000135566 001__ 135566
000135566 005__ 20250923084418.0
000135566 0247_ $$2doi$$a10.1002/adma.202310672
000135566 0248_ $$2sideral$$a138727
000135566 037__ $$aART-2024-138727
000135566 041__ $$aeng
000135566 100__ $$aSuzana, Ana F.
000135566 245__ $$aVisualizing the Internal Nanocrystallinity of Calcite Due to Nonclassical Crystallization by 3D Coherent X-Ray Diffraction Imaging
000135566 260__ $$c2024
000135566 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135566 5203_ $$aThe internal crystallinity of calcite is investigated for samples synthesized using two approaches: precipitation from solution and the ammonium carbonate diffusion method. Scanning electron microscopy (SEM) analyses reveal that the calcite products precipitated using both approaches have a well‐defined rhombohedron shape, consistent with the euhedral crystal habit of the mineral. The internal structure of these calcite crystals is characterized using Bragg coherent diffraction imaging (BCDI) to determine the 3D electron density and the atomic displacement field. BCDI reconstructions for crystals synthesized using the ammonium carbonate diffusion approach have the expected euhedral shape, with internal strain fields and few internal defects. In contrast, the crystals synthesized by precipitation from solution have very complex external shapes and defective internal structures, presenting null electron density regions and pronounced displacement field distributions. These heterogeneities are interpreted as multiple crystalline domains, created by a nonclassical crystallization mechanism, where smaller nanoparticles coalescence into the final euhedral particles. The combined use of SEM, X‐ray diffraction (XRD), and BCDI allows for structurally differentiating calcite crystals grown with different approaches, opening new opportunities to understand how grain boundaries and internal defects alter calcite reactivity.
000135566 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000135566 590__ $$a26.8$$b2024
000135566 592__ $$a8.851$$b2024
000135566 591__ $$aCHEMISTRY, PHYSICAL$$b5 / 185 = 0.027$$c2024$$dQ1$$eT1
000135566 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ1
000135566 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b10 / 460 = 0.022$$c2024$$dQ1$$eT1
000135566 593__ $$aNanoscience and Nanotechnology$$c2024$$dQ1
000135566 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b4 / 147 = 0.027$$c2024$$dQ1$$eT1
000135566 593__ $$aMechanics of Materials$$c2024$$dQ1
000135566 591__ $$aPHYSICS, CONDENSED MATTER$$b3 / 79 = 0.038$$c2024$$dQ1$$eT1
000135566 593__ $$aMechanical Engineering$$c2024$$dQ1
000135566 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b6 / 239 = 0.025$$c2024$$dQ1$$eT1
000135566 591__ $$aPHYSICS, APPLIED$$b6 / 187 = 0.032$$c2024$$dQ1$$eT1
000135566 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135566 700__ $$aLee, Sang Soo
000135566 700__ $$0(orcid)0000-0002-3448-9831$$aCalvo-Almazán, Irene$$uUniversidad de Zaragoza
000135566 700__ $$aCha, Wonsuk
000135566 700__ $$aHarder, Ross
000135566 700__ $$aFenter, Paul
000135566 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000135566 773__ $$g(2024), 11 pp.$$pAdv. mater.$$tAdvanced materials$$x0935-9648
000135566 8564_ $$s1749395$$uhttps://zaguan.unizar.es/record/135566/files/texto_completo.pdf$$yVersión publicada
000135566 8564_ $$s2868467$$uhttps://zaguan.unizar.es/record/135566/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135566 909CO $$ooai:zaguan.unizar.es:135566$$particulos$$pdriver
000135566 951__ $$a2025-09-22-14:34:15
000135566 980__ $$aARTICLE