, demonstrating its practical applicability and effectiveness.

In the domain of multi-agent cooperation, we have focused on dynamic average con-
sensus techniques, which form the fundamental building blocks for information fusion in
the later parts of this thesis. Our approach has presented results in increasing complexity,

163

CONCLUSIONS 164

considering various network constraints. Chapter 4 introduced EDCHO in the context of
a static network topology, noiseless measurements, and continuous-time communication.
This laid the groundwork for understanding average consensus in a simplified setting.
Building on EDCHO, Chapter 5 presented REDCHO, an extension that accommodates
connectivity changes, enabling the inclusion of new agents into the network dynamically.
This extension allowed us to consider certain classes of OMAS systems and demonstrated
greater flexibility in handling real-world scenarios. In Chapter 6, REDCHO was extended
to account for measurement noise and compute weighted averages. This step towards in-
corporating more realistic factors represents a significant contribution, resulting in the
first distributed differentiator introduced in the literature.

The methods presented in Chapters 4, 5, and 6 offer a notable departure from the linear
consensus protocols commonly found in the existing literature. The key advantage of these
techniques lies in the usage of nonlinear consensus algorithms, resulting in exact dynamic
consensus without any steady-state error. In contrast, linear approaches often suffer
from bounded steady-state errors, even when operating without noise and in continuous-
time communication scenarios. The precise dynamic consensus features achieved by our
methods are of particular significance, especially when considering the presence of noise,
as investigated in Chapter 6, outperforming linear and other sliding mode protocols.

Our tools for achieving exact dynamic consensus are built upon high-order sliding
modes, which are instrumental in enabling the exactness feature. However, it is impor-
tant to acknowledge that these techniques are not immune to chattering, particularly
when dealing with delays and discrete-time updates. These limitations are thoroughly
quantified and analyzed in Chapter 8, demonstrating that our methods can still outper-
form state-of-the-art techniques in a wide range of scenarios, even under such challenging
conditions. By rigorously evaluating the performance of our methods in the presence of
delays and discrete-time updates, Chapter 8 sheds light on the robustness and effective-
ness of our techniques.

Chapters 7 and 8 addressed the specific challenges of integrating perception latency
and consensus in multi-agent systems. In Chapter 7, we explored a formation control
scenario where the dynamics of the robots surpass the speed of the perception stage,
making formation trajectory generation based on perception measurements non-trivial.
To tackle this issue, we introduced a smooth output estimator, ensuring stability of the
local controller for each robot. The smoothness property of the estimator also facilitated
the use of REDCHO as an information fusion building block, as it requires sufficiently
smooth time-varying inputs. This modular approach allowed us to leverage the advantages
of both perception latency scheduling and consensus techniques in a unified framework.

A key assumption made in Chapter 7 was that the communication between agents
occurs rapidly enough to be modeled in continuous-time. In real-world scenarios, com-
munication delays and asynchronous communication are often unavoidable, requiring the
consideration of these factors to achieve practical and robust multi-agent coordination.
Chapter 8 addressed this limitation by handling asynchronous discrete-time communica-
tion directly. This is the final piece of the architecture presented in Figure 1.4 in Chapter
1, providing a comprehensive framework for cooperative multi-agent systems under per-
ception latency and communication constraints.

165 CHAPTER 9

Future work:
Although this thesis has made significant contributions to perception latency scheduling
and consensus-based multi-robot cooperation, there are several opportunities for further
research:

Improved noise, robot and target models: This thesis employed a simplified noise model
for robot perception, assuming Gaussian distributions. While this approach may be
pragmatic, it could lead to unrealistic outcomes. Hence, exploring more comprehensive
noise models is worth considering. Moreover, the usage of linear state space systems for
both robot and target models might restrict the applicability of the findings to specific
types of robots. Extending the study to encompass more general nonlinear systems poses
significant challenges, which might be explored in future research.

Imperfect scheduling: In this thesis, it was assumed that perception latency scheduling
leads to a predictable sequence of sampling instants for each robot. However, in real-
world scenarios, computing systems often run on complex operating systems, which could
introduce additional jitter or imperfections to the commands due to scheduling with other
tasks. These disturbances may be inevitable, emphasizing the need for further research
on enhancing the robustness of the system to handle such challenges.

General switching topologies and directed graphs: In this thesis, the focus was primarily
on static networks for EDCHO and isolated connectivity change events for REDCHO-
based algorithms, providing basic robustness in OMAS. However, in low-resource networks
with cheap radios, significant connectivity changes may occur during an experiment based
on robot positions and proximity. Therefore, it becomes crucial to investigate robustness
to general switching network topologies. Additionally, in scenarios where robots broad-
cast information rather than establishing formal bi-directional communication links with
neighbors, analysis under directed communication graphs needs to be taken into account.
Addressing these issues requires non-trivial approaches, opening up interesting avenues
for future research.

Approximate optimization techniques: In Chapters 2 and 3, optimization algorithms
were employed for perception latency scheduling. While these algorithms aimed to achieve
performance guarantees such as stability, they could be conservative and not necessarily
the most efficient solutions from an implementation point of view. To explore more effi-
cient and less conservative algorithms, machine learning techniques can be employed. For
instance, in Chapter 3, it was demonstrated that a sub-optimal solution could be obtained
by discretizing the problem space and applying a classifier to determine the perception
method for each region. This classifier might be trained using reinforcement learning on
simulation examples or learning from a supervisor algorithm with performance guaran-
tees. However, ensuring that these approximations maintain similar performance guar-
antees in practical applications is a non-trivial challenge. Careful validation and testing
would be required to assess the effectiveness and reliability of such machine learning-based
approaches in real-world scenarios.

Coordination without global reference frames: In Chapter 7, a scenario with a global
reference frame is considered for the sake of simplicity. This assumption is reasonable
when using sensors such as GPS, ultra-wide band radio anchors, or visual fiducials in
the environment. However, a more robust, cost-effective, and scalable solution is one
that does not assume a global reference frame. To address this, our methods could be
adapted along with other ideas from the literature to resolve the problem using local
reference frames. Nonetheless, this adaptation process may not be trivial and requires

CONCLUSIONS 166

careful study and analysis.
Advanced formation and motion planning techniques: As discussed in Chapter 1, mo-

tion planning is a fundamental capability required in autonomous robots. However, in
this work, we simplified the problem by assuming a fixed formation around a target of
interest. To make our solutions more applicable in real-world scenarios, other aspects of
motion planning need to be taken into account. For instance, incorporating affine trans-
formations of a nominal formation based on the trajectory of leader agents could enhance
the adaptability of the system. Moreover, collision avoidance between agents is crucial
to ensure safe operation. More advanced motion planning and trajectory optimization
techniques should be considered to avoid deadlocks and dead-end situations.

Real-world validation and platform integration: While this thesis has extensively eval-
uated the proposed algorithms through simulations and theoretical results, only few real-
world experiments are provided such as the case of PLATE in Chapter 3. Hence, further
validation on physical robotic platforms is essential to demonstrate their effectiveness and
practicality. Integrating the perception latency-aware formation control and consensus
algorithms into real robotic systems would provide valuable insights and validate their
performance under real-world constraints.

Distributed optimization: In this thesis, EDC tools where used for information fusion
and formation control applications. However, as discussed in [176, 177], dynamic average
consensus algorithms can be used to enable distributed optimization with a wide range of
applications such as distributed training of deep neural networks. In fact, we have already
started exploring this idea in adjacent work of this thesis [107]. There, EDC tools are
applied to a particular optimization problem of finding the smallest ellipsoid containing
the intersection of a set of ellipsoids, with application to information fusion. Hence, this
motivates to use EDC to broader classes of optimization programs in the future.

Conclusiones

En esta tesis, se han explorado diversas soluciones para la calendarización de latencia de
percepción y estrategias de cooperación basadas en consenso para la fusión de información
en sistemas multiagente. Estos enfoques son especialmente relevantes cuando múltiples
robots intentan rastrear un objetivo de interés utilizando sus sensores a bordo, enfrentán-
dose a restricciones de recursos como la latencia de percepción y las imperfecciones de la
red.

Dada la complejidad del problema general, se adoptó una estrategia modular a lo largo
de esta tesis. Al estudiar los problemas de calendarización de la latencia de percepción
independientemente del consenso distribuido, se buscó obtener una comprensión más
profunda de los desafíos específicos presentados por cada aspecto.

El Capítulo 2 exploró un problema de control que involucra mediciones en tiempo
discreto con compensaciones entre latencia de percepción y precisión. El objetivo era
desarrollar calendarizadores de latencia de percepción que optimicen el rendimiento del
control y el uso de recursos. Sin embargo, se encontraron desafíos significativos relaciona-
dos con la estabilidad y la complejidad. El enfoque principal fue identificar candidatos
a políticas de calendarización que preserven la estabilidad, lo que llevó a una conexión
interesante entre este problema y la estabilidad de sistemas conmutativos. Aunque se
avanzó en asegurar la estabilidad, se descubrió que encontrar el programa óptimo que
preserve la estabilidad es un problema NP-difícil, lo que hace impráctico obtener solu-
ciones óptimas. A pesar de esta limitación, nuestro marco demostró que la estabilidad
se mantiene para cualquier programa, abriendo posibilidades para futuras investigaciones
que exploren algoritmos subóptimos más eficientes. Aunque la complejidad del problema
sigue siendo un desafío, las percepciones obtenidas en este capítulo sientan las bases para
desarrollar algoritmos prácticos y efectivos de calendarización de latencia de percepción
en sistemas de control.

