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Magnetic order in nanoscale gyroid networks1
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Three-dimensional magnetic metamaterials feature interesting phenomena that arise from a delicate interplay
of material properties, local anisotropy, curvature, and connectivity. A particularly interesting magnetic lattice
that combines these aspects is that of nanoscale gyroids, with a highly interconnected chiral network with local
three-connectivity reminiscent of three-dimensional artificial spin ices. Here, we use finite-element micromag-
netic simulations to elucidate the anisotropic behavior of nanoscale nickel gyroid networks at applied fields and
at remanence. We simplify the description of the micromagnetic spin states with a macrospin model to explain the
anisotropic global response, to quantify the extent of icelike correlations, and to discuss qualitative features of the
anisotropic magnetoresistance in the three-dimensional network. Our results demonstrate the large variability of
the magnetic order in extended gyroid networks, which might enable future spintronic functionalities, including
neuromorphic computing and nonreciprocal transport.
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I. INTRODUCTION27

Networks of interacting nanomagnetic wires offer insight28

into emergent phenomena and functionalities arising from the29

underlying geometrical design and local connectivity. A well-30

studied class of these networks is two-dimensional artificial31

spin ices and magnonic crystals [1–3], which allow observa-32

tions via imaging or magnetotransport of icelike low-energy33

states [4–6] and monopolelike excitations [7–9]. Because of34

the stochastic behavior and large reconfigurability of interact-35

ing interconnected lattices, such magnetic metamaterials have36

also been proposed for neuromorphic-inspired unconventional37

computational tasks [10–12].38

Extending the study of emergent magnetic phenomena39

from planar two-dimensional to three-dimensional lattices40

promises novel functionalities [13–16], related to mag-41

netochiral effects in curvilinear geometries [17–19], fast42

magnetization dynamics [20–23], and network topologies43

with dense connections to distant neighbors [24–26]. Notable44

examples of magnetic three-dimensional networks studied45

so far include inverse opals [27–30], magnetic buckyballs46

[21,31], and single-diamond lattices [20,24]. In these studies,47

the connecting struts are usually several hundred nanometers48
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long and thus much larger than typical magnetic length scales, 49

weakening possible curvilinear magnetic effects expected in 50

truly nanoscale three-dimensional (3D) networks. 51

Gyroid structures grown by polymer self-assembly feature 52

a highly interconnected three-dimensional network, a global 53

chiral structure, and a lattice periodicity on the order of a 54

few tens of nanometers. Recent studies on photonic gyroids 55

demonstrated selective reflection of circularly polarized light 56

[32] and the emergence of Weyl points [33–35]. With respect 57

to magnetism, the local curvature of the gyroid is large enough 58

to support a sizable geometrical Dzyaloshinskii-Moriya in- 59

teraction [17,18], and its inherent chirality can give rise to 60

emergent nonreciprocal effects [36–38], such as electrical 61

magnetochiral anisotropy [39,40]. In our previous work [41], 62

we imaged the magnetic states of nanoscale gyroids using 63

electron holography and observed complex magnetic states. 64

However, the local spin anisotropy has not been elucidated, 65

and therefore, possible icelike correlations in magnetic gy- 66

roids have not yet been quantified so far. 67

Here, we use finite-element micromagnetic simulations to 68

show that the field-driven and relaxed spin configurations 69

of nanoscale nickel gyroids feature complex magnetic states 70

arising from the nontrivial local anisotropy and the three- 71

connectivity of the gyroid lattice, including the emergence of 72

spin chiral effects. We discuss how the description of local 73

spin order can be simplified using a macrospin model. We 74
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FIG. 1. Gyroid geometry. (a) Gyroid structure used for micromagnetic simulations, with directions of the cubic coordinate system (x′, y′, z′)
and simulation coordinates (x, y, z). A magnetic field was applied in the xz plane at angle θH to the x direction. The scale bar measures 50 nm.
(b) Definition of the local coordinate axes n̂‖

i , n̂⊥1
i , and n̂⊥2

i , with n‖
i struts connecting neighboring vertices with distance dNN. The planes of

neighboring triangular plaquettes, with nodes centered on each strut, have a relative twist of αtwist ≈ 70.5◦. (c) The gyroid can be represented
by a highly connected network of corner-sharing triangular plaquettes. The yellow line highlights the tightest helix path used to calculate the
maximum spin canting angle ψmax

gDMI due to the geometric Dzyaloshinskii-Moriya interaction.

