000135502 001__ 135502
000135502 005__ 20250923084422.0
000135502 0247_ $$2doi$$a10.1016/j.cej.2024.151962
000135502 0248_ $$2sideral$$a138644
000135502 037__ $$aART-2024-138644
000135502 041__ $$aeng
000135502 100__ $$aTsiotsias, Anastasios I.
000135502 245__ $$aIntegrating capture and methanation of CO2 using physical mixtures of Na-Al2O3 and mono-/ bimetallic (Ru)Ni/Pr-CeO2
000135502 260__ $$c2024
000135502 5203_ $$aThe integrated capture and methanation of CO2 is hereby realized via the use of physical mixtures of a 12 % Na2O/Al2O3 adsorbent and either a monometallic (10 % Ni/Pr-CeO2) or a bimetallic (1 % Ru, 10 % Ni/Pr–CeO2) catalyst. The effect of the weight ratio between the catalyst and the adsorbent components is studied and it is found to exert a great influence in the reaction kinetics and the CH4 production capacity, with the 1:3 catalyst: adsorbent weight ratio (2.5 wt% Ni for both physically mixed materials and 0.25 wt% Ru for the bimetallic material) providing the highest CH4 yield. It is further shown that the materials offer high activity, stability and CH4 selectivity at just 300 °C, even under the co–presence of O2 and H2O during CO2 adsorption, a fact attributable to the preservation of the Ni-CeO2 contact, which is known to afford a high reducibility to the catalytically active Ni phase. The presence of Ru can further enhance the material reducibility and activity under low operation temperatures and catalyst: adsorbent weight ratios, while also mitigating the negative effect of the O2 and H2O presence in the adsorption feed. A CH4 yield of 0.24 mmol/g after 10 consecutive cycles of CO2 adsorption (under O2 and H2O containing gas) and methanation is achieved for the monometallic Ni-based physically mixed material, compared to 0.29 mmol/g in the case of the Ru–Ni bimetallic physically mixed material.
000135502 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000135502 590__ $$a13.2$$b2024
000135502 592__ $$a2.696$$b2024
000135502 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 83 = 0.036$$c2024$$dQ1$$eT1
000135502 591__ $$aENGINEERING, CHEMICAL$$b8 / 175 = 0.046$$c2024$$dQ1$$eT1
000135502 593__ $$aEnvironmental Chemistry$$c2024$$dQ1
000135502 593__ $$aIndustrial and Manufacturing Engineering$$c2024$$dQ1
000135502 593__ $$aChemistry (miscellaneous)$$c2024$$dQ1
000135502 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1
000135502 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135502 700__ $$aCharisiou, Nikolaos D.
000135502 700__ $$aHussien, Aseel G.S.
000135502 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Victor$$uUniversidad de Zaragoza
000135502 700__ $$aPolychronopoulou, Kyriaki
000135502 700__ $$aGoula, Maria A.
000135502 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000135502 773__ $$g491 (2024), 151962 [18 pp.]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000135502 8564_ $$s12465220$$uhttps://zaguan.unizar.es/record/135502/files/texto_completo.pdf$$yVersión publicada
000135502 8564_ $$s2486271$$uhttps://zaguan.unizar.es/record/135502/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135502 909CO $$ooai:zaguan.unizar.es:135502$$particulos$$pdriver
000135502 951__ $$a2025-09-22-14:36:44
000135502 980__ $$aARTICLE