El Capítulo 3, PLATE, se centra en el problema complementario de la estimación del
estado de un sistema de entrada desconocida, como un objetivo de interés, utilizando
sensores con compensaciones entre latencia de percepción y precisión. Al igual que en
el Capítulo 2, este problema también enfrenta desafíos relacionados con la naturaleza
combinatoria del espacio de soluciones. En respuesta, se propuso una solución aproximada
eficiente para abordar el problema de estimación del estado bajo restricciones de latencia
de percepción. El enfoque fue validado utilizando datos del mundo real en un contexto
de omisión de cuadros, demostrando su aplicabilidad práctica y efectividad.

En el dominio de la cooperación multiagente, nos hemos centrado en técnicas de

167

CONCLUSIONS 168

consenso promedio dinámico, que forman los bloques fundamentales para la fusión de
información en las partes posteriores de esta tesis. Nuestro enfoque ha presentado resul-
tados en creciente complejidad, considerando diversas restricciones de red. El Capítulo 4
introdujo EDCHO en el contexto de una topología de red estática, mediciones sin ruido y
comunicación en tiempo continuo. Esto sentó las bases para entender el consenso prome-
dio en un entorno simplificado. Basándose en EDCHO, el Capítulo 5 presentó REDCHO,
una extensión que acomoda cambios de conectividad, permitiendo la inclusión de nuevos
agentes en la red de manera dinámica. Esta extensión nos permitió considerar ciertas
clases de sistemas OMAS y demostró una mayor flexibilidad en el manejo de escenarios
del mundo real. En el Capítulo 6, REDCHO se amplió para tener en cuenta el ruido
en las mediciones y calcular promedios ponderados. Este paso hacia la incorporación de
factores más realistas representa una contribución significativa, resultando en el primer
diferenciador distribuido introducido en la literatura.

Los métodos presentados en los Capítulos 4, 5 y 6 ofrecen una notable salida de los pro-
tocolos de consenso lineal comúnmente encontrados en la literatura existente. La ventaja
clave de estas técnicas radica en el uso de algoritmos de consenso no lineales, resultando
en un consenso dinámico exacto sin ningún error en estado estacionario. En contraste,
los enfoques lineales a menudo sufren de errores en estado estacionario limitados, incluso
cuando operan sin ruido y en escenarios de comunicación en tiempo continuo. Las carac-
terísticas de consenso dinámico preciso logradas por nuestros métodos son de particular
importancia, especialmente al considerar la presencia de ruido, como se investigó en el
Capítulo 6, superando a los protocolos lineales y de modo deslizante.

Nuestras herramientas para lograr un consenso dinámico exacto se basan en modos
deslizantes de alto orden, que son fundamentales para habilitar la característica de ex-
actitud. Sin embargo, es importante reconocer que estas técnicas no son inmunes a la
conmutación, especialmente al lidiar con retrasos y actualizaciones en tiempo discreto. Es-
tas limitaciones se cuantifican y analizan exhaustivamente en el Capítulo 8, demostrando
que nuestros métodos aún pueden superar a las técnicas de vanguardia en una amplia
gama de escenarios, incluso bajo condiciones tan desafiantes. Al evaluar rigurosamente
el rendimiento de nuestros métodos en presencia de retrasos y actualizaciones en tiempo
discreto, el Capítulo 8 arroja luz sobre la robustez y efectividad de nuestras técnicas.

Los Capítulos 7 y 8 abordaron los desafíos específicos de integrar la latencia de per-
cepción y el consenso en sistemas multiagente. En el Capítulo 7, se exploró un esce-
nario de control de formación donde la dinámica de los robots supera la velocidad de
la etapa de percepción, haciendo que la generación de trayectorias de formación basada
en mediciones de percepción no sea trivial. Para abordar este problema, se introdujo
un estimador de salida suave, asegurando la estabilidad del controlador local para cada
robot. La propiedad de suavidad del estimador también facilitó el uso de REDCHO como
un bloque de construcción de fusión de información, ya que requiere entradas variables
en el tiempo suficientemente suaves. Este enfoque modular nos permitió aprovechar las
ventajas de la programación de latencia de percepción y las técnicas de consenso en un
marco unificado.

Una suposición clave hecha en el Capítulo 7 fue que la comunicación entre agentes
ocurre lo suficientemente rápido como para ser modelada en tiempo continuo. En esce-
narios del mundo real, los retrasos en la comunicación y la comunicación asincrónica son
a menudo inevitables, requiriendo la consideración de estos factores para lograr una coor-
dinación multiagente práctica y robusta. El Capítulo 8 abordó esta limitación manejando

169 CHAPTER

directamente la comunicación asincrónica en tiempo discreto. Esta es la pieza final de la
arquitectura presentada en la Figura 1.4 en el Capítulo 1, proporcionando un marco inte-
gral para sistemas multiagente cooperativos bajo restricciones de latencia de percepción
y comunicación.

Como trabajo futuro, se sugiere explorar modelos de ruido, robot y objetivo más com-
pletos, considerando sistemas de estado espacial no lineales y modelos de ruido más allá de
las distribuciones gaussianas. Otro aspecto es la programación imperfecta, reconociendo
que en escenarios reales, los sistemas de cómputo pueden introducir imperfecciones y
variaciones en la secuencia de muestreo. Además, se propone investigar topologías de red
cambiantes y gráficos dirigidos, especialmente relevantes en redes de bajo recurso con cam-
bios significativos en la conectividad. También se destacan las técnicas de optimización
aproximada, donde el aprendizaje automático podría ofrecer enfoques más eficientes y
menos conservadores, aunque validar su efectividad y fiabilidad en aplicaciones prácti-
cas será un desafío. Otra área de interés es la coordinación sin marcos de referencia
globales, adaptando los métodos actuales para trabajar con marcos de referencia locales.
Además, se resalta la importancia de técnicas avanzadas de planificación de formación
y movimiento, esenciales para la operación segura y eficaz de robots autónomos. Final-
mente, se enfatiza la necesidad de validación en el mundo real e integración de plataformas
para demostrar la efectividad de los algoritmos propuestos y, por último, se sugiere la
aplicación de herramientas de consenso dinámico promedio (EDC) en optimización dis-
tribuida, lo que podría tener aplicaciones en áreas como el entrenamiento distribuido de
redes neuronales profundas.

CONCLUSIONS 170

Appendix A

Sampled-data stochastic linear systems

In this section, we obtain expressions for x̂[k|k − 1] := E{x[k]|z[0], . . . , z[k − 1]}, the
distribution of x(t) as the closed-loop solution of (2.1) and an expression for (2.2).

Proposition A.1. Consider Gaussian assumptions over the initial conditions of (2.1),
the disturbance w(t) as well as the measurement noise. Then, given measurements

z[0], . . . , z[k − 1]

and a perception schedule p, the value of

x̂[k|k − 1] := E
{
x[k]

∣∣ z[0], . . . , z[k − 1]
}

is computed according to:

H[k] = Ad(∆pk)P̂[k]C>
(
CP̂[k]C> + Rpk

)−1

x̂[k + 1|k] = Ad(∆pk)x̂[k|k − 1] + Bd(∆pk)u[k] + H[k](z[k]−Cx̂[k|k − 1])
P̂[k + 1] = (Ad(∆pk)−H[k]C)P̂[k]Ad(∆pk)> + Wd(∆pk)

with x̂[0| − 1] = x̄0, P̂[0] = P0,

Ad(τ) := exp(Aτ),Bd(τ) :=
∫ τ

0
Ad(s)dsB,Wd(τ) :=

∫ τ

0
Ad(s)WAd(s)>ds.

Moreover, cov{x̂[k|k − 1]− x[k]} = P̂[k].

Proof: First, note that the explicit solution to (2.1) in the interval t− τk ∈ [0,∆pk) is
given by

x(t) = Ad(t− τk)x[k] + Bd(t− τk)u[k] + wd(t) (A.1)

with wd(t) ∼ N (0,Wd(t−τk) [130, Section 4.5.2]. Note that evaluating (A.1) at t = τk+1
leads to the discrete-time system which transitions from x[k] to x[k+1]. Thus, the result
follows by applying the estimator in [119, Theorem 4.1, Page 228].

171

SAMPLED-DATA STOCHASTIC LINEAR SYSTEMS 172

Proposition A.2. Let p a perception schedule and

Λ(t− τk) := Ad(t− τk) + Bd(t− τk)Lpk , t− τk ∈ [0,∆pk)

The solution x(t) of the SDE in (2.1) under the controller u[k] = Lpk x̂[k|k − 1] given
samples {z[0], . . . , z[k − 1]} is

x(t) = Λ(t− τk)x[k] + wΛ(t) (A.2)

for t− τk ∈ [0,∆pk) and wΛ(t) ∼ N (0,WΛ(t− τk)) with:

WΛ(t− τk) = Bd(t− τk)LpkP̂[k]Lpk>Bd(t− τk)> + Wd(t− τk) (A.3)

Moreover, x(t) ∼ N (x̄(t),P(t)) for t− τk ∈ [0,∆pk) with

x̄(t) = Λ(t− tk)x[k], x̄[0] = x̄0

P(t) = Λ(t− τk)P[k]Λ(t− τk)> + WΛ(t− τk)
(A.4)

with P[0] = P0. In addition, with α := att(p; [0, Tf]), cost (2.2) is

J (p) =

λx

Tf

∫ Tf

0
x̄(t)>Qx̄(t) + tr(QP(t))dt+ λx

(
x̄(Tf)>Qf x̄(Tf) + tr(QfP(Tf))

)
+ λr
Tf

α−1∑
k=0

rpk

(A.5)

Proof: Proposition A.1 implies that

x̂[k|k − 1] = x[k] + x̃[k]

where x̃[k] ∼ N (0, P̂[k]) given samples {z[0], . . . , z[k − 1]}. Hence, using

u[k] = Lpkx[k] +Lpk x̃[k]

in (A.1) leads directly to (A.2) with

wΛ = Bd(t− τk)Lpk x̃[k] + wd(t).