furthermore illustrate how the anisotropic magnetoresistance75

in finite-size gyroid networks, which, due to the inherently76

noncoplanar spin configuration as well as the 3D network77

connectivity, shows behavior distinct from the response of78

bulk or planar devices. Our results underline the complexity79

of magnetic order in nanoscale 3D gyroids with inherently80

noncoplanar and frustrated spin order. These properties make81

gyroid networks ideal candidates for future studies of non-82

reciprocal effects or as a platform for probabilistic and83

neuromorphic computing schemes.84

II. THE GYROID GEOMETRY85

A single gyroid, like that shown in Fig. 1(a), derived from86

the Schoen G triply periodic minimal surface [42], is a 3D87

periodic network of connected struts which form chiral triple88

junctions. While gyroid photonic crystals are found in nature89

in the wings of some butterflies [43,44], nanoscale gyroids90

with lattice periodicities a in the range of 40 to 100 nm can91

be grown with large structural coherence over a few hundred92

micrometers by self-assembly of di- and triblock copoly-93

mer templates [45–47]. Selective etching followed by metal94

electrodeposition into the remaining scaffold results in single-95

gyroid network nanostructures with volume fill fractions fV96

between 10% and 30% [48].97

Many of the interesting physical phenomena in gyroids98

are related to its inherent chirality, described by the cubic-99

centered space group I4132 (which allows for uniquely left-100

or right-handed gyroid structures), and the connectivity, math-101

ematically also described as the srs net or K4 crystal [49,50].102

Vertices are connected to their neighbors by struts of length103

dNN = a/
√

8, with a being the cubic lattice constant. Each104

cubic unit cell contains eight individual vertices and 18 struts.105

For each of the six strut directions, a local coordinate system106

can be defined as shown in Fig. 1(b) and summarized in107

Table I, with n̂‖
i denoting the main strut direction and neigh-108

boring triangle planes rotated by αtwist ≈ 70.5◦.109

Due to its underlying three-connectivity, the gyroid net-110

work can also be represented by corner-sharing triangles, as111

shown in Fig. 1(c), reminiscent of geometrically frustrated112

magnetic systems that promote complex spin states, zero-113

temperature entropy, and other interesting emergent properties114

like magnetic monopoles [51–53]. Furthermore, a multitude 115

of possible paths through the network exist. These include gy- 116

rating channels, such as the one highlighted yellow in Fig. 1(c) 117

corresponding to the tightest possible helix path through the 118

gyroid with radius rH = a/(4
√

2) and periodicity pH = a. 119

III. MICROMAGNETIC SIMULATIONS 120

Inspired by single-gyroid networks grown by self- 121

assembly and studied by electron holography [41], in this 122

work we focus on gyroids with a cubic lattice constant a = 123

65 nm and a volume fraction of fV = 17%. We use a coor- 124

dinate system (x, y, z) rotated by 45◦ around the z′ direction 125

(with cubic crystallographic coordinates x′, y′, z′), as polymer 126

gyroid templates yield preferential growth along the [110] 127

direction. 128

We performed finite-element micromagnetic simulations to 129

study the magnetic-field-driven response of a nickel gyroid 130

structure, using the software FINMAG [54]. Magnetic prop- 131

erties of nickel were described by saturation magnetization 132

Msat = 485 kA/m and an exchange constant Aex = 8 pJ/m. 133

We assumed vanishing magnetocrystalline anisotropy, i.e., 134

K = 0. The mesh of this gyroid simulation cell with a volume 135

of 2
√

2a × 2
√

2a × 2a, i.e., 184 × 184 × 130 nm3, as shown 136

in Fig. 1(a), was generated using COMSOL MULTIPHYSICS [55] 137

TABLE I. Local coordinate systems for the six unique strut
directions in the gyroid network, expressed with respect to coor-
dinates x, y, and z of the simulation coordinate systems. The local
normalized direction vectors n̂‖

i , n̂⊥1
i , and n̂⊥2

i = n‖
i × n⊥1

i form a
right-handed system, in agreement with the overall right-handed
chirality of our gyroid lattice.