Moreover, according to [130, Section 4.5.2] the process {wd[0], . . . ,wd[k],wd(t)} is a white
noise process and thus, its individual random variables are uncorrelated. Therefore, x̃[k]
and wd(t) are uncorrelated. Henceforth, computing the covariance of wΛ(t) leads to
(A.3). Furthermore, direct computation of the expectation and covariance over (A.2)
leads to (A.4). Finally, (A.5) is computed as in [8, Theorem 1].

Appendix B

C? sets and gauge functions

Definition B.1. [115, Definition 1] A C? set S ⊂ Rn is a compact, star-convex set with
the origin as a center i.e., for any x ∈ S the whole line

{xλ ∈ Rn : xλ = λx, λ ∈ [0, 1]}

is contained in S and 0 ∈ int(S). Moreover, the gauge function of a C? set S is defined as

Ψ(x;S) := inf{α ∈ R : α ≥ 0, x ∈ αS}

This is, Ψ(x;S) is the smallest scale α such that x is still contained in αS. In the
following, we enumerate some properties regarding C? sets and their gauge functions:

Lemma B.2. Let S be a C? set and Ψ(•;S) : Rn → [0,+∞) be its gauge function. Then,
the following statements are true:

1) Let 0 < α < 1 and x ∈ S, then αx ∈ S.

2) Let 0 < α < β, then αS ⊂ βS.

3) Let α := Ψ(x;S), then x ∈ ∂(αS).

4) Ψ(•;S) is homogeneous of degree one, i.e. Ψ(βx;S) = βΨ(x;S), ∀β ≥ 0 and ∀x ∈ Rn.

5) Let S′ be a C? set with S′ ⊂ S. Thus Ψ(x;S′) > Ψ(x;S),∀x ∈ Rn.

6) Let S0 = {x ∈ Rn : xTM0x ≤ 1} for some positive definite matrix M0. Then,
Ψ(x;S0) =

√
xTM0x for any x ∈ Rn.

Proof: These properties can be verified equivalently as the properties of gauge functions
of standard convex sets [178, Page 28]. Item 1) follows from the definition of a C? set,
since the whole line xα = αx for α ∈ [0, 1) and x ∈ S, is contained in S. Item 2) follows
from the fact that α/β < 1 and thus, any element α/βx with x ∈ S, is contained in S due
to 1). Therefore, α/βS ⊂ S, or equivalently αS ⊂ βS. For 3) we proceed by contradiction.

173

C? SETS AND GAUGE FUNCTIONS 174

Assume that x ∈ int(αS), then for exists ε(x) > 0 such that the ball {xb : ‖xb−x‖ ≤ ε(x)}
is contained in int(αS) [179, Definition 2.18-(e)]. Choose

x∗b =
(

1 + ε(x)
‖x‖

)
x

which satisfies
‖x∗b − x‖ = ε(x),

and (
1 + ε(x)
‖x‖

)
x ∈ int(αS) ⊂ αS

or equivalently

x ∈ α
(

1 + ε(x)
‖x‖

)−1
S.

However
α

(
1 + ε(x)
‖x‖

)−1
< α

which is a contradiction for the definition of α, resulting in x /∈ int(αS) or equivalently
x ∈ ∂(αS). Item 4) is enlisted in [115, Property 1] without proof. However, it can be
verified by direct computation:

Ψ(βx;S) = inf{α ∈ R : α ≥ 0, βx ∈ αS}
= inf{α ∈ R : α = βα′, α′ ≥ 0, x ∈ α′S}
= β inf{α′ ∈ R : α′ ≥ 0, x ∈ α′S} = βΨ(x;S)

For item 5) let y = x/Ψ(x;S). Thus,

Ψ(y;S) = Ψ
(

x
Ψ(x;S) ;S

)
= Ψ(x;S)

Ψ(x;S) = 1

by item 4). Hence, y ∈ ∂S by item 3). However, since S′ ⊂ S, therefore y /∈ S′. Hence,

Ψ(y;S′) = Ψ
(

x
Ψ(x;S) ;S′

)
> 1

or equivalently Ψ (x;S′) > Ψ(x;S) by item 3).
Finally, for 6), note that αS0 = {x ∈ Rn : xTM0x ≤ α2}. Thus,

Ψ(x;S0) = inf{α ∈ R : α ≥ 0, x ∈ αS0}

= inf{α ∈ R : α ≥ 0, xTM0x ≤ α2} = inf
[√

xTM0x,∞
)

Appendix C

Auxiliary results in vector and matrix analysis

Proposition C.1. Let λ = [λ1, . . . , λn]> ∈ Rn and define

‖λ‖p =
(

n∑
i=1
|λi|p

)1/p

.

Then, with 0 < r < s, the following inequalities are satisfied:

a) [180, Theorem 16, Page 26] ‖λ‖r ≤ n
1
r−

1
s ‖λ‖s.

b) [180, Theorem 19, Page 28] ‖λ‖s ≤ ‖λ‖r.

Lemma C.2. Let M1,M2 ∈ Rn×n be positive definite matrices such that M1 � M2.
Then, the following inequalities are satisfied:

a) tr(M1) ≤ tr(M2).

b) ‖M1‖F ≤
√
n‖M2‖F

Proof: First, note that M2 −M1 is positive semi-definite. Then, use the spectral
Theorem [123, Theorem 2.5.6] to conclude that the eigenvalues {λi}ni=1 of M2 −M1 are
all different non-negative real numbers. Thus,

tr(M2)− tr(M1) = tr(M2 −M1) =
n∑
i=1

λi ≥ 0,

where the relation between the trace and the sum of the eigenvalues was used in the last
step [123, Page 50] completing the proof for a). Similarly, M1,M2 have non-negative
eigenvalues too. Let λ1,λ2 ∈ Rn be vectors containing the eigenvalues of M1,M2 respec-
tively. Thus, item a) reads ‖λ1‖1 ≤ ‖λ2‖1 using the notation of Proposition C.1 in C.
Proposition C.1-a) implies ‖λ2‖1 ≤

√
n‖λ2‖2. Proposition C.1-b) implies ‖λ1‖2 ≤ ‖λ1‖1.

Thus, ‖λ1‖2 ≤
√
n‖λ2‖2. Now, recall that

‖λ1‖2 =

√√√√ n∑
i=1

λi(M1)2 ≡ ‖M1‖F

175

AUXILIARY RESULTS IN VECTOR AND MATRIX ANALYSIS 176

where λi(M1) are the eigenvalues of M1 and similarly for M2 [123, Page 342]. Thus,
item b) follows.

Lemma C.3. Let M1,M2 ∈ Rn×n be symmetric matrices satisfying M1 �M2. Then,
(M1 ⊗M1) � (M2 ⊗M2).

Proof: First, recall from [123, Theorem 7.7.3-(a)] that M1 �M2 if and only if

ρ(M−1
2 M1) ≤ 1

where ρ(•) denotes the spectral radius [123, Definition 1.2.9]. Then,

1 ≥ ρ(M−1
2 M1)2 = ρ((M−1

2 M1)⊗ (M−1
2 M1)) = ρ((M2 ⊗M2)−1(M1 ⊗M1)),

which implies (M1 ⊗M1) � (M2 ⊗M2) using [123, Theorem 7.7.3-(a)].

Corollary C.4. Let x ∈ Rn and 0 < α < 1. Then,

1. ‖ dxcα ‖ ≤ n 1−α
2 ‖x‖α

2. x> dxcα ≥ ‖x‖α+1

Proof: For the first item, note that

‖ dxcα ‖ 1
α =

(
n∑
i=1
|xi|2α

) 1
2α

= ‖x‖2α.

Moreover, Proposition C.1-(a) with 2α < 2 leads to

‖x‖2α ≤ n
1

2α−
1
2 ‖x‖2 = n

1−α
2α ‖x‖.

For the second item note that

x> dxcα =
n∑
i=1

xi dxicα =
n∑
i=1
|xi|α+1 = (‖x‖α+1)α+1

.

Moreover, Proposition C.1-(b) with α+ 1 < 2 leads to ‖x‖α+1 ≥ ‖x‖2. Hence,

x> dxcα = (‖x‖α+1)α+1 ≥ ‖x‖α+1.

Proposition C.5. Let x ∈ Rn and A ∈ Rm×n. Then,

smin(A)‖x‖ ≤ ‖Ax‖ ≤ smax(A)‖x‖.

Proof: This proposition is a direct consequence of the Rayleigh inequality [123, Theo-
rem 4.2.2] and the definition of the singular values of A in [123, Page 151].