Strut i n̂‖
i n̂⊥1

i n̂⊥2
i

1 (+1, 0, 0) (0, 0, −1) (0,+1, 0)
2 (0,+1, 0) (0, 0, −1) (+1, 0, 0)
3 (+ 1

2 , + 1
2 , + 1√

2
) (+ 1√

2
, − 1√

2
, 0) (+ 1

2 , + 1
2 , − 1√

2
)

4 (− 1
2 , − 1

2 , + 1√
2

) (+ 1√
2
, − 1√

2
, 0) (+ 1

2 , + 1
2 , + 1√

2
)

5 (+ 1
2 , − 1

2 , + 1√
2

) (− 1√
2
, − 1√

2
, 0) (+ 1

2 , − 1
2 , − 1√

2
)

6 (− 1
2 , + 1

2 , + 1√
2

) (+ 1√
2
, + 1√

2
, 0) (+ 1

2 , − 1
2 , + 1√

2
)
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and contained 18 196 nodes with a mean edge distance of138

4.4 nm (i.e., smaller than the magnetostatic exchange length139

lex =
√

2Aex μ−1
0 M−2

sat = 7.5 nm).140

For applied magnetic fields H (sin θH , 0, cos θH ), equiva-141

lent to in-plane fields for gyroid films grown by self-assembly,142

and a randomized initial spin configuration, micromagnetic143

configurations m(r) were obtained after relaxation. The ex-144

ternal field was then switched off, H = 0, and the spin145

configuration was again relaxed to obtain states at remanence.146

This process was repeated for angles θH between 0◦ and 360◦
147

in 15◦ increments and at field magnitudes H = 1 T, 100 mT,148

and 20 mT.149

Analysis of the collective response was performed using150

the PYTHON package NETWORKX [56] by associating the local151

macrospins si of the gyroid structure with the edges of the un-152

derlying srs network. This allowed us to calculate properties153

such as the scalar spin chirality �s, local ice rules Aice, and154

the anisotropic magnetoresistance as the network resistance155

between specified nodes.156

IV. RESULTS AND DISCUSSION157

In the following, we will first discuss the global field-158

driven response of a single-gyroid structure, then assess the159

local anisotropy of the individual struts to justify a macrospin160

picture of the gyroid network. We then turn to collective161

properties such as the magnetic order emerging on triangu-162

lar plaquettes and the global response from current transport163

through the network.164

A. Global response165

From the field- and field-angle-dependent micromagnetic166

simulation, we obtain the magnetization profile m(r) of the167

gyroid structure. Figure 2 shows the relation between the field168

angle θH in the xz plane (with θH = 0 for H ‖ x) and both the169

average magnetization magnitude |M| and direction θM (θH ),170

defined by171

tan(θH ) = Hz

Hx
, (1)

tan[θM (θH )] = 〈m(r, θH )〉z

〈m(r, θH )〉x
. (2)

At high magnetic fields of 1 T (solid gray line and gray172

squares) the sample magnetization follows that of the applied173

field, i.e., θM = θH , indicating that the structure is saturated.174

In contrast, at fields of 100 mT the sample shows a slightly175

nonisotropic response [dashed blue line in Fig. 2(a)]. Config-176

urations relaxed from 100 mT (dashed red line and red circles)177

and 1 T (not shown) are qualitatively similar. They feature178

a reduced net moment, and the magnetization direction θM179

exhibits four distinct plateaus. The steplike reorientations oc-180

cur around angles 0◦ ± αs and 180◦ ± αs, marked by vertical181

dashed lines in Fig. 2, with angles αs = tan−1(
√

1/2) ≈ 35.4◦
182

in the xy plane perpendicular to some of the struts. The183

anisotropic global response and prominent demagnetization184

therefore indicate that the gyroid network plays a major role185

in the hysteretic behavior.186

FIG. 2. Global anisotropic response. (a) Net magnetization |M|
of the gyroid dependent on the field angle θH . (b) Angle of the mean
magnetization θM versus the field direction θH . At high fields (1 T,
gray line and gray dots) the magnetization direction follows the field,
i.e., θM = θH and M(θH ) ≈ 1. In the remanent state relaxed from high
fields (from 100 mT, shown by a red dotted line and red squares)
the magnetization direction shows four distinct plateaus, indicating
preferential switching at angles related to the orientation of specific
struts (vertical dotted lines).