Appendix D

Auxiliary results in algebraic graph theory

An undirected graph G = (I, E) consists of a node set I of n nodes and an edge set E of
` edges [158, Page 1]. An edge from node i to node j is denoted as (i, j), which means
that node i can communicate to node j in a bidirectional way. G is said to be connected
if there is a path between any two nodes. A subgraph is a cycle if every node in it has
exactly two neighbors. G is said to be a tree, if it is connected and it has no cycles. A
spanning tree is a subgraph of G if it contains all its nodes and is a tree. If G is connected,
there is always a spanning tree [158, Page 4]. Moreover, a tree has exactly ` = N−1 edges
[158, Page 53]. Furthermore, we define the union of two undirected graphs GA = (IA, EA)
and GB = (IB , EB) as GAB = (IA ∪ IB , EA ∪ EB).

Definition D.1 (Matrices of interest for G). The following matrices are defined for G:

1. [158, Page 163] The adjacency matrix A ∈ RN×N of an undirected graph is defined
by its components [A]ij which comply aij = [A]ij := 1 if (i, j) ∈ E and aij := 0
otherwise.

2. [158, Page 167] An incidence matrix D ∈ RN×` for G has a column per edge, where
all elements of the column corresponding to edge (i, j) are 0 except for the i-th
element which is 1 and the j-th which is −1.

3. [158, Page 279] The Laplacian matrix of G is defined as Q := DD> ∈ RN×N.

4. [158, Page 305] For any connected graph G, the algebraic connectivity c(G) > 0 is
defined as the second smallest eigenvalue of Q.

Proposition D.2 (Some algebraic properties of G). Let G be a connected undirected
graph, x ∈ RN be any vector orthogonal to 1 and M be the dimension of the null space
of D (flow space). Then,

1. [158, Lemma 13.1.1] rank(Q) = N− 1 .

2. [158, Corollary 13.4.2] x>Qx ≥ c(G)x>x.

3. [158, Page 280] D>1 = 0.

177

AUXILIARY RESULTS IN ALGEBRAIC GRAPH THEORY 178

4. [158, Theorem 14.2.1] M = `− n+ 1.

Proposition D.3. Let GAB = (I, E) be an undirected connected graph with flow space
of dimension M > 0. Then, there exists undirected connected graphs GA,GB over the
same nodes I, with flow space of dimension M − 1 whose union is GAB .

Proof: Choose any spanning tree Gtree
AB of GAB with `tree = N − 1 edges. Then, from

Proposition D.2-(4), ` − `tree = M > 0. Consider first M = 1. Hence, there is exactly
one edge which isn’t part of the spanning tree. Moreover, denote this edge as e = (i, j)
where i, j ∈ I. Then, since e is not in the spanning tree, it is in a cycle and i, j have at
least two neighbors each. Therefore, there are at least two ways to reach i and j other
nodes. Consequently there are at least two different spanning trees GA,GB (with flow
space of dimension M − 1 = 0) which contain e. Now, for M ≥ 2, there exists at least
two edges e, e′ which are not in the spanning tree. Let GA and GB be GAB without e and
e′ respectively. These graphs are connected over the same node set I since they contain
the same spanning tree of GAB . Moreover, they have flow space of dimension M − 1 by
Proposition D.2-(4) since they have one edge less than GAB .

Proposition D.4. Let G be connected. Then any x ∈ RN can be written as x = α1+Dx̃
with α ∈ R and x̃ ∈ R`.

Proof: Let λ1, . . . , λn and v1, . . . ,v2 be the eigenvalues and eigenvectors of Q respec-
tively with ‖vi‖ = 1, i = 1, . . . , n. First, from Propositions D.2-(1) and D.2-(3) we know
that Q has λ1 = 0 and that (1/

√
N)1 is its only eigenvector. Hence, {(1/

√
N)1,v2, . . . ,vn}

is an ortho-normal basis of RN by the spectral Theorem [123, Theorem 2.5.6]. Conse-
quently, any vector x ∈ RN can be decomposed as a vector in the image of Q and a
component parallel to 1, equivalently x = α1+ Qy for α ∈ R and y = RN. Additionally,
let x̃ = D>y obtaining x = α1+ DD>y = α1+ Dx̃.

Appendix E

Exact differentiation

In this section we provide some results that were used in [96] to show the stability of
the Levant’s arbitrary order exact differentiator. In particular, we are interested in the
properties of the recursive system

σ̇1(t) = σ2(t)− λ1 dσ1(t) + θ(t)c
m−1
m

σ̇µ(t) = σµ+1(t)− λµ dσµ(t)− σ̇µ−1(t)c
m−µ

m−(µ−1)

for 1 < µ < m

σ̇m(t) ∈ −λm dσm(t)− σ̇m−1(t)c0 + [−L,L]

(E.1)

with σµ ∈ R, 1 ≤ µ ≤ m, and the measurable map θ : R+ → [−θ̄, θ̄] with θ̄ > 0. Two
important results regarding the contraction property of (E.1) are given.

Proposition E.1 (Arbitrary boundedness of (E.1)). [96, Lemma 7] Let θ : R+ → [−θ̄, θ̄]
satisfy the condition that

∫ t0+δ
t0

|θ(τ)|dτ < K for some K > 0. Then, for any 0 < Ωµ <
Ω′µ, 0 ≤ µ ≤ m there exists δ > 0 (sufficiently small) such that any trajectory of (E.1)
satisfying |σµ(t0)| ≤ Ωµ will satisfy |σµ(t)| ≤ Ω′µ,∀t ∈ [t0, t0 + δ].

Proposition E.2 (Contraction property of (E.1)). [96, Lemma 8] For any 0 < ωµ <
Ωµ, 1 ≤ µ ≤ m there exists Ωµ < Ψµ, T > 0, some gains λ1, . . . , λm > 0 (sufficiently big)
and θ̄ > 0 (sufficiently small) such that any trajectory of (E.1) satisfying |σµ(t0)| ≤ Ωµ
will satisfy |σµ(t)| ≤ Ψµ,∀t ∈ [t0, t0 + T] and |σµ(t)| ≤ ωµ,∀t ∈ [T,+∞).

179

EXACT DIFFERENTIATION 180

Appendix F

Homogeneous differential inclusions

In this section, we consider dynamical systems characterized by set-valued maps f : Rn ⇒
Rn instead of typical vector fields. Moreover, we assume some regularity conditions on
such maps called the basic conditions. We say that a set valued map f : S ⇒ Rn
satisfies the basic conditions if for all x ∈ S the set f(x) is non-empty, bounded, closed,
convex and the map f is upper semi-continuous in x [181, Chapter 2.7]. The Filippov
regularization for vector fields [155], commonly used to study discontinuous dynamical
systems, satisfy the basic conditions by construction. In the following, let ∆r(λ) =
diag([λr1 , . . . , λrn]) where r = [r1, . . . , rn] are called the weights and λ > 0. For any
x ∈ Rn, the vector ∆r(λ)x = [λr1x1, . . . , λ

rnxn]T is called its standard dilation (weighted
by r). The following are some definitions and results of interest regarding the so called
r-homogeneity with respect to the standard dilation.

Definition F.1 (Homogeneous scalar functions). [159, Definition 4.7] A scalar function
V : Rn → R is said to be r-homogeneous of degree d if V (∆r(λ)x) = λdV (x) for any
x ∈ Rn.

Definition F.2 (Homogeneous set-valued fields). [159, Definition 4.20] A set-valued vec-
tor field f : Rn ⇒ Rn is said to be r-homogeneous of degree d if f(∆r(λ)x) = λd∆r(λ)f(x)
for any x ∈ Rn.

Proposition F.3. [163, Lemma 4.2] Let V1, V2 : Rn → R be continuous functions, r-
homogeneous of degrees d1 > 0, d2 > 0 (respectively). Moreover, let V1(x) to be positive
definite. Then, ∀x ∈ Rn,

βmV1(x)d2/d1 ≤ V2(x) ≤ βMV1(x)d2/d1

with βm = inf{V2(x),∀x : V1(x) = 1} and βM = sup{V2(x),∀x : V1(x) = 1}.

Proposition F.4. [163, Section 5] Let V : Rn → R and f : Rn ⇒ Rn be a scalar field and
set valued vector field, r-homogeneous of degrees l and m respectively. Then, LfV (x) is
r-homogeneous of degree l +m.

Proposition F.5. [159, Theorem 4.24] Let f : Rn ⇒ Rn be r-homogeneous of degree
m satisfying the standard assumptions. Moreover, assume that the differential inclusion

181

HOMOGENEOUS DIFFERENTIAL INCLUSIONS 182

ẋ ∈ f(x) is strongly, globally asymptotically stable. Then, for any k > max(−m, 0), there
exists V,W : Rn → R continuously differentiable in all Rn and Rn \ {0} respectively.
Moreover, V is positive definite and r-homogeneous of degree k and W is strictly positive
outside the origin and r-homogeneous of degree k +m. Finally, V̇ ≤ −W (x),∀x 6= 0.

Bibliography

[1] R. Aldana-Lopez, R. Aragues, and C. Sagues, “EDCHO: High order exact dynamic
consensus,” Automatica, vol. 131, p. 109750, 2021.

[2] R. Aldana-Lopez, R. Aragues, and C. Sagues, “REDCHO: Robust exact dynamic
consensus of high order,” Automatica, vol. 141, p. 110320, 2022.

[3] R. Aldana-Lopez, R. Aragues, and C. Sagues, “Latency vs precision: Stability
preserving perception scheduling,” Automatica, vol. 155, p. 111123, 2023.

[4] R. Aldana-Lopez, R. Aragues, and C. Sagues, “Perception-latency aware distributed
target tracking,” Information Fusion, p. 101857, 2023.

[5] R. Aldana-Lopez, R. Aragues, and C. Sagues, “PLATE: A perception-latency aware
estimator,” ISA Transactions, vol. 142, pp. 716–730, 2023.

[6] R. Aldana-Lopez, R. Aragues, and C. Sagues, “Distributed differentiation with noisy
measurements for exact dynamic consensus,” IFAC-PapersOnLine, 2023. 22th IFAC
World Congress.

[7] R. Aldana-Lopez, R. Aragues, and C. Sagues, “EDC: Exact dynamic consen-
sus,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2921–2926, 2020. 21th IFAC World
Congress.

[8] R. Aldana-Lopez, R. Aragues, and C. Sagues, “Attention vs. precision: latency
scheduling for uncertainty resilient control systems,” in 2020 59th IEEE Conference
on Decision and Control (CDC), pp. 5697–5702, 2020.

[9] R. Aldana-Lopez, R. Aragues, and C. Sagues, “Quasi-exact dynamic consensus
under asynchronous communication and symmetric delays,” Submitted to IEEE
Transactions on Automatic Control.

[10] I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Precise dynamic consensus under
event-triggered communication,” Machines, vol. 11, no. 2, 2023.

[11] D. Gomez-Gutierrez, R. Aldana-Lopez, R. Seeber, M. T. Angulo, and L. Fridman,
“An arbitrary-order exact differentiator with predefined convergence time bound
for signals with exponential growth bound,” Automatica, vol. 153, p. 110995, 2023.

183

BIBLIOGRAPHY 184

[12] R. Aldana-Lopez, R. Seeber, D. Gomez-Gutierrez, M. T. Angulo, and M. Defoort,
“A redesign methodology generating predefined-time differentiators with bounded
time-varying gains,” International Journal of Robust and Nonlinear Control, pp. 1–
16, 2022.

[13] R. Aldana-Lopez, D. Gomez-Gutierrez, R. Aragues, and C. Sagues, “Dynamic con-
sensus with prescribed convergence time for multileader formation tracking,” IEEE
Control Systems Letters, vol. 6, pp. 3014–3019, 2022.

[14] A. Ramirez-Perez, R. Aldana-Lopez, O. Longoria-Gandara, J. Valencia-Velasco,
L. Pizano-Escalante, and R. Parra-Michel, “Modular arithmetic cpm for sdr plat-
forms,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1,
2022.

[15] H. Haimovich, R. Seeber, R. Aldana-Lopez, and D. Gomez-Gutierrez, “Differentia-
tor for noisy sampled signals with best worst-case accuracy,” IEEE Control Systems
Letters, pp. 1–1, 2021.

[16] R. Aldana-Lopez, D. Gomez-Gutierrez, M. A. Trujillo, M. Navarro-Gutierrez,
J. Ruiz-Leon, and H. M. Becerra, “A predefined-time first-order exact differen-
tiator based on time-varying gains,” International Journal of Robust and Nonlinear
Control, vol. 31, pp. 5510–5522, 2021.

[17] R. Aldana-Lopez, D. Gomez-Gutierrez, E. Jimenez-Rodriguez, J. D. Sanchez-
Torres, and M. Defoort, “Generating new classes of fixed-time stable systems with
predefined upper bound for the settling time,” International Journal of Control,
vol. 0, no. 0, pp. 1–13, 2021.

[18] L. Campos-Macias, R. Aldana-Lopez, R. de la Guardia, J. I. Parra-Vilchis, and
D. Gomez-Gutierrez, “Autonomous navigation of mavs in unknown cluttered envi-
ronments,” J. Field Rob., vol. 38, no. 2, pp. 307–326, 2021.

[19] M. Trujillo, R. Aldana-Lopez, D. Gomez-Gutierrez, M. Defoort, J. Ruiz-Leon, and
H. M. Becerra, “Autonomous and non-autonomous fixed-time leader-follower con-
sensus for second-order multi-agent systems,” Nonlinear Dyn., vol. 102, pp. 1–18,
12 2020.

[20] R. Aldana-Lopez, D. Gomez-Gutierrez, E. Jimenez-Rodriguez, J. Sanchez-Torres,
and A. Loukianov, “On predefined-time consensus protocols for dynamic networks,”
Journal of the Franklin Institute, vol. 357, no. 16, pp. 11880–11899, 2020. Finite-
Time Stability Analysis and Synthesis of Complex Dynamic Systems.

[21] J. D. Sanchez-Torres, A. J. Munoz-Vazquez, M. Defoort, R. Aldana-Lopez, and
D. Gomez-Gutierrez, “Predefined-time integral sliding mode control of second-order
systems,” International Journal of Systems Science, vol. 51, no. 16, pp. 3425–3435,
2020.

[22] J. Valencia-Velasco, O. Longoria-Gandara, R. Aldana-Lopez, and L. Pizano-
Escalante, “Low-complexity maximum-likelihood detector for IoT BLE devices,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4737–4745, 2020.

185

[23] E. Jimenez-Rodriguez, R. Aldana-Lopez, J. D. Sanchez-Torres, D. Gomez-
Gutierrez, and A. G. Loukianov, “Consistent discretization of a class of predefined-
time stable systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 628–633, 2020. 21st
IFAC World Congress.

[24] I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Event-based visual tracking
in dynamic environments,” in ROBOT2022: Fifth Iberian Robotics Conference
(D. Tardioli, V. Matellan, G. Heredia, M. F. Silva, and L. Marques, eds.), (Cham),
pp. 175–186, Springer International Publishing, 2023.

[25] I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Event-triggered consensus for
continuous-time distributed estimation,” IFAC-PapersOnLine, 2023. 22th IFAC
World Congress.

[26] I. Perez-Salesa, R. Aldana-Lopez, and C. Sagues, “Remote estimation with bounded
uncertainty under dynamic event-triggered communication,” Submitted to IEEE
Transactions on Systems, Man, and Cybernetics.

[27] R. Aldana-Lopez, M. Aranda, R. Aragues, and C. Sagues, “Robust affine formation
tracking,” Submitted to IEEE Transactions on Automatic Control.

[28] P. Chen, Y. Dang, R. Liang, W. Zhu, and X. He, “Real-time object tracking on a
drone with multi-inertial sensing data,” IEEE Trans. Intell. Transp. Syst., vol. 19,
no. 1, pp. 131–139, 2018.

[29] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots to observe moving
targets: Review,” IEEE Trans. Cybern., vol. 48, no. 1, pp. 187–198, 2018.

[30] Y. Lan, Z. Lin, M. Cao, and G. Yan, “A distributed reconfigurable control law for
escorting and patrolling missions using teams of unicycles,” in 49th IEEE Confer-
ence on Decision and Control (CDC), pp. 5456–5461, 2010.

[31] F. Castanedo, J. Garcia, M. A. Patricio, and J. M. Molina, “Data fusion to im-
prove trajectory tracking in a cooperative surveillance multi-agent architecture,”
Information Fusion, vol. 11, no. 3, pp. 243–255, 2010. Agent-Based Information
Fusion.

[32] L.-E. Caraballo, A. Montes-Romero, J.-M. Diaz-Banez, J. Capitan, A. Torres-
Gonzalez, and A. Ollero, “Autonomous planning for multiple aerial cinematogra-
phers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1509–1515, 2020.

[33] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation
with aerial robots,” Auton. Robots, vol. 30, no. 1, pp. 73–86, 2011.

[34] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous
Mobile Robots. The MIT Press, 2nd ed., 2011.

[35] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE Robotics
Automation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

BIBLIOGRAPHY 186

[36] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: A versatile and
accurate monocular slam system,” IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1147–1163, 2015.

[37] R. Mur-Artal and J. D. Tardos, “Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras,” IEEE Transactions on Robotics, vol. 33,
no. 5, pp. 1255–1262, 2017.

[38] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Comput.
Surv., vol. 38, no. 4, pp. 13–es, 2006.

[39] B. Bescos, C. Campos, J. D. Tardos, and J. Neira, “Dynaslam ii: Tightly-coupled
multi-object tracking and slam,” IEEE Rob. Autom. Lett., vol. 6, no. 3, pp. 5191–
5198, 2021.

[40] F. Madrigal and J.-B. Hayet, “Motion priors based on goals hierarchies in pedestrian
tracking applications,” Machine Vision and Applications, vol. 28, pp. 341–359, 2017.

[41] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev., vol. 37, pp. 311–324, 2007.

[42] S. R. E. Datondji, Y. Dupuis, P. Subirats, and P. Vasseur, “A survey of vision-based
traffic monitoring of road intersections,” IEEE Trans. Intell. Transp. Syst., vol. 17,
pp. 2681–2698, 2016.

[43] K. Hashimoto and D. V. Dimarogonas, “Resource-aware networked control sys-
tems under temporal logic specifications,” Discrete Event Dynamic Systems, vol. 29,
no. 4, pp. 473–499, 2019.

[44] J. Araújo, “Design, implementation and validation of resource-aware and resilient
wireless networked control systems,” 2014.

[45] D. Falanga, S. Kim, and D. Scaramuzza, “How fast is too fast? the role of perception
latency in high-speed sense and avoid,” IEEE Rob. Autom. Lett., vol. 4, no. 2,
pp. 1884–1891, 2019.

[46] Y. V. Pant, H. Abbas, K. Mohta, R. A. Quaye, T. X. Nghiem, J. Devietti, and
R. Mangharam, “Anytime computation and control for autonomous systems,” IEEE
Trans. Control Syst. Technol., vol. 29, no. 2, pp. 768–779, 2021.