The response at 20 mT and the obtained remanent state 187

indicate unsystematic minor magnetic loops and thus are ex- 188

cluded from the following discussion. 189

B. Testing the macrospin assumption 190

The simplest model to describe the magnetic order of 191

a gyroid network would be an Ising system: As shown in 192

Fig. 2(a), the idea is to average the moments in each strut to a 193

macrospin si, and the shape anisotropy forces this macrospin 194

to be parallel to the local strut direction n̂‖
i . With this Ising 195

macrospin assumption, values of |M| and θM at remanence 196

can be predicted at specific field angles θH by averaging over 197

the six strut directions (Table I), as shown by black crosses 198

in Fig. 2. For the moment direction θM in Fig. 2(b), the Ising 199

macrospin picture yields θM = 0◦ at θH = 0◦ and θM = αtwist 200

or θM = 180◦ − αtwist at θH = 90◦, in reasonably good agree- 201

ment with the micromagnetic simulation results. 202

The reasonable similarity between global and Ising-like 203

behaviors justifies a closer look at the local anisotropies of the 204

strut magnetization: We obtain the magnitude and direction of 205

strut macrospins si as the average of the local moment m(r) 206

within nonoverlapping spherical volumes centered on each 207

strut position rcen
i , as shown in Fig. 3(a): 208

si =
∑

|r−rcen
i |�rs

m(r). (3)

With radius rs = 2
5 dNN = a/(5

√
2) the integration volumes 209

contain about 67 ± 11 mesh points. Using this approach, we 210

simplify the full micromagnetic configuration with 18 196 211

mesh nodes to 192 individual struts. We furthermore discard 212

struts at the boundary of the simulation volume and in the 213
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FIG. 3. Macrospin assumption. (a) The macrospin si is defined
as the mean moment within nonoverlapping volumes centered on
each strut (red spheres). (b) The magnitude of each strut moment
|si| = |s‖

i + s⊥
i | at remanence (blue points) is close to 1 (black line),

indicating that each strut acts as a macrospin. The rose diagram indi-
cates non-Ising-like behavior with a median inclination of about 25◦

from the local direction n̂‖
i . (c) Moment orientation of the macrospins

at remanence, described by spherical angles φi and ϑi in the local
coordinate system, showing signatures of chiral magnetic order. In
90% of the cases, the local moment lies within the region outlined in
purple.

following consider the properties of 160 struts for each field214

magnitude and angle.215

As shown in Fig. 3(b), at remanence the strut moments do,216

indeed, behave like macrospins, albeit not with the expected217

Ising-like anisotropy: Here, we separate each strut moment218

into parallel and perpendicular components with respect to219

the local main strut direction n̂‖
i , si = s‖

i + s⊥
i . Using this220

decomposition, in Fig. 3(b) we see that the net amplitude221

|si| (blue dots) is close to 1 (black line), indicating a locally222

saturated magnetization, with a reduction of at most 3%.223

Therefore, we can conclude that the macrospin assumption224

holds well, which is not entirely surprising: Each strut has a225

volume corresponding to a cylinder with a 10 nm diameter226

and 25 nm length, dimensions which are comparable to the227

exchange length lex = 7.5 nm and thus support quasiuniform228

strut magnetization without the formation of domain walls.229

C. Local magnetic anisotropy230

Even though the struts’ behavior can be approximated with231

quasiuniform macrospins, the local anisotropy does not fa-232

vor simple Ising-like behavior. This is illustrated by the rose233

diagram in Fig. 3(b) (purple bars), which indicates that the234

macrospins si have a median inclination of about 25◦ to the235

main strut axis n̂‖
i . Further insight into the local anisotropy236

can be gained by considering the spherical angles φi and ϑi,237

which denote the macrospin orientation with respect to the 238

local coordinate system defined in Table I: 239

tan(φi ) = si · n̂⊥1
i

si · n̂‖
i

, (4)

tan(ϑi ) = si · n̂⊥2
i√

(si · n̂‖
i )2 + (

si · n̂⊥1
i

)2
. (5)