[47] H. M. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual slam: Why filter?,”
Image Vis. Comput., vol. 30, pp. 65–77, 2012.

[48] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO:
Semidirect Visual Odometry for Monocular and Multicamera Systems,” IEEE
Trans. Rob., vol. 33, no. 2, pp. 249–265, 2017.

[49] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” PROC CVPR IEEE, pp. 779–788, 2016.

[50] S. Beery, G. Wu, V. Rathod, R. Votel, and J. Huang, “Context r-cnn: Long term
temporal context for per-camera object detection,” PROC CVPR IEEE, pp. 13072–
13082, 2020.

187

[51] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[52] J. Amirian, B. Zhang, F. V. Castro, J. J. Baldelomar, J.-B. Hayet, and J. Pet-
tre, “Opentraj: Assessing prediction complexity in human trajectories datasets,”
Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 379–387,
2020.

[53] L. Wang, L. Zhang, and Z. Yi, “Trajectory predictor by using recurrent neural
networks in visual tracking,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3172–3183,
2017.

[54] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wo-
jna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for mod-
ern convolutional object detectors,” PROC CVPR IEEE, pp. 3296–3297, 2017.

[55] F. Fraundorfer, L. Heng, D. Honegger, G. Lee, L. Meier, P. Tanskanen, and M. Polle-
feys, “Vision-based autonomous mapping and exploration using a quadrotor mav,”
in IEEE/RSJ IROS, pp. 4557–4564, 2012.

[56] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local exploration for
replanning in cluttered unknown environments for micro-aerial vehicles,” IEEE Rob.
Autom. Lett., 2018.

[57] H. Hu, D. Dey, M. Hebert, and J. Bagnell, “Learning anytime predictions in neu-
ral networks via adaptive loss balancing,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 3812–3821, 2019.

[58] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and T. Abdelza-
her, “Scheduling real-time deep learning services as imprecise computations,” IEEE
26th International Conference on Embedded and Real-Time Computing Systems and
Applications, 2020.

[59] T. Pfeil, “ItNet: iterative neural networks with tiny graphs for accurate and efficient
anytime prediction,” CoRR, vol. abs/2101.08685, 2021.

[60] M. Guan, C. Wen, M. Shan, C.-L. Ng, and Y. Zou, “Real-time event-triggered
object tracking in the presence of model drift and occlusion,” IEEE Trans. Ind.
Electron., vol. 66, no. 3, pp. 2054–2065, 2019.

[61] “IEEE standard for information technology– local and metropolitan area networks–
specific requirements– part 15.1a: Wireless medium access control (mac) and phys-
ical layer (phy) specifications for wireless personal area networks (wpan),” IEEE
Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp. 1–700, 2005.

[62] “IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-2015 (Revision
of IEEE Std 802.15.4-2011), pp. 1–709, 2016.

[63] B. Crow, I. Widjaja, J. Kim, and P. Sakai, “Ieee 802.11 wireless local area networks,”
IEEE Communications Magazine, vol. 35, no. 9, pp. 116–126, 1997.

BIBLIOGRAPHY 188

[64] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in networked
control systems-a survey,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 1, pp. 403–416, 2013.

[65] J. M. Hendrickx and S. Martin, “Open multi-agent systems: Gossiping with random
arrivals and departures,” in 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pp. 763–768, 2017.

[66] S. Kar and J. M. F. Moura, “Sensor networks with random links: Topology design
for distributed consensus,” IEEE Transactions on Signal Processing, vol. 56, no. 7,
pp. 3315–3326, 2008.

[67] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez,
“Tutorial on dynamic average consensus: The problem, its applications, and the
algorithms,” IEEE Control Systems Magazine, vol. 39, no. 3, pp. 40–72, 2019.

[68] L. Ballotta, L. Schenato, and L. Carlone, “From sensor to processing networks:
Optimal estimation with computation and communication latency,” in IFAC World
Congress, 2020.

[69] K. Gatsis, H. Hassani, and G. J. Pappas, “Latency-reliability tradeoffs for state
estimation,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1009–1023, 2021.

[70] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for
nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 9, pp. 2030–2042,
2010.

[71] S. Ristevski, T. Yucelen, and J. A. Muse, “An event-triggered distributed control
architecture for scheduling information exchange in networked multiagent systems,”
IEEE Trans. Control Syst. Technol., pp. 1–12, 2021.

[72] L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J. Richard, and S. I. Niculescu,
“Recent developments on the stability of systems with aperiodic sampling: An
overview,” Automatica, vol. 76, pp. 309–335, 2017.

[73] M. Casares and S. Velipasalar, “Adaptive methodologies for energy-efficient ob-
ject detection and tracking with battery-powered embedded smart cameras,” IEEE
Trans. Circuits Syst. Video Technol., vol. 21, no. 10, pp. 1438–1452, 2011.

[74] H. Luo, W. Xie, X. Wang, and W. Zeng, “Detect or track: Towards cost-effective
video object detection/tracking,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 8803–8810, 2019.

[75] X. Wu, K. Zhang, and C. Sun, “Optimal scheduling of multiple sensors in continuous
time,” ISA Transactions, vol. 53, no. 3, pp. 793–801, 2014.

[76] M. Sid, “Sensor scheduling strategies for fault isolation in networked control sys-
tem,” ISA Transactions, vol. 54, pp. 92–100, 2015.

[77] L. Zhao, W. Zhang, J. Hu, A. Abate, and C. J. Tomlin, “On the optimal solutions
of the infinite-horizon linear sensor scheduling problem,” IEEE Trans. Automat.
Contr., vol. 59, no. 10, pp. 2825–2830, 2014.

189

[78] L. Orihuela, A. Barreiro, F. Gomez-Estern, and F. R. Rubio, “Periodicity of kalman-
based scheduled filters,” Automatica, vol. 50, no. 10, pp. 2672–2676, 2014.

[79] Y. Li, C. Chen, S. Zhu, and X. Guan, “Sensor scheduling for relay-assisted wireless
control systems with limited power resources,” ISA Transactions, vol. 88, pp. 246–
257, 2019.

[80] M. F. Huber, “Optimal pruning for multi-step sensor scheduling,” IEEE Trans.
Automat. Contr., vol. 57, no. 5, pp. 1338–1343, 2012.

[81] A. B. Asghar, S. T. Jawaid, and S. L. Smith, “A complete greedy algorithm for
infinite-horizon sensor scheduling,” Automatica, vol. 81, pp. 335–341, 2017.

[82] S. Arai, Y. Iwatani, and K. Hashimoto, “Fast sensor scheduling for spatially dis-
tributed sensors,” IEEE Trans. Automat. Contr., vol. 56, no. 8, pp. 1900–1905,
2011.

[83] Y. Qi, P. Cheng, and J. Chen, “Optimal sensor data scheduling for remote estima-
tion over a time-varying channel,” IEEE Trans. Automat. Contr., vol. 62, no. 9,
pp. 4611–4617, 2017.

[84] A. Sen, S. R. Sahoo, and M. Kothari, “Distributed algorithm for higher-order inte-
grators to track average of unbounded signals,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 2903–2908, 2020. 21st IFAC World Congress.

[85] J. George and R. Freeman, “Robust dynamic average consensus algorithms,” IEEE
Transactions on Automatic Control, vol. 64, no. 11, pp. 4615–4622, 2019.

[86] W. Perruquetti and J. P. Barbot, Sliding Mode Control in Engineering. USA: Marcel
Dekker, Inc., 2002.

[87] H. Jin and S. Sun, “Distributed filtering for multi-sensor systems with missing
data,” Information Fusion, 2022.

[88] S.-L. Sun, “Multi-sensor optimal fusion fixed-interval kalman smoothers,” Informa-
tion Fusion, vol. 9, no. 2, pp. 293–299, 2008.

[89] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information weighted con-
sensus filters and their application in distributed camera networks,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 12, pp. 3112–3125, 2013.

[90] R. Olfati-Saber, “Distributed kalman filter with embedded consensus filters,” in
IEEE Conference on Decision and Control, pp. 8179–8184, 2005.

[91] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in IEEE Con-
ference on Decision and Control, pp. 5492–5498, 2007.

[92] S. Wang and W. Ren, “On the convergence conditions of distributed dynamic state
estimation using sensor networks: A unified framework,” IEEE Transactions on
Control Systems Technology, vol. 26, no. 4, pp. 1300–1316, 2018.

[93] X. He, W. Xue, and H. Fang, “Consistent distributed state estimation with global
observability over sensor network,” Automatica, vol. 92, pp. 162–172, 2018.

BIBLIOGRAPHY 190

[94] E. Sebastian, E. Montijano, and C. Sagues, “All-in-one: Certifiable optimal dis-
tributed kalman filter under unknown correlations,” in 2021 60th IEEE Conference
on Decision and Control (CDC), pp. 6578–6583, 2021.

[95] H. Niederwieser, M. Tranninger, R. Seeber, and M. Reichhartinger, “Unknown in-
put observer design for linear time-invariant multivariable systems based on a new
observer normal form,” International Journal of Systems Science, vol. 53, no. 10,
pp. 2180–2206, 2022.

[96] A. Levant, “Higher-order sliding modes, differentiation and output-feedback con-
trol,” International Journal of Control, vol. 76, pp. 924–941, 2003.

[97] M. Zhu and S. Martinez, “Discrete-time dynamic average consensus,” Automatica,
vol. 46, no. 2, pp. 322–329, 2010.

[98] E. Montijano, J. I. Montijano, C. Sagues, and S. Martinez, “Robust discrete time
dynamic average consensus,” Automatica, vol. 50, no. 12, pp. 3131–3138, 2014.

[99] S. S. Kia, J. Cortes, and S. Martinez, “Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication,” Au-
tomatica, vol. 55, pp. 254–264, 2015.

[100] Y. Zhao, C. Xian, G. Wen, P. Huang, and W. Ren, “Design of distributed event-
triggered average tracking algorithms for homogeneous and heterogeneous multia-
gent systems,” IEEE Transactions on Automatic Control, vol. 67, no. 3, pp. 1269–
1284, 2022.

[101] S. S. Kia, J. Cortés, and S. Martínez, “Distributed event-triggered communication
for dynamic average consensus in networked systems,” Automatica, vol. 59, no. C,
pp. 112–119, 2015.

[102] L. Shi, L. Chen, and Y. Cheng, “High-order bipartite consensus for multiagent sys-
tems over signed networks subject to asynchronous communications,” IEEE Trans-
actions on Network Science and Engineering, vol. 8, no. 4, pp. 3325–3334, 2021.

[103] H. Xia and Q. Dong, “Dynamic leader-following consensus for asynchronous
sampled-data multi-agent systems under switching topology,” Information Sciences,
vol. 514, pp. 499–511, 2020.

[104] C. Deng, W.-W. Che, and Z.-G. Wu, “A dynamic periodic event-triggered approach
to consensus of heterogeneous linear multiagent systems with time-varying commu-
nication delays,” IEEE Transactions on Cybernetics, vol. 51, no. 4, pp. 1812–1821,
2021.

[105] X. Wu, Y. Tang, J. Cao, and W. Zhang, “Distributed consensus of stochastic de-
layed multi-agent systems under asynchronous switching,” IEEE Transactions on
Cybernetics, vol. 46, no. 8, pp. 1817–1827, 2016.

[106] H. Zhang, J. Zhang, Y. Cai, S. Sun, and J. Sun, “Leader-following consensus for a
class of nonlinear multiagent systems under event-triggered and edge-event triggered
mechanisms,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 7643–7654,
2022.

191

[107] R. Aldana-Lopez, E. Sebastian, R. Aragues, E. Montijano, and C. Sagues, “Dis-
tributed outer approximation of the intersection of ellipsoids,” IEEE Control Sys-
tems Letters, pp. 1–1, 2023.

[108] D. Liberzon, Switching in Systems and Control. Systems & control, Birkhauser,
2003.

[109] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, “Stability criteria for
switched and hybrid systems,” SIAM Rev., vol. 49, pp. 545–592, 2007.

[110] J. Ding, Y. Peres, G. Ranade, and A. Zhai, “When multiplicative noise stymies
control,” ArXiv, vol. abs/1612.03239, 2016.

[111] A. A. Ahmadi, R. Jungers, P. Parrilo, and M. Roozbehani, “Joint Spectral Radius
and Path-Complete Graph Lyapunov Functions,” SIAM J. Control. Optim., vol. 52,
pp. 687–717, 2014.

[112] W. Griggs, C. King, R. Shorten, O. Mason, and K. Wulff, “Quadratic Lya-
punov functions for systems with state-dependent switching,” Linear Algebra Appl.,
vol. 433, pp. 52–63, 2010.

[113] F. Blanchini and C. Savorgnan, “Stabilizability of switched linear systems does
not imply the existence of convex Lyapunov functions,” Automatica, vol. 44, no. 4,
pp. 1166–1170, 2008.

[114] D. Antunes and W. P. M Heemels, “Linear quadratic regulation of switched systems
using informed policies,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2675–2688,
2017.

[115] M. Fiacchini and M. Jungers, “Necessary and sufficient condition for stabilizabil-
ity of discrete-time linear switched systems: A set-theory approach,” Automatica,
vol. 50, pp. 75–83, 2014.

[116] M. Fiacchini, R. Jungers, and A. Girard, “Stabilization and control Lyapunov func-
tions for language constrained discrete-time switched linear systems,” Automatica,
vol. 93, pp. 64–74, 2018.

[117] J. C. Geromel and P. Colaneri, “Stability and stabilization of discrete time switched
systems,” Int. J. Control, vol. 79, no. 7, pp. 719–728, 2006.

[118] Z. Wu and Q. He, “Optimal switching sequence for switched linear systems,” SIAM
J. Control. Optim., vol. 58, pp. 1183–1206, 2020.

[119] K. Åström, Introduction to Stochastic Control Theory. Mathematics in science and
engineering, Academic Press, 1970.

[120] F. Kubler, P. Renner, and K. Schmedders, “Chapter 11 - computing all solutions
to polynomial equations in economics,” in Handbook of Computational Economics
(K. Schmedders and K. L. Judd, eds.), vol. 3 of Handbook of Computational Eco-
nomics, pp. 599–652, Elsevier, 2014.

BIBLIOGRAPHY 192

[121] J. Verschelde, “Algorithm 795: Phcpack: A general-purpose solver for polynomial
systems by homotopy continuation,” ACM Trans. Math. Softw., vol. 25, no. 2,
pp. 251–276, 1999.

[122] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

[123] R. A. Horn and C. R. Johnson, Matrix Analysis. USA: Cambridge University Press,
2nd ed., 2012.

[124] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,
2nd ed., 2000.

[125] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for
quadrotors,” in 2011 IEEE ICRA, pp. 2520–2525, 2011.

[126] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor
dynamics subject to rotor drag for accurate tracking of high-speed trajectories,”
IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 620–626, 2018.

[127] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[128] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms.
Springer Publishing Company, Incorporated, 5th ed., 2012.

[129] H. K. Khalil, Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall, 3rd ed.,
2002.

[130] T. Soderstrom, Discrete-Time Stochastic Systems: Estimation and Control. Berlin,
Heidelberg: Springer-Verlag, 2nd ed., 2002.

[131] Y.-M. Song, K. Yoon, Y.-C. Yoon, K. C. Yow, and M. Jeon, “Online multi-object
tracking with gmphd filter and occlusion group management,” IEEE Access, vol. 7,
pp. 165103–165121, 2019.

[132] X. Dong, J. Shen, D. Yu, W. Wang, J. Liu, and H. Huang, “Occlusion-aware real-
time object tracking,” IEEE Trans. Multimedia, vol. 19, no. 4, pp. 763–771, 2017.

[133] A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for uncertainty
estimation in deep learning,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp. 3153–3160,
2020.

[134] L. A. Fokin and A. G. Shchipitsyn, “Innovation-based adaptive kalman filter deriva-
tion,” in 2009 International Siberian Conference on Control and Communications,
pp. 318–323, 2009.

[135] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple object
tracking: A literature review,” Artif. Intell., vol. 293, p. 103448, 2021.

[136] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A benchmark
for multi-object tracking,” ArXiv, 2016. arXiv: 1603.00831.

193

[137] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https:
//github.com/facebookresearch/detectron2, 2019.

[138] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning for per-
son re-identification,” in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 3701–3711, 2019.

[139] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-
convolutional siamese networks for object tracking,” in Computer Vision – ECCV
2016 Workshops (G. Hua and H. Jégou, eds.), (Cham), pp. 850–865, Springer In-
ternational Publishing, 2016.

[140] J. B. Moore and B. D. O. Anderson, “Coping with singular transition matrices in
estimation and control stability theory,” Int. J. Control, vol. 31, no. 3, pp. 571–586,
1980.

[141] A. Alessandri and P. Coletta, “Switching observers for continuous-time and discrete-
time linear systems,” Proceedings of the 2001 American Control Conference. (Cat.
No.01CH37148), vol. 3, pp. 2516–2521 vol.3, 2001.

[142] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in
Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–
233, 2007.

[143] D. Gomez-Gutierrez, C. R. Vazquez, S. Celikovsky, J. D. Sanchez-Torres, and
J. Ruiz-Leon, “On finite-time and fixed-time consensus algorithms for dynamic net-
works switching among disconnected digraphs,” International Journal of Control,
vol. 93, no. 9, pp. 2120–2134, 2020.

[144] J. Alonso-Mora, E. Montijano, T. Nägeli, O. Hilliges, M. Schwager, and D. Rus,
“Distributed multi-robot formation control in dynamic environments,” Autonomous
Robots, vol. 43, no. 5, pp. 1079–1100, 2019.

[145] M. Zhu and S. Martinez, “On distributed convex optimization under inequality
and equality constraints,” IEEE Transactions on Automatic Control, vol. 57, no. 1,
pp. 151–164, 2012.

[146] R. Aragues, C. Sagues, and Y. Mezouar, “Feature-based map merging with dynamic
consensus on information increments,” Autonomous Robots, vol. 38, no. 3, pp. 243–
259, 2015.

[147] A. Cherukuri and J. Cortes, “Distributed generator coordination for initialization
and anytime optimization in economic dispatch,” IEEE Transactions on Control of
Network Systems, vol. 2, no. 3, pp. 226–237, 2015.

[148] Y. Zhao, Y. Liu, G. Wen, and T. Huang, “Finite-time distributed average tracking
for second-order nonlinear systems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 6, pp. 1780–1789, 2019.

[149] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence properties of
dynamic average consensus estimators,” in Proceedings of the 45th IEEE Conference
on Decision and Control, pp. 338–343, 2006.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

BIBLIOGRAPHY 194

[150] S. Nosrati, M. Shafiee, and M. B. Menhaj, “Dynamic average consensus via nonlin-
ear protocols,” Automatica, vol. 48, no. 9, pp. 2262–2270, 2012.