As shown in Fig. 3(c), 90% of the moments fall into 240

the area outlined by the dashed purple line. This per- 241

missible angular range, describing preferential anisotropy, 242

combines “wings” centered at φi = 0◦ and 180◦ with �φi ≈ 243

±25◦ and �ϑi = ±(90◦ − αs) with a “ring” in the n̂‖
i –n̂⊥1

i 244

plane (φi = −180◦–+180◦, �ϑi = ±ψgDMI). Here, the angle 245

ψmax
gDMI = 6.5◦ is the maximum spin canting due to geometrical 246

Dzyaloshinskii-Moriya interaction (gDMI) [18] predicted for 247

the tightest possible helix path [yellow line in Fig. 1(c)]. 248

The peculiar non-Ising, non-Heisenberg anisotropy is a 249

direct consequence of at least three effects: (1) The wings in 250

the anisotropy directly originate from the connectedness be- 251

tween vertices and the dominant exchange interaction which 252

enforces magnetic continuity. As shown in Fig. 1(b), neigh- 253

boring triangular plaquettes are noncoplanar; therefore, tilting 254

of the moment away from n̂‖
i can be energetically favor- 255

able for minimizing the dipolar interactions between the net 256

moments of the two vertices. However, tilting towards n̂⊥2
i 257

by more than ±(90◦ − αs) leads to energy-costly magnetic 258

charges. (2) The ring corresponds to small spin canting up 259

to maximum values ψmax
gDMI due to geometrical DMI, show- 260

ing a small asymmetry for fields at θH = ±90◦. (3) Slight 261

asymmetries in the average angles 〈ϑi〉 of macrospins at 0◦
262

and ±180◦ indicate a chiral contribution to the magnetic 263

anisotropy, likely related to the underlying chiral right-handed 264

crystal structure. 265

D. Hysteretic behavior 266

Figure 4 gives further insight to the relationship between 267

local anisotropy and hysteretic behavior, broken down for 268

individual struts i: Here, the local macrospin moments are 269

indicated by black points, projected onto the corresponding 270

coordinate system n̂‖
i , n̂⊥1

i , and n̂⊥2
i . Colored arrows indicate 271

the mean moment direction at a given field angle θH , averaged 272

over all equivalent struts. 273

Figure 4(a) shows the behavior at applied fields of 0.1 T. 274

As the field angle θH is defined in the global xz plane, the 275

struts are differently oriented with respect to the simulation 276

coordinate frame. Therefore, the same field pulls the strut 277

moments in significantly different directions with respect to 278

the local coordinate system. A field magnitude of 100 mT does 279

not yet fully saturate the gyroid magnetization, and the effect 280

of local anisotropy is evident from the nonuniform rotation of 281

the moment with the field direction. 282

Figure 4(b) shows the equivalent moment configurations at 283

remanence relaxed from 100 mT. The high-field state clearly 284

influences the final configuration, and generally, four spe- 285

cific low-energy moment configurations can be classified for 286

each strut, in accordance with the four plateaus of the global 287

magnetization direction shown in Fig. 2 (red circles). The 288

complex response of the local macrospins in combination 289
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FIG. 4. Local hysteretic behavior, with the strut moments in the local coordinate system n̂‖
i , n̂⊥1

i , and n̂⊥2
i at (a) 100 mT and (b) at remanence

relaxed from 100 mT. The colored arrows denote the mean magnetization corresponding to a specific field direction θH (color bar). (a) At
100 mT, the moment mainly follows the direction of the applied field. (b) At remanence, for each strut i the mean moment relaxes from the
initial field direction θH into four angular quadrants, related to the four plateaus seen in the global response in Fig. 2(b).

with the highly connected network therefore leads to emergent290

collective order in extended gyroid networks.291

E. Spin ice rules292

To discuss possible collective effects in the gyroid net-293

work, we first focus on the statistical properties and magnetic294

connectivity of the corner-sharing triangular plaquettes, as295

shown in Fig. 1(c). In many cases, the spin order of frustrated296

magnetic networks with triangular plaquettes is governed by297

local ice rules instead of long-range global order [4–6,52,53].298

To discuss the concept of ice rules in the gyroid network, in299

the following we consider the scalar Ising-like component of300

the strut macrospin sI
i , defined by301

sI
i = si · r‖,in

|r‖,in| , r‖,in = ri − 〈r〉1,2,3. (6)

Here, 〈r〉1,2,3 denotes the center of the corresponding triangu-302

lar plaquette, as the mean value of coordinates from struts 1,303

2, and 3. Thus, for Ising-like macrospins the values of sI
i will304

be +1 (−1) for moments pointing into (out of) the center of305

the corresponding plaquette.306

First, to test for icelike correlations we consider the scalar307

spin chirality [57,58] of each vertex as308

�s = 1
3

(
sI

1sI
2 + sI

2sI
3 + sI

3sI
1

)
. (7)

The scalar spin chirality �s can take two limiting values: �s =309

+1, corresponding to all-in or all-out moment configurations,310

and �s = −1/3, which quantifies local icelike two-in-one-311

out (or vice versa) configurations. We found no single case312

corresponding to an all-in or all-out moment configuration, as313

such monopolelike configurations are too energetically costly314

to occur in our exchange-dominated nanoscale magnetic gy-315

roid structure. At remanence, the median value for the spin316

chirality is 〈�s〉 = −0.29, i.e., close to the theoretical value317

of −1/3, independent of the initial field direction θH . This318

finding indicates that the local magnetic order in gyroid net-319

works is governed by spin ice rules.320

To further quantify the local magnetic order, we now cal- 321

culate the sum of the Ising-like moments of each triangular 322

plaquette combining struts 1, 2, and 3: 323

Aice = sI
1 + sI

2 + sI
3. (8)

The quantity Aice allows us to easily distinguish between 324

two-in-one-out (Aice = +1) and one-in-two-out (Aice = −1) 325

moment configurations. Since the local moments do not 326

strictly follow the in-or-out Ising anisotropy, i.e., |sI
i | � 1, 327

values of Aice between these two limits are also allowed. In 328

particular, we find that values of Aice around zero are highly 329

likely, corresponding to triangular plaquettes in which one 330

moment is approximately parallel to the one-in-one-out mag- 331

netization of the two opposite struts [Fig. 5(a)]. Because of the 332

twist between neighboring plaquettes, this non-Ising moment 333

will also be noncoplanar with respect to at least one triangle 334

plane, which enables nonzero vector chirality terms [58] re- 335

lated to additional magnetic properties, such as nonreciprocal 336

magnetotransport and spin-wave propagation [36–38]. 337

Because of the dominant exchange interaction, the mag- 338

netic connection formed by a single strut is continuous; that 339

is, a macrospin which points out of a triangular plaquette 340

must point into the neighboring one. This continuity allows 341

us to define a magnetic flux across the three-dimensional 342

gyroid lattice (or srs net), where each triangle carries at 343

least one one-in-one-out flux line or allows the bifurcation of 344

two flux lines via two-in-one-out or one-in-two-out moment 345

configurations. 346

Figure 5 illustrates the 3D connectivity of the magnetic flux 347

at different fields and the corresponding remanent states. As 348

shown in Fig. 5(a), the magnetic order is simplified by using 349

triangular plaquettes colored by the value of Aice. Neighboring 350

corners i and j are connected by a black “flux” line if the pair 351

corresponds to a one-in-one-out moment configuration, i.e., 352

sI
i s

I
j < 0, with the additional condition that the two moments 353

are sufficiently Ising-like, i.e., |sI
i, j | � 0.5. Under applied field 354

[Figs. 5(b)–5(d)], the flux forms a regular pattern through the 355

gyroid lattice, as the moments are largely aligned parallel 356
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FIG. 5. Lattice flux in the gyroid network, which can be rep-
resented by (a) black lines that mark pairwise in-out macrospin
configurations. The color scale for Aice denotes two-in-one-out (red),
one-in-two-out (blue), and one-in-one-out (gray) triangular plaque-
ttes. Macrospin flux lattices formed by application of magnetic
fields |H | = 100 mT at angles (b) θH = 180◦, (c) θH = 135◦, and
(d) θH = 90◦ (see black arrow). (e)–(g) At remanence, relaxed from
the respective configuration shown on the left, the overall magnetic
connectivity and the 3D character of the flux lines through the gyroid
lattice have increased.

to the field. Depending on the field direction θH , the flux357

distribution is mostly confined to the xz plane [Figs. 5(b)358

and 5(d) for θH = 180◦ and 135◦, respectively] or exhibits359

one-dimensional flux channels along z [Fig. 5(c), θH = 90◦].360

The magnetic configuration at remanence shown in Figs. 5(e)–361

5(g) has a higher connectivity and more plaquettes with an362

icelike two-in-two-out configuration compared to the high-363

field states they were relaxed from. This is especially the364

case for θH = 180◦ [Fig. 5(e)], which features a complex365

three-dimensional flux network. Regardless of the increased366

magnetic connectivity, however, many triangular plaquettes367

still feature only one flux line due to a perpendicular moment368

on the third macrospin. Simulation results from minor loops369

(relaxed from 20 mT, not shown) resulted in a higher ratio of 370

icelike correlations, indicating that a suitable demagnetization 371

protocol could be used to relax the gyroid lattice to a low- 372

energy configuration with predominant icelike correlations 373

indicative of a highly frustrated spin system. 374

F. Magnetotransport 375

Finally, we consider the complex directional magneto- 376

transport signatures emerging in the gyroid, which can be 377

used to fingerprint the magnetic order and local anisotropy 378

[36,37]. Because of the finite-size volume of the micromag- 379

netic simulations, we here discuss the most salient features 380

of only the anisotropic magnetoresistance (AMR), using 381

a simplified geometrical model for magnetoresistance in 382

networks [59]. 383

For each strut in the gyroid lattice the AMR results in a 384

variation of the local longitudinal resistance ρi(ϕi) depending 385

on the angle ϕi = �(ji, si ) between the charge current flow 386

direction ji ‖ n̂‖ and the macrospin si, with 387

ρi(ϕi ) = ρ0[1 + �AMR cos2(ϕi )], (9)