[151] S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Trans. Ind. Electron.,
vol. 59, no. 12, pp. 4409–4420, 2012.

[152] S. Ghapani, S. Rahili, andW. Ren, “Distributed average tracking of physical second-
order agents with heterogeneous unknown nonlinear dynamics without constraint on
input signals,” IEEE Transactions on Automatic Control, vol. 64, no. 3, pp. 1178–
1184, 2019.

[153] S. Rahili and W. Ren, “Heterogeneous distributed average tracking using nons-
mooth algorithms,” in 2017 American Control Conference (ACC), pp. 691–696,
2017.

[154] Y. Zhao, Y. Liu, Z. Li, and Z. Duan, “Distributed average tracking for multiple
signals generated by linear dynamical systems: An edge-based framework,” Auto-
matica, vol. 75, pp. 158–166, 2017.

[155] J. Cortes, “Discontinuous dynamical systems,” IEEE Control Systems Magazine,
vol. 28, no. 3, pp. 36–73, 2008.

[156] R. Gama and G. Smirnov, “Stability and optimality of solutions to differential
inclusions via averaging method,” Set-Valued and Variational Analysis, vol. 22,
2014.

[157] E. Cruz-Zavala and J. A. Moreno, “Levant’s arbitrary-order exact differentiator:
A Lyapunov approach,” IEEE Transactions on Automatic Control, vol. 64, no. 7,
pp. 3034–3039, 2019.

[158] C. Godsil and G. Royle, Algebraic Graph Theory, vol. 207 of Graduate Texts in
Mathematics. Springer, 2001.

[159] E. Bernuau, D. Efimov, W. Perruquetti, and A. Polyakov, “On homogeneity and
its application in sliding mode control,” Journal of the Franklin Institute, vol. 351,
no. 4, pp. 1866–1901, 2014. Special Issue on 2010-2012 Advances in Variable Struc-
ture Systems and Sliding Mode Algorithms.

[160] W. Ren and U. M. Al-Saggaf, “Distributed kalman-bucy filter with embedded dy-
namic averaging algorithm,” IEEE Systems Journal, vol. 12, no. 2, pp. 1722–1730,
2018.

[161] L. K. Vasiljevic and H. K. Khalil, “Error bounds in differentiation of noisy signals
by high-gain observers,” Syst. Control. Lett., vol. 57, pp. 856–862, 2008.

[162] A. Sen, S. R. Sahoo, and M. Kothari, “Distributed average tracking with incom-
plete measurement under a weight-unbalanced digraph,” IEEE Transactions on
Automatic Control, vol. 67, no. 11, pp. 6025–6037, 2022.

[163] D. Bernstein and S. Bhat, “Geometric homogeneity with application to finite-time
stability,” Mathematics of Control, Signals, and Systems, vol. 17, 2005.

195

[164] W. Niehsen, “Information fusion based on fast covariance intersection filtering,” in
International Conference on Information Fusion., vol. 2, pp. 901–904 vol.2, 2002.

[165] R. Aragues, C. Sagues, and Y. Mezouar, “Feature-based map merging with dy-
namic consensus on information increments,” in IEEE International Conference on
Robotics and Automation, pp. 2725–2730, 2013.

[166] M. Iqbal, Z. Qu, and A. Gusrialdi, “Resilient dynamic average-consensus of multi-
agent systems,” IEEE Control Systems Letters, vol. 6, pp. 3487–3492, 2022.

[167] H. Moradian and S. S. Kia, “On robustness analysis of a dynamic average consen-
sus algorithm to communication delay,” IEEE Transactions on Control of Network
Systems, vol. 6, no. 2, pp. 633–641, 2019.

[168] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, 2012.

[169] K. Liu, A. Selivanov, and E. Fridman, “Survey on time-delay approach to networked
control,” Annual Reviews in Control, vol. 48, pp. 57–79, 2019.

[170] L. Shi, J. Shao, M. Cao, and H. Xia, “Asynchronous group consensus for discrete-
time heterogeneous multi-agent systems under dynamically changing interaction
topologies,” Information Sciences, vol. 463-464, pp. 282–293, 2018.

[171] C. Pilotto, K. M. Chandy, and J. White, “Consensus on asynchronous communica-
tion networks in presence of external input,” in 49th IEEE Conference on Decision
and Control (CDC), pp. 3838–3844, 2010.

[172] F. Caccavale and F. Pierri, “An approach to distributed estimation of time-varying
signals by multi-agent systems,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), pp. 3556–3561, 2022.

[173] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using network-
wide measurements,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2710–2724, 2006.

[174] A. F. Filippov, Differential equations with discontinuous righthand sides, vol. 18
of Mathematics and its Applications (Soviet Series). Dordrecht: Kluwer Academic
Publishers Group, 1988. Translated from the Russian.

[175] M. Livne and A. Levant, “Proper discretization of homogeneous differentiators,”
Automatica, vol. 50, no. 8, pp. 2007–2014, 2014.

[176] G. Carnevale, F. Farina, I. Notarnicola, and G. Notarstefano, “Gtadam: Gradi-
ent tracking with adaptive momentum for distributed online optimization,” IEEE
Transactions on Control of Network Systems, pp. 1–12, 2022.

[177] G. Carnevale, I. Notarnicola, L. Marconi, and G. Notarstefano, “Triggered gra-
dient tracking for asynchronous distributed optimization,” Automatica, vol. 147,
p. 110726, 2023.

[178] R. T. Rockafellar, Convex analysis. Princeton Mathematical Series, Princeton, N.
J.: Princeton University Press, 1970.

BIBLIOGRAPHY 196

[179] W. Rudin, Principles of mathematical analysis / Walter Rudin. McGraw-Hill New
York, 3d ed. ed., 1976.

[180] G. Hardy, J. Littlewood, and G. Pólya, Inequalities. Cambridge Mathematical
Library, Cambridge University Press, 1988.

[181] F. Arscott and A. Filippov, Differential Equations with Discontinuous Righthand
Sides: Control Systems. Mathematics and its Applications, Springer Netherlands,
1988.

	TUZ_2696_Aldana_distributed.pdf
	2696_Aldana López TESIS
	Introduction
	Resource Aware Systems
	Perception latency and accuracy trade-off
	Network induced constraints
	Resource aware framework for formation control

	Literature review
	Objectives
	Contributions
	Research output

	Document organization

	Perception Latency Scheduling In Control
	Related work
	Problem statement
	Stability preserving perception schedules
	Non-conservative admissibility checking
	Regular points analysis
	Non-regular points analysis
	Admissibility checking algorithm

	Towards optimal scheduling
	Simulation examples
	Double integrator
	Particle mobile robot

	Discussion
	Proofs
	Proof of Theorem 2.6
	Proof of Theorem 2.7
	Proof of Corollary 2.8
	Proof of Theorem 2.11
	Proof of Corollary 2.13
	Proof of Proposition 2.14
	Proof of Proposition 2.17
	Proof of Proposition 2.18
	Proof of Theorem 2.20

	Perception Latency Scheduling In Estimation
	Related work
	Problem statement
	Perception-latency aware estimation
	Scheduling policy
	Quantized covariance approach

	Moving horizon PLATE
	Numerical experiments
	Numerical covariance bound estimation
	Cost comparison using qDP
	Moving-horizon PLATE scheduling

	Evaluation on real data
	Evaluation framework
	Performance of the implemented pipeline

	Discussion
	Proofs
	Proof of Theorem 3.4
	Proof of Proposition 3.5
	Proof of Proposition 3.6
	Proof of Proposition 3.7
	Proof of Theorem 3.8

	Exact Dynamic Consensus (EDC)
	Related work
	Problem statement
	The EDCHO algorithm
	Towards convergence of EDCHO
	Contraction property of EDCHO
	Contraction for tree graphs
	Contraction for general connected graphs

	Parameter design for EDCHO
	Convergence of EDCHO
	Simulation examples
	Discussion

	Robust EDC For Open Networks
	Related work and Problem statement
	REDCHO
	Towards convergence of REDCHO
	Convergence of the consensus components of REDCHO
	Convergence of the consensus error
	Convergence of REDCHO
	Simulation examples
	Discussion

	Distributed Differentiation Protocol
	Related work
	Problem statement
	The protocol
	Protocol convergence
	Proof of Theorem 6.3

	Simulation examples
	Discussion

	Perception Latency Aware Formation Control
	Related work
	Problem statement
	Solution outline

	Smooth-output estimation
	Estimation fusion
	Formation control
	Simulation examples
	Single robot
	Multi-robot
	Ablation and parameter analysis

	Discussion
	Proofs
	Proof of Theorem 7.5.
	Proof of Lemma 7.8
	Proof of Theorem 7.11

	EDC Under Asynchronous Communication
	Related work
	Problem statement and protocol proposal
	Non-cooperative sampling
	Symmetric communication delays

	Exact solution for the dynamic evolution
	Convergence analysis
	Auxiliary results for nominal asynchronous communication
	Convergence under nominal asynchronous communication
	Non-nominal asynchronous communication

	Numerical experiments
	Discussion

	Conclusions
	Appendices
	Sampled-data stochastic linear systems
	 sets and gauge functions
	Auxiliary results in vector and matrix analysis
	Auxiliary results in algebraic graph theory
	Exact differentiation
	Homogeneous differential inclusions
	Bibliography