where ρ0 and �AMR are the nonmagnetic resistance and the 388

relative magnitude of the AMR effect of the underlying bulk 389

material, respectively. For convenience, we set ρ0 = 1. For 390

nickel nanowires the typical AMR magnitude is on the order 391

of �AMR = 1.5% [60]. 392

There are a multitude of possible paths connecting two 393

chosen nodes A and B through the gyroid network, which 394

act as parallel conduction channels with piecewise local resis- 395

tances ρi(ϕi ). By applying Kirchhoff’s law, one can calculate 396

the effective network resistance ρA→B, here using the function 397

RESISTANCE_DISTANCE of the PYTHON package NETWORKX 398

[56,61]. As the magnetic order is highly dependent on the field 399

direction, we thus expect significant variation of ρAMR
A→B (θH ) 400

with both the field magnitude H and angle θH as well as the 401

choice of A and B. 402

Figure 6 shows the AMR response for two node pairs 403

A and B separated along the x direction [Figs. 6(a) and 404

6(b)] and along the z direction [Figs. 6(c) and 6(d)]. The 405

top graphs illustrate parallel connections A → B, highlighting 406

the exponentially increasing number of possible paths with 407

increasing path length. The bottom graphs show the angular 408

dependence of the AMR calculated from the micromagnetic 409

simulations, which originates from a mixture of the local mag- 410

netic anisotropy and the multitude of parallel paths through 411

the network. 412

Before turning to the macrospin results, we briefly discuss 413

three general limiting cases to the AMR within the gyroid 414

network, indicated by dashed gray lines in Figs. 6(b) and 415

6(d): First, for the minimum nonmagnetic limit (AMR = 416

0%, bottom line) the network resistance ρNM
A→B is increased 417

compared to the bulk value ρ0 = 1 but significantly smaller 418

than the length of the shortest paths A → B would imply, 419

with ρNM = 2.68 but lmin = 11dNN for Figs. 6(a) and 6(b) 420

and ρNM = 2.18 but lmin = 7dNN for Figs. 6(c) and 6(d). 421

Second, the maximum limit for AMR (1.5%, top line) is 422

achieved for perfect Ising-like macrospins, with si ‖ n̂‖ ‖ 423

ji. Third, for an infinite-size gyroid lattice the AMR re- 424

sponse between nodes A and B is isotropic with respect to 425
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FIG. 6. Anisotropic magnetoresistance through a finite-size gy-
roid network. (a) Possible paths A → B connecting nodes A and B
in the x direction, with different lengths indicated by line color and
width. (b) Dependence of the relative AMR signal between nodes A
and B on the field angle θH . Solid and dashed lines denote the limiting
cases to the magnetoresistance in the gyroid network; squares and
dots show the AMR signal calculated from the macrospin analysis
of the micromagnetic simulations. ρNM denotes the nonmagnetic net-
work resistance between A and B. (c) and (d) Equivalent observations
for paths between A and B along the z direction, exhibiting more
pronounced angular variation with θH .

θH ; at AMRisotropic
gyroid = 1

3 max(AMRbulk), here, AMR = 0.5%426

(middle dashed line).427

The field-saturated case highlights one stark difference428

between bulklike AMR and AMR in a gyroid network: In429

the bulk, the maximum AMR is observed at saturation with430

M ‖ H, whereas in the gyroid network, high fields destroy431

any Ising-like state that leads to maximum AMR. Instead,432

as shown by the black lines in Figs. 6(b) and 6(d), the field-433

saturated AMR, with si ‖ H for each strut i along paths A →434

B, lies in between the previously discussed limiting cases.435

The angular variation with θH is a direct consequence of436

the finite size and the relative importance of different strut437

directions within the connecting paths, as illustrated by the438

higher anisotropy in Fig. 6(d) compared to Fig. 6(b). This439

behavior means that measurements at saturation, rather than440

the magnetoresistance at remanence, are more likely to pro-441

vide a reliable normalization in experimental studies of the442

magnetoresistive response of gyroid networks.443

Somewhat surprisingly, the AMR at 1 T [gray squares in444

Figs. 6(b) and 6(d)] lies above the predicted saturated response445

(black line) and is also more anisotropic. This deviation is446

due to the fact that even though the net magnetization seems447

saturated [see Fig. 2(a)], the macrospins si can still have a448

slight inclination to the direction of H of about 3.5◦ to 5◦.449

This value is consistent with the analytical predictions for spin450

canting induced by geometry-induced DMI (ψmax
gDMI = 6.5◦)451

discussed above.452

As the field magnitude is decreased to 100 mT [red circles 453

in Figs. 6(b) and 6(d)] the net AMR signal increases, and 454

its angular variation is modified. This observation can be 455

related to both the nonmonotonic rotation of the individual 456

macrospins due to the intrinsic local anisotropy as represented 457

in Fig. 4(a) and the collective response related to the emergent 458

flux lattice shown in Fig. 5. 459

Finally, the AMR signal at remanence (lighter dots) lies 460

about halfway between the limits of isotropic field saturation 461

and the Ising-like limit, in agreement with the local non-Ising 462

anisotropy. The angular variation of the remanent AMR is 463

rather weak. 464

In conclusion, magnetoresistance signatures of gyroids 465

give insight into the effective local magnetic anisotropy 466

and emergent collective behavior. In comparison to two- 467

dimensional (2D) artificial spin systems [4,9,59], there are 468

notable differences in the magnetoresistive response of 469

gyroids: First, there are many more possible conduction 470

pathways, as wires can cross in 3D geometries but not in 471

planar devices. Second, due to the regular 3D arrangement 472

of struts, the spin order is inherently noncollinear and non- 473

coplanar, irrespective of the direction and magnitude of any 474

applied magnetic field. In combination with the high degree 475

of frustration, magnetoresistance measurements including the 476

anomalous Hall effect [4,9] and chiral magnetoresistance and 477

nonreciprocal spin-wave propagation due to nonvanishing 478

vector spin chirality [36,37,57] therefore could be the ideal 479

tool to elucidate the emerging collective response of magnetic 480

gyroids. 481

V. CONCLUSIONS AND OUTLOOK 482

In this work we considered the complex spin order of 483

a gyroid network at applied magnetic fields and at rema- 484

nence. Using micromagnetic simulations, we revealed that for 485

nanoscale nickel gyroids the individual struts can be described 486

as quasiuniform macrospins. Their complex configuration 487

is affected by the three-dimensional network connectivity 488

as well as modified by an effective chiral exchange term, 489

the geometrical DMI. While the gyroid network is built 490

from corner-sharing triangular plaquettes and thus is a prime 491

host for geometrically frustrated spin order, the deviation 492

from local Ising-like magnetic anisotropy reduces icelike 493

correlations. 494

We find that magnetotransport signatures reflect the com- 495

plexity of spin order within the gyroid lattice and are different 496

from the magnetoresistive behavior of both bulk samples and 497

2D artificial spin systems. Especially in comparison to planar 498

devices, the 3D geometry and connectivity, truly 3D spin 499

order in response to 3D fields, and the multitude of parallel 500

conduction channels of the regular gyroid network result in 501

an extensive manifold of magnetic states and give many possi- 502

ble choices for magnetotransport geometries. This vast phase 503

space therefore is ideal to explore for future three-dimensional 504

spintronic applications [12,15]. 505

For future experimental exploration of nanoscale gyroids 506

prepared by different growth methods, such as polymer 507

self-assembly [46–48], focused-electron beam induced de- 508

position (FEBID) [62,63], and two-photon nanolithography 509

[26,64,65], we identify two main aspects of emergent 510
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magnetic order to explore: First, our results indicate that511

highly frustrated spin configurations can be prepared with512

suitable demagnetization protocols in gyroid networks with513

enhanced Ising-like macrospin behavior (e.g., stabilized by514

the choice of materials or by preparing networks with larger515

lattice constants) and likely lead to interesting collective 3D516

artificial spin ice behavior. Second, due to their inherent517

noncoplanar spin order and thus nontrivial vector spin chiral-518

ity, gyroid networks are ideal candidates to host directional519

magnetotransport and nonreciprocal spin wave propaga-520

tion [36,37,57]. Such emergent properties and the intrinsic521

stochasticity related to frustrated magnetic order in nanoscale522

gyroids therefore makes them a rich platform to investigate523

3D spintronic networks for probabilistic and neuromorphic524

computing [10–12,66].525
